

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

DEC 1 5 2010

Ms. Jennifer Tufts U.S. Environmental Protection Agency, Region 4 Federal Facilities Branch 61 Forsyth Street Atlanta, Georgia 30303

Mr. Edward Winner, FFA Manager Kentucky Department for Environmental Protection Division of Waste Management 200 Fair Oaks Lane, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Tufts and Mr. Winner:

TRANSMITTAL OF THE SITEWIDE EVALUATION WORK PLAN AT THE PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY (DOE/LX/07-0228&D1)

Enclosed is the D1 Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0228&D1, for regulatory review and/or approval. Per the Federal Facilities Agreement, because this is a secondary document, comments and/or approval is requested within 90 days.

If you have any questions or require additional information, please contact Rob Seifert at (270) 441-6823.

Reinhard Knerr Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure: D1 Sitewide Evaluation Work Plan

cc w/enclosure: DMC/Kevil PPPO-02-971713-11

e-copy w/enclosure: ballard.turpin@epa.gov, EPA/Atlanta christa.turner@ky.gov, KDEP/Frankfort craig.jones@lataky.com, LATA/Kevil edward.winner@ky.gov, KDEP/Frankfort gaye.brewer@ky.gov, KDEP/Frankfort leo.williamson@ky.gov, KDEP/Frankfort marjorie.dulatt@lex.doe.gov, PPPO/LEX myrna.redfield@lataky.com, LATA/Kevil reinhard.knerr@lex.doe.gov, PPPO/PAD rich.bonczek@lex.doe.gov, PPPO/LEX rob.seifert@lex.doe.gov, PPPO/LEX rob.seifert@lex.doe.gov, PPPO/PAD teresa.overby@lataky.com, LATA/Kevil tufts.jennifer@epa.gov, EPA/Atlanta

DOE/LX/07-0228&D1 Secondary Document

Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant Paducah, Kentucky

CLEARED FOR PUBLIC RELEASE

DOE/LX/07-0228&D1 Secondary Document

Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant Paducah, Kentucky

Date Issued—December 2010

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC managing the Environmental Management Activities at the Paducah Gaseous Diffusion Plant under contract DE-AC30-10CC40020

CLEARED FOR PUBLIC RELEASE

PREFACE

This Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0228&D1, under the Soils Operable Unit (OU), was prepared to identify any unknown contaminated areas requiring further Comprehensive Environmental Response, Compensation, and Liability Act evaluation and to develop information usable when completing the Resource Conservation and Recovery Act EIs process for the Paducah Gaseous Diffusion Plant (PGDP). The Site Management Plan (DOE 2010a) defined the scope and provided key planning assumptions. This evaluation will include a focused radiological survey and visual walkover survey to cover U.S. Department of Energy (DOE)owned property outside PGDP and not currently a solid waste management unit (SWMU)/area of concern (AOC). Any radiological anomalies in the West Kentucky Wildlife Management Area (WKWMA) on property owned by WKWMA, identified in radiological flyover surveys, also will be evaluated under this work plan. Anomalies identified as soil and rubble areas will be further evaluated under this work plan. Any other areas identified requiring additional investigation will be evaluated to determine the appropriate OU for follow-up investigations. Collection of field and fixed-base laboratory data will enable DOE to increase confidence that SWMU/AOCs have been appropriately identified. Information will be documented in a Site Evaluation Report, which will include SWMU/AOC Assessment Reports (SARs) for newly identified areas meeting the criteria to be managed under the Federal Facility Agreement (EPA 1998).

PREFACE	iii
FIGURES	vii
TABLE	vii
ACRONYMS	ix
EXECUTIVE SUMMARY	
 INTRODUCTION	
2. SITE BACKGROUND AND PHYSICAL SETTING	
3. INITIAL EVALUATION	9
 4. TASKS	13 13 13 CREENING 15 15
 WORK PLAN RATIONALE	17 17 17 20 20 20 21 21 21 23
6. SCHEDULE	
7. REFERENCES	
APPENDIX A: SAMPLING AND ANALYSIS PLAN	A-1
APPENDIX B: QUALITY ASSURANCE PROJECT PLAN	B-1
APPENDIX C: ENVIRONMENT, SAFETY, AND HEALTH P	LANC-1
APPENDIX D: DATA MANAGEMENT IMPLEMENTATION	PLAND-1

CONTENTS

FIGURES

1.	Map of PGDP and Surrounding Area	3
2.	Existing SWMUs/AOCs outside PGDP	7
3.	Conceptual Site Model	. 10
4.	PGDP Radiological Aerial Survey Area 2009	. 14
5.	Sitewide Scoping Survey Decision Flowchart	. 18
6.	Sampling Approach for Soil Areas	. 19
7.	Sampling Approach for Rubble Areas	. 22
8.	Sitewide Evaluation Schedule	. 26

TABLE

1.	Data Screening Criteria	16	6
----	-------------------------	----	---

ACRONYMS

AOC	area of concern
ARARs	applicable or relevant and appropriate requirements
bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
COE	U. S. Army Corps of Engineers
D&D	decontamination and decommissioning
DOE	U.S. Department of Energy
EI	Environmental Indicator
EM	Environmental Management
EPA	U.S. Environmental Protection Agency
FFA	Federal Facility Agreement
FS	Feasibility Study
GPS	global positioning system
KDFWR	Kentucky Department of Fish and Wildlife Resources
MARSSIM	Multi-Agency Radiation Survey & Site Investigation Manual
NAL	no action level
OU	operable unit
PCB	polychlorinated biphenyl
PGDP	Paducah Gaseous Diffusion Plant
QAPP	Quality Assurance Project Plan
RCRA	Resource Conservation and Recovery Act
RFI	RCRA Facility Investigation
RI	remedial investigation
SAP	sampling and analysis plan
SAR	SWMU assessment report
SER	site evaluation report
SMP	Site Management Plan
SVOC	semivolatile organic compounds
SWMU	solid waste management unit
TNT	trinitrotoluene
USEC	United States Enrichment Corporation
VOC	volatile organic compounds
WAG	waste area group
WKWMA	West Kentucky Wildlife Management Area
XRF	X-ray fluorescence

EXECUTIVE SUMMARY

PROBLEM STATEMENT

This Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0228&D1, documenting work to be performed under the Soils Operable Unit (OU), was prepared to identify unknown contaminated areas requiring further Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation and to develop information usable when completing the Resource Conservation and Recovery Act (RCRA) Environmental Indicators (EIs) process for the Paducah Gaseous Diffusion Plant (PGDP).

BACKGROUND

This evaluation includes scoping surveys of the U.S. Department of Energy (DOE)-owned property outside PGDP and West Kentucky Wildlife Management Area (WKWMA)-owned property around PGDP. Contamination sources may be present within the WKWMA that are not of DOE origin, for example the former Kentucky Ordnance Works occupies an area of the WKWMA southwest of PGDP.

Several evaluations/investigations have been performed in the DOE-owned areas outside PGDP to identify and appropriately manage material originating from PGDP. Ongoing efforts are being performed under the Soils OU, Surface Water OU, and Burial Grounds OU. Under the Soils OU and of relevance to this sitewide evaluation are work efforts that have been performed in support of soils and rubble area evaluations. Results of historical studies of rubble areas at PGDP and surrounding areas are presented in four reports (IT Corp. 1989; PGDP 1992; CH2M HILL 1992; DOE 1995) and as part of a soil and rubble evaluation. The Waste Area Group (WAG) 17 RCRA Facility Investigation (RFI) (DOE 1995) was completed between October and December 1995 and included investigation of 37 areas of concern (AOCs). The findings of the WAG 17 RCRA Facility Investigation are provided in the Remedial Investigation (RI) report (DOE 1997a) and in the WAG 17 Record of Decision (DOE 1997b).

On November 2, 2006, Paducah Remediation Services, LLC, radiological control technicians and representatives from the Kentucky Division of Waste Management observed and surveyed a series of soil and rubble areas on the DOE Reservation. As a result of a comprehensive survey conducted in 2007, 122 soil and rubble areas were identified for possible inclusion as solid waste management units/AOCs (DOE 2007a). These existing soil and rubble areas were evaluated under the Soil Piles Sampling and Analysis Plan (SAP) (DOE 2007b): Addendum 1-A (DOE 2007c), Addendum 1-B (DOE 2008a), Addendum 2 (DOE 2008b); and the SAP for the Rubble Areas (DOE 2008c). Work has been completed and Site Evaluation Reports have been issued for Addendum 1-A Soil Piles (Soil Pile I) (DOE 2008d); Addendum 1-B Soil Piles (DOE 2009a); Addendum 2 Soil Piles (DOE 2009b); and Rubble Areas (DOE 2009c). In addition, a Soils OU RI/Feasibility Study (RI/FS) Work Plan was prepared and implemented during 2010 (DOE 2010b).

The scope of work and key planning assumptions for this evaluation are provided in the Site Management Plan (SMP) (DOE 2010a).

PROJECT OBJECTIVES

The objective is to identify unknown contaminated areas originating from PGDP requiring further CERCLA evaluation and to develop information that is usable when completing the RCRA EI process for PGDP.

CONCEPTUAL SITE MODEL

Known recreational activities that take place in the WKWMA include hunting and field trials (both horses and dogs). Other recreational uses, such as hiking, also are possible; therefore, recreational user exposure to surface soils is the primary exposure pathway. The teen recreational user's screening concentration is lowest when compared to the other users for the same target risk and hazard level; therefore, the teen recreational user is considered in the Conceptual Site Model for users of the WKWMA (DOE 2001). The recreational user could be exposed to contaminants through contact with surface soils through the following exposure routes:

- External exposure from ionizing radiation (the most likely exposure route)
- Dermal contact
- Incidental ingestion
- Inhalation

Industrial workers might be expected to work on DOE-owned property outside PGDP; however, this would not be on a regular basis and their exposure would be limited to performance of tasks associated with site evaluation, maintenance, and remedial action.

CONTAMINANTS

Information from soils evaluations of previous soil piles and rubble areas identified the following types of contaminants as potentially present in site media:

- Polychlorinated biphenyls
- Radionuclides
- Metals

EVALUATION STRATEGY

The SMP (DOE 2010a) provides key planning assumptions for this evaluation including scoping surveys to identify anomalies. On DOE property outside PGDP, identification of anomalies will be by radiological and visual walkover surveys, with potential anomalies identified by radiological readings at greater than twice instrument background, a release is visually identified, or an anomaly is identified by process knowledge. Radiological and visual walkover surveys currently are being performed by DOE under DOE authority to identify anomalies on DOE-owned property outside PGDP. Anomalies on property owned by WKWMA will be identified using radiological flyover surveys, with identified radiological anomalies being subject to visual and radiological walkover surveys. Radiological flyover surveys were performed under DOE authority in October through November 2009.

Anomalies, once identified, will be categorized according to physical attributes as follows:

- Soil areas–which are defined as soil piles and disturbed soil areas.
- Rubble areas–which are defined as areas of varied materials.

Confirmed anomalies (identified and categorized) will be evaluated further under this work plan.

1. INTRODUCTION

1.1 SCOPE OF WORK

This Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0228&D1, documenting work to be performed under the Soils Operable Unit (OU), was prepared to identify unknown contaminated areas originating from the Paducah Gaseous Diffusion Plant (PGDP) requiring further Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation and to develop information usable when completing the Resource Conservation and Recovery Act (RCRA) Environmental Indicators (EIs) process for PGDP. Information will be documented in a site evaluation report (SER). Solid Waste Management Unit (SWMU) Assessment Reports (SARs) will be attached to the SER for any new SWMUs/areas of concern (AOCs) identified during this evaluation. SWMU and AOC are defined in the Federal Facility Agreement (FFA) (EPA 1998) as follows:

"SWMU – means any discernible unit at which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of solid or Hazardous Waste. Such units include any area at a facility at which routine and systematic releases of hazardous wastes or hazardous constituents has occurred."

"AOC – shall include any area having a probably or known release of a hazardous waste, hazardous constituent or hazardous substance which is not from a solid waste management unit and which poses a current or potential threat to human health or the environment. Such areas of concern may require investigations and remedial action...."

According to the Site Management Plan (SMP) (DOE 2010a), the "scope of the project includes a survey of the U.S. Department of Energy (DOE)-owned property outside the limited/controlled area. A sitewide evaluation will be performed to identify any unknown contaminated areas requiring further CERCLA evaluation and to develop information usable when completing the RCRA EIs process." Key DOE Planning Assumptions from the Life Cycle Baseline provided in the SMP are as follows:

- (1) A flyover radiological survey will be conducted for a 25 square miles area.
- (2) A visual walkover survey will cover DOE-owned property that is outside PGDP and not currently a SWMU/AOC (approximately 2,676 acres). DOE property licensed to Western Kentucky Wildlife Management Area (WKWMA) and areas owned by WKWMA identified as anomalies in the flyover also will be surveyed.
- (3) Visual observation also will be used to identify piles, spills, buried materials, and other anomalies.
- (4) A radiological walkover survey using Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) approach will cover, at a minimum, 10% of the property identified above (approximately 240 acres). All anomalies identified will be scanned regardless of what percentage of land they cover.
- (5) All anomalies will be documented on a map and in a database including location, description, photos, and data.
- (6) Analytical sampling will be conducted if the radiological scan indicates contamination (i.e., twice instrument background) or a release is visually identified.

- (7) Information will be documented in a SER. SARs will be attached to the SER for any new SWMUs/AOCs identified during this evaluation.
- (8) Any newly identified SWMUs/AOCs will be addressed in the Soils OU Remedial Action (Phase I—Pre Gaseous Diffusion Plant Shutdown). A separate removal action will not be performed.

Soil samples (from soil areas) and wipe samples (from stained rubble areas) from confirmed anomalies that are determined to be the responsibility of DOE will be analyzed by field and fixed-base analytical methods as discussed in Sections 5, Appendix A, and Appendix B of this work plan. This work plan was prepared by the DOE prime contractor for environmental remediation at PGDP. Resulting fixed-base laboratory analytical data will be of sufficient quality so that it can be used in subsequent CERCLA documents to evaluate potential human health risks and to support decisions regarding any need for response actions. Figure 1 illustrates PGDP and surrounding area.

1.2 OBJECTIVES

The objective is to identify unknown contaminated areas originating from PGDP requiring further CERCLA evaluation and to develop information usable when completing the RCRA EI process for PGDP. Specifically the evaluation was designed to obtain data to support the following objectives:

- Identify anomalies (based on scoping surveys) on DOE-owned and WKWMA-owned property and confirm DOE origin. DOE origin is determined on DOE-owned property by radiological and visual walkover surveys where radiological readings are greater than twice instrument background or where a release is visually identified or where an anomaly is identified by process knowledge. DOE origin is determined on WKWMA-owned property by a radiological signature from the aerial radiological survey;
- For anomalies confirmed to be of DOE origin, establish the presence or absence of DOE-related contaminants [metals, polychlorinated biphenyls (PCBs), and radionuclides];
- Collect data to perform data screening to determine if such anomalies may pose risks to human health under current use scenarios and to support future decisions; and
- Determine appropriate path forward per the FFA (EPA 1998).

1.3 GUIDANCE

The following guidance was used as a basis for preparing this work plan:

- U.S. Environmental Protection Agency (EPA), Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (EPA 1988);
- EPA Guidance on Systematic Planning Using the Data Quality Objectives Process (EPA 2006);

- EPA Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd Edition (EPA 2004);
- EPA Uniform Federal Policy for Quality Assurance Project Plans (EPA 2005a; EPA 2005b; EPA 2005c; EPA 2005d);
- EPA Preparation of Soil Sampling Protocols: Sampling Techniques and Strategies (EPA 1992); and
- MARSSIM Manual (DOE 2000).

The Environmental Management (EM) Program at PGDP is conducted in compliance with several laws and regulations. In general, these laws include RCRA in 1976; CERCLA; the Clean Water Act of 1972; the Toxic Substances Control Act of 1976; the Endangered Species Act of 1973; and Commonwealth of Kentucky statutes and regulations. DOE may perform maintenance actions under its authority provided in the Atomic Energy Act. Although all of these regulations impact the PGDP EM Program, this work plan is designed to support CERCLA decisions concerning unknown contaminated areas.

1.4 WORK PLAN ORGANIZATION

Section 2 includes information on site background and physical setting. Section 3 is an initial evaluation of the site including the site conceptual model. Section 4 provides a brief description of tasks to be performed, Section 5 provides the work plan rationale, and Section 6 provides a schedule.

Appendix A of this work plan contains the Sampling and Analysis Plan (SAP). Various methods will be used to assist in identifying specific anomalies to be evaluated further; therefore the specific types and numbers of anomalies, sample locations and numbers, and sample designations will documented in work package documents. Appendix B contains the Quality Assurance Project Plan (QAPP); Appendix C contains the Environment, Safety, and Health Plan; and Appendix D contains the Data Management Implementation Plan.

2. SITE BACKGROUND AND PHYSICAL SETTING

PGDP, located within the Jackson Purchase region of western Kentucky, is an active uranium enrichment facility owned by DOE. PGDP was owned and managed first by the Atomic Energy Commission and the Energy Research and Development Administration, DOE's predecessors; DOE then managed PGDP until 1993. On July 1, 1993, the United States Enrichment Corporation (USEC) assumed management and operation of the PGDP enrichment facility under a lease agreement with DOE. DOE retains ownership of the enrichment complex. The DOE Portsmouth/Paducah Project Office is responsible for EM activities associated with PGDP (CERCLIS# KY8-890-008-982) and serves as the lead agency for remedial actions at PGDP. EPA Region 4 and Kentucky Department for Environmental Protection serve as the regulatory oversight agencies for the facility.

Of the 1,386 ha (3,423 acres) owned by DOE, approximately 303 ha (749 acres) of this parcel are inside PGDP. Most of the facilities used to support enrichment operations are located in this area. Outside PGDP, several support facilities for both the DOE and USEC missions can be found. The support facilities include landfills (both active and closed), modular office complexes, a water treatment facility, groundwater remediation systems, decontamination facilities, storage areas, a storm water retention basin, and liquid effluent treatment facilities. Of the remaining DOE land, approximately 842 ha (2,081 acres) is licensed to the Commonwealth of Kentucky Department of Fish and Wildlife Resources (KDFWR) and serves as a portion of the WKWMA. The licensed portion of the WKWMA is used by the public for hunting and horse and dog field trials. KDFWR staff work in the licensed area performing wildlife management activities.

The topography of the DOE Reservation is level to slightly rolling. It is rural and predominantly open grasslands with scattered wooded areas of mature hardwoods and brush. Approximately 60% of the total area outside PGDP but on the DOE Reservation is grasslands; much of this non-wooded area contains electrical power lines.

Two creeks—Bayou Creek and Little Bayou Creek—pass through the DOE Reservation, draining north into the Ohio River. Multiple permitted drainage outfalls and ditches from PGDP discharge to these two creeks. There are approximately 11,000 m (36,100 ft) of combined drainage ditches and creeks that potentially have been impacted by PGDP discharges. Areas in and near outfall ditches were surveyed previously and are posted appropriately.

Contamination sources may be present within the WKWMA that are not of DOE origin; for example, the former Kentucky Ordnance Works occupies an area of the WKWMA southwest of PGDP. Substantial work has been performed in areas outside PGDP to identify, and appropriately manage, material originating from PGDP. Ongoing efforts are being performed under the Soils OU, Surface Water OU and Burial Grounds OU. Under the Soils OU and of relevance to this sitewide evaluation are the work efforts that have been performed in support of soils and rubble area evaluations. Results of historical studies of rubble areas at PGDP and surrounding areas are presented in four reports (IT Corp. 1989; PGDP 1992; CH2M HILL 1992; DOE 1995) and as part of an ongoing soil and rubble evaluation (see below). The Waste Area Group (WAG) 17 RCRA Facility Investigation (RFI) (DOE 1995) was completed between October and December 1995 and included investigation of 37 AOCs. The findings of the WAG 17 RFI are provided in the Remedial Investigation (RI) report (DOE 1997a) and in the WAG 17 Record of Decision (DOE 1997b). Radionuclides and polychlorinated biphenyls (PCBs) are the primary potential contaminants of concern for pre-GDP shutdown. The Soils OU focuses on accessible plant surface soils (ground surface to 10 ft bgs and 16 ft bgs in the vicinity of pipelines). A series of Soils OU actions have been completed to date and a removal action for soils at SWMUs 19 (C-410-B HF Neutralization Lagoon), and 181 (C-218 Outdoor Firing Range) is being implemented as a non-time-critical removal.

On November 2, 2006, Paducah Remediation Services, LLC radiological control technicians and Kentucky Division of Waste Management personnel observed and surveyed a series of soil piles on the DOE Reservation. As a result of a comprehensive survey conducted by DOE in 2007, additional soil and rubble areas were identified in a letter for possible inclusion as SWMUs/AOCs (DOE 2007a). This letter, dated February 17, noted that "a total of 150 areas, consisting of soil and rubble have been identified to date." Of those 150 areas, 28 areas previously have been identified as SWMUs or AOCs, and 13 areas had sufficient data to make a SWMU or AOC determination, leaving 109 areas (85 soil areas and 24 rubble areas) to be evaluated. All of the soil areas were on DOE property whereas only 6 of the 24 rubble areas were on DOE property. The letter contained a planning schedule for characterization and notification for the soil and rubble areas under the Soils OU. These areas and two additional soil piles (AOCs 492 and 541) currently are being evaluated under the Soil Piles SAP (DOE 2007b) and associated addenda, Addendum 1-A (DOE 2007c), Addendum 1-B (DOE 2008a), and Addendum 2 (DOE 2008b). In addition, identified rubble areas are being evaluated under the Rubble Areas SAP (DOE 2008c). In order to facilitate the process, these soil and rubble areas were prioritized as follows:

- Little Bayou Creek Soil Pile I on the east side of the plant between McCaw Road and Outfall 002 Ditch Addendum 1-A.
- Little Bayou Creek including AOC 492 and 541 north and east of the plant including the North-South Diversion Ditch, but excluding Soil Pile I–Addendum 1-B.
- Bayou Creek and unnamed tributary west side of the plant Addendum 2.
- Rubble areas.

Existing SWMUs/AOCs (i.e., identified to date and covered under other work elements) outside PGDP are shown in Figure 2. Work has been completed and SERs have been issued for Addendum 1-A Soil Piles (Soil Pile I) (DOE 2008d): Addendum 1-B Soil Piles (DOE 2009a); Addendum 2 Soil Piles (DOE 2009b); and Rubble Areas (DOE 2009c). In addition, a Soils OU RI/Feasibility Study (RI/FS) Work Plan is being prepared (DOE 2010b).

In order to expedite the current sitewide evaluation, DOE is proceeding with a radiological and visual walkover survey (planning assumptions 2 through 5 in the 2009 SMP, as noted in Section 1) of the DOE-owned property outside PGDP for the purpose of identifying potential anomalies (DOE 2008e). DOE is performing this task under its own authority. Planned surveys are complete and 633 anomalies were visually identified. All anomalies have been radiologically surveyed and all are less than twice instrument background.

8-31-2009

3. INITIAL EVALUATION

Based on previous experience (DOE 2007a), the types of anomalies expected to be encountered likely will consist of bare soil areas (possibly indicative of spills), soil piles, and rubble areas. Existing soil piles and rubble areas being investigated under other Soils OU SAPs are generally located adjacent to PGDP outfalls, Little Bayou and Bayou Creeks, along the unnamed tributary, and the North-South Diversion Ditch. Unknown contaminated areas might be expected to be found near surface water drainages, near the edges of woods, and near roadways. Proximity to surface water drainage areas results in several potential secondary exposure routes that potentially could impact human health and the environment. The majority of the secondary routes assume that soils either have been released to adjacent waterways or moved through the food chain. Precipitation could result in contaminant migration; however, PGDP historical monitoring data over the past 5-10 years indicate little migration is occurring because contaminant levels in surrounding creeks are stable or decreasing.

Contaminants found during sampling of soil piles under the Soil Piles Evaluation (DOE 2008d; DOE 2009a; DOE 2009b) do not bioaccumulate in plants to a great degree. As a result, plant uptake and corresponding accumulation in animal tissue is unlikely, but soil ingestion as part of normal feeding activities is likely a complete pathway. Ecological receptors also may be exposed to on-site contaminants; however, the primary focus of this evaluation effort is to determine risks to human health. Evaluation of ecological risks will be completed as part of a subsequent action under the PGDP FFA (EPA 1998). Fixed-base laboratory analytical data from samples collected as part of this site evaluation shall be of sufficient quality to be used for risk assessment purposes.

Sampling is necessary to gather data to allow DOE to assess potential risks to human health posed by confirmed anomalies. Sampling also provides data to assist in future determination of nature and extent of any contamination. Contaminants attributable to DOE activities that might be present include metals, PCBs, and radionuclides. It should be noted that metals and PCBs may be present from other sources.

Based on experience gained through execution of the SAP for the Soil Piles Evaluation (DOE 2007b) and its addenda [Addendum 1-A (DOE 2007c), Addendum 1-B (DOE 2008a), and Addendum 2 (DOE 2008b)] and the SAP for the Rubble Areas (DOE 2008c), as reported in the SERs [Addendum 1-A Soil Piles (Soil Pile I) (DOE 2008d), Addendum 1-B Soil Piles (DOE 2009a), Addendum 2 Soil Piles (DOE 2009b)], and Rubble Areas (DOE 2009c), volatile organic compounds (VOCs) are not expected to be encountered and semivolatile organic compounds (SVOC) are ubiquitous; therefore, the presence of these compounds will not be evaluated. Consideration will be given to adding groups of compounds to the analysis requirements, such as VOCs, SVOCs, and asbestos, if visual walkover survey observations, research, and/or process knowledge of identified anomalies indicate that it is warranted.

The following information describes the Conceptual Site Model for the unknown contaminated areas (see Figure 3).

Recreational activities known to take place in the evaluation area include hunting and field trials (horses and dogs). Other recreational uses, such as hiking, also are possible; therefore, recreational user exposure to surface soils is the primary exposure pathway. The recreational user could be exposed to contaminants by contact with surface soils through the following exposure routes:

- External exposure (ionizing radiation)
- Dermal contact
- Incidental ingestion
- Inhalation

Industrial workers might be expected to work on DOE-owned property outside PGDP; however, this would not be on a regular basis and their exposure would be limited to performance of tasks associated with site evaluation, maintenance, and remedial action.

4. TASKS

The following presents tasks necessary to complete this sitewide evaluation.

4.1 SCOPING SURVEYS

Scoping surveys, as described in Section A.3, will be performed to identify anomalies. On DOE property outside PGDP, identification of anomalies will be by radiological and visual walkover surveys, with potential anomalies identified by radiological readings at greater than twice instrument background or a release is visually identified or an anomaly is identified by process knowledge. Radiological and visual walkover surveys currently are being performed by DOE under DOE authority to identify anomalies on DOE-owned property outside PGDP. Anomalies on property owned by WKWMA will be identified using radiological flyover surveys (see Figure 4), with identified radiological anomalies being subject to visual and radiological walkover surveys. Radiological flyover surveys were performed under DOE authority in October through November 2009. Aerial photographic surveys were performed in May, 2009 for the purpose of providing an updated base map. Information on anomalies gathered from the radiological and visual walkover surveys will include the following descriptive data: location [using global positioning system (GPS)], areal footprint, height of pile or depth of depression, and physical description.

Once anomalies are identified, they will be categorized based on physical attributes and then evaluated by performing sampling and data screening activities that are appropriate to the category, and as described in Section 5.

4.2 FIELD SAMPLING ACTIVITIES

Activities included in this task are as follows:

- Subcontractor procurement
- Planning
- Mobilization
- Anomaly description and documentation
- Site preparation activities (such as clearing and grubbing)
- Civil survey (using GPS) and sample location staking/marking
- Media sampling (for field laboratory testing and fixed-base laboratory testing)
- Field laboratory analytical testing
- Sample shipping
- Equipment decontamination
- Investigation derived waste management and disposal
- Task management

If archeological features/artifacts are discovered during clearing, grubbing, and soil sampling, DOE will proceed in accordance with the approved Cultural Resources Management Plan.

4.3 SAMPLE ANALYSIS/VALIDATION AND DATA SCREENING

This task will include analysis of media samples at the fixed-base laboratory, sample validation as described in Appendix B, and data screening. Field and fixed-base analytical results will be used to meet the sampling objectives. Data screening will be performed with the principal objective of informing risk managers in support of decision making for the site. Key considerations include the following:

- Determine whether all or portions of the study area may be eliminated from concern.
- Identify where risk characterization suggest actions may be needed.
- Determine whether additional data gathering and/or risk assessments are warranted.

The data screening provides information to the stakeholders based on the Commonwealth of Kentucky and nationally accepted risk assessment methods. These objectives are consistent with the goals, objectives, and requirements identified in the Paducah Risk Methods Document (DOE 2001). The scope of the screening is to assess risks to human receptors who may be exposed to chemicals or radionuclides through normal recreational use of the site. This data screening does not examine ecological risks.

To determine the presence or absence of contaminants in each anomaly, contaminant concentrations from field and fixed-base laboratory analyses will be compared to the values for background and teen recreator no action levels (NALs) provided in the PGDP Risk Methods Document (DOE 2001), and as shown in Table 1. Nondetect results will not be considered present above background or NALs even if the detection limit for the chemical is greater than the background or NAL value. Detection limits that are higher than background and/or NALs will be addressed as an uncertainty in the SER.

Following data screening, those constituents that (1) exceed PGDP background concentrations or (2) exhibited concentrations in excess of the teen recreator NALs will be considered as contaminants of potential concern for quantitative risk assessment in future investigative activities of the anomaly. Section $40 \ CFR \$ 300.420 sets the criteria if a remedial action is warranted.

4.4 SITE EVALUATION REPORT

After project data has been validated and fully evaluated, a SER [consistent with Section IX of the FFA (EPA 1998)] will be prepared. This SER, which is a combined removal/remediation site evaluation and SAR, will document the findings as a result of implementation of this work plan will follow the outline in Appendix D of the FFA (EPA 1998) and will include the following:

- A description of the project scope and objectives with regulatory overview and project background;
- Physical description of the project area including potential sources of contamination (if applicable);
- Description of field and analytical methods;
- Quality Assurance/Quality Control Report;
- Discussion and results, including the conceptual site model and distribution of contaminants (if present);
- Results of data screening;

Recommendations; and ٠

SAR (if applicable). ٠

Analyte	Child Resident No Action Level (mg/kg or pCi/g) ¹	Child Resident Action Level (mg/kg or pCi/g) ¹	Teen Recreational User No Action Level	Teen Recreational User Action Level	PGDP Surface Background (mg/kg or	PGDP Subsurface Background (mg/kg or
Aluminum	732	100.000	<u>(mg/kg or pCl/g)</u> 3 010	100.000	<u>13 000</u>	<u>12 000</u>
Antimony	0.0635	46.9	0.242	344	0.21	0.21
Arsenic	0.132	35	0.346	314	12	7.9
Barium	37	12,500	148	100 000	200	170
Bervllium	0.16	158	0.606	884	0.67	0.69
Cadmium	2.64	11.5	14 7	45.3	0.21	0.21
Calcium	N/A	N/A	N/A	N/A	200.000	6.100
Chromium	60.5	71,900	227	100,000	16	43
Cobalt	209	13,300	1,390	100,000	14	13
Copper	68.1	7,900	331	100,000	19	25
Iron	314	60,500	1,350	100,000	28,000	28,000
Lead	50	400	50	400	36	23
Magnesium	N/A	N/A	N/A	N/A	7,700	2,100
Manganese	7.46	3,700	29	39,100	1,500	820
Mercury	0.158	100,000	0.634	797	0.2	0.13
Molybdenum	10.9	1,080	56.4	41,700	N/A	N/A
Nickel	34	4,240	161	100,000	21	22
Selenium	12.1	1,090	65	44,700	0.8	0.7
Silver	6.12	1,030	27	27,100	2.3	2.7
Sodium	N/A	N/A	N/A	N/A	320	340
Thallium	0.107	16.6	0.479	465	0.21	0.34
Uranium	2.16	133	14.7	6,830	4.9	4.6
Vanadium	0.562	554	2.12	3,090	38	37
Zinc	401	62,200	1,800	100,000	65	60
Aroclor-1016	0.0574	7.08	0.127	28.3	N/A	N/A
Aroclor-1221	0.0574	10.5	0.127	28.3	N/A	N/A
Aroclor-1232	0.0574	10.5	0.127	28.3	N/A	N/A
Aroclor-1242	0.0574	10.5	0.127	28.3	N/A	N/A
Aroclor-1248	0.0574	10.5	0.127	28.3	N/A	N/A
Aroclor-1254	0.0388	2.02	0.127	13.1	N/A	N/A
Aroclor-1260	0.0574	10.5	0.127	28.3	N/A	N/A
Total PCBs	0.0574	10.5	0.127	28.3	N/A	N/A
Americium-241	0.836	83.6	11.6	1,160	N/A	N/A
Cesium-137 ³	0.0128	1.28	0.178	17.8	0.49	0.28
Neptunium-237 ³	0.0405	4.05	0.565	56.5	0.1	N/A
Plutonium-238	2.27	227	31	3,100	0.073	N/A
Plutonium-239/240	2.22	222	30.3	3,030	0.025	N/A
Technetium-99	67.4	6,740	926	92,600	2.5	2.8
Thorium-228	0.00418	0.418	0.0584	5.84	1.6	1.6
Thorium-230	2.85	285	39	3,900	1.5	1.4
Thorium-232	2.61	261	35.7	3,570	1.5	1.5
Uranium-234	3.81	381	52.2	5,220	1.2	1.2
Uranium-235 ³	0.0591	5.91	0.826	82.6	0.06	0.06
Uranium-238 ³	0.261	26.1	3.64	364	$1.2(0.4)^4$	$1.2(0.4)^4$

Table 1. Data Screening Criteria¹

N/A = not available or not applicable.

¹ Values in table are current values and will be updated prior to completion of the Sitewide Evaluation Report, ELCR, HI, and Action Levels are provided in Table A.14 and ELCR, HI, and No Action Levels are provided in Table A.17 of the Risk Methods Document (DOE 2001).
 ² PGDP background values are taken from Table A.12 of the Risk Methods Document (DOE 2010c).

³ Screening values derived considering the contribution from short-lived decay products.
 ⁴ Adjusted values in parentheses will be used for screening if nitric acid is used for sample extraction.

5. WORK PLAN RATIONALE

This work plan was prepared to identify any unknown contaminated areas requiring further CERCLA evaluation and to develop information usable when completing the RCRA EIs. This evaluation will include a radiological survey and visual walkover survey to cover DOE-owned property outside PGDP and currently not a SWMU/AOC. This work was performed under DOE authority. Any anomalies in the WKWMA, on property owned by WKWMA, identified in flyover surveys also will be evaluated under this work plan. The sampling approach for identified anomalies will be based on their physical form (e.g., soil and rubble areas). Collection of field and fixed-base laboratory data will enable DOE to increase confidence that SWMUs/AOCs have been appropriately identified.

5.1 SCOPING SURVEY APPROACH

Figure 5 shows the generalized approach to the radiological scoping surveys (DOE 2008e) that are and will be used to identify anomalies for categorization and further evaluation based on physical form:

- Soil areas–which are defined as soil piles and disturbed soil areas.
- Rubble areas–which are defined as areas of varied materials.

It should be noted that aerial, visual walkover and radiological walkover surveys have been conducted and are ongoing. To date no anomalies have been discovered with a radiological reading of greater than twice instrument background.

Categorized anomalies will be further evaluated using the approaches described in Sections 5.2 and 5.3 if the radiological screening indicates greater than twice instrument background and/or visual evidence (including process knowledge) indicates a possible origin from PGDP. Work package documents will be prepared after surveys are completed and prior to any sampling activities to provide more specific information to field personnel on sample locations, numbers, analyses, and designations, etc.

5.2 SOIL AREAS SAMPLING APPROACH

Soil areas will be evaluated based on the approach provided in Figure 6. This approach has been developed taking into account results from other soil pile evaluations (DOE 2008d; DOE 2009a; and DOE 2009b). No previous sampling efforts have been performed on the soil that will be evaluated as part of this study. A systematic biased sampling approach will be implemented for small soil areas or piles and a systematic random approach will be implemented for large soil areas or piles consistent with approved methodologies for soil piles investigated under other SAPs. If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then a biased sample at the highest radiological reading will be taken and analyzed at a fixed-base laboratory for radiological constituents. Soils areas are divided into two groups: small and large. Soil areas whose length and width are less than or equal to 30 ft are classified as small. Soil areas whose length or width is greater than 30 ft are classified as large.

These approaches are designed to ensure data are acquired from all soil piles and a sufficient number of samples are collected to aid in determining the concentration and distribution of constituents throughout the study area.

Prior to the collection of soil samples, each soil area or pile will be visually evaluated to determine the necessity for clearing and grubbing. Site preparation will occur prior to any sampling activities. In addition, each location will undergo a radiological survey as discussed in Appendix A.

5.2.1 Sample Locations

Following site preparations, sample locations will be identified, staked, and surveyed (using GPS).

5.2.1.1 Small soil areas/piles

For small soil piles, a single location at the highest point of the pile will be sampled. For small soil areas, a single location at the approximate center of the area will be sampled. It is assumed that the highest point or central points would represent the most likely place to encounter contamination, if it exists. If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then a biased sample at the highest radiological reading also will be taken and analyzed at a fixed-base laboratory for radiological constituents.

5.2.1.2 Large soil areas/piles

A 50 ft grid will be used to place sample locations for each large soil area/pile. Samples will be collected from within the grid square at the approximate center. Sample locations for large soil piles may be adjusted at the discretion of the project manager and field team leader, if actual field conditions indicate a predetermined sample location cannot be accessed. If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then a biased sample at the highest radiological reading will be taken and analyzed at a fixed-base laboratory for radiological constituents. If a given location is moved, the reason for the move (e.g., tree is in the way), along with its spacing in relation to adjacent locations, will be fully documented in the field logbook.

Soil piles found to date (DOE 2007a) and being investigated under other work elements generally have covered a large area with large variation in pile size; therefore, a systematic sampling approach has been developed. It is designed to ensure that data is acquired from all soil areas/piles, irrespective of their size, while ensuring that a sufficient number of samples is acquired to support informed decision making. To develop the sampling strategy, practices previously approved at PGDP have been consulted and form the basis for the sampling design. Recent SAPs contain provisions for a similar sample density in similar settings, employing sample spacing ranging from 10 to 50 ft as a means of identifying contamination and delineating contamination. Generally, sample spacing from 35 to 50 ft has been accepted for initial data acquisition, with tighter spacing applied to delineate contamination boundaries.

5.2.2 Sample Requirements

Samples from bare soil areas (no relief above grade) will be collected from the surface only (0-1 ft depth). Metals, PCBs, and site-related radionuclides are generally immobile; therefore, if site-related material were placed on the ground surface, it likely would still be present at the surface. Consequently, if no contamination is detected at the surface, then it is reasonable to assume that no contamination would be detected in deeper soil. If the site evaluation indicates that contamination is present in the surface soil of bare soil areas at concentrations that indicate further investigation is warranted, then this recommendation would be included in the SER.

Samples from small and large soil piles will be collected from the following depth intervals:

• A surface soil sample will be acquired from 0-1 ft at every sampled location.

• Thereafter, soil cores will be advanced and soil samples collected at 3 ft intervals, until the interface with the soil pile and the natural grade has been reached. For any soil interval, where the span to the natural grade is greater than 1 ft but less than 3 ft, the sampler will be halted when the natural grade is reached, irrespective of its length. Multiple cores over this span may be collected to acquire sufficient sample volume for field and laboratory analyses. If multiple cores are required, they will be combined and homogenized before they are placed in containers for analysis.

For small soil piles/areas with only one sample location, no field laboratory analysis will occur and all soils samples will be submitted to a fixed-base laboratory for analysis of metals, PCBs, and radionuclides per the methods specified in Appendix B worksheet #15-1, 15-2, and 15-3.

For large soil piles/areas all soil samples will undergo field laboratory analyses for metals [by X-ray fluorescence (XRF)], radioactivity (by GM scan), and PCBs (using test kits). Ten percent of the samples will be randomly preselected for definitive fixed-base laboratory analysis for metals (Appendix B worksheet #15-4) and PCBs (Appendix B, worksheet #15-5), with a minimum of one surface soil sample and one subsurface soil sample per large pile and one surface soil sample per large.

5.3 RUBBLE AREAS SAMPLING APPROACH

Rubble areas will be evaluated based on the approach provided in Figure 7. The approach for the rubble areas is has been developed taking into consideration results from similar studies conducted at PGDP such as WAG 17 (DOE 1995) and Rubble Piles Evaluation (DOE 2009c). The results of these evaluations, in addition to 2006 radiological survey data, indicate there is no widespread contamination in rubble areas.

Each rubble area will be visually evaluated to determine the necessity for clearing and grubbing. Site preparation will occur prior to any sampling activities. In addition, each location will undergo a radiological survey as discussed in Appendix A. For rubble areas exhibiting oil staining, wipe samples of the oil stained portion of rubble will be collected for field analysis of PCBs. No additional sampling will occur.

DOE may elect to remove any rubble area as a maintenance action. If so, upon removal of the rubble, one surface soil sample will be collected from immediately beneath the rubble area.

5.3.1 Sample Locations

Wipe samples will be collected from rubble areas that exhibit oil staining. If the rubble area is removed as a maintenance action, one surface soil sample will be taken from immediately below the rubble area, at the lowest point of the area or at the central point of the area if the area is topographically flat. If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then a biased sample at the highest radiological reading will be taken and analyzed at a fixed-base laboratory for radiological constituents. Details of any wipe and soil sample locations (if applicable) will be included in work package documents.

5.3.2 Sample Requirements

Wipe samples will be analyzed for PCBs using field test kits (Appendix B worksheet #15-6).

Soil samples from beneath removed rubble (if removed as part of a maintenance action) will undergo field analyses for radioactivity (by NaI scan). One soil sample per removed rubble area will be collected and submitted for definitive fixed laboratory analysis for metals, radionuclides, and PCBs, as specified in Appendix B (Worksheets # 15-1, 15-2, and 15-3). If the area is extensive or if there are several small rubble piles within a rubble area, then a composite soil sample may be collected and considered representative for the entire rubble area.

6. SCHEDULE

Figure 8 provides a schedule of the activities proposed for the Soils OU Sitewide Evaluation Work Plan implementation. This schedule represents an estimate for planning purposes and is included here for informational purposes only and is not intended to establish enforceable schedules or milestones. Enforceable milestones are contained in Appendix C of the FFA (EPA 1998) and Appendix 5 of the SMP (DOE 2010a). Also note that the schedule includes business days in lieu of calendar days.

Activity ID	Activity Description	Early Start	Early Finish	Orig Dur	Rem Dur	% Comp	FY09 (NDJFMAMJJAS	FY10 FY11 ONDJFMAMJJASONDJFMAMJJAS	FY12 FY1 SONDJFMAMJJASONI
04.11.06.01.02.01.03 Site Evaluation Work Plan									
AR00002250	EPA/KY APPROVAL OF SITE EVALUATION WORK PLAN		30JUN11	0	0	0	EPA/KY APPR	OVAL OF SITE EVALUATION WORK PLAN	
04.11.06.01.02	.02 Field Activities								
AR00002337	Field Activities	05JUL11	30SEP11	63	63	0			Field Activities
04.11.06.01.02.03 Site Evaluation Report									
AR00002330	PREPARE SITE EVALUATION REPORT	03OCT11	30DEC11	61	61	0		PREPARE SITE EVALUATION REPORT	
AR00002460	DOE ISSUE SITE EVALUATION RPT TO EPA/KDEP (D1)		30DEC11	0	0	0	D	OE ISSUE SITE EVALUATION RPT TO EPA/KDE	P (D1) I

					_						
Star	t Date	01OCT02	\wedge	Early Bar	SOIL	Sheet 1 of	f 1				
Fini	sh Date	29JUN12					Dat	e	Revision	Checked	Approved
Data	a Date	24APR06	$\Delta - \underline{V}$	Progress Bar		Paducah Remediation Services					
Run	Date	13SEP10 09:41		Critical Activity		SITEWIDE EVALUATION SCHEDULE					
© Primavera Systems, Inc.											

7. REFERENCES

- CH2M HILL 1992. Results of the Site Investigation, Phase II, Paducah Gaseous Diffusion Plant, KY/SUB/13B-97777C P-03/1991/1, CH2M HILL, Southeast, Inc., Oak Ridge, TN, April.
- DOE (U.S. Department of Energy) 1995. Resource Conservation and Recovery Act (RCRA) Facility Investigation Work Plan for Waste Group Area Grouping (WAG) 17 at the Paducah Gaseous Diffusion Plant, U. S. Department of Energy, Paducah, KY, October.
- DOE 1997a. Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Volume 1, DOE/OR/07-1404/V1&D2, U.S. Department of Energy, Paducah, KY, April.
- DOE 1997b. Record of Decision for Waste Area Group 17 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/06-1567&D1, U.S. Department of Energy, Paducah, KY, September.
- DOE 2000. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)* DOE/EH--624/R1 U.S. Department of Energy, August.
- DOE 2001. Methods for Conducting Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant Paducah, Kentucky, Volume 1. Human Health, DOE/OR/07-1506/&D2, U.S. Department of Energy, Paducah, KY, December.
- DOE 2007a. Letter from W. E. Murphie to R. B. Scott, Kentucky Department for Environmental Protection, Frankfort, Kentucky, and D. G. Williams, U.S. Environmental Protection Agency Region IV, Atlanta, Georgia, February 17.
- DOE 2007b. Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015&D2R1, U.S. Department of Energy, Paducah, KY, September.
- DOE 2007c. Addendum 1-A to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/A1/D2R1, U.S. Department of Energy, Paducah, KY, August.
- DOE 2008a. Addendum 1-B to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/1B&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2008b. Addendum 2 to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/A2&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2008c. Sampling and Analysis Plan for Rubble Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0060&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2008d. Site Evaluation Report for Soil Pile I at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/0108&D2, U.S. Department of Energy, Paducah, KY, December.

- DOE 2008e. Scoping Survey Plan of Selected DOE Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS-RAD-0602, U.S. Department of Energy, Paducah, KY, May.
- DOE 2009a. Site Evaluation Report for Addendum 1-B Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/0225&D1, U.S. Department of Energy, Paducah, KY, July.
- DOE 2009b. Site Evaluation Report for Addendum 2 Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/0188&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2009c. Site Evaluation Report for Rubble Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/0227&D0, U.S. Department of Energy, Paducah, KY, July.
- DOE 2010a. Site Management Plan, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Annual Revision–FY 2009, DOE/LX/07-0305&D2, U.S. Department of Energy, Paducah, KY, April.
- DOE 2010b. Work Plan for the Soil Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0120&D2/R1, U.S. Department of Energy, Paducah, KY, February.
- DOE 2010c. Methods for Conducting Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant Paducah, Kentucky, Volume 1. Human Health, DOE/LX/07-0107&D2, U.S. Department of Energy, Paducah, KY, July.
- EPA (U.S. Environmental Protection Agency) 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, EPA/540/G-89/004, October.
- EPA 1992. Preparation of Soil Sampling Protocols: Sampling Techniques and Strategies, EPA/600/R-92/128, July.
- EPA 1998. *Federal Facility Agreement for the Paducah Gaseous Diffusion Plant*, U.S. Environmental Protection Agency, Region 4, Atlanta, GA, February 13.
- EPA 2004. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*, SW-846, 3rd Edition, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, http://www.epa.gov/epaoswer/hazwaste/test/main.htm, Web page updated February 22, 2006, Web page visited May 17, 2006.
- EPA 2005a. Uniform Federal Policy for Implementing Environmental Quality Systems, EPA-505-F-03-001, March.
- EPA 2005b. Uniform Federal Policy for Quality Assurance Project Plans, Part 1:UFP-QAPP Manual, EPA-505-B-04-900A, March.
- EPA 2005c. Uniform Federal Policy for Quality Assurance Project Plans, Part 2B: Quality Assurance/Quality Control Compendium: Minimum QA/QC Activities, EPA-505-B-04-900B, March.
- EPA 2005d. Uniform Federal Policy for Quality Assurance Project Plans, Part 2A: UFP-QAPP Workbook, EPA-505-B-04-900C, March.

- EPA 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA/240/B-06/001, U.S. Environmental Protection Agency, Office of Environmental Information, Washington, DC, February.
- IT Corp (International Technology Corporation) 1989. Preliminary Radiological Characterization of Ogden Landing Road Concrete Rubble Site, IT/NS-80-131.
- PGDP (Paducah Gaseous Diffusion Plant) 1992. PGDP Environmental Restoration Health Physics Special Purpose/Routine Radiological Survey Results, Survey No. 92-SP-317-S.

APPENDIX A

SAMPLING AND ANALYSIS PLAN

ACROYNMS	A-5
A.1. INTRODUCTION	A-7
A.2. SAMPLE LOCATION, FREQUENCY AND DESIGNATIONS	A-9
A.3. SCOPING SURVEYS	A-11
A.3.1 AERIAL RADIOLOGICAL SURVEY	A-11
A.3.2 AERIAL PHOTOGRAPHY SURVEY	A-12
A.3.3 VISUAL AND RADIOLOGICAL WALKOVER SURVEY	A-12
A.4. SAMPLING EQUIPMENT AND ANALYSIS	A-15
A.4.1 DATA/SAMPLING EQUIPMENT AND TECHNIQUES	A-15
A.4.1.1 Radiological Scanning	A-15
A.4.1.2 Media Sampling	A-15
A.4.2 FIELD ANALYTICAL TECHNIQUES	A-16
A.4.2.1 Determination of Radioactivity	A-16
A.4.2.2 Determination of Metals Using X-Ray Fluorescence	A-17
A.4.2.3 Determination of PCBs Using Field Test Kits	A-17
A.4.3 DOCUMENTATION	A-18
A.4.4 DECONTAMINATION AND WASTE MANAGEMENT	A-18
A.4.4.1 Personal Protective Equipment	A-18
A.4.4.2 Plastic Sheeting	A-18
A.4.4.3 Sampling Equipment and Miscellaneous Supplies	A-19
A.4.4.4 Soil Cuttings/Sample Residuals	A-19
A.4.4.5 Liquid Investigation-Derived Waste	A-19
A.5. REFERENCES	A-21

CONTENTS

ACRONYMS

agl	above ground level
DEM	digital elevation model
DPT	direct push technology
DOE	U.S. Department of Energy
ER	exposure rate
GIS	Geographic Information System
GPS	global positioning system
IDW	investigation-derived waste
NaI	sodium iodide
PCB	polychlorinated biphenyl
PGDP	Paducah Gaseous Diffusion Plan
PPE	personal protective equipment
SAP	Sampling and Analysis Plan
SRM	standard reference material
WKWMA	West Kentucky Wildlife Management Area
XRF	x-ray fluorescence

A.1. INTRODUCTION

This Sampling and Analysis Plan (SAP) provides information relative to data collection, media sample collection, and field analysis. The primary objective of this effort is to identify any unknown contaminated areas requiring further Comprehensive Environmental Response, Compensation, and Liability Act evaluation and to develop information usable when completing the Resource Conservation and Recovery Act Environmental Indicators. Specifically the evaluation was designed to obtain data to support the following objectives:

- Identify anomalies (based on screening surveys) on U.S. Department of Energy (DOE)-owned and West Kentucky Wildlife Management Area (WKWMA)-owned property and confirm DOE origin. On DOE owned property, this is determined by radiological and visual walkover surveys where radiological readings are greater than twice background or where a release is visually identified or where an anomaly is identified by process knowledge. On WKWMA property, DOE origin is determined by radiological signature from the aerial radiological survey;
- For the anomalies confirmed to be of DOE origin, establish the presence or absence of DOE-related contaminants [metals, polychlorinated biphenyls (PCBs), and radionuclides];
- Perform data screening to determine if such anomalies may pose risks to human health; and
- Determine appropriate path forward per the Federal Facility Agreement (EPA 1998).

This SAP incorporates techniques that are consistent with the SAP for Soils Piles (DOE 2007a), Addendum 1-A (DOE 2007b), Addendum 1-B (DOE 2008a), and Addendum 2 (DOE 2008b), the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study (DOE 2010), and the SAP for the Rubble Areas (DOE 2008c).

A.2. SAMPLE LOCATION, FREQUENCY, AND DESIGNATIONS

Once anomaly identification has been completed from scoping surveys, maps will be developed that show the footprint of each soil or rubble area with sample locations. In addition, tables will be developed indicating the dimensions of the anomaly, locations and estimated number of samples, and this information will be included in work package documents.

A.3. SCOPING SURVEYS

Scoping surveys are to be used to identify potential anomalies originating from Paducah Gaseous Diffusion Plant (PGDP) for further evaluation. Several types of surveys were planned:

- A radiological flyover survey has been performed for the purpose of identifying surface radiological anomalies that were not previously identified on WKWMA-owned property. Walkover visual and radiological surveys then were performed on the anomalies identified by radiological aerial surveys.
- An aerial photographic survey has been performed to provide an updated topographic map.
- Focused walkover visual and radiological surveys have been performed on DOE property outside the limited/controlled area.

This section describes the planned surveys. Although these surveys have largely been completed at this time, text referring to what was planned has been retained.

A.3.1 AERIAL RADIOLOGICAL SURVEY

The Remote Sensing Laboratory performed an aerial radiological survey of PGDP in 1990. In January 2008, representatives from the DOE Paducah Site contacted the National Nuclear Security Administration to request a low-level aerial survey to update this information. If approved, the aerial radiological and multispectral survey will provide gross count, man-made gross count, and isotopic extraction contours. This includes providing Geographic Information System (GIS) layers in a suitable format to be included in the database being administered by the RSL-Nellis. More specifically, this survey includes mapping, using aerial measurement assets, the radiological activity around PGDP. The activity will be measured from an altitude of 150 ft above ground level (agl) where possible. The terrestrial exposure rate is derived from the integral count rate in the gamma energy spectrum range. This gross count rate, measured in counts per second (cps) at survey altitude, is converted to exposure rate (ER) in µR/h at 1 meter agl. Over most of the survey area, the inferred terrestrial ER is expected to be less than 7 μ R/h (typical for natural background in the Paducah area determined from previous survey data); however, it is expected that the instruments can read with accuracy to 1 uR/hr. It is, however, subject to interference from gamma radiation emitted from DUF₆ cylinders stored on the site. The planned survey area is approximately 25 square miles. Data will be analyzed to determine surface radioactivity. The detection capabilities of the helicopter system for the detection of U-238 are as follows. Assuming the survey parameters that were flown, and assuming that U-238 is present on the soil surface with no self shielding, the approximate minimal detectable activity is 10 mCi for a point source and 10 µCi/m² for a distributed source. It should be noted that these are somewhat conservative estimates, but they do not include the effect of any selfshielding, since it is not possible to ascertain in what shape or configuration that the material might be.

The survey produced a set of GIS-compatible overlay maps of (1) the inferred exposure rate and (2) the areas exhibiting excess or elevated levels of man-made radioisotopes. The aerial radiological data will be displayed as a contour map (color-coded contours with designators) superimposed onto either a geo-referenced U.S. Geological Survey topographic map or a GIS populated place layer map of the survey area. The maps will be examined for indications of elevated radiological signature indicating potential anomalies that could be attributed to DOE activity.

A.3.2 AERIAL PHOTOGRAPHY SURVEY

Approximately 32 square miles has been photographed in color from a height of greater than 5,000 ft when the foliage is dormant. A survey firm was used to provide survey data for photograph control. This included targets that did not move for the entire length of time of the photo shoot. The site was photographed and mapped at a scale of 1 inch = 100 ft with 2 ft minimum topographic contours. Orthophoto imagery was produced at 1/2 ft pixel resolution. Mapping included surface model contours and all planimetric detail appropriate for that map scale. High resolution aerial photographs were collected to develop a digital elevation model (DEM). This DEM provided delineation of current surface features, including watersheds, drainage pathways, roads, and land cover. Height of trees and other vegetative cover can be determined, and a three-dimensional model, created from such photography, facilitating identification of soil and rubble areas and enable estimation of pile volumes. Comparison of recently acquired data with historic photographs will assist in tracking changes at specific locations through time.

The aerial photography (topography) survey produced a map and surface model in DGN and DWG formats. The photographs will be examined, along with historical aerial photographs to look for indications of earth disturbance, unnatural earth mounds or rubble material that could be potential anomalies. It should be noted that the topographic survey was performed on April 8, 2009.

A.3.3 VISUAL AND RADIOLOGICAL WALKOVER SURVEY

The visual walkover survey was performed over the areas colored in light pink and light blue, excluding the area within the PGDP fence, as depicted on Figure 2 of the workplan. This includes all of the DOE-owned property outside PGDP fence (including property leased to WKWMA). Visual walkover surveys were accomplished by visually observing and physically locating a potential anomaly and recording the location, physical size, type of anomaly, any other pertinent information, and performing a topographic survey. This was performed in concert with the radiological survey described below.

MARSSIM (DOE 2000) guidance includes classification of areas based on potential for contamination. Property to be evaluated under this work plan is assumed to be Class 3. These areas are defined as areas with potential for contamination typically $\leq 10\%$ reference level; therefore, DOE property was evaluated with 100% visual and a minimum of 10% gamma/GPS walkover surveys with all identified anomalies (on DOE and WKWMA property) included in the radiological walkover survey.

Radiological surveys were performed using a sodium iodide (gamma) detector or equivalent with a GPS data-logger. U-238 will be used as the target radionuclide.

Note that the survey was performed using a LM 221 survey meter equipped with 3x3 NaI probes and using a Polaris Ranger 700 6x6 where the terrain was suitable. A scanning speed of up to 3m/sec was used, which is sufficient to achieve a scanning sensitivity of below 528 pCi/g U-238 (equivalent to 15 mrem/year dose). Where the terrain was not suitable for driving, the team covered the area on foot using a scanning speed of up to 0.5 m/sec. The meter was held approximately 4 inches from the ground during the survey.

Radiological Controls Technicians performed the scan surveys of accessible land areas. Static measurements were used to confirm the presence of activity in elevated areas. If elevated activity was confirmed, then the area of elevated activity was bounded. Probes were source checked at the start of work to ensure they are functioning properly. The survey meters were equipped with digital data ports

that download accumulated counts to the GPS data loggers. Readings greater than twice ambient (instrument) background will be pin flagged and resurveyed to confirm the measurement.

Sketches will be provided showing the position of the anomalies relative to PGDP.

A.4. SAMPLING EQUIPMENT AND ANALYSIS

Fieldwork and sampling at PGDP will be conducted in accordance with DOE Prime Contractor-approved work instructions or procedures. DOE or its DOE Prime Contractor will approve any deviations from these work instructions and procedures. The DOE Prime Contractor will document changes on Field Change Request forms as detailed in the Quality Assurance Project Plan.

A.4.1 DATA/SAMPLING EQUIPMENT AND TECHNIQUES

A.4.1.1 Radiological Scanning

Radiological surveys of anomalies in advance of sampling will be performed using a sodium iodide (NaI) (gamma) detector or equivalent with a GPS data-logger if the ground/concrete has flat surfaces. If the surface to be scanned is particularly uneven and the NaI detector proves to be ineffective, then a GM pancake probe may be used.

A.4.1.2 Media Sampling

The following types of samples will be collected for analysis by field and laboratory methods:

- Surface and subsurface soil samples may be collected from the soil areas evaluation (see Section 5.2 and Figure 6 of the work plan).
- Wipe samples (of rubble exhibiting oil staining) and surface soil samples (if rubble is removed) may be collected from the rubble areas evaluation(see Section 5.3 and Figure 7 of the work plan).

No liquid samples are planned to be collected other than for quality assurance purposes (See Appendix B) and investigation-derived waste (IDW) disposal purposes (to be specified in work package documentation).

Soil samples will be collected in accordance with (1) PAD-ENM-2300 *Collection of Soil Samples*, (2) PAD-ENM-0023, *Composite Sampling*, and (3) PAD-ENR-0020, *Direct Push Technology Sampling*. The following general provisions will apply to all sampling activities:

- Surface soil samples will be collected using disposable, stainless steel scoops to minimize the quantity of IDW, particularly liquid waste, generated during sample collection.
- Subsurface samples will be acquired using standard collection techniques such as direct push technology (DPT) or hollow stem auger, depending on the condition of the subsurface/difficulty in acquiring samples.

Wipe samples will be collected in accordance with manufacturer's instructions.

The following provides a general equipment/supplies list for the sampling activities. The list assumes site and sample location surveying is completed separately as part of civil survey efforts and site preparation.

- Personal protective equipment (PPE)
- Stainless steel scoops

- Sorbent material
- Plastic sheeting
- Nylon brush (dry decontamination)
- Deionized water
- Cooler(s)
- Adhesive tape (e.g., clear, duct, and strapping)
- Pens and markers
- Zipper-sealing plastic bag
- Plastic sheeting
- Field analytical test kits
- Utility knife
- Health and safety supplies
- GPS unit and survey supplies including 100-ft tape measure
- Field logbook
- Chain-of-custody forms
- Sample labels
- Custody seals
- Sample containers (bottles)
- Blue ice
- Shipping/transport paperwork
- Acetate sleeves for portable DPT

A.4.2 FIELD ANALYTICAL TECHNIQUES

Analytical data acquisition will rely on both field measurements (screening) and fixed-base laboratory (definitive) data to determine if contamination exists in media associated with identified anomalies and further defined as soil or rubble. The following describes the field analytical techniques to be used.

A.4.2.1 Determination of Radioactivity

Radiological walkover surveys will be accomplished with scanning instrumentation. In addition, 100% surface scans will be performed on all identified anomalies, including a 3 ft buffer area around each anomaly, using a sodium iodide (gamma) detector or equivalent with a GPS data-logger. Before scanning an anomaly, radiation control technician(s) or properly qualified designee(s) will perform a local environmental background determination for gamma radioactivity using a NaI detector or equivalent with a GPS data-logger. Prior to its use, the instrument will be calibrated and operated in accordance with (1) PAD-RAD-0506, *Radiological Protection Operating Guide*, and (2) PAD-RAD-1309, *Setup for Operability Tests of Portable Field Instruments*.

Before surveying any of the anomalies, background gamma radioactivity values will be established for the particular instruments used as follows:

• In the case of rubble areas, the rubble used to determine background values will be at the Kevil Post Office, which is composed of native materials similar to those present in the rubble areas concrete typically found at PGDP and is approximately the same age (i.e., 30 years in age). Measurement of background for comparison purposes will be in disintegrations per minute (dpm) or counts per minute (cpm). Ten one-minute static count readings will be taken at the background site, with the readings

measured at several different points on the concrete. The background level used for comparison will be the mean of all the background readings and the 95% confidence level determined by the standard deviation of the readings (after testing the normality of the distribution). This approach is consistent with the determination of concrete background radiation levels completed for the Waste Area Group (WAG) 17 Resource Conservation and Recovery Act Facility Investigation (DOE 1995) and the Sampling and Analysis Plan for Rubble Areas (DOE 2008c).

• Soil background will be determined at the WKWMA lodge in Ballard County. This is an area that has not been impacted by PGDP activities and is upwind of the predominant wind direction at the site. Ten one-minute static count readings will be taken at the background site. The background level used for comparison will be the mean of the background readings and the 95% confidence level determined by the standard deviation of the readings (after testing the normality of the distribution).

Upon completion of the appropriate background determination, a complete surface scan of all exposed rubble or soil surfaces will be completed using the NaI scanning instrument. The instrument will record measurements of gamma activity emitted from anomalies. All recorded measurements will be documented.

A.4.2.2 Determination of Metals Using X-Ray Fluorescence

Survey and verification field samples will undergo *ex situ* x-ray fluorescence (XRF) analysis for RCRA metals and total uranium. Analysis will be performed in a field laboratory using procedure PAD-ENR-0034 *XRF Field Lab Analysis of Soils*. The XRF sample will consist of a minimum of 20 grams of soil. To further ensure the defensibility of XRF data, periodic performance checks and blanks will be performed to monitor instrument drift. The frequency of calibration verification samples and blanks will be 1 each for every 20 samples analyzed. They will be analyzed sequentially; calibration verification and a blank analysis will follow the 20th natural sample analyzed or at the end of a group of samples, whichever is more frequent. Along with each batch of samples totaling 20 or less, an independent standard reference material (SRM) will be analyzed. The SRM will have a concentration within the calibration and will have verifiable levels documented by a certificate of analysis. Data outputs will be recorded in the field logbook or on a spreadsheet.

A.4.2.3 Determination of PCBs Using Field Test Kits

Field wipe samples will undergo field PCB analysis using immunoassay analysis using an EnSysTM 12T Wipe Test Kit, or equivalent which follows EPA SW-846 Method #4020. The test kits provide results in the range of 5 μ g/100cm² to 5000 μ g/100cm².

Soil samples will undergo field PCB analysis using methanol extraction and colorimetric analysis using a HACH Pocket ColormeterTM II Test Kit, or equivalent. A minimum of 20 grams of soil will be collected for PCB analysis. To ensure PCB data can be fully evaluated, a pre-weighed aliquot of each sample will be extracted and analyzed, and the colorimeter will be calibrated with each analytical batch in accordance with the manufacturer's specifications. All test kits and reagents (i.e., calibration standards, calibration verification standards, standard reference materials, kit reagents, and blanks) will be prepared and stored in accordance with the method requirements. Because the cuvettes and reagents in the PCB kits are in matched lots, each analytical batch is limited to the number (20) provided in each kit. Calibration standards and a reagent blank will be analyzed with each analytical batch prior to sample analysis. Along with each batch of samples totaling 20 or fewer, an independent SRM will be analyzed to verify the method detection limit, to establish precision and accuracy, and to estimate extraction efficiency. The SRM will have a concentration within the operating range of the colorimeter calibration and will have

verifiable levels documented by a certificate of analysis. Data outputs will be recorded in the field logbook or on a spreadsheet.

A.4.3 DOCUMENTATION

Field documentation on logbooks and field forms will be in accordance with PAD-ENM-2700 Logbooks and Data Forms. Data will be archived electronically following guidance in PAD-ENM-1003, Developing, Implementing, and Maintaining Data Management Implementation Plans. Records will be kept in accordance with PAD-DOC-1009, Records Management, Administrative Records, and Document Control.

A.4.4 DECONTAMINATION AND WASTE MANAGEMENT

Decontamination of sampling equipment will be in accordance with PAD-ENM-2702, *Decontamination of Sampling Equipment and Devices*.

While the overall composition and distribution of hazardous, toxic, and/or radioactive materials is not fully known for the anomalies that might be encountered during this evaluation, preliminary radiation screening and laboratory data from similar activities suggests elevated levels of contaminants may be present. As a result, those materials that contact soil during evaluation activities in addition to materials that do not undergo decontamination, or result from field decontamination will be categorized as IDW. The following types of IDW will be generated during the characterization effort:

- PPE
- Plastic sheeting
- Stainless steel scoops
- Compositing pans
- DPT thin-walled sampling tubes
- Miscellaneous sampling and field screening supplies

Waste generated during sitewide evaluation efforts will be stored in appropriate waste storage areas, managed and disposed per established DOE prime contractor procedures. Specific provisions of waste management as they relate to IDW generated by sitewide evaluation efforts are outlined in the following sections.

A.4.4.1 Personal Protective Equipment

All PPE employed during sitewide evaluation efforts will be considered IDW. For purposes of segregation and storage, at the end of each work shift or each time PPE is replaced, PPE for all members of the field team doffing their PPE will be placed in plastic bags; the bag then will be sealed and labeled to reflect the area in which field work occurred. The bags and PPE then will be placed in a waste container.

A.4.4.2 Plastic Sheeting

At the end of each activity or field day, whichever is more frequent, plastic sheeting employed during field activities to reduce the spread of contamination will be placed in plastic bags; the bag then will be sealed, labeled to reflect the area in which the field work took place, and the bags and plastic sheeting placed in an appropriate waste container.

A.4.4.3 Sampling Equipment and Miscellaneous Supplies

Following use and dry decontamination of sampling tools (stainless steel scoops, compositing pans), supplies and nylon brushes will be segregated and stored in plastic bags. The bags will remain open until the end of each work shift or until they reach capacity (whichever is more frequent) so they (1) may be filled to capacity and (2) additional field supplies can be stored in them until they reach capacity or the work shift is complete. At the end of the work shift or when the bags reach capacity, they will be sealed, labeled to reflect the area where they were used, and placed in an appropriate waste container.

A.4.4 Soil Cuttings/Sample Residuals

Excess soil acquired during sample collection will be handled as IDW. Laboratory sample residuals will be disposed according to laboratory procedures.

A.4.4.5 Liquid Investigation-Derived Waste

Liquid IDW will be minimized by using disposable sampling equipment and support supplies to the maximum extent practical. If liquid IDW is generated as a result of decontamination of sampling equipment, field personnel will make every effort to minimize the quantities of liquid IDW generated Laboratory liquid IDW such as sample residuals and field standards used for PCB field screening may require special handling and disposal as Toxic Substances Control Act wastes.

Decontamination water will be placed in an appropriate waste container.

A.5. REFERENCES

- DOE (U.S. Department of Energy) 1995. Resource Conservation and Recovery Act (RCRA) Facility Investigation Work Plan for Waste Group Area Grouping (WAG) 17 at the Paducah Gaseous Diffusion Plant, U.S. Department of Energy, Paducah, KY, October.
- DOE 2000. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)* DOE/EH--624/R1 U.S. Department of Energy, August.
- DOE 2007a. Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015D2/R1, U.S. Department of Energy, Paducah, KY, September.
- DOE 2007b. Addendum 1-A to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/A1/D2R1, U.S. Department of Energy, Paducah, KY, August.
- DOE 2008a. Addendum 1-B to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/1B&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2008b. Addendum 2 to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/A2&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2008c. Sampling and Analysis Plan for Rubble Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0060&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2010. Work Plan for the Soil Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0120&D2/R1, U.S. Department of Energy, Paducah, KY, February.
- EPA 1998. Federal Facility Agreement for the Paducah Gaseous Diffusion Plant, U.S. Environmental Protection Agency, Region 4, Atlanta, GA, February 13.

APPENDIX B

QUALITY ASSURANCE PROJECT PLAN
CONTENTS

QAPP WORKSHEETS	B-5
ACRONYMS	B-7

THIS PAGE INTENTIONALLY LEFT BLANK

QAPP WORKSHEETS

1.	Title and Approval Page	B-9
2.	QAPP Identifying Information	B-10
3.	Distribution List	B- 14
5.	Project Contractor Organizational Chart	B-15
8.	Special Personnel Training Requirements Table	B-16
10.	Problem Definition	B- 17
11.	Project Quality Objectives/Systematic Planning Process Statements	B-18
12-1.	Measurement Performance Criteria Table	B-19
12-2.	Measurement Performance Criteria Table	B-20
12-3.	Measurement Performance Criteria Table	B - 21
12-4.	Measurement Performance Criteria Table	B-22
12-5.	Measurement Performance Criteria Table	B-23
12-6.	Measurement Performance Criteria Table	B - 24
12-7.	Measurement Performance Criteria Table	B-25
12-8.	Measurement Performance Criteria Table	B-26
12-9.	Measurement Performance Criteria Table	B-27
12-10.	Measurement Performance Criteria Table	B-28
12-11.	Measurement Performance Criteria Table	B-29
13.	Secondary Data Criteria and Limitations Table	B-30
14.	Summary of Project Tasks	B-31
15-1.	Reference Limits and Evaluation Table	B-32
15-2.	Reference Limits and Evaluation Table	B-35
15-3.	Reference Limits and Evaluation Table	B-39
15-4.	Reference Limits and Evaluation Table	B - 41
15-5.	Reference Limits and Evaluation Table	B-42
15-6.	Reference Limits and Evaluation Table	B-43
15-7.	Reference Limits and Evaluation Table	B - 44
16.	Project Schedule/Timeline Table	B-45
17.	Sampling Design and Rationale	B-46
18-1.	Sampling Locations and Methods/SOP Requirements Table for Screening Samples	B - 47
18-2.	Sampling Locations and Methods/SOP Requirements Table for Samples Submitted to the	
	Fixed-Base Laboratory for Analysis	B-48
19.	Analytical SOP Requirements Table	B-49
20.	Field Quality Control Sample Summary Table	B-50
21.	Project Sampling SOP References Table	B-51
22.	Field Equipment Calibration, Maintenance, Testing, and Inspection Table	B-52
23.	Analytical SOP References Table	B-53
24.	Analytical Instrument Calibration Table	B-54
25.	Analytical Instrument and Equipment Maintenance, Testing, and Inspection Table	B-55
26.	Sample Handling System	B-56
27.	Sample Custody Requirements	B-57
28.	QC Samples Table	B-58
29.	Project Documents and Records Table	B - 61
30.	Analytical Services Table	B-62
31.	Planned Project Assessments Table	B-63
32.	Assessment Findings and Corrective Action Responses	B-64
33.	QA Management Reports Table	B-65

34.	Verification (Step I) Process Table	B-66
35.	Validation (Steps IIa and IIb) Process Table	B-67
36.	Validation (Steps IIa and IIb) Summary Table	B-68
37.	Usability Assessment	B-69

ACRONYMS

Comprehensive Environmental Response, Compensation, and Liability Act
Code of Federal Regulations
contaminant of concern
chemical of potential concern
U.S. Department of Energy
DOE Consolidated Audit Program
U. S. Environmental Protection Agency
Federal Facility Agreement
hydrogen fluoride
operable unit
polychlorinated biphenyl
Paducah Gaseous Diffusion Plant
quality assurance
Quality Assurance Project Plan
Sampling and Analysis Plan
Site Investigation
solid waste management unit
trichloroethene
Uniform Federal Policy for Quality Assurance Project Plans

THIS PAGE INTENTIONALLY LEFT BLANK

QAPP Worksheet #1 Title and Approval Page

UFP-QAPP Manual Section 2.1:

Site Name/Project Name: Site Location:

QAPP Worksheet #2 QAPP Identifying Information

UFP-QAPP Manual Section 2.2.4:
Site Name/Project Name: Sitewide Evaluation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky
Site Location: Paducah Gaseous Diffusion Plant
Site Number/Code: N/A
Operable Unit: Soils Operable Unit
Contractor Name: LATA Environmental Services of Kentucky, LLC
Contractor Number: DE-AC30-10CC40020 (DOE-LATA Kentucky contract)
Contract Title: Paducah Gaseous Diffusion Plant Remediation Subcontract
Work Assignment Number: N/A

- 1. Identify guidance used to prepare QAPP: Uniform Federal Policy for Quality Assurance Project Plans
- 2. Identify regulatory program: CERCLA and Federal Facility Compliance Agreement for the Paducah Gaseous Diffusion Plant (DOE/OR/07-1707)
- 3. Identify approval entity: U.S. EPA, Commonwealth of Kentucky
- 4. Indicate whether the QAPP is a generic or a project-specific QAPP (circle one).
- 5. List dates of scoping sessions that were held: Scoping was accomplished from 2007 to 2008.

Title:	Approval Date:
Removal Action Work Plan for Soils Operable Unit Inactive Facilities at the	11/12/2009 (Latest
Paducah Gaseous Diffusion Plan, Paducah, Kentucky (DOE/LX/07-	date of regulatory
0220&D2R1)	approval).
Removal Action Work Plan for Contaminated Sediment Associated with the	11/12/2009 (Latest
Surface Water Operable Unit (On-Site) at the Paducah Gaseous Diffusion	date of regulatory
Plant, Paducah, Kentucky (DOE/LX/07-0221&D2R1)	approval).
Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study	01/06/2010 (Latest
at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (DOE/LX/07-	date of regulatory
0120&D2R2)	approval).

- 7. List organizational partners (stakeholders) and connection with lead organization: U.S. EPA, Commonwealth of Kentucky
- 8. List data users: DOE, Contractor, subcontractors, U.S. EPA, Commonwealth of Kentucky
- 9. If any required QAPP elements and required information are not applicable to the project, then indicate the omitted QAPP elements and required information on the attached table. Provide an explanation for their exclusion below: N/A

QAPP elements and required information that are not applicable to the project are indicated and an explanation is provided in the QAPP.

Note: Information is only entered in the "Crosswalk to Related Documents" if the information is not contained in the QAPP worksheets as indicated in first two columns. Also, if the required QAPP element fulfills other quality requirements, that requirement is noted in the "Crosswalk to Related Documents" column.

Required QAPP Element(s) and			Worksheet	Crosswalk to
	Corresponding QAPP Section(s)	Required Information	No.	Related Documents
	Project Mar	nagement and Objectives		
2.1	Title and Approval Page	- Title and Approval Page	1	
2.2	Document Format and Table of Contents	- Table of Contents	2	
	2.2.1 Document Control Format	- QAPP Identifying		
	2.2.2 Document Control Numbering	Information		
	System			
	2.2.3 Table of Contents			
	2.2.4 QAPP Identifying Information			
2.3	Distribution List and Project Personnel Sign-	- Distribution List		
	Off Sheet	- Project Personnel Sign-		
	2.3.1 Distribution List	Off Sheet	3	
	2.3.2 Project Personnel Sign-Off Sheet		4 Omitted	
2.4	Project Organization	- Project Organizational	-	DOE O 414.1C/10
	2.4.1 Project Organizational Chart	Chart	5	CFR § 830.120
	2.4.2 Communication Pathways	- Communication	6 Omitted	Criterion I–
	Qualifications	- Personnel	/ Onnitied	Management
	2.4.4 Special Training Requirements and	Responsibilities and	8	Training and
	Certification	Oualifications Table	Ũ	Qualification:
	Continioution	- Special Personnel		Qualification,
		Training Requirements		
		Table		
2.5	Project Planning/Problem Definition	- Project Planning Session	1	DOE O 414.1C/10
	2.5.1 Project Planning (Scoping)	Documentation	9 Omitted ¹	CFR § 830.120
	2.5.2 Problem Definition, Site History, and	(including Data Needs	10	Criterion 6 – Design
	Background	tables)		
		Participants Sheet		
		- Problem Definition Site		
		History, and Background		
		- Site Maps (historical and		
		present)		
2.6	Project Quality Objectives and	- Site-Specific PQOs		
	Measurement Performance Criteria			
	2.6.1 Development of Project Quality	- Measurement	11	
	Objectives Using the Systematic	Performance Criteria		
	Planning Process	Iable	12	
27	2.0.2 Weasurement Performance Unterla	Sources of Secondary	12	
2.1	Secondary Data Evaluation	Data and Information	15	
		- Secondary Data Criteria		
		and Limitations Table		

	Required QAPP Element(s) and		Worksheet	Crosswalk to
	Corresponding QAPP Section(s)	Required Information	No.	Related Documents
2.8	Project Overview and Schedule 2.8.1 Project Overview 2.8.2 Project Schedule	 Summary of Project Tasks Reference Limits and Evaluation Table Project Schedule/Timeline Table 	14/15 16	
	Measure	ment/Data Acquisition		
3.1	Sampling Tasks 3.1.1 Sampling Process Design and Rationale 3.1.2 Sampling Procedures and Requirements 3.1.2.1 Sampling Collection Procedures 3.1.2.2 Sempla Containers, Volume	 Sampling Design and Rationale Sample Location Map Sampling Locations and Methods/SOP Requirements Table Analytical Methods/SOP Baguirements Table 	17/18/19/20 21	DOE O 414.1C/10 CFR § 830.120 Criterion 5–Work Processes; Criterion 6– Design
	 3.1.2.2 Sample Containers, Volume, and Preservation 3.1.2.3 Equipment/Sample Containers Cleaning and Decontamination Procedures 3.1.2.4 Field Equipment Calibration, Maintenance, Testing, and Inspection Procedures 3.1.2.5 Supply Inspection and Acceptance Procedures 3.1.2.6 Field Documentation Procedures 	 Field Quality Control Sample Summary Table Sampling SOPs Project Sampling SOP References Table Field Equipment Calibration, Maintenance, Testing, and Inspection Table 	22	
3.2	 Analytical Tasks 3.2.1 Analytical SOPs 3.2.2 Analytical Instrument Calibration Procedures 3.2.3 Analytical Instrument and Equipment Maintenance, Testing, and Inspection Procedures 3.2.4 Analytical Supply Inspection and Acceptance Procedures 	 Analytical SOPs Analytical SOP References Table Analytical Instrument Calibration Table Analytical Instrument and Equipment Maintenance, Testing, and Inspection Table 	23 24 25	DOE O 414.1C/10 CFR § 830.120 Criterion 8– Inspection and Acceptance Testing
3.3	Sample Collection Documentation, Handling, Tracking, and Custody Procedures 3.3.1 Sample Collection Documentation 3.3.2 Sample Handling and Tracking System 3.3.3 Sample Custody	 Sample Collection Documentation Handling, Tracking, and Custody SOPs Sample Container Identification Sample Handling Flow Diagram Example Chain-of- Custody Form and Seal 	26 27	DOE O 414.1C/10 CFR § 830.120 Criterion 4– Documents and Records
5.4	Quality Control Samples3.4.1 Sampling Quality Control Samples3.4.2 Analytical Quality Control Samples	- QC Samples Table - Screening/Confirmatory Analysis Decision Tree	28	

	Required QAPP Element(s) and		Worksheet	Crosswalk to
	Corresponding QAPP Section(s)	Required Information	No.	Related Documents
3.5	Data Management Tasks	- Project Documents and		DOE O 414.1C/10
	3.5.1 Project Documentation and Records	Records Table	29	CFR § 830.120
	3.5.2 Data Package Deliverables	- Analytical Services Table	30	Criterion 4–
	3.5.3 Data Reporting Formats	- Data Management SOPs		Documents and
	3.5.4 Data Handling and Management			Records
	3.5.5 Data Tracking and Control			
	Asse	ssment/Oversight	1	
4.1	Assessments and Response Actions	- Assessments and		DOE O 414.1C/10
	4.1.1 Planned Assessments	Response Actions	31	CFR § 830.120
	4.1.2 Assessment Findings and Corrective	- Planned Project	32	Criterion 3–Quality
	Action Responses	Assessments Table		Improvement;
		- Audit Checklists		Criterion 9–
		- Assessment Findings and		Management
		Corrective Action		Assessment;
		Responses Table		Criterion 10–
				Independent
				Assessment
4.2	QA Management Reports	- QA Management Reports Table	33	
4.3	Final Project Report	10010		
		Data Review		1
5.1	Overview			
5.2	Data Review Steps	- Verification (Step I)		
	5.2.1 Step I: Verification	Process Table	34/35	
	5.2.2 Step II: Validation	- Validation (Steps IIa and	36	
	5.2.2.1 Step IIa Validation Activities	IIb) Process Table		
	5.2.2.2 Step IIb Validation Activities	- Validation (Steps IIa and		
	5.2.3 Step III: Usability Assessment	IIb) Summary Table	37	
	5.2.3.1 Data Limitations and Actions	- Usability Assessment		
	from Usability Assessment			
	5.2.3.2 Activities			
5.3	Streamlining Data Review			
	5.3.1 Data Review Steps To Be Streamlined			
	5.3.2 Criteria for Streamlining Data Review			
	5.3.3 Amounts and Types of Data			
	Appropriate for Streamlining			

¹Worksheets omitted: #4-included in contractor work control documentation, #6-communication pathways established elsewhere, #7-personnel qualifications are not listed, and #9-scoping activities occurred in 2007 through 2008.

QAPP Worksheet #3 Distribution List

UFP-QAPP Manual Section 2.3.1:

			Telephone			Document
QAPP Recipients	Title	Organization	Number	Fax Number	E-mail Address	Control Number
The QAPP is	N/A	N/A	N/A	N/A	N/A	N/A
submitted in concert						
with the Sitewide						
Evaluation Work						
Plan; thus, it will be						
included on the						
Sitewide Evaluation						
Work Plan						
distribution list.						

QAPP Worksheet #5 Project Contractor Organizational Chart

UFP-QAPP Manual Section 2.4.1

QAPP Worksheet #8 Special Personnel Training Requirements Table

UFP-QAPP Manual Section 2.4.4:

Project Function	Specialized Training – Title or Description of Course	Training Provider	Training Date	Personnel/Groups Receiving Training	Personnel Titles/Organizatio nal Affiliation	Location of Training Records/Certificates ¹
Project Tasks	There will be no specialized training required for this project other than what is normally required for site work at PGDP. The contractor will evaluate specific tasks and personnel will be assigned training as necessary to perform those tasks. Training may address health and safety aspects of specific tasks as well as contractor- specific, site-specific, and task-specific requirements.	N/A	N/A	N/A	N/A	N/A

¹ If training records and/or certificates are on file elsewhere, document their location in this column. If training records and/or certificates do not exist or are not available, then this should be noted.

QAPP Worksheet #10 Problem Definition

UFP-QAPP Manual Section 2.5.2:

The problem to be addressed by the project: Per the Site Management Plan (SMP) – Annual Revision – FY2009, DOE/LX/07-0185&D2/R1, for PGDP "a sitewide evaluation will be performed to identify any unknown contaminated areas requiring further CERCLA evaluation and to develop information usable when completing the Resource Conservation and Recovery Act Corrective Action (RCRA) Environmental Indicators process."

The environmental questions being asked: Are there any unknown contaminated areas, originating from PGDP, requiring further CERCLA evaluation?

Observations from any site reconnaissance reports: Radiological and visual walkover surveys performed to date under DOE authority on DOE-Owned Property outside of the fenced area indicate 150 potential anomalies identified visually with none exhibiting an elevated (greater than 2 x background) radiological signature.

A synopsis of secondary data or information from site reports: Section 3 of the work plan describes the secondary data used to develop DQOs.

The possible classes of contaminants and the affected matrices:

Potential classes of contaminants are metals, PCBs, and radiological contamination. Affected matrices are expected to be as follows (if present):

1. Soil – which is defined as soil piles and disturbed soil areas.

2. Rubble areas – which are defined as areas of varied materials.

The rationale for inclusion of chemical and nonchemical analyses: Worksheet #11 presents rationale for inclusion of chemical and nonchemical analyses.

Information concerning various environmental indicators: Environmental indicators include metals, PCBs, and uranium parameters for PGDP contamination and are utilized as indicators for this project.

Project decision conditions ("IE..., then..." statements): Flowcharts listed in Worksheet #11 and located in the Sitewide Evaluation Work Plan present the project decisions conditions by which previously unidentified anomalies will be identified.

QAPP Worksheet #11 Project Quality Objectives/Systematic Planning Process Statements

UFP-QAPP Manual Section 2.6.1:

Who will use the data? DOE, Prime Contractor, subcontractor, KY, and EPA.

What will the data be used for? To identify any unknown contaminated areas originating from PGDP requiring further CERCLA evaluation and to develop information usable when completing the RCRA EI process.

What type of data are needed? (target analytes, analytical groups, field screening, on-site analytical or off-site laboratory techniques, sampling techniques) Radiological surveys and visual walkover surveys will be used to identify and define the limits of potential anomalies. Field screening methods will be used to perform initial characterization of soil/rubble for metals, PCBs, and radiological contamination as discussed in the work plan. Based on the type of anomaly identified, a percentage of the samples collected for field screening will be analyzed for target analytes listed on Worksheet #10 at a DOE Consolidated Audit Program (DOECAP) certified laboratory. The actual number of samples submitted to the off-site laboratory, based on the type and size of each anomaly, will be identified in work package documents.

Note that the soil results will be reported on an "as received" or wet weight basis.

How "good" do the data need to be in order to support the environmental decision? The data need to allow identification and evaluation of anomalies. Data used for future human health risk assessment will be evaluated for use per the RMD (DOE 2001). Data must meet the sensitivity requirements for comparison to appropriate criteria as discussed in Section 4.3 of this work plan. The acquired data must be of known quality to increase confidence that SWMUs and AOCs associated with PGDP have been identified.

How much data are needed? (number of samples for each analytical group, matrix, and concentration) The number of samples will be dependent on the number and types of anomalies identified as defined in the Work Plan and Appendix A.

Where, when, and how should the data be collected/generated? See Work Plan and Appendix A.

Who will collect and generate the data? A sample team of individuals who are properly trained and skilled in the execution of screening and sampling procedures will collect samples and perform the field screening measurements.

How will the data be reported? Field data will be recorded on chain-of-custody forms, in field logbooks, and field data sheets. The fixed-base laboratory will provide data in an Electronic Data Deliverable (EDD). Project data will be reported from the Paducah Oak Ridge Environmental Information System (OREIS).

How will the data be archived? Data will be archived in OREIS. Data will be archived for 30 years per contract requirements.

QAPP Worksheet #12-1 Measurement Performance Criteria Table

UFP-QAPP Manual Section 2.6.2:

Matrix	Soil				
Analytical Group	Metals (aluminum, antimony, barium, beryllium, calcium, chromium, iron, magnesium, manganese, molybdenum, nickel, sodium, vanadium, and zinc)				
Concentration Level	Low				
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
See Worksheet #21	SW846-6010	Precision-Lab	RPD-35%	Laboratory Duplicates	A
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А

No target

90%

compounds >

quantitation limit

Method Blanks/Instrument

Data completeness check

Blanks

А

S&A

B-19

¹ The most current version of the method will be used.

² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

Accuracy/Bias-

Contamination

Completeness²

QAPP Worksheet #12-2 **Measurement Performance Criteria Table**

Concentration Level	cadmium, cobalt, copper, lead, selenium, silver thallium, uranium) Low	-			
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
See Worksheet #21	SW846-6020	Precision-Lab	RPD-35%	Laboratory Duplicates	А
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	A
		Completeness ¹	90%	Data completeness check	S&A

Soil

Metals (arsenic,

¹ The most current version of the method will be used. ² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

Matrix

Analytical Group

QAPP Worksheet #12-3 Measurement Performance Criteria Table

Analytical Group	Metal (mercury)				
Concentration Level	Low				
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
See Worksheet #21	SW846-7470	Precision-Lab	RPD-35%	Laboratory Duplicates	А
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	A
		Completeness ¹	90%	Data completeness check	S&A

B-21

Matrix

¹ The most current version of the method will be used.

Soil

QAPP Worksheet #12-4 Measurement Performance Criteria Table

Analytical Group	PCBs				
Concentration Level	Low				
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
See Worksheet #21	SW846-8082	Precision-Lab	RPD-43%	Laboratory Duplicates	Α
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	А
		Completeness ²	90%	Data completeness check	S&A

B-22

Matrix

¹ The most current version of the method will be used.

Soil

QAPP Worksheet #12-5 **Measurement Performance Criteria Table**

Matrix	Wipe Sample]			
Analytical Group	PCBs				
Concentration Level	Low				
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
See Worksheet #21	Immunoassay PCB Wipe Test Kit	Manufacturer's Instruction Manual	Manufacturer's Instruction Manual	Manufacturer's Instruction Manual	A
					A
		Completeness ²	90%	Data completeness check	S&A

¹ The most current version of the method will be used.

² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

B-23

Matrix

QAPP Worksheet #12-6 Measurement Performance Criteria Table

Matrix	Soil				
Analytical Group	Radionuclides	-			
	(uranium-234,				
	uranium-235,				
	uranium-238)				
Concentration Level	Low				
			Measurement	QC Sample and/or Activity	QC Sample Assesses Error
	Analytical	Data Quality	Performance	Used to Assess	for Sampling (S), Analytical
Sampling Procedure	Method/SOP ¹	Indicators (DQIs)	Criteria	Measurement Performance	(A) or both (S&A)
See Worksheet #21	Alpha spectroscopy	Precision-Lab	RPD-20%	Laboratory Duplicates	А
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А
		Accuracy/Bias-	No target	Method Blanks/Instrument	Α
		Contamination	compounds >	Blanks	
			quantitation limit		
		Completeness ²	90%	Data completeness check	S&A

¹ The most current version of the method will be used. ² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

QAPP Worksheet #12-7 Measurement Performance Criteria Table

Analytical Group	Radionuclides (americium-241, neptunium-237, plutonium-238, plutonium-239/240, thorium-230,) Low	-			
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
See Worksheet #21	Alpha spectroscopy	Precision-Lab	RPD-50%	Laboratory Duplicates	A
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	Α
		Completeness ²	90%	Data completeness check	S&A

¹ The most current version of the method will be used.

Soil

² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

Matrix

QAPP Worksheet #12-8 Measurement Performance Criteria Table

Analytical Group Concentration Level	Radionuclides (cesium-137) Low	-			
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
See Worksheet #21	Gamma spectroscopy	Precision-Lab	RPD-50%	Laboratory Duplicates	Α
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	A
		Completeness ²	90%	Data completeness check	S&A

Matrix

¹ The most current version of the method will be used.

Soil

QAPP Worksheet #12-9 Measurement Performance Criteria Table

Analytical Group	Radionuclides (technetium-99)				
Concentration Level	Low				
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
See Worksheet #21	Liquid scintillation	Precision-Lab	RPD-50%	Laboratory Duplicates	А
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	A
		Completeness ²	90%	Data completeness check	S&A

Matrix

¹ The most current version of the method will be used.

Soil

QAPP Worksheet #12-10 Measurement Performance Criteria Table

Analytical Group	Metals				
Concentration Level	Low				
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
See Worksheet #21	SW846-6200 (XRF)	Precision-Lab	RPD-20%	Laboratory Duplicates	А
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	A
		Completeness ²	90%	Data completeness check	S&A

B-28

Matrix

¹ The most current version of the method will be used.

Soil

QAPP Worksheet #12-11 Measurement Performance Criteria Table

Analytical Group Concentration Level	Total PCB Low				
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
See Worksheet #21	HACH Pocket Colorimeter [™] II Test Kit or equivalent	Manufacturer's Instruction Manual	Manufacturer's Instruction Manual	Manufacturer's Instruction Manual	А
		Completeness ²	90%	Data completeness check	S&A

¹ The most current version of the method will be used.

Soil

² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

Matrix

QAPP Worksheet #13 Secondary Data Criteria and Limitations Table

UFP-QAPP Manual Section 2.7:

Secondary Data	Data Source (Originating Organization, Report Title, and Date)	Data Generator(s) (Originating Org., Data Types, Data Generation/Collection Dates)	How Data Will Be Used	Limitations on Data Use
Process knowledge, historical use and results of Soil Piles and Rubble Areas evaluations.	 DOE 2008. Site Evaluation Report for Soil Pile I at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07- 0108&D2. DOE 2009. Site Evaluation Report for Addendum 1-B Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0225&D1. DOE 2009. Site Evaluation Report for Addendum 2 Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0188&D2. DOE 2009. Site Evaluation Report for Rubble Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0227&D0. 	See reports	Assist in planning	Assist in planning only.

QAPP Worksheet #14 Summary of Project Tasks¹

UFP-QAPP Manual Section 2.8.1:

Sampling Tasks: Sampling will be per Sitewide Evaluation Work Plan and Appendix A, Sampling and Analysis Plan **Analysis Tasks:** Analysis will be per Sitewide Evaluation Work Plan and Appendix A, Sampling and Analysis Plan

Quality Control Tasks: Quality Control will be per QAPP worksheets as follows:

- QC samples Worksheets #20 and #28
- Equipment calibration Worksheets #22 and #24
- Data review/validation Worksheets #34, #35, #36 and #37

Secondary Data: Process knowledge, historical use and results of Soil Piles and Rubble Areas evaluations:

- DOE 2008. Site Evaluation Report for Soil Pile I at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0108&D2.
- DOE 2009. Site Evaluation Report for Addendum 1-B Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0225&D1.
- DOE 2009. Site Evaluation Report for Addendum 2 Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0188&D2.
- DOE 2009. Site Evaluation Report for Rubble Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0227&D0.

Data Management Tasks: Data Management will be per DOE Prime Contractor procedure, PAD-ENM-5007, *Data Management Coordination*. **Documentation and Records:** Documentation and Records will be per DOE Prime Contractor procedure, PAD-RM-1009, *Records Management, Administrative Records and Document Control*.

Assessment/Audit Tasks: Assessments and audits will be per DOE Prime Contractor procedure, PAD-QA-1420, Conduct of Assessments.

Data Review Tasks: Data review tasks will be per DOE Prime Contractor procedure, PAD-ENM-5003, Quality Assured Data.

¹ It is understood that SOPs are contractor specific.

QAPP Worksheet #15-1 Reference Limits and Evaluation Table

UFP-QAPP Manual Section 2.8.1: Matrix: Soil/Sediment Analytical Group: volatile organic compounds Concentration Level: low

		Project	Project Quantitation	Analytical Method ²		Achievable Laboratory Limits ³		
Analyte	CAS Number	Action Limit $(\mu g/kg)^1$	Limit (µg/kg)	MDLs (µg/kg)	Method QLs (μg/kg)	MDLs (µg/kg)	QLs (µg/kg)	
Acetone	67-64-1	53,400	10	n/a	n/a	6.47	20	
Acrolein	107-02-8	4.29	10	n/a	n/a	2.901	50**	
Acrylonitrile	107-13-1	64.5	10	n/a	n/a	1.126	50	
Benzene	71-43-2	327	10	0.03	n/a	0.253	5	
Bromodichloromethane	75-27-4	390	10	0.03	n/a	0.254	5	
Bromoform	75-25-2	13,800	10	0.20	n/a	0.366	5	
Bromomethane	74-83-9	186	10	0.03	n/a	0.396	10	
2-Butanone	78-93-3	153,000	10	n/a	n/a	0.389	20	
Carbon disulfide	75-15-0	15,700	10	n/a	n/a	0.369	5	
Carbon tetrachloride	56-23-5	97.8	10	0.02	n/a	0.360	5	
Chlorobenzene	108-90-7	4,470	10	0.03	n/a	0.382	5	
Chloroethane	75-00-3	978	10	n/a	n/a	0.382	10	
2-Chloroethyl vinyl ether	110-75-8	n/a	10	n/a	n/a	0.523	20	
Chloroform	67-66-3	18.2	10	0.04	n/a	0.092	5	
Chloromethane	74-87-3	884	10	0.05	n/a	0.553	10	
Dibromochloromethane	124-48-1	334	10	0.07	n/a	0.329	5	
Dibromomethane	74-95-3	3,170	10	0.01	n/a	0.405	5	
Dichlorodifluoromethane	75-71-8	5,200	10	0.11	n/a	0.449	10	
1,1-Dichloroethane	75-34-3	22,900	10	0.03	n/a	0.392	5	
1,2-Dichloroethane	107-06-2	152	10	0.02	n/a	0.372	5	
1,1-Dichloroethene	75-35-4	27.6	10	n/a	n/a	0.365	5	
cis-1,2-Dichloroethene	156-59-2	1,980	10	0.06	n/a	0.159	5	
trans-1,2-Dichloroethene	156-60-5	3,260	10	n/a	n/a	0.178	5	
1,2-Dichloropropane	78-87-5	180	10	0.02	n/a	0.317	5	

QAPP Worksheet #15-1 **Reference Limits and Evaluation Table (Continued)**

Matrix: Soil/Sediment Analytical Group: volatile organic compounds Concentration Level: low

			Project Quantitation	Analyti	cal Method ²	Achievable Laboratory Limits ³	
Analyte	CAS Number	Project Action Limit (µg/kg) ¹	Limit (µg/kg)	MDLs (µg/kg)	Method QLs (µg/kg)	MDLs (µg/kg)	QLs (µg/kg)
cis-1,3-Dichloropropene	10061-01-5	n/a	10	n/a	n/a	0.339	5
trans-1,3-Dichloropropene	10061-02-6	n/a	10	n/a	n/a	0.349	5
trans-1,4-Dichloro-2-butene (100)	110-57-6	n/a	10	n/a	n/a	0.397	10
Ethyl benzene	100-41-4	6,010	10	0.03	n/a	0.299	5
Ethyl methacrylate	97-63-2	99,700	10	n/a	n/a	0.240	5
Iodomethane	74-88-4	n/a	10	n/a	n/a	1.511	5
2-Hexanone	591-78-6	n/a	10	n/a	n/a	0.261	20
Methylene chloride	75-09-2	3,920	10	n/a	n/a	0.801	5
4-Methyl-2-pentanone	108-10-1	9,660	10	n/a	n/a	0.326	20
Styrene	100-42-5	128,000	10	0.27	n/a	0.347	5
1,1,1,2-Tetrachloroethane	630-20-6	1,430	10	0.07	n/a	0.238	5
1,1,2,2-Tetrachloroethane	79-34-5	145	10	0.20	n/a	0.272	5
Tetrachloroethene	127-18-4	1,170	10	0.05	n/a	0.280	5
Toluene	108-88-3	31,200	10	0.08	n/a	0.303	5
1,1,1-Trichloroethane	71-55-6	23,200	10	0.04	n/a	0.291	5
1,1,2-Trichloroethane	79-00-5	345	10	0.08	n/a	0.573	5
Trichloroethene	79-01-6	741	10	0.02	n/a	0.290	5
Trichlorofluoromethane	75-69-4	19,300	10	n/a	n/a	0.167	5
1,2,3-Trichloropropane	96-18-4	0.629	10	0.09	n/a	0.559	5**
Vinyl acetate	108-05-4	21,300	10	n/a	n/a	0.305	5
Vinyl chloride	75-01-4	40	10	0.04	n/a	0.428	5
<i>m,p</i> -xylene	NS831	107,000	20	0.06	n/a	0.569	5
o-xylene	95-47-6	659,000	10	0.06	n/a	0.318	5

n/a = not available

¹ Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001d). ² Analytical MDLs and QLs are those documented in validated methods. MDLs listed are taken from Table 2 of SW846-8260B.

QAPP Worksheet #15-1 Reference Limits and Evaluation Table (Continued)

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits may not reflect the contractual reporting limits agreed to with the laboratory. The actual laboratory has not been contracted; numbers shown are based on historical information from the Soils Remedial Investigation. Actual laboratory numbers will be reported when the laboratory has been contracted.

**The laboratory will report results down to their MDL, qualifying the result as estimated, for these analytes that have a project limit below the laboratory QL. Standard practices for qualifying data will apply for any result reported below the laboratory QL.

QAPP Worksheet #15-2 Reference Limits and Evaluation Table

Matrix: Soil/Sediment Analytical Group: semivolatile organic compounds Concentration Level: low

		Project	Project Analytical Method ²		Achievable Laboratory Limits ³		
Analyte	CAS Number	Action Limit (µg/kg) ¹	Quantitation Limit (μg/kg)	MDLs (µg/kg)	Method QLs (μg/kg)	MDLs (µg/kg)	QLs (µg/kg)
1,2,4-Trichlorobenzene	120-82-1	12,200	660	n/a	660	33.3	330
1,2-Dichlorobenzene	95-50-1	40,000	660	n/a	660	33.3	330
1,3-Dichlorobenzene	541-73-1	997	660	n/a	660	33.3	330
1,4-Dichlorobenzene	106-46-7	1,360	660	n/a	660	33.3	330
2,4,5-Trichlorophenol	95-95-4	160,000	660	n/a	660	33.3	330
2,4,6-Trichlorophenol	88-06-2	8,510	660	n/a	660	33.3	330
2,4-Dichlorophenol	120-83-2	6,930	660	n/a	660	33.3	330
2,4-Dimethylphenol	105-67-9	32,000	660	n/a	660	33.3	330
2,4-Dinitrotoluene	121-14-2	209	660	n/a	660	33.3	330**
2,6-Dinitrotoluene	606-20-2	209	660	n/a	660	33.3	330**
2-Chloronaphthalene	91-58-7	33,800	660	n/a	660	33.3	330
2-Chlorophenol	95-57-8	2,810	660	n/a	660	33.3	330
2-Methylnaphthalene	91-57-6	n/a	660	n/a	660	33.3	330
2-Nitrophenol	88-75-5	n/a	660	n/a	660	33.3	330
4-Bromophenyl phenyl ether	101-55-3	n/a	660	n/a	660	33.3	330

QAPP Worksheet #15-2 Reference Limits and Evaluation Table (Continued)

Matrix: Soil/Sediment

Analytical Group: semivolatile organic compounds

Concentration Level: low

		Project	Project Quantitation	Analytical Method ²		Achievable Laboratory Limits ³		
Analyte	CAS Number	Action Limit (µg/kg) ¹	Limit (µg/kg)	MDLs (µg/kg)	Method QLs (µg/kg)	MDLs (µg/kg)	QLs (µg/kg)	
4-Chlorophenylphenyl ether	7005-72-3	n/a	660	n/a	660	33.3	330	
Acenaphthene	83-32-9	n/a	660	n/a	660	33.3	330	
Acenaphthylene	208-96-8	n/a	660	n/a	660	33.3	330	
Anthracene	120-12-7	526,000	660	n/a	660	33.3	330	
Benz(a)anthracene	56-55-3	67	660	n/a	660	33.3	330**	
Benzo(a)pyrene	50-32-8	6.7	660	n/a	660	n/a	6.6*	
Benzo(b)fluoranthene	205-99-2	67	660	n/a	660	33.3	330**	
Benzo(ghi)perylene	191-24-2	n/a	660	n/a	660	33.3	330	
Benzo(k)fluoranthene	207-08-9	670	660	n/a	660	33.3	330	
bis(2-chloroethoxy)methane	111-91-1	n/a	660	n/a	660	33.3	330	
bis(2-chloroethyl) ether	111-44-4	29	660	n/a	660	n/a	6.6*	
bis(2-chloroisopropyl) ether	108-60-1	1,340	660	n/a	660	33.3	330	
bis(2-ethylhexyl)phthalate	117-81-7	2,840	660	n/a	660	43.3	330	
Butyl benzyl phthalate	85-68-7	373,000	660	n/a	660	33.3	330	
Chrysene	218-01-9	6,700	660	n/a	660	33.3	330	
Dibenz(a,h)anthracene	53-70-3	6.7	660	n/a	660	n/a	6.6*	
Dibenzofuran	132-64-9	2,930	660	n/a	660	33.3	330	
Diethylphthalate	84-66-2	1,970,000	660	n/a	660	33.3	330	
Dimethylphthalate	131-11-3	24,600,000	660	n/a	660	33.3	330	
Di-n-butylphthalate	84-74-2	264,000	660	n/a	n/a	33.3	330	
Di-n-octylphthalate	117-84-0	49,200	660	n/a	660	33.3	330	
Fluoranthene	206-44-0	34,300	660	n/a	660	33.3	330	
Fluorene	86-73-7	50,100	660	n/a	660	33.3	330	

QAPP Worksheet #15-2 Reference Limits and Evaluation Table (Continued)

Matrix: Soil/Sediment Analytical Group: semivolatile organic compounds Concentration Level: low

		Project	Project Quantitation	Analytical Method ²		Achievable Laboratory Limits ³		
Analyte	CAS Number	Action Limit (µg/kg) ¹	Limit (µg/kg)	MDLs (µg/kg)	Method QLs (µg/kg)	MDLs (µg/kg)	QLs (µg/kg)	
Hexachlorobenzene	118-74-1	58.5	660		660	33.3	330**	
Hexachlorobutadiene	87-68-3	320	660		660	33.3	330**	
Hexachlorocyclopentadiene	77-47-4	9,590	660		660	330	1600	
Hexachloroethane	67-72-1	1,600	660		660	33.3	330	
Indeno(1,2,3-cd)pyrene	193-39-5	67	660		660	33.3	330**	
Isophorone	78-59-1	98,500	660		660	33.3	330	
m,p-cresol		9,770 ⁴	660		660	66.6	660	
Naphthalene	91-20-3	3,470	660		660	33.3	330	
Nitrobenzene	98-95-3	492	660		660	33.3	330	
N-Nitroso-di-n-propylamine	621-64-7	7.3	660		660	n/a	6.6*	
N-Nitrosodiphenylamine	86-30-6	10,400	660		660	33.3	330	
o-cresol	95-48-7	79,900	660		660	33.3	330	
Phenanthrene	85-01-8	n/a	660		660	33.3	330	
Phenol	108-95-2	1,480,000	660		660	33.3	330	
Pyrene	129-00-0	25,700	660		660	33.3	330	
Pyridine	110-86-1	1,600	660		n/a	66.6	660	
3,3'-Dichlorobenzidine	91-94-1	208	1300		1300	33.3	1600**	
4-Chloro-3-methylphenol	59-50-7	n/a	1300		1300	33.3	330	
4-Chloroaniline	106-47-8	6,390	1300		1300	33.3	330	
Benzyl Alcohol	100-51-6	593,000	1300		1300	33.3	330	
2,4-Dinitrophenol	51-28-5	5,280	3300		3300	330	1600	
2-Methyl-4,6-dinitrophenol	534-52-1	n/a	3300		3300	330	1600	
2-Nitroaniline	88-74-4	91.3	3300		3300	33.3	330**	
3-Nitroaniline	99-09-2	n/a	3300		3300	33.3	330	

QAPP Worksheet #15-2 Reference Limits and Evaluation Table (Continued)

Matrix: Soil/Sediment Analytical Group: semivolatile organic compounds Concentration Level: low

		Project	Project	Analytical Method ²		Achievable Laboratory Limits ³	
Analyte	CAS Number	Action Limit $(\mu g/kg)^1$	Limit (µg/kg)	MDLs (µg/kg)	Method QLs (μg/kg)	MDLs (µg/kg)	QLs (µg/kg)
4-Nitroaniline	100-01-6	n/a	3300		n/a	330	1600
4-Nitrophenol	100-02-7	21,100	3300		3300	330	1600
Benzoic Acid	65-85-0	10,600,000	3300		3300	330	1600
Pentachlorophenol	87-86-5	646	3300		3300	330	660**

n/a = not available

B-38

¹Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001d). See Section 6.1.1 for additional information.

² Analytical MDLs and QLs are those documented in validated methods. Method QLs listed are taken from Table 2 of SW846-8270D.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits may not reflect the contractual reporting limits agreed to with the laboratory. The actual laboratory has not been contracted; numbers shown are based on historical information from the Soils Remedial Investigation. Actual laboratory numbers will be reported when the laboratory has been contracted.

⁴Lowest no action limit among m-cresol and p-cresol was used.

*QL for 8270C [Selective Ion Mode (SIM) Operation]

** The laboratory will report results down to their MDL, qualifying the result as estimated, for these analytes that have a project limit below the laboratory QL. Standard practices for qualifying data will apply for any result reported below the laboratory QL.
QAPP Worksheet #15-3 Reference Limits and Evaluation Table

Matrix: Soil/Sediment Analytical Group: metals Concentration Level: low

		Project	Project Quantitation	Analytica	l Method ²	Achievable Lab	oratory Limits ³
Analyte	CAS Number	Action Limit (mg/kg) ¹	Limit (mg/kg)	MDLs (mg/kg)	Method QLs (mg/kg)	MDLs (mg/kg)	QLs (mg/kg)
Aluminum	7429-90-5	732	20	n/a	0.0001	1.14	5.0
Antimony	7440-36-0	0.0635	10	n/a	0.0001	0.164	0.5
Arsenic	7440-38-2	0.132	1	n/a	0.001	0.203	1.0
Barium	7440-39-3	37	2.5	n/a	0.0001	0.057	2.0
Beryllium	7440-41-7	0.16	0.5	n/a	0.0001	0.011	0.1**
Cadmium	7440-43-9	2.64	0.5	n/a	0.0001	0.011	0.05
Chromium	7440-47-3	60.5	2.5	n/a	0.0001	0.302	1.0
Copper	7440-50-8	68.1	2.5	n/a	0.0001	0.0536	1.0
Iron	7439-89-6	314	20	n/a	0.0001	3.30	5.0
Lead	7439-92-1	50	20	n/a	0.0001	0.026	0.3
Manganese	7439-96-5	7.46	2.5	n/a	0.0001	0.054	0.5
Mercury	7439-97-6	0.158	0.02	0.00093	n/a	0.006	0.033
Molybdenum	7439-98-7	10.9	5	n/a	n/a	0.077	0.5
Nickel	7440-02-0	34	5	n/a	0.0001	0.0822	0.5
Selenium	7782-49-2	12.1	1	n/a	0.001	0.045	0.5
Silver	7440-22-4	6.12	1	n/a	0.0001	0.008	0.2
Thallium	7440-28-0	0.107 ⁴	2	n/a	0.0001	0.058	0.2**
Uranium	7440-61-1	2.16	1	n/a	n/a	0.012	0.1
Vanadium	7440-62-2	0.562	2.5	n/a	0.0001	0.735	1.0
Zinc	7440-66-6	401	20	n/a	0.0001	1.33	5.0

n/a = not available

¹Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001d). See Section 6.1.1 for additional information.

² Analytical MDLs and QLs are those documented in validated methods. MDL listed for Mercury is taken from SW846-7471B (Section 2.3). Method QLs for the remaining metals are taken from SW846-6020A (Section 1.2)

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits may not reflect the contractual reporting limits agreed to with the laboratory. The actual laboratory has not been contracted; numbers shown are based on historical information from the Soils Remedial Investigation. Actual laboratory numbers will be reported when the laboratory has been contracted.

⁴ The no action level for thallium chloride was used.

** The laboratory will report results down to their MDL, qualifying the result as estimated, for these analytes that have a project limit below the laboratory QL. Standard practices for qualifying data will apply for any result reported below the laboratory QL.

QAPP Worksheet #15-4 Reference Limits and Evaluation Table

Matrix: Soil/Sediment Analytical Group: radionuclides Concentration Level: low

		Project	Project Quantitation	Analytica	ll Method ²	Achievable Laboratory Limits ³		
Analyte	CAS Number	Action Limit (pCi/g) ¹	Limit (pCi/g)	MDCs (pCi/g)	Method QLs (pCi/g)	MDCs (pCi/g)	QLs (pCi/g)	
Alpha Activity	12587-46-1	n/a	5	5	n/a	n/a	10	
Beta Activity	12587-47-2	n/a	5	5	n/a	n/a	10	
Americium-241	14596-10-2	0.836	0.05	3	n/a	n/a	0.1	
Cesium-137	10045-97-3	0.0128	0.1	0.5	n/a	n/a	0.2	
Neptunium-237	13994-20-2	0.0405	0.05	3	n/a	n/a	0.1	
Plutonium-238	13981-16-3	2.27	0.05	6	n/a	n/a	0.1	
Plutonium-239/240	n/a	2.22	0.05	4	n/a	n/a	0.1	
Technetium-99	14133-76-7	67.4	1	8	n/a	n/a	1	
Thorium-228	14274-82-9	0.00418	0.05	3	n/a	n/a	0.1	
Thorium-230	14269-63-7	2.85	0.05	4	n/a	n/a	0.1	
Thorium-232	n/a	2.61	0.05	3	n/a	n/a	0.1	
Uranium-234	13966-29-5	3.81	0.15	3	n/a	n/a	0.1	
Uranium-235/236	15117-96-1	0.0591	0.05	2	n/a	n/a	0.1	
Uranium-238	24678-82-8	0.261	0.15	2	n/a	n/a	0.1	

B-41

n/a = not available

¹Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001d). See Section 6.1.1 for additional information.

² Analytical MDCs and QLs are those documented in validated methods.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits may not reflect the contractual reporting limits agreed to with the laboratory. The actual laboratory has not been contracted; numbers shown are based on historical information from the Soils Remedial Investigation. Actual laboratory numbers will be reported when the laboratory has been contracted.

QAPP Worksheet #15-5 Reference Limits and Evaluation Table

Matrix: Soil/Sediment Analytical Group: PCBs Concentration Level: low

		Project	Project	Analytica	l Method ²	Achievable Laboratory Limits ³		
Analyte	CAS Number	Action Limit (mg/kg) ¹	Limit (mg/kg)	MDLs (mg/kg)	Method QLs (mg/kg)	MDLs (mg/kg)	QLs (mg/kg)	
Aroclor-1016	12674-11-2	0.0574	0.1	n/a	n/a	0.00539	0.033	
Aroclor-1221	11104-28-2	0.0574	0.1	n/a	n/a	0.00539	0.033	
Aroclor-1232	11141-16-5	0.0574	0.1	n/a	n/a	0.00539	0.033	
Aroclor-1242	53469-21-9	0.0574	0.1	n/a	n/a	0.00539	0.033	
Aroclor-1248	12672-29-6	0.0574	0.1	n/a	n/a	0.00539	0.033	
Aroclor-1254	11097-69-1	0.0388	0.1	n/a	n/a	0.00613	0.033	
Aroclor-1260	11096-82-5	0.0574	0.1	n/a	n/a	0.00613	0.033	
Total PCBs	1336-36-3	0.0574	0.1	n/a	n/a	0.05147	0.300	

n/a = not available

¹Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001d). See Section 6.1.1 for additional information.

² Analytical MDLs and QLs are those documented in validated methods. SW846-8082 does not list MDLs or Method QLs.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits may not reflect the contractual reporting limits agreed to with the laboratory. The actual laboratory has not been contracted; numbers shown are based on historical information from the Soils Remedial Investigation. Actual laboratory numbers will be reported when the laboratory has been contracted.

QAPP Worksheet #15-6 Reference Limits and Evaluation Table

Matrix: Soil/Sediment Analytical Group: metals by XRF Concentration Level: low

			Project Quantitation	Analytica	l Method ²	Achievable Lab	oratory Limits ³
Analyte	CAS Number	Project Action Limit (mg/kg) ¹	Limit (mg/kg)	MDLs (mg/kg)	Method QLs (mg/kg)	MDLs (mg/kg)	QLs (mg/kg)
Antimony	7440-36-0	30	30	40	n/a	30	n/a
Arsenic	7440-38-2	11	11	40	n/a	11	n/a
Barium	7440-39-3	170	100	20	n/a	100	n/a
Cadmium	7440-43-9	12	12	100	n/a	12	n/a
Chromium	7440-47-3	85	85	150	n/a	85	n/a
Copper	7440-50-8	35	35	50	n/a	35	n/a
Iron	7439-89-6	28,000	100	60	n/a	100	n/a
Lead	7439-92-1	23	13	20	n/a	13	n/a
Manganese	7439-96-5	820	85	70	n/a	85	n/a
Mercury	7439-97-6	10	10	30	n/a	10	n/a
Molybdenum	7439-98-7	830	15	10	n/a	15	n/a
Nickel	7440-02-0	65	65	50	n/a	65	n/a
Selenium	7782-49-2	20	20	40	n/a	20	n/a
Silver	7440-22-4	10	10	70	n/a	10	n/a
Uranium	7440-61-1	20	20	n/a	n/a	20	n/a
Vanadium	7440-62-2	70	70	50	n/a	70	n/a
Zinc	7440-66-6	60	25	50	n/a	25	n/a

n/a = not available

¹ These Project Action Limits are explained in Table 9.2.

² Analytical MDLs and QLs are those documented in validated methods. MDLs are taken from SW846-6200, Table 1, "Example Interference Free Lower Limits of Detection."

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits will be part of the scope submitted for laboratory solicitation for the project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award. MDLs for the XRF are based on Thermo Scientific NITON XL3t 300 Series Instruments for Environmental Analysis "Limits of Detection for Contaminants in Soil" for a typical soil matrix.

QAPP Worksheet #15-7 Reference Limits and Evaluation Table

Matrix: Soil/Sediment Analytical Group: PCBs by test kit **Concentration Level:** low

			Project Quantitation	Analytica	l Method ²	Achievable Lab	Achievable Laboratory Limits ³		
Analyte	CAS Number	Project Action Limit (mg/kg) ¹	Limit (mg/kg)	MDLs (mg/kg)	Method QLs (mg/kg)	MDLs (mg/kg)	QLs (mg/kg)		
Total PCBs	1336-36-3	n/a	1, 5, 10, 50	n/a	1, 5, 10, 50	n/a	1, 5, 10, 50		

n/a = not available

¹ These Project Action Limits are explained in Table 9.2.
² Analytical MDLs and QLs are those documented in validated methods.

³Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits will be part of the scope submitted for laboratory solicitation for the project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award.

QAPP Worksheet #16 Project Schedule/Timeline Table¹

UFP-QAPP Manual Section 2.8.2:

		Dates (MM/DD/YY)		
Activities	Organization	Anticipated Date(s) of Initiation	Anticipated Date of Completion	Deliverable	Deliverable Due Date

¹ See Work Plan Section 6.

QAPP Worksheet #17 Sampling Design and Rationale

UFP-QAPP Manual Section 3.1.1:

Describe and provide a rationale for choosing the sampling approach (e.g., grid system, biased statistical approach):

A systematic sampling approach will be implemented for all anomalies. A systematic sampling approach has been developed to ensure that data is acquired from all soil piles or areas, irrespective of their size, while ensuring that a sufficient number of samples is acquired to support informed decision making. To develop the sampling strategy, practices previously approved at PGDP have been consulted and form the basis for the sampling design.

Describe the sampling design and rationale in terms of what matrices will be sampled, what analytical groups will be analyzed and at what concentration levels, the sampling locations (including QC, critical, and background samples), the number of samples to be taken, and the sampling frequency (including seasonal considerations) [May refer to map or Worksheet #18 for details]:

Section 5.0 of the Sitewide Evaluation Work Plan presents the approach and decision flowcharts to locate and identify the anomalies to be evaluated.

QAPP Worksheet #18-1 Sampling Locations and Methods/SOP Requirements Table for Screening Samples

Sampling Location/ID		Depth		Concentration	Number of Samples (Identify Field	Sampling SOP	Rationale for Sampling
Number ¹	Matrix	(units)	Analytical Group	Level	Duplicates)	Reference ¹	Location
Soil	Soil	Surface/subsurface	Metals 6200 by XRF	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17
Soil	Soil	Surface/subsurface	PCB by HACH Pocket Colorimeter TM II Test Kit (or equivalent)	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17
Soil	Soil	Surface/subsurface	Gamma radiation by sodium iodide detector (or equivalent)	greater than 40 pCi/g	N/A	N/A	N/A
Rubble Areas	Wipe samples of above surface rubble	Aboveground surface	PCB by EnSys Immunoassay Wipe Test Kit (or equivalent)	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17
Rubble Areas	Rubble and soil beneath the rubble if the rubble is removed	Aboveground surface (rubble) and surface [(soil) (if rubble is removed)]	Gamma radiation by sodium iodide detector (or equivalent)	greater than 40 pCi/g	N/A	N/A	N/A

UFP-QAPP Manual Section 3.1.1:

QAPP Worksheet #18-2 Sampling Locations and Methods/SOP Requirements Table for Samples Submitted to the Fixed-Base Laboratory for Analysis

Sampling Location/ID Number ¹	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (Identify Field Duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
Soil	Soil	Surface/subsurface	Metals	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17
Soil	Soil	Surface/subsurface	PCBs	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17
Soil	Soil	Surface/subsurface	Radionuclides	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17
Rubble Areas	Soil (if rubble is removed)	Surface	Metals	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17
Rubble Areas	Soil (if rubble is removed)	Surface	PCBs	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17
Rubble Areas	Soil (if rubble is removed)	Surface	Radionuclides	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17

UFP-QAPP Manual Section 3.1.1:

QAPP Worksheet #19 Analytical SOP Requirements Table

UFP-QAPP Manual Section 3.1.1:

Matrix	Analytical Group	Concentration Level	Analytical and Preparation Method/SOP Reference	Sample Volume	Containers (number, size, and type)	Preservation Requirements (chemical, temperature, light protected)	Maximum Holding Time (preparation/ analysis)
Soil	PCBs	low	See Worksheet #12	1	1	cool 4 °C	14 days until
Soil	Metals	low	See Worksheet #12			cool 4 °C	extraction/40 days
Soil	Radionuclides	low	See Worksheet #12			cool 4 °C	180 days

¹Sample volume and container requirements will be specified by the laboratory.

QAPP Worksheet #20 Field Quality Control Sample Summary Table

UFP-QAPP Manual Section 3.1.1:

Matrix	Analytical Group	Concentration Level	Analytical and Preparation SOP Reference	No. of Sampling Locations ¹	No. of Field Duplicate Pairs	Inorganic No. of MS	No. of Field Blanks	No. of Equip. Blanks	No. of PT Samples	Total No. of Samples to Lab ¹
Soil	PCBs	low	SW846-8082	TBD (5%)	TBD (5%)	N/A	TBD (5%)	TBD (5%)	N/A	TBD
Soil	Metals	low	SW846- 6010/6020/7470	TBD (5%)	TBD (5%)	N/A	TBD (5%)	TBD (5%)	N/A	TBD
Soil	Radionuclides	low	see Worksheet 12	TBD (5%)	TBD (5%)	N/A	TBD (5%)	TBD (5%)	N/A	TBD

¹Work package documents will identify the sampling locations, the matrices, and the number of samples, sample identification numbers for samples to be submitted to DOECAP certified laboratory. This is not applicable for samples analyzed by field methods.

QAPP Worksheet #21 Project Sampling SOP References Table¹

UFP-QAPP Manual Section 3.1.2:

Reference				Modified for Project Work?	
Number	Title, Revision Date, and/or Number	Originating Organization	Equipment Type	(Y/N)	Comments
1	PAD-ENM-0023 Rev. 0, Composite Sampling	Contractor	Sampling	Ν	N/A
2	PAD-ENM-2300 Rev. 0, Collection of Soil	Contractor	Sampling	Ν	N/A
	Samples				
3	PAD-ENR-0020 Rev. 0, Direct push Technology	Contractor	Sampling	Ν	N/A
	Sampling				
4	PAD-ENM-2700 Rev. 0, Logbooks and Data	Contractor	Sampling	N	N/A
	Forms				
5	PAD-ENM-2702 Rev. 0, Decontamination of	Contractor	Sampling	Ν	N/A
	Sampling Equipment				
6	PAD-ENM-2704 Rev. 0, Trip, Equipment and	Contractor	Sampling	Ν	N/A
	Field Blank				
7	PAD-ENM-2708 Rev. 0, Chain-of-Custody Forms,	Contractor	Sampling	Ν	N/A
	Field Sample Logs, Sample Labels, and Custody				
	Seals				
8	PAD-ENM-5004 Rev. 0, Sample Tracking, Lab	Contractor	Sampling	Ν	N/A
	Coordination, and Sample Handling Guidance				

QAPP Worksheet #22 Field Equipment Calibration, Maintenance, Testing, and Inspection Table

UFP-QAPP Manual Section 3.1.2.4:

Field	Calibration	Maintenance	Testing	Inspection	Frequency	Acceptance	Corrective	Responsible	SOP
Equipment	Activity	Activity	Activity	Activity		Criteria	Action	Person	Reference ¹
Field	Per the	Per the	Daily prior to	Daily prior to	Daily prior to	Daily prior to	As needed	Equipment user	Field
Instrumentation	manufacturer's	manufacturer's	use	use	use	use			instrumentation
	instructions	instructions							manufacturer's
									manual

QAPP Worksheet #23 Analytical SOP References Table

UFP-QAPP Manual Section 3.2.1:

Reference	Title Revision Date	Definitive or			Organization	Modified for Project
Number ¹	and/or Number	Screening Data	Analytical Group	Instrument	Performing Analysis	(Y/N)
6010	Inductively Coupled	Definitive	Metals	ICP	TBD	TBD
	Plasma-Atomic					
6000	Emission Spectrometry			100.100		
6020	Inductively Coupled	Definitive	Metals	ICP-MS	TBD	TBD
	Spectrometry					
7470	Mercury (Manual Cold-	Definitive	Metals	AA	TBD	TBD
	Vapor Technique)					
8082	Polychlorinated	Definitive	PCBs	GC	TBD	TBD
	Biphenyls (PCBs) by					
	Gas Chromatography					
Alpha Spec	Alpha Spectrometry	Definitive	Radionuclides	Alpha Spectrometry	TBD	TBD
Gamma Spec	Gamma Spectrometry	Definitive	Radionuclides	Gamma Spectrometry	TBD	TBD
Liquid	Tc-99 by Liquid	Definitive	Radionuclides	Liquid Scintillation	TBD	TBD
Scintillation	Scintillation					
Metals by XRF	Metals by XRF	Screening	Metals	XRF	TBD	TBD
Immunoassay	PCB by EnSys 12T	Screening	PCBs	Colorimeter	TBD	TBD
PCB Wipe Test	Wipe Test System (or	-				
-	equivalent)					
Immunoassay	PCB by HACH Pocket	Screening	PCBs	Colorimeter	TBD	TBD
PCB Soil Test	Colorimeter TM II Test	-				
	Kit (or equivalent)					
Radiological	Gamma radiation	Screening	Radiation	Sodium Iodide	TBD	TBD
Scan				detector or equivalent		

¹ Analysis will be by the most recent revision.

QAPP Worksheet #24 Analytical Instrument Calibration Table

UFP-QAPP Manual Section 3.2.2:

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action (CA)	Person Responsible for CA	SOP Reference
*						

* The laboratory is responsible for maintaining instrument calibration information per their QA Plan. This information is audited annually by the DOECAP. Laboratory(s) contracted will be DOECAP certified. Laboratory contracting will be subsequent to the completion of the Sitewide Evaluation Work Plan. Field survey/sampling instrumentation will be calibrated according to manufacturer's instructions.

QAPP Worksheet #25 Analytical Instrument and Equipment Maintenance, Testing, and Inspection Table

UFP-QAPP Manual Section 3.2.3:

Instrument/ Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Responsible Person	SOP Reference
*								

* The laboratory is responsible for maintaining instrument and equipment maintenance, testing, and inspection information per their QA Plan. This information is audited annually by the DOECAP. Laboratory(s) contracted will be DOECAP certified. Laboratory contracting will be subsequent to the completion of the Sitewide Evaluation Work Plan. Field survey/sampling instrumentation will be maintained, tested, and inspected according to manufacturer's instructions.

QAPP Worksheet #26 Sample Handling System

UFP-QAPP Manual Appendix A:

SAMPLE COLLECTION, PACKAGING, AND SHIPMENT				
Sample Collection (Personnel/Organization):	Sampling Teams/DOE Prime Contractor and Subcontractors			
Sample Packaging (Personnel/Organization):	Sampling Teams/DOE Prime Contractor and Subcontractors			
Coordination of Shipment (Personnel/Organization):	Lab Coordinator/DOE Prime Contractor			
Type of Shipment/Carrier:	Direct Delivery or Overnight/Fed Ex			
SAN	MPLE RECEIPT AND ANALYSIS			
Sample Receipt (Personnel/Organization):	Sample Management/Contracted Laboratory			
Sample Custody and Storage (Personnel/Organization):	Sample Management/Contracted Laboratory			
Sample Preparation (Personnel/Organization):	Analysts/Contracted Laboratory			
Sample Determinative Analysis (Personnel/Organization):	Analysts/Contracted Laboratory			
	SAMPLE ARCHIVING			
Field Sample Storage (No. of days from sample collection):	See Worksheet #19			
Sample Extract/Digestate Storage (No. of days from extraction	ion/digestion): See Worksheet #19			
Biological Sample Storage (No. of days from sample collection	on): N/A			
	SAMPLE DISPOSAL			
Personnel/Organization:	Waste Disposition/DOE Prime Contractor and Subcontractors			
Number of Days from Analysis	N/A			

QAPP Worksheet #27 Sample Custody Requirements¹

UFP-QAPP Manual Section 3.3.3:

Field Sample Custody Procedures (sample collection, packaging, shipment, and delivery to laboratory): Field sample custody requirements will be per DOE Prime Contractor procedure, PAD-ENM-5004, *Sample Tracking, Lab Coordination, and Sample Handling Guidance.*

Laboratory Sample Custody Procedures (receipt of samples, archiving, disposal) are per the DOECAP certified laboratory procedures.

Sample Identification Procedures:

Sample identification requirements will be specified in work package documents.

Chain-of-custody Procedures:

Chain-of-custody requirements will be per DOE Prime Contractor procedure, PAD-ENM-5004, Sample Tracking, Lab Coordination, and Sample Handling Guidance.

Procedure

Procedure

Accuracy/Bias

(Contamination)

See PAD-ENM-5003 Rev. 0,

Quality Assured Data

UFP-QAPP Manual Section 3.4: Soil Matrix SMO **Analytical Group** Concentration TBD Level Sampling SOP See Worksheet #21 Analytical Method/ EPA methods **SOP Reference** TBD Sampler's Name **Field Sampling** Contractor Organization Analytical SMO Organization TBD. See Sitewide No. of Sample Locations Evaluation Work Plan Person(s) **Responsible for** Frequency/ **Data Quality** Method/SOP QC Corrective Corrective **Measurement Performance** Criteria¹ **QC Sample: Acceptance Limits** Indicator (DQI) Number Action Action See PAD-ENM-5003 Rev. 0, Field Duplicates Minimum 5% N/A N/A N/A Precision *Quality Assured Data* Procedure N/A Split Samples As requested by N/A N/A N/A N/A regulatory agency N/A Accuracy/Bias See PAD-ENM-5003 Rev. 0, Field Blanks Minimum 5% N/A N/A (Contamination) *Ouality Assured Data* Procedure Trip Blanks² Accuracy/Bias See PAD-ENM-5003 Rev. 0, Minimum 5% N/A N/A N/A (Contamination) *Quality Assured Data*

N/A

N/A

QAPP Worksheet #28 QC Samples Table

Equipment

Rinseates

Minimum 5%

N/A

QC Sample:	Frequency/ Number	Method/SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator (DQI)	Measurement Performance Criteria
Initial Calibration	Twice each day the XRF is used	Method 6200 or per manufacturer's instructions	Recalibrate per Method 6200 or per manufacturer's instructions	Environmental Sampling Lead	Accuracy/Bias (Contamination)	See PAD-ENM-5003 Rev. 0, <i>Quality Assured Data</i> Procedure
Instrument Blank	Beginning of each day the XRF is used; every 20 samples thereafter	Method 6200 or per manufacturer's instructions	Recalibrate per Method 6200 or per manufacturer's instructions	Environmental Sampling Lead	Accuracy/Bias (Contamination)	See PAD-ENM-5003 Rev. 0, <i>Quality Assured Data</i> Procedure
Method Blank	Once each day the XRF is used	Method 6200 or per manufacturer's instructions	Identify and reanalyze per Method 6200	Environmental Sampling Lead	Accuracy/Bias (Contamination)	See PAD-ENM-5003 Rev. 0, <i>Quality Assured Data</i> Procedure
Internal Standards	Twice each day the XRF is used	Method 6200 or per manufacturer's instructions	Recalibrate per Method 6200 or per manufacturer's instructions	Environmental Sampling Lead	Precision	See PAD-ENM-5003 Rev. 0, Quality Assured Data Procedure
Zeroing Blank	Per manufacturer's instructions	HACH Pocket Colorimeter TM II Test Kit for PCB in Soil per manufacturer's instructions	Per manufacturer's manufactures instructions	Environmental Sampling Lead	Per manufacturer's manufactures instructions	See PAD-ENM-5003 Rev. 0, <i>Quality Assured Data</i> Procedure

QAPP Worksheet #28 QC Samples Table (Continued)

B-59

QC Sample:	Frequency/ Number	Method/SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator (DQI)	Measurement Performance Criteria
Low/High Standards	Per manufacturer's instructions	HACH Pocket Colorimeter TM II Test Kit for PCB in Soil per manufacturer's instructions	Per manufacturer's instructions	Environmental Sampling Lead	Per manufacturer's instructions	See PAD-ENM-5003 Rev. 0, <i>Quality Assured Data</i> Procedure
Zeroing Blank	Per manufacturer's instructions	EnSys Immunoassay PCB Wipe Test Kit per manufacturer's instructions	Per manufacturer's instructions	Environmental Sampling Lead	Per manufacturer's instructions	See PAD-ENM-5003 Rev. 0, <i>Quality Assured Data</i> Procedure
Low/High Standards	Per manufacturer's instructions	EnSys Immunoassay PCB Wipe Test Kit per manufacturer's instructions	Per manufacturer's instructions	Environmental Sampling Lead	Per manufacturer's instructions	See PAD-ENM-5003 Rev. 0, <i>Quality Assured Data</i> Procedure

QAPP Worksheet #28 QC Samples Table (Continued)

¹ It is understood that SOPs are contractor specific. ² VOC analyses only

QAPP Worksheet #29 Project Documents and Records Table

UFP-QAPP Manual Section 3.5.1:

Sample Collection	On-site Analysis Documents	Off-site Analysis Documents	Data Assessment Documents	Other
Documents and Records	and Records	and Records	and Records ¹	
Data Logbooks and associated	Laboratory Data Packages	OREIS database & associated	PAD-ENM-5003, att. G	Form QA-F-0004,
completed sampling forms	OREIS database & associated	data packages	Data Assessment Review	Management/
Sample Chains-of-Custody	data packages		Checklist and Comment Form	Independent Assessment
				Report

QAPP Worksheet #30 Analytical Services Table

UFP-QAPP Manual Section 3.5.2.3:

							Backup
						Laboratory/Organization	Laboratory/Organization
			Sample		Data Package	(Name and Address,	(Name and Address,
	Analytical	Concentration	Locations/ID	Analytical	Turnaround	Contact Person and	Contact Person and
Matrix	Group	Level	Numbers	SOP	Time	Telephone Number)	Telephone Number)
Soil	PCBs	low	TBD	8082	28-day	TBD	TBD
Soil	Metals	low	TBD	6010	28-day	TBD	TBD
Soil	Metals	low	TBD	6020	28-day	TBD	TBD
Soil	Metals	low	TBD	7470	28-day	TBD	TBD
Soil	Radionuclides	low	TBD	Alpha Spec	28-day	TBD	TBD
Soil	Radionuclides	low	TBD	Gamma Spec	28-day	TBD	TBD
Soil	Radionuclides	low	TBD	Liquid	28-day	TBD	TBD
				Scintillation			

B-62

¹Analytical method SOPs for radiochemistry parameters are laboratory-specific. Laboratory contracting will be subsequent to the completion of the Site Evaluation Work Plan.

QAPP Worksheet #31 Planned Project Assessments Table

UFP-QAPP Manual Section 4.1.1:

Assessment Type	Frequency	Internal or External	Organization Performing Assessment	Person(s) Responsible for Performing Assessment (Title and Organizational Affiliation)	Person(s) Responsible for Responding to Assessment Findings (Title and Organizational Affiliation)	Person(s) Responsible for Identifying and Implementing Corrective Actions (CA) (Title and Organizational Affiliation)	Person(s) Responsible for Monitoring Effectiveness of CA (Title and Organizational Affiliation)
Independent Assessment/ Surveillance	TBD	Internal	Prime Contractor QA	QA Specialists, Contractor or Independent Assessor	Project Manager, Contractor	Project Management, Contractor	QA Specialist, Contractor
Laboratory Audit	Annual	External	DOE Consolidated Audit Program (DOECAP)	Laboratory Assessor	Laboratory	Laboratory	DOECAP
Management Assessments	TBD	Internal	Prime Contractor Project Management	Project Management, Contractor	Project Management, Contractor	Project Management, Contractor	QA Specialist, Contractor
Management By Walking Around (MBWA) ¹	TBD	Internal	Prime Contractor Project Management	Project Management, Contractor	Project Management, Contractor	Project Management, Contractor	QA Specialist, Contractor
MBWA Follow-up surveillances	Quarterly	Internal	Prime Contractor Project Management	ER/EM Director, Project Management or designee, Contractor	Project Management/Designee, Contractor	Project Management, Contractor	QA Specialist, Contractor

¹ Reference: PAD-QA-1033 Management by Walking Around (MBWA) Program

QAPP Worksheet #32 Assessment Findings and Corrective Action Responses¹

UFP-QAPP Manual Section 4.1.2:

	Natura of	Individual(s) Notified		Nature of Corrective	Individual(s) Receiving	
Assessment	Deficiencies	of Findings (Name,	Time frame of	Action Response	Response (Name, Title,	
Туре	Documentation	Title, Organization)	Notification	Documentation	Org.)	Timeframe for Response
Management,	Form QA-F-0004,	Project Management,	Upon issuance of	QA-F-0710, Issue	Action owner as	Fifteen days for initial
Independent,	Management/	Issue Owner,	Form QAP-E-004,	Identification Form,	designated by Issue	issue response, corrective
and	Independent	Contractor	Management/	documents the issue	Owner, Contractor	action schedule determined
Surveillances	Assessment		Independent	response and/or		by Issue Owner, per PAD-
	Report, and		Assessment	corrective actions.		QA-1210.
	QA-F-0710, Issue		Report, form QA-			
	Identification		F-0710, Issue			
	Form		Identification			
			Form, will be			
			completed and			
			attached to the			
			assessment report.			

B-64

QAPP Worksheet #33 QA Management Reports Table

UFP-QAPP Manual Section 4.2:

	Frequency (daily, weekly		Person(s) Responsible for	Report Recipient(s) (Title
	monthly, quarterly, annually,		Report Preparation (Title and	and Organizational
Type of Report	etc.)	Projected Delivery Date(s)	Organizational Affiliation)	Affiliation)
Performance Summary Report	1/month	By the 12 th of each month	Project Manager, Contractor	Contractor Management
Site Evaluation Report	1/end of project	TBD	Project Manager, Contractor	DOE, U.S. EPA,
				Commonwealth of Kentucky

QAPP Worksheet #34 Verification (Step I) Process Table

UFP-QAPP Manual Section 5.2.1:

Verification Input	Description ¹	Internal/ External	Responsible for Verification (Name, Organization)
Field Logbooks	Field logbooks are verified per DOE Prime Contractor procedure, PAD- ENM-2700, Logbooks and Data Forms, and PAD-ENM-5003, Quality Assured Data.	Internal	Project Management or designee, Contractor
Chains of custody	Chains of custody are controlled by DOE Prime Contractor procedure, PAD-ENM-5004, <i>Sample Tracking, Lab Coordination and Sample</i> <i>Handling Guidance</i> . Chains-of-custody will be included in data assessment packages for review as part of data verification and data assessment.	Internal	Sample and Data Management, Project Management, and QA Personnel, Contractor
Field and Laboratory Data	Field and analytical data are verified and assessed per DOE Prime Contractor procedure, PAD-ENM-5003, <i>Quality Assured Data</i> . Data assessment packages will be created per this procedure. The data assessment packages will include field and analytical data, chains-of- custody, data verification and assessment queries, and other project specific information needed for personnel to adequately review the package. Data assessment packages will be reviewed to document any issues pertaining to the data and to indicate if data met the data quality objectives of the project.	Internal	Sample and Data Management, Project Management, and QA Personnel ² , Contractor

¹ It is understood that SOPs are contractor specific. ² QA specialist performed general QA review.

QAPP Worksheet #35 Validation (Steps IIa and IIb) Process Table

UFP-QAPP Manual Section 5.2.2:

Step IIa/IIb	Validation Input	Description ¹	Responsible for Validation (Name, Organization)
IIa	Data Deliverables,	The documentation from the contractual screening will be included in the	Sample and Data Management
	Analytes, and	data assessment packages, per DOE Prime Contractor procedure,	Personnel, Contractor
	Holding Times	PAD-ENM-5003, Quality Assured Data.	
IIa	Chain-of-Custody,	These items will be validated during the data assessment process as required	Project and QA Personnel, Contractor
	Sample Handling,	by DOE Prime Contractor procedure, PAD-ENM-5003, Quality Assured	
	Sampling Methods	<i>Data</i> . The documentation of this validation will be included in the data	
	and Procedures, and	assessment packages.	
	Field Transcription		
IIa	Analytical Methods	These items will be reviewed during the data validation process as required	Data Validation Subcontractor,
	and Procedures,	by DOE Prime Contractor data validation procedures. Data validation will	Sample and Data Management,
	Laboratory Data	be performed in parallel with data assessment. The data validation report and	Project and QA Personnel, Contractor
	Qualifiers, and	data validation qualifiers will be considered when the data assessment	
	Standards	process is being finalized.	
Ila	Audits	The audit reports and accreditation and certification records for the	Sample and Data Management
		laboratory supporting the projects will be considered in the bidding process.	Personnel, Contractor
IIb	Deviations and	Any deviations and qualifiers resulting from Step IIa process will be	Sample and Data Management,
	qualifiers from Step	documented in the data assessment packages.	Project, and QA Personnel, Contractor
llb	Sampling Plan,	These items will be evaluated as part of the data verification and data	Sample and Data Management,
	Sampling Procedures,	assessment process per DOE Prime Contractor procedure, PAD-ENM-5003,	Project, and QA Personnel, Contractor
	Co-located Field	Quality Assured Data. These items will be considered when evaluating	
	Duplicates, Project	whether the project met their Data Quality Objectives.	
	Quantiliation Limits,		
	Analysias		
	Allalyses,		
	Performance Criteria		

QAPP Worksheet #36 Validation (Steps IIa and IIb) Summary Table

UFP-QAPP Manual Section 5.2.2:

Step IIa/IIb	Matrix	Analytical Group	Concentration Level	Validation Criteria ¹	Data Validator (title and organizational affiliation)
IIa/IIb	Soil	PCBs	Low	DOE Prime Contractor procedure, PAD-ENM- 0811, Pesticide and PCB Data Verification and Validation	TBD
IIa/IIb	Soil	Metals	Low	DOE Prime Contractor procedure, PAD-ENM- 5107, Inorganic Data Verification and Validation	TBD
IIa/IIb	Soil	Radionuclides	Low	DOE Prime Contractor procedure, PAD-ENM- 5102, Radiochemical Data Verification and Validation	TBD

QAPP Worksheet #37 Usability Assessment¹

UFP-QAPP Manual Section 5.2.3:

Summarize the usability assessment process and all procedures, including interim steps and any statistics, equations, and computer algorithms that will be used: Field and analytical data are verified and assessed per DOE Prime Contractor procedure, PAD-ENM-5003, *Quality Assured Data*. Data assessment packages will be created per this procedure. Data assessment packages will include field and analytical data, chains-of-custody, data verification and assessment queries, and other project specific information needed for personnel to adequately review the package. Data assessment packages will be reviewed to document any issues pertaining to the data and to indicate if data quality objectives of the project were met.

Describe the evaluative procedures used to assess overall measurement error associated with the project: PARCCS parameters (precision, accuracy, representativeness, comparability, completeness, and sensitivity) will be evaluated per DOE Prime Contractor procedure, PAD-ENM-5003, *Quality Assured Data*. This information will be included in the data assessment packages for review by project personnel. Data assessment also will include documentation of QC exceedances, trends, and/or bias in the data set. Data assessment will document any statistics used.

B-69

Identify the personnel responsible for performing the usability assessment: Project and QA Personnel.

Describe the documentation that will be generated during usability assessment and how usability assessment results will be presented so that they identify trends, relationships (correlations), and anomalies: Data assessment packages will be created, which will include data assessment comments/questions and laboratory comments. Data verification and assessment queries indicating any historical outliers and background soil exceedances also will be included in the data assessment packages.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

ENVIRONMENT, SAFETY, AND HEALTH PLAN

THIS PAGE INTENTIONALLY LEFT BLANK

ACR	RONYMS	
C.1.	INTRODUCTION	C-7
C.2.	INTEGRATED SAFETY MANAGEMENT/ENVIRONMENTAL MANAGE	CMENT C-9
	C_{22} ANALVZE HAZADDS	
	C.2.2 ANALIZE HAZANDS	C-9
	C_{24} DEPENDENT CONTROLS	C-10
	C.2.4 PERFURIN WURK $C.2.5$ EEEDDACV/IMDDOVEMENT	C-10
	C.2.5 FEEDBACK/IMPROVEMENT	C-11
C.3.	FLOWDOWN TO SUBCONTRACTORS	C-13
C.4.	SUSPENDING/STOPPING WORK	C-15
C.5.	ISMS/EMS BRIEFINGS AND ORIENTATIONS	C-17
C.6.	KEY PROJECT PERSONNEL AND RESPONSIBILITIES	C-19
C.7.	SITE CONTROL	
	C.7.1 WORK SITE CONTROL ZONES	
	C.7.1.1 Exclusion Zone	
	C.7.1.2 Contamination Reduction Zone	
	C.7.1.3 Construction Zone	C-21
	C.7.1.4 Support Zone	C-21
	C 7 1 5 Site Communications	C-21
	C.7.1.6 Authorization to Enter	C-22
	C.7.1.7 Visitors	
C.8.	PERSONAL PROTECTIVE EQUIPMENT	
	C.8.1 TASK-SPECIFIC LEVELS OF PROTECTION	
	C.8.2 RESPIRATORY PROTECTION	
C.9.	MEDICAL SURVEILLANCE	
	C.9.1 EXPOSURE MONITORING	
	C.9.2 ROUTINE AIR MONITORING REQUIREMENTS	
C.10). INDUSTRIAL HYGIENE MONITORING	
	C.10.1 RADIOLOGICAL MONITORING	
C.11	. EMERGENCY RESPONSE	C-29
	C.11.1 RESPONSIBILITIES	
	C.11.2 REPORTING AN EMERGENCY	C-29
	C.11.2.1 Discovery	
	C.11.2.2 Emergency Contacts	
	C.11.3 INITIAL EMERGENCY RESPONSE	
	C.11.4 PADUCAH GASEOUS DIFFUSION PLANT ALARMS	C-30
	C.11.5 REPORTING A SPILL	
	C.11.5.1 Protective Actions for Spill	

CONTENTS

THIS PAGE INTENTIONALLY LEFT BLANK
ACRONYMS

ACGIG	American Conference of Government Industrial Hygienists
AHA	Activity Hazard Assessment
ALARA	as low as reasonably achievable
ANSI	American National Standards Institute
CFR	Code of Federal Regulations
CRZ	contamination reduction zone
DOE	U. S. Department of Energy
EMS	Environmental Management System
EPA	U. S. Environmental Protection Agency
ES&H	Environmental Safety and Health
EZ	exclusion zone
FS	Field Superintendent
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operation
ISMS	Integrated Safety Management System
NIOSH	National Institute for Occupational Safety and Health
OSHA	Occupational Safety and Health Administration
PEL	permissible exposure limit
PGDP	Paducah Gaseous Diffusion Plant
PPE	personal protective equipment
PSS	Plant Shift Superintendent
RADCON	radiation control
RWP	radiological work permit
S&H	Safety and Health
SHS	Safety and Health Specialist
SZ	support zone
TLD	thermoluminescent dosimeter
TLV	threshold limit value

C.1. INTRODUCTION

This (ES&H) Plan has been developed to discuss the general ES&H requirements associated with the Sitewide Evaluation Work Plan and identify some potential hazards. Site specific hazards and controls will be established for each task and location prior to performing work. These hazards and controls will be documented in the form of Site-Specific Health and Safety Plans (HASPs), Activity Hazard Assessments (AHAs), work packages, and procedures. Personnel will be familiar with these work control documents prior to performing work in the affected areas.

C.2. INTEGRATED SAFETY MANAGEMENT/ENVIRONMENTAL MANAGEMENT

The Project team will utilize an Integrated Safety Management System (ISMS) which integrates the Safety Management Systems, the Environmental Management System (EMS), and Quality Management System, to ensure personnel and environmental safety and quality are integrated into management and work practices at all levels so that missions are accomplished while protecting the public, the workers, and the environment. The concepts of ISMS/EMS will be utilized to provide a formal, organized process to ensure the safe performance of work. The ISMS/EMS Plan identifies the methodologies that will be used to address previously recognized hazards and how the hazards are mitigated using contractor-accepted ES&H practices.

The core functions and guiding principles of ISMS/EMS will be implemented by incorporating applicable programs, policies, technical specifications, and procedures from the U.S. Department of Energy (DOE), U.S. Occupational Safety and Health Administration (OSHA), the U.S. Environmental Protection Agency (EPA), and other applicable regulatory guidance. Brief descriptions of the five ISMS/EMS core functions are provided below.

C.2.1 DEFINE SCOPE OF WORK

Defining and understanding the scope of work is the first critical step in successfully performing any specific activity in a safe and compliant manner. Each member of the project team will participate in discussions conducted to understand the scope and contribute to the planning of the work. The project team will meet with personnel to ensure that everyone understands the scope of work and the technical and safety issues involved. These meetings are conducted to ensure all parties are in agreement on the scope and approach to complete the work.

C.2.2 ANALYZE HAZARDS

In the course of planning the work, the project team will identify hazards, including personnel safety and environmental risks, associated with the performance of the work. Hazards may be identified and assessed by performing a site visit, reviewing lessons learned, and reviewing project plans or historical data. The hazard assessment process will be prescribed by the DOE Prime Contractor procedures and policies.

Once the hazards have been identified and assessed, measures will be identified to minimize risks to workers, the public, and the environment. These measures are described in the project-specific AHAs, which serve to provide a control mechanism for all work activities. AHAs are detailed, activity-specific evaluations that address each step of the task and/or activity that will be performed. The AHA development process entails a detailed evaluation of each task to identify specific activities or operations required to successfully complete the scope of work and define the potential chemical, environmental, physical, radiological, and/or biological hazards that may be encountered; the media and manner in which they may occur; and how they are to be recognized, mitigated, and controlled. Appropriate hazard controls may include engineering controls, administrative controls, and the use of personal protective equipment (PPE). The project team is responsible for the preparation, revision, and implementation of AHAs.

Applicable AHAs will be reviewed with the personnel who will perform the work. Participants in this review will sign and date the AHA to signify that they understand all hazards, controls, and requirements in the AHAs. Copies of the AHAs with appropriate signatures shall be maintained at the work location.

C.2.3 DEVELOP/IMPLEMENT CONTROLS

The primary mechanisms used to flow down ISMS/EMS controls to the project team are project-specific plans and technical procedures. Other mechanisms include program/project management systems, employee training, communication, work site inspections, independent assessments, and audits. These mechanisms are communicated in the following:

- Pre-Job meetings
- Orientations
- Training
- Plan-of-the-day/pre-job briefings
- AHAs
- Radiological work permits (RWP)

The plan-of-the-day/pre-job briefing incorporates the principles of ISMS/EMS. The specific steps within ISMS/EMS are emphasized to each employee. It is emphasized that no employee will be directed or forced to perform any task that he/she believes is unsafe, puts human health at risk, or that could endanger the public or the environment. One of the key elements of ISMS/EMS is that all personnel have "stop work authority" and are encouraged to use this authority whenever there is a reasonable belief that the task poses an imminent risk of death, serious physical harm, or other serious hazard to workers or the environment.

Employee involvement is emphasized in all training sessions, beginning with initial orientation training and is then periodically reinforced in refresher training, as applicable, and in ES&H briefings/meetings. Employees are encouraged to participate in the selection, development, and presentation of training/meeting topics and their full and constructive input is encouraged in all communication sessions.

C.2.4 PERFORM WORK

After the project team has been given approval to proceed, the project-specific plans will be implemented. The project team will verify that all applicable plans, forms, and records are contained in the project files and accessible by approved personnel. Actions that will be taken during the performance of the work to incorporate ISMS/EMS principles include the following:

- Plan-of-the-day/pre-job briefings
- Monthly project safety meetings
- ES&H oversight/inspections
- Safety inspections
- Equipment inspection
- Stop work authority

C.2.5 FEEDBACK/IMPROVEMENT

Feedback and improvement is accomplished through several channels, including ISMS/EMS audits, self-assessments, employee suggestions, lessons learned, and post-job briefings.

Project management will encourage employees to freely submit suggestions that offer opportunities for improvement and constructive criticism on the program. Project management will conduct periodic inspections and meetings with project personnel at the work site to discuss safety issues, environmental issues, and/or concerns and other relevant topics.

During field activities, meetings and briefings will provide opportunities for project personnel to communicate the following:

- Lessons learned and any other topics relevant to the work performed;
- How work steps/procedures could be modified to promote a safer working environment;
- How communications could be improved within the project team; and
- Overall issues or concerns they may have regarding how the work was performed.

C.3. FLOWDOWN TO SUBCONTRACTORS

The ISMS/EMS approach to ES&H ensures that personnel, including subcontractors, are aware of their roles, responsibilities, and authorities for worker/public safety and protection of the environment. All organizations will be responsible for compliance with the Prime Contractor's Worker Safety and Health (S&H) Program, ISMS/EMS Program, Radiation Protection Program, and Quality Assurance Program. In addition, subcontract requirements will flow down to lower-tier subcontractors, as applicable. Personnel will have the appropriate health and safety training required by OSHA 29 *CFR* § 1910 and 1926, but will also undergo site-specific pre-job training including safety and environmental to ensure that ES&H issues related to the activities to be performed or specific to the work site are clearly understood. Documentation of training will be available for review prior to starting work.

C.4. SUSPENDING/STOPPING WORK

In accordance with 10 *CFR* § 851.20 and the DOE Prime Contractor's Worker S&H Program and procedures, workers have the right to decline to perform an assigned task because of a reasonable belief under the circumstances that the task poses an imminent risk of death or serious physical harm to the worker. Individuals involved in any aspect of the project have the authority and responsibility to suspend or stop work for any perceived threat to the S&H of the workers, the public, or to the environment. Concerns shall be brought to the attention of the Field Superintendent (FS) and Safety and Health Specialist (SHS) they will be evaluated by management and actions will be taken to rectify or control the situation. In the case of imminent danger or emergency situations, personnel should halt activities immediately and instruct other affected workers to pull back from the hazardous area. The FS and/or SHS should be notified immediately, at which time management and/or emergency responders will be notified.

C.5. ISMS/EMS BRIEFINGS AND ORIENTATIONS

Plan-of-the-day/pre-job briefings detailing the specific hazards of the work to be performed and safety precautions and procedures specific for the job shall be conducted by the FS and/or SHS at the beginning of each shift. During these briefings, work tasks and the associated hazards (personnel safety and environmental risks) and mitigating controls will be discussed using task-specific AHAs, project documents and/or Lessons Learned as guidance.

Prior to performing work on the site, personnel shall be required to read or be briefed on the DOE Prime Contractor's Worker Safety and Health Program, applicable AHAs, the work package, and other applicable work control documents. This shall be documented as required reading, acknowledgement forms, or briefing sheets. Visitors also will be oriented to the applicable plans and potential hazards that they may encounter.

C.6. KEY PROJECT PERSONNEL AND RESPONSIBILITIES

One of the primary underlying principles of a successful project organization is the establishment of clearly defined roles and responsibilities and effective lines of communication among employees and among the Prime Contractor, subcontractors, and other organizations involved in the project. Ensuring that personnel fully understand their roles and responsibilities and that they have a thorough understanding of the scope of work and other project requirements will provide the foundation for successful and safe completion of the project.

These are the roles and responsibilities of key field team members.

- The Environmental Restoration Project Director oversees the implementation of the project plans and provides the resources for the project.
- The Project Manager oversees the project plans and work activities while ensuring that operations are conducted in accordance with the DOE prime contractor procedures, regulatory requirements, and Worker Safety and Health Program and is responsible for coordinating and assigning resources needed for the project. The Project Manager also performs management audits and inspections.
- The FS coordinates field activities and logistics and provides communication between the project team and the field team as well as other support groups. The FS also ensures that on-site personnel comply with the Worker S&H Program, work packages, and applicable procedures.
- The S&H Specialist provides safety and health support and oversight to the project to ensure that work is being performed safely and in accordance with the Worker S&H Program, applicable regulations, 10 CFR § 851, DOE directives, and applicable plans and procedures.
- The Quality Assurance Specialist provides support and oversight to the project to ensure that work is performed in accordance with the work package and other applicable plans and procedures.
- The Radiological Control Group provides support and guidance to the project and assists the FS and SHS with implementation of radiological controls and as-low-as-reasonably-achievable (ALARA) principles. The Radiological Control Technician observes the work area before/during activities for radiological hazard and authorizes entry into and exit from the radiological work area.
- Environmental Compliance organization provides environmental support and oversight to the project to ensure that the planning and field work is being performed properly and in accordance with all applicable regulations, DOE directives, and relevant plans and procedures.
- The Waste Management Coordinator provides waste management support to the project to coordinate waste containers and removal of waste from the worksite, while complying with the Worker S&H Program, as well as ES&H and work control requirements.
- Field Team/Subcontractors–Samplers, drillers, operators, and maintenance perform work as specified in work packages, adhering to the Worker S&H Program, HASP, RWPs, project procedures, and AHAs. Field Team personnel also participate in the identification of the hazards and development of the work controls to be utilized during the work.

C.7. SITE CONTROL

C.7.1 WORK SITE CONTROL ZONES

Work zones will be utilized to control access. These areas will be controlled by the FS, SHS, and/or RCT to minimize the number of individuals potentially exposed to site hazards and to ensure that individuals who enter follow the required procedures. The following is a description of the different types of zones that may be established at the site.

C.7.1.1 Exclusion Zone

The exclusion zone (EZ) is the immediate area around an excavation or remedial action activity where there is potential for personal exposure to hazardous materials. The exclusion zone will be marked and entry and exit points will be established to regulate movement of personnel and equipment to reduce the potential of the spread of contamination.

C.7.1.2 Contamination Reduction Zone

The contamination reduction zone (CRZ) is the transition area between the EZ and construction zone or support zone. This area will provide a buffer area to reduce the probability that contamination will leave the EZ. The CRZ is designed for the following activities:

- Decontamination of equipment, workers, and sample containers;
- Staging of emergency response equipment and supplies (e.g., first-aid, fire equipment);
- Scanning of personnel, materials, and equipment;
- Sample packing and preparation; and
- Worker rest area.

The CRZ is designed to reduce the possibility of the clean area becoming contaminated by site hazards. The degree of contamination in the CRZ decreases as the distance from the contaminants increases.

C.7.1.3 Construction Zone

The construction zone is the area outside of potential contamination, but still encompasses work activities and possible hazards associated with fieldwork activities. Entry into this area is controlled and the area clearly marked with barrier tape, rope, or flagging.

C.7.1.4 Support Zone

The support zone (SZ) is the outermost area of the site. This area is uncontaminated where workers provide operational and administrative support. The support zone is clean and will not be entered by contaminated equipment or personnel, unless properly controlled or except under emergency or evacuation conditions. Normal work clothes are appropriate within this zone.

C.7.1.5 Site Communications

Paducah Gaseous Diffusion Plant (PGDP) plant radios, plant phones, and cell phones will be used for onsite and off-site communication. Project personnel will be orientated to the use of plant radios and emergency numbers. Hand signals may also be utilized; these will be covered with project personnel if necessary.

C.7.1.6 Authorization to Enter

Personnel shall adhere to site entry and control procedures identified in the RWP, AHAs, and this sitespecific HASP. Personnel must wear the appropriate PPE and enter the work area only after receiving permission of the FS, SHS, and Radiological Control Technician. The FS (or designee) will verify that the appropriate training and briefing requirements are met prior to entry.

As a requirement for work on this project, workers entering the EZ or CRZ will be required to take the appropriate level of HAZWOPER training. This training must cover the requirements in 29 *CFR* § 1910.120, HAZWOPER. As applicable, workers must receive annual 8-hour refresher training (if applicable) and 1 or 3-day on-site supervision under a trained, experienced supervisor. The FS shall receive additional 8-hour training in hazardous waste operations supervision. Workers and visitors entering the EZ or CRZ will be briefed in the provisions of this HASP and be required to sign the HASP Acknowledgment Form. Workers entering radiological posted work areas also will be required to complete Radworker II training.

C.7.1.7 Visitors

Visitors to the site shall abide by the following:

- "Visitor" means persons not involved in routine site work activities.
- Visitors shall be instructed to stay outside of the EZ and CRZ and remain within the SZ during the extent of their stay.

Visitors requesting to observe work conducted in the EZ must wear appropriate PPE prior to entry into that zone. Visitors who wish to enter the EZ must produce evidence that they have medical clearance and appropriate HAZWOPER training that is up-to-date. Visitors also must have received the required training for the tasks being performed and entry must be approved by the FS, SHS, and/or RCT.

C.8. PERSONAL PROTECTIVE EQUIPMENT

When engineering controls are not feasible, when the administrative controls in place are not adequate, or when otherwise indicated (such as for ALARA), PPE will be specified by the AHA and/or RWP. At a minimum, personnel performing work in work zones may be required to wear the following standard safety apparel:

- Hard hats meeting the requirements of American National Standards Institute (ANSI) Z89.1 as prescribed in 29 *CFR* § 1910.135, Head Protection. Hard hats will be worn with the suspension properly installed. Hard hats will not be damaged, painted or deformed.
- Safety glasses with firm side shields will meet the requirements of ANSI Z87.1 as prescribed in 29 *CFR* § 1910.133, Eye and Face Protection. Prescription glasses also will meet the ANSI standard and be provided with fixed or firm clip-on side shields. Cover glasses used over prescription glasses will be permitted. Safety glasses will be worn in any area where construction activities are taking place. Face shields will not be worn in lieu of safety glasses.
- Sturdy, safety-toed work shoes or boots meeting the requirements of ANSI Z41, as prescribed in 29 *CFR* § 1910.136, Foot Protection, shall be worn.

The required level of protection is specific to the activity being conducted. The levels of PPE apply only to activities conducted inside an established EZ. Work conducted within CRZs will vary, but are generally one level of protection lower than the EZ. Activities conducted within SZs should require normal work clothes and PPE unless specified by the FS or SHS.

C.8.1 TASK-SPECIFIC LEVELS OF PROTECTION

The levels of protection will be determined by the task and/or proximity of the task being performed and will be identified in the task specific AHAs and RWPs.

C.8.2 RESPIRATORY PROTECTION

Respiratory protection requirements will be determined by air monitoring and survey results. Personnel required to wear respiratory protection will be trained and quantitatively fit-tested prior to use of the respirator, as prescribed in accordance with DOE Prime Contractor procedure and 29 *CFR* § 1910.134, Respiratory Protection. Personnel required to wear respirators will inspect their respirators before and after each use, and any deficiencies will be reported to the FS or SHS immediately. Respirators will be properly stored in a bag in a clean, dry environment and routinely cleaned. Damaged respirators shall not be used.

C.9. MEDICAL SURVEILLANCE

The medical surveillance program provides for baseline, annual, and termination medical examinations for the following employees in accordance with 29 *CFR* § 1910.120, HAZWOPER. Each employee who is or may be exposed to hazardous substances or health hazards at or above the permissible exposure limit (PEL) for 30 days or more per year and each employee who wears a respirator for 30 days or more per year will receive a medical examination before assignment, approximately 12 months later, and at termination of employment or at reassignment. Employees who develop signs or symptoms indicating overexposure or are injured or exposed above the PEL in an emergency situation will be examined medically as soon as possible following the incident.

Personnel performing HAZWOPER activities on this project must complete an annual HAZWOPER physical. The examining physician will document the worker's fitness for work and ability to wear a respirator.

Radiation workers, working under an RWP, may be required to submit a baseline bioassay, periodic bioassay during the project, and exit bioassay at the end of the project.

C.9.1 EXPOSURE MONITORING

Air monitoring shall be used to identify and quantify airborne levels of hazardous substances and health hazards in order to determine the appropriate level of employee protection needed on-site.

C.9.2 ROUTINE AIR MONITORING REQUIREMENTS

Air monitoring will be performed during the following activities:

- Intrusive activities such as soil excavation;
- Activities where there is a potential for exposure to heavy metals (lead, arsenic, beryllium, etc.) and silica dust; and
- Personnel are opening waste containers that contain potentially contaminated material.

C.10. INDUSTRIAL HYGIENE MONITORING

Industrial Hygiene monitoring and sampling will be performed by assigned project S&H support personnel. Monitoring will use direct-reading instruments, air-sampling equipment, environmental-monitoring equipment, and assessment techniques as determined appropriate by the S&H group based on professional judgment and in accordance with OSHA, National Institute for Occupational Safety and Health (NIOSH), and American Conference of Government Industrial Hygienists (ACGIH).

Personnel sampling will be conducted to assess the potential exposure to individual employees and to ensure that the proper level of PPE has been selected for the assigned task(s). Samples will be collected in the employee's breathing zone using personnel sampling pumps and the appropriate collection media. For tasks with the potential for exposure to significantly elevated chemical concentration, it is expected that the sampling frequency will increase.

If direct reading instruments indicate levels of vapors or particulates that exceed the action level for over 15 minutes in the work area, then personnel sampling will be initiated immediately. Sampling will be conducted, at a minimum, on the worker with the highest expected exposure. Monitoring will continue until levels recorded by direct reading instruments return below the action level.

Once initiated, sampling always will continue for a period long enough to collect a volume of air sufficient to allow the laboratory to achieve an analytical detection limit no greater than one-half the OSHA PEL or ACGIH threshold limit value (TLV), whichever is the more stringent of the two. The samples will be collected in accordance with the approved NIOSH or OSHA methodology and analyzed for the appropriate contaminant(s) of concern. All personnel exposure samples shall be analyzed by a laboratory accredited by American Industrial Hygiene Association in accordance with the appropriate NIOSH or OSHA methodology.

C.10.1 RADIOLOGICAL MONITORING

Radiological Control will perform personnel air monitoring during work in contamination areas and potentially at the boundary. Scanning of equipment and personnel also will be performed to minimize the possibility of the spread of contamination. Personnel working on the Sitewide Evaluation project will be monitored through dosimetry and required to wear a thermoluminescent dosimeter (TLD) when working in radiological zones and submit bioassays as required.

C.11. EMERGENCY RESPONSE

C.11.1 RESPONSIBILITIES

The PM, FS, and SHS are responsible for the project emergency management program and ensuring that the appropriate emergency response equipment is readily available at the work site and in proper working order.

In the event of an emergency, all site personnel shall follow the requirements and provisions of the PGDP Emergency Management Plan. Emergency response shall be provided by the PGDP emergency response organization. The SHS will be in charge of personnel accountability during emergency activities. All personnel working on-site will be trained to recognize and report emergencies to the SHS or the FS. The SHS or FS will be responsible for notifying the PGDP emergency response organization.

The PGDP emergency response organization will be contacted for emergency response to all medical emergencies, fires, spills, or other emergencies. The Plant Shift Superintendent (PSS) will coordinate 24-hour emergency response coverage. The requirements of this section will be communicated to site workers. Any new hazards or changes in the plan also will be communicated to site workers.

The DOE on-scene coordinator will provide oversight on an ongoing basis for emergency management/recovery activities.

C.11.2 REPORTING AN EMERGENCY

C.11.2.1 Discovery

The person who discovers an emergency should immediately report it, then attempt to establish control ONLY if the incident is minor in magnitude (e.g., using a fire extinguisher to put out an incipient fire if trained to do so and extinguishment can be accomplished in a safe manner). Where such measures are obviously inadequate or not successful in controlling the incident or for emergency conditions, personal injuries, or other unusual events with potential for causing personal injury, environmental releases, or property damage, the employee will initiate notification of appropriate emergency response personnel.

Sitewide Evaluation project personnel will maintain a radio, telephone, or other reliable means of notifying emergency response personnel and the PSS.

C.11.2.2 Emergency Contacts

- *Fire:* Fire alarm pull box, plant telephone Bell System 333, or plant radio channel 16.
- *Medical:* Plant telephone Bell System 333 or plant radio channel 16.
- *Security:* Plant telephone Bell System 6246 or plant radio channel 16.
- **PSS:** Plant telephone Bell System 6211 or plant radio channel 16.

If using a cell phone: 270-441-6333 for emergency, for NON-emergency use 270-441-6211.

C.11.3 INITIAL EMERGENCY RESPONSE

When an emergency occurs, the SHS or FS will assume responsibility for the management of the scene and the protection of the personnel. Personnel are to be evacuated from the immediate danger area, as appropriate. Depending on the degree of emergency, RADCON controls may need to be adhered to during the emergency. For personnel injury or illness, there should be an adequate number of personnel with current training in first aid and cardiopulmonary resuscitation present on-site during all field activities. This individual will provide minor first aid until other emergency personnel arrive and assume emergency response duties or it is determined to transport the injured to the hospital or medical provider.

C.11.4 PADUCAH GASEOUS DIFFUSION PLANT ALARMS

The alarms can be heard by calling 6161 on a Bell phone.

These include the following:

Radiation Emergency/CAAS:	Continuous blast on a high-pitched air whistle or electronic horn
	ACTION : Evacuate area immediately and stay away from affected building, Report to an assigned plant assembly point
Attack Warning/Tornado Warning:	Intermittent 2-second blast on plant horns
	ACTION: Take cover
Evacuate Signal:	Continuous blast on plant horns
	ACTION: Evacuate building
Plant Emergency:	Hi-Lo Tones
	ACTION: Listen to plant public address system/radio for instructions
Cascade Buildings:	Three blasts on building horns or howlers
	ACTION: Call area control room
Other Buildings:	One 10-second blast on building horns or sirens
	ACTION: Follow local emergency procedures

During field activities all personnel must participate in all PGDP accountability/assembly drills by sending all on-site project personnel to the appropriate assembly station for accountability. The FS, SHS, or designee will be responsible for accounting for all field personnel (including subtier subcontractor personnel) and reporting any unaccounted-for personnel to the emergency coordinator.

C.11.5 REPORTING A SPILL

When a spill is discovered, the FS or SHS will immediately contact Environmental Compliance, the PSS, and the PM and convey as much information as possible (e.g., material involved, estimated quantity spilled/affected, location, affected personnel, other hazardous conditions).

C.11.5.1 Protective Actions for Spill

An effort will be made to stop the release and contain the spill using materials in the on-site spill response kit, only if it is safe to do so and if no unprotected exposures occur. A telephone contact list will be available for emergency notification.

In the event that personnel are exposed to hazardous chemicals or radioactive materials, appropriate emergency response action will be taken to remove the contaminated clothing. An emergency shower and eyewash station will be used to flush exposed skin and eyes, respectively. This emergency equipment will be maintained in a readily accessible location adjacent to the active work area.

If an acute exposure to airborne chemicals occurs or is suspected and the affected personnel are unable to escape the work zone, the FS or SHS will immediately contact PSS for assistance. Rescue operations will not be performed unless the rescuers are dressed in the appropriate protective equipment.

Project Management will be responsible for ensuring all spills of hazardous materials are properly cleaned up and disposed of, including any material generated from the spill, unless otherwise directed.

The FS or SHS has the following responsibilities:

- Ensure that spill containment is performed safely.
- Provide all known information to PSS to ensure proper response.
- Ensure that decontamination measures for exposed personnel are conducted safely and promptly.
- Ensure that, if personnel are exposed to airborne chemicals and are unable to escape the work zone, rescue is not attempted unless rescue personnel are dressed in the appropriate protective equipment.
- Notify Environmental Compliance for spill reporting and cleanup requirements.

During field activities all personnel must participate in all PGDP accountability/assembly drills by sending all on-site project personnel to the appropriate assembly station for accountability. The FS, SHS, or designee will be responsible for accounting for all field personnel (including sub-tier subcontractor personnel) and reporting any unaccounted-for personnel to the emergency coordinator directing the drill.

APPENDIX D

DATA MANAGEMENT IMPLEMENTATION PLAN

ACR	ONYM	S		D-5
D.1	INTRO	DUCTIO	N	D-7
D.2	PROJE	ECT MISS	ION	D-7
D.3	DATA	MANAG	EMENT ACTIVITIES	D-7
D.4	DATA	MANAG	EMENT INTERACTIONS	D-8
	D.4.1	DATA	NEEDS AND SOURCES	D-8
	D.4.2	HISTOF	RICAL DATA	D-8
	D.4.3	FIELD I	DATA	D-9
	D.4.4	ANALY	TICAL DATA	D-9
	D.4.5	SURVE	Y DATA COVERAGE	D-9
D.5	DATA	FORMS	AND LOGBOOKS	D-9
	D.5.1	FIELD I	FORMS	D-9
	D.5.2	LITHOI	LOGIC DESCRIPTION FORMS	D-10
	D.5.3	WELL (CONSTRUCTION DETAIL FORMS	D-10
	D.5.4	LOGBC	OOK SAMPLE COLLECTION SHEETS	D-10
D.6	DATA	AND DA	TA RECORDS TRANSMITTALS	D-10
	D.6.1	PADUC	AH OREIS DATA TRANSMITTALS	D-10
	D.6.2	DATA I	RECORDS TRANSMITTALS	D-10
D 7	DATA MANAGEMENT SYSTEMS		D-11	
	D.7.1	PADUC	AH PEMS	D-11
	D.7.2	PADUC	AH OREIS	D- 11
	D.7.3	PADUC	CAH ANALYTICAL PROJECT TRACKING SYSTEM	D-12
D.8	DATA	MANAG	EMENT TASKS AND ROLES AND RESPONSIBILITIES	D-12
	D.8.1	DATA N	MANAGEMENT TASKS	D-12
		D.8.1.1	Plan Data Collection	D-12
		D.8.1.2	Prepare for Sampling Activities	D-12
		D.8.1.3	Collect Field Data and Samples	D-12
		D.8.1.4	Submit Samples for Analysis	D-13
		D.8.1.5	Process Field Measurement and Laboratory Analytical Data	D-13
		D.8.1.6	Laboratory Contractual Screening	D-13
		D.8.1.7	Data Verification	D-13
		D.8.1.8	Data Validation	D-13
		D.8.1.9	Data Assessment	D-14
		D.8.1.10) Data Consolidation and Usage	D-14
	D.8.2	DATA	MANAGEMENT ROLES AND RESPONSIBILITIES	D-14
		D.8.2.1	Project Manager	D-14
		D.8.2.2	Project 1 eam	D-14
		D.8.2.3	Data User	D-15
		D.8.2.4	Data Coordinator.	D-15
		D.8.2.3	Document Control Center Manager	D-13

CONTENTS

D.8.2.6	QA Specialist	D-15
D.8.2.7	Data Manager	D-15
D.8.2.8	Lab Coordinator	D-15

ACRONYMS

COC	chain-of-custody
DMC	Document Management Center
DMIP	Data Management Implementation Plan
DOE	U.S. Department of Energy
EDD	electronic data deliverables
GIS	geographic information system
OREIS	Oak Ridge Environmental Information System
PEMS	Project Environmental Measurements System
PGDP	Paducah Gaseous Diffusion Plant
QA	quality assurance
QC	quality control
RTL	ready-to-load
SOW	statement of work

D.1 INTRODUCTION

The purpose of this Data Management Implementation Plan (DMIP) is to identify and document data management requirements and applicable procedures, expected data types and information flow, and roles and responsibilities for all data management activities associated with the Sitewide Evaluation at the Paducah Gaseous Diffusion Plant (PGDP). Data management provides a system for efficiently generating and maintaining technically and legally defensible data that provide the basis for making sound decisions regarding the environmental and waste characterization at PGDP.

Data management for this project is implemented throughout the life cycle for environmental measurements data. This life cycle occurs from the planning of data for environmental and waste characterization, through the collection, review, and actual usage of the data for decision-making purposes, to the long-term storage of data.

Data types to be managed for the project include field data and analytical data. Field data are collected in field logbooks or field data forms and are entered into Paducah Project Environmental Measurements System (PEMS), as appropriate, for storage. Analytical data are planned and managed through Paducah PEMS and transferred to Paducah Oak Ridge Environmental Information System (OREIS) for long-term storage and reporting.

To meet current regulatory requirements for U.S. Department of Energy (DOE) environmental management projects, complete documentation of the information flow is established. Each phase of the data management process (planning, collecting, analyzing, managing, verifying, assessing, reporting, consolidating, and archiving) must be appropriately planned and documented. The project team is responsible for data collection and data management for this project.

The scope of this DMIP is limited to environmental information generated under the Sitewide Evaluation. This information includes electronic and/or hard copy records obtained by the project that describe environmental conditions. Information generated by the project (e.g., laboratory analytical results from samples collected) and obtained from sources outside the project (e.g., historical data) falls within the scope of this DMIP. Certain types of information, such as personnel or financial records, are outside the scope of this DMIP.

D.2 PROJECT MISSION

Requirements and responsibilities described in this plan apply to activities conducted by the project team in support of the Sitewide Evaluation. Specific activities involving data include, but are not limited to, sampling of sediment and soil; storing, analyzing, and shipping samples, when applicable; and evaluation, verification, validation, assessment, and reporting of analytical results.

D.3 DATA MANAGEMENT ACTIVITIES

Data management will be implemented throughout the life cycle of the Sitewide Evaluation. This life cycle occurs from the planning of data for environmental and waste characterization, through the

collection, review, and actual usage of the data for decision-making purposes, to the long-term storage of data. Data management activities include the following:

- Acquire existing data
- Plan data collection
- Prepare for sampling activities
- Collect field data
- Collect field samples
- Submit samples for analysis
- Process field measurement and laboratory analytical data
- Laboratory Contractual Screening
- Verify data
- Validate data
- Assess data
- Consolidate, analyze, and use data and records
- Submit data to the Paducah OREIS

Section D.8 contains a detailed discussion of the activities listed above.

D.4 DATA MANAGEMENT INTERACTIONS

The Data Manager interfaces with the Data Coordinator to oversee the use of Paducah PEMS and to ensure that data deliverables meet DOE's standards. The Data Coordinator enters information into Paducah PEMS related to the fixed-base laboratory data once the samples have been delivered and the Lab Coordinator has verified receipt of the samples. The fixed-base laboratory hard-copy data and the electronic data deliverables (EDDs) are loaded into Paducah PEMS by the Data Coordinator. The project team is responsible for data verification and assessment. The Data Coordinator is responsible for preparing the data for transfer from Paducah PEMS to Paducah OREIS. The Data Manager is responsible for transferring the data from the ready-to-load (RTL) files to the Paducah OREIS database.

The Lab Coordinator develops the statement of work (SOW) to be performed by an analytical laboratory in the form of a project-specific laboratory SOW. Analytical methods, laboratory quality control (QC) requirements, and deliverable requirements are specified in this SOW. In addition, the Lab Coordinator receives EDDs, performs contractual screenings, and distributes data packages. The Lab Coordinator interacts with the Data Manager to ensure that hard copy and electronic-deliverable formats are properly specified and interfaces with the contract laboratory to ensure that the requirements are understood and met.

D.4.1 DATA NEEDS AND SOURCES

Multiple data types will be generated and/or assessed during this project. These data types include field data, analytical data (including environmental data), and geographic information system (GIS) data.

D.4.2 HISTORICAL DATA

No historical data is available for this Sitewide Evaluation.
D.4.3 FIELD DATA

Field (screening) data for the project includes sample collection information and field screen measurement results.

D.4.4 ANALYTICAL DATA

Analytical (definitive) data for the project consists of laboratory analyses for environmental and waste characterization.

D.4.5 SURVEY DATA COVERAGE

Global Positioning System or standard survey techniques will be used to obtain civil survey data for this project. The Paducah GIS network is used for preparing maps used in data analysis and reporting of both historical and newly generated data. Coverage for use during the project is as follows:

- Stations (station coordinates are downloaded from Paducah OREIS)
- Facilities
- Plant roads
- Plant fences
- Streams
- Topographic contours

D.5 DATA FORMS AND LOGBOOKS

Field logbooks, site logbooks, chain-of-custody (COC) forms, data packages with associated quality assurance/QC (QA/QC) information, and field forms are maintained according to the requirements defined in procedure PAD-DOC-1009, *Records Management, Administrative Records, and Document Control.*¹ Duplicates of field records are maintained until the completion of the project. Logbooks and field documentation are copied periodically. The originals are forwarded to the Document Management Center (DMC) and copies are maintained in the field office.

D.5.1 FIELD FORMS

Sample information is environmental data describing the sampling event and consists of the following: station (or location), date collected, time collected, and other sampling conditions. This information is recorded in logbooks, COC forms, or sample labels and is entered directly into Paducah PEMS by the Data Coordinator. Sample identification numbers are identified in Paducah PEMS as assigned by the Data Coordinator.

Sample COC forms contain sample-specific information recorded during collection of the sample. Any deviations from the sampling plan are noted on the sample COC form or logbook. The Sampling Team

¹ It is understood that procedures are contractor specific.

Leader reviews each sample COC form for accuracy and completeness as soon as practical following sample collection.

Sample COC forms are generated from Paducah PEMS with the following information:

Information that is preprinted:	Information that is entered manually:
- Lab COC number	- Sample date and time
- Project name or number	- Sample comments (optional)
- Sample ID number	
- Sampling location	
- Sample type (e.g., REG = regular sample)	
- Sample matrix (e.g., SO = soil)	
- Analysis (e.g., PCB ¹)	
- Sample container (volume, type)	
¹ PCB = Polychlorinated Biphenyl	

D.5.2 LITHOLOGIC DESCRIPTION FORMS

Lithologic description forms will be used as necessary for this project.

D.5.3 WELL CONSTRUCTION DETAIL FORMS

These forms are not necessary for use during this project.

D.5.4 LOGBOOK SAMPLE COLLECTION SHEETS

Sample collection sheets are utilized as an aid for recording sampling information in the field. Logbooks are kept in accordance with PAD-ENM-2700, *Logbooks and Data Forms*.

D.6 DATA AND DATA RECORDS TRANSMITTALS

D.6.1 PADUCAH OREIS DATA TRANSMITTALS

Data to be stored in Paducah OREIS is submitted to the Data Manager prior to reporting. Official data reporting will be generated from data stored in Paducah OREIS.

D.6.2 DATA RECORDS TRANSMITTALS

Project personnel will make records transfers to the DMC.

D.7 DATA MANAGEMENT SYSTEMS

D.7.1 PADUCAH PEMS

Paducah PEMS is the data management system that supports the project's sampling and measurement collection activities and generates Paducah OREIS RTL files. The data management staff accesses Paducah PEMS throughout the life cycle of the project. The project uses Paducah PEMS to support the following functions:

- Initiate the project
- Plan for sampling
- Record sample collection and field measurements
- Record the dates of sample shipments to the laboratory (if applicable)
- Receive and process analytical results
- Verify data
- Access and analyze data
- Transfer project data (in RTL format) to Paducah OREIS

Paducah PEMS is used to generate sample COC forms; import laboratory-generated data; update field and laboratory data based on data verification; data validation. if applicable; data assessment; and transfer data to Paducah OREIS. Requirements for addressing the day-to-day operations of Paducah PEMS include backups, security, and interfacing with the sample management office.

The Information Technology group performs system backups daily. The security precautions and procedures implemented by the data management team are designed to minimize the vulnerability of the data to unauthorized access or corruption. Only members of the data management team have access to the project's Paducah PEMS and the hard-copy data files. Members of the data management team have installed password-protected screen savers.

D.7.2 PADUCAH OREIS

Paducah OREIS is the centralized, standardized, quality assured, and configuration-controlled data management system that is the long-term repository of environmental data (measurements and geographic) for Paducah environmental management projects. Paducah OREIS is comprised of hardware, commercial software, customized integration software, an environmental measurements database, a geographic database, and associated documentation. The project will use Paducah OREIS for the following functions:

- Access to existing data
- Spatial analysis
- Report generation
- Long-term storage of project data (as applicable)

D.7.3 PADUCAH ANALYTICAL PROJECT TRACKING SYSTEM

The Paducah Analytical Project Tracking System is the business management information system that manages analytical sample analyses for Paducah environmental projects. The Paducah Analytical Project Tracking System provides cradle-to-grave tracking of sampling and analysis activities. The Paducah Analytical Project Tracking System generates the SOW, tracks collection and receipt of samples by the laboratory, flags availability of the analytical results, and allows invoice reconciliation. The Paducah Analytical Project Tracking System interfaces with Paducah PEMS (output from the Paducah Analytical Project Tracking System is automatically transferred to Paducah PEMS).

D.8 DATA MANAGEMENT TASKS AND ROLES AND RESPONSIBILITIES

D.8.1 DATA MANAGEMENT TASKS

An explanation of the data review process is provided in the following sections.

D.8.1.1 Plan Data Collection

Other documents for this project provide additional information for the tasks of project environmental data collection, including sampling and analysis planning, quality assurance, waste management, and health and safety. Also, a laboratory SOW will be developed for this project.

D.8.1.2 Prepare for Sampling Activities

The data management tasks involved in sample preparation include identifying all sampling locations, preparing descriptions of these stations, identifying sample containers and preservation, developing field logbooks, preparation of sample kits and COCs, and coordinating sample delivery to the laboratory. The Lab Coordinator conducts activities associated with the analytical laboratories. Coordinates for sample locations will be obtained using a global positioning system.

D.8.1.3 Collect Field Data and Samples

Paducah PEMS is used to identify, track, and monitor each sample and associated data from the point of collection through final data reporting. Project documentation includes field logbooks, COC records, and hard-copy analytical results.

Data management requirements for field logbooks and field forms specify that (1) sampling documentation must be controlled from initial preparation to completion, (2) sampling documentation generated must be maintained in a project file, and (3) modifications to planned activities and deviations from procedures shall be recorded.

Before the start of sampling, the Lab Coordinator specifies the contents of sample kits, which includes sample containers provided by the laboratories, labels, preservatives, and COC records. Sample labels and COCs are completed according to PAD-ENM-2708, *Chain-of-Custody Forms, Field Sample Logs, Sample Labels, and Custody Seals.*

The project field team will collect samples for the project and will record pertinent sampling information on the COC and in the field logbook. The Data Coordinator enters the information from the COC forms into Paducah PEMS.

D.8.1.4 Submit Samples for Analysis

Before the start of field sampling, the Field Superintendent or designee coordinates the delivery of samples with the Lab Coordinator who, in turn, coordinates with the analytical laboratories. The Lab Coordinator presents a general sampling schedule to the analytical laboratories. The Lab Coordinator also coordinates the receipt of samples and containers with the laboratories. The Lab Coordinator ensures that hard-copy deliverables and EDDs from the laboratories contain the appropriate information and are in the correct format.

D.8.1.5 Process Field Measurement and Laboratory Analytical Data

Data packages and EDDs received from the laboratory are tracked, reviewed, and maintained in a secure environment. Paducah PEMS is used for tracking project-generated data. The following information is tracked, as applicable: sample delivery group number, date received, number of samples, sample analyses, receipt of EDD, and comments. The laboratory EDDs are checked as specified in PAD-ENM-5007, *Data Management Coordination*.

The field screen measurement data will be provided by the project team to the Data Manager for loading into Paducah PEMS. This data will be provided in a format specified by the Data Manager. Once this data has been loaded to Paducah PEMS, it will be compared to the original files submitted by the project to ensure that it was loaded correctly.

D.8.1.6 Laboratory Contractual Screening

Laboratory contractual screening is the process of evaluating a set of data against the requirements specified in the analytical SOW to ensure that all requested information is received. The contractual screening includes, but is not limited to, the analytes requested, total number of analyses, method used, EDDs, units, holding times, and reporting limits achieved. Contractual screening is performed for 100 percent of the data. The Lab Coordinator is primarily responsible for the contractual screening upon receipt of data from the analytical laboratory. During contractual screening, the analytical method requested on the laboratory statement of work is compared to the analytical method received from the laboratory to ensure that contract requirements were met.

D.8.1.7 Data Verification

Data verification is the process for comparing a data set against a set standard or contractual requirement. Verification is performed by the Data Coordinator electronically, manually, or by a combination of both. Verification is performed for 100 percent of data. Data verification includes contractual screening and criteria as specified in Appendix B, the Quality Assurance Project Plan. Data is flagged as necessary. Verification qualifiers are stored in Paducah PEMS and transferred with the data to Paducah OREIS.

D.8.1.8 Data Validation

Data validation is the process performed by a third-party, qualified individual. Third-party validation is defined as validation performed by persons independent from sampling, laboratory, and decision making for the program/project (i.e., not the program/project manager). Data validation evaluates the laboratory adherence to analytical-method requirements. Data validation is managed and coordinated with the data

management team. The Data Validator performs data validation according to approved procedures. Data validation is documented in a formal deliverable from the data validator. Validation qualifiers are input and stored in Paducah PEMS and transferred to Paducah OREIS.

A minimum of 10 percent of the total number of samples will be validated for this project. Data validation will apply only to the definitive data. Data packages chosen for data validation will be validated at 100 percent.

D.8.1.9 Data Assessment

Data assessment is the process for assuring that the type, quality, and quantity of data are appropriate for their intended use. It allows for the determination that a decision (or estimate) can be made with the desired level of confidence, given the quality of the data set. Data assessment follows data verification and data validation (if applicable) and must be performed at a rate of 100 percent to ensure data is useable. Per contractor procedure, data validation can be performed concurrently with data verification and data assessment. Data assessment is not finalized until data validation is complete, if applicable, and the data validation qualifiers have been evaluated. Data assessment is performed on 100 percent of the data set, even when data validation is not required.

The data assessment is conducted by the project team according to DOE Prime Contractor procedure, PAD-ENM-5003, *Quality Assured Data*. Assessment qualifiers are stored in Paducah PEMS and transferred with the data to Paducah OREIS. Any problems found during the review process are resolved and documented in the data assessment package.

D.8.1.10 Data Consolidation and Usage

The data consolidation process consists of the activities necessary to prepare the evaluated data for the users. The Data Coordinator prepares files of the assessed data from Paducah PEMS to Paducah OREIS for future use. The Data Manager is responsible for transferring the data to Paducah OREIS. Data used in reports distributed to external agencies is obtained from data in Paducah OREIS and has been through the data review process. All data reported has the approval of the Data Manager.

D.8.2 DATA MANAGEMENT ROLES AND RESPONSIBILITIES

The following project roles are defined, and the responsibilities are summarized for each data management task described in the previous subsection.

D.8.2.1 Project Manager

The Project Manager is responsible for the day-to-day operation of the project. The Project Manager ensures the requirements of policies and procedures are met. The project manager or designee assesses data in accordance with DOE Prime Contractor procedure, PAD-ENM-5003, *Quality Assured Data*. The Project Manager is responsible to flow down data management requirements to subcontractors as required.

D.8.2.2 Project Team

The project team consists of the technical staff and support staff (including the data management team) that conducts the various tasks required to successfully complete the project.

D.8.2.3 Data User

Data users are members of the project team who require access to project information to perform reviews, analyses, or ad hoc queries of the data. The data user determines project data usability by comparing the data against predefined acceptance criteria and assessing that the data are sufficient for the intended use.

D.8.2.4 Data Coordinator

The Data Coordinator enters the data into Paducah PEMS, including COC information, field data, data assessment and data validation qualifiers, and any pertinent sampling information. After receiving a notification that a fixed-base laboratory EDD is available to download, the Data Coordinator loads the EDD to Paducah PEMS, performs electronic verification of the data, and then compiles the data assessment package. The Data Coordinator also prepares data for transfer from Paducah PEMS to Paducah OREIS.

D.8.2.5 Document Control Center Manager

The DMC Manager is responsible for long-term storage of project records. The project team will interface with the DMC Manager and will transfer documents and records in accordance with DOE requirements.

D.8.2.6 QA Specialist

The QA Specialist is part of the project team and is responsible for reviewing project documentation to determine if the project team followed applicable procedures.

D.8.2.7 Data Manager

The Data Manager is responsible for long-term storage of project data and for transmitting data to external agencies according to the *Data and Documents Management and Quality Assurance Plan for Paducah Environmental Management and Enrichment Facilities*, DOE/OR/07-1595&D2, and the Paducah Data Management Policy. The Data Manager ensures compliance to procedures relating to data management with respect to the project and that the requirements of DOE Prime Contractor procedure, PAD-ENM-5003, *Quality Assured Data*, are followed.

D.8.2.8 Lab Coordinator

The Lab Coordinator is responsible for contracting any fixed-base laboratory utilized during the sampling activities. The Lab Coordinator also provides coordination for sample shipment to the laboratory, contractual screening of data packages, and transmittal of data packages to the Paducah DMC.

DOE/LX/07-0228&D1 Secondary Document

Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant Paducah, Kentucky

CLEARED FOR PUBLIC RELEASE

DOE/LX/07-0228&D1 Secondary Document

Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant Paducah, Kentucky

Date Issued—<u>December 2010</u> Deleted: March

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by	
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC	Deleted: Prepared by
managing the	PADUCAH REMEDIATION
Environmental Management Activities at the	SERVICES, ELC
Paducah Gaseous Diffusion Plant	Deleted: Remediation
under contract DE-AC30- <u>10CC40020</u>	Deleted: 06EW05001

CLEARED FOR PUBLIC RELEASE

20101214 Sitewite Evaluation Work Plan tlo Rev 1

|

PREFACE

This Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0228&D1, under the Soils Operable Unit (OU), was prepared to identify any unknown contaminated areas requiring further Comprehensive Environmental Response, Compensation, and Liability Act evaluation and to develop information usable when completing the Resource Conservation and Recovery Act EIs process for the Paducah Gaseous Diffusion Plant (PGDP). The Site Management Plan (DOE 2010a) defined the scope and provided key planning assumptions. This evaluation will include a focused radiological survey and visual walkover survey to cover U.S. Department of Energy (DOE)owned property outside PGDP and not currently a solid waste management unit (SWMU)/area of concern (AOC). Any radiological anomalies in the West Kentucky Wildlife Management Area (WKWMA) on property owned by WKWMA, identified in radiological flyover surveys, also will be evaluated under this work plan. Anomalies identified as soil and rubble areas will be further evaluated under this work plan. Any other areas identified requiring additional investigation will be evaluated to determine the appropriate OU for follow-up investigations. Collection of field and fixed-base laboratory data will enable DOE to increase confidence that SWMU/AOCs have been appropriately identified. Information will be documented in a Site Evaluation Report, which will include SWMU/AOC Assessment Reports (SARs) for newly identified areas meeting the criteria to be managed under the Federal Facility Agreement (EPA 1998).

Deleted: 2009a

Deleted: screening

Deleted: definitive

iii

CONTENTS

PREFACE	iii
FIGURES	vii
TABLE	vii
ACRONYMS	ix
EXECUTIVE SUMMARY	ES-1
 INTRODUCTION	1 1 2 2 4
2. SITE BACKGROUND AND PHYSICAL SETTING	5
3. INITIAL EVALUATION	9
 4. TASKS	13 13 13 13 15 15
 WORK PLAN RATIONALE	
6. SCHEDULE	
7. REFERENCES	
APPENDIX A: SAMPLING AND ANALYSIS PLAN	
APPENDIX B: QUALITY ASSURANCE PROJECT PLAN	B-1
APPENDIX C: ENVIRONMENT, SAFETY, AND HEALTH PLAN	C-1
APPENDIX D: DATA MANAGEMENT IMPLEMENTATION PLAN	D-1

v

FIGURES

1.	Map of PGDP and Surrounding Area	3
2.	Existing SWMUs/AOCs outside PGDP	7
3.	Conceptual Site Model	10
4.	PGDP Radiological Aerial Survey Area 2009.	.14
5.	Sitewide Scoping Survey Decision Flowchart	18
6.	Sampling Approach for Soil Areas	19
7.	Sampling Approach for Rubble Areas	22
8.	Sitewide Evaluation Schedule	26

Deleted: S

TABLE

vii

ACRONYMS

AOC	area of concern		
ARARs	applicable or relevant and appropriate requirements		
bgs	below ground surface		
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act		
CFR	Code of Federal Regulations		
COE	U. S. Army Corps of Engineers		
D&D	decontamination and decommissioning		
DOE	U.S. Department of Energy		
EI	Environmental Indicator		
EM	Environmental Management		
EPA	U.S. Environmental Protection Agency		
FFA	Federal Facility Agreement		
FS	Feasibility Study		
GPS	global positioning system		
KDFWR	Kentucky Department of Fish and Wildlife Resources		
MARSSIM	Multi-Agency Radiation Survey & Site Investigation Manual		
NAL	no action level		
OU	operable unit		
PCB	polychlorinated biphenyl		
PGDP	Paducah Gaseous Diffusion Plant		
QAPP	Quality Assurance Project Plan	Deleted: PRS	Paducah Remediation
RCRA	Resource Conservation and Recovery Act	Services, LLC¶]
RFI	RCRA Facility Investigation		
RI	remedial investigation		
SAP	sampling and analysis plan		
SAR	SWMU assessment report		
SER	site evaluation report		
SMP	Site Management Plan		
SVOC	semivolatile organic compounds		
SWMU	e		
TNT	solid waste management unit		
11N1	solid waste management unit trinitrotoluene		
USEC	solid waste management unit trinitrotoluene United States Enrichment Corporation		
USEC VOC	solid waste management unit trinitrotoluene United States Enrichment Corporation volatile organic compounds		
USEC VOC WAG	solid waste management unit trinitrotoluene United States Enrichment Corporation volatile organic compounds waste area group	Deleted: VSP	Visual Sampling Plan¶
USEC VOC WAG WKWMA	solid waste management unit trinitrotoluene United States Enrichment Corporation volatile organic compounds waste area group West Kentucky Wildlife Management Area	Deleted: VSP	Visual Sampling Plan¶

EXECUTIVE SUMMARY

PROBLEM STATEMENT

This Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0228&D1, documenting work to be performed under the Soils Operable Unit (OU), was prepared to identify unknown contaminated areas requiring further Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation and to develop information usable when completing the Resource Conservation and Recovery Act (RCRA) Environmental Indicators (EIs) process for the Paducah Gaseous Diffusion Plant (PGDP).

BACKGROUND

This evaluation includes <u>scoping surveys of the</u> U.S. Department of Energy (DOE)-owned property outside PGDP and West Kentucky Wildlife Management Area (WKWMA)-owned property around PGDP. Contamination sources may be present within the WKWMA that are not of DOE origin, for example the former Kentucky Ordnance Works occupies an area of the WKWMA southwest of PGDP.

Several <u>evaluations/</u>investigations have been performed in the DOE-owned areas outside PGDP to identify and appropriately manage material originating from PGDP. Ongoing efforts are being performed under the Soils OU, Surface Water OU, and Burial Grounds OU. Under the Soils OU and of relevance to this sitewide evaluation are work efforts that have been performed in support of soils and rubble area <u>evaluations</u>. Results of historical studies of rubble areas at PGDP and surrounding areas are presented in four reports (IT Corp. 1989; PGDP 1992; CH2M HILL 1992; DOE 1995) and as part of a soil and rubble <u>evaluation</u>. The Waste Area Group (WAG) 17 RCRA Facility Investigation (RFI) (DOE 1995) was completed between October and December 1995 and included investigation of 37 areas of concern (AOCs). The findings of the WAG 17 RCRA Facility Investigation are provided in the Remedial Investigation (RI) report (DOE 1997a) and in the WAG 17 Record of Decision (DOE 1997b).

On November 2, 2006, Paducah Remediation Services, LLC, radiological control technicians and representatives from the Kentucky Division of Waste Management observed and surveyed a series of soil and rubble areas on the DOE Reservation. As a result of a comprehensive survey conducted in 2007, 122 soil and rubble areas were identified for possible inclusion as solid waste management units/AOCs (DOE 2007a). These existing soil and rubble areas were evaluated under the Soil Piles Sampling and Analysis Plan (SAP) (DOE 2007b): Addendum 1-A (DOE 2007c), Addendum 1-B (DOE 2008a), Addendum 2 (DOE 2008b); and the SAP for the Rubble Areas (DOE 2008c). Work has been completed and Site Evaluation Reports have been issued for Addendum 1-A Soil Piles (Soil Pile I) (DOE 2008d); Addendum 1-B Soil Piles (DOE 2009a); Addendum 2 Soil Piles (DOE 2009b); and Rubble Areas (DOE 2009c). In addition, a Soils OU RI/Feasibility Study (RI/FS) Work Plan was prepared and implemented during 2010 (DOE 2010b).

The scope of work and key planning assumptions for th	nis evaluation are provided in the Site Management
Plan (SMP) (DOE <u>2010a</u>).	

-{	Deleted: investigations
-{	Deleted: n
1	Deleted: ongoing
1	Deleted: investigation

Deleted: have or currently are being

Deleted: 2009b	
Deleted: 2009c	
Deleted: 2009d	
Deleted: is being	
Deleted: prepared	
Deleted: 2009a	

ES-1

PROJECT OBJECTIVES

The objective is to identify unknown contaminated areas originating from PGDP requiring further CERCLA evaluation and to develop information that is usable when completing the RCRA EI process for PGDP.

CONCEPTUAL SITE MODEL

Known recreational activities that take place in the WKWMA include hunting and field trials (both horses and dogs). Other recreational uses, such as hiking, also are possible; therefore, recreational user exposure to surface soils is the primary exposure pathway. The teen recreational user's screening concentration is lowest when compared to the other users for the same target risk and hazard level; therefore, the teen recreational user is considered in the Conceptual Site Model for users of the WKWMA (DOE 2001). The recreational user could be exposed to contaminants through contact with surface soils through the following exposure routes:

- External exposure from ionizing radiation (the most likely exposure route)
- Dermal contact
- Incidental ingestion
- Inhalation

Industrial workers might be expected to work on DOE-owned property outside PGDP; however, this would not be on a regular basis and their exposure would be limited to performance of tasks associated with site evaluation, maintenance, and remedial action.

CONTAMINANTS

Information from soils evaluations of previous soil piles and rubble areas identified the following types of contaminants as potentially present in site media:

- Polychlorinated biphenyls
- Radionuclides
- Metals

EVALUATION STRATEGY

The SMP (DOE 2010a) provides key planning assumptions for this evaluation including scoping surveys to identify anomalies. On DOE property outside PGDP, identification of anomalies will be by radiological and visual walkover surveys, with potential anomalies identified by radiological readings at greater than twice instrument background, a release is visually identified, or an anomaly is identified by process knowledge. Radiological and visual walkover surveys currently are being performed by DOE under DOE authority to identify anomalies on DOE-owned property outside PGDP. Anomalies on property owned by WKWMA will be identified using radiological flyover surveys, with identified radiological anomalies being subject to visual and radiological walkover surveys. Radiological flyover surveys were performed under DOE authority in October through November 2009.

Anomalies, once identified, will be categorized according to physical attributes as follows:

Deleted: -----Page Break-----

Deleted: 2009a

ES-2

- Soil areas–which are defined as soil piles and disturbed soil areas. Rubble areas–which are defined as areas of varied materials. ٠
- •

Confirmed anomalies (identified and categorized) will be evaluated further under this work plan.

ES-3

1. INTRODUCTION

1.1 SCOPE OF WORK

This Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0228&D1, documenting work to be performed under the Soils Operable Unit (OU), was prepared to identify unknown contaminated areas originating from the Paducah Gaseous Diffusion Plant (PGDP) requiring further Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation and to develop information usable when completing the Resource Conservation and Recovery Act (RCRA) Environmental Indicators (EIs) process for PGDP. Information will be documented in a site evaluation report (SER). Solid Waste Management Unit (SWMU) Assessment Reports (SARs) will be attached to the SER for any new SWMUs/areas of concern (AOCs) identified during this evaluation. SWMU and AOC are defined in the Federal Facility Agreement (FFA) (EPA 1998) as follows:

"SWMU – means any discernible unit at which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of solid or Hazardous Waste. Such units include any area at a facility at which routine and systematic releases of hazardous wastes or hazardous constituents has occurred."

"AOC – shall include any area having a probably or known release of a hazardous waste, hazardous constituent or hazardous substance which is not from a solid waste management unit and which poses a current or potential threat to human health or the environment. Such areas of concern may require investigations and remedial action...."

According to the Site Management Plan (SMP) (DOE <u>2010a</u>), the "scope of the project includes a survey of the U.S. Department of Energy (DOE)-owned property outside the limited/controlled area. A sitewide evaluation will be performed to identify any unknown contaminated areas requiring further CERCLA evaluation and to develop information usable when completing the RCRA EIs process." Key DOE Planning Assumptions from the Life Cycle Baseline provided in the SMP are as follows:

- (1) A flyover radiological survey will be conducted for a 25 square miles area.
- (2) A visual walkover survey will cover DOE-owned property that is outside PGDP and not currently a SWMU/AOC (approximately 2,676 acres). DOE property licensed to Western Kentucky Wildlife Management Area (WKWMA) and areas owned by WKWMA identified as anomalies in the flyover also will be surveyed.
- (3) Visual observation also will be used to identify piles, spills, buried materials, and other anomalies.
- (4) A radiological walkover survey using Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) approach will cover, at <u>a minimum</u>, 10% of the property identified above (approximately 240 acres). All anomalies identified will be scanned regardless of what percentage of land they cover.
- (5) All anomalies will be documented on a map and in a database including location, description, photos, and data.
- (6) Analytical sampling will be conducted if the radiological scan indicates contamination (i.e., twice <u>instrument</u> background) or a release is visually identified.

1

Deleted: 2009a

Deleted: least

- (7) Information will be documented in a SER. <u>SARs</u> will be attached to the <u>SER</u> for any new SWMUs/AOCs identified during this evaluation.
- (8) Any newly identified SWMUs/AOCs will be addressed in the Soils OU Remedial Action (Phase I_Pre Gaseous Diffusion Plant Shutdown). A separate removal action will not be performed.

Soil samples (from soil areas) and wipe samples (from stained rubble areas) from confirmed anomalies that are determined to be the responsibility of DOE will be analyzed by field and fixed-base analytical methods as discussed in Sections 5, Appendix A, and Appendix B of this work plan. This work plan was prepared by the DOE prime contractor for environmental remediation at PGDP. Resulting fixed-base laboratory analytical data will be of sufficient quality so that it can be used in subsequent CERCLA documents to evaluate potential human health risks and to support decisions regarding any need for response actions. Figure 1 illustrates PGDP and surrounding area.

1.2 OBJECTIVES

The objective is to identify unknown contaminated areas originating from PGDP requiring further CERCLA evaluation and to develop information usable when completing the RCRA EI process for PGDP. Specifically the evaluation was designed to obtain data to support the following objectives:

- Identify anomalies (based on <u>scoping</u> surveys) on DOE-owned and WKWMA-owned property and confirm DOE origin. <u>DOE origin is determined on DOE-owned property</u> by radiological and visual walkover surveys where radiological readings are greater than twice <u>instrument</u> background or where a release is visually identified or where an anomaly is identified by process knowledge. <u>DOE origin is determined on WKWMA-owned property</u> by a radiological signature from the aerial radiological survey;
- For anomalies confirmed to be of DOE origin, establish the presence or absence of DOE-related contaminants [metals, polychlorinated biphenyls (PCBs), and radionuclides];
- <u>Collect data to perform data screening to determine if such anomalies may pose risks to human health</u> <u>under current use scenarios and to support future decisions</u>; and
- Determine appropriate path forward per the FFA (EPA 1998).

1.3 GUIDANCE

The following guidance was used as a basis for preparing this work plan:

- U.S. Environmental Protection Agency (EPA), Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (EPA 1988);
- EPA Guidance on Systematic Planning Using the Data Quality Objectives Process (EPA 2006);

Deleted: WMU Assessment Reports

Deleted:

Deleted: screening
Deleted: O
Deleted:
Deleted: , this is determined
Deleted: O
Deleted:
Deleted: , DOE origin is determined

Deleted: P

Figure 1. Map of PGDP and Surrounding Area

- EPA Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd Edition (EPA 2004);
- EPA Uniform Federal Policy for Quality Assurance Project Plans (EPA 2005a; EPA 2005b; EPA 2005c; EPA 2005d);
- EPA Preparation of Soil Sampling Protocols: Sampling Techniques and Strategies (EPA 1992); and
- MARSSIM Manual (DOE 2000).

The Environmental Management (EM) Program at PGDP is conducted in compliance with several laws and regulations. In general, these laws include RCRA in 1976; CERCLA; the Clean Water Act of 1972; the Toxic Substances Control Act of 1976; the Endangered Species Act of 1973; and Commonwealth of Kentucky statutes and regulations. DOE may perform maintenance actions under its authority provided in the Atomic Energy Act. Although all of these regulations impact the PGDP EM Program, this work plan is designed to support CERCLA decisions concerning unknown contaminated areas.

1.4 WORK PLAN ORGANIZATION

Section 2 includes information on site background and physical setting. Section 3 is an initial evaluation of the site including the site conceptual model. Section 4 provides a brief description of tasks to be performed, Section 5 provides the work plan rationale, and Section 6 provides a schedule.

Appendix A of this work plan contains the Sampling and Analysis Plan (SAP). Various methods will be used to assist in identifying specific anomalies to be evaluated further; therefore the specific types and numbers of anomalies, sample locations and numbers, and sample designations will documented in work package documents. Appendix B contains the Quality Assurance Project Plan (QAPP); Appendix C contains the Environment, Safety, and Health Plan; and Appendix D contains the Data Management Implementation Plan.

4

Deleted: and
Deleted: .

2. SITE BACKGROUND AND PHYSICAL SETTING

PGDP, located within the Jackson Purchase region of western Kentucky, is an active uranium enrichment facility owned by DOE. PGDP was owned and managed first by the Atomic Energy Commission and the Energy Research and Development Administration, DOE's predecessors; DOE then managed PGDP until 1993. On July 1, 1993, the United States Enrichment Corporation (USEC) assumed management and operation of the PGDP enrichment facility under a lease agreement with DOE. DOE retains ownership of the enrichment complex. The DOE Portsmouth/Paducah Project Office is responsible for EM activities associated with PGDP (CERCLIS# KY8-890-008-982) and serves as the lead agency for remedial actions at PGDP. EPA Region 4 and Kentucky Department for Environmental Protection serve as the regulatory oversight agencies for the facility.

Of the 1,386 ha (3,423 acres) owned by DOE, approximately 303 ha (749 acres) of this parcel are inside PGDP. Most of the facilities used to support enrichment operations are located in this area. Outside PGDP, several support facilities for both the DOE and USEC missions can be found. The support facilities include landfills (both active and closed), modular office complexes, a water treatment facility, groundwater remediation systems, decontamination facilities, storage areas, a storm water retention basin, and liquid effluent treatment facilities. Of the remaining DOE land, approximately 842 ha (2,081 acres) is licensed to the Commonwealth of Kentucky Department of Fish and Wildlife Resources (KDFWR) and serves as a portion of the WKWMA. The licensed portion of the WKWMA is used by the public for hunting and horse and dog field trials. KDFWR staff work in the licensed area performing wildlife management activities.

The topography of the DOE Reservation is level to slightly rolling. It is rural and predominantly open grasslands with scattered wooded areas of mature hardwoods and brush. Approximately 60% of the total area outside PGDP but on the DOE Reservation is grasslands; much of this non-wooded area contains electrical power lines.

Two creeks—Bayou Creek and Little Bayou Creek—pass through the DOE Reservation, draining north into the Ohio River. Multiple permitted drainage outfalls and ditches from PGDP discharge to these two creeks. There are approximately 11,000 m (36,100 ft) of combined drainage ditches and creeks that potentially have been impacted by PGDP discharges. Areas in and near outfall ditches were surveyed previously and are posted appropriately.

Contamination sources may be present within the WKWMA that are not of DOE origin; for example, the former Kentucky Ordnance Works occupies an area of the WKWMA southwest of PGDP. Substantial work has been performed in areas outside PGDP to identify, and appropriately manage, material originating from PGDP. Ongoing efforts are being performed under the Soils OU, Surface Water OU and Burial Grounds OU. Under the Soils OU and of relevance to this sitewide evaluation are the work efforts that have been performed in support of soils and rubble area evaluations. Results of historical studies of rubble areas at PGDP and surrounding areas are presented in four reports (IT Corp. 1989; PGDP 1992; CH2M HILL 1992; DOE 1995) and as part of an ongoing soil and rubble evaluation (see below). The Waste Area Group (WAG) 17 RCRA Facility Investigation (RFI) (DOE 1995) was completed between October and December 1995 and included investigation of 37 AOCs. The findings of the WAG 17 RFI are provided in the Remedial Investigation (RI) report (DOE 1997a) and in the WAG 17 Record of Decision (DOE 1997b). Radionuclides and polychlorinated biphenyls (PCBs) are the primary potential contaminants of concern for pre-GDP shutdown. The Soils OU focuses on accessible plant surface soils (ground surface to 10 ft bgs and 16 ft bgs in the vicinity of pipelines). A series of Soils OU actions have been completed to date and a removal action for soils at SWMUs 19 (C-410-B HF Neutralization Lagoon), and 181 (C-218 Outdoor Firing Range) is being implemented as a non-time-critical removal.

Deleted: investigations

Deleted: investigation

On November 2, 2006, Paducah Remediation Services, LLC radiological control technicians and Kentucky Division of Waste Management personnel observed and surveyed a series of soil piles on the DOE Reservation. As a result of a comprehensive survey conducted by DOE in 2007, additional soil and rubble areas were identified in a letter for possible inclusion as SWMUs/AOCs (DOE 2007a). This letter, dated February 17, noted that "a total of 150 areas, consisting of soil and rubble have been identified to date." Of those 150 areas, 28 areas previously have been identified as SWMUs or AOCs, and 13 areas had sufficient data to make a SWMU or AOC determination, leaving 109 areas (85 soil areas and 24 rubble areas) to be evaluated. All of the soil areas were on DOE property whereas only 6 of the 24 rubble areas were on DOE property. The letter contained a planning schedule for characterization and notification for the soil and rubble areas under the Soils OU. These areas and two additional soil piles (AOCs 492 and 541) currently are being evaluated under the Soil Piles SAP (DOE 2007b) and associated addenda, Addendum 1-A (DOE 2007c), Addendum 1-B (DOE 2008a), and Addendum 2 (DOE 2008c). In order to facilitate the process, these soil and rubble areas were prioritized as follows:

- Little Bayou Creek Soil Pile I on the east side of the plant between McCaw Road and Outfall 002 Ditch Addendum 1-A.
- Little Bayou Creek including AOC 492 and 541 north and east of the plant including the North-South Diversion Ditch, but excluding Soil Pile I–Addendum 1-B.
- Bayou Creek and unnamed tributary west side of the plant Addendum 2.
- Rubble areas.

Existing SWMUs/AOCs (i.e., identified to date and covered under other work elements) outside PGDP are shown in Figure 2. Work has been completed and SERs have been issued for Addendum 1-A Soil Piles (Soil Pile I) (DOE 2008d): Addendum 1-B Soil Piles (DOE 2009a); Addendum 2 Soil Piles (DOE 2009b); and Rubble Areas (DOE 2009c). In addition, a Soils OU RI/Feasibility Study (RI/FS) Work Plan is being prepared (DOE 2010b).

In order to expedite the current sitewide evaluation, DOE is proceeding with a radiological and visual walkover survey (planning assumptions 2 through 5 in the 2009 SMP, as noted in Section 1) of the DOE-owned property outside PGDP for the purpose of identifying potential anomalies (DOE 2008e). DOE is performing this task under its own authority. Planned surveys are complete and <u>633</u> anomalies were visually identified. <u>All anomalies have been radiologically surveyed and all are less than twice instrument</u> background.

• -{	Deleted: 2009b
{	Deleted: 2009c
- {	Deleted: 2009d

1	Deleted: not yet
1	Deleted: because of access issues dues to the January 2009 ice storm; however, to date,
Ì	Deleted: 145
Ì	Deleted: Of these, 100

Figure 2. Existing SWMUs/AOCs outside PGDP

3. INITIAL EVALUATION

Based on previous experience (DOE 2007a), the types of anomalies expected to be encountered likely will consist of bare soil areas (possibly indicative of spills), soil piles, and rubble areas. Existing soil piles and rubble areas being investigated under other Soils OU SAPs are generally located adjacent to PGDP outfalls, Little Bayou and Bayou Creeks, along the unnamed tributary, and the North-South Diversion Ditch. Unknown contaminated areas might be expected to be found near surface water drainages, near the edges of woods, and near roadways. Proximity to surface water drainage areas results in several potential secondary exposure routes that potentially could impact human health and the environment. The majority of the secondary routes assume that soils either have been released to adjacent waterways or moved through the food chain. Precipitation could result in contaminant migration; however, PGDP historical monitoring data over the past 5-10 years indicate little migration is occurring because contaminant levels in surrounding creeks are stable or decreasing.

Contaminants found during sampling of soil piles under the Soil Piles <u>Evaluation</u> (DOE 2008d; DOE 2009a; DOE 2009b) do not bioaccumulate in plants to a great degree. As a result, plant uptake and corresponding accumulation in animal tissue is unlikely, but soil ingestion as part of normal feeding activities is likely a complete pathway. Ecological receptors also may be exposed to on-site contaminants; however, the primary focus of this evaluation effort is to determine risks to human health. Evaluation of ecological risks will be completed as part of a subsequent action under the PGDP FFA (EPA 1998). Fixed-base laboratory analytical data from samples collected as part of this site evaluation shall be of sufficient quality to be used for risk assessment purposes.

Sampling is necessary to gather data to allow DOE to assess potential risks to human health posed by confirmed anomalies. Sampling also provides data to assist in future determination of nature and extent of any contamination. Contaminants attributable to DOE activities that might be present include metals, PCBs, and radionuclides. It should be noted that metals and PCBs may be present from other sources.

Based on experience gained through execution of the SAP for the Soil Piles Evaluation (DOE 2007b) and its addenda [Addendum 1-A (DOE 2007c), Addendum 1-B (DOE 2008a), and Addendum 2 (DOE 2008b)] and the SAP for the Rubble Areas (DOE 2008c), as reported in the SERs [Addendum 1-A Soil Piles (Soil Pile I) (DOE 2008d), Addendum 1-B Soil Piles (DOE 2009a), Addendum 2 Soil Piles (DOE 2009b)], and Rubble Areas (DOE 2009c), volatile organic compounds (VOCs) are not expected to be encountered and semivolatile organic compounds (SVOC) are ubiquitous; therefore, the presence of these compounds will not be evaluated. Consideration will be given to adding groups of compounds to the analysis requirements, such as VOCs, SVOCs, and asbestos, if visual walkover survey observations, research, and/or process knowledge of identified anomalies indicate that it is warranted.

The following information describes the Conceptual Site Model for the unknown contaminated areas (see Figure 3).

Recreational activities known to take place in the evaluation area include hunting and field trials (horses and dogs). Other recreational uses, such as hiking, also are possible; therefore, recreational user exposure to surface soils is the primary exposure pathway. The recreational user could be exposed to contaminants by contact with surface soils through the following exposure routes:

Deleted: Investigation
 Deleted: 2009b
 Deleted: 2009c

Figure 3. Conceptual Site Model

- External exposure (ionizing radiation)
- Dermal contact
- Incidental ingestion
- Inhalation

Industrial workers might be expected to work on DOE-owned property outside PGDP; however, this would not be on a regular basis and their exposure would be limited to performance of tasks associated with site evaluation, maintenance, and remedial action.
4. TASKS

The following presents tasks necessary to complete this sitewide evaluation.

4.1 SCOPING SURVEYS

Scoping surveys, as described in Section A.3, will be performed to identify anomalies. On DOE property outside PGDP, identification of anomalies will be by radiological and visual walkover surveys, with potential anomalies identified by radiological readings at greater than twice <u>instrument</u> background or a release is visually identified or an anomaly is identified by process knowledge. Radiological and visual walkover surveys currently are being performed by DOE under DOE authority to identify anomalies on DOE-owned property outside PGDP. Anomalies on property owned by WKWMA will be identified using radiological flyover surveys. <u>(see Figure 4)</u>, with identified radiological anomalies being subject to visual and radiological walkover surveys. Radiological flyover surveys were performed under DOE authority in October through November 2009. Aerial photographic surveys were performed in <u>May</u>, <u>2009</u> for the purpose of providing an updated base map. Information on anomalies gathered from the radiological and visual walkover surveys will include the following descriptive data: location [using global positioning system (GPS)], areal footprint, height of pile or depth of depression, and physical description.

Once anomalies are identified, they will be categorized based on physical attributes and then evaluated by performing sampling and data screening activities that are appropriate to the category, and as described in Section 5.

4.2 FIELD SAMPLING ACTIVITIES

Activities included in this task are as follows:

- Subcontractor procurement
- Planning
- Mobilization
- Anomaly description and documentation
- Site preparation activities (such as clearing and grubbing)
- Civil survey (using GPS) and sample location staking/marking
- Media sampling (for field laboratory testing and fixed-base laboratory testing)
- · Field laboratory analytical testing
- Sample shipping
- Equipment decontamination
- · Investigation derived waste management and disposal
- Task management

If archeological features/artifacts are discovered during clearing, grubbing, and soil sampling, DOE will proceed in accordance with the approved Cultural Resources Management Plan.

Deleted: will be

Figure 4. PGDP Radiological Aerial Survey Area 2009

4.3 SAMPLE ANALYSIS/VALIDATION AND DATA SCREENING

This task will include analysis of media samples at the fixed-base laboratory, sample validation as described in Appendix B, and data screening. Field and fixed-base analytical results will be used to meet the sampling objectives. Data screening will be performed with the principal objective of informing risk managers in support of decision making for the site. Key considerations include the following:

- Determine whether all or portions of the study area may be eliminated from concern.
- Identify where risk characterization suggest actions may be needed.
- Determine whether additional data gathering and/or risk assessments are warranted.

The data screening provides information to the stakeholders based on the Commonwealth of Kentucky and nationally accepted risk assessment methods. These objectives are consistent with the goals, objectives, and requirements identified in the Paducah Risk Methods Document (DOE 2001). The scope of the screening is to assess risks to human receptors who may be exposed to chemicals or radionuclides through normal recreational use of the site. This data screening does not examine ecological risks.

To determine the presence or absence of contaminants in each anomaly, contaminant concentrations from field and fixed-base laboratory analyses will be compared to the values for background and teen recreator no action levels (NALs) provided in the PGDP Risk Methods Document (DOE 2001), and as shown in Table 1. Nondetect results will not be considered present above background or NALs even if the detection limit for the chemical is greater than the background or NAL value. Detection limits that are higher than background and/or NALs will be addressed as an uncertainty in the SER.

Following data screening, those constituents that (1) exceed PGDP background concentrations or (2) exhibited concentrations in excess of the teen recreator NALs will be considered as contaminants of potential concern for quantitative risk assessment in future investigative activities of the anomaly. Section 40 *CFR* § 300.420 sets the criteria <u>if</u> a remedial action is warranted.

4.4 SITE EVALUATION REPORT

After project data has been validated and fully evaluated, a SER [consistent with Section IX of the FFA (EPA 1998)] will be prepared. This SER, which is a combined removal/remediation site evaluation and <u>SAR</u>, will document the findings as a result of implementation of this work plan will follow the outline in Appendix D of the FFA (EPA 1998) and will include the following:

- A description of the project scope and objectives with regulatory overview and project background;
- Physical description of the project area including potential sources of contamination (if applicable);
- Description of field and analytical methods;
- Quality Assurance/Quality Control Report;
- Discussion and results, including the conceptual site model and distribution of contaminants (if present);
- Results of data screening;

Deleted: S

Deleted: is

Deleted: SWMU assessment report

• Recommendations; and

• S<u>AR</u> (if applicable).

Table 1. Data Screening Criteria¹

Analyte	Child Resident	Child Resident	Teen	Teen	PGDP	PGDP	
	No Action Level	Action Level	<u>Recreational</u>	<u>Recreational</u>	Surface	Subsurface	
	(mg/kg or pC1/g) ²	$\frac{(mg/kg \text{ or})^1}{nCi/a}$	User No Action Level	<u>User</u>	<u>Background</u>	Background	
		<u>pci/g)</u>	$\frac{100 \text{ Action Level}}{(mg/kg \text{ or } nCi/g)^1}$	$(mg/kg \text{ or } nCi/g)^1$	$\frac{(\text{mg/kg or})^2}{\text{nCi/g}^2}$	$\frac{(\text{mg/kg or})^2}{n\text{Ci/g}^2}$	
Aluminum	732	100.000	<u>3 010</u>	100 000	13,000	12 000	
Antimony	0.0635	46.9	0.242	344	0.21	0.21	
Arsenic	0.132	35	0.346	314	12	79	
Barium	37	12.500	148	100.000	200	170	
Bervllium	0.16	158	0.606	884	0.67	0.69	
Cadmium	2.64	11.5	14.7	45.3	0.21	0.21	
Calcium	N/A	N/A	N/A	N/A	200,000	6,100	
Chromium	60.5	71.900	227	100.000	16	43	
Cobalt	209	13,300	1,390	100,000	14	13	
Copper	68.1	7,900	331	100,000	19	25	
Iron	314	60,500	1,350	100,000	28,000	28,000	
Lead	50	400	50	400	36	23	
Magnesium	N/A	N/A	N/A	N/A	7,700	2,100	
Manganese	<u>7.46</u>	<u>3,700</u>	<u>29</u>	<u>39,100</u>	1,500	<u>820</u>	
Mercury	0.158	100,000	0.634	<u>797</u>	0.2	0.13	
<u>Molybdenum</u>	<u>10.9</u>	<u>1,080</u>	<u>56.4</u>	<u>41,700</u>	<u>N/A</u>	<u>N/A</u>	
<u>Nickel</u>	<u>34</u>	<u>4,240</u>	<u>161</u>	<u>100,000</u>	<u>21</u>	<u>22</u>	
Selenium	<u>12.1</u>	<u>1,090</u>	<u>65</u>	<u>44,700</u>	<u>0.8</u>	<u>0.7</u>	
Silver	<u>6.12</u>	<u>1,030</u>	<u>27</u>	<u>27,100</u>	<u>2.3</u>	<u>2.7</u>	
<u>Sodium</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	<u>320</u>	<u>340</u>	
<u>Thallium</u>	<u>0.107</u>	<u>16.6</u>	<u>0.479</u>	<u>465</u>	<u>0.21</u>	<u>0.34</u>	
<u>Uranium</u>	<u>2.16</u>	<u>133</u>	<u>14.7</u>	<u>6,830</u>	<u>4.9</u>	<u>4.6</u>	
<u>Vanadium</u>	<u>0.562</u>	<u>554</u>	<u>2.12</u>	<u>3,090</u>	<u>38</u>	<u>37</u>	
Zinc	<u>401</u>	<u>62,200</u>	<u>1,800</u>	<u>100,000</u>	<u>65</u>	<u>60</u>	
Aroclor-1016	<u>0.0574</u>	<u>7.08</u>	<u>0.127</u>	<u>28.3</u>	<u>N/A</u>	<u>N/A</u>	
Aroclor-1221	<u>0.0574</u>	<u>10.5</u>	<u>0.127</u>	<u>28.3</u>	<u>N/A</u>	<u>N/A</u>	
Aroclor-1232	<u>0.0574</u>	<u>10.5</u>	<u>0.127</u>	<u>28.3</u>	<u>N/A</u>	<u>N/A</u>	
Aroclor-1242	<u>0.0574</u>	<u>10.5</u>	<u>0.127</u>	<u>28.3</u>	<u>N/A</u>	<u>N/A</u>	
Aroclor-1248	<u>0.0574</u>	<u>10.5</u>	0.127	<u>28.3</u>	<u>N/A</u>	<u>N/A</u>	
Aroclor-1254	<u>0.0388</u>	<u>2.02</u>	0.127	<u>13.1</u>	<u>N/A</u>	<u>N/A</u>	
Aroclor-1260	0.0574	<u>10.5</u>	0.127	<u>28.3</u>	<u>N/A</u>	<u>N/A</u>	
Total PCBs	0.0574	<u>10.5</u>	0.127	<u>28.3</u>	<u>N/A</u>	<u>N/A</u>	
Americium-241	0.836	83.6	<u>11.6</u>	<u>1,160</u>	<u>N/A</u>	<u>N/A</u>	
Cesium-137 ³	0.0128	1.28	0.178	17.8	0.49	0.28	
Neptunium-237	0.0405	4.05	0.565	<u>56.5</u>	0.1	<u>N/A</u>	
Plutonium-238	2.27	227	31	3,100	0.073	<u>N/A</u>	
Plutonium-239/240	2.22	222	30.3	3,030	0.025	<u>N/A</u>	
Technetium-99	<u>67.4</u>	<u>6,740</u>	926	92,600	2.5	2.8	
<u>1 norium-228</u>	0.00418	0.418	0.0584	<u>3.84</u>	1.6	<u>1.6</u>	
<u>1 norium-230</u> Thorium 222	2.85	285	<u>39</u> 25.7	<u>3,900</u> 2,570	1.5	<u>1.4</u>	
<u>I norium-232</u>	2.01	201	<u> </u>	<u>3,370</u>	1.2	<u> </u>	
Uranium 225 ³	<u>3.81</u>	<u>5 01</u>	0.826	<u>3,220</u>	0.06		
Uranium 228 ³	0.0591	<u>3.91</u> 26.1	<u>0.820</u> 2.64	<u>82.0</u> 264	$\frac{12(0.4)^4}{12(0.4)^4}$	$\frac{12(0.4)^4}{12(0.4)^4}$	
\bigcup a multiple or not available or not ar	U.201 policable	<u>20.1</u>	<u>3.04</u>	<u>304</u>	1.2 (0.4)	<u>1.2 (0.4)</u>	
Values in table are current values and will be updated prior to completion of the Sitewide Evaluation Report_ELCR, HL, and Action Levels are provided in Table A.14 /							

Deleted: ³ Deleted: 2.4 (1.63)³ Deleted: 0.14 (0.1)³ Deleted: 0.14 (0.1)³ Deleted: ³ Deleted: ³ Deleted: ¹ Deleted: ¹ Deleted: ¹ Deleted: ² Deleted: ² Deleted: Another Cancer Risk and Hazard Index values are from Table A.17 of the Risk Methods Document (DOE 2001).¶ Deleted: 01 Deleted: ³

Deleted: 2.5 (1.73)

N/A = not available or not applicable.
Values in table are current values and will be updated prior to completion of the Sitewide Evaluation Report _e ELCR, HI, and Action Levels are provided in Table A
und ELCR, HI, and No Action Levels are provided in Table A.17 of the Risk Methods Document (DOE 2001)
PGDP background values are taken from Table A.12 of the Risk Methods Document (DOE 2010).
Screening values derived considering the contribution from short-lived decay products.
Adjusted values in parentheses will be used for screening if nitric acid is used for sample extraction.

16

... [1]

Deleted: Analyte

5. WORK PLAN RATIONALE

This work plan was prepared to identify any unknown contaminated areas requiring further CERCLA evaluation and to develop information usable when completing the RCRA EIs. This evaluation will include a radiological survey and visual walkover survey to cover DOE-owned property outside PGDP and currently not a SWMU/AOC. This work was performed under DOE authority. Any anomalies in the WKWMA, on property owned by WKWMA, identified in flyover surveys also will be evaluated under this work plan. The sampling approach for identified anomalies will be based on their physical form (e.g., soil and rubble areas). Collection of field and fixed-base laboratory data will enable DOE to increase confidence that SWMUs/AOCs have been appropriately identified.

5.1 SCOPING SURVEY APPROACH

Figure <u>5</u> shows the generalized approach to the radiological <u>scoping</u> surveys (DOE 2008e) that are and will be used to identify anomalies for categorization and further evaluation based on physical form:

- · Soil areas-which are defined as soil piles and disturbed soil areas.
- Rubble areas-which are defined as areas of varied materials.

It should be noted that aerial, visual walkover and radiological walkover surveys have been conducted and are ongoing. To date no anomalies have been discovered with a radiological reading of greater than twice <u>instrument</u> background.

Categorized anomalies will be further evaluated using the approaches described in Sections 5.2 and 5.3 if the radiological screening indicates greater than twice <u>instrument</u> background and/or visual evidence (including process knowledge) indicates a possible origin from PGDP. Work package documents will be prepared after <u>surveys</u> are completed and prior to any sampling activities to provide more specific information to field personnel on sample locations, numbers, analyses, and designations, etc.

5.2 SOIL AREAS SAMPLING APPROACH

Soil areas will be evaluated based on the approach provided in Figure 6. This approach has been developed taking into account results from other soil pile evaluations (DOE 2008d; DOE 2009a; and DOE 2009b). No previous sampling efforts have been performed on the soil that will be evaluated as part of this study. A systematic biased sampling approach will be implemented for small soil areas or piles and a systematic random approach will be implemented for large soil areas or piles consistent with approved methodologies for soil piles investigated under other SAPs. If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then a biased sample at the highest radiological reading will be taken and analyzed at a fixed-base laboratory for radiological constituents. Soils areas are divided into two groups: small and large. Soil areas whose length and width are less than or equal to 30 ft are classified as small. Soil areas whose length or width is greater than 30 ft are classified as large.

These approaches are designed to ensure data are acquired from all soil piles and a sufficient number of samples are collected to aid in determining the concentration and distribution of constituents throughout the study area.

-{	Deleted: is currently in process
-{	Deleted: (pending)
-{	Deleted: screening and definitive

{	Deleted: 4
- {	Deleted: screening
Ì	Deleted: (scoping survey)

Deleted: screening

{	Deleted: 5
ĺ	Deleted: investigations
ſ	Deleted: 2009b
ſ	Deleted: 2009c
$\left(\right)$	Deleted: the planned
$\left(\right)$	Deleted: location nearest to
ſ	Deleted: most highly
ſ	Deleted: elevated
ĺ	Deleted: relocated to the most elevated radiological reading and a biased sample will be

I

Figure 5. Sitewide Scoping Survey Decision Flowchart

Figure 6. Sampling Approach for Soil Areas

Prior to the collection of soil samples, each soil area or pile will be visually evaluated to determine the necessity for clearing and grubbing. Site preparation will occur prior to any sampling activities. In addition, each location will undergo a radiological survey as discussed in Appendix A.

5.2.1 Sample Locations

Following site preparations, sample locations will be identified, staked, and surveyed (using GPS).

5.2.1.1 Small soil areas/piles

For small soil piles, a single location at the highest point of the pile will be sampled. For small soil areas, a single location at the approximate center of the area will be sampled. It is assumed that the highest point or central points would represent the most likely place to encounter contamination, if it exists. If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then a biased sample at the highest radiological reading also will be taken and analyzed at a fixed-base laboratory for radiological constituents.

5.2.1.2 Large soil areas/piles

A 50 ft grid will be used to place sample locations for each large soil area/pile. Samples will be collected from within the grid square at the approximate center. Sample locations for large soil piles may be adjusted at the discretion of the project manager and field team leader, if actual field conditions indicate a predetermined sample location cannot be accessed. <u>If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then a biased sample at the highest radiological reading will be taken and analyzed at a fixed-base laboratory for radiological constituents. Jf a given location is moved, the reason for the move (e.g., tree is in the way), along with its spacing in relation to adjacent locations, will be fully documented in the field logbook.</u>

Soil piles found to date (DOE 2007a) and being investigated under other work elements generally have covered a large area with large variation in pile size; therefore, a systematic sampling approach has been developed. It is designed to ensure that data is acquired from all soil areas/piles, irrespective of their size, while ensuring that a sufficient number of samples is acquired to support informed decision making. To develop the sampling strategy, practices previously approved at PGDP have been consulted and form the basis for the sampling design. Recent SAPs contain provisions for a similar sample density in similar settings, employing sample spacing ranging from 10 to 50 ft as a means of identifying contamination and delineating contamination. Generally, <u>sample</u> spacing from <u>35</u> to <u>50</u> ft has been accepted for initial data acquisition, with tighter spacing applied to delineate contamination boundaries.

5.2.2 Sample Requirements

Samples from bare soil areas (no relief above grade) will be collected from the surface only (0-1 ft depth). Metals, PCBs, and site-related radionuclides are generally immobile; therefore, if site-related material were placed on the ground surface, it likely would still be present at the surface. Consequently, if no contamination is detected at the surface, then it is reasonable to assume that no contamination would be detected in deeper soil. If the site evaluation indicates that contamination is present in the surface soil of bare soil areas at concentrations that indicate further investigation is warranted, then this recommendation would be included in the SER.

Samples from small and large soil piles will be collected from the following depth intervals:

• A surface soil sample will be acquired from 0-1 ft at every sampled location.

VSP calculates the statistically-based number of samples required for verification of sampling soil. For this work plan, the number of total soil samples (assumed to represent screening samples) based on the teen recreational user is 95.

Deleted: ¶

Deleted: If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then the planned sample location will be relocated to the most elevated radiological reading and a biased sample will be taken.

Deleted: If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then the planned sample location nearest to the most highly elevated radiological reading will be relocated to the most elevated radiological reading and a biased sample will be taken.

• Thereafter, soil cores will be advanced and soil samples collected at 3 ft intervals, until the interface with the soil pile and the natural grade has been reached. For any soil interval, where the span to the natural grade is greater than 1 ft but less than 3 ft, the sampler will be halted when the natural grade is reached, irrespective of its length. Multiple cores over this span may be collected to acquire sufficient sample volume for field and laboratory analyses. If multiple cores are required, they will be combined and homogenized before they are placed in containers for analysis.

For small soil piles/areas with only one sample location, no field laboratory analysis will occur and all soils samples will be submitted to a fixed-base laboratory for analysis of metals, PCBs, and radionuclides per the methods specified in Appendix B worksheet #15-1, 15-2, and 15-3.

For large soil piles/areas all soil samples will undergo field laboratory analyses for metals [by X-ray fluorescence (XRF)], radioactivity (by GM scan), and PCBs (using test kits). Ten percent of the samples will be randomly preselected for definitive fixed-base laboratory analysis for metals (Appendix B worksheet #15-4) and PCBs (Appendix B, worksheet #15-5), with a minimum of one surface soil sample and one subsurface soil sample per large pile and one surface soil sample per large.

5.3 RUBBLE AREAS SAMPLING APPROACH

Rubble areas will be evaluated based on the approach provided in Figure 7. The approach for the rubble areas is has been developed taking into consideration results from similar studies conducted at PGDP such as WAG 17 (DOE 1995) and Rubble Piles Evaluation (DOE 2009c). The results of these evaluations, in addition to 2006 radiological survey data, indicate there is no widespread contamination in rubble areas.

Each rubble area will be visually evaluated to determine the necessity for clearing and grubbing. Site preparation will occur prior to any sampling activities. In addition, each location will undergo a radiological survey as discussed in Appendix A. For rubble areas exhibiting oil staining, wipe samples of the oil stained portion of rubble will be collected for field analysis of PCBs. No additional sampling will occur.

DOE may elect to remove any rubble area as a maintenance action. If so, upon removal of the rubble, one surface soil sample will be collected from immediately beneath the rubble area.

5.3.1 Sample Locations

Wipe samples will be collected from rubble areas that exhibit oil staining. If the rubble area is removed as a maintenance action, one surface soil sample will be taken from immediately below the rubble area, at the lowest point of the area or at the central point of the area is topographically flat. If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then a biased sample at the highest radiological reading will be taken and analyzed at a fixed-base laboratory for radiological constituents. Details of any wipe and soil sample locations (if applicable) will be included in work package documents.

De	et	ec	1:	,	

Deleted: 6	
Deleted: 2009d	
Deleted: investigations	

Deleted:

Deleted: If the radiological surveys indicate elevated radiological readings greater than twice instrument background, then the planned sample location will be relocated to the most elevated radiological reading, and a biased sample will be taken.

Figure 7. Sampling Approach for Rubble Areas	 Deleted:Page Break
	 Deleted: 6

5.3.2 Sample Requirements

Wipe samples will be analyzed for PCBs using field test kits (Appendix B worksheet #15-6).

Soil samples from beneath removed rubble (if removed as part of a maintenance action) will undergo field analyses for radioactivity (by NaI scan). One soil sample per removed rubble area will be collected and submitted for definitive fixed laboratory analysis for metals, radionuclides, and PCBs, as specified in Appendix B (Worksheets # 15-1, 15-2, and 15-3). If the area is extensive or if there are several small rubble piles within a rubble area, then a composite soil sample may be collected and considered representative for the entire rubble area.

Deleted: screening

6. SCHEDULE

I

Figure & provides a schedule of the activities proposed for the Soils OU Sitewide Evaluation Work Plan implementation. This schedule represents an estimate for planning purposes and is included here for informational purposes only and is not intended to establish enforceable schedules or milestones. Enforceable milestones are contained in Appendix C of the FFA (EPA 1998) and Appendix 5 of the SMP (DOE <u>2010a</u>). Also note that the schedule includes business days in lieu of calendar days.

Deleted: 7	
Deleted: 2009a	

Figure 8. Sitewide Evaluation Schedule

26

I

7. REFERENCES

- CH2M HILL 1992. Results of the Site Investigation, Phase II, Paducah Gaseous Diffusion Plant, KY/SUB/13B-97777C P-03/1991/1, CH2M HILL, Southeast, Inc., Oak Ridge, TN, April.
- DOE (U.S. Department of Energy) 1995. Resource Conservation and Recovery Act (RCRA) Facility Investigation Work Plan for Waste Group Area Grouping (WAG) 17 at the Paducah Gaseous Diffusion Plant, U. S. Department of Energy, Paducah, KY, October.
- DOE 1997a. Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Volume 1, DOE/OR/07-1404/V1&D2, U.S. Department of Energy, Paducah, KY, April.
- DOE 1997b. Record of Decision for Waste Area Group 17 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/06-1567&D1, U.S. Department of Energy, Paducah, KY, September.
- DOE 2000. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)* DOE/EH--624/R1 U.S. Department of Energy, August.
- DOE 2001. Methods for Conducting Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant Paducah, Kentucky, Volume 1. Human Health, DOE/OR/07-1506/&D2, U.S. Department of Energy, Paducah, KY, December.
- DOE 2007a. Letter from W. E. Murphie to R. B. Scott, Kentucky Department for Environmental Protection, Frankfort, Kentucky, and D. G. Williams, U.S. Environmental Protection Agency Region IV, Atlanta, Georgia, February 17.
- DOE 2007b. Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015&D2R1, U.S. Department of Energy, Paducah, KY, September.
- DOE 2007c. Addendum 1-A to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/A1/D2R1, U.S. Department of Energy, Paducah, KY, August.
- DOE 2008a. Addendum 1-B to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/1B&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2008b. Addendum 2 to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/A2&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2008c. Sampling and Analysis Plan for Rubble Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0060&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2008d. Site Evaluation Report for Soil Pile I at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/0108&D2, U.S. Department of Energy, Paducah, KY, December.
 - 27

- DOE 2008e. Scoping Survey Plan of Selected DOE Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS-RAD-0602, U.S. Department of Energy, Paducah, KY, May.
- DOE <u>2009a</u>. Site Evaluation Report for Addendum 1-B Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/0225&D1, U.S. Department of Energy, Paducah, KY, July.
- DOE 2009b. Site Evaluation Report for Addendum 2 Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/0188&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE <u>2009c</u>. Site Evaluation Report for Rubble Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/0227&D0, U.S. Department of Energy, Paducah, KY, July.
- DOE 2010a. Site Management Plan, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Annual Revision–FY 2009, DOE/LX/07-0305&D2, U.S. Department of Energy, Paducah, KY, April.
- DOE 2010b. Work Plan for the Soil Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0120&D2/R1, U.S. Department of Energy, Paducah, KY, February.
- DOE 2010c. Methods for Conducting Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant Paducah, Kentucky, Volume 1. Human Health, DOE/LX/07-0107&D2, U.S. Department of Energy, Paducah, KY, July.
- EPA (U.S. Environmental Protection Agency) 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, EPA/540/G-89/004, October.
- EPA 1992. Preparation of Soil Sampling Protocols: Sampling Techniques and Strategies, EPA/600/R-92/128, July.
- EPA 1998. Federal Facility Agreement for the Paducah Gaseous Diffusion Plant, U.S. Environmental Protection Agency, Region 4, Atlanta, GA, February 13.
- EPA 2004. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd Edition, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, http://www.epa.gov/epaoswer/hazwaste/test/main.htm, Web page updated February 22, 2006, Web page visited May 17, 2006.
- EPA 2005a. Uniform Federal Policy for Implementing Environmental Quality Systems, EPA-505-F-03-001, March.
- EPA 2005b. Uniform Federal Policy for Quality Assurance Project Plans, Part 1:UFP-QAPP Manual, EPA-505-B-04-900A, March.
- EPA 2005c. Uniform Federal Policy for Quality Assurance Project Plans, Part 2B: <u>Quality</u> Assurance/Quality Control Compendium: Minimum QA/QC Activities, EPA-505-B-04-900B, March.
- EPA 2005d. Uniform Federal Policy for Quality Assurance Project Plans, Part 2A: <u>UFP-QAPP</u> Workbook, EPA-505-B-04-900C, March.

Deleted: DOE 2009a. Site Management Plan, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Annual Revision-FY 2009, DOE/LX/07-0185&D2/R1, U.S. Department of Energy, Paducah, KY, March.¶

Deleted: 2009b

Del	eted:	2009

```
Deleted: 2009d
```

Deleted: :Quality

Deleted: :UFP

- EPA 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA/240/B-06/001, U.S. Environmental Protection Agency, Office of Environmental Information, Washington, DC, February.
- IT Corp (International Technology Corporation) 1989. Preliminary Radiological Characterization of Ogden Landing Road Concrete Rubble Site, IT/NS-80-131.
- PGDP (Paducah Gaseous Diffusion Plant) 1992. PGDP Environmental Restoration Health Physics Special Purpose/Routine Radiological Survey Results, Survey No. 92-SP-317-S.

6: [1] Deleted		LeAnne		9/8/2010 11:03
Analyte	Child Resident No Action Level (mg/kg or pCi/g) ¹	Teen Recreational User No Action Level (mg/kg or	PGDP Surface Background (mg/kg or pCi/g) ²	PGDP Subsurface Background (mg/kg or pCi/g) ²
Aluminum	732	3,010	13,000	12,000
Antimony	0.0635	0.242	0.21	0.21
Arsenic	0.132	0.346	12	7.9
Barium	37	148	200	170
Beryllium	0.16	0.606	0.67	0.69
Cadmium	2.64	14.7	0.21	0.21
Calcium	N/A	N/A	200,000	6,100
Chromium	60.5	227	16	43
Cobalt	209	1,390	14	13
Copper	68.1	331	19	25
Iron	314	1,350	28,000	28,000
Lead	50	50	36	23
Magnesium	n/a	N/A	7,700	2,100
Manganese	7.46	29	1,500	820
Mercury	0.158	0.634	0.2	0.13
Molybdenum	10.9	56.4	N/A	N/A
Nickel	34	161	21	22
Selenium	12.1	65	0.8	0.7
Silver	6.12	27	2.3	2.7
Sodium	N/A	N/A	320	340
Thallium	0.107	0.479	0.21	0.34
Uranium	2.16	14.7	4.9	4.6

 Table 1. Data Screening Criteria (Continued)

Vanadium	0.562	2.12	38	37
Zinc	401	1,800	65	60
Aroclor-1016	0.0574	0.127	N/A	N/A
Aroclor-1221	0.0574	0.127	N/A	N/A
Aroclor-1232	0.0574	0.127	N/A	N/A
Aroclor-1242	0.0574	0.127	N/A	N/A
Aroclor-1248	0.0574	0.127	N/A	N/A
Aroclor-1254	0.0388	0.127	N/A	N/A
Aroclor-1260	0.0574	0.127	N/A	N/A
Total PCBs	0.0574	0.127	N/A	N/A
Americium-241	0.836	11.6	N/A	N/A
Cesium-137	0.0128	0.178	0.49	0.28
Neptunium-237	0.0405	0.565	0.1	N/A
Plutonium-238	2.27	31	0.073	N/A
Plutonium-239/240	2.22	30.3	0.025	N/A
Technetium-99	67.4	926	2.5	2.8
Thorium-228	0.00418	0.0584	1.6	1.6
Thorium-230	2.85	39	1.5	1.4
Thorium-232	2.61	35.7	1.5	1.5
Uranium-234	3.81	52.2	$2.5(1.73)^3$	$2.4(1.63)^3$
Uranium-235	0.0591	0.826	$0.14(0.1)^3$	$0.14(0.1)^3$
Uranium-238	0.261	3.64	$1.2(0.4)^3$	$1.2(0.4)^3$

N/A = not available or not applicable.¹Excess Lifetime Cancer Risk and Hazard Index values are from Table A.17 of the Risk Methods Document (DOE 2 PGDP background values are taken from Table A.12 of the Risk Methods Document (DOE 2001). 3 Adjusted values in parentheses will be used for screening if nitric acid is used for sample extraction.

APPENDIX A

SAMPLING AND ANALYSIS PLAN

CONTENTS

ACROYNMS	A-5
A.1. INTRODUCTION	A-7
A.2. SAMPLE LOCATION, FREQUENCY AND DESIGNATIONS	A-9
A.3. SCOPING SURVEYS	A-11
A.3.1 AERIAL RADIOLOGICAL SURVEY	A-11
A.3.2 AERIAL PHOTOGRAPHY SURVEY	A-12
A.3.3 VISUAL AND RADIOLOGICAL WALKOVER SURVEY	A-12
A.4. SAMPLING EQUIPMENT AND ANALYSIS	A-15
A.4.1 DATA/SAMPLING EQUIPMENT AND TECHNIQUES	A-15
A.4.1.1 Radiological Scanning	A-15
A.4.1.2 Media Sampling	A-15
A.4.2 FIELD ANALYTICAL TECHNIQUES	A-16
A.4.2.1 Determination of Radioactivity	A-16
A.4.2.2 Determination of Metals Using X-Ray Fluorescence	A-17
A.4.2.3 Determination of PCBs Using Field Test Kits	A-17
A.4.3 DOCUMENTATION	A-18
A.4.4 DECONTAMINATION AND WASTE MANAGEMENT	A-18
A.4.4.1 Personal Protective Equipment	A-18
A.4.4.2 Plastic Sheeting	A-18
A.4.4.3 Sampling Equipment and Miscellaneous Supplies	A-19
A.4.4.4 Soil Cuttings/Sample Residuals	A-19
A.4.4.5 Liquid Investigation-Derived Waste	A-19
A.5. REFERENCES	A-21

Deleted: ATTACHMENT 1: CALCULATION OF N—THE NUMBER OF STATISTICALLY BASED SAMPLES REQUIRED FOR SITE-WIDE EVALUATION OF SOIL . A1-1¶ ATTACHMENT 2: CD CONTAINING DATA USED IN CALCULATION OF N . A2-1

ACRONYMS

agl	above ground level
DEM	digital elevation model
DPT	direct push technology
DOE	U.S. Department of Energy
ER	exposure rate
GIS	Geographic Information System
GPS	global positioning system
IDW	investigation-derived waste
NaI	sodium iodide
PCB	polychlorinated biphenyl
PGDP	Paducah Gaseous Diffusion Plan
PPE	personal protective equipment
SAP	Sampling and Analysis Plan
SRM	standard reference material
WKWMA	West Kentucky Wildlife Management Area
XRF	x-ray fluorescence

A.1. INTRODUCTION

This Sampling and Analysis Plan (SAP) provides information relative to data collection, media sample collection, and field analysis. The primary objective of this effort is to identify any unknown contaminated areas requiring further Comprehensive Environmental Response, Compensation, and Liability Act evaluation and to develop information usable when completing the Resource Conservation and Recovery Act Environmental Indicators. Specifically the evaluation was designed to obtain data to support the following objectives:

- Identify anomalies (based on screening surveys) on U.S. Department of Energy (DOE)-owned and West Kentucky Wildlife Management Area (WKWMA)-owned property and confirm DOE origin. On DOE owned property, this is determined by radiological and visual walkover surveys where radiological readings are greater than twice background or where a release is visually identified or where an anomaly is identified by process knowledge. On WKWMA property, DOE origin is determined by radiological signature from the aerial radiological survey;
- For the anomalies confirmed to be of DOE origin, establish the presence or absence of DOE-related contaminants [metals, polychlorinated biphenyls (PCBs), and radionuclides];
- Perform data screening to determine if such anomalies may pose risks to human health; and
- Determine appropriate path forward per the Federal Facility Agreement (EPA 1998).

This SAP incorporates techniques that are consistent with the SAP for Soils Piles (DOE 2007a), Addendum 1-A (DOE 2007b), Addendum 1-B (DOE 2008a), and Addendum 2 (DOE 2008b), the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study (DOE 2010), and the SAP for the Rubble Areas (DOE 2008c).

A.2. SAMPLE LOCATION, FREQUENCY, AND DESIGNATIONS

Once anomaly identification has been completed from scoping surveys, maps will be developed that show the footprint of each soil or rubble area with sample locations. In addition, tables will be developed indicating the dimensions of the anomaly, locations and estimated number of samples, and this information will be included in work package documents.

A.3. SCOPING SURVEYS

Scoping surveys are to be used to identify potential anomalies originating from Paducah Gaseous Diffusion Plant (PGDP) for further evaluation, Several types of surveys were planned:

- A radiological flyover survey has been performed for the purpose of identifying surface radiological • anomalies that were not previously identified on WKWMA-owned property. Walkover visual and radiological surveys then were performed on the anomalies identified by radiological aerial surveys.
- . An aerial photographic survey has been performed to provide an updated topographic map.
- Focused walkover visual and radiological surveys have been performed on DOE property outside the Jimited/controlled area.

This section describes the planned surveys. Although these surveys have largely been completed at this time, text referring to what was planned has been retained.

A.3.1 AERIAL RADIOLOGICAL SURVEY

The Remote Sensing Laboratory performed an aerial radiological survey of PGDP in 1990. In January 2008, representatives from the DOE Paducah Site contacted the National Nuclear Security Administration to request a low-level aerial survey to update this information. If approved, the aerial radiological and multispectral survey will provide gross count, man-made gross count, and isotopic extraction contours. This includes providing Geographic Information System (GIS) layers in a suitable format to be included in the database being administered by the RSL-Nellis. More specifically, this survey includes mapping, using aerial measurement assets, the radiological activity around PGDP. The activity will be measured from an altitude of 150 ft above ground level (agl) where possible. The terrestrial exposure rate is derived from the integral count rate in the gamma energy spectrum range. This gross count rate, measured in counts per second (cps) at survey altitude, is converted to exposure rate (ER) in μ R/h at 1 meter agl. Over most of the survey area, the inferred terrestrial ER is expected to be less than 7 μ R/h (typical for natural background in the Paducah area determined from previous survey data); however, it is expected that the instruments can read with accuracy to 1 uR/hr. It is, however, subject to interference from gamma radiation emitted from DUF_6 cylinders stored on the site. The planned survey area is approximately 25 square miles. Data will be analyzed to determine surface radioactivity. The detection capabilities of the helicopter system for the detection of U-238 are as follows. Assuming the survey parameters that were flown, and assuming that U-238 is present on the soil surface with no self shielding, the approximate minimal detectable activity is 10 mCi for a point source and 10 μ Ci/m² for a distributed source. It should be noted that these are somewhat conservative estimates, but they do not include the effect of any selfshielding, since it is not possible to ascertain in what shape or configuration that the material might be.

The survey produced a set of GIS-compatible overlay maps of (1) the inferred exposure rate and (2) the areas exhibiting excess or elevated levels of man-made radioisotopes. The aerial radiological data will be displayed as a contour map (color-coded contours with designators) superimposed onto either a georeferenced U.S. Geological Survey topographic map or a GIS populated place layer map of the survey area. The maps will be examined for indications of elevated radiological signature indicating potential anomalies that could be attributed to DOE activity.

Deleted: will
Deleted: to be
Deleted: evaluated
Deleted: under this sitewide evaluation
Deleted: are
Deleted: is planned
Deleted: are
Deleted: would be
Deleted: is planned
Deleted: are currently being
Deleted: Limited Area

Deleted: MD

Deleted: A

Deleted: The following activities will take place as part of this survey.¶ <#>Reconnaissance Flight: The helicopter will fly at high altitudes to identify hazardous areas and to document view obstructions (i.e., towers, line wires).¶

<#>Geo-reference Flight: The helicopter will be flown over roads and other landmarks in and around the survey area. The purpose is to verify geo-referencing of the computer generated plots to maps and photographs by matching the Global Positioning System (GPS)-traced flights on the plots to the landmarks on the maps and photographs. This flight will occur only once.

-Section Break (Next Page) <#>Pre-flight Performance Checks: Before the first survey flight of each day. the detectors and electronics will be allowed to equalize with environmental conditions (usually about one hour). The measurement system will be checked for proper operation using the line spectra of radioactive check sources. The source checking shall be performed at the beginning of each day. The sources will be transported to and from the fixed base of operation each day ¶ <#>Test and Water Line

Characterization: To assure data integrity and to monitor/correct for variations in detector background count rate due to aircraft, radon, and cosmic rays, measurements will be made over a fixed test line and water line before and after each flight. Test and water line areas will be selected outside the survey area, but close to it. The fixed test line to be used is located along Ogden Landing Road, which is outside the eastern boundary of the survey area, and the fixed water line to be used is over the Ohio River just to the northeast of the survey area. Ground level exposure rate measurements will be made with the pressurized ionizati ... [1]

Deleted: will

A.3.2 AERIAL PHOTOGRAPHY SURVEY

Approximately 32 square miles has been photographed in color from a height of greater than 5,000 ft when the foliage is dormant. A survey firm was used to provide survey data for photograph control. This included targets that did not move for the entire length of time of the photo shoot. The site was photographed and mapped at a scale of 1 inch = 100 ft with 2 ft minimum topographic contours. Orthophoto imagery was produced at 1/2 ft pixel resolution. Mapping included surface model contours and all planimetric detail appropriate for that map scale. High resolution aerial photographs were collected to develop a digital elevation model (DEM). This DEM provided delineation of current surface features, including watersheds, drainage pathways, roads, and land cover. Height of trees and other vegetative cover can be determined, and a three-dimensional model, created from such photography, facilitating identification of soil and rubble areas and enable estimation of pile volumes. Comparison of recently acquired data with historic photographs will assist in tracking changes at specific locations through time.

The aerial photography (topography) survey produced a map and surface model in DGN and DWG formats. The photographs will be examined, along with historical aerial photographs to look for indications of earth disturbance, unnatural earth mounds or rubble material that could be potential anomalies. It should be noted that the topographic survey was performed on April 8, 2009.

A.3.3 VISUAL AND RADIOLOGICAL WALKOVER SURVEY

The visual walkover survey was performed over the areas colored in light pink and light blue, excluding the area within the PGDP fence, as depicted on Figure 2 of the workplan. This includes all of the DOEowned property outside PGDP fence (including property leased to WKWMA). Visual walkover surveys were accomplished by visually observing and physically locating a potential anomaly and recording the location, physical size, type of anomaly, any other pertinent information, and performing a topographic survey. This was performed in concert with the radiological survey described below.

MARSSIM (DOE 2000) guidance includes classification of areas based on potential for contamination. Property to be evaluated under this work plan is assumed to be Class 3. These areas are defined as areas with potential for contamination typically $\leq 10\%$ reference level; therefore, DOE property was evaluated with 100% visual and a minimum of 10% gamma/GPS walkover surveys with all identified anomalies (on DOE and WKWMA property) included in the radiological walkover survey.

Radiological surveys were performed using a sodium iodide (gamma) detector or equivalent with a GPS data-logger. U-238 will be used as the target radionuclide.

Note that the survey was performed using a LM 221 survey meter equipped with 3x3 NaI probes and using a Polaris Ranger 700 6x6 where the terrain was suitable. A scanning speed of up to 3m/sec was used, which is sufficient to achieve a scanning sensitivity of below 528 pCi/g U-238 (equivalent to 15 mrem/year dose). Where the terrain was not suitable for driving, the team covered the area on foot using a scanning speed of up to 0.5 m/sec. The meter was held approximately 4 inches from the ground during the survey.

Radiological Controls Technicians performed the scan surveys of accessible land areas. Static measurements were used to confirm the presence of activity in elevated areas. If elevated activity was confirmed, then the area of elevated activity was bounded. Probes were source checked at the start of work to ensure they are functioning properly. The survey meters were equipped with digital data ports

Deleted:	will be
Deleted:	will be
Deleted:	will
Deleted:	will
Deleted:	will be
Deleted:	will be
Deleted:	will
Deleted:	,
Deleted:	will be
Deleted:	will
Deleted:	will
Deleted:	facilitateing
Deleted:	will
Deleted: available	; however, the data are not yet

Deleted: will be
Deleted: will be
Deleted: will be
Deleted:
Deleted: will be
Deleted:
Deleted:
Deleted: will be
Deleted: The survey will be conducted as follows:
Deleted: <#>Clear Vegetation¶ <#>Establish Reference Grid¶ <#>Establish Background¶
<#>Conduct Radiological Walkover Survey¶
<#>Conduct Radiological Walkover Survey¶ Deleted: will be
<#>Conduct Radiological Walkover Survey¶ Deleted: will be Deleted: or equivalent
<#>Conduct Radiological Walkover Survey¶ Deleted: will be Deleted: or equivalent Deleted: is
<#>Conduct Radiological Walkover Survey¶ Deleted: will be Deleted: or equivalent Deleted: is Deleted: will be
<#>Conduct Radiological Walkover Survey¶ Deleted: will be Deleted: or equivalent Deleted: is Deleted: will be Deleted: is
<#>Conduct Radiological Walkover Survey¶ Deleted: will be Deleted: or equivalent Deleted: is Deleted: will be Deleted: will be Deleted: will be
<#>Conduct Radiological Walkover Survey¶ Deleted: will be Deleted: is Deleted: will be Deleted: will Deleted: will
<#>Conduct Radiological Walkover Survey¶ Deleted: will be Deleted: is Deleted: is Deleted: is Deleted: will Deleted: will Deleted: will Deleted: be

that download accumulated counts to the GPS data loggers. Readings greater than twice ambient (instrument) background will be pin flagged and resurveyed to confirm the measurement.

Sketches will be provided showing the position of the anomalies relative to PGDP.

A.4. SAMPLING EQUIPMENT AND ANALYSIS

Fieldwork and sampling at PGDP will be conducted in accordance with DOE Prime Contractor-approved work instructions or procedures. DOE or its DOE Prime Contractor will approve any deviations from these work instructions and procedures. The DOE Prime Contractor will document changes on Field Change Request forms as detailed in the Quality Assurance Project Plan.

A.4.1 DATA/SAMPLING EQUIPMENT AND TECHNIQUES

A.4.1.1 Radiological Scanning

Radiological surveys of anomalies in advance of sampling will be performed using a sodium iodide (NaI) (gamma) detector or equivalent with a GPS data-logger if the ground/concrete has flat surfaces. If the surface to be scanned is particularly uneven and the NaI detector proves to be ineffective, then a GM pancake probe may be used.

A.4.1.2 Media Sampling

The following types of samples will be collected for analysis by field and laboratory methods:

- Surface and subsurface soil samples may be collected from the soil areas evaluation (see Section 5.2 and Figure <u>6</u> of the work plan).
- Wipe samples (of rubble exhibiting oil staining) and surface soil samples (if rubble is removed) may be collected from the rubble areas evaluation(see Section 5.3 and Figure 2 of the work plan).

No liquid samples are planned to be collected other than for quality assurance purposes (See Appendix B) and investigation-derived waste (IDW) disposal purposes (to be specified in work package documentation).

Soil samples will be collected in accordance with (1) <u>PAD-ENM-2300</u> <u>Collection of Soil Samples</u>, (2) <u>PAD-ENM-0023</u>, <u>Composite Sampling</u>, and (3) <u>PAD-ENR-0020</u>, <u>Direct Push Technology Sampling</u>. The following general provisions will apply to all sampling activities:

- Surface soil samples will be collected using disposable, stainless steel scoops to minimize the quantity of IDW, particularly liquid waste, generated during sample collection.
- Subsurface samples will be acquired using standard collection techniques such as direct push technology (DPT) or hollow stem auger, depending on the condition of the subsurface/difficulty in acquiring samples.

Wipe samples will be collected in accordance with <u>manufacturer's instructions</u>.

The following provides a general equipment/supplies list for the sampling activities. The list assumes site and sample location surveying is completed separately as part of civil survey efforts and site preparation.

- Personal protective equipment (PPE)
- Stainless steel scoops

Deleted:	5	
Deleted:	6	

	Deleted: PRS
	Deleted: PRS
1	Deleted: PRS

Deleted: PRS-ENR-0032, *PCB Sampling*

- Sorbent material
- Plastic sheeting
- Nylon brush (dry decontamination)
- Deionized water
- Cooler(s)
- Adhesive tape (e.g., clear, duct, and strapping)
- Pens and markers
- Zipper-sealing plastic bag
- Plastic sheeting
- Field analytical test kits
- Utility knife
- Health and safety supplies
- GPS unit and survey supplies including 100-ft tape measure
- Field logbook
- Chain-of-custody forms
- Sample labels
- Custody seals
- Sample containers (bottles)
- Blue ice
- Shipping/transport paperwork
- Acetate sleeves for portable DPT

A.4.2 FIELD ANALYTICAL TECHNIQUES

Analytical data acquisition will rely on both field measurements (screening) and fixed-base laboratory (definitive) data to determine if contamination exists in media associated with identified anomalies and further defined as soil or rubble. The following describes the field analytical techniques to be used.

A.4.2.1 Determination of Radioactivity

Radiological walkover surveys will be accomplished with scanning instrumentation. In addition, 100% surface scans will be performed on all identified anomalies, including a 3 ft buffer area around each anomaly, using a sodium iodide (gamma) detector or equivalent with a GPS data-logger. Before scanning an anomaly, radiation control technician(s) or properly qualified designee(s) will perform a local environmental background determination for gamma radioactivity using a NaI detector or equivalent with a GPS data-logger. Prior to its use, the instrument will be calibrated and operated in accordance with (1) <u>PAD-RAD-0506</u>, *Radiological Protection Operating Guide*, and (2) <u>PAD-RAD-1309</u>, *Setup for Operability Tests of Portable Field Instruments*.

Before surveying any of the anomalies, background gamma radioactivity values will be established for the particular instruments used as follows:

• In the case of rubble areas, the rubble used to determine background values will be at the Kevil Post Office, which is composed of native materials similar to those present in the rubble areas concrete typically found at PGDP and is approximately the same age (i.e., 30 years in age). Measurement of background for comparison purposes will be in disintegrations per minute (dpm) or counts per minute (cpm). Ten one-minute static count readings will be taken at the background site, with the readings

A-16

Deleted: PRS
Deleted: PRS
measured at several different points on the concrete. The background level used for comparison will be the mean of all the background readings and the 95% confidence level determined by the standard deviation of the readings (after testing the normality of the distribution). This approach is consistent with the determination of concrete background radiation levels completed for the Waste Area Group (WAG) 17 Resource Conservation and Recovery Act Facility Investigation (DOE 1995) and the Sampling and Analysis Plan for Rubble Areas (DOE 2008c).

Soil background will be determined at the WKWMA lodge in Ballard County. This is an area that has
not been impacted by PGDP activities and is upwind of the predominant wind direction at the site.
Ten one-minute static count readings will be taken at the background site. The background level used
for comparison will be the mean of the background readings and the 95% confidence level
determined by the standard deviation of the readings (after testing the normality of the distribution).

Upon completion of the appropriate background determination, a complete surface scan of all exposed rubble or soil surfaces will be completed using the NaI scanning instrument. The instrument will record measurements of gamma activity emitted from anomalies. All recorded measurements will be documented.

A.4.2.2 Determination of Metals Using X-Ray Fluorescence

Survey and verification field samples will undergo *ex situ* x-ray fluorescence (XRF) analysis for RCRA metals and total uranium. Analysis will be performed in a field laboratory using procedure <u>PAD-ENR-0034</u> *XRF Field Lab Analysis of Soils*. The XRF sample will consist of a minimum of 20 grams of soil. To further ensure the defensibility of XRF data, periodic performance checks and blanks will be performed to monitor instrument drift. The frequency of calibration verification samples and blanks will be 1 each for every 20 samples analyzed. They will be analyzed sequentially; calibration verification and a blank analysis will follow the 20th natural sample analyzed or at the end of a group of samples, whichever is more frequent. Along with each batch of samples totaling 20 or less, an independent standard reference material (SRM) will be analyzed. The SRM will have a concentration within the calibration and will have verifiable levels documented by a certificate of analysis. Data outputs will be recorded in the field logbook or on a spreadsheet.

A.4.2.3 Determination of PCBs Using Field Test Kits

Field wipe samples will undergo field PCB analysis using immunoassay analysis using an EnSysTM 12T Wipe Test Kit, or equivalent which follows EPA SW-846 Method #4020. The test kits provide results in the range of 5 μ g/100cm² to 5000 μ g/100cm².

Soil samples will undergo field PCB analysis using methanol extraction and colorimetric analysis using a HACH Pocket ColormeterTM II Test Kit, or equivalent. A minimum of 20 grams of soil will be collected for PCB analysis. To ensure PCB data can be fully evaluated, a pre-weighed aliquot of each sample will be extracted and analyzed, and the colorimeter will be calibrated with each analytical batch in accordance with the manufacturer's specifications. All test kits and reagents (i.e., calibration standards, calibration verification standards, standard reference materials, kit reagents, and blanks) will be prepared and stored in accordance with the method requirements. Because the cuvettes and reagents in the PCB kits are in matched lots, each analytical batch is limited to the number (20) provided in each kit. Calibration standards and a reagent blank will be analyzed with each analytical batch prior to sample analysis. Along with each batch of samples totaling 20 or fewer, an independent SRM will be analyzed to verify the method detection limit, to establish precision and accuracy, and to estimate extraction efficiency. The SRM will have a concentration within the operating range of the colorimeter calibration and will have

A-17

Deleted: PRS

verifiable levels documented by a certificate of analysis. Data outputs will be recorded in the field logbook or on a spreadsheet.

A.4.3 DOCUMENTATION

Field documentation on logbooks and field forms will be in accordance with <u>PAD-ENM-2700 Logbooks</u> and Data Forms. Data will be archived electronically following guidance in <u>PAD-ENM-1003</u>, Developing, Implementing, and Maintaining Data Management Implementation Plans. Records will be kept in accordance with <u>PAD-DOC-1009</u>, *Records Management, Administrative Records, and Document* Control.

A.4.4 DECONTAMINATION AND WASTE MANAGEMENT

Decontamination of sampling equipment will be in accordance with <u>PAD-ENM-2702</u>, *Decontamination* of Sampling Equipment and Devices.

While the overall composition and distribution of hazardous, toxic, and/or radioactive materials is not fully known for the anomalies that might be encountered during this evaluation, preliminary radiation screening and laboratory data from similar activities suggests elevated levels of contaminants may be present. As a result, those materials that contact soil during evaluation activities in addition to materials that do not undergo decontamination, or result from field decontamination will be categorized as IDW. The following types of IDW will be generated during the characterization effort:

- PPE
- Plastic sheeting
- Stainless steel scoops
- Compositing pans
- DPT thin-walled sampling tubes
- Miscellaneous sampling and field screening supplies

Waste generated during sitewide evaluation efforts will be stored in appropriate waste storage areas, managed and disposed per established DOE prime contractor procedures. Specific provisions of waste management as they relate to IDW generated by sitewide evaluation efforts are outlined in the following sections.

A.4.4 Personal Protective Equipment

All PPE employed during sitewide evaluation efforts will be considered IDW. For purposes of segregation and storage, at the end of each work shift or each time PPE is replaced, PPE for all members of the field team doffing their PPE will be placed in plastic bags; the bag then will be sealed and labeled to reflect the area in which field work occurred. The bags and PPE then will be placed in a waste container.

A.4.4.2 Plastic Sheeting

At the end of each activity or field day, whichever is more frequent, plastic sheeting employed during field activities to reduce the spread of contamination will be placed in plastic bags; the bag then will be sealed, labeled to reflect the area in which the field work took place, and the bags and plastic sheeting placed in an appropriate waste container.

A-18

	Deleted: PRS
	Deleted: PRS
_	Deleted: DDS

Deleted: PRS

A.4.4.3 Sampling Equipment and Miscellaneous Supplies

Following use and dry decontamination of sampling tools (stainless steel scoops, compositing pans), supplies and nylon brushes will be segregated and stored in plastic bags. The bags will remain open until the end of each work shift or until they reach capacity (whichever is more frequent) so they (1) may be filled to capacity and (2) additional field supplies can be stored in them until they reach capacity or the work shift is complete. At the end of the work shift or when the bags reach capacity, they will be sealed, labeled to reflect the area where they were used, and placed in an appropriate waste container.

A.4.4 Soil Cuttings/Sample Residuals

Excess soil acquired during sample collection will be handled as IDW. Laboratory sample residuals will be disposed according to laboratory procedures.

A.4.4.5 Liquid Investigation-Derived Waste

Liquid IDW will be minimized by using disposable sampling equipment and support supplies to the maximum extent practical. If liquid IDW is generated as a result of decontamination of sampling equipment, field personnel will make every effort to minimize the quantities of liquid IDW generated Laboratory liquid IDW such as sample residuals and field standards used for PCB field screening may require special handling and disposal as Toxic Substances Control Act wastes.

Decontamination water will be placed in an appropriate waste container.

A.5. REFERENCES

- DOE (U.S. Department of Energy) 1995. Resource Conservation and Recovery Act (RCRA) Facility Investigation Work Plan for Waste Group Area Grouping (WAG) 17 at the Paducah Gaseous Diffusion Plant, U.S. Department of Energy, Paducah, KY, October.
- DOE 2000. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)* DOE/EH--624/R1 U.S. Department of Energy, August.
- DOE 2007a. Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015D2/R1, U.S. Department of Energy, Paducah, KY, September.
- DOE 2007b. Addendum 1-A to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/A1/D2R1, U.S. Department of Energy, Paducah, KY, August.
- DOE 2008a. Addendum 1-B to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/1B&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2008b. Addendum 2 to Sampling and Analysis Plan for Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0015/A2&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2008c. Sampling and Analysis Plan for Rubble Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0060&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2010. Work Plan for the Soil Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0120&D2/R1, U.S. Department of Energy, Paducah, KY, February.
- EPA 1998. Federal Facility Agreement for the Paducah Gaseous Diffusion Plant, U.S. Environmental Protection Agency, Region 4, Atlanta, GA, February 13.

A-21

·----

Deleted: "Section Break (Next Page)" ATTACHMENT 1¶ CALCULATION OF N-THE NUMBER OF STATISTICALLY BASED SAMPLES REQUIRED FOR SITEWIDE EVALUATION OF SOIL Section Break (Next Page)

ſ THIS PAGE INTENTIONALLY LEFT BLANK¶

CALCULATION OF N—THE NUMBER OF STATISTICALLY BASED SAMPLES REQUIRED FOR SITE-WIDE EVALUATION OF SOIL¶ This attachment contains the information used to calculate the statistically-based number of samples required for verification of sampling soil at the Paducah Gaseous Diffusion Plant. Historical data available for soil piles, excluding Piles I and O, were used to represent conditions expected at soil areas that are the subject of the current work plan.¶ Data were taken from Soil Pile Project Environmental Measurements System since not all data have been transferred to Paducah OREIS. These data provide the results used to calculate the statistical inputs for the sample design. Only those chemicals with at least one detection across the sample population were used. Additionally, one-half the detection limit was used in calculations for those samples that were nondetect. Table 1 presents the statistical summary from these data. Data used in this analysis are

Selected Soil Piles Deleted: A-1

Chemical

included on a CD in Attachment 2.¶ Table 1. Statistical Summary from

... [2]

The following activities will take place as part of this survey.

Page 11: [1] Deleted

Reconnaissance Flight: The helicopter will fly at high altitudes to identify hazardous areas and to document view obstructions (i.e., towers, line wires).

to1

Geo-reference Flight: The helicopter will be flown over roads and other landmarks in and around the survey area. The purpose is to verify geo-referencing of the computer generated plots to maps and photographs by matching the Global Positioning System (GPS)-traced flights on the plots to the landmarks on the maps and photographs. This flight will occur only once.

Section Break (Next Page)

- Pre-flight Performance Checks: Before the first survey flight of each day, the detectors and electronics will be allowed to equalize with environmental conditions (usually about one hour). The measurement system will be checked for proper operation using the line spectra of radioactive check sources. The source checking shall be performed at the beginning of each day. The sources will be transported to and from the fixed base of operation each day.
- Test and Water Line Characterization: To assure data integrity and to monitor/correct for variations in detector background count rate due to aircraft, radon, and cosmic rays, measurements will be made over a fixed test line and water line before and after each flight. Test and water line areas will be selected outside the survey area, but close to it. The fixed test line to be used is located along Ogden Landing Road, which is outside the eastern boundary of the survey area, and the fixed water line to be used is over the Ohio River just to the northeast of the survey area. Ground level exposure rate measurements will be made with the pressurized ionization chamber. Exact locations of the ground measurements will be determined in the field.
- Survey Flight: The data will normally be collected at 150 ft (46 m) agl. The Bell 412/HP helicopter can fly along predetermined lines spaced 250 ft (76 m) apart. The flight lines should be parallel to the contours of the terrain so that it is easier for the helicopter to maintain the 150-ft altitude. The nominal ground speed of the helicopter normally will be 70 knots (36 m/s). The survey site will encompass an area of approximately 25 square miles.

Page 1: [2] Deleted	LeAnne	9/8/2010 11:12:00 AM
	Section Break (Next Page)	

ATTACHMENT 1

CALCULATION OF N-THE NUMBER OF STATISTICALLY BASED SAMPLES REQUIRED FOR SITEWIDE EVALUATION OF SOIL

-----Section Break (Next Page)------

------Section Break (Next Page)------

CALCULATION OF N—THE NUMBER OF STATISTICALLY BASED SAMPLES REQUIRED FOR SITE-WIDE EVALUATION OF SOIL

This attachment contains the information used to calculate the statistically-based number of samples required for verification of sampling soil at the Paducah Gaseous Diffusion Plant. Historical data available for soil piles, excluding Piles I and O, were used to represent conditions expected at soil areas that are the subject of the current work plan.

Data were taken from Soil Pile Project Environmental Measurements System since not all data have been transferred to Paducah OREIS. These data provide the results used to calculate the statistical inputs for the sample design. Only those chemicals with at least one detection across the sample population were used. Additionally, one-half the detection limit was used in calculations for those samples that were nondetect. Table 1 presents the statistical summary from these data. Data used in this analysis are included on a CD in Attachment 2.

					Standard	Coefficient
Chemical	Unite	Minimum	Maximum	Average	Deviation	Variati
Chemical	Onits	winningin	Iviaxiiiiuiii	Avelage	Deviation	UII
Aluminum	mg/kg	1.95E+03	1.34E+04	7.17E+03	2.03E+03	2.83E-01
Arsenic	mg/kg	1.75E+00	4.30E+01	4.95E+00	3.60E+00	7.27E-01
Barium	mg/kg	1.78E+01	1.43E+02	6.89E+01	2.25E+01	3.27E-01
Beryllium	mg/kg	2.20E-01	2.12E+00	3.23E-01	2.30E-01	7.10E-01
Cadmium	mg/kg	2.13E-01	1.96E+00	3.76E-01	2.89E-01	7.67E-01
Calcium	mg/kg	4.79E+01	6.62E+04	2.63E+03	6.89E+03	2.62E+00
Chromium	mg/kg	5.27E+00	3.14E+02	1.94E+01	3.57E+01	1.84E+00
Cobalt	mg/kg	2.30E+00	1.26E+01	5.44E+00	1.66E+00	3.06E-01
Copper	mg/kg	2.45E+00	4.63E+01	7.72E+00	4.50E+00	5.82E-01
Iron	mg/kg	5.13E+03	3.14E+04	1.09E+04	3.91E+03	3.59E-01
Lead	mg/kg	3.02E+00	6.16E+01	1.14E+01	6.73E+00	5.89E-01
Magnesium	mg/kg	1.30E+02	2.28E+03	8.40E+02	3.98E+02	4.74E-01
Manganese	mg/kg	8.51E+01	1.58E+03	4.69E+02	2.19E+02	4.67E-01
Mercury	mg/kg	7.00E-03	2.30E-01	2.47E-02	2.35E-02	9.52E-01
Molybdenum	mg/kg	2.13E+00	7.84E+00	2.44E+00	5.31E-01	2.17E-01
Nickel	mg/kg	2.21E+00	1.79E+01	6.47E+00	2.88E+00	4.46E-01

Table 1. Statistical Summary from Selected Soil Piles

					Standard	Coefficient of Variati
Chemical	Units	Minimum	Maximum	Average	Deviation	on
Selenium	mg/kg	4.25E-01	2.82E+00	6.13E-01	4.94E-01	8.06E-01
Thallium	mg/kg	8.50E-01	4.97E+00	1.18E+00	8.77E-01	7.45E-01
Uranium	mg/kg	4.25E-01	2.08E+02	5.69E+00	1.97E+01	3.45E+00
Vanadium	mg/kg	8.45E+00	7.40E+01	1.81E+01	7.44E+00	4.11E-01
Zinc	mg/kg	8.85E+00	2.37E+02	2.76E+01	2.62E+01	9.48E-01
Anthracene	mg/kg	2.30E-01	6.70E-01	2.48E-01	2.86E-02	1.15E-01
Benzo(a)anthracene	mg/kg	2.30E-01	1.70E+00	2.65E-01	1.39E-01	5.22E-01
Benzo(a)pyrene	mg/kg	2.30E-01	7.80E-01	2.52E-01	4.92E-02	1.96E-01
Benzo(b)fluoranthene	mg/kg	2.30E-01	5.30E+00	2.92E-01	3.64E-01	1.24E+00
Benzo(ghi)perylene	mg/kg	2.30E-01	8.70E-01	2.49E-01	4.19E-02	1.68E-01
Benzo(k)fluoranthene	mg/kg	2.30E-01	2.20E+00	2.56E-01	1.32E-01	5.16E-01
Chrysene	mg/kg	2.30E-01	2.10E+00	2.72E-01	1.84E-01	6.79E-01
Fluoranthene	mg/kg	2.30E-01	1.90E+00	2.90E-01	2.19E-01	7.57E-01

	Page Break-
Table 1. Statistical Summary from	Selected Soil Piles (Continued)

Chemical	Units	Minimum	Maximum	Average	Standard Deviation	Coefficient of Variati on
Indeno(1,2,3-cd)pyrene	mg/kg	2.30E-01	1.20E+00	2.51E-01	6.40E-02	2.55E-01
Phenanthrene	mg/kg	2.30E-01	1.40E+00	2.59E-01	1.01E-01	3.90E-01
Pyrene	mg/kg	2.30E-01	2.10E+00	2.82E-01	1.93E-01	6.86E-01
PCB, Total	mg/kg	6.00E-02	3.54E+00	1.52E-01	3.96E-01	2.60E+00
PCB-1248	mg/kg	4.50E-02	1.95E+00	6.61E-02	1.72E-01	2.60E+00
PCB-1254	mg/kg	4.00E-02	1.23E+00	8.26E-02	1.66E-01	2.01E+00
PCB-1260	mg/kg	4.50E-02	1.15E+00	8.11E-02	1.30E-01	1.60E+00

					Standard	Coefficient of
Chemical	Units	Minimum	Maximum	Average	Deviation	Variati on
 Cesium-137	pCi/g	1.45E-02	9.79E-01	1.50E-01	1.87E-01	1.24E+00
Neptunium-237	pCi/g	8.45E-03	1.20E-01	2.36E-02	8.51E-03	3.61E-01
Plutonium-239/240	pCi/g	4.89E-03	3.53E-02	7.76E-03	5.17E-03	6.67E-01
Technetium-99	pCi/g	2.68E-01	9.21E+00	6.63E-01	1.12E+00	1.69E+00
Thorium-228	pCi/g	5.65E-02	5.61E-01	3.28E-01	8.40E-02	2.56E-01
Thorium-230	pCi/g	6.45E-02	1.87E+00	2.70E-01	1.91E-01	7.08E-01
Thorium-232	pCi/g	1.19E-01	5.48E-01	3.51E-01	7.39E-02	2.11E-01
Uranium	pCi/g	1.09E-01	4.95E+01	1.91E+00	6.34E+00	3.32E+00
Uranium-234	pCi/g	5.60E-02	6.70E+00	3.59E-01	8.71E-01	2.43E+00
Uranium-235	pCi/g	5.65E-03	5.91E-01	3.40E-02	8.40E-02	2.47E+00
Uranium-238	pCi/g	4.30E-02	4.42E+01	1.57E+00	5.58E+00	3.56E+00

The coefficient of variation (CV) is a ratio of standard deviation to the mean (or average). The ratio indicates the amount of dispersion of the variable, (i.e., a higher CV is a higher dispersion of results). The CV was compared for all chemicals evaluated. The highest CV was 3.56 for uranium-238, followed by 3.45 for uranium metal. Additional inputs to the calculation were selected, based on uranium-238 in order to provide a conservative estimate of the number of samples.

The input for the width of the grey region (delta) is developed as part of the planning process. The grey reion is the region of tolerance for error regarding the decision. The action level parameters chosen were the risk-based "no action levels" for the default teen recreational user scenario as presented in the 2001 Paducah Risk Methods Document: *Methods for Conducting Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant Paducah, Kentucky, Volume 1. Human Health,* DOE/OR/07-1506/&D2. The width of the gray region (delta) was set to one-half the action level parameter (or one-half the risk-based "no action level").

Visual Sample Plan (VSP) performed the statistical evaluation with the variables listed in Table 2 as inputs to the sample design for "Compare Average to Fixed Threshold." The sample design not requiring data to have a distributional assumption was chosen to provide a more conservative estimate. In all of these scenarios, choosing to assume the site is "clean" or "dirty" does not affect the required number of samples.

–Page Break–

Table 2. VSP Inputs

Parameter	Input	Reasoning
Sample Design	Compare Average to Fixed Threshold	Calculate the number of samples needed to compare a sample mean or median against a predetermined threshold.
	Data Not Required to be Normally Distributed	Not requiring the normal distribution provides a more conservative estimate.
	Ordinary Sampling No Distribution Assumption	
True Mean or Median >= Action Level (assume site is dirty)	Null Hypothesis	Assume our baseline condition that the site is dirty.
False rejection rate (Alpha):	5%	Project will assume 5 % false rejection rate (i.e., willingness to accept missing contamination).
False acceptance rate (Beta):	20%	Project will assume 20 % false acceptance rate (i.e., willingness to accept labeling area contaminated when it is actually clean).
Width of Gray Region (Delta):	1.82	Selected as 50 %, the no action level. The gray region is similar to a decision error.
Action Level (DCGLw)	3.64	No action level for U-238 under the teen recreational use scenario.
Estimated Standard Deviation	5.58	Calculated for U-238 from Soil Piles sampling data.

The minimum number of samples required for a survey unit using the inputs listed in Table 2 is 95.

------Section Break (Next Page)------

-----Page Break------

ATTACHMENT 2

CD CONTAINING DATA USED IN CALCULATION OF N

------Section Break (Next Page)------

THIS PAGE INTENTIONALLY LEFT BLANK

------Section Break (Next Page)------

ATTACHMENT 2

DATA USED IN CALCULATION OF N (CD)

-----Section Break (Next Page)------

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

QUALITY ASSURANCE PROJECT PLAN

20100920 Sitewite Evaluation Work Plan tlo Rev 1

Formatted: Left

Formatted: Left

4

20100920 Sitewite Evaluation Work Plan tlo Rev 1

CONTENTS

QAPP WORKSHEETS	B-5
ACRONYMS	B - 7

Formatted: Justified

Formatted: Font: 8 pt

20100920 Sitewite Evaluation Work Plan tlo Rev 1

B-3

	1	Formatted: Font: 8 pt
	11	
20100020 Sitewite Evaluation Work Plan the Pay 1	6	

Formatted: Justified

QAPP WORKSHEETS

1.	Title and Approval Page.	B-9+ -
2.	OAPP Identifying Information	B- 10 + 、
3.	Distribution List	B-14
5.	Project Contractor Organizational Chart	<mark>B-</mark> 15
8.	Special Personnel Training Requirements Table	<mark>B-</mark> 16
10.	Problem Definition	<mark>B-</mark> 17
11.	Project Quality Objectives/Systematic Planning Process Statements	<mark>B-</mark> 18
12-1.	Measurement Performance Criteria Table	<mark>B-</mark> 19
12-2.	Measurement Performance Criteria Table	<u> B-</u> 20
<u>12-3.</u>	Measurement Performance Criteria Table	<u> B-</u> 21
<u>12-4.</u>	Measurement Performance Criteria Table	<u> B-</u> 22
<u>12-5.</u>	Measurement Performance Criteria Table	<u> B-</u> 23
<u>12-6.</u>	Measurement Performance Criteria Table	<u> B-</u> 24
<u>12-7.</u>	Measurement Performance Criteria Table	<u> B-</u> 25
<u>12-8.</u>	Measurement Performance Criteria Table	<u> B-</u> 26
<u>12-9.</u>	Measurement Performance Criteria Table	<u> B-</u> 27
<u>12-10.</u>	Measurement Performance Criteria Table	<u> B-</u> 28
<u>12-11.</u>	Measurement Performance Criteria Table	<u> B-</u> 29
<u>13.</u>	Secondary Data Criteria and Limitations Table	<u> B-</u> 30
<u>14.</u>	Summary of Project Tasks	<u> B-</u> 31
<u>15-1.</u>	Reference Limits and Evaluation Table	<u> B-</u> 32
<u>15-2.</u>	Reference Limits and Evaluation Table	<u> B-</u> 35
<u>15-3.</u>	Reference Limits and Evaluation Table	<u> B-</u> 39
<u>15-4.</u>	Reference Limits and Evaluation Table	<u> B-</u> 41
<u>15-5.</u>	Reference Limits and Evaluation Table	<u> B-</u> 42
<u>15-6.</u>	Reference Limits and Evaluation Table	<u> B-</u> 43
<u>15-7.</u>	Reference Limits and Evaluation Table	<u> B-</u> 44
<u>16.</u>	Project Schedule/Timeline Table	<u> B-</u> 45
<u>17.</u>	Sampling Design and Rationale.	<u> B-</u> 46
<u>18-1.</u>	Sampling Locations and Methods/SOP Requirements Table for Screening Samples	<u> B-</u> 4/
<u>18-2.</u>	Sampling Locations and Methods/SOP Requirements Table for Samples Submitted to the	D 40
10	Fixed-Base Laboratory for Analysis	<u> B-</u> 48
<u>19.</u>	Analytical SOP Requirements Table	<u> B-</u> 49
<u>20.</u> 21	Project Sompling SOD Deforences Table	<u> B-</u> 30 D 51
$\frac{21}{22}$	Field Equipment Calibration Maintenance Testing and Inspection Table	<u> D-</u> 31 D 52
$\frac{22}{22}$	Analytical SOD Deferences Table	<u>D 52</u>
<u>23.</u> 24	Analytical Instrument Calibration Table	<u> D-</u> 55 D 54
<u>24.</u> 25	Analytical Instrument and Equipment Maintenance, Testing, and Inspection Table	<u>B 55</u>
<u>25.</u> 26	Sample Handling System	<u> D-</u> 55 B-56
<u>20.</u> 27	Sample Custody Requirements	<u>B-57</u>
$\frac{27}{28}$	OC Samples Table	<u> D-</u> 57 B-58
<u>20.</u> 29	Project Documents and Records Table	<u>B-61</u>
30	Analytical Services Table	B-62
31	Planned Project Assessments Table	<u>B-63</u>
32	Assessment Findings and Corrective Action Responses	<u>B-64</u>
33	OA Management Reports Table	B-65
	· · · · · · · · · · · · · · · · · · ·	

Formatted: Indent: Left: -1.8 pt, Hanging: 37.8 pt, Don't adjust space between Latin and Asian text, Tabs: 36 pt, Left + Not at 27 pt + 28.8 pt

Formatted: Don't adjust space between Latin and Asian text, Tabs: Not at 27 pt + 28.8 pt

20100920 Sitewite Evaluation Work Plan tlo Rev 1

<u>B-</u>5

Formatted: Centered

<u>34</u> .	Verification (Step I) Process Table	<u> B-</u> 66
35.	Validation (Steps IIa and IIb) Process Table	<u> B-</u> 67
36.	Validation (Steps IIa and IIb) Summary Table	<u>B-</u> 68
37.	Usability Assessment	<u> B-</u> 69
	-	▲

Deleted: ¶

Deleted: ¶ ______Section Break (Next Page)_____ THIS PAGE INTENTIONALLY LEFT BLANK¶

Formatted: Indent: Left: -1.8 pt, Hanging: 37.8 pt, Tabs: 36 pt, Left + 468 pt, Right,Leader: ...

Formatted: Centered

20100920 Sitewite Evaluation Work Plan tlo Rev 1

<u>B-</u>6

ACRONYMS

CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
COC	contaminant of concern
COPC	chemical of potential concern
DOE	U.S. Department of Energy
DOECAP	DOE Consolidated Audit Program
EPA	U. S. Environmental Protection Agency
FFA	Federal Facility Agreement
HF	hydrogen fluoride
OU	operable unit
PCB	polychlorinated biphenyl
PGDP	Paducah Gaseous Diffusion Plant
QA	quality assurance
QAPP	Quality Assurance Project Plan
SAP	Sampling and Analysis Plan
SI	Site Investigation
SWMU	solid waste management unit
TCE	trichloroethene
UFP	Uniform Federal Policy for Quality Assurance Project Plans

Formatted: Justified

Formatted: Font: 8 pt

20100920 Sitewite Evaluation Work Plan tlo Rev 1

B-7

20100920 Sitewite Evaluation Work Plan tlo Rev 1

Title: Sitewide Evaluation QAPP Revision Number: 0 Revision Date: <u>10</u>/2010

1	Deleted: 03
1	Comment [t1]: TOC needs updating with this name

11

QAPP Worksheet #1 Title <u>and <mark>Approval</mark> Page</u>

UFP-QAPP Manual Section 2.1:

Site Name/Project Name: Site Location:

Sitewide Evaluation Work Plan at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky		Formatted: Font: Italic
Document Title		Deleted:
U.S. Department of Energy	~	
LATA Environmental Services of Kentucky, LLC		Deleted:
		Deleted:
Preparer's Name and Organizational Affiliation	1	
761 Veterans Avenue, Kevil, KY, 42053; (270) 441-5000	N=	Formatted: Left
Preparer's Address, Telephone Number, and E-mail Address	11.	Deleted: <u>'</u>
11/2010 Properties Date (Menth/Veer)		Deleted: :
		Deleted:
Investigative Organization's Project Manager	1.12	
Signature		Deleted:
	N.	Deleted: 9
Printed Name/Organization/Date		Deleted: Day/
Investigative Organization's Project QA Officer:		
Signature		
Drinted Name/Organization/Date		
Approval Signatures:		Deleted: Lead Organization's Project
Signature		Manager:
		Signature¶
Printed Name/Title/Date		
Approval Authority		Printed
Other Approval Signatures:		Name/Organization/Date1
Printed Name/Title/Date		
Document Control Number: DOE/LX/07-0228		Formatted: Underline
	1.1.1	Deleted: Document Control N([2]

Formatted: Justified

20100920 Sitewite Evaluation Work Plan tlo Rev 1

B-9

Title: Sitewide Evaluation QAPP **Revision Number:** 0 **Revision Date:** 10/2010

Deleted: 03

QAPP Worksheet #2 QAPP Identifying Information

UFP-OAPP Manual Section 2.2.4: Site Name/Project Name: Sitewide Evaluation at the Paducah Gaseous Diffusion Plant, Paducah, Kentuckv Site Location: Paducah Gaseous Diffusion Plant Site Number/Code: N/A **Operable Unit:** Soils Operable Unit Contractor Name: LATA Environmental Services of Kentucky, LLC, Deleted: Paducah Remediation Contractor Number: DE-AC30-10CC40020 (DOE-LATA Kentucky contract) Services, LLC Contract Title: Paducah Gaseous Diffusion Plant Remediation Subcontract Deleted: Work Assignment Number: N/A Deleted: 06EW05001 Deleted: PRS Identify guidance used to prepare QAPP: Uniform Federal Policy for Quality Assurance Project 1. Plans ... [3] CERCLA and Federal Facility Compliance Agreement for the 2. Identify regulatory program: Paducah Gaseous Diffusion Plant (DOE/OR/07-1707) 3. Identify approval entity: U.S. EPA, Commonwealth of Kentucky Deleted: Indicate whether the QAPP is a generic or a project-specific QAPP (circle one). 4. 5. List dates of scoping sessions that were held: Scoping was accomplished from 2007 to 2008 6. List dates and titles of QAPP documents written for previous site work, if applicable: Deleted: ¶ **Approval Date:** Title: 11/12/2009 (Latest Removal Action Work Plan for Soils Operable Unit Inactive Facilities at the Deleted: Quality Assurance Program Paducah Gaseous Diffusion Plan, Paducah, Kentucky (DOE/LX/07-Plan for the Paducah Environmental date of regulatory Remediation Project, Paducah Gaseous 0220&D2R1) approval). Diffusion Plant, Paducah, Kentucky Removal Action Work Plan for Contaminated Sediment Associated with the 11/12/2009 (Latest (PRS-CDL-0058) Surface Water Operable Unit (On-Site) at the Paducah Gaseous Diffusion date of regulatory Deleted: Final Version 4, effective date Plant, Paducah, Kentucky (DOE/LX/07-0221&D2R1) approval). 06/30/09 Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study 01/06/2010 (Latest at the Paducah Gaseous Diffusion Plant. Paducah. Kentucky (DOE/LX/07date of regulatory 0120&D2R2) approval). Formatted: Font: Not Italic Formatted: Not Highlight 7. List organizational partners (stakeholders) and connection with lead organization: U.S. EPA, Commonwealth of Kentucky List data users: DOE, Contractor, subcontractors, U.S. EPA, Commonwealth of Kentucky 8. 9. If any required QAPP elements and required information are not applicable to the project, then indicate the omitted QAPP elements and required information on the attached table. Provide an explanation for their exclusion below: N/A

20100920 Sitewite Evaluation Work Plan tlo Rev 1

B-10

Formatted: Justified

Deleted: 03

QAPP elements and required information that are not applicable to the project are indicated and an explanation is provided in the QAPP.

Note: Information is only entered in the "Crosswalk to Related Documents" if the information is not contained in the QAPP worksheets as indicated in first two columns. Also, if the required QAPP element fulfills other quality requirements, that requirement is noted in the "Crosswalk to Related Documents" column.

Required QAPP Element(s) and		Worksheet	Crosswalk to
Corresponding QAPP Section(s)	Required Information	No.	Related Documents
Project Ma	nagement and Objectives	•	
2.1 Title and Approval Page	- Title and Approval Page	1	
2.2 Document Format and Table of Contents	- Table of Contents	2	
2.2.1 Document Control Format	- QAPP Identifying		
2.2.2 Document Control Numbering	Information		
System			
2.2.3 Table of Contents			
2.2.4 QAPP Identifying Information			
2.3 Distribution List and Project Personnel Sign-	- Distribution List		
Off Sheet	- Project Personnel Sign-		
2.3.D Distribution List	Off Sheet	3	
Q.3.2 Project Personnel Sign-Off Sheet		4 Omitted ¹	
2.4 Project Organization	- Project Organizational		DOE O 414.1C/10
2.4.1 Project Organizational Chart	Chart	5	CFR § 830.120
C 4.2) Communication Pathways	- Communication	6 Omitted ¹	Criterion 1–
Q.4.3 Personnel Responsibilities and	Pathways	/ Omitted	Management
Qualifications	- Personnel Responsibilities and	0	Program; Criterion 2
Cartification	Qualifications Table	0	Training and
Certification	- Special Personnel		Quanneanon,
	Training Requirements		
	Table		
2.5 Project Planning/Problem Definition	- Project Planning Session		DOE O 414.1C/10
2.5.1 Project Planning (Scoping)	Documentation	9 Omitted ¹	CFR § 830.120
2.5.2 Problem Definition, Site History, and	(including Data Needs	10	Criterion 6 - Design
Background	tables)		
	- Project Scoping Session		
	Participants Sheet		
	- Flobleni Dennition, Site		
	- Site Maps (historical and		
	present)		
2.6 Project Quality Objectives and	- Site-Specific POOs		
Measurement Performance Criteria			
2.6.1 Development of Project Quality	- Measurement	11	
Objectives Using the Systematic	Performance Criteria		
Planning Process	Table		
Q.6.2) Measurement Performance Criteria	-	12	
2.7 Secondary Data Evaluation	- Sources of Secondary	13	
	Data and Information		
	- Secondary Data Criteria		
	and Limitations Table		

Formatted: Justified

20100920 Sitewite Evaluation Work Plan tlo Rev 1

B-11

Title: Sitewide Evaluation QAPP **Revision Number:** 0 **Revision Date:** <u>10</u>/2010

Deleted: 03

Required QAPP Element(s) and		Worksheet	Crosswalk to
Corresponding QAPP Section(s)	Required Information	No.	Related Documents
2.8 Project Overview and Schedule	- Summary of Project		
2.8.1 Project Overview	Tasks	14/15	
(2.8.2) Project Schedule	- Reference Limits and	16	
	Evaluation Table		
	- Project		
	Schedule/Timeline Table		
Measure	ment/Data Acquisition		
3.1 Sampling Tasks	- Sampling Design and		DOE O 414.1C/10
3.1.1 Sampling Process Design and	Rationale	17/18/19/20	CFR § 830.120
Rationale	- Sample Location Map	21	Criterion 5–Work
3.1.2 Sampling Procedures and	- Sampling Locations and	21	Processes; Criterion
Requirements	Methods/SOP		6– Design
3.1.2.1 Sampling Collection	Requirements Table		
Procedures	- Analytical Methods/SOP		
3.1.2.2 Sample Containers, Volume,	Field Quality Control		
and Preservation	- Field Quality Control		
5.1.2.5 Equipment/Sample Containers	Sample Summary Table		
Procedures	- Sampling SOPS		
2 1 2 4 Field Equipment Calibration	Pafaranaas Tabla	22	
Maintenance Testing and Inspection	- Field Equipment	22	
Procedures	Calibration Maintenance		
3.1.2.5 Supply Inspection and	Testing and Inspection		
Acceptance Procedures	Table		
3.1.2.6 Field Documentation	Tuble		
Procedures			
3.2 Analytical Tasks	- Analytical SOPs		DOE O 414.1C/10
3.2.1 Analytical SOPs	- Analytical SOP	23	CFR § 830 120
3.2.2 Analytical Instrument Calibration	References Table	24	Criterion 8–
Procedures	- Analytical Instrument		Inspection and
3.2.3 Analytical Instrument and Equipment	Calibration Table	25	Acceptance Testing
Maintenance, Testing, and Inspection	- Analytical Instrument and		receptance resting
Procedures	Equipment Maintenance.		
3.2.4 Analytical Supply Inspection and	Testing and Inspection		
Acceptance Procedures	Table		
3.3 Sample Collection Documentation	- Sample Collection		DOE O 414 1C/10
Handling. Tracking, and Custody	Documentation Handling		CFR § 830 120
Procedures	Tracking and Custody	26	Criterion 4_
3 3 1 Sample Collection Documentation	SOPs		Documents and
(3.3.2) Sample Handling and Tracking	- Sample Container		Records
System	Identification	27	1000105
3 3 3 Sample Custody	- Sample Handling Flow	2,	
5.5.5 Bumple Custody	Diagram		
	- Example Chain-of-		
	Custody Form and Seal		
3.4 Quality Control Samples	OC Samples Table	28	
2.4.1) Sampling Quality Control Samples	- QC Samples Table	20	
Analytical Quality Control Samples	A nalugia Decision Tree		
Q.4.2 Analytical Quality Control Samples	Analysis Decision Tree		

20100920 Sitewite Evaluation Work Plan tlo Rev 1

B-12

Formatted: Justified

Title: Sitewide Evaluation QAPP **Revision Number:** 0 **Revision Date:** <u>10</u>/2010

Deleted: 03

	Required QAPP Element(s) and		Worksheet	Crosswalk to
	Corresponding QAPP Section(s)	Required Information	No.	Related Documents
3.5	Data Management Tasks 3.5.1 Project Documentation and Records 3.5.2 Data Package Deliverables 3.5.3 Data Reporting Formats 3.5.4 Data Handling and Management 3.5.5 Data Tracking and Control	 Project Documents and Records Table Analytical Services Table Data Management SOPs 	29 30	DOE O 414.1C/10 CFR § 830.120 Criterion 4– Documents and Records
	Asse	ssment/Oversight		
4.1	Assessments and Response Actions 4.1.1 Planned Assessments 4.1.2 Assessment Findings and Corrective Action Responses	 Assessments and Response Actions Planned Project Assessments Table Audit Checklists Assessment Findings and Corrective Action Responses Table 	31 32	DOE O 414.1C/10 CFR § 830.120 Criterion 3–Quality Improvement; Criterion 9– Management Assessment; Criterion 10– Independent Assessment
4.2	QA Management Reports	- QA Management Reports Table	33	
4.3	Final Project Report	·		
		Data Review		
5.1	Overview			
5.2	Data Review Steps 5.2.1 Step I: Verification 5.2.2 Step II: Validation 5.2.2.1 Step IIa Validation Activities 5.2.2 Step IIb Validation Activities 5.2.3 Step III: Usability Assessment 5.2.3.1 Data Limitations and Actions from Usability Assessment 5.2.3.2 Activities	 Verification (Step I) Process Table Validation (Steps IIa and IIb) Process Table Validation (Steps IIa and IIb) Summary Table Usability Assessment 	34/35 36 37	
5.3	Streamlining Data Review 5.3.1 Data Review Steps To Be Streamlined 5.3.2 Criteria for Streamlining Data Review 5.3.3 Amounts and Types of Data Appropriate for Streamlining			

¹Worksheets omitted: #4-included in contractor work control documentation, #6-communication pathways established elsewhere, #7-personnel qualifications are not listed, and #9-scoping activities occurred in 2007 through 2008.

20100920 Sitewite Evaluation Work Plan tlo Rev 1

B-13

Formatted: Justified

Title: Sitewide Evaluation QAPP **Revision Number:** 0 **Revision Date:** <u>10</u>/2010

Deleted: 03

Formatted: Left

QAPP Worksheet #3 Distribution List

UFP-QAPP Manual Section 2.3.1:

			Telephone			Document
QAPP Recipients	Title	Organization	Number	Fax Number	E-mail Address	Control Number
The QAPP is	N/A	N/A	N/A	N/A	N/A	N/A
submitted in concert						
with the Sitewide						
Evaluation Work						
Plan; thus, it will be						
included on the						
Sitewide Evaluation						
Work Plan						
distribution list.						

B-14

Title: Sitewide Evaluation QAPP **Revision Number:** 0 Revision Date: 10/2010

Deleted: 03

	Formatted: Left						
UFP-QAPP Man	ual Section 2.4.4:						
Project Function	Specialized Training – Title or Description of Course	Training Provider	Training Date	Personnel/Groups Receiving Training	Personnel Titles/Organizatio nal Affiliation	Location of Training Records/Certificates ¹	
Project Tasks	There will be no specialized training required for this project other than what is normally required for site work at PGDP. The contractor will evaluate specific tasks and personnel will be assigned training as necessary to perform those tasks. Training may address health and safety aspects of specific tasks as well as contractor- specific, site-specific, and task-specific requirements.	N/A	N/A	N/A	N/A	N/A	Formatted: Font: 8 p

QAPP Worksheet #8

- B-16

Title: Sitewide Evaluation QAPP **Revision Number:** 0 Revision Date: <u>10</u>/2010

Deleted: 03

	QAPP Worksheet #10 Problem Definition	•	Formatted: Left
	UFP-OAPP Manual Section 2.5.2:		
	The problem to be addressed by the project: Per the Site Management Plan (SMP) – Annual Revision – FY2009, DOE/LX/07-0185&D2/R1, for PGDP "a sitewide evaluation will be performed to identify any unknown contaminated areas requiring further CERCLA evaluation and to develop information usable when completing the Resource Conservation and Recovery Act Corrective Action (RCRA) Environmental Indicators process."		
	The environmental questions being asked: Are there any unknown contaminated areas, originating from PGDP, requiring further CERCLA evaluation?		
•	Observations from any site reconnaissance reports: Radiological and visual walkover surveys performed to date under DOE authority on DOE-Owned Property outside of the <u>fenced area</u> indicate 150 potential anomalies identified visually with none exhibiting an elevated (greater than 2 x background) radiological signature.		Deleted: Limited
B-1	A synopsis of secondary data or information from site reports: Section 3 of the work plan describes the secondary data used to develop DQOs.	`.	Formatted: Font: 8 pt
7	The possible classes of contaminants and the affected matrices: Potential classes of contaminants are metals, PCBs, and radiological contamination. Affected matrices are expected to be as follows (if present):		
	 Soil – which is defined as soil piles and disturbed soil areas. Rubble areas – which are defined as areas of varied materials. 		
	The rationale for inclusion of chemical and nonchemical analyses: Worksheet #11 presents rationale for inclusion of chemical and nonchemical analyses.		

Information concerning various environmental indicators: Environmental indicators include metals, PCBs, and uranium parameters for PGDP contamination and are utilized as indicators for this project.

Project decision conditions ("IE..., then..." statements): Flowcharts listed in Worksheet #11 and located in the Sitewide Evaluation Work Plan present the project decisions conditions by which previously unidentified anomalies will be identified.

.

Title: Sitewide Evaluation QAPP **Revision Number:** 0 **Revision Date:** <u>10</u>/2010

Formatted: Left

Deleted: 03

QAPP Worksheet #11 Project Quality Objectives/Systematic Planning Process Statements

UFP-QAPP Manual Section 2.6.1:

Who will use the data? DOE, Prime Contractor, subcontractor, KY, and EPA.

What will the data be used for? To identify any unknown contaminated areas originating from PGDP requiring further CERCLA evaluation and to develop information usable when completing the RCRA EI process.

What type of data are needed? (target analytes, analytical groups, field screening, on-site analytical or off-site laboratory techniques, sampling techniques) Radiological surveys and visual walkover surveys will be used to identify and define the limits of potential anomalies. Field screening methods will be used to perform initial characterization of soil/rubble for metals, PCBs, and radiological contamination as discussed in the work plan. Based on the type of anomaly identified, a percentage of the samples collected for field screening will be analyzed for target analytes listed on Worksheet #10 at a DOE Consolidated Audit Program (DOECAP) certified laboratory. The actual number of samples submitted to the off-site laboratory, based on the type and size of each anomaly, will be identified in work package documents. Note that the soil results will be reported on an "as received" or wet weight basis.

20100920 Sitewite Evaluation Work Plan tlo Rev 1

How "good" do the data need to be in order to support the environmental decision? The data need to allow identification and evaluation of anomalies. Data used for future human health risk assessment will be evaluated for use per the RMD (DOE 2001). Data must meet the sensitivity requirements for comparison to appropriate criteria as discussed in Section 4.3 of this work plan. The acquired data must be of known quality to increase confidence that SWMUs and AOCs associated with PGDP have been identified.

How much data are needed? (number of samples for each analytical group, matrix, and concentration) The number of samples will be dependent on the number and types of anomalies identified as defined in the Work Plan and Appendix A.

Where, when, and how should the data be collected/generated? See Work Plan and Appendix A.

Who will collect and generate the data? A sample team of individuals who are properly trained and skilled in the execution of screening and sampling procedures will collect samples and perform the field screening measurements.

How will the data be reported? Field data will be recorded on chain-of-custody forms, in field logbooks, and field data sheets. The fixed-base laboratory will provide data in an Electronic Data Deliverable (EDD). Project data will be reported from the Paducah Oak Ridge Environmental Information System (OREIS).

How will the data be archived? Data will be archived in OREIS. Data will be archived for 30 years per contract requirements.

Formatted: Font: 8 pt

Deleted: need to be definitive data that meet the sensitivity requirements for comparison to appropriate criteria as discussed in Section 4.3 of the work plan.

Title: Sitewide Evaluation QAPP Revision Number: 0 Revision Date: 10/2010 Deleted: 03

QAPP Worksheet #12-1 Formatted: Left **Measurement Performance Criteria Table UFP-QAPP Manual Section 2.6.2:** Soil Matrix Analytical Group Metals (aluminum, antimony, barium, beryllium, calcium, chromium, iron, magnesium, manganese, molybdenum, nickel, sodium, vanadium, and zinc) Formatted: Font: 8 pt **Concentration Level** Low Measurement QC Sample and/or Activity QC Sample Assesses Error Analytical Data Quality Performance Used to Assess for Sampling (S), Analytical Method/SOP¹ (A) or both (S&A) Sampling Procedure Indicators (DQIs) Criteria **Measurement Performance** See Worksheet #21 SW846-6010 Precision-Lab RPD-35% Laboratory Duplicates А +/- 20% recovery Laboratory Sample Spikes Accuracy/Bias А Accuracy/Bias-No target Method Blanks/Instrument А Contamination compounds > Blanks quantitation limit Data completeness check S&A Completeness² 90%

¹ The most current version of the method will be used.

² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

Formatted: Table Title

B-19

.

Title: Sitewide Evaluation QA	APP
Revision Number: 0	
Revision Date: <u>10</u> /2010	Deleted: 03

	Formatted: Left					
Matrix	Soil]				
Analytical Group	Metals (arsenic, cadmium, cobalt, copper, lead, selenium, silver thallium, uranium)					
Concentration Level	Low	-				
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)	
See Worksheet #21	SW846-6020	Precision-Lab	RPD-35%	Laboratory Duplicates	A	 Formatted: Font: 8 pt
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А	
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	A	
		Completeness ¹	90%	Data completeness check	S&A	

¹ The most current version of the method will be used. ² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

B-20

.

Formatted: Table Title

Title: Sitewide Evaluation QAPP **Revision Number:** 0 Revision Date: <u>10</u>/2010

Deleted: 03

4---

	4	Formatted: Left					
Matrix	Soil	7					
Analytical Group	Metal (mercury)	-					
Concentration Level	Low						
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)		
See Worksheet #21	SW846-7470	Precision-Lab	RPD-35%	Laboratory Duplicates	A		
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А		
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	A		Formatted: Font: 8 pt
		Completeness ¹	90%	Data completeness check	S&A		

OAPP Workshoot #12-3

20100920 Sitewite Evaluation Work Plan tlo Rev 1

B-21

¹ The most current version of the method will be used.

² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

Formatted: Table Title
Deleted: 03

	Formatted: Left					
Matrix	Soil	7				
Analytical Group	PCBs	-				
Concentration Level	Low					
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)	
See Worksheet #21	SW846-8082	Precision-Lab	RPD-43%	Laboratory Duplicates	A	
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	A	
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	A	Formatted: Font: 8 pt
		Completeness ²	90%	Data completeness check	S&A	1

B-22

.

¹ The most current version of the method will be used.

² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

Deleted: 03

	QAPP Worksheet #12-5									
	Measurement Performance Criteria Table									
Matrix	Wipe Sample]								
Analytical Group	PCBs	-								
Concentration Level	Low									
			Measurement	QC Sample and/or Activity	QC Sample Assesses Error					
	Analytical	Data Quality	Performance	Used to Assess	for Sampling (S), Analytical					
Sampling Procedure	Method/SOP ¹	Indicators (DQIs)	Criteria	Measurement Performance	(A) or both (S&A)					
See Worksheet #21	Immunoassay PCB	Manufacturer's	Manufacturer's	Manufacturer's Instruction	Α					
	Wipe Test Kit	Instruction Manual	Instruction Manual	Manual						
					А					
					А		Formatted: Font: 8 pt			
			0.001/			-				

¹ The most current version of the method will be used. ² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

B-23

Title: Sitewide Evaluation QAPP	
Revision Number: 0	
Revision Date: <u>10</u> /2010	Deleted: 03

Formatted: Table Title

Formatted: Font: 8 pt

Formatted: Left

QAPP Worksheet #12-6 Measurement Performance Criteria Table

Matrix	Soil	
Analytical Group	Radionuclides (uranium-234, uranium-235, uranium-238)	
Concentration Level	Low	
	Analytical	Data Quality

			Measurement	QC Sample and/or Activity	QC Sample Assesses Error
	Analytical	Data Quality	Performance	Used to Assess	for Sampling (S), Analytical
Sampling Procedure	Method/SOP ¹	Indicators (DQIs)	Criteria	Measurement Performance	(A) or both (S&A)
See Worksheet #21	Alpha spectroscopy	Precision-Lab	RPD-20%	Laboratory Duplicates	А
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	A
		Completeness ²	90%	Data completeness check	S&A

¹ The most current version of the method will be used. ² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

				Tit Re Re	tle: Sitewide Evaluation QAPP evision Number: 0 evision Date: <u>10</u> /2010		Deleted: 03
		QAP	P Worksheet #12-7			4	Formatted: Table Title
		Measurement	Performance Criteria	a Table			Formatted: Left
Matrix	Soil]					
Analytical Group	Radionuclides (americium-241, neptunium-237, plutonium-238, plutonium-239/240, thorium-230)						Deleted during 228
Concentration Level	Low					<[Deleted: thorium-228,
Concentration Level	LUW						B - I - I - I - 000
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DOIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	V QC Sample Assesses Error for Sampling (S), Analytical e (A) or both (S&A)		Formatted: Font: 8 nt
Sampling Procedure See Worksheet #21	Analytical Method/SOP ¹ Alpha spectroscopy	Data Quality Indicators (DQIs) Precision–Lab	MeasurementPerformanceCriteriaRPD-50%	QC Sample and/or Activity Used to Assess Measurement Performance Laboratory Duplicates	QC Sample Assesses Error for Sampling (S), Analytical e (A) or both (S&A) A		Formatted: Font: 8 pt
Sampling Procedure See Worksheet #21	Analytical Method/SOP ¹ Alpha spectroscopy	Data Quality Indicators (DQIs) Precision–Lab Accuracy/Bias	Measurement Performance CriteriaRPD-50%+/- 20% recovery	QC Sample and/or Activity Used to Assess Measurement Performance Laboratory Duplicates Laboratory Sample Spikes	QC Sample Assesses Error for Sampling (S), Analytical e (A) or both (S&A) A		Formatted: Font: 8 pt
Sampling Procedure See Worksheet #21	Analytical Method/SOP ¹ Alpha spectroscopy	Data Quality Indicators (DQIs) Precision–Lab Accuracy/Bias Accuracy/Bias- Contamination	Measurement Performance Criteria RPD-50% +/- 20% recovery No target compounds > quantitation limit	QC Sample and/or Activity Used to Assess Measurement Performance Laboratory Duplicates Laboratory Sample Spikes Method Blanks/Instrument Blanks	QC Sample Assesses Error for Sampling (S), Analytical e (A) or both (S&A) A A A		Formatted: Font: 8 pt

¹ The most current version of the method will be used. ² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

20100920 Sitewite Evaluation Work Plan tlo Rev 1

Formatted: Table Title

- -

Deleted: 03

	Formatted: Left					
Matrix	Soil]				
Analytical Group	Radionuclides (cesium-137)	-				
Concentration Level	Low					
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)	
See Worksheet #21	Gamma spectroscopy	Precision-Lab	RPD-50%	Laboratory Duplicates	А	
		Accuracy/Bias	+/- 20% recovery	Laboratory Sample Spikes	А	Formatted: Font: 8 pt
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	А	
		Completeness ²	90%	Data completeness check	S&A	

¹ The most current version of the method will be used. ² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

Formatted: Table Title

Title: Sitewide Evaluation QAPP **Revision Number:** 0 Revision Date: 10/2010 **Deleted:** 03

QAPP Worksheet #12-9 Formatted: Left **Measurement Performance Criteria Table** Matrix Soil **Analytical Group** Radionuclides (technetium-99) **Concentration Level** Low Measurement QC Sample and/or Activity QC Sample Assesses Error Analytical **Data Quality** Performance Used to Assess for Sampling (S), Analytical Method/SOP¹ **Sampling Procedure** Indicators (DQIs) Criteria **Measurement Performance** (A) or both (S&A) Laboratory Duplicates See Worksheet #21 Liquid scintillation Precision-Lab RPD-50% А Accuracy/Bias +/- 20% recovery Laboratory Sample Spikes А . Formatted: Font: 8 pt Accuracy/Bias-No target Method Blanks/Instrument A compounds > Contamination Blanks quantitation limit Completeness² 90% Data completeness check S&A

¹ The most current version of the method will be used.

² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

B-27

Formatted: Table Title

Deleted: 03

QAPP Worksheet #12-10 Formatted: Left **Measurement Performance Criteria Table** Matrix Soil Metals Analytical Group **Concentration Level** Low Measurement QC Sample and/or Activity QC Sample Assesses Error Analytical Data Quality for Sampling (S), Analytical Performance Used to Assess Method/SOP¹ Sampling Procedure Indicators (DQIs) Criteria **Measurement Performance** (A) or both (S&A) See Worksheet #21 SW846-6200 (XRF) Precision-Lab RPD-20% Laboratory Duplicates A Accuracy/Bias +/- 20% recovery Laboratory Sample Spikes А Accuracy/Bias-No target Method Blanks/Instrument Α Formatted: Font: 8 pt Contamination compounds > Blanks quantitation limit Data completeness check Completeness² 90% S&A

The most current version of the method will be used.

² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

Formatted: Table Title

B-28

- ----

	Formatted: Left					
Matrix	Soil	7				
Analytical Group	Total PCB	-				
Concentration Level	Low					
Sampling Procedure	Analytical Method/SOP ¹	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)	
See Worksheet #21	HACH Pocket Colorimeter TM II Test Kit or equivalent	Manufacturer's Instruction Manual	Manufacturer's Instruction Manual	Manufacturer's Instruction Manual	А]
		Completeness ²	90%	Data completeness check	S&A	Formatted: Font: 8 pt

¹ The most current version of the method will be used.

² Completeness is calculated as the number of samples planned to be collected divided by the number of samples results that are not rejected.

.

20100920 Sitewite Evaluation Work Plan tlo Rev 1

Deleted: 03 Formatted: Left

Secondary Data	Data Source (Originating Organization, Report Title, and Date)	Data Generator(s) (Originating Org., Data Types, Data Generation/Collection Dates)	How Data Will Be Used	Limitations on Data Use	
Process knowledge, historical use and results of Soil Piles and Rubble	DOE 2008. Site Evaluation Report for Soil Pile I at the Paducah Gaseous Diffusion Plant. Paducah. Kentucky. DOE/LX/07-	See reports	Assist in planning	Assist in planning only.	
Areas <u>evaluations</u> .	-0108&D2. DOE 2009. Site Evaluation Report for				eleted: investigations ormatted: Font: 8 pt
	Addendum 1-B Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0225&D1.				
	DOE 2009. Site Evaluation Report for Addendum 2 Soil Piles at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0188&D2.				
	DOE 2009. Site Evaluation Report for Rubble Areas at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE (1 X/07.0227.8-D0)				

QAPP Worksheet #13 Secondary Data Criteria and Limitations Table

	Title: Sitewide Evaluation QAPP Revision Number: 0		
	Revision Date: 10/2010		Deleted: 03
QAPP Worksheet #14 Summary of Project Tasks ¹	•		Formatted: Left
UFP-QAPP Manual Section 2.8.1:			
Sampling Tasks: Sampling will be per Sitewide Evaluation Work Plan and Appendix A, Sampling	g and Analysis Plan		
Analysis Tasks: Analysis will be per Sitewide Evaluation Work Plan and Appendix A, Sampling a	nd Analysis Plan		
Quality Control Tasks: Quality Control will be per QAPP worksheets as follows:			
• QC samples – Worksheets #20 and #28			
• Equipment calibration – Worksheets #22 and #24			
• Data review/validation – Worksheets #34, #35, #36 and #37			
Secondary Data: Process knowledge, historical use and results of Soil Piles and Rubble Areas eva	luations:	1	Deleted: investigations
• DOE 2008. Site Evaluation Report for Soil Pile I at the Paducah Gaseous Diffusion Plant,	Paducah, Kentucky, DOE/LX/07-0108&D2.		Formatted: Font: 8 pt
 DOE 2009. Site Evaluation Report for Addendum 1-B Soil Piles at the Paducah Gaseous L DOE/LX/07-0225&D1. 	Diffusion Plant, Paducah, Kentucky,	Ĺ	
 DOE 2009. Site Evaluation Report for Addendum 2 Soil Piles at the Paducah Gaseous Diff DOE/LX/07-0188&D2. 	fusion Plant, Paducah, Kentucky,		
• DOE 2009. Site Evaluation Report for Rubble Areas at the Paducah Gaseous Diffus 0227&D0.	tion Plant, Paducah, Kentucky, DOE/LX/07-		
Data Management Tasks: Data Management will be per DOE Prime Contractor procedure, PAD-	ENM-5007, Data Management Coordination.	[Deleted: PRS
Documentation and Records: Documentation and Records will be per DOE Prime Cor	ntractor procedure, <u>PAD-RM-1009</u> , <u>Records</u>	(Deleted: PRS
Management, Administrative Records and Document Control.		·	Deleted: DOC
Assessment/Audit Tasks: Assessments and audits will be per DOE Prime Contractor procedure,	AD-QA-1420, Conduct of Assessments.	[Deleted: PRS
Data Review Tasks: Data review tasks will be per DOE Prime Contractor procedure, PAD-ENM-	5003, Quality Assured Data.		Deleted: P
¹ It is understood that SOPs are contractor specific.		{	Deleted: PRS

Formatted: Left

<u>QAPP Worksheet #15-1</u> <u>Reference Limits and Evaluation Table</u>

Formatted: Space After: 0 pt

<u>UFP-QAPP Manual Section 2.8.1:</u> <u>Matrix: Soil/Sediment</u> <u>Analytical Group: volatile organic compounds</u> <u>Concentration Level: low</u>

Project Analytical Method² Achievable Laboratory Limits³ **Project** Quantitation Action Limit **Limit MDLs Method OLs MDLs QLs** Analyte CAS Number $(\mu g/kg)^1$ $(\mu g/kg)$ (µg/kg) $(\mu g/kg)$ (µg/kg) (µg/kg) 67-64-1 53,400 10 Acetone n/a n/a 6.47 20 107-02-8 4.29 10 2.901 50** Acrolein n/a n/a Acrylonitrile 107-13-1 64.5 10 n/a n/a 1.126 50 Benzene 71-43-2 327 10 0.03 0.253 n/a 5 0.03 0.254 Bromodichloromethane 75-27-4 390 10 5 n/a 75-25-2 0.20 Bromoform 13,800 10 0.366 n/a Bromomethane 74-83-9 186 10 0.03 n/a 0.396 10 78-93-3 153.000 10 0.389 20 -Butanone n/a n/a Carbon disulfide 75-15-0 15,700 10 n/a 0.369 5 n/a 0.02 Carbon tetrachloride 56-23-5 97.8 10 n/a 0.360 5 108-90-7 4,470 10 0.03 0.382 Chlorobenzene n/a 5 Chloroethane 75-00-3 978 10 0.382 10 n/a n/a 2-Chloroethyl vinyl ether 110-75-8 10 0.523 20 n/a n/a n/a Chloroform 67-66-3 18.2 10 0.04 0.092 5 n/a Chloromethane 74-87-3 884 10 0.05 0.553 10 n/a **Dibromochloromethane** 124-48-1 334 10 0.07 n/a 0.329 5 Dibromomethane 74-95-3 3.170 10 0.01 0.405 n/a 5 Dichlorodifluoromethane 75-71-8 5,200 10 0.11 0.449 10 n/a 1-Dichloroethane 75-34-3 22,900 10 0.03 0.392 n/a 5 .2-Dichloroethane 107-06-2 10 0.02 152 n/a 0.372 5 .1-Dichloroethene 75-35-4 27.6 10 0.365 n/a n/a 5 *cis*-1.2-Dichloroethene 156-59-2 1.980 10 0.06 0.159 5 n/a rans-1.2-Dichloroethene 3.260 156-60-5 10 <u>n/a</u> n/a 0.178 5 ,2-Dichloropropane 78-87-5 10 0.02 0.317 180 5 n/a

Formatted: Font: 8 pt

B-32

Deleted: 03

Formatted: Left

Formatted: Space After: 0 pt

QAPP Worksheet #15-1 Reference Limits and Evaluation Table (Continued)

Matrix: Soil/Sediment Analytical Group: volatile organic compounds **Concentration Level:** low

			Project Quantitation	Analytical Method ²		Achievable La	boratory Limits ³
<u>Analyte</u>	CAS Number	<u>Project Action Limit</u> (μg/kg) ¹	<u>Limit</u> <u>(цg/kg)</u>	MDLs (µg/kg)	Method QLs (µg/kg)	<u>MDLs</u> (µg/kg)	<u>QLs</u> (µg/kg)
cis-1,3-Dichloropropene	<u>10061-01-5</u>	<u>n/a</u>	<u>10</u>	<u>n/a</u>	<u>n/a</u>	<u>0.339</u>	<u>5</u>
trans-1,3-Dichloropropene	<u>10061-02-6</u>	<u>n/a</u>	<u>10</u>	<u>n/a</u>	<u>n/a</u>	<u>0.349</u>	<u>5</u>
trans-1,4-Dichloro-2-butene (100)	<u>110-57-6</u>	<u>n/a</u>	<u>10</u>	<u>n/a</u>	<u>n/a</u>	<u>0.397</u>	<u>10</u>
Ethyl benzene	<u>100-41-4</u>	<u>6,010</u>	<u>10</u>	<u>0.03</u>	<u>n/a</u>	<u>0.299</u>	<u>5</u>
Ethyl methacrylate	<u>97-63-2</u>	<u>99,700</u>	<u>10</u>	<u>n/a</u>	<u>n/a</u>	<u>0.240</u>	<u>5</u>
Iodomethane	<u>74-88-4</u>	<u>n/a</u>	<u>10</u>	<u>n/a</u>	<u>n/a</u>	<u>1.511</u>	<u>5</u>
2-Hexanone	<u>591-78-6</u>	<u>n/a</u>	<u>10</u>	<u>n/a</u>	<u>n/a</u>	<u>0.261</u>	<u>20</u>
Methylene chloride	<u>75-09-2</u>	<u>3,920</u>	<u>10</u>	<u>n/a</u>	<u>n/a</u>	<u>0.801</u>	<u>5</u>
4-Methyl-2-pentanone	<u>108-10-1</u>	<u>9,660</u>	<u>10</u>	<u>n/a</u>	<u>n/a</u>	<u>0.326</u>	<u>20</u>
<u>Styrene</u>	<u>100-42-5</u>	<u>128,000</u>	<u>10</u>	<u>0.27</u>	<u>n/a</u>	<u>0.347</u>	<u>5</u>
1,1,1,2-Tetrachloroethane	<u>630-20-6</u>	<u>1,430</u>	<u>10</u>	<u>0.07</u>	<u>n/a</u>	<u>0.238</u>	<u>5</u>
1,1,2,2-Tetrachloroethane	<u>79-34-5</u>	<u>145</u>	<u>10</u>	<u>0.20</u>	<u>n/a</u>	<u>0.272</u>	<u>5</u>
Tetrachloroethene	<u>127-18-4</u>	<u>1,170</u>	<u>10</u>	<u>0.05</u>	<u>n/a</u>	<u>0.280</u>	<u>5</u>
Toluene	<u>108-88-3</u>	<u>31,200</u>	<u>10</u>	<u>0.08</u>	<u>n/a</u>	<u>0.303</u>	<u>5</u>
1,1,1-Trichloroethane	<u>71-55-6</u>	<u>23,200</u>	<u>10</u>	<u>0.04</u>	<u>n/a</u>	<u>0.291</u>	<u>5</u>
1,1,2-Trichloroethane	<u>79-00-5</u>	<u>345</u>	<u>10</u>	<u>0.08</u>	<u>n/a</u>	<u>0.573</u>	<u>5</u>
<u>Trichloroethene</u>	<u>79-01-6</u>	<u>741</u>	<u>10</u>	<u>0.02</u>	<u>n/a</u>	<u>0.290</u>	<u>5</u>
Trichlorofluoromethane	<u>75-69-4</u>	<u>19,300</u>	<u>10</u>	<u>n/a</u>	<u>n/a</u>	<u>0.167</u>	<u>5</u>
1,2,3-Trichloropropane	<u>96-18-4</u>	<u>0.629</u>	<u>10</u>	<u>0.09</u>	<u>n/a</u>	<u>0.559</u>	<u>5**</u>
Vinyl acetate	108-05-4	21,300	<u>10</u>	<u>n/a</u>	<u>n/a</u>	0.305	5
Vinyl chloride	75-01-4	<u>40</u>	<u>10</u>	<u>0.04</u>	<u>n/a</u>	0.428	<u>5</u>
<i>m,p</i> -xylene	<u>NS831</u>	<u>107,000</u>	<u>20</u>	<u>0.06</u>	<u>n/a</u>	<u>0.569</u>	<u>5</u>
o-xylene	<u>95-47-6</u>	<u>659,000</u>	<u>10</u>	0.06	<u>n/a</u>	<u>0.318</u>	5

Formatted: Font: 8 pt

n/a = not available

 $\frac{1}{2}$ Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001d). $\frac{1}{2}$ Analytical MDLs and QLs are those documented in validated methods. MDLs listed are taken from Table 2 of SW846-8260B.

Deleted: 03

QAPP Worksheet #15-1

Reference Limits and Evaluation Table (Continued)

Formatted: Left

³Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits may not reflect the contractual reporting limits agreed to with the laboratory. The actual laboratory has not been contracted; numbers shown are based on historical information from the Soils Remedial Investigation. Actual laboratory numbers will be reported when the laboratory has been contracted. **The laboratory will report results down to their MDL, qualifying the result as estimated, for these analytes that have a project limit below the laboratory QL. Standard practices for qualifying data will

**The laboratory will report results down to their MDL, qualifying the result as estimated, for these analytes that have a project limit below the laboratory QL. Standard practices for qualifying data will apply for any result reported below the laboratory QL.

Deleted: 03

<u>QAPP Worksheet #15-2</u> <u>Reference Limits and Evaluation Table</u>

Formatted: Left

<u>Matrix: Soil/Sediment</u> <u>Analytical Group: semivolatile organic compounds</u> <u>Concentration Level: low</u>

		Project	Project Quantitation	Analytical Method ²		Achievable Lab	oratory Limits ³
<u>Analyte</u>	CAS Number	<u>Action Limit</u> (μg/kg) ¹	<u>Utantitation</u> Limit (µg/kg)	<u>MDLs</u> (µg/kg)	<u>Method QLs</u> (µg/kg)	<u>MDLs</u> (µg/kg)	<u>QLs</u> (μg/kg)
1,2,4-Trichlorobenzene	<u>120-82-1</u>	<u>12,200</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
1,2-Dichlorobenzene	<u>95-50-1</u>	<u>40,000</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
1,3-Dichlorobenzene	<u>541-73-1</u>	<u>997</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
1,4-Dichlorobenzene	<u>106-46-7</u>	<u>1,360</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
2,4,5-Trichlorophenol	<u>95-95-4</u>	<u>160,000</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
2,4,6-Trichlorophenol	<u>88-06-2</u>	<u>8,510</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
2,4-Dichlorophenol	<u>120-83-2</u>	<u>6,930</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
2,4-Dimethylphenol	<u>105-67-9</u>	<u>32,000</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
2,4-Dinitrotoluene	<u>121-14-2</u>	<u>209</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330**</u>
2,6-Dinitrotoluene	<u>606-20-2</u>	<u>209</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330**</u>
2-Chloronaphthalene	<u>91-58-7</u>	<u>33,800</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
2-Chlorophenol	<u>95-57-8</u>	<u>2,810</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
2-Methylnaphthalene	<u>91-57-6</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
2-Nitrophenol	<u>88-75-5</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
4-Bromophenyl phenyl ether	<u>101-55-3</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>

Formatted: Font: 8 pt

Formatted: Left

Deleted: 03

Formatted: Space After: 0 pt

<u>OAPP Worksheet #15-2</u> <u>Reference Limits and Evaluation Table (Continued)</u>

Matrix: Soil/Sediment

Analytical Group: semivolatile organic compounds

Concentration Level: low

		Project	Project Quantitation	Analytical Method ²		Achievable Lab	oratory Limits ³
Analyte	<u>CAS Number</u>	<u>Action Limit</u> (μg/kg) ¹	<u>Uantitation</u> Limit (μg/kg)	<u>MDLs</u> <u>(µg/kg)</u>	<u>Method QLs</u> <u>(μg/kg)</u>	<u>MDLs</u> (µg/kg)	<u>QLs</u> (μg/kg)
4-Chlorophenylphenyl ether	<u>7005-72-3</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
Acenaphthene	<u>83-32-9</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
Acenaphthylene	<u>208-96-8</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u> -
<u>Anthracene</u>	<u>120-12-7</u>	<u>526,000</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
Benz(a)anthracene	<u>56-55-3</u>	<u>67</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330**</u>
Benzo(a)pyrene	<u>50-32-8</u>	<u>6.7</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>6.6*</u>
Benzo(b)fluoranthene	<u>205-99-2</u>	<u>67</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330**</u>
Benzo(ghi)perylene	<u>191-24-2</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
Benzo(k)fluoranthene	<u>207-08-9</u>	<u>670</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
bis(2-chloroethoxy)methane	<u>111-91-1</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
bis(2-chloroethyl) ether	<u>111-44-4</u>	<u>29</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>6.6*</u>
bis(2-chloroisopropyl) ether	<u>108-60-1</u>	<u>1,340</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
bis(2-ethylhexyl)phthalate	<u>117-81-7</u>	<u>2,840</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>43.3</u>	<u>330</u>
Butyl benzyl phthalate	<u>85-68-7</u>	<u>373,000</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
<u>Chrysene</u>	<u>218-01-9</u>	<u>6,700</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
Dibenz(a,h)anthracene	<u>53-70-3</u>	<u>6.7</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>n/a</u>	<u>6.6*</u>
Dibenzofuran	<u>132-64-9</u>	<u>2,930</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
Diethylphthalate	<u>84-66-2</u>	<u>1,970,000</u>	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
Dimethylphthalate	<u>131-11-3</u>	24,600,000	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
Di-n-butylphthalate	<u>84-74-2</u>	<u>264,000</u>	<u>660</u>	<u>n/a</u>	<u>n/a</u>	<u>33.3</u>	<u>330</u>
Di-n-octylphthalate	117-84-0	49,200	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
Fluoranthene	206-44-0	34,300	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>
Fluorene	<u>86-73-7</u>	50,100	<u>660</u>	<u>n/a</u>	<u>660</u>	<u>33.3</u>	<u>330</u>

Formatted: Font: 8 pt

Deleted: 03

1

Formatted: Space After: 0 pt

Formatted: Font: 8 pt

Matrix: Soil/Sediment

Analytical Group: semivolatile organic compounds

Concentration Level: low

		Project	Project Quantitation	Analytical Method ²		Achievable Lab	oratory Limits ³
<u>Analyte</u>	<u>CAS Number</u>	$\frac{\text{Action Limit}}{(\mu g/kg)^1}$	<u>Utantitation</u> Limit (µg/kg)	MDLs (µg/kg)	<u>Method QLs</u> <u>(µg/kg)</u>	MDLs (µg/kg)	<u>QLs</u> <u>(μg/kg)</u>
Hexachlorobenzene	<u>118-74-1</u>	<u>58.5</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330**</u>
Hexachlorobutadiene	<u>87-68-3</u>	<u>320</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330**</u>
Hexachlorocyclopentadiene	<u>77-47-4</u>	<u>9,590</u>	<u>660</u>		<u>660</u>	<u>330</u>	<u>1600</u>
Hexachloroethane	<u>67-72-1</u>	<u>1,600</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330</u>
Indeno(1,2,3-cd)pyrene	<u>193-39-5</u>	<u>67</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330**</u>
<u>Isophorone</u>	<u>78-59-1</u>	<u>98,500</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330</u>
m,p-cresol		$9,770^4$	<u>660</u>		<u>660</u>	<u>66.6</u>	<u>660</u>
<u>Naphthalene</u>	<u>91-20-3</u>	<u>3,470</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330</u>
<u>Nitrobenzene</u>	<u>98-95-3</u>	<u>492</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330</u>
N-Nitroso-di-n-propylamine	<u>621-64-7</u>	<u>7.3</u>	<u>660</u>		<u>660</u>	<u>n/a</u>	<u>6.6*</u>
N-Nitrosodiphenylamine	<u>86-30-6</u>	<u>10,400</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330</u>
o-cresol	<u>95-48-7</u>	<u>79,900</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330</u>
Phenanthrene	<u>85-01-8</u>	<u>n/a</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330</u>
Phenol	<u>108-95-2</u>	<u>1,480,000</u>	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330</u>
Pyrene	<u>129-00-0</u>	25,700	<u>660</u>		<u>660</u>	<u>33.3</u>	<u>330</u>
Pyridine	<u>110-86-1</u>	<u>1,600</u>	<u>660</u>		<u>n/a</u>	<u>66.6</u>	<u>660</u>
3,3'-Dichlorobenzidine	<u>91-94-1</u>	<u>208</u>	<u>1300</u>		<u>1300</u>	<u>33.3</u>	<u>1600**</u>
4-Chloro-3-methylphenol	<u>59-50-7</u>	<u>n/a</u>	<u>1300</u>		<u>1300</u>	<u>33.3</u>	<u>330</u>
4-Chloroaniline	<u>106-47-8</u>	<u>6,390</u>	<u>1300</u>		<u>1300</u>	<u>33.3</u>	<u>330</u>
Benzyl Alcohol	<u>100-51-6</u>	<u>593,000</u>	<u>1300</u>		<u>1300</u>	<u>33.3</u>	<u>330</u>
2,4-Dinitrophenol	<u>51-28-5</u>	<u>5,280</u>	<u>3300</u>		<u>3300</u>	<u>330</u>	<u>1600</u>
2-Methyl-4,6-dinitrophenol	534-52-1	<u>n/a</u>	<u>3300</u>		<u>3300</u>	<u>330</u>	<u>1600</u>
2-Nitroaniline	88-74-4	<u>91.3</u>	<u>3300</u>		<u>3300</u>	<u>33.3</u>	<u>330**</u>
3-Nitroaniline	<u>99-09-2</u>	<u>n/a</u>	<u>3300</u>		<u>3300</u>	<u>33.3</u>	<u>330</u>

<u>OAPP Worksheet #15-2</u> <u>Reference Limits and Evaluation Table (Continued)</u>

Deleted: 03

Formatted: Font: 8 pt

Matrix: Soil/Sediment

Analytical Group: semivolatile organic compounds

Concentration Level: low

		Project	Project Quantitation	Analytical Method ²		Achievable Laboratory Limits ³		
<u>Analyte</u>	<u>CAS Number</u>	Action Limit (µg/kg) ¹	<u>Utantitation</u> Limit (µg/kg)	MDLs (µg/kg)	<u>Method QLs</u> <u>(µg/kg)</u>	MDLs (µg/kg)	<u>QLs</u> (µg/kg)	
-Nitroaniline	<u>100-01-6</u>	<u>n/a</u>	<u>3300</u>		<u>n/a</u>	<u>330</u>	<u>1600</u>	
-Nitrophenol	<u>100-02-7</u>	<u>21,100</u>	<u>3300</u>		<u>3300</u>	<u>330</u>	<u>1600</u>	
Benzoic Acid	<u>65-85-0</u>	<u>10,600,000</u>	<u>3300</u>		<u>3300</u>	<u>330</u>	<u>1600</u>	
entachlorophenol	<u>87-86-5</u>	<u>646</u>	<u>3300</u>		<u>3300</u>	<u>330</u>	<u>660**</u>	

QAPP Worksheet #15-2

Reference Limits and Evaluation Table (Continued)

n/a = not available

¹Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001d). See Section 6.1.1 for additional information. ²Analytical MDLs and QLs are those documented in validated methods. Method QLs listed are taken from Table 2 of SW846-8270D.

³Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits may not reflect the contractual reporting limits agreed to with the laboratory. The actual laboratory has not been contracted; numbers shown are based on historical information from the Soils Remedial Investigation. Actual laboratory numbers will be reported when the laboratory has been contracted.

⁴ Lowest no action limit among m-cresol and p-cresol was used.

*QL for 8270C [Selective Ion Mode (SIM) Operation]

** The laboratory will report results down to their MDL, qualifying the result as estimated, for these analytes that have a project limit below the laboratory QL. Standard practices for qualifying data will apply for any result reported below the laboratory QL.

Deleted: 03

Formatted: Left

QAPP Worksheet #15-3 Reference Limits and Evaluation Table

Matrix: Soil/Sediment **Analytical Group:** metals Concentration Level: low

		Project	Project Quantitation	<u>Analytica</u>	l Method ²	Achievable Lab	oratory Limits ³
<u>Analyte</u>	<u>CAS Number</u>	Action Limit (mg/kg) ¹	<u>Utanttation</u> Limit (mg/kg)	<u>MDLs</u> (mg/kg)	<u>Method QLs</u> (mg/kg)	<u>MDLs</u> (mg/kg)	<u>QLs</u> (mg/kg)
<u>Aluminum</u>	<u>7429-90-5</u>	<u>732</u>	<u>20</u>	<u>n/a</u>	<u>0.0001</u>	<u>1.14</u>	<u>5.0</u>
Antimony	<u>7440-36-0</u>	<u>0.0635</u>	<u>10</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.164</u>	<u>0.5</u>
Arsenic	<u>7440-38-2</u>	<u>0.132</u>	<u>1</u>	<u>n/a</u>	<u>0.001</u>	<u>0.203</u>	<u>1.0</u>
<u>Barium</u>	<u>7440-39-3</u>	<u>37</u>	<u>2.5</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.057</u>	<u>2.0</u>
<u>Beryllium</u>	<u>7440-41-7</u>	<u>0.16</u>	<u>0.5</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.011</u>	<u>0.1**</u>
<u>Cadmium</u>	<u>7440-43-9</u>	<u>2.64</u>	<u>0.5</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.011</u>	<u>0.05</u>
<u>Chromium</u>	<u>7440-47-3</u>	<u>60.5</u>	<u>2.5</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.302</u>	<u>1.0</u>
<u>Copper</u>	<u>7440-50-8</u>	<u>68.1</u>	<u>2.5</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.0536</u>	<u>1.0</u>
Iron	<u>7439-89-6</u>	<u>314</u>	<u>20</u>	<u>n/a</u>	<u>0.0001</u>	<u>3.30</u>	<u>5.0</u>
Lead	<u>7439-92-1</u>	<u>50</u>	<u>20</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.026</u>	<u>0.3</u>
Manganese	<u>7439-96-5</u>	<u>7.46</u>	<u>2.5</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.054</u>	<u>0.5</u>
<u>Mercury</u>	<u>7439-97-6</u>	<u>0.158</u>	<u>0.02</u>	<u>0.00093</u>	<u>n/a</u>	<u>0.006</u>	<u>0.033</u>
<u>Molybdenum</u>	<u>7439-98-7</u>	<u>10.9</u>	<u>5</u>	<u>n/a</u>	<u>n/a</u>	<u>0.077</u>	<u>0.5</u>
Nickel	<u>7440-02-0</u>	<u>34</u>	<u>5</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.0822</u>	<u>0.5</u>
<u>Selenium</u>	<u>7782-49-2</u>	<u>12.1</u>	<u>1</u>	<u>n/a</u>	<u>0.001</u>	<u>0.045</u>	<u>0.5</u>
Silver	<u>7440-22-4</u>	<u>6.12</u>	<u>1</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.008</u>	<u>0.2</u>
<u>Thallium</u>	<u>7440-28-0</u>	0.107^4	<u>2</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.058</u>	<u>0.2**</u>
Uranium	7440-61-1	2.16	1	<u>n/a</u>	<u>n/a</u>	0.012	<u>0.1</u>
Vanadium	<u>7440-62-2</u>	<u>0.562</u>	<u>2.5</u>	<u>n/a</u>	<u>0.0001</u>	<u>0.735</u>	<u>1.0</u>
Zinc	7440-66-6	<u>401</u>	<u>20</u>	<u>n/a</u>	0.0001	<u>1.33</u>	<u>5.0</u>

Formatted: Font: 8 pt

n/a = not available

¹ Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001d). See Section 6.1.1 for additional information. ² Analytical MDLs and QLs are those documented in validated methods. MDL listed for Mercury is taken from SW846-7471B (Section 2.3). Method QLs for the remaining metals are taken from SW846-6020A (Section 1.2)

	Title: Sitewide Evaluation QAPP Revision Number: 0 Revision Date: <u>10</u> /2010	Deleted: 03
³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits may the laboratory. The actual laboratory has not been contracted; numbers shown are based on historical information from the Soils Remedial In when the laboratory has been contracted. ⁴ The no action level for thallium chloride was used. ** The laboratory will report results down to their MDL, qualifying the result as estimated, for these analytes that have a project limit below the apply for any result reported below the laboratory QL.	y not reflect the contractual reporting limits agreed to with	Formatted: Left

Formatted: Font: 8 pt

Deleted: 03

QAPP Worksheet #15-4 Reference Limits and Evaluation Table

Formatted: Left

Matrix: Soil/Sediment Analytical Group: radionuclides **Concentration Level:** low

		Project	Project Quantitation	<u>Analytica</u>	l Method ²	Achievable Lab	oratory Limits ³	
Analyte	CAS Number	Action Limit (pCi/g) ¹	<u>Limit</u> (pCi/g)	<u>MDCs</u> (pCi/g)	<u>Method QLs</u> (pCi/g)	<u>MDCs</u> (pCi/g)	<u>QLs</u> (pCi/g)	
Alpha Activity	<u>12587-46-1</u>	<u>n/a</u>	<u>5</u>	<u>5</u>	<u>n/a</u>	<u>n/a</u>	<u>10</u>	
Beta Activity	<u>12587-47-2</u>	<u>n/a</u>	<u>5</u>	<u>5</u>	<u>n/a</u>	<u>n/a</u>	<u>10</u>	
Americium-241	<u>14596-10-2</u>	<u>0.836</u>	<u>0.05</u>	<u>3</u>	<u>n/a</u>	<u>n/a</u>	<u>0.1</u>	
Cesium-137	<u>10045-97-3</u>	<u>0.0128</u>	<u>0.1</u>	<u>0.5</u>	<u>n/a</u>	<u>n/a</u>	<u>0.2</u>	Formatted: Font: 8 pt
Neptunium-237	<u>13994-20-2</u>	<u>0.0405</u>	<u>0.05</u>	<u>3</u>	<u>n/a</u>	<u>n/a</u>	<u>0.1</u>	
Plutonium-238	<u>13981-16-3</u>	<u>2.27</u>	<u>0.05</u>	<u>6</u>	<u>n/a</u>	<u>n/a</u>	<u>0.1</u>	
Plutonium-239/240	<u>n/a</u>	<u>2.22</u>	<u>0.05</u>	<u>4</u>	<u>n/a</u>	<u>n/a</u>	<u>0.1</u>	
Technetium-99	<u>14133-76-7</u>	<u>67.4</u>	<u>1</u>	<u>8</u>	<u>n/a</u>	<u>n/a</u>	<u>1</u>	
Thorium-228	<u>14274-82-9</u>	<u>0.00418</u>	<u>0.05</u>	<u>3</u>	<u>n/a</u>	<u>n/a</u>	<u>0.1</u>	
Thorium-230	<u>14269-63-7</u>	<u>2.85</u>	<u>0.05</u>	<u>4</u>	<u>n/a</u>	<u>n/a</u>	<u>0.1</u>	
Thorium-232	<u>n/a</u>	<u>2.61</u>	<u>0.05</u>	<u>3</u>	<u>n/a</u>	<u>n/a</u>	<u>0.1</u>	
Uranium-234	<u>13966-29-5</u>	<u>3.81</u>	<u>0.15</u>	<u>3</u>	<u>n/a</u>	<u>n/a</u>	<u>0.1</u>	
<u>Uranium-235/236</u>	<u>15117-96-1</u>	<u>0.0591</u>	<u>0.05</u>	<u>2</u>	<u>n/a</u>	<u>n/a</u>	<u>0.1</u>	
Uranium-238	<u>24678-82-8</u>	<u>0.261</u>	<u>0.15</u>	<u>2</u>	<u>n/a</u>	<u>n/a</u>	<u>0.1</u>	

 ¹Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001d). See Section 6.1.1 for additional information.
 ²Analytical MDCs and QLs are those documented in validated methods.
 ³Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits may not reflect the contractual reporting limits agreed to -Formatted: Table Footnote, Justified with the laboratory. The actual laboratory has not been contracted: numbers shown are based on historical information from the Soils Remedial Investigation. Actual laboratory numbers will be reported when the laboratory has been contracted. Deleted:

Title: Sitewide Evaluation QAPP **Revision Number:** 0 Revision Date: 10/2010 **Deleted:** 03

QAPP Worksheet #15-5 Reference Limits and Evaluation Table

Matrix: Soil/Sediment **Analytical Group:** PCBs **Concentration Level:** low

		Project	Project Overtitation	Analytica	l Method ²	Achievable Laboratory Limits ³		
<u>Analvte</u>	<u>CAS Number</u>	Action Limit (mg/kg) ¹	Action Limit Limit MDLs Method Ql (mg/kg) ¹ (mg/kg) (mg/kg) (mg/kg)		Method QLs (mg/kg)	<u>MDLs</u> (mg/kg)	<u>QLs</u> (mg/kg)	
Aroclor-1016	<u>12674-11-2</u>	<u>0.0574</u>	<u>0.1</u>	<u>n/a</u>	<u>n/a</u>	<u>0.00539</u>	<u>0.033</u>	
Aroclor-1221	11104-28-2	<u>0.0574</u>	<u>0.1</u>	<u>n/a</u>	<u>n/a</u>	<u>0.00539</u>	0.033	
Aroclor-1232	<u>11141-16-5</u>	<u>0.0574</u>	<u>0.1</u>	<u>n/a</u>	<u>n/a</u>	0.00539	<u>0.033</u>	
Aroclor-1242	<u>53469-21-9</u>	<u>0.0574</u>	<u>0.1</u>	<u>n/a</u>	<u>n/a</u>	<u>0.00539</u>	<u>0.033</u>	
Aroclor-1248	<u>12672-29-6</u>	0.0574	<u>0.1</u>	<u>n/a</u>	<u>n/a</u>	0.00539	0.033	
Aroclor-1254	<u>11097-69-1</u>	<u>0.0388</u>	<u>0.1</u>	<u>n/a</u>	<u>n/a</u>	0.00613	0.033	
Aroclor-1260	<u>11096-82-5</u>	<u>0.0574</u>	<u>0.1</u>	<u>n/a</u>	<u>n/a</u>	<u>0.00613</u>	<u>0.033</u>	
Total PCBs	<u>1336-36-3</u>	<u>0.0574</u>	<u>0.1</u>	<u>n/a</u>	<u>n/a</u>	0.05147	0.300	
/a = not available								

Formatted: Font: 8 pt

Formatted: Left

Formatted: Normal

Formatted: Space After: 0 pt

۸

¹Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001d). See Section 6.1.1 for additional information.

²Analytical MDLs and QLs are those documented in validated methods. SW846-8082 does not list MDLs or Method QLs.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits may not reflect the contractual reporting limits agreed to with the laboratory. The actual laboratory has not been contracted; numbers shown are based on historical information from the Soils Remedial Investigation. Actual laboratory numbers will be reported when the laboratory has been contracted.

QAPP Worksheet #15-6 Reference Limits and Evaluation Table

Formatted: Left

Formatted: Space After: 0 pt

Matrix: Soil/Sediment Analytical Group: metals by XRF **Concentration Level:** low

		Decisest Action Limit	Project Quantitation	Analytica	l Method ²	<u>Achievable La</u>	boratory Limits ³	•	Formatted: Space After: 0 pt
<u>Analyte</u>	CAS Number	(mg/kg) ¹	(mg/kg)	<u>MDLs</u> (mg/kg)	<u>Method QLs</u> (mg/kg)	<u>MDLs</u> (mg/kg)	<u>QLs</u> (mg/kg)	• ·	Formatted: Space After: 0 pt
Antimony	<u>7440-36-0</u>	<u>30</u>	<u>30</u>	<u>40</u>	<u>n/a</u>	<u>30</u>	<u>n/a</u>		
Arsenic	<u>7440-38-2</u>	<u>11</u>	<u>11</u>	<u>40</u>	<u>n/a</u>	<u>11</u>	<u>n/a</u>		
<u>Barium</u>	<u>7440-39-3</u>	<u>170</u>	<u>100</u>	<u>20</u>	<u>n/a</u>	<u>100</u>	<u>n/a</u>		
<u>Cadmium</u>	<u>7440-43-9</u>	<u>12</u>	<u>12</u>	<u>100</u>	<u>n/a</u>	<u>12</u>	<u>n/a</u>	1	Formatted: Font: 8 pt
<u>Chromium</u>	<u>7440-47-3</u>	<u>85</u>	<u>85</u>	<u>150</u>	<u>n/a</u>	<u>85</u>	<u>n/a</u>		
Copper_	<u>7440-50-8</u>	<u>35</u>	<u>35</u>	<u>50</u>	<u>n/a</u>	<u>35</u>	<u>n/a</u>		
<u>Iron</u>	<u>7439-89-6</u>	<u>28,000</u>	<u>100</u>	<u>60</u>	<u>n/a</u>	<u>100</u>	<u>n/a</u>		
<u>Lead</u>	<u>7439-92-1</u>	<u>23</u>	<u>13</u>	<u>20</u>	<u>n/a</u>	<u>13</u>	<u>n/a</u>		
Manganese	<u>7439-96-5</u>	<u>820</u>	<u>85</u>	<u>70</u>	<u>n/a</u>	<u>85</u>	<u>n/a</u>		
Mercury	<u>7439-97-6</u>	<u>10</u>	<u>10</u>	<u>30</u>	<u>n/a</u>	<u>10</u>	<u>n/a</u>		
<u>Molybdenum</u>	<u>7439-98-7</u>	<u>830</u>	<u>15</u>	<u>10</u>	<u>n/a</u>	<u>15</u>	<u>n/a</u>		
<u>Nickel</u>	<u>7440-02-0</u>	<u>65</u>	<u>65</u>	<u>50</u>	<u>n/a</u>	<u>65</u>	<u>n/a</u>		
<u>Selenium</u>	<u>7782-49-2</u>	<u>20</u>	<u>20</u>	<u>40</u>	<u>n/a</u>	<u>20</u>	<u>n/a</u>		
Silver	7440-22-4	<u>10</u>	<u>10</u>	<u>70</u>	<u>n/a</u>	<u>10</u>	<u>n/a</u>		
<u>Uranium</u>	7440-61-1	<u>20</u>	<u>20</u>	<u>n/a</u>	<u>n/a</u>	<u>20</u>	<u>n/a</u>		
Vanadium	7440-62-2	<u>70</u>	<u>70</u>	<u>50</u>	<u>n/a</u>	<u>70</u>	<u>n/a</u>		
Zinc	<u>7440-66-6</u>	<u>60</u>	<u>25</u>	<u>50</u>	<u>n/a</u>	<u>25</u>	<u>n/a</u>		

not available

¹ These Project Action Limits are explained in Table 9.2.

²Analytical MDLs and QLs are those documented in validated methods. MDLs are taken from SW846-6200, Table 1, "Example Interference Free Lower Limits of Detection."

³Achievable MDLs and QLs are lines documented in variable and endods. When be forming a specific analytical metricence free lower families of Decedim. ³Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits will be part of the scope submitted for laboratory solicitation for the project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award. MDLs for the XRF are based on Thermo Scientific NITON XL3t 300 Series Instruments for Environmental Analysis "Limits of Detection for Contaminants in Soil" for a typical soil matrix.

Concentration Level: Low¶

... [4])

Analyte

QAPP Worksheet #16 Project Schedule/Timeline Table¹

UFP-QAPP Manual Section 2.8.2:

		Dates (MM/DD/YY)		
Activities	Organization	Anticipated Date(s) of Initiation	Anticipated Date of Completion	Deliverable	Deliverable Due Date
¹ See Work Plan Section 6.					

Formatted: Font: 8 pt

Formatted: Left

Title: Sitewide Evaluation QAPP	
Revision Number: 0	
Revision Date: <u>10</u> /2010 Deleted: 03	

	QAPP Worksheet #17 Sampling Design and Rationale	Formatted: Left
	UFP-QAPP Manual Section 3.1.1:	
	Describe and provide a rationale for choosing the sampling approach (e.g., grid system, biased statistical approach):	
	A systematic sampling approach will be implemented for all anomalies. A systematic sampling approach has been developed to ensure that data is acquired from all soil piles or areas, irrespective of their size, while ensuring that a sufficient number of samples is acquired to support informed decision making. To develop the sampling strategy, practices previously approved at PGDP have been consulted and form the basis for the sampling design.	
•	Describe the sampling design and rationale in terms of what matrices will be sampled, what analytical groups will be analyzed and at what concentration levels, the sampling locations (including QC, critical, and background samples), the number of samples to be taken, and the sampling frequency (including seasonal considerations) [May refer to map or Worksheet #18 for details]:	· · · · · · · · · · · · · · · · · · ·
	Section 5.0 of the Sitewide Evaluation Work Plan presents the approach and decision flowcharts to locate and identify the anomalies to be evaluated.	Formatted: Font: 8 pt

Deleted: 03

	 Formatted: Left							
UFP-QAPP Mai	nual Section 3.1.	1:						
Sampling Location/ID Number ¹	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (Identify Field Duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location	
Soil	Soil	Surface/subsurface	Metals 6200 by XRF	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17	
Soil	Soil	Surface/subsurface	PCB by HACH Pocket Colorimeter [™] II Test Kit (or equivalent)	low	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17	
Soil	Soil	Surface/subsurface	Gamma radiation by sodium iodide detector (or equivalent)	greater than 40 pCi/g	N/A	N/A	N/A	 Formatted: Font: 8 pt
Rubble Areas	Wipe samples of above surface rubble	Aboveground surface	PCB by EnSys Immunoassay Wipe Test Kit (or equivalent)	<u>low</u>	TBD (minimum of 5%)	See Worksheet #21	See Worksheet #17	 Deleted:
Rubble Areas	Rubble and soil beneath the rubble if the rubble is removed	Aboveground surface (rubble) and surface [(soil) (if rubble is removed)]	Gamma radiation by sodium iodide detector (or equivalent)	greater than 40 pCi/g	N/A	N/A	N/A	 Deleted:

QAPP Worksheet #18-1

B-47

#21

See Worksheet

#21

See Worksheet

#21

See Worksheet

#21

See Worksheet

#21

#17

#17 See Worksheet

#17

See Worksheet

#17

See Worksheet

#17

See Worksheet

#17

Deleted: 03

QAPP Worksheet #18-2 Sampling Locations and Methods/SOP Requirements Table for Samples Submitted to the Fixed-Base Laboratory for Analysis

low

low

low

low

low

(minimum of 5%)

TBD

(minimum of 5%)

TBD

(minimum of 5%)

TBD

(minimum of 5%)

TBD

(minimum of 5%)

Formatted: Left

	Rubble Areas
B-48	Rubble Areas

.

Soil

Soil

Rubble Areas

Soil

Soil

Soil (if rubble is

removed)

Soil (if rubble is

removed)

Soil (if rubble is

removed)

Surface/subsurface

Surface/subsurface

Surface

Surface

Surface

UFP-QAPP Manual Section 3.1.1: Number of Samples Sampling **Rationale for** Location/ID Analytical (Identify Field Sampling SOP Sampling Depth Concentration Number¹ (units) **Reference**¹ Matrix Group Level **Duplicates**) Location Soil Soil Surface/subsurface Metals low TBD See Worksheet See Worksheet (minimum of 5%) #21 See Worksheet See Worksheet PCBs TBD

Radionuclides

Radionuclides

Metals

PCBs

Formatted: Font: 8 pt

Deleted: 03

Formatted: Left

QAPP Worksheet #19 Analytical SOP Requirements Table

UFP-QAPP Manual Section 3.1.1:

Matrix	Analytical Group	Concentration Level	Analytical and Preparation Method/SOP Reference	Sample Volume	Containers (number, size, and type)	Preservation Requirements (chemical, temperature, light protected)	Maximum Holding Time (preparation/ analysis)
Soil	PCBs	low	See Worksheet #12	1	1	cool 4 <u>°</u> C	14 days until extraction/40 days
Soil	Metals	low	See Worksheet #12			cool 4 °C	180 days/28 days
Soil	Radionuclides	low	See Worksheet #12			cool 4 <u>°</u> C	180 days

¹Sample volume and container requirements will be specified by the laboratory.

Formatted: Font: 8 pt

Deleted: 03

Formatted: Left

QAPP Worksheet #20 Field Quality Control Sample Summary Table

UFP-QAPP Manual Section 3.1.1:

Matrix	Analytical Group	Concentration Level	Analytical and Preparation SOP Reference	No. of Sampling Locations ¹	No. of Field Duplicate Pairs	Inorganic No. of MS	No. of Field Blanks	No. of Equip. Blanks	No. of PT Samples	Total No. of Samples to Lab ¹
Soil	PCBs	low	SW846-8082	TBD (5%)	TBD (5%)	N/A	TBD (5%)	TBD (5%)	N/A	TBD
Soil	Metals	low	SW846- 6010/6020/7470	TBD (5%)	TBD (5%)	N/A	TBD (5%)	TBD (5%)	N/A	TBD
Soil	Radionuclides	low	see Worksheet 12	TBD (5%)	TBD (5%)	N/A	TBD (5%)	TBD (5%)	N/A	TBD

Formatted: Font: 8 pt

¹Work package documents will identify the sampling locations, the matrices, and the number of samples, sample identification numbers for samples to be submitted to DOECAP certified laboratory. This is not applicable for samples analyzed by field methods.

Deleted: 03

Formatted: Left

QAPP Worksheet #21 Project Sampling SOP References Table¹

Reference				Modified for Project Work?		
Number	Title, Revision Date, and/or Number	Originating Organization	Equipment Type	(Y/N)	Comments	
1	PAD-ENM-0023 Rev. 0, Composite Sampling	Contractor	Sampling	Ν	N/A	Deleted: PRS
2	PAD-ENM-2300 Rev. 0, Collection of Soil	Contractor	Sampling	N	N/A	Deleted: PRS
	Samples					
3	PAD-ENR-0020 Rev. 0, Direct push Technology	Contractor	Sampling	N	N/A	Deleted: PRS
	Sampling					Deleted: 4
<u>4</u>	PAD-ENM-2700 Rev. 0, Logbooks and Data	Contractor	Sampling	Ν	N/A	
	Forms					Formatted: Font: 8 pt
<u>5</u>	PAD-ENM-2702 Rev. 0, Decontamination of	Contractor	Sampling	N	N/A	Deleted: PRS
	Sampling Equipment					Deleted: 6
<u>6</u>	PAD-ENM-2704 Rev. 0, Trip, Equipment and	Contractor	Sampling	N	N/A	Deleted: PRS
	Field Blank				1. S.	
7	PAD-ENM-2708 Rev. 0, Chain-of-Custody Forms,	Contractor	Sampling	Ν	N/A	Deleted: 7
	Field Sample Logs, Sample Labels, and Custody					Deleted: PRS
	Seals				``````````````````````````````````````	Deleted: 8
<u>8</u>	PAD-ENM-5004 Rev. 0, Sample Tracking, Lab	Contractor	Sampling	N	N/A	Deleted: DDG
	Coordination, and Sample Handling Guidance					
¹ It is understood	that all SOPs are contractor specific.					Deleted: 9
						Deleted: PRS

Title: Sitewide Evaluation QAPP Revision Number: 0 Revision Date: 10/2010 Deleted: 03

Formatted: Left

QAPP Worksheet #22 Field Equipment Calibration, Maintenance, Testing, and Inspection Table

UFP-QAPP Manual Section 3.1.2.4:

Field	Calibration	Maintenance	Testing	Inspection	Frequency	Acceptance	Corrective	Responsible	SOP
Equipment	Activity	Activity	Activity	Activity		Criteria	Action	Person	Reference ¹
Field Instrumentation	Per the manufacturer's instructions	Per the manufacturer's instructions	Daily prior to use	Daily prior to use	Daily prior to use	Daily prior to use	As needed	Equipment user	Field instrumentation manufacturer's manual

Formatted: Font: 8 pt

Deleted: 03

Formatted: Left

UFP-QAPP Manual Section 3.2.1:

Reference	Title. Revision Date.	Definitive or			Organization	Modified for Project Work?	
Number ¹	and/or Number	Screening Data	Analytical Group	Instrument	Performing Analysis	(Y/N)	
6010	Inductively Coupled	Definitive	Metals	ICP	TBD	TBD	
	Plasma-Atomic Emission Spectrometry						
6020	Inductively Coupled Plasma-Mass	Definitive	Metals	ICP-MS	TBD	TBD	
7470	Mercury (Manual Cold- Vapor Technique)	Definitive	Metals	AA	TBD	TBD	Formatted: Font: 8 pt
8082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Definitive	PCBs	GC	TBD	TBD	
Alpha Spec	Alpha Spectrometry	Definitive	Radionuclides	Alpha Spectrometry	TBD	TBD	
Gamma Spec	Gamma Spectrometry	Definitive	Radionuclides	Gamma Spectrometry	TBD	TBD	
Liquid Scintillation	Tc-99 by Liquid Scintillation	Definitive	Radionuclides	Liquid Scintillation	TBD	TBD	
Metals by XRF	Metals by XRF	Screening	Metals	XRF	TBD	TBD	
Immunoassay PCB Wipe Test	PCB by EnSys 12T Wipe Test System (or equivalent)	Screening	PCBs	Colorimeter	TBD	TBD	
Immunoassay PCB Soil Test	PCB by HACH Pocket Colorimeter TM II Test Kit (or equivalent)	Screening	PCBs	Colorimeter	TBD	TBD	
Radiological Scan	Gamma radiation	Screening	Radiation	Sodium Iodide detector or equivalent	TBD	TBD	

QAPP Worksheet #23

Analytical SOP References Table

¹ Analysis will be by the most recent revision.

Deleted: 03

Formatted: Left

QAPP Worksheet #24 Analytical Instrument Calibration Table

UFP-QAPP Manual Section 3.2.2:

Instrument	Calibration Procedure	Frequency of Calibration	Acceptance Criteria	Corrective Action (CA)	Person Responsible for CA	SOP Reference
*						

* The laboratory is responsible for maintaining instrument calibration information per their QA Plan. This information is audited annually by the DOECAP. Laboratory(s) contracted will be DOECAP certified. Laboratory contracting will be subsequent to the completion of the Sitewide Evaluation Work Plan. Field survey/sampling instrumentation will be calibrated according to manufacturer's instructions.

Formatted: Font: 8 pt

Formatted: Left

Deleted: 03

QAPP Worksheet #25 Analytical Instrument and Equipment Maintenance, Testing, and Inspection Table

UFP-QAPP Manual Section 3.2.3:

Instrument/ Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Responsible Person	SOP Reference
*								

* The laboratory is responsible for maintaining instrument and equipment maintenance, testing, and inspection information per their QA Plan. This information is audited annually by the DOECAP. Laboratory(s) contracted will be DOECAP certified. Laboratory contracting will be subsequent to the completion of the Sitewide Evaluation Work Plan. Field survey/sampling instrumentation will be maintained, tested, and inspected according to manufacturer's instructions.

Formatted: Font: 8 pt

Deleted: 03

Formatted: Left

QAPP Worksheet #26 Sample Handling System

UFP-QAPP Manual Appendix A:

SAMPLE COL		
Sample Collection (Personnel/Organization):	Sampling Teams/DOE Prime Contractor and Subcontractors	
Sample Packaging (Personnel/Organization):	Sampling Teams/DOE Prime Contractor and Subcontractors	
Coordination of Shipment (Personnel/Organization):	Lab Coordinator/DOE Prime Contractor	
Type of Shipment/Carrier:	Direct Delivery or Overnight/Fed Ex	
SAN	MPLE RECEIPT AND ANALYSIS	
Sample Receipt (Personnel/Organization):	Sample Management/Contracted Laboratory	
Sample Custody and Storage (Personnel/Organization):	Sample Management/Contracted Laboratory	
Sample Preparation (Personnel/Organization):	Analysts/Contracted Laboratory	Formatted: Font. 8 pt
Sample Determinative Analysis (Personnel/Organization):	Analysts/Contracted Laboratory	
Field Sample Storage (No. of days from sample collection):		
Sample Extract/Digestate Storage (No. of days from extract		
Biological Sample Storage (No. of days from sample collecti	on): N/A	
Personnel/Organization:	Waste Disposition/DOE Prime Contractor and Subcontractors	
Number of Days from Analysis	N/A	
		-

	Title: Sitewide Evaluation QAPP Revision Number: 0		
	Revision Date: <u>10</u> /2010		Deleted: 03
		•	Formatted: Left
QAPP Worksheet #27 Sample Custody Requirements ¹			
UFP-QAPP Manual Section 3.3.3:			
Field Sample Custody Procedures (sample collection, packaging, shipment, and delivery to laborat Field sample custody requirements will be per DOE Prime Contractor procedure, <u>PAD-ENM-5004</u> , <u>Sample Handling Guidance</u> .	ory): ample_Tracking, Lab_Coordination, and		Deleted: PRS
Laboratory Sample Custody Procedures (receipt of samples, archiving, disposal) are per the DOECAP ce	rtified laboratory procedures.		
Sample Identification Procedures:			
Sample identification requirements will be specified in work package documents.			Formatted: Font: 8 pt
Chain-of-custody Procedures:			
Chain-of-custody requirements will be per DOE Prime Contractor procedure, <u>PAD-ENM-5004</u> , <u>Sample</u> Handling Guidance.	Tracking, Lab Coordination, and Sample		Deleted: PRS
¹ It is understood that SOPs are contractor specific.		1	

.

B-57
					Tit Re Re	le: Sitewide Evaluation QAPP vision Number: 0 vision Date: <u>10</u> /2010		Deleted: 03
UFP-OAPP Manua	al Section 3.4:		QAPP Workshee QC Samples Ta	et #28 able			•	Formatted: Left
Matrix	Soil	1						
Analytical Group	SMO	-						
Concentration Level	TBD	-						
Sampling SOP	See Worksheet #21							
Analytical Method/	EPA methods	1						
SOP Reference								
Sampler's Name	TBD]						
Field Sampling Organization	Contractor							
Analytical Organization	SMO							Formatted: Font: 8 pt
No. of Sample Locations	TBD. See Sitewide Evaluation Work Plan						_	
QC Sample:	Frequency/ Number	Method/SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator (DQI)	Measurement Performance Criteria ¹		
Field Duplicates	Minimum 5%	N/A	N/A	N/A	Precision	See <u>PAD</u> -ENM-5003 Rev. 0, Quality Assured Data Procedure		Deleted: PRS
Split Samples	As requested by regulatory agency	N/A	N/A	N/A	N/A	N/A		
Field Blanks	Minimum 5%	N/A	N/A	N/A	Accuracy/Bias (Contamination)	See <u>PAD</u> -ENM-5003 Rev. 0, Quality Assured Data Procedure		Deleted: PRS
Trip Blanks ²	Minimum 5%	N/A	N/A	N/A	Accuracy/Bias (Contamination)	See <u>PAD</u> -ENM-5003 Rev. 0, <i>Quality Assured Data</i> Procedure		Deleted: PRS
Equipment Rinseates	Minimum 5%	N/A	N/A	N/A	Accuracy/Bias (Contamination)	See <u>PAD</u> -ENM-5003 Rev. 0, <i>Quality Assured Data</i> Procedure		Deleted: PRS

B-58

Ľ

Deleted: 03

Formatted: Left

		QQ	C Samples Table (C	Continued)	1		n	
	E (M d MOD OC	с <i>і</i> :	Person(s) Responsible for		N (D f		
OC Sample:	Frequency/	Method/SOP QC	Corrective	Action	Data Quality	Measurement Performance		
Initial Calibration	Twice each day the	Method 6200 or per	Recalibrate per	Environmental	Accuracy/Bias	See PAD-FNM-5003 Rev. 0		Deleted
lintial Calibration	XRF is used	manufacturer's	Method 6200 or	Sampling Lead	(Contamination)	Quality Assured Data	~~~~	Deleted: per manufactures
	Arr 15 used	instructions	ner	Sumpling Loud	(Containination)	Procedure		Deleted: PRS
		mstructions	manufacturer's					Deleted: per manufactures
			instructions					
Instrument Blank	Beginning of each	Method 6200 or per	Recalibrate per	Environmental	Accuracy/Bias	See <u>PAD</u> -ENM-5003 Rev. 0,		Deleted: per manufactures
	day the XRF is used: every 20	manufacturer's	Method 6200 or	Sampling Lead	(Contamination)	<i>Quality Assured Data</i> Procedure		Deleted: PRS
	samples thereafter	inou de nomo	manufacturer's					Formatted: Font: 8 pt
	1		instructions				18.	Deleted: per manufactures
Method Blank	Once each day the	Method 6200 or <u>per</u>	Identify and	Environmental	Accuracy/Bias	See,PAD-ENM-5003 Rev. 0,		Deleted: per manufactures
	XRF is used	instructions	reanalyze per Method 6200	Sampling Lead	(Contamination)	Quality Assured Data Procedure		Deleted: PRS
Internal Standards	Twice each day the	Method 6200 or <u>per</u>	Recalibrate per	Environmental	Precision	See <u>PAD</u> -ENM-5003 Rev. 0,		Deleted: per manufactures
	XRF is used	manufacturer's	Method 6200 or	Sampling Lead		<i>Quality Assured Data</i> Procedure		Deleted: PRS
			manufacturer's instructions					Deleted: per manufactures
Zeroing Blank	Per manufacturer's instructions	HACH Pocket Colorimeter TM II Test Kit for PCB in	Per manufacturer's manufactures	Environmental Sampling Lead	Per manufacturer's manufactures instructions	See <u>PAD</u> -ENM-5003 Rev. 0, <i>Quality Assured Data</i> Procedure		Deleted: PRS
		Soil <u>per</u> <u>manufacturer's</u> instructions	instructions					Deleted: per manufactures

QAPP Worksheet #28

B-59

Deleted: 03

Formatted: Left QC Samples Table (Continued) Person(s) **Responsible for** Frequency/ Method/SOP QC Corrective **Data Quality Measurement Performance** Corrective Number Acceptance Limits **Indicator (DQI)** Criteria QC Sample: Action Action HACH Pocket See PAD-ENM-5003 Rev. 0, Low/High Standards Per manufacturer's Per Environmental Per manufacturer's Deleted: PRS Colorimeter[™] II instructions manufacturer's Sampling Lead instructions Quality Assured Data Test Kit for PCB in instructions Procedure Soil per manufacturer's instructions . Zeroing Blank Per manufacturer's EnSys Immunoassay Per Environmental Per manufacturer's See PAD-ENM-5003 Rev. 0, Deleted: PRS instructions PCB Wipe Test Kit manufacturer's Sampling Lead instructions Quality Assured Data Formatted: Font: 8 pt per manufacturer's instructions Procedure instructions B-60 Low/High Standards Per manufacturer's EnSys Immunoassay Per Environmental Per manufacturer's See PAD-ENM-5003 Rev. 0, Deleted: PRS Quality Assured Data instructions PCB Wipe Test Kit manufacturer's Sampling Lead instructions per manufacturer's Procedure instructions instructions

QAPP Worksheet #28

¹ It is understood that SOPs are contractor specific.

² VOC analyses only

QAPP Worksheet #29 Project Documents and Records Table

UFP-QAPP Manual Section 3.5.1:

Sample Collection On-site Analysis Do	cuments Off-site Analysis Docume	nts Data Assessment Documents	Other		
Documents and Records and Record	s and Records	and Records ¹		l	
Data Logbooks and associated Laboratory Data Pac	cages OREIS database & associat	ed PAD-ENM-5003, att. G	Form QA <mark>-F-0</mark> 004,		Deleted: PRS
completed sampling forms OREIS database & a	ssociated data packages	Data Assessment Review	Management/	127-2	Deleted: P
Sample Chains-of-Custody data packages		Checklist and Comment Form	Independent Assessment Report		Deleted: E

¹ It is understood that SOPs are contractor specific.

20100920 Sitewite Evaluation Work Plan tlo Rev 1

.

Formatted: Font: 8 pt

Formatted: Left

Deleted: 03

Formatted: Left

UFP-QAPP Manual Section 3.5.2.3:

Matrix	Analytical Group	Concentration Level	Sample Locations/ID Numbers	Analytical SOP ¹	Data Package Turnaround Time	Laboratory/Organization (Name and Address, Contact Person and Telephone Number)	Backup Laboratory/Organization (Name and Address, Contact Person and Telephone Number)
oil	PCBs	low	TBD	8082	28-day	TBD	TBD
oil	Metals	low	TBD	6010	28-day	TBD	TBD
oil	Metals	low	TBD	6020	28-day	TBD	TBD
oil	Metals	low	TBD	7470	28-day	TBD	TBD
oil	Radionuclides	low	TBD	Alpha Spec	28-day	TBD	TBD
oil	Radionuclides	low	TBD	Gamma Spec	28-day	TBD	TBD
oil	Radionuclides	low	TBD	Liquid Scintillation	28-day	TBD	TBD

QAPP Worksheet #30

Analytical Services Table

Formatted: Font: 8 pt

¹Analytical method SOPs for radiochemistry parameters are laboratory-specific. Laboratory contracting will be subsequent to the completion of the Site Evaluation Work Plan.

S S

S S S

Deleted: 03

Formatted: Left

UFP-QAPP Manual Section 4.1.1:

Assessment Type	Frequency	Internal or External	Organization Performing Assessment	Person(s) Responsible for Performing Assessment (Title and Organizational Affiliation)	Person(s) Responsible for Responding to Assessment Findings (Title and Organizational Affiliation)	Person(s) Responsible for Identifying and Implementing Corrective Actions (CA) (Title and Organizational Affiliation)	Person(s) Responsible for Monitoring Effectiveness of CA (Title and Organizational Affiliation)	
Independent Assessment/ Surveillance	TBD	Internal	Prime Contractor QA	QA Specialists, Contractor or Independent Assessor	Project Manager, Contractor	Project Management, Contractor	QA Specialist, Contractor	Formatted: Font: 8 pt
Laboratory Audit	Annual	External	DOE Consolidated Audit Program (DOECAP)	Laboratory Assessor	Laboratory	Laboratory	DOECAP	
Management Assessments	TBD	Internal	Prime Contractor Project Management	Project Management, Contractor	Project Management, Contractor	Project Management, Contractor	QA Specialist, Contractor	
Management By Walking Around (MBWA) ¹	TBD	Internal	Prime Contractor Project Management	Project Management, Contractor	Project Management, Contractor	Project Management, Contractor	QA Specialist, Contractor	
MBWA Follow-up surveillances	Quarterly	Internal	Prime Contractor Project Management	ER/EM Director, Project Management or designee, Contractor	Project Management/Designee, Contractor	Project Management, Contractor	QA Specialist, Contractor	
Deference: DAD	OA 1022 Manage	waant by Wall	ing Around (MDWA) Drogram					Deleted: PRS
Keierence: PAD	ference: PAD-QA-1033 Management by Walking Around (MBWA) Program							

QAPP Worksheet #31

Planned Project Assessments Table

B-63

Deleted: 03

Formatted: Left

QAPP Worksheet #32 Assessment Findings and Corrective Action Responses¹

UFP-QAPP Manual Section 4.1.2:

Assessment	Nature of Deficiencies	Individual(s) Notified of Findings (Name,	Time frame of	Nature of Corrective Action Response	Individual(s) Receiving Corrective Action Response (Name, Title,			
Туре	Documentation	Title, Organization)	Notification	Documentation	Org.)	Timeframe for Response		
Management,	Form QA <u>-F-0</u> 004,	Project Management,	Upon issuance of	QA- <u>F-</u> 0710, Issue	Action owner as	Fifteen days for initial		Deleted: P
Independent,	Management/	Issue Owner,	Form QAP-E-004,	Identification Form,	designated by Issue	issue response, corrective		Deleted: E
Surveillances	Assessment	Contractor	Independent	response and/or	Owner, Contractor	by Issue Owner, per <u>PAD</u> -		Deleted: E-
	Report, and		Assessment	corrective actions.		QA-1210.	[`\.`	Deleted: P
	QA-F-0710, <i>Issue</i>		Report, form QA					Deleted: PRS
	Form		<u>F</u> -0/10, Issue Identification				Miles I	Deleted: P
			Form, will be				Physics and Physic	Deleted: P
			completed and					Deleted: E
			assessment report.					Deleted: E-
¹ It is understood th	at SOPs are contractor sp	ecific.	1	1	1	1		Deleted: P
								Formatted: Font: 8 pt

B-64

Deleted: 03

Formatted: Left

UFP-QAPP Manual Section 4.2:

	Frequency (daily, weekly monthly, quarterly, annually,		Person(s) Responsible for Report Preparation (Title and	Report Recipient(s) (Title and Organizational
Type of Report	etc.)	Projected Delivery Date(s)	Organizational Affiliation)	Affiliation)
Performance Summary Report	1/month	By the 12 th of each month	Project Manager, Contractor	Contractor Management
Site Evaluation Report	1/end of project	TBD	Project Manager, Contractor	DOE, U.S. EPA,
				Commonwealth of Kentucky

QAPP Worksheet #33 QA Management Reports Table

Formatted: Font: 8 pt

Deleted: 03

Formatted: Left

QAPP Worksheet #34 Verification (Step I) Process Table

UFP-QAPP Manual Section 5.2.1:

Verification Input	Description ¹	Internal/ External	Responsible for Verification (Name, Organization)	
Field Logbooks	Field logbooks are verified per DOE Prime Contractor procedure, PAD-	Internal	Project Management or designee,	 Deleted: PRS
	ENM-2700, Logbooks and Data Forms, and PAD-ENM-5003, QualityAssured Data.		Contractor	 Deleted: PRS
Chains of custody	Chains of custody are controlled by DOE Prime Contractor procedure, <u>PAD-ENM-5004</u> , <i>Sample Tracking</i> , <i>Lab Coordination and Sample</i> <i>Handling Guidance</i> . Chains-of-custody will be included in data assessment packages for review as part of data verification and data assessment.	Internal	Sample and Data Management, Project Management, and QA Personnel, Contractor	 Deleted: PRS
Field and Laboratory Data	Field and analytical data are verified and assessed per DOE Prime Contractor procedure, <u>PAD</u> -ENM-5003, <i>Quality Assured Data</i> . Data assessment packages will be created per this procedure. The data assessment packages will include field and analytical data, chains-of- custody, data verification and assessment queries, and other project specific information needed for personnel to adequately review the package. Data assessment packages will be reviewed to document any issues pertaining to the data and to indicate if data met the data quality objectives of the project.	Internal	Sample and Data Management, Project Management, and QA Personnel ² , Contractor	 Formatted: Font: 8 pt Deleted: PRS

¹ It is understood that SOPs are contractor specific. ² QA specialist performed general QA review.

Deleted: 03

Formatted: Left

QAPP Worksheet #35 Validation (Steps IIa and IIb) Process Table

UFP-QAPP Manual Section 5.2.2:

Sten IIa/IIb	Validation Input	Description ¹	Responsible for Validation (Name, Organization)	
Ila	Data Deliverables, Analytes, and Holding Times	The documentation from the contractual screening will be included in the data assessment packages, per DOE Prime Contractor procedure, PAD-ENM-5003. <i>Quality Assured Data</i> .	Sample and Data Management Personnel, Contractor	 Deleted: PRS
IIa	Chain-of-Custody, Sample Handling, Sampling Methods and Procedures, and Field Transcription	These items will be validated during the data assessment process as required by DOE Prime Contractor procedure, <u>PAD-ENM-5003</u> , <i>Quality Assured</i> <i>Data</i> . The documentation of this validation will be included in the data assessment packages.	Project and QA Personnel, Contractor	 - Deleted: PRS
IIa	Analytical Methods and Procedures, Laboratory Data Qualifiers, and Standards	These items will be reviewed during the data validation process as required by DOE Prime Contractor data validation procedures. Data validation will be performed in parallel with data assessment. The data validation report and data validation qualifiers will be considered when the data assessment process is being finalized.	Data Validation Subcontractor, Sample and Data Management, Project and QA Personnel, Contractor	 Formatted: Font: 8 pt
IIa	Audits	The audit reports and accreditation and certification records for the laboratory supporting the projects will be considered in the bidding process.	Sample and Data Management Personnel, Contractor	
IIb	Deviations and qualifiers from Step IIa	Any deviations and qualifiers resulting from Step IIa process will be documented in the data assessment packages.	Sample and Data Management, Project, and QA Personnel, Contractor	
IIb	Sampling Plan, Sampling Procedures, Co-located Field Duplicates, Project Quantitation Limits, Confirmatory Analyses, Performance Criteria	These items will be evaluated as part of the data verification and data assessment process per DOE Prime Contractor procedure, <u>PAD-ENM-5003</u> , <i>Quality Assured Data</i> . These items will be considered when evaluating whether the project met their Data Quality Objectives.	Sample and Data Management, Project, and QA Personnel, Contractor	 Deleted: PRS

¹ It is understood that SOPs are contractor specific.

Title: Sitewide Evaluation QAPP **Revision Number:** 0 Revision Date: 10/2010 Deleted: 03

	Formatted: Left					
<u>UFP-QAPP Manual</u> Step IIa/IIb	Section 5.2.2:	Analytical Group	Concentration Level	Validation Criteria ¹	Data Validator (title and organizational affiliation)	
IIa/IIb	Soil	PCBs	Low	DOE Prime Contractor procedure, <u>PAD</u> -ENM- 0811, <i>Pesticide and PCB</i> <i>Data Verification and</i> <i>Validation</i>	TBD	Deleted: PRS
IIa/IIb	Soil	Metals	Low	DOE Prime Contractor procedure, <u>PAD</u> -ENM- 5107, Inorganic Data Verification and Validation	TBD	Deleted: PRS Formatted: Font: 8 pt
IIa/IIb	Soil	Radionuclides	Low	DOE Prime Contractor procedure, <u>PAD</u> -ENM- 5102, Radiochemical Data Verification and Validation	TBD	Deleted: PRS

¹ It is understood that SOPs are contractor specific.

20100920 Sitewite Evaluation Work Plan tlo Rev 1

B-68

	Title: Sitewide Evaluation QAPP Revision Number: 0 Revision Date: <u>10</u> /2010		Deleted: 03
	QAPP Worksheet #37 Usability Assessment ¹	•	Formatted: Left
	UFP-QAPP Manual Section 5.2.3:		
	Summarize the usability assessment process and all procedures, including interim steps and any statistics, equations, and computer algorithms that will be used: Field and analytical data are verified and assessed per DOE Prime Contractor procedure, <u>PAD</u> -ENM-5003, <i>Quality Assured Data</i> . Data assessment packages will be created per this procedure. Data assessment packages will include field and analytical data, chains-of-custody, data verification and assessment queries, and other project specific information needed for personnel to adequately review the package. Data assessment packages will be reviewed to document any issues pertaining to the data and to indicate if data quality objectives of the project were met.		Deleted: PRS
▲ B-69	Describe the evaluative procedures used to assess overall measurement error associated with the project: PARCCS parameters (precision, accuracy, representativeness, comparability, completeness, and sensitivity) will be evaluated per DOE Prime Contractor procedure, <u>PAD-ENM-5003</u> , <i>Quality Assured Data</i> . This information will be included in the data assessment packages for review by project personnel. Data assessment also will include documentation of QC exceedances, trends, and/or bias in the data set. Data assessment will document any statistics used.		Formatted: Font: 8 pt Deleted: PRS
-	Identify the personnel responsible for performing the usability assessment: Project and QA Personnel.		
	Describe the documentation that will be generated during usability assessment and how usability assessment results will be presented so that they identify trends, relationships (correlations), and anomalies: Data assessment packages will be created, which will include data assessment comments/questions and laboratory comments. Data verification and assessment queries indicating any historical outliers and background soil exceedances also will be included in the data assessment packages.		

¹ It is understood that SOPs are contractor specific.

	+	Formatted: Vertical Alignment: Center
	*	Formatted: Centered
THIS PAGE INTENTIONALLY LEFT BLANK		Formatted: Font: Bold

Formatted: Left

20100920 Sitewite Evaluation Work Plan tlo Rev 1

Page 9: [1] Deleted	NT1	10/4/2010 10:50:00 AM
J L I		

Document Title: *Quality Assurance Project Plan (QAPP) for the Sitewide Evaluation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*

Lead Organization: DOE

Preparer's Name and Organizational Affiliation: Contractor

Preparer's Address, Telephone Number, and E-mail Address: 761 Veterans Avenue Kevil, KY, 42053; (270) 441-5000

Preparation Date (Month/Year) 039/10 Page 9: [2] Deleted NT1 10/4/2010 10:50:00 AM Document Control Number: N/A Page Break Page 10: [3] Deleted to1 10/25/2010 1:58:00 PM

Page 44: [4] Deleted

LeAnne Workshoot #15_1 10/20/2010 11:46:00 AM

QAPP Worksheet #15-1

Reference Limits and Evaluation Table

UFP-QAPP Manual Section 2.8.1: Matrix: Soil Analytical Group: Metals 6010/6020/7470 Concentration Level: Low

		Project Action Ouan	Project Quantitation	Analyti	Analytical Method ²	
Analyte	CAS Number	Limit ¹ (mg/kg)	Limit (mg/kg)	MDLs	Method QLs	М
Aluminum	7429-90-5	N/A	20	20	N/A	N
Antimony	7440-36-0	N/A	10	10	N/A	N
Arsenic	7440-38-2	N/A	1	1	N/A	N
Barium	7440-39-3	N/A	2.5	2.5	N/A	N/
Beryllium	7440-41-7	N/A	0.5	0.5	N/A	N/
Cadmium	7440-43-9	N/A	0.5	0.5	N/A	N/
Calcium	7440-70-2	N/A	100	100	N/A	N/
Chromium	7440-47-3	N/A	2.5	2.5	N/A	N/
Cobalt	7440-48-4	N/A	1	1	N/A	N
Copper	7440-50-8	N/A	2.5	2.5	N/A	N/
Iron	7439-89-6	N/A	20	20	N/A	N
Lead	7439-92-1	N/A	1	1	N/A	N
Magnesium	7439-95-4	N/A	5	5	N/A	N
Manganese	7439-96-5	N/A	2.5	2.5	N/A	N/
Mercury	7439-97-6	N/A	0.02	0.02	N/A	N/2
Molvbdenum	7439-98-7	N/A	5	5	N/A	N

Nickel	7440-02-0	N/A	5	5	N/A	N
Selenium	7782-49-2	N/A	1	1	N/A	N
Silver	7440-22-4	N/A	2.5	2.5	N/A	N/
Sodium	7440-23-5	N/A	200	200	N/A	N/

-Page Break-

QAPP Worksheet #15-1 **Reference Limits and Evaluation Table (Continued)**

Matrix: Soil Analytical Group: Metals 6010/6020/7470 Concentration Level: Low

Analyte		Project Action Limit ¹ (mg/kg)	Project Quantitation Limit (mg/kg)	Analytical Method ²		Achi	
	CAS Number			MDLs	Method QLs	M	
Thallium	7440-28-0	N/A	2	2	N/A	N	
Uranium	7440-61-1	N/A	1	1	N/A	N	
Vanadium	7440-62-2	N/A	2.5	2.5	N/A	N/	
Zinc	7440-66-6	N/A	20	20	N/A	N/	

¹ Project Action Limits for the purpose of this evaluation are provided in Table 1 of the work plan

² Analytical MDLs and QLs are those documented in validated methods.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method.

----Page Break---

OAPP Worksheet #15-2 Reference Limits and Evaluation Table

Matrix: Soil Analytical Group: PCBs 8082 **Concentration Level:** Low

		Project Action Overtification	Analytical Method ²		Achi	
Analyte	CAS Number	Limit ¹ (mg/kg)	Limit (mg/kg)	MDLs	Method QLs	M
Aroclor 1016	12674-11-2	N/A	0.1	0.1	N/A	N/
Aroclor 1221	11104-28-2	N/A	0.1	0.1	N/A	N/
Aroclor 1232	11141-16-5	N/A	0.1	0.1	N/A	N/
Aroclor 1242	11104-29-3	N/A	0.1	0.1	N/A	N/
Aroclor 1248	12672-29-6	N/A	0.1	0.1	N/A	N/
Aroclor 1254	11097-69-1	N/A	0.1	0.1	N/A	N/
Aroclor 1260	11096-82-5	N/A	0.1	0.1	N/A	N/
Total PCBs	1336-36-3	N/A	0.1	0.1	N/A	N/

¹Project Action Limits for the purpose of this evaluation are provided in Table 1 of the work plan.

² Analytical MDLs and QLs are those documented in validated methods.
 ³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method.

---Page Break-----

QAPP Worksheet #15-3

Reference Limits and Evaluation Table

		Project Action	Project	Analytica	al Method ²	Achi
Analyte	CAS Number	Limit ¹ (pCi/g)	Limit (pCi/g)	MDA/MDC ⁴	Method QLs	MDA
Alpha Activity	12587-46-1	N/A	5	5	N/A	N
Beta Activity	12587-47-2	N/A	5	5	N/A	N
Americium-241	14596-10-2	N/A	0.05	0.05	N/A	N/2
Cesium-137	10045-97-3	N/A	0.1	0.1	N/A	N/
Neptunium-237	13994-20-2	N/A	0.05	0.05	N/A	N/2
Plutonium-238	13981-16-3	N/A	0.05	0.05	N/A	N/2
Plutonium-239/240	N/A	N/A	0.05	0.05	N/A	N/.
Technetium-99	14133-76-7	N/A	1	1	N/A	N
Thorium-228	14274-82-9	N/A	0.05	0.05	N/A	0
Thorium-230	14269-63-7	N/A	0.05	0.05	N/A	N/.
Thorium-232	N/A	N/A	0.05	0.05	N/A	0
Uranium-234	13966-29-5	N/A	0.15	0.15	N/A	N/2
Uranium-235	15117-96-1	N/A	0.05	0.05	N/A	N/2
Uranium-238	24678-82-8	N/A	0.15	0.15	N/A	N/.

Analytical Group: Radionuclides **Concentration Level:** Low

¹ Project Action Limits for the purpose of this evaluation are provided in Table 1 of the work plan. ² Analytical MDLs and QLs are those documented in validated methods.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. ⁴ MDA is applicable to activity and MDC is applicable to concentrations.

-----Page Break------

QAPP Worksheet #15-4

Reference Limits and Evaluation Table

Matrix: Soil Analytical Group: Metals 6200 (XRF) **Concentration Level:** Low

		Project Action Qu Limit ¹ Number (mg/kg)	Project	Analytical Method ²		Achi	
Analyte	CAS Number		Limit (mg/kg)	MDLs	Method QLs	M	
Antimony	7440-36-0	N/A	30	30	N/A	N	
Arsenic	7440-38-2	N/A	11	11	N/A	N	
Barium	7440-39-3	N/A	100	100	N/A	N/	
Cadmium	7440-43-9	N/A	12	12	N/A	N	
Calcium	7440-70-2	N/A	500	500	N/A	N/	
Chromium	7440-47-3	N/A	85	85	N/A	N	
Cobalt	7440-48-4	N/A	260	260	N/A	N/	
Copper	7440-50-8	N/A	35	35	N/A	N	
Iron	7439-89-6	N/A	100	100	N/A	N/	
Lead	7439-92-1	N/A	13	13	N/A	N	
Manganese	7439-96-5	N/A	85	85	N/A	N	
Mercury	7439-97-6	N/A	10	10	N/A	N	
Molybdenum	7439-98-7	N/A	15	15	N/A	N	
Nickel	7440-02-0	N/A	65	65	N/A	N	
Selenium	7782-49-2	N/A	20	20	N/A	N	
Silver	7440-22-4	N/A	10	10	N/A	N	
Thallium	7440-28-0	N/A	20	20	N/A	N	
Uranium	7440-61-1	N/A	20	20	N/A	N	

Vanadium	7440-62-2	N/A	70	70	N/A	N/
Zinc	7440-66-6	N/A	25	25	N/A	N/

¹ Project Action Limits for the purpose of this evaluation are provided in Table 1 of the work plan.

²Analytical MDLs and QLs are those documented in validated methods.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method.

Page Break

QAPP Worksheet #15-5 Reference Limits and Evaluation Table

Matrix: Soil Analytical Group: PCB HACH Colorimeter Method 10050 Concentration Level: Low

	Project	Project Action	Project Quantitation	Analytical Method ²		Achi
Analyte	CAS Number	Limit [*] (mg/kg)	Limit (ppm)	MDL	Method QLs	N
РСВ	1336-36-3	N/A	1, -5, 10,- 50	N/A	1-, 5, 10-, 50	ľ

¹ Project Action Limit for the purpose of this evaluation are provided in Table 1 of the work plan.

² Analytical MDL and QLs are those documented in validated methods.

³ Achievable MDL and QLs are limits that an individual laboratory can achieve when performing a specific analytical method.

-Page Break-----

QAPP Worksheet #15-6 Reference Limits and Evaluation Table

Matrix: Wipe Sample Analytical Group: PCBs EnSys Immunoassay Wipe Sample Test Kit Concentration Level: Low

Analyte	CAS Number	Project Action	Project	Analytica	l Method ¹	Achi
		Limit (ug/wipe)	Quantitation Limit (ug/wipe)	MDLs	Method QLs	М
Total PCBs		N/A	10-100	10-100	N/A	10

¹Analytical MDLs and QLs are those documented in manufacturer's instrument manual.

²Achievable QLs are limits that are interference-free media provided by the instrument manufacturer.

Page 51: [5]	Deleted to1	9/14/2010 1:15	:00 PM	
4	PRS-ENR0032 Rev. 0, PCB Sampling	Contractor	Sampling	Ν
54	PRSPAD-ENM-2700 Rev. 0, Logbooks and Data	c Contractor	Sampling	Ν
	Forms			

APPENDIX C

ENVIRONMENT, SAFETY, AND HEALTH PLAN

Style Definition: TOC 2: Indent: Hanging: 39 pt, Line spacing: Multiple 0.98 li, Tabs: 63 pt, Left + Not at 66 pt

Style Definition: TOC 3: Indent: Hanging: 41.5 pt

CONTENTS

ACR	ONYMS	. C-5
C.1.	INTRODUCTION	C-7
C.2.	INTEGRATED SAFETY MANAGEMENT/ENVIRONMENTAL MANAGEMENT C.2.1 DEFINE SCOPE OF WORK C.2.2 ANALYZE HAZARDS C.2.3 DEVELOP/IMPLEMENT CONTROLS C.2.4 PERFORM WORK C.2.5 FEEDBACK/IMPROVEMENT	. C-9 . C-9 . C-9 C-10 C-10 C-11
C.3.	FLOWDOWN TO SUBCONTRACTORS	C-13
C.4.	SUSPENDING/STOPPING WORK	C-15
C.5.	ISMS/EMS BRIEFINGS AND ORIENTATIONS	C-17
C.6.	KEY PROJECT PERSONNEL AND RESPONSIBILITIES	C-19
C.7.	SITE CONTROL C.7.1 WORK SITE CONTROL ZONES C.7.1.1 Exclusion Zone C.7.1.2 Contamination Reduction Zone C.7.1.3 Construction Zone C.7.1.4 Support Zone C.7.1.5 Site Communications C.7.1.6 Authorization to Enter C.7.1.7 Visitors	C-21 C-21 C-21 C-21 C-21 C-21 C-21 C-21
C.8.	PERSONAL PROTECTIVE EQUIPMENT C.8.1 TASK-SPECIFIC LEVELS OF PROTECTION C.8.2 RESPIRATORY PROTECTION	C-23 C-23 C-23
C.9.	MEDICAL SURVEILLANCE C.9.1 EXPOSURE MONITORING C.9.2 ROUTINE AIR MONITORING REQUIREMENTS	C-25 C-25 C-25
C.10.	INDUSTRIAL HYGIENE MONITORING C.10.1 RADIOLOGICAL MONITORING	C-27 C-27
C.11.	EMERGENCY RESPONSE C.11.1 RESPONSIBILITIES C.11.2 REPORTING AN EMERGENCY C.11.2.1 Discovery C.11.2.2 Emergency Contacts C.11.3 INITIAL EMERGENCY RESPONSE C.11.4 PADUCAH GASEOUS DIFFUSION PLANT ALARMS. C.11.5 REPORTING A SPILL C.11.5.1 Protective Actions for Spill.	C-29 C-29 C-29 C-29 C-29 C-30 C-30 C-31 C-31

ACRONYMS

ACGIG	American Conference of Government Industrial Hygienists
AHA	Activity Hazard Assessment
ALARA	as low as reasonably achievable
ANSI	American National Standards Institute
CFR	Code of Federal Regulations
CRZ	contamination reduction zone
DOE	U. S. Department of Energy
EMS	Environmental Management System
EPA	U. S. Environmental Protection Agency
ES&H	Environmental Safety and Health
EZ	exclusion zone
FS	Field Superintendent
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operation
ISMS	Integrated Safety Management System
NIOSH	National Institute for Occupational Safety and Health
OSHA	Occupational Safety and Health Administration
PEL	permissible exposure limit
PGDP	Paducah Gaseous Diffusion Plant
PPE	personal protective equipment
PSS	Plant Shift Superintendent
RADCON	radiation control
RWP	radiological work permit
S&H	Safety and Health
SHS	Safety and Health Specialist
SZ	support zone
TLD	thermoluminescent dosimeter
TLV	threshold limit value

C.1. INTRODUCTION

This (ES&H) Plan has been developed to discuss the general ES&H requirements associated with the Sitewide Evaluation Work Plan and identify some potential hazards. Site specific hazards and controls will be established for each task and location prior to performing work. These hazards and controls will be documented in the form of Site-Specific Health and Safety Plans (HASPs), Activity Hazard Assessments (AHAs), work packages, and procedures. Personnel will be familiar with these work control documents prior to performing work in the affected areas.

C.2. INTEGRATED SAFETY MANAGEMENT/ENVIRONMENTAL MANAGEMENT

The Project team will utilize an Integrated Safety Management System (ISMS) which integrates the Safety Management Systems, the Environmental Management System (EMS), and Quality Management System, to ensure personnel and environmental safety and quality are integrated into management and work practices at all levels so that missions are accomplished while protecting the public, the workers, and the environment. The concepts of ISMS/EMS will be utilized to provide a formal, organized process to ensure the safe performance of work. The ISMS/EMS Plan identifies the methodologies that will be used to address previously recognized hazards and how the hazards are mitigated using contractor-accepted ES&H practices.

The core functions and guiding principles of ISMS/EMS will be implemented by incorporating applicable programs, policies, technical specifications, and procedures from the U.S. Department of Energy (DOE), U.S. Occupational Safety and Health Administration (OSHA), the U.S. Environmental Protection Agency (EPA), and other applicable regulatory guidance. Brief descriptions of the five ISMS/EMS core functions are provided below.

C.2.1 DEFINE SCOPE OF WORK

Defining and understanding the scope of work is the first critical step in successfully performing any specific activity in a safe and compliant manner. Each member of the project team will participate in discussions conducted to understand the scope and contribute to the planning of the work. The project team will meet with personnel to ensure that everyone understands the scope of work and the technical and safety issues involved. These meetings are conducted to ensure all parties are in agreement on the scope and approach to complete the work.

C.2.2 ANALYZE HAZARDS

In the course of planning the work, the project team will identify hazards, including personnel safety and environmental risks, associated with the performance of the work. Hazards may be identified and assessed by performing a site visit, reviewing lessons learned, and reviewing project plans or historical data. The hazard assessment process will be prescribed by the DOE Prime Contractor procedures and policies.

Once the hazards have been identified and assessed, measures will be identified to minimize risks to workers, the public, and the environment. These measures are described in the project-specific AHAs, which serve to provide a control mechanism for all work activities. AHAs are detailed, activity-specific evaluations that address each step of the task and/or activity that will be performed. The AHA development process entails a detailed evaluation of each task to identify specific activities or operations required to successfully complete the scope of work and define the potential chemical, environmental, physical, radiological, and/or biological hazards that may be encountered; the media and manner in which they may occur; and how they are to be recognized, mitigated, and controlled. Appropriate hazard controls may include engineering controls, administrative controls, and the use of personal protective equipment (PPE). The project team is responsible for the preparation, revision, and implementation of AHAs.

Applicable AHAs will be reviewed with the personnel who will perform the work. Participants in this review will sign and date the AHA to signify that they understand all hazards, controls, and requirements in the AHAs. Copies of the AHAs with appropriate signatures shall be maintained at the work location.

C.2.3 DEVELOP/IMPLEMENT CONTROLS

The primary mechanisms used to flow down ISMS/EMS controls to the project team are project-specific plans and technical procedures. Other mechanisms include program/project management systems, employee training, communication, work site inspections, independent assessments, and audits. These mechanisms are communicated in the following:

- Pre-Job meetings
- Orientations
- Training
- Plan-of-the-day/pre-job briefings
- AHAs
- Radiological work permits (RWP)

The plan-of-the-day/pre-job briefing incorporates the principles of ISMS/EMS. The specific steps within ISMS/EMS are emphasized to each employee. It is emphasized that no employee will be directed or forced to perform any task that he/she believes is unsafe, puts human health at risk, or that could endanger the public or the environment. One of the key elements of ISMS/EMS is that all personnel have "stop work authority" and are encouraged to use this authority whenever there is a reasonable belief that the task poses an imminent risk of death, serious physical harm, or other serious hazard to workers or the environment.

Employee involvement is emphasized in all training sessions, beginning with initial orientation training and is then periodically reinforced in refresher training, as applicable, and in ES&H briefings/meetings. Employees are encouraged to participate in the selection, development, and presentation of training/meeting topics and their full and constructive input is encouraged in all communication sessions.

C.2.4 PERFORM WORK

After the project team has been given approval to proceed, the project-specific plans will be implemented. The project team will verify that all applicable plans, forms, and records are contained in the project files and accessible by approved personnel. Actions that will be taken during the performance of the work to incorporate ISMS/EMS principles include the following:

- Plan-of-the-day/pre-job briefings
- Monthly project safety meetings
- ES&H oversight/inspections
- Safety inspections
- Equipment inspection
- Stop work authority

C.2.5 FEEDBACK/IMPROVEMENT

Feedback and improvement is accomplished through several channels, including ISMS/EMS audits, self-assessments, employee suggestions, lessons learned, and post-job briefings.

Project management will encourage employees to freely submit suggestions that offer opportunities for improvement and constructive criticism on the program. Project management will conduct periodic inspections and meetings with project personnel at the work site to discuss safety issues, environmental issues, and/or concerns and other relevant topics.

During field activities, meetings and briefings will provide opportunities for project personnel to communicate the following:

- Lessons learned and any other topics relevant to the work performed;
- How work steps/procedures could be modified to promote a safer working environment;
- How communications could be improved within the project team; and
- Overall issues or concerns they may have regarding how the work was performed.

C.3. FLOWDOWN TO SUBCONTRACTORS

The ISMS/EMS approach to ES&H ensures that personnel, including subcontractors, are aware of their roles, responsibilities, and authorities for worker/public safety and protection of the environment. All organizations will be responsible for compliance with the Prime Contractor's Worker Safety and Health (S&H) Program, ISMS/EMS Program, Radiation Protection Program, and Quality Assurance Program. In addition, subcontract requirements will flow down to lower-tier subcontractors, as applicable. Personnel will have the appropriate health and safety training required by OSHA 29 *CFR* § 1910 and 1926, but will also undergo site-specific pre-job training including safety and environmental to ensure that ES&H issues related to the activities to be performed or specific to the work site are clearly understood. Documentation of training will be available for review prior to starting work.

C.4. SUSPENDING/STOPPING WORK

In accordance with 10 *CFR* § 851.20 and the DOE Prime Contractor's Worker S&H Program and procedures, workers have the right to decline to perform an assigned task because of a reasonable belief under the circumstances that the task poses an imminent risk of death or serious physical harm to the worker, Individuals involved in any aspect of the project have the authority and responsibility to suspend or stop work for any perceived threat to the S&H of the workers, the public, or to the environment. Concerns shall be brought to the attention of the Field Superintendent (FS) and Safety and Health Specialist (SHS) they will be evaluated by management and actions will be taken to rectify or control the situation. In the case of imminent danger or emergency situations, personnel should halt activities immediately and instruct other affected workers to pull back from the hazardous area. The FS and/or SHS should be notified immediately, at which time management and/or emergency responders will be notified.

Deleted:

C.5. ISMS/EMS BRIEFINGS AND ORIENTATIONS

Plan-of-the-day/pre-job briefings detailing the specific hazards of the work to be performed and safety precautions and procedures specific for the job shall be conducted by the FS and/or SHS at the beginning of each shift. During these briefings, work tasks and the associated hazards (personnel safety and environmental risks) and mitigating controls will be discussed using task-specific AHAs, project documents and/or Lessons Learned as guidance.

Prior to performing work on the site, personnel shall be required to read or be briefed on the DOE Prime Contractor's Worker Safety and Health Program, applicable AHAs, the work package, and other applicable work control documents. This shall be documented as required reading, acknowledgement forms, or briefing sheets. Visitors also will be oriented to the applicable plans and potential hazards that they may encounter.

C.6. KEY PROJECT PERSONNEL AND RESPONSIBILITIES

One of the primary underlying principles of a successful project organization is the establishment of clearly defined roles and responsibilities and effective lines of communication among employees and among the Prime Contractor, subcontractors, and other organizations involved in the project. Ensuring that personnel fully understand their roles and responsibilities and that they have a thorough understanding of the scope of work and other project requirements will provide the foundation for successful and safe completion of the project.

These are the roles and responsibilities of key field team members.

- The Environmental Restoration Project Director oversees the implementation of the project plans and provides the resources for the project.
- The Project Manager oversees the project plans and work activities while ensuring that operations are conducted in accordance with the DOE prime contractor procedures, regulatory requirements, and Worker Safety and Health Program and is responsible for coordinating and assigning resources needed for the project. The Project Manager also performs management audits and inspections.
- The FS coordinates field activities and logistics and provides communication between the project team and the field team as well as other support groups. The FS also ensures that on-site personnel comply with the Worker S&H Program, work packages, and applicable procedures.
- The S&H Specialist provides safety and health support and oversight to the project to ensure that work is being performed safely and in accordance with the Worker S&H Program, applicable regulations, 10 *CFR* § 851, DOE directives, and applicable plans and procedures.
- The Quality Assurance Specialist provides support and oversight to the project to ensure that work is performed in accordance with the work package and other applicable plans and procedures.
- The Radiological Control Group provides support and guidance to the project and assists the FS and SHS with implementation of radiological controls and as-low-as-reasonably-achievable (ALARA) principles. The Radiological Control Technician observes the work area before/during activities for radiological hazard and authorizes entry into and exit from the radiological work area.
- Environmental Compliance organization provides environmental support and oversight to the project to ensure that the planning and field work is being performed properly and in accordance with all applicable regulations, DOE directives, and relevant plans and procedures.
- The Waste Management Coordinator provides waste management support to the project to coordinate waste containers and removal of waste from the worksite, while complying with the Worker S&H Program, as well as ES&H and work control requirements.
- Field Team/Subcontractors–Samplers, drillers, operators, and maintenance perform work as specified in work packages, adhering to the Worker S&H Program, HASP, RWPs, project procedures, and AHAs. Field Team personnel also participate in the identification of the hazards and development of the work controls to be utilized during the work.
C.7. SITE CONTROL

C.7.1 WORK SITE CONTROL ZONES

Work zones will be utilized to control access. These areas will be controlled by the FS, SHS, and/or RCT to minimize the number of individuals potentially exposed to site hazards and to ensure that individuals who enter follow the required procedures. The following is a description of the different types of zones that may be established at the site.

C.7.1.1 Exclusion Zone

The exclusion zone (EZ) is the immediate area around an excavation or remedial action activity where there is potential for personal exposure to hazardous materials. The exclusion zone will be marked and entry and exit points will be established to regulate movement of personnel and equipment to reduce the potential of the spread of contamination.

C.7.1.2 Contamination Reduction Zone

The contamination reduction zone (CRZ) is the transition area between the EZ and construction zone or support zone. This area will provide a buffer area to reduce the probability that contamination will leave the EZ. The CRZ is designed for the following activities:

- Decontamination of equipment, workers, and sample containers;
- Staging of emergency response equipment and supplies (e.g., first-aid, fire equipment);
- Scanning of personnel, materials, and equipment;
- Sample packing and preparation; and
- Worker rest area.

The CRZ is designed to reduce the possibility of the clean area becoming contaminated by site hazards. The degree of contamination in the CRZ decreases as the distance from the contaminants increases.

C.7.1.3 Construction Zone

The construction zone is the area outside of potential contamination, but still encompasses work activities and possible hazards associated with fieldwork activities. Entry into this area is controlled and the area clearly marked with barrier tape, rope, or flagging.

C.7.1.4 Support Zone

The support zone (SZ) is the outermost area of the site. This area is uncontaminated where workers provide operational and administrative support. The support zone is clean and will not be entered by contaminated equipment or personnel, unless properly controlled or except under emergency or evacuation conditions. Normal work clothes are appropriate within this zone.

C.7.1.5 Site Communications

Paducah Gaseous Diffusion Plant (PGDP) plant radios, plant phones, and cell phones will be used for onsite and off-site communication. Project personnel will be orientated to the use of plant radios and emergency numbers. Hand signals may also be utilized; these will be covered with project personnel if necessary.

C.7.1.6 Authorization to Enter

Personnel shall adhere to site entry and control procedures identified in the RWP, AHAs, and this sitespecific HASP. Personnel must wear the appropriate PPE and enter the work area only after receiving permission of the FS, SHS, and Radiological Control Technician. The FS (or designee) will verify that the appropriate training and briefing requirements are met prior to entry.

As a requirement for work on this project, workers entering the EZ or CRZ will be required to take the appropriate level of HAZWOPER training. This training must cover the requirements in 29 *CFR* § 1910.120, HAZWOPER. As applicable, workers must receive annual 8-hour refresher training (if applicable) and 1 or 3-day on-site supervision under a trained, experienced supervisor. The FS shall receive additional 8-hour training in hazardous waste operations supervision. Workers and visitors entering the EZ or CRZ will be briefed in the provisions of this HASP and be required to sign the HASP Acknowledgment Form. Workers entering radiological posted work areas also will be required to complete Radworker II training.

C.7.1.7 Visitors

Visitors to the site shall abide by the following:

- "Visitor" means persons not involved in routine site work activities.
- Visitors shall be instructed to stay outside of the EZ and CRZ and remain within the SZ during the extent of their stay.

Visitors requesting to observe work conducted in the EZ must wear appropriate PPE prior to entry into that zone. Visitors who wish to enter the EZ must produce evidence that they have medical clearance and appropriate HAZWOPER training that is up-to-date. Visitors also must have received the required training for the tasks being performed and entry must be approved by the FS, SHS, and/or RCT.

C.8. PERSONAL PROTECTIVE EQUIPMENT

When engineering controls are not feasible, when the administrative controls in place are not adequate, or when otherwise indicated (such as for ALARA), PPE will be specified by the AHA and/or RWP. At a minimum, personnel performing work in work zones may be required to wear the following standard safety apparel:

- Hard hats meeting the requirements of American National Standards Institute (ANSI) Z89.1 as prescribed in 29 *CFR* § 1910.135, Head Protection. Hard hats will be worn with the suspension properly installed. Hard hats will not be damaged, painted or deformed.
- Safety glasses with firm side shields will meet the requirements of ANSI Z87.1 as prescribed in 29 *CFR* § 1910.133, Eye and Face Protection. Prescription glasses also will meet the ANSI standard and be provided with fixed or firm clip-on side shields. Cover glasses used over prescription glasses will be permitted. Safety glasses will be worn in any area where construction activities are taking place. Face shields will not be worn in lieu of safety glasses.
- Sturdy, safety-toed work shoes or boots meeting the requirements of ANSI Z41, as prescribed in 29 *CFR* § 1910.136, Foot Protection, shall be worn.

The required level of protection is specific to the activity being conducted. The levels of PPE apply only to activities conducted inside an established EZ. Work conducted within CRZs will vary, but are generally one level of protection lower than the EZ. Activities conducted within SZs should require normal work clothes and PPE unless specified by the FS or SHS.

C.8.1 TASK-SPECIFIC LEVELS OF PROTECTION

The levels of protection will be determined by the task and/or proximity of the task being performed and will be identified in the task specific AHAs and RWPs.

C.8.2 RESPIRATORY PROTECTION

Respiratory protection requirements will be determined by air monitoring and survey results. Personnel required to wear respiratory protection will be trained and quantitatively fit-tested prior to use of the respirator, as prescribed in accordance with DOE Prime Contractor procedure and 29 *CFR* § 1910.134, Respiratory Protection. Personnel required to wear respirators will inspect their respirators before and after each use, and any deficiencies will be reported to the FS or SHS immediately. Respirators will be properly stored in a bag in a clean, dry environment and routinely cleaned. Damaged respirators shall not be used.

C.9. MEDICAL SURVEILLANCE

The medical surveillance program provides for baseline, annual, and termination medical examinations for the following employees in accordance with 29 *CFR* § 1910.120, HAZWOPER. Each employee who is or may be exposed to hazardous substances or health hazards at or above the permissible exposure limit (PEL) for 30 days or more per year and each employee who wears a respirator for 30 days or more per year will receive a medical examination before assignment, approximately 12 months later, and at termination of employment or at reassignment. Employees who develop signs or symptoms indicating overexposure or are injured or exposed above the PEL in an emergency situation will be examined medically as soon as possible following the incident.

Personnel performing HAZWOPER activities on this project must complete an annual HAZWOPER physical. The examining physician will document the worker's fitness for work and ability to wear a respirator.

Radiation workers, working under an RWP, may be required to submit a baseline bioassay, periodic bioassay during the project, and exit bioassay at the end of the project.

C.9.1 EXPOSURE MONITORING

Air monitoring shall be used to identify and quantify airborne levels of hazardous substances and health hazards in order to determine the appropriate level of employee protection needed on-site.

C.9.2 ROUTINE AIR MONITORING REQUIREMENTS

Air monitoring will be performed during the following activities:

- Intrusive activities such as soil excavation;
- Activities where there is a potential for exposure to heavy metals (lead, arsenic, beryllium, etc.) and silica dust; and
- Personnel are opening waste containers that contain potentially contaminated material.

C.10. INDUSTRIAL HYGIENE MONITORING

Industrial Hygiene monitoring and sampling will be performed by assigned project <u>S&H</u> support_ personnel. Monitoring will use direct-reading instruments, air-sampling equipment, environmentalmonitoring equipment, and assessment techniques as determined appropriate by the S&H group based on professional judgment and in accordance with OSHA, National Institute for Occupational Safety and Health (NIOSH), and American Conference of Government Industrial Hygienists (ACGIH).

Deleted: Safety and Health (Deleted:)

Personnel sampling will be conducted to assess the potential exposure to individual employees and to ensure that the proper level of PPE has been selected for the assigned task(s). Samples will be collected in the employee's breathing zone using personnel sampling pumps and the appropriate collection media. For tasks with the potential for exposure to significantly elevated chemical concentration, it is expected that the sampling frequency will increase.

If direct reading instruments indicate levels of vapors or particulates that exceed the action level for over 15 minutes in the work area, then personnel sampling will be initiated immediately. Sampling will be conducted, at a minimum, on the worker with the highest expected exposure. Monitoring will continue until levels recorded by direct reading instruments return below the action level.

Once initiated, sampling always will continue for a period long enough to collect a volume of air sufficient to allow the laboratory to achieve an analytical detection limit no greater than one-half the OSHA PEL or ACGIH threshold limit value (TLV), whichever is the more stringent of the two. The samples will be collected in accordance with the approved NIOSH or OSHA methodology and analyzed for the appropriate contaminant(s) of concern. All personnel exposure samples shall be analyzed by a laboratory accredited by American Industrial Hygiene Association in accordance with the appropriate NIOSH or OSHA methodology.

C.10.1 RADIOLOGICAL MONITORING

Radiological Control will perform personnel air monitoring during work in contamination areas and potentially at the boundary. Scanning of equipment and personnel also will be performed to minimize the possibility of the spread of contamination. Personnel working on the Sitewide Evaluation project will be monitored through dosimetry and required to wear a thermoluminescent dosimeter (TLD) when working in radiological zones and submit bioassays as required.

C.11. EMERGENCY RESPONSE

C.11.1 RESPONSIBILITIES

The PM, FS, and SHS are responsible for the project emergency management program and ensuring that the appropriate emergency response equipment is readily available at the work site and in proper working order.

In the event of an emergency, all site personnel shall follow the requirements and provisions of the PGDP Emergency Management Plan. Emergency response shall be provided by the PGDP emergency response organization. The SHS will be in charge of personnel accountability during emergency activities. All personnel working on-site will be trained to recognize and report emergencies to the SHS or the FS. The SHS or FS will be responsible for notifying the PGDP emergency response organization.

The PGDP emergency response organization will be contacted for emergency response to all medical emergencies, fires, spills, or other emergencies. The Plant Shift Superintendent (PSS) will coordinate 24-hour emergency response coverage. The requirements of this section will be communicated to site workers. Any new hazards or changes in the plan also will be communicated to site workers.

The DOE on-scene coordinator will provide oversight on an ongoing basis for emergency management/recovery activities.

C.11.2 REPORTING AN EMERGENCY

C.11.2.1 Discovery

The person who discovers an emergency should immediately report it, then attempt to establish control ONLY if the incident is minor in magnitude (e.g., using a fire extinguisher to put out an incipient fire if trained to do so and extinguishment can be accomplished in a safe manner). Where such measures are obviously inadequate or not successful in controlling the incident or for emergency conditions, personal injuries, or other unusual events with potential for causing personal injury, environmental releases, or property damage, the employee will initiate notification of appropriate emergency response personnel.

Sitewide Evaluation project personnel will maintain a radio, telephone, or other reliable means of notifying emergency response personnel and the PSS.

C.11.2.2 Emergency Contacts

- Fire: Fire alarm pull box, plant telephone Bell System 333, or plant radio channel 16.
- *Medical:* Plant telephone Bell System 333 or plant radio channel 16.
- Security: Plant telephone Bell System 6246 or plant radio channel 16.
- **PSS:** Plant telephone Bell System 6211 or plant radio channel 16.

If using a cell phone: 270-441-6333 for emergency, for NON-emergency use 270-441-6211.

C.11.3 INITIAL EMERGENCY RESPONSE

When an emergency occurs, the SHS or FS will assume responsibility for the management of the scene and the protection of the personnel. Personnel are to be evacuated from the immediate danger area, as appropriate. Depending on the degree of emergency, RADCON controls may need to be adhered to during the emergency. For personnel injury or illness, there should be an adequate number of personnel with current training in first aid and cardiopulmonary resuscitation present on-site during all field activities. This individual will provide minor first aid until other emergency personnel arrive and assume emergency response duties or it is determined to transport the injured to the hospital or medical provider.

C.11.4 PADUCAH GASEOUS DIFFUSION PLANT ALARMS

The alarms can be heard by calling 6161 on a Bell phone.

These include the following:

Radiation Emergency/CAAS:	Continuous blast on a high-pitched air whistle or electronic horn	
	ACTION : Evacuate area immediately and stay away from affected building, Report to an assigned plant assembly point	
Attack Warning/Tornado Warning:	Intermittent 2-second blast on plant horns	
	ACTION: Take cover	
Evacuate Signal:	Continuous blast on plant horns	
	ACTION: Evacuate building	
Plant Emergency:	Hi-Lo Tones	
	ACTION: Listen to plant public address system/radio for instructions	
Cascade Buildings:	Three blasts on building horns or howlers	
	ACTION: Call area control room	
Other Buildings:	One 10-second blast on building horns or sirens	
	ACTION: Follow local emergency procedures	

During field activities all personnel must participate in all PGDP accountability/assembly drills by sending all on-site project personnel to the appropriate assembly station for accountability. The FS, SHS, or designee will be responsible for accounting for all field personnel (including subtier subcontractor personnel) and reporting any unaccounted-for personnel to the emergency coordinator.

C.11.5 REPORTING A SPILL

When a spill is discovered, the FS or SHS will immediately contact Environmental Compliance, the PSS, and the PM and convey as much information as possible (e.g., material involved, estimated quantity spilled/affected, location, affected personnel, other hazardous conditions).

C.11.5.1 Protective Actions for Spill

An effort will be made to stop the release and contain the spill using materials in the on-site spill response kit, only if it is safe to do so and if no unprotected exposures occur. A telephone contact list will be available for emergency notification.

In the event that personnel are exposed to hazardous chemicals or radioactive materials, appropriate emergency response action will be taken to remove the contaminated clothing. An emergency shower and eyewash station will be used to flush exposed skin and eyes, respectively. This emergency equipment will be maintained in a readily accessible location adjacent to the active work area.

If an acute exposure to airborne chemicals occurs or is suspected and the affected personnel are unable to escape the work zone, the FS or SHS will immediately contact PSS for assistance. Rescue operations will not be performed unless the rescuers are dressed in the appropriate protective equipment.

Project Management will be responsible for ensuring all spills of hazardous materials are properly cleaned up and disposed of, including any material generated from the spill, unless otherwise directed.

The FS or SHS has the following responsibilities:

- Ensure that spill containment is performed safely.
- Provide all known information to PSS to ensure proper response.
- Ensure that decontamination measures for exposed personnel are conducted safely and promptly.
- Ensure that, if personnel are exposed to airborne chemicals and are unable to escape the work zone, rescue is not attempted unless rescue personnel are dressed in the appropriate protective equipment.
- Notify Environmental Compliance for spill reporting and cleanup requirements.

During field activities all personnel must participate in all PGDP accountability/assembly drills by sending all on-site project personnel to the appropriate assembly station for accountability. The FS, SHS, or designee will be responsible for accounting for all field personnel (including sub-tier subcontractor personnel) and reporting any unaccounted-for personnel to the emergency coordinator directing the drill.

APPENDIX D

DATA MANAGEMENT IMPLEMENTATION PLAN

CONTENTS

ACR	ONYMS	D-5
D.1	INTRODUCTION	D - 7
D.2	PROJECT MISSION	D - 7
D.3	DATA MANAGEMENT ACTIVITIES	D-7
D.4	DATA MANAGEMENT INTERACTIONS D.4.1 DATA NEEDS AND SOURCES D.4.2 HISTORICAL DATA	D-8 D-8 D-8
	D.4.3 FIELD DATA D.4.4 ANALYTICAL DATA D.4.5 SURVEY DATA COVERAGE	D-9 D-9 D-9
D.5	DATA FORMS AND LOGBOOKS. D.5.1 FIELD FORMS. D.5.2 LITHOLOGIC DESCRIPTION FORMS. D.5.3 WELL CONSTRUCTION DETAIL FORMS. D.5.4 LOGBOOK SAMPLE COLLECTION SHEETS.	D-9 D-9 D-10 D-10 D-10
D.6	DATA AND DATA RECORDS TRANSMITTALS D.6.1 PADUCAH OREIS DATA TRANSMITTALS D.6.2 DATA RECORDS TRANSMITTALS	D-10 D-10 D-10
D.7	DATA MANAGEMENT SYSTEMS D.7.1 PADUCAH PEMS D.7.2 PADUCAH OREIS D.7.3 PADUCAH ANALYTICAL PROJECT TRACKING SYSTEM	D-11 D-11 D-11 D-12
D.8	 DATA MANAGEMENT TASKS AND ROLES AND RESPONSIBILITIES. D.8.1 DATA MANAGEMENT TASKS. D.8.1.1 Plan Data Collection. D.8.1.2 Prepare for Sampling Activities. D.8.1.3 Collect Field Data and Samples. D.8.1.4 Submit Samples for Analysis. D.8.1.5 Process Field Measurement and Laboratory Analytical Data D.8.1.6 Laboratory Contractual Screening. D.8.1.7 Data Verification. D.8.1.8 Data Validation. D.8.1.9 Data Assessment. D.8.1.10 Data Consolidation and Usage. D.8.2 DATA MANAGEMENT ROLES AND RESPONSIBILITIES. D.8.2.1 Project Manager. 	D-12 D-12 D-12 D-12 D-13 D-13 D-13 D-13 D-13 D-14 D-14 D-14 D-14
	D.8.2.1 Project Manager D.8.2.2 Project Team D.8.2.3 Data User D.8.2.4 Data Coordinator D.8.2.5 Document Control Center Manager	D-14 D-14 D-15 D-15 D-15

D-3

D.8.2.6	QA Specialist	.D-15
D.8.2.7	Data Manager	.D-15
D.8.2.8	Lab Coordinator	. D-15

D-4

ACRONYMS

COC	chain-of-custody
DMC	Document Management Center
DMIP	Data Management Implementation Plan
DOE	U.S. Department of Energy
EDD	electronic data deliverables
GIS	geographic information system
OREIS	Oak Ridge Environmental Information System
PEMS	Project Environmental Measurements System
PGDP	Paducah Gaseous Diffusion Plant
QA	quality assurance
QC	quality control
RTL	ready-to-load
SOW	statement of work

D.1 INTRODUCTION

The purpose of this Data Management Implementation Plan (DMIP) is to identify and document data management requirements and applicable procedures, expected data types and information flow, and roles and responsibilities for all data management activities associated with the Sitewide Evaluation at the Paducah Gaseous Diffusion Plant (PGDP). Data management provides a system for efficiently generating and maintaining technically and legally defensible data that provide the basis for making sound decisions regarding the environmental and waste characterization at PGDP.

Data management for this project is implemented throughout the life cycle for environmental measurements data. This life cycle occurs from the planning of data for environmental and waste characterization, through the collection, review, and actual usage of the data for decision-making purposes, to the long-term storage of data.

Data types to be managed for the project include field data and analytical data. Field data are collected in field logbooks or field data forms and are entered into Paducah Project Environmental Measurements System (PEMS), as appropriate, for storage. Analytical data are planned and managed through Paducah PEMS and transferred to Paducah Oak Ridge Environmental Information System (OREIS) for long-term storage and reporting.

To meet current regulatory requirements for U.S. Department of Energy (DOE) environmental management projects, complete documentation of the information flow is established. Each phase of the data management process (planning, collecting, analyzing, managing, verifying, assessing, reporting, consolidating, and archiving) must be appropriately planned and documented. The project team is responsible for data collection and data management for this project.

The scope of this DMIP is limited to environmental information generated under the Sitewide Evaluation. This information includes electronic and/or hard copy records obtained by the project that describe environmental conditions. Information generated by the project (e.g., laboratory analytical results from samples collected) and obtained from sources outside the project (e.g., historical data) falls within the scope of this DMIP. Certain types of information, such as personnel or financial records, are outside the scope of this DMIP.

D.2 PROJECT MISSION

Requirements and responsibilities described in this plan apply to activities conducted by the project team in support of the Sitewide Evaluation. Specific activities involving data include, but are not limited to, sampling of sediment and soil; storing, analyzing, and shipping samples, when applicable; and evaluation, verification, validation, assessment, and reporting of analytical results.

D.3 DATA MANAGEMENT ACTIVITIES

Data management will be implemented throughout the life cycle of the Sitewide Evaluation. This life cycle occurs from the planning of data for environmental and waste characterization, through the

collection, review, and actual usage of the data for decision-making purposes, to the long-term storage of data. Data management activities include the following:

- Acquire existing data
- Plan data collection
- Prepare for sampling activities
- Collect field data
- Collect field samples
- Submit samples for analysis
- Process field measurement and laboratory analytical data
- Laboratory Contractual Screening
- Verify data
- Validate data
- Assess data
- Consolidate, analyze, and use data and records
- Submit data to the Paducah OREIS

Section D.8 contains a detailed discussion of the activities listed above.

D.4 DATA MANAGEMENT INTERACTIONS

The Data Manager interfaces with the Data Coordinator to oversee the use of Paducah PEMS and to ensure that data deliverables meet DOE's standards. The Data Coordinator enters information into Paducah PEMS related to the fixed-base laboratory data once the samples have been delivered and the Lab Coordinator has verified receipt of the samples. The fixed-base laboratory hard-copy data and the electronic data deliverables (EDDs) are loaded into Paducah PEMS by the Data Coordinator. The project team is responsible for data verification and assessment. The Data Coordinator is responsible for preparing the data for transfer from Paducah PEMS to Paducah OREIS. The Data Manager is responsible for transferring the data from the ready-to-load (RTL) files to the Paducah OREIS database.

The Lab Coordinator develops the statement of work (SOW) to be performed by an analytical laboratory in the form of a project-specific laboratory SOW. Analytical methods, laboratory quality control (QC) requirements, and deliverable requirements are specified in this SOW. In addition, the Lab Coordinator receives EDDs, performs contractual screenings, and distributes data packages. The Lab Coordinator interacts with the Data Manager to ensure that hard copy and electronic-deliverable formats are properly specified and interfaces with the contract laboratory to ensure that the requirements are understood and met.

D.4.1 DATA NEEDS AND SOURCES

Multiple data types will be generated and/or assessed during this project. These data types include field data, analytical data (including environmental data), and geographic information system (GIS) data.

D.4.2 HISTORICAL DATA

No historical data is available for this Sitewide Evaluation.

D.4.3 FIELD DATA

Field (screening) data for the project includes sample collection information and field screen measurement results.

D.4.4 ANALYTICAL DATA

Analytical (definitive) data for the project consists of laboratory analyses for environmental and waste characterization.

D.4.5 SURVEY DATA COVERAGE

Global Positioning System or standard survey techniques will be used to obtain civil survey data for this project. The Paducah GIS network is used for preparing maps used in data analysis and reporting of both historical and newly generated data. Coverage for use during the project is as follows:

- Stations (station coordinates are downloaded from Paducah OREIS)
- Facilities
- Plant roads
- Plant fences
- Streams
- Topographic contours

D.5 DATA FORMS AND LOGBOOKS

Field logbooks, site logbooks, chain-of-custody (COC) forms, data packages with associated quality assurance/QC (QA/QC) information, and field forms are maintained according to the requirements defined in procedure <u>PAD</u>-DOC-1009, *Records Management, Administrative Records, and Document Control.*¹ Duplicates of field records are maintained until the completion of the project. Logbooks and field documentation are copied periodically. The originals are forwarded to the Document Management Center (DMC) and copies are maintained in the field office.

D.5.1 FIELD FORMS

Sample information is environmental data describing the sampling event and consists of the following: station (or location), date collected, time collected, and other sampling conditions. This information is recorded in logbooks, COC forms, or sample labels and is entered directly into Paducah PEMS by the Data Coordinator. Sample identification numbers are identified in Paducah PEMS as assigned by the Data Coordinator.

Sample COC forms contain sample-specific information recorded during collection of the sample. Any deviations from the sampling plan are noted on the sample COC form or logbook. The Sampling Team

¹ It is understood that procedures are contractor specific.

Leader reviews each sample COC form for accuracy and completeness as soon as practical following sample collection.

Sample COC forms are generated from Paducah PEMS with the following information:

Information that is preprinted:	Information that is entered manually:	
- Lab COC number	- Sample date and time	
- Project name or number	- Sample comments (optional)	
- Sample ID number		
- Sampling location		
- Sample type (e.g., REG = regular sample)		
- Sample matrix (e.g., SO = soil)		
- Analysis (e.g., PCB ¹)		
- Sample container (volume, type)		

¹ PCB = Polychlorinated Biphenyl

D.5.2 LITHOLOGIC DESCRIPTION FORMS

Lithologic description forms will be used as necessary for this project.

D.5.3 WELL CONSTRUCTION DETAIL FORMS

These forms are not necessary for use during this project.

D.5.4 LOGBOOK SAMPLE COLLECTION SHEETS

Sample collection sheets are utilized as an aid for recording sampling information in the field. Logbooks are kept in accordance with <u>PAD</u>-ENM-2700, *Logbooks and Data Forms*.

Deleted: PRS

D.6 DATA AND DATA RECORDS TRANSMITTALS

D.6.1 PADUCAH OREIS DATA TRANSMITTALS

Data to be stored in Paducah OREIS is submitted to the Data Manager prior to reporting. Official data reporting will be generated from data stored in Paducah OREIS.

D.6.2 DATA RECORDS TRANSMITTALS

Project personnel will make records transfers to the DMC.

D-10

D.7 DATA MANAGEMENT SYSTEMS

D.7.1 PADUCAH PEMS

Paducah PEMS is the data management system that supports the project's sampling and measurement collection activities and generates Paducah OREIS RTL files. The data management staff accesses Paducah PEMS throughout the life cycle of the project. The project uses Paducah PEMS to support the following functions:

- Initiate the project
- Plan for sampling
- Record sample collection and field measurements
- Record the dates of sample shipments to the laboratory (if applicable)
- Receive and process analytical results
- Verify data
- Access and analyze data
- Transfer project data (in RTL format) to Paducah OREIS

Paducah PEMS is used to generate sample COC forms; import laboratory-generated data; update field and laboratory data based on data verification; data validation. if applicable; data assessment; and transfer data to Paducah OREIS. Requirements for addressing the day-to-day operations of Paducah PEMS include backups, security, and interfacing with the sample management office.

The Information Technology group performs system backups daily. The security precautions and procedures implemented by the data management team are designed to minimize the vulnerability of the data to unauthorized access or corruption. Only members of the data management team have access to the project's Paducah PEMS and the hard-copy data files. Members of the data management team have installed password-protected screen savers.

D.7.2 PADUCAH OREIS

Paducah OREIS is the centralized, standardized, quality assured, and configuration-controlled data management system that is the long-term repository of environmental data (measurements and geographic) for Paducah environmental management projects. Paducah OREIS is comprised of hardware, commercial software, customized integration software, an environmental measurements database, a geographic database, and associated documentation. The project will use Paducah OREIS for the following functions:

- Access to existing data
- Spatial analysis
- Report generation
- Long-term storage of project data (as applicable)

D.7.3 PADUCAH ANALYTICAL PROJECT TRACKING SYSTEM

The Paducah Analytical Project Tracking System is the business management information system that manages analytical sample analyses for Paducah environmental projects. The Paducah Analytical Project Tracking System provides cradle-to-grave tracking of sampling and analysis activities. The Paducah Analytical Project Tracking System generates the SOW, tracks collection and receipt of samples by the laboratory, flags availability of the analytical results, and allows invoice reconciliation. The Paducah Analytical Project Tracking System interfaces with Paducah PEMS (output from the Paducah Analytical Project Tracking System is automatically transferred to Paducah PEMS).

D.8 DATA MANAGEMENT TASKS AND ROLES AND RESPONSIBILITIES

D.8.1 DATA MANAGEMENT TASKS

An explanation of the data review process is provided in the following sections.

D.8.1.1 Plan Data Collection

Other documents for this project provide additional information for the tasks of project environmental data collection, including sampling and analysis planning, quality assurance, waste management, and health and safety. Also, a laboratory SOW will be developed for this project.

D.8.1.2 Prepare for Sampling Activities

The data management tasks involved in sample preparation include identifying all sampling locations, preparing descriptions of these stations, identifying sample containers and preservation, developing field logbooks, preparation of sample kits and COCs, and coordinating sample delivery to the laboratory. The Lab Coordinator conducts activities associated with the analytical laboratories. Coordinates for sample locations will be obtained using a global positioning system.

D.8.1.3 Collect Field Data and Samples

Paducah PEMS is used to identify, track, and monitor each sample and associated data from the point of collection through final data reporting. Project documentation includes field logbooks, COC records, and hard-copy analytical results.

Data management requirements for field logbooks and field forms specify that (1) sampling documentation must be controlled from initial preparation to completion, (2) sampling documentation generated must be maintained in a project file, and (3) modifications to planned activities and deviations from procedures shall be recorded.

Before the start of sampling, the Lab Coordinator specifies the contents of sample kits, which includes sample containers provided by the laboratories, labels, preservatives, and COC records. Sample labels and COCs are completed according to <u>PAD-ENM-2708</u>, *Chain-of-Custody Forms*, *Field Sample Logs*, *Sample Labels, and Custody Seals*.

Deleted: PRS

D-12

The project field team will collect samples for the project and will record pertinent sampling information on the COC and in the field logbook. The Data Coordinator enters the information from the COC forms into Paducah PEMS.

D.8.1.4 Submit Samples for Analysis

Before the start of field sampling, the Field Superintendent or designee coordinates the delivery of samples with the Lab Coordinator who, in turn, coordinates with the analytical laboratories. The Lab Coordinator presents a general sampling schedule to the analytical laboratories. The Lab Coordinator also coordinates the receipt of samples and containers with the laboratories. The Lab Coordinator ensures that hard-copy deliverables and EDDs from the laboratories contain the appropriate information and are in the correct format.

D.8.1.5 Process Field Measurement and Laboratory Analytical Data

Data packages and EDDs received from the laboratory are tracked, reviewed, and maintained in a secure environment. Paducah PEMS is used for tracking project-generated data. The following information is tracked, as applicable: sample delivery group number, date received, number of samples, sample analyses, receipt of EDD, and comments. The laboratory EDDs are checked as specified in <u>PAD-ENM-5007</u>, *Data Management Coordination*.

The field screen measurement data will be provided by the project team to the Data Manager for loading into Paducah PEMS. This data will be provided in a format specified by the Data Manager. Once this data has been loaded to Paducah PEMS, it will be compared to the original files submitted by the project to ensure that it was loaded correctly.

D.8.1.6 Laboratory Contractual Screening

Laboratory contractual screening is the process of evaluating a set of data against the requirements specified in the analytical SOW to ensure that all requested information is received. The contractual screening includes, but is not limited to, the analytes requested, total number of analyses, method used, EDDs, units, holding times, and reporting limits achieved. Contractual screening is performed for 100 percent of the data. The Lab Coordinator is primarily responsible for the contractual screening upon receipt of data from the analytical laboratory. During contractual screening, the analytical method requested on the laboratory statement of work is compared to the analytical method received from the laboratory to ensure that contract requirements were met.

D.8.1.7 Data Verification

Data verification is the process for comparing a data set against a set standard or contractual requirement. Verification is performed by the Data Coordinator electronically, manually, or by a combination of both. Verification is performed for 100 percent of data. Data verification includes contractual screening and criteria as specified in Appendix B, the Quality Assurance Project Plan. Data is flagged as necessary. Verification qualifiers are stored in Paducah PEMS and transferred with the data to Paducah OREIS.

D.8.1.8 Data Validation

Data validation is the process performed by a third-party, qualified individual. Third-party validation is defined as validation performed by persons independent from sampling, laboratory, and decision making for the program/project (i.e., not the program/project manager). Data validation evaluates the laboratory adherence to analytical-method requirements. Data validation is managed and coordinated with the data

D-13

management team. The Data Validator performs data validation according to approved procedures. Data validation is documented in a formal deliverable from the data validator. Validation qualifiers are input and stored in Paducah PEMS and transferred to Paducah OREIS.

A minimum of 10 percent of the total number of samples will be validated for this project. Data validation will apply only to the definitive data. Data packages chosen for data validation will be validated at 100 percent.

D.8.1.9 Data Assessment

Data assessment is the process for assuring that the type, quality, and quantity of data are appropriate for their intended use. It allows for the determination that a decision (or estimate) can be made with the desired level of confidence, given the quality of the data set. Data assessment follows data verification and data validation (if applicable) and must be performed at a rate of 100 percent to ensure data is useable. Per contractor procedure, data validation can be performed concurrently with data verification and data assessment. Data assessment is not finalized until data validation is complete, if applicable, and the data validation qualifiers have been evaluated. Data assessment is performed on 100 percent of the data set, even when data validation is not required.

The data assessment is conducted by the project team according to DOE Prime Contractor procedure, <u>PAD-ENM-5003</u>, <u>Quality_Assured_Data</u>. Assessment_qualifiers_are_stored_in_Paducah_PEMS_and_transferred with the data to Paducah OREIS. Any problems found during the review process are resolved and documented in the data assessment package.

D.8.1.10 Data Consolidation and Usage

The data consolidation process consists of the activities necessary to prepare the evaluated data for the users. The Data Coordinator prepares files of the assessed data from Paducah PEMS to Paducah OREIS for future use. The Data Manager is responsible for transferring the data to Paducah OREIS. Data used in reports distributed to external agencies is obtained from data in Paducah OREIS and has been through the data review process. All data reported has the approval of the Data Manager.

D.8.2 DATA MANAGEMENT ROLES AND RESPONSIBILITIES

The following project roles are defined, and the responsibilities are summarized for each data management task described in the previous subsection.

D.8.2.1 Project Manager

The Project Manager is responsible for the day-to-day operation of the project. The Project Manager ensures the requirements of policies and procedures are met. The project manager or designee assesses data in accordance with DOE Prime Contractor procedure, <u>PAD-ENM-5003</u>, *Quality Assured Data*. The Project Manager is responsible to flow down data management requirements to subcontractors as required.

D.8.2.2 Project Team

The project team consists of the technical staff and support staff (including the data management team) that conducts the various tasks required to successfully complete the project.

Deleted: %

Deleted: PRS

D.8.2.3 Data User

Data users are members of the project team who require access to project information to perform reviews, analyses, or ad hoc queries of the data. The data user determines project data usability by comparing the data against predefined acceptance criteria and assessing that the data are sufficient for the intended use.

D.8.2.4 Data Coordinator

The Data Coordinator enters the data into Paducah PEMS, including COC information, field data, data assessment and data validation qualifiers, and any pertinent sampling information. After receiving a notification that a fixed-base laboratory EDD is available to download, the Data Coordinator loads the EDD to Paducah PEMS, performs electronic verification of the data, and then compiles the data assessment package. The Data Coordinator also prepares data for transfer from Paducah PEMS to Paducah OREIS.

D.8.2.5 Document Control Center Manager

The DMC Manager is responsible for long-term storage of project records. The project team will interface with the DMC Manager and will transfer documents and records in accordance with DOE requirements.

D.8.2.6 QA Specialist

The QA Specialist is part of the project team and is responsible for reviewing project documentation to determine if the project team followed applicable procedures.

D.8.2.7 Data Manager

The Data Manager is responsible for long-term storage of project data and for transmitting data to external agencies according to the *Data and Documents Management and Quality Assurance Plan for Paducah Environmental Management and Enrichment Facilities*, DOE/OR/07-1595&D2, and the Paducah Data Management Policy. The Data Manager ensures compliance to procedures relating to data management with respect to the project and that the requirements of DOE Prime Contractor procedure, PAD-ENM-5003, Quality Assured Data, are followed.

D.8.2.8 Lab Coordinator

The Lab Coordinator is responsible for contracting any fixed-base laboratory utilized during the sampling activities. The Lab Coordinator also provides coordination for sample shipment to the laboratory, contractual screening of data packages, and transmittal of data packages to the Paducah DMC.