DOE/OR/07-1857&D2 Primary Document

Feasibility Study for the Groundwater Operable Unit at Paducah Gaseous Diffusion Plant Paducah, Kentucky

Volume 4. Appendix C Supporting Information for Feasibility Study

Cleared for Public Release

630309

ı I

DOE/OR/07-1857&D2 Primary Document

Feasibility Study for the Groundwater Operable Unit at Paducah Gaseous Diffusion Plant Paducah, Kentucky

Volume 4. Appendix C Supporting Information for Feasibility Study

Date Issued—August 2001

Prepared for the Department of Energy Office of Environmental Management

By Bechtel Jacobs Company LLC managing the

Environmental Management Activities at the Paducah Gaseous Diffusion Plant Paducah, Kentucky 42001 managed by Bechtel Jacobs Company LLC for the U.S. Department of Energy under contract DE-AC05-98OR22700

630310

 $|\cdot|$

APPENDIX C1

.

1

ţ

APPENDIX C1

RESTORATION TIMEFRAME ANALYSIS USING GROUNDWATER MODELING PREDICTIVE SIMULATIONS

This appendix contains the preliminary modeling results for predictive simulations conducted in support of the Groundwater OU Feasibility Study. The predictive transport simulations were run using the most recently calibrated flow model (June 1999). The transport code employed is MODFLOWT, an enhanced version of the USGS's MODFLOW code (MacDonald and Harbaugh 1988). The simulations were conducted to provide a basis for comparison between a range of options to evaluate possible restoration timeframes for the Regional Gravel Aquifer for Trichlorethylene (TCE) and Technetium-99 (Tc-99) contamination at the Paducah Gaseous Diffusion Plant (PGDP). Following six scenarios were run for TCE and Tc99:

- 1. No Action: No source containment (a continuous source loading is assumed) and passive flushing without the current Northwest and Northeast plume wells operating.
- 2. No Action: No source containment (a continuous source loading is assumed) and passive flushing with the current Northwest and Northeast plume wells operating.
- 3. **Source Containment**: Source is removed (plume concentrations are initialized) with passive flushing without the current Northwest and Northeast plume wells operating.
- 4. **Source Containment**: Source is removed (plume concentrations are initialized) with passive flushing with the current Northwest and Northeast plume wells operating.
- 5. **Pump-and-Treat**: No source containment (a continuous source loading is assumed) but active extraction and treatment only. Constraints were that the total number of wells had to be less than 20, with none operating any higher than 150 gpm. Locations were selected to minimize residual concentrations.
- 6. **Pump-and-Treat with Source Containment**: Source is removed (plume concentrations are initialized) and active extraction and treatment is in place. Same details of wells as previous scenario apply here.

For these six scenarios, a total of twelve distinct predictive simulations were necessary to fully evaluate the alternatives for both TCE and Tc-99. Table C1.1 summarizes these simulations. The extraction rates used for the Northwest and Northeast Plume pumping wells are presented in Table C1.2.

Table C1.1.	Summary of Predictive Simulations Conducted for GWOU FS at the Paducah Gaseo	us
	Diffusion Plant, Paducah, Kentucky	

Constituents	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
TCE	1TCESP2T	12TCESP2T	2TCESP2T	22TCESP2T	3TCESP2T	4TCESP2T
Tc-99	1T99SP2	12T99SP2	2T99SP2	22T99SP2	3T99SP2	4T99SP2

	PGDP C	oordinates	Model Co	oordinates	Northwest Plu	me Extraction Rate
Well ID	X	Y	X	Y	[ft ³ /day]	[gpm]
EW-228	-5347.4	7599.463	12640.07	21246.76	9240.64	48.00
EW-229	-5196.9	7337.24	12790.59	20984.537	8663.1	45.00
EW-230	-7301.5	1405.806	10686.01	15053.103	11550.8	60.00
EW-231	-7439.9	1351.924	10547.56	14999.221	10588.2	55.00
			Northeast P	lume Extracti	on Wells	
EW-331	1574.41	837.03	19561.91	14484.327	19251.3	100.00
EW-332	1764.4	754.19	19751.9	14401.487	15401.1	80.00

Table C1.2.	. Extraction Rate	s for the Northwest	t Plume and Northea	st Plume Extraction	n Wells used for
Pred	lictive Simulation	s at the Paducah G	aseous Diffusion Pla	nt, Paducah, Kentu	icky

For the Pump-and-Treat options, a total of 18 additional wells were simulated around the plant property, each pumping at 100 gpm. Figure C1-1 depicts the locations of these pumping wells. The total pumping rate for these scenarios, including the Northwest and Northeast Plume extraction wells is 2,188 gpm.

All simulations were conducted using 2 stress periods. Stress period 1 is defined from 0 to 10 years, and boundary conditions were representative of median 1992 conditions. Stress period 2 is defined from 10 to 100 years where boundary conditions for the Ohio River and recharge are modified to represent stage changes due to the completions of the Olmsted lock and dam, and the closing of the PGDP, respectively. The Ohio River stage in layer 3 of the model was changed to 306.86 ft amsl. Recharge in layer 1 was changed to 0 where building and concrete cover exists, and to the regional value (1.5E-3 ft/day) where no concrete cover exists. Layer 1 wells representing anthropogenic recharge in stress period 1, were changed to 0 in stress period 2.

SOURCES

Sources for TCE and Tc-99 were initialized in model layer 3 (RGA) using existing groundwater concentration data. Table C1.3 presents the TCE and Tc-99 source term locations and values within the model. The locations of these sources are depicted in Fig. C1-2. All sources are modeled as constant concentrations, and do not therefore simulate a degrading source term.

	Model	Constant Sou	Constant Source Concentration	
ant Location	Location*	(μg/L)	(pCi/L)	
	ТСЕ			
	Α	10,000		
	В	1,230		
C-400 Building	С	100,000		
C-400 Building	D	700,000		
C-400 Building	Е	19,000		
•	Тс-99	-		
C-400 Building	F		43,000	
	ant Location C-400 Building C-400 Building C-400 Building C-400 Building	Model Location*ant Location <i>Location*TCE</i> ABC-400 BuildingC-400 BuildingC-400 BuildingE <i>Tc-99</i> C-400 BuildingF	Model Constant Sou ant Location (μg/L) TCE A 10,000 B 1,230 C C-400 Building C 100,000 C-400 Building D 700,000 C-400 Building E 19,000 C-400 Building F F	

Table C1.3.	TCE and Tc-99 Source Term Information for Predictive Simulations at the Paducah
	Gaseous Diffusion Plant, Paducah, Kentucky

For model location see map in Fig. C1-2.

Fig. C1-1. Extraction well locations for Pump and Treat alternatives simulated at the PGDP, Paducah, Kentucky.

Fig. C1-2. TCE and Tc-99 sources for predictive simulations at the PGDP, Paducah, Kentucky.

TRANSPORT PARAMETERS

Transport parameters for TCE and Tc-99 used for the predictive simulations are presented in Table C1.4. The K_d -value of TCE was determined through a series of trial and error runs. The half-life was calculated from the degradation rate presented in a *Evaluation of Natural Attenuation Processes for Trichloroethylene and Technetium-99 in the Northeast and Northwest Plumes at the Paducah Gaseous Diffusion Plant Paducah, Kentucky* (LMES 1997). The bulk density of the soil and the effective porosity were taken from the results of the WAG 6 RI investigation (DOE 1999). To be conservative, negligible retardation of Tc-99 without any decay was considered. Therefore, the model was run with zero K_d -value and decay constant for Tc-99.

Table C1.4. TCE and Tc- 99 Transport Parameters for Predictive Simulations at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Parameters	TCE	Tc- 99
Distribution coefficient (K _d), L/kg	0.05	0
Half Life, days	9730	No decay
Bulk Density, g/cm ³	1.9	1.9
Porosity, %	30	30

RESULTS

Results for the predictive simulations were generated in the form of simulated concentration maps for the PGDP and vicinity. Results are generated at increments of 5, 10, 30, 60 and 100 year time periods. Figures C1-3a through C1-14c depict these results.

Fig. C1-3b. Predicted TCE concentration contours in μ g/L at the end of 10-year simulation period for the No Action Alternative (1TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-3c. Predicted TCE concentration contours in $\mu g/L$ at the end of 30-year simulation period for the No Action Alternative (1TCESP2T) at the PGDP, Paducah Kentucky.

Fig. C1-3d. Predicted TCE concentration contours in µg/L at the end of 60-year simulation period for the No Action Alternative (1TCESP2T) at the PGDP, Paducah Kentucky.

630322

Fig. C1-3e. Predicted TCE concentration contours in μ g/L at the end of 100-year simulation period for the No Action Alternative (1TCESP2T) at the PGDP, Paducah Kentucky.

630321

Fig. C1-4a. Predicted TCE concentration contours in µg/L at the end of 5-year simulation period for the No Action Alternative with NW/NE Wells pumping (12TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-4b. Predicted TCE concentration contours in $\mu g/L$ at the end of 10-year simulation period for the No Action Alternative with NW/NE Wells pumping (12TCESP2T) at the PGDP, Paducah, Kentucky.

630323

Fig. C1-4c. Predicted TCE concentration contours in $\mu g/L$ at the end of 30-year simulation period for the No Action Alternative with NW/NE Wells pumping (12TCESP2T) at the PGDP, Paducah Kentucky.

Fig. C1-4d. Predicted TCE concentration contours in μ g/L at the end of 60-year simulation period for the No Action Alternative with NW/NE Wells pumping (12TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-4e. Predicted TCE concentration contours in μ g/L at the end of 100-year simulation period for the No Action Alternative with NW/NE Wells pumping (12TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-5a. Predicted TCE concentration contours in μ g/L at the end of 5-year simulation period for the Source Containment Alternative (2TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-5b. Predicted TCE concentration contours in $\mu g/L$ at the end of 10-year simulation period for the Source Containment Alternative (2TCESP2T) at the PGDP, Paducab, Kentucky.

Fig. C1-5c. Predicted TCE concentration contours in $\mu g/L$ at the end of 30-year simulation period for the Source Containment Alternative (2TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-5d. Predicted TCE concentration contours in μ g/L at the end of 60-year simulation period for the Source Containment Alternative (2TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-5e. Predicted TCE concentration contours in µg/L at the end of 100-year simulation period for the Source Containment Alternative (2TCESP2T) at the PGDP, Paducah, Kentucky.

630331

Fig. C1-6a. Predicted TCE concentration contours in μ g/L at the end of 5-year simulation period for the Source Containment Alternative with NW/NE Wells pumping (22TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-6b. Predicted TCE concentration contours in μ g/L at the end of 10-year simulation period for the Source Containment Alternative with NW/NE Wells pumping (22TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-6c. Predicted TCE concentration contours in μ g/L at the end of 30-year simulation period for the Source Containment Alternative with NW/NE Wells pumping (22TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-6d. Predicted TCE concentration contours in $\mu g/L$ at the end of 60-year simulation period for the Source Containment Alternative with NW/NE Wells pumping (22TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-7a. Predicted TCE concentration contours in μ g/L at the end of 5-year simulation period for the Pump and Treat Alternative (3TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-7b. Predicted TCE concentration contours in μ g/L at the end of 10-year simulation period for the pump and treat Alternative (3TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-7c. Predicted TCE concentration contours in $\mu g/L$ at the end of 30-year simulation period for the Pump and Treat Alternative (3TCESP2T) at the PGDP, Paducah, Kentucky.

630340

Fig. C1-7d. Predicted TCE concentration contours in μ g/L at the end of 60-year simulation period for the Pump and Treat Alternative (3TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-7e. Predicted TCE concentration contours in μ g/L at the end of 100-year simulation period for the Pump and Treat Alternative (3TCESP2T) at the PGDP, Paducah, Kentucky.

630342

Fig. C1-8a. Predicted TCE concentration contours in μ g/L at the end of 5-year simulation period for the Source Containment Alternative with Pump and Treat (4TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-8b. Predicted TCE concentration contours in $\mu g/L$ at the end of 10-year simulation period for the Source Containment Alternative with Pump and Treat (4TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-8c. Predicted TCE concentration contours in μ g/L at the end of 30-year simulation period for the Source Containment Alternative with Pump and Treat (4TCESP2T) at the PGDP, Paducah, Kentucky.

Fig. C1-8d. Predicted TCE concentration contours in μ g/L at the end of 60-year simulation period for the Source Containment Alternative with Pump and Treat (4TCESP2T) at the PGDP, Paducah, Kentucky.

630346

Fig. C1-9a. Predicted Tc-99 concentration contours in pCi/L at the end of 5-year simulation period for the No Action Alternative (1T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-9b. Predicted Tc-99 concentration contours in pCi/L at the end of 10-year simulation period for the No Action Alternative (1T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-9c. Predicted Tc-99 concentration contours in pCi/L at the end of 30-year simulation period for the No Action Alternative (1T99SP2) at the PGDP, Paducah Kentucky.

Fig. C1-9d. Predicted Tc-99 concentration contours in pCi/L at the end of 60-year simulation period for the No Action Alternative (1T99SP2) at the PGDP, Paducah Kentucky.

630350

Fig. C1-9e. Predicted Tc-99 concentration contours in pCi/L at the end of 100-year simulation period for the No Action Alternative (1T99SP2) at the PGDP, Paducah Kentucky.

Fig. C1-10a. Predicted Tc-99 concentration contours in pCi/L at the end of 5-year simulation period for the No Action Alternative with NW/NE Wells pumping (12T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-10b. Predicted Tc-99 concentration contours in pCi/L at the end of 10-year simulation period for the No Action Alternative with NW/NE Wells pumping (12T99SP2) at the PGDP, Paducah, Kentucky.

630351

Fig. C1-10c. Predicted Tc-99 concentration contours in pCi/L at the end of 30-year simulation period for the No Action Alternative with NW/NE Wells pumping (12T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-10d. Predicted Tc-99 concentration contours in pCi/L at the end of 60-year simulation period for the No Action Alternative with NW/NE Wells pumping (12T99SP2) at the PGDP, Paducah, Kentucky.

DATA FILE: /99049/DATA/GWATR/12T99SP2100 S 20 LEGEND: BUILDING PADUCAH PLANT **7** ® Science ApplicationsTc-99 CONTOURS (pCi/L) RUE International Corporation NORTH PADUCAH GASEOUS **DIFFUSION PLANT GROUNDWATER OU** 2,000 4,000 Ω CAD FILE: /99049/DWGS/G8512T9100 DRAWN BY: REV. NO./DATE: SCALE: 1" = 4,000 S. DUNLAP A / 02-14-00

Fig. C1-10e. Predicted Tc-99 concentration contours in pCi/L at the end of 100-year simulation period for the No Action Alternative with NW/NE Wells pumping (12T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-11a. Predicted Tc-99 concentration contours in pCi/L at the end of 5-year simulation period for the Source Containment Alternative (12T99SP2) at the PGDP, Paducah, Kentucky.

630355

Fig. C1-11b. Predicted Tc-99 concentration contours in pCi/L at the end of 10-year simulation period for the Source Containment Alternative (2T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-11c. Predicted Tc-99 concentration contours in pCi/L at the end of 30-year simulation period for the Source Containment Alternative (2T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-11d. Predicted Tc-99 concentration contours in pCi/L at the end of 60-year simulation period for the Source Containment Alternative (2T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-12a. Predicted Tc-99 concentration contours in pCi/L at the end of 5-year simulation period for the Source Containment Alternative with NW/NE Wells pumping (22T99SP2) at the PGDP, Paducah, Kentucky.

630359

Fig. C1-12b. Predicted Tc-99 concentration contours in pCi/L at the end of 10-year simulation period for the Source Containment Alternative with NW/NE Wells pumping (22T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-12c. Predicted Tc-99 concentration contours in pCi/L at the end of 30-year simulation period for the Source Containment Alternative with NW/NE Wells pumping (22T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-13a. Predicted Tc-99 concentration contours in pCi/L at the end of 5-year simulation period for the Pump and Treat Alternative (3T99SP2) at the PGDP, Paducah, Kentucky.

630364

Fig. C1-13b. Predicted Tc-99 concentration contours in pCi/L at the end of 10-year simulation period for the Pump and Treat Alternative (3T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-13c. Predicted Tc-99 concentration contours in pCi/L at the end of 30-year simulation period for the Pump and Treat Alternative (3T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-13d. Predicted Tc-99 concentration contours in pCi/L at the end of 60-year simulation period for the Pump and Treat Alternative (3T99SP2) at the PGDP, Paducah, Kentucky.

630365

Fig. C1-13e. Predicted Tc-99 concentration contours in pCi/L at the end of 100-year simulation period for the Pump and Treat Alternative (3T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-14a. Predicted Tc-99 concentration contours in pCi/L at the end of 5-year simulation period for the Source Containment Alternative with Pump and Treat (4T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-14b. Predicted Tc-99 concentration contours in pCi/L at the end of 10-year simulation period for the Source Containment Alternative (4T99SP2) at the PGDP, Paducah, Kentucky.

Fig. C1-14c. Predicted Tc-99 concentration contours in pCi/L at the end of 30-year simulation period for the Source Containment Alternative with Pump and Treat (4T99SP2) at the PGDP, Paducah, Kentucky.

REFERENCES

DOE 1999. Waste Area Grouping 6 (C-400 Area) Remedial Investigation Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1727&D2, United States Department of Energy, Paducah, KY, May 1999.

LMES 1997. Evaluation of Natural Attenuation Processes for Trichloroethylene and Technetium-99 in the Northeast and Northwest Plumes at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, KY/EM-113, Lockheed Martin Energy Systems, November 25, 1997.

McDonald and Harbaugh, 1988. McDonald, M.G., and A.W. Harbaugh, "A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model," *Techniques of Water-Resources Investigations*, Book 6, Chapter A1, United States Geological Survey, Reston, VA, 1988.

APPENDIX C2

.

, j

INNOVATIVE TREATMENT & REMEDIATION DEMONSTRATION

Paducah Groundwater Project Innovative Technology Review

Mike Hightower Environmental Monitoring and Characterization Department

> Kenneth Kuzio Environmental Analysis Department

> Wu-Ching Cheng Environmental Analysis Department

Malcolm Siegel Environmental Monitoring and Characterization Department

> Sandia National Laboratories P.O. Box 5800 Albuquerque, New Mexico 87185-0755

Technical Advisory Group Paducah Groundwater Project Innovative Treatment & Remediation Demonstration Program

ABSTRACT

Groundwater plumes containing trichloroethylene (TCE) and technetium-99 (Tc-99) have been found at the Paducah Gaseous Diffusion Plant site in Paducah, Kentucky. The Innovative Treatment and Remediation Demonstration Program (ITRD) Technical Advisory Group (TAG) was tasked with assisting in the investigation of treatment options for remediating the source area and the plume inside of the site boundary to prevent further contaminant off-site migration. The TAG's charter did not include investigation of treatment options for the off-site portion of the plume.

Technologies were examined for their applicability to treatment of the Upper Continental Recharge System (UCRS) and the Regional Groundwater Aquifer (RGA). Technology and materials for fence-line reactive barriers were also investigated. For the UCRS, the technologies rated highest by the TAG were Rotary Treatment (including rotary steam) in areas where infrastructure would not preclude its use, Chemical Oxidation or Ozone Treatment with Soil Fracturing, Direct Heating, and Soil Vapor Extraction with Soil Fracturing. For the RGA, the technologies rated highest were Chemical Oxidation using the C-Sparge method for circulating ozone, Direct Heating, Steam/DUS/HPO, and Chemical Oxidation using Permanganate. For the fence-line reactive barrier, the highest rated technologies were Zero Valent Iron in a passive wall and C-Sparge recirculating wells.

In addition to making technology recommendations, the TAG also recommended the performance of pilot studies to collect cost and performance data related to selected technologies. The TAG recommended a pilot study using C-Sparge in the RGA with ion exchange resin placed in the well to test its ability to remove Tc-99 around Building C-752A. The TAG also recommended a pilot study of Six Phase Heating in the UCRS and RGA southeast of building C-400.

Acknowledgment

The authors thank members of the Paducah project Technical Advisory Group for their contributions to the technology review effort and to the writing of this report.

Brian Baker, KY Division of Waste Management Sarah Maudlin, Bechtel Jacobs Co., EM Team Brian Begley, KY Division of Waste Management (AIP) Eric Morti, SAIC Gary Bodenstein, U.S. DOE, Paducah Site Office Todd Mullins, KY Division of Waste Management Gaye Brewer, KY Division of Waste Management Virginia Mullins, GeoConsultants Bryan Clayton, GeoConsultants Dale Pflug, TechCon / Argonne National Laboratory Kenneth Davis, SAIC Bob Pratt, Bechtel Jacobs Co. Paul de Percin, U.S. EPA, NRMRL Walt Richards, SAIC Jeff Douthitt, GEO Consultants, LLC Craig T.Rightmire, Bechtel Jacobs Co. Tom Early, Oak Ridge National Laboratory John Sheppard, U.S. DOE, Paducah Site Office Carl R.Froede Jr., U.S. EPA, Region 4 Jim Smart, University of Kentucky Mark Gage, Bechtel Jacobs Co. Russ Taylor, KY Division of Waste Management Doug Gerrick, TechCon / Argonne National Laboratory John A.Volpe, PhD., KY Radiation Health & Toxic Agents Branch Patricia Gourieux, Bechtel Jacobs Co. Lynn Wood, U.S. EPA Steve Hampson, University of Kentucky, RHTAB

Final Draft – March 2001

TABLE OF CONTENTS

1.	Introduction	1
2.	Site information	1
3.	Initial Review of Innovative Technologies	2
4.	Innovative In Situ Vadose Zone Soil Treatment Technologies	8
	4.1. High Vacuum Extraction	8
	4.2. Thermal Treatment Technologies	9
	4.3. Rotary Steam Stripping	10
	4.4. Chemical Oxidation	10
	4.5. Electrokinetics	11
	4.6. Horizontal Reactive Treatment Zones	11
	4.7. Source Term Containment	12
	4.7.1. Biological Barriers	12
	4.7.2. Grouting	12
	4.8. Summary	13
5.	Innovative In Situ Groundwater and Saturated Soil Treatment Technologies	17
	5.1. Multi-Phase Extraction	17
	5.2. Recirculating Wells	
	5.3. Air Sparging/Soil Vapor Extraction	19
	5.4. Biological Treatment	19
	5.5. Surfactant Flushing Technologies	20
	5.6. Chemical Oxidation	21
	5.7. Thermal Treatment Technologies	
	5.8. Steam Stripping	
	5.9. Aquifer Leveling	
	5.10. Permeable Reactive Treatment Zones	22
	5.11. Aquifer Redox Manipulation	23
	5.12. Pump and Treat with Reinjection	23
	5.13. Natural Attenuation with Source Control	23
	5.14. Summary Discussion	23
6.	Summary of Technology Implementation Cost and Performance Estimates at the Paducah Site	
7.	Summary of Technologies Suggested for Possible Implementation at Paducah	
	7.1. UCRS – Vadose Zone	
	7.2. UCRS – Saturated Zone	36
	7.3. RGA	
	7.4. Characterization and Pilot Studies	36
8.	References	38
Ap	pendix – Cost Estimates from Technology Vendors	41
	IT Corporation: Chemical Oxidation in the Vadose Zone Using Ozone	43
	IT Corporation: Chemical Oxidation in the RGA Using Permanganate	
	In-Situ Fixation: Rotary Steam Stripping.	
	Current Environmental Solutions: Six Phase Heating	
	McLaren/Hart: Soil Vapor Extraction with Pneumatic Fracturing	
	Morrison Knudson / K-V Associates: C-Sparge	
	SteamTech: Steam Enhanced Extraction and In-situ Destruction (SEED)	101

iv ITRD Paducah Groundwater Technology Summary Report

Final Draft – March 2001

TABLES

1.	Candidate Technology Matrix	5
2.	Preliminary Technology Applications by Geologic Unit	7
3.	Selected List of Technology Deployments	14
4.	Engineering Cost and Performance Estimates for Technology Applications at Paducah	
	4a. UCRS Technologies	27
	4b. RGA Technologies	31
	4c. Permeable Treatment Zones	34

FIGURES

5.	Trichloroethene Contamination in Groundwater at the Paducah Gaseous Diffusion Plant
6.	Technetium-99 Contamination in Groundwater at the Paducah Gaseous Diffusion Plant4

eleoeg

Paducah Groundwater Project Innovative Technology Review

1. INTRODUCTION

This document discusses the efforts of the Paducah Project ITRD Technical Advisory Group to identify and assess technologies capable of enhancing and accelerating the remediation of chlorinated solvent and radionuclide contamination, specifically trichloroethene (TCE) and technetium-99 (Tc-99) at the Paducah Gaseous Diffusion Plant. TCE and Tc-99 levels of up to 10 mg/L and 1000 pCi/L, respectively, have been identified in the groundwater at the DOE property boundaries. Drinking water standards are 5 μ g/L for TCE and 900 pCi/L for Tc-99. Based on a review of the site contamination, site conditions, and the remediation goals of the Paducah ER Program, potentially applicable technologies were considered for detailed evaluation, treatability studies, engineering evaluation and cost and performance analysis.

The criteria used to screen technologies included; cost and ease of implementation, technology maturity and appropriateness, life-cycle costs and overall cost-effectiveness, ability to reduce the contaminants of concern to regulatory levels at identified points of compliance, compatibility with existing site constraints and existing treatment systems, stakeholder considerations, and regulatory permitting issues. The TAG identified and reviewed approximately thirty technologies that might be applicable to remediation of the TCE and Tc-99 contamination at Paducah. The technology categories considered included: *in situ* treatment of contaminated low-permeability soils in both the saturated and vadose zones; in situ treatment of contaminated groundwater; and in situ treatment of high-permeability saturated soils and gravel. The general maturity, cost, and performance characteristics of the technologies identified as they apply to Paducah are reviewed in detail in the following sections. Based on this information, the most promising technologies were further assessed through engineering evaluations with several technology vendors. These assessments were reviewed by the TAG and used to identify the most appropriate technologies and strategies for implementation at Paducah.

2. SITE INFORMATION

The DOE's Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment plant located on approximately 3556 acres in western Kentucky along the Ohio River, of which 748 acres are located inside a fenced security area. Enrichment operations at the plant began in 1952, and became fully operational in 1955. Plant operations included the generation and disposal of both hazardous and radioactive wastes. Several areas associated with these past operations and disposal practices at the plant have contributed to soil and groundwater contamination that has migrated over a mile off-site (US DOE 1999).

Three large plumes of groundwater contamination have migrated outside the plant boundaries as shown in Figures 1 and 2. The primary contaminants in these plumes, TCE and Tc-99, have migrated down through the top sixty feet of low permeability silt and clay soil lenses in the Upper Continental Recharge System (UCRS) to contaminate a high permeability regional groundwater aquifer (RGA). The water table at the site is approximately 10-30 feet below the surface. Below the upper unit is an aerobic, high permeability, sandy-gravel aquifer that varies in thickness from about 30' to 60'. The hydraulic conductivity of the upper clay soils is about 0.01 to 0.28 ft/day while the hydraulic conductivity of the regional groundwater gravel varies from about 1 to 3 ft/day. Though contaminant concentrations in the aquifer vary widely (see Figures 1 and 2) TCE and Tc-99 levels of up to10,000 μ g/L and 1000 pCi/L, respectively, have been identified at the DOE property boundaries. Drinking water standards are 5 μ g/L for TCE and 900 pCi/L for Tc-99.

Because of the large extent of the contamination, the baseline remediation technology for the site is source removal in the C-400 area and the installation of reactive treatment zones at site boundaries. The original baseline technology was pump-and-treat. Assessment of a pump-and-treat system has shown that to contain the existing plumes and prevent additional off-site contaminant migration as much as 3000-4000 gallons per minute will have to be pumped. The capital and operating costs associated with this large a system are high. The ITRD project was established to help identify ways to accelerate the remediation of the site while significantly reducing overall remediation costs.

3. INITIAL REVIEW OF INNOVATIVE TECHNOLOGIES

The initial Paducah ITRD Project meeting was held on February 10-11, 1999 in Paducah, Kentucky. Twenty-seven participants representing the DOE, national laboratories, EPA laboratories, State of Kentucky regulators, Paducah site management and integrating contractor, and U.S. EPA Region IV attended this initial meeting. Technical presentations covered the history of the site and the Groundwater Operable Unit, the hydrologic setting, the contaminants of concern and their concentrations, site accessibility issues, and baseline technologies. A site tour of the facility was also conducted. The twenty nine technologies identified at this meeting, listed in Table 1, address characterization, treatment of the contaminated soil, the groundwater, or a combination of the two, and improvements to the baseline pump-and-treat system. Contact persons on the TAG were charged with obtaining additional information on each technology listed.

Figure 1. Trichlorethene Contamination in Groundwater at the Paducah Gaseous Diffusion Plant¹

Technology	Application
	Identified in Initial Screening
Sonic-assisted Cone Penetrometer	Characterization
Redox Manipulation	Treatment of dissolved phase plume
Huma-Sorb™	Treatment for TCE, may sorb Tc-99
Iron Reactive Wall (Vertical hydraulic	Tc-99 capture, TCE destruction
fracture)	
Chemical Oxidation	Dissolved phase and source removal
Underground Steam Stripping	Source removal
Flushing technologies [solvents; surfactants]	Source removal
Direct thermal approaches (6 phase heating,	Dissolved phase and source removal
etc)	
Pump and Treat with Reinjection	Tc-99 and TCE removal
High Vacuum Enhanced Recovery	TCE removal
Steam injection with high vacuum	Dissolved phase removal
extraction	
Microwave heating	Dissolved phase and source removal
Aerobic Bioremediation	TCE treatment
Air Sparging (In-well vapor stripping)	TCE stripping
Gaseous Reduction	Tc-99 removal
Horizontal Reactive Barriers [Hydrofracture	Containment
(or permanganate grout)]	
Multi-Phase Extraction	Dissolved phase and source treatment
Horizontal Wells	Characterization and enabling technology
Natural Attenuation with source control	All areas
Aquifer Leveling	Reduce hydraulic gradient in RGA
Horizontal Wells/Multi-Phase Extraction	RGA
Grout Walls/Barriers	Containment
Permeation Grouting	Containment
Electrokinetic recovery (Electromigration)	Tc-99 and TCE treatment
Rotary Steam Stripping	Treatment of TCE and Tc-99 in UCRS
Deep Injection Passive Barriers (Iron or Bio)	Reactive media or nutrient injection for
	dissolved plume
Bio-sparging	Dissolved phase plume
Barometric Pumping	Dissolved phase in soil

Table 1: Candidate Technologies for Characterization and Remediation

Based on this initial identification of technologies, the TAG moved forward to assess the applicability of these technologies for remediation at Paducah (Kuzio April, June, August 1999). Existing Remedial Investigation/Feasibility Study (RI/FS) data and information was provided to the TAG to assist in this effort.

During the next several meetings, TAG discussions focused on the applicability of proposed treatment technologies. Additional technologies showing potential for site application were also introduced and evaluated. The Paducah ITRD project schedule was designed to provide timely input to the Feasibility Study technology selection process, thereby aiding the site in meeting its Federal Facility Agreement milestones. The leading four or five candidate technologies needed to be identified in time to allow treatability studies and the resulting performance data to be included in the Internal Review version of the site Feasibility Study.

TAG members agreed that, due to the complexity of the hydrogeology and infrastructure at the site, well-understood and readily available technologies would be required. Because of these complex issues, multiple technologies may be needed to address all remediation objectives. The TAG's technology review is summarized in the following sections, and has been separated into two categories:

- technologies for treatment or containment of contaminants in the low-permeability vadose soils
- technologies for treatment of the saturated low-permeability and high-permeability soils and groundwater

The preliminary application of each of the technologies initially identified by the TAG is presented in Table 2 below.

Ex situ treatment technologies for contaminated soils, in which the soil would have to be excavated for treatment, were not considered realistic options for this project because of the proximity to building foundations and utilities, and most importantly costs. *Ex situ* treatment technologies for contaminated groundwater, in which the water would be pumped to the surface, were not specifically considered. The existing pump-and-treat systems used for plume control, which consists of air strippers for TCE and ion exchange for Tc-99, are effective, but costly, *ex situ* treatment techniques for the contaminated groundwater. Containment of the existing plumes on-site would require a significantly larger and costlier pump-and-treat system and a significant period of time to approach reasonable site cleanup levels.

Formation	Source (Easy Access)	Source (Hard Access)	Low Concentration Zones
UCRS Vadose Zone $K= 1x10^{-4}$ to $3.5x10^{-5}$ cm/s Depth 0-40 ft bgs	 Direct Heating Rotary Steam Stripping Electrokinetics Horizontal Reactive Barriers HVSVE Gaseous Chemical Oxidation Natural Attenuation & Containment 	 HVSVE (with enhancements) Gaseous Chemical Oxidation Horizontal Reactive Barriers Direct Heating Electrokinetics Natural Attenuation & Containment 	 Rotary Steam Stripping Electrokinetics HVSVE Gaseous Chemical Oxidation Direct Heating Natural Attenuation & Containment Horizontal Reactive Barriers
UCRS/Saturated $K = 1 \times 10^{-4}$ to 3.5×10^{-6} cm/s Depth 30-60 ft bgs	 Two Phase Vapor Extraction Direct Heating Rotary Steam Stripping Electrokinetics Horizontal Reactive Barrie 	rs	 Rotary Steam Stripping Electrokinetics Multi-Phase Extraction HVSVE Horizontal Reactive Barriers
RGA K= 1×10^{-0} to 10^{-2} cm/s Depth 60-130 ft bgs	 Dynamic Underground Stru- Oxidation Chemical Oxidation Soil Flushing Direct Heating Air Sparging (w/o ozone) Pump and Treat 	ipping/Hydrous Pyrołysis-	 Aerobic Bio; Bio-venting Air Sparging/SVE Chemical Oxidation Steam Stripping Reactive Walls Pump and Treat Natural Attenuation

Table 2. Preliminary Technology Applications

4. INNOVATIVE IN SITU VADOSE ZONE SOIL TREATMENT TECHNOLOGIES

One group of innovative technologies reviewed by the TAG were those with the capability of remediating the contaminated lower permeability soils in the UCRS. Based on the site characterization data, the consensus of the TAG was that the TCE concentration levels in some areas are high enough to act as a continuing source of groundwater contamination unless treated or contained. Therefore, the TAG worked at identifying technologies that could effectively address the low permeability contaminated vadose zone soil in the UCRS. Treatment of Tc-99 in the vadose zone was not considered because, TAG members believed that Tc-99 will not be mobile in the vadose zone. Regulators on the TAG indicated that removal of TCE from the vadose zone could potentially be considered adequate remediation without addressing Tc-99 in the vadose zone. Nevertheless, Electrokinetics and Rotary Steam Stripping with injection of Zero-Valent Iron, which could potentially remove (or immobilize) Tc-99 from (in) the vadose zone soil, were still considered.

The technologies reviewed for removal of TCE included High Vacuum Extraction, Thermal Treatment, Steam Stripping, Chemical Oxidation, Electrokinetics, Horizontal Reactive Barriers, and Natural Attenuation with Source Term Containment. A limited list of previous deployments of these technologies is shown in Table 3. The table indicates if the technology has been demonstrated in the vadose zone, a low permeability saturated zone or a high permeability saturated zone. Details concerning each of these technologies are discussed below.

4.1. High Vacuum Extraction

This commercially available technology consists of three types of soil vapor extraction (SVE) processes: Passive SVE, Standard SVE (5-10 inches Hg vacuum), and High Vacuum SVE (15-29 inches Hg vacuum) for the removal of volatile or semi-volatile organic compounds. Neither SVE nor High Vacuum SVE can remediate Tc-99 in the soil. The High Vacuum technology is primarily used in tight vadose zone soils with hydraulic conductivities ranging from 10^{-6} to 10^{-7} cm/sec to remove VOCs. This technology can be used in layered soils with varying hydraulic conductivities for VOC concentrations up to 10,000 ppm, although most common applications are for VOC concentrations of 500 ppm. The radius of influence of High Vacuum SVE's is 10'-20' in tight soils, and 30'-50' in more permeable soils. Contaminant removal efficiencies of greater than 90% are achievable with typical treatment periods of 2-4 years. High Vacuum soil vapor extraction has been successfully applied by many vendors to soils with permeabilities as low as those seen in the UCRS. After the VOCs are extracted from the subsurface, they are either sorbed onto activated carbon or destroyed by catalytic oxidation. Several vendors including Haley & Aldrich, IT, and McLaren-Hart are using this technology to remediate contamination in tight soils, often in conjunction with soil fracturing. Some of the vendors require the purchase of a license in order to use their technology. Since this technology seemed to be appropriate for this site and could potentially address the UCRS soils, the TAG conducted an engineering evaluation for the application of this technology at Paducah. The results of that evaluation are discussed in Sections 5 and 6.

4.2. Thermal Treatment Technologies

The TAG considered both direct or resistive heating and microwave heating of the soil and groundwater as treatment options. Although a vendor could not be identified with adequate experience and equipment for full-scale microwave heating, initial pilot tests using this technology have been conducted. Therefore, the TAG concentrated on direct heating applications, particularly Six-Phase Heating available through Current Environmental Solutions (CES).

The CES technology typically uses a Six-Phase Array (SPA) with 6 electrodes located in a hexagonal shape and a neutral electrode located in the center of the hexagon which also serves as a vapor extraction well. A typical array diameter is 25-35' with the heated zone being approximately 40% larger than the array diameter. The deepest installation of this technology to date is to 60' below ground surface (bgs). Application of electrical voltage to electrodes causes *in situ* heating. The soil matrix becomes a resistive heater, raising the temperature of the soil to a level such that the target contaminant(s) are volatilized. The technology can be deployed in the vadose and saturated zones, and may be used in low permeability or highly heterogeneous soils. Common power sources (60 Hz) may be used to heat the ground (typical sub-surface applied voltages range from 150-600 volts), producing *in situ* steam to liberate the contaminants, which are removed by the center vapor extraction well. The vapor treatment train consists of a condenser/knock out drum to remove a substantial portion of the water and either activated carbon or a catalytic oxidation unit to capture/destroy VOCs. If activated carbon is used, the spent carbon becomes a secondary waste stream.

The technology produces uniform soil heating, which leads to uniform removal of VOCs. Key issues concerning this technology include the effects of soil heating on surrounding plastic-encased utilities and effective treatment of infrastructure-laden areas. While PVC piping may be damaged by the elevated temperatures produced in the soil by this technology, CPVC will not sustain significant damage. Angle borings can be used to accommodate infrastructure concerns. Cleanup efficiencies typically reach 99+%. The technology may be used to heat aquifers, however large amounts of water increase overall project costs and extend project completion times. The process does not adversely impact any metals of radionuclides present in the soil or groundwater. Similarly, the presence of these elements or materials has no adverse impact on the heating process. Because of the relative maturity and somewhat low overall costs, the technology remains a candidate for soil and groundwater treatment in several areas. The applicability of Six-Phase Heating to the UCRS soils was reviewed in detail by the TAG. An engineering evaluation of application of this technology at Paducah is presented in Sections 5 and 6.

From a regulatory perspective, the power sources for Six-Phase Heating are considered to be portable sub-stations and are subject to comprehensive IEEE guidelines for electrical sub-stations, including grounding practices, voltage measurements for surrounding ground, and provisions for lightning strikes. CES has experience working at industrialized sites with extensive gas and sewer piping and under roadways. At sites where the location of infrastructure is not explicitly known, magnetometer and/or ground penetrating radar surveys are used to locate the utilities.

4.3. Rotary Steam Stripping

This technology uses deep soil mixing equipment to inject a range of materials including stabilization media, bioremediation nutrients, hot air and steam and reactive media. Three companies provide this technology: In-Situ Fixation, Geo-Solutions and Geo-Con. Volatilized organic contaminants are forced to the surface via steam injection, then collected and treated. The technology is applicable to soil and groundwater contamination in both the vadose and saturated zones, and in low permeability soils. It can be applied to high contamination areas (i.e., 100-300,000 ppm of VOCs). Although this technology applies primarily to VOCs, reactive media such as zero-valent iron can be injected to retard the migration of Tc-99.

Treatment rates range from 20-40 yd³/hr with typical contaminant removal efficiencies of 80-90%. Residual contaminant concentrations range from 20-50 ppm using steam injection only; using steam followed by iron injection, residual concentrations range from 5-10 ppm. Working with chemical oxidation companies, some vendors are working on injection of Fenton's reagent as an additional treatment method. Typical treatment depths range to 40', although depths to 70' are possible. The effective treatment area is approximately 40-75 ft² per borehole. If oxidizing agents (such as Fenton's reagent) or reducing agents (such as zero valent iron) are not used, above ground treatment is required to remove the VOCs from the condensed steam. This can be accomplished by sorption on activated carbon, for example. Because of the maturity of the technology, the TAG conducted an engineering evaluation of the application of the technology at Paducah which is presented in Sections 5 and 6.

4.4. Chemical Oxidation

In this process, low concentrations of oxidants are injected to oxidize organic contaminants in the subsurface (Tc-99 is not expected to be addressed). Commercially available chemical oxidation technologies include:

- Fenton's reagents: high concentrations of hydrogen peroxide in combination with iron sulfate
- Low concentration hydrogen peroxide: injected with iron and a catalyst
- Ozonation: applicable in either the saturated or vadose zone
- Permanganate

Off-gas control is often important with chemical oxidation technologies to reduce unintentional violent reactions with soil organics. The Fenton's process appears to be more hazardous and costly to implement in this site's vadose zone due to the high organic content and the technology's high reactivity with organic material. Of the technologies identified, those using ozone and permanganate appear to be the best options for Paducah. The benefits of using ozone and permanganate include low material cost and handling safety. Permanganate solution does not burn human skin; a spray solution of vinegar, hydrogen peroxide and water removes coloration. Facemasks are used for splash protection, eyewash neutralizes permanganate solution in case of accidents.

The use of permanganate to degrade DNAPLs causes the generation of salts and hydrogen or hydroxyl ions (acids or bases) with no significant pH shifts. The direct application of

630389

permanganate has commonly been used for contaminant levels up to 100 ppm to avoid off-gassing. It has only recently been applied to contaminant levels exceeding 1000 ppm. The material should be applied after a heavy mass of contaminant has been removed by other means. Once applied to an aquifer, the path of permanganate migration may be tracked using the material's electrical resistance. Permanganate has been used in tight clays and for soil and groundwater injection. Oxidation of permanganate by-product compounds occurs faster than oxidation of DNAPLs. Although current research shows no adverse reactions, the compatibility of humic materials with permanganate products may be a concern.

Because this technology has potential application to all the contaminated soil and groundwater at the Paducah site, the TAG conducted an engineering evaluation for cost and performance of the different oxidants on the contaminants of concern. The results of this evaluation are presented in Sections 5 and 6.

Waste generated by the chemical oxidation process consists of personal protection equipment and possibly drill cuttings; an estimated 1 ft^3 of soil cuttings is generated per linear foot of well. It is expected that wells would be required for chemical injection into the RGA because initial tests determined that geoprobes were not able to penetrate the RGA. Another waste stream generated by the process is the water used for decontamination of drill bits. It is estimated that less than 20 gallons of water will be used for each hole drilled.

4.5. Electrokinetics

This technology uses electrical current to move charged particles through subsurface soil. Positive and negative electrodes are placed in the soil to move charged contaminants to a collection or treatment point. The technology has been used extensively over the past 50 years to dewater clays for the construction industry, and has only recently been applied to treatment of contaminated soils to move a variety of charged species including nutrients, VOCs, and heavy metals. Other applications include *in situ* destruction of volatile organic contaminants.

Applications considered included *in situ* treatment such as the LASAGNA Process and Weiss and Associates. Advantages of the technology are that both TCE and Tc-99 could possibly be removed at the same time. The LASAGNA Process has been demonstrated at Paducah with some success. Based on past performance, an engineering evaluation of the technology was conducted for widespread use at Paducah. The results are presented in Sections 5 and 6.

4.6. Horizontal Reactive Treatment Zones

The Horizontal Reactive Treatment Zones approach combines the recently maturing remediation techniques hydraulic fracturing, and jet grouting with reactive treatment media such as zero-valent iron or permanganate. A high-permeability mixture containing either a chemical oxidant (such as permanganate) or another reactive media (such as zero-valent iron) is injected in a horizontal layer at the bottom of a vadose zone soil right above the water table. The mixture reacts with the contaminants in source-term areas that migrate down through the reactive zone. As long as the treatment zone remains active, this technique can reduce the potential for residual soil contamination to act as a continuing source for aquifer and groundwater contamination. The reactive mixture or grout concept, developed by McLaren-Hart, Foremost Solutions, IT and other companies, has been demonstrated in a few field demonstrations and has shown significant promise.

This technology presents the site with concerns about fracturing the soil near utilities. The TAG decided to retain the technology for consideration as a remediation strategy because it provides an alternative if an area of high-concentration can not be fully remediated by other means. An engineering evaluation of the application of the technique suggested that active treatment of vadose soils might be only slightly more costly than a passive horizontal reactive barrier. This technique may be reconsidered for application if other remedial techniques are shown to be ineffective at the site.

4.7. Source Term Containment

The TAG reviewed a set of technologies capable of containing the contaminated soil and groundwater source term areas. Contamination levels identified in these areas suggested the potential for large areas of non-aqueous phase TCE in both the soil and groundwater. If not treated or contained, these areas have the potential to be a continuing source of contamination. Several containment technologies were reviewed including biological barriers and grouting.

4.7.1. Biological Barriers

Used in the petroleum industry for several decades to manipulate fluid flow and media permeability, biological barriers have been the subject of recent laboratory research for environmental applications. The addition of nutrients and biological amendments to soil and groundwater creates a dense biological growth that has been shown in the laboratory to reduce the hydraulic conductivity of the soil on the order of 10⁻⁷ cm/sec. This level of reduction is roughly equivalent to the hydraulic conductivity created through permeation or injection grouting techniques. Suggested environmental applications include containment barriers, flow control for pump-and-treat systems, or as part of a funnel and gate system. The benefits of this technique include simple maintenance consisting of periodic nutrient addition, cost-effectiveness and removability.

The work to date for environmental applications has been at laboratory-scale. Biological barriers present three issues of concern to TAG members: 1) full-scale costs and performance have not yet been determined, 2) there is no data on microbe viability in the presence of high levels of TCE contamination, and 3) it is unknown if nutrients could be supplied to the microbes in the tight clay soils of the UCRS. It may be several years before system optimization data would be available. Therefore, the TAG suggested that the technology be considered in more detail only if cost-effective treatment technologies could not be identified for treatment of high concentration or source areas.

4.7.2. Grouting

Both permeation and jet grouting are mature technologies widely used for environmental applications. Typically, cementitious or plastic based grouts are used to fill voids in the soil and create a zone of relatively low permeability, on the order of 10^{-7} cm/sec. For environmental applications, the technology has most often been used to create cut-off walls and containment walls to reduce the migration of both metal and organic contaminants. Grouting can also be used in concert with fracturing for source term containment. Permeation grouting is most commonly applied at shallow depths and in soils or aquifers of relatively high permeability. Jet grouting is being applied to depths from 70-120 feet. Some companies suggest that depths of 300 feet can be achieved. Major concerns at the Paducah site are the relative permanence of the grout barriers

630391 12 ITRD Paducah Groundwater Technology Summary Report

and the difficulties of creating a successful barrier around the many utilities at the (grouting requires injection holes at about 5-foot centers). As with the biological barrier technology, the TAG suggested that the technology be considered in more detail only if cost-effective treatment technologies could not be identified for treatment of the high concentration or source areas.

4.8. Summary

The TAG decided to perform further evaluation on the following technologies for application in the unsaturated UCRS:

- High Vacuum Extraction
- Thermal (Six-Phase Heating) Technology
- Rotary Steam Stripping
- Chemical Oxidation
- Electrokinetics
- Horizontal Reactive Treatment Zones

The other technical options [source-term containment, biological barriers and grouting] will not be pursued any further.

Table 3 Selected List of Technology Deployments

Technology	Demo Site Owner	Site Location	Area	Vadose or Saturated Zone	Contaminant	Source of Information
Thermal Process				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Six-Phase Heating	DOE	Hanford				Kuzio 4/99
<u> </u>	DOE	Savannah River			TCE, PCE	Kuzio 4/99
		Skokie, IL				Kuzio 4/99
	NASA	Cape Canaveral	Launch Complex 34	Saturated	TCE	SCFA 1999
Dynamic Underground Stripping Hydrous Pyrolysis-Oxidation	DOE	Portsmouth, OH	X-701B Plume Site		TCE	Kuzio 4/99
	Commercial	Visalia, CA	Southern California Edison Power Pole Treatment Yard		Creosote, Penta- chlorophenol	SCFA 1999
	NASA	Cape Canaveral	Launch Complex 34	Saturated	TCE	SCFA 1999
	DOE	Lawrence Livermore Lab			BTEX	
Oxidation Processes						<u></u>
In-Situ Chemical Oxidation - Permanganate	DOE	Kansas City Plant, MO				SCFA 1999
	DOE	Portsmouth, OH	X-701B Plume Site	Saturated	TCE/PCE	SCFA 1999
	DoD	US Army Cold regions research Lab				US EPA 1998a
	Private Sites	BMC Olen Site, CRREEL, (Gafton County, NY), Union Chemical (ME), Dry Cleaning Facility (FL)				US EPA 1998a
	NASA	Cape Canaveral	Launch Complex 34	Saturated	TCE	TIE 1999

Technology	Demo Site	Site Location	Area	Vadose or Saturated Zone	Contaminant	Source of Information
Pumning Processes	Owner			· · · · · · · · · · · · · · · · · · ·		
Pump and Treat	DOE	Paducah Gaseous Diffusion Plant	Northwest and Northeast Plumes	Northwest and Saturated		Kuzio 2/99
	USAF	McClellan Air Force Base, Sacramento, CA	Operable Unite B/C	Saturated	TCE, DCE, PCE, DCA	EPA 1995
	USAF	McClellan Air Force Base, Sacramento, CA	Operable Unit D	Saturated	TCE, DCE, PCE, DCA	EPA 1995
	US Army	Twin cities Army Ammunition Plant, New Brighton, MN		Saturated	TCE, DCE, DCA, DCE, TCA, PCE	EPA 1995
Two-Phase/Dual Phase Extraction	Xerox	Ontario, Canada		Vadose and Saturated	Chlorinated Solvents blend	Weber 2000
	USAF	McClellan Air Force Base, Sacramento, CA		Vadose and Saturated	TCE, PCE, Freon 113	Weber 2000
Contaminant Flow Control: Gradient Management	Ponca City					Kuzio 4/99
Recirculation Well Technology	Commercial					Kuzio 4/99
	Airforce	Hill Air Force Base				Kuzio 4/99
C-Sparge	Commercial	Carson City, NV	Crossroads Mall	Saturated	PCE	Ehleringer 2000
	Commercial	Falmouth, MA	Plymouth Savings Bank	Saturated	PCE	Ehleringer 2000
	Commercial	Hinderliter, IN				Ehleringer 2000
	Commercial	Lake Tahoe, CA	Dames and Moore			Elheringer 2000
Biological Processes						
Enhanced In-Situ Bioremediation	DOE	INEEL	Test Area North		TCE	TIE 99
		Savannah River	Sanitary Landfill			SCFA 1999
		Hanford			Carbon Tetrachloride	SCFA 1999
	Army	Vicksburg, MS	Army Waterways Experimental Station			SCFA 1999
		Dover Air Force Base	Nat'L Envirnmt'L Tech. Test Site			SCFA 1999
	Airforce	McClellan Air Force Base, Sacramento,CA				SCFA 1999

Table 3 Selected List of Technology Deployments (continued)

630332

Table 3 Selected List of Technology Deployments (continued)

Technology	Demo Site	Site Location	Area	Vadose or Saturated Zone	Contaminant	Source of Information
	Owner					
Permeable Reactive Zones				<u> </u>		······
Zero-Valent Iron	DOE	Rocky Flats				Kuzio 4/9
		Caldwell, NJ	Operating Unit 2		Pb, TCE	EPA 4/99
Horizontal Permeable Treatment Zone	DOE	Portsmouth				Kuzio 4/99
C-Sparge		Hutchinson, Kansas	Drycleaning Facility		PCE	Burns and McDonnel
Electrokinetics						
LASAGNA	DOE	Paducah	Solid Waste Management Unit 91		ТСЕ	SCFA 1999
Electrokinetics	DOE	Sandia National Laboratories, NM	Chemical Waste Landfill	Vadose	Cr	Mattson 1999
Extraction and Air Spargin	g	······································	·			
Soil Vapor Extraction		Commencement Bay, Tacoma, Washington	South Tacoma Channel (Well 12A)	Vadose	DCE, PCA, PCE, TCE	EPA 1995
	USAF	McClellan Air Force Base, Sacramento, CA	Site S, Operable Unit D	Vadose	TCE, 1,1-DCE, TCA	EPA 1995
Soil Vapor Extaction with Bioventing	USAF	Hill Air Force Base, Ogden, Utah	Site 914	Vadose	Petroleum Hvdrocarbon	EPA 1995
High Vacuum Extraction	Superfund	Fairchild Semiconductor Corporation, San Jose, CA		Vadose	TCA, DCE, IPA, xylenes, acetone, PCE	E PA 1995
In-Situ Air Sparging and Soil Vapor Extraction	Savannah River	C-Area Burning Rubble Pit				SCFA 1999
Enabling Technologies						
Pneumatic Fracturing	DOE	Portsmouth				SCFA 1998
Hydraulic Fracturing for Treatment of DNAPL in Low Permeability Media	DOE	Portsmouth			TCE/PCE	SCFA 1998
Surfactant Flushing	<u> </u>			· · · · · ·		· · · · ·
Surfactant-Enhanced Aquifer Remediation	Air Force	Hill Air Force Base	OU2	Saturated	ТСЕ	Jackson 199
	Navy	Camp Lejeune	Dry Cleaning Facility	Saturated	PCE	Yeh 1999
	DOE	Portsmouth		Saturated	TCE, PCB	Jackson 1999

J. INNOVATIVE IN SITU GROUNDWATER AND SATURATED SOIL TREATMENT TECHNOLOGIES

The TAG reviewed a set of technologies capable of enhancing or accelerating the treatment of the contaminated groundwater and the associated wet contaminated soils of the UCRS and RGA. A wide variety of contamination levels were identified at the site. TCE concentrations over 1000 ppm have been measured near the source term areas. As contamination enters the RGA and is dispersed by the high flow velocities in the aquifer, TCE concentrations generally vary from 1-10 ppm at the distal plume. Concentrations of Tc-99 as high as 40,000 pCi/L in the source area southeast of building C-400 fall to 1000 pCi/L at the distal plume. This suggests that technologies or combinations of technologies should be considered for treatment of the source term areas and the contaminant plumes at the site boundaries.

Both active and passive treatment technologies were reviewed in detail to help identify the expected cost and performance of various combinations of techniques. The technologies evaluated included: Multi-Phase Extraction, In-well Sparging, Air Sparging/Soil Vapor Extraction, Soil Venting, Bioremediation, Chemical Oxidation, Soil Flushing with surfactants, Thermal Remediation, Dynamic Underground Stripping with Hydrous Pyrolysis Oxidation (DUS/HPO), and several reactive treatment zone concepts. Each of these technologies is summarized below. After reviewing these technologies several were identified for detailed engineering evaluation with commercial vendors. The results of those evaluations are presented in Sections 5 and 6.

5.1. Multi-Phase Extraction

Multi-Phase Extraction, defined as extraction of more than one phase, includes three different technologies. The first of these is Dual-Phase Extraction, a technology developed by Groundwater Technologies, which uses an in-well pump to extract groundwater while using an above-ground vacuum pump to extract vapor from the draw-down zone. A second similar technique uses a high vacuum extraction well to extract vapors and a small liquid pump to extract the water from the zone of uplifted water caused by the vacuum. The third Multi-Phase Extraction technology is Two-Phase Extraction which consists of a small diameter "straw" inside of a screened well. A liquid ring pump attached to the straw simultaneously extracts liquid and vapor through the straw. The TAG considered all three configuration options.

The TAG views Dual-Phase Extraction as a way to treat contaminated groundwater and soil simultaneously. The extracted water can be treated for Tc-99 as well as TCE. The vapor phase is not expected to contain significant amount of Tc-99. The technology has been most commonly applied where the contaminants of concern are lighter than water and float on the water table. In this case, the contaminant layer and the contaminated soil at the water table/vadose zone interface will be treated at the same time. Dual Phase Extraction has also been used for gasoline tank problems and DNAPL applications. However, the technology will probably not be as effective in the high permeability RGA where a very large volume of water would need to be pumped. The technology's effective radius is approximately 10-50' depending upon site-specific conditions. The process has been used to depths of approximately 100-120' bgs. For the

LGEOE9

Paducah application, this technology would not significantly improve remediation schedules or costs over a standard pump-and-treat system.

Two-phase vacuum extraction has been successfully applied to soils with permeabilities as low as those seen in the saturated UCRS. The technology uses a very high vacuum (approximately 15 to 29 inches of mercury) to withdraw volatile organics from the vadose zone above the water table and a method to extract water drawn in by the vacuum. Several vendors, including Haley & Aldrich, Radian, and McLaren-Hart, are using variations of this technology to clean up contamination in saturated tight soils, sometimes in conjunction with soil fracturing. Since this technology seems to be appropriate for this site, and could potentially address the saturated UCRS soils, the TAG attempted to conduct an engineering evaluation of the application of this technology at Paducah. However, only McLaren-Hart provided cost data. The results of the evaluation are discussed in Sections 5 and 6.

5.2. Recirculating Wells

Several available technologies use the same general concept of pumping, treating, and then reinjecting air or water within the same well in order to set up a recirculation cell within the aquifer. The recirculation pattern theoretically treats the same water over and over without drawing in non-contaminated groundwater for treatment. In essence, the systems continuously flush the local area around the well, increasing contaminant removal efficiency. Removal efficiencies of up to 90-95% have been reported in as little as eighteen months for some systems. A radius of influence for the wells of as much as 80-100 feet has been demonstrated. For those wells that recirculate the groundwater, flushing of the vadose zone soils can sometimes be obtained. Appropriate subsurface geology without any low permeability lenses is required for any of these systems to work effectively.

The EPA recently published a report on numerous pilot and full-scale applications of recirculation technologies (US EPA 1998). The TAG reviewed the technologies and their performance data. Based on this review, C-Sparge appears to be the best technology for this site. It provides *in situ* remediation of chlorinated solvents and hydrocarbons by combining air stripping and encapsulated ozone processes. A typical system uses a compressor to pump an air/ozone mixture through a patented discharge device placed in either the vadose or saturated zone. In aquifers, the resulting "microfine" bubbles penetrate the interstitial spaces of saturated formations and surrounding water under low pressure, becoming part of the fluid flow and minimizing channeling. This process allows concurrent stripping of VOCs, chemical oxidation, and oxygenation to enhance microbial activity. The system has been successfully used in over 60 field applications where soil permeabilities ranged from 10^{-1} to 10^{-6} cm/sec at depths up to of 350 ft bgs.

It is possible that the C-Sparge system can be modified for removal of Tc-99 by the addition of ion exchange media in the well casing. Based on C-Sparge's applicability to vadose and saturated soils with either high or low contaminant concentrations, the TAG conducted an engineering evaluation of the technology. The results of that evaluation are provided in Sections 5 and 6.

Waste generated consists of resin contaminated with Tc-99, which is radioactive waste, and well cuttings from below the water table, which would be considered to be mixed waste. Resin costs and disposal costs for resin and cuttings are small (see footnotes in Table 4, Section 5) compared

to the costs for the overall process. In general, the quantity of well cuttings is about 1 ft^3 per linear foot of well. The offgas from C-Sparge does not contain significant amounts of VOCs.

5.3. Air Sparging/Soil Vapor Extraction

An Air Sparging/Soil Vapor Extraction (AS/SVE) system is a series of simple air injection and extraction wells. The injection wells inject air into the contaminated groundwater, essentially stripping the contaminants while the extraction wells use a low vacuum system to extract the volatilized contaminants from the permeable vadose zone soil above the groundwater. In this way, the contaminated groundwater and soil are remediated at the same time. Since only vapor is moved by this type of system, the operating and installation costs are very low and have made this technology a common technique for remediation of low concentration contaminated soils and groundwater. The typical radius of influence in gravel aquifers is 30-40 feet. Recent data from some vendors show that this technology has been used to reduce contaminants to the 5 μ g/L level. Application of the technology must be compatible with the site geochemistry. Based on available data, *in situ* sparging of the high quality water in the RGA would probably not degrade or foul the system. It is not known how the tight UCRS soils that overlay the RGA may affect the performance of the process at Paducah.

The technology has recently been applied with lines of up to 20 sparge wells to create a spargecurtain at several sites. The curtain behaves as a reactive treatment wall. Sparge-curtains are applicable for groundwater contaminant concentrations in the few tens of mg/L, such as the occurrences at Paducah site boundaries. This active reactive wall reduces the need to treat the entire on-site plume, and has the potential to significantly reduce overall remediation costs. Because of the success of this technology in similar applications, its probable low cost, and its ability to speed up remediation, the TAG conducted an engineering evaluation of the expected cost and performance of this type of system at Paducah. The results of that study are provided in Sections 5 and 6.

5.4. Biological Treatment

Because of its potential low cost implementation, *in situ* bioremediation is being considered more often for both VOC and metal reduction in groundwater as the factors that control microbial degradation of VOCs become better understood. Biodegradation reactions involve either oxidation or reduction of the contaminant under aerobic or anaerobic conditions, respectively. Aerobic bioremediation is applicable to low concentrations of TCE, in the 1 to 10 ppm range, whereas anaerobic bioremediation is possible for higher concentrations of TCE, up to 200 or 500 ppm. At high concentrations of TCE near DNAPL (in the several hundreds and thousands of ppm levels), anaerobic microbes will not thrive (Starr 2000). Therefore, anaerobic bioremediation is not applicable to the high concentration source zones except as a polishing step.

The groundwater aquifer at Paducah is aerobic. In some cases, aerobic aquifers can be driven to anaerobic conditions by injection of large quantities of organic substrates. Initial estimates suggest that it would not be cost effective to convert the Paducah aquifer to an anaerobic state. Therefore, anaerobic bioremediation, like aerobic bioremediation, does not seem appropriate for the source zones.

However, aerobic bioremediation should be more closely investigated in the less contaminated zone. Low levels of TCE (up to tens of ppm) have been degraded aerobically by injecting cometabolites such as methane, propane, or toluene into contaminated aquifers. Aerobic biodegradation of chlorinated solvents does not create any of the toxic by-products that anaerobic biodegradation does. However, some members of the TAG questioned whether biological treatment would be applicable in the saturated UCRS where the low permeability soil would hinder distribution of nutrients.

Overall, aerobic bioremediation application costs are similar to/or somewhat lower than equivalent Air Sparging systems. Several companies are considering the combined application of bioremediation and air sparging to create a biosparging curtain that could reduce site remediation costs. Cost and performance studies could be performed to determine if the application of this technique at Paducah would be cost-effective. An engineering evaluation of the expected cost and performance of this technology was coordinated with two technology vendors who have conducted several aerobic remediations of chlorinated solvents. The results of that evaluation are discussed in Sections 5 and 6.

5.5. Surfactant Flushing Technologies

EPA and others are pursuing soil flushing as a method to remove high concentrations of chlorinated solvents. Successful demonstrations of the technology have been obtained with the use of food grade surfactants, co-solvents, surfactant/co-solvent mixtures, and macromolecules. This technology is intended for removal of TCE in source zones. Tc-99 will also be removed by surfactant flushing in the saturated zone since it will be carried with the pumped liquid.

This technology is commercially available through Duke Engineering, Surbec/ART, and other vendors. It is most commonly applied to non-aqueous phase contaminants in which concentration levels exceed the contaminant solubility and the soil is capable of effectively adsorbing contaminants. Initial studies have shown that approximately 3 to 4 pore volume flushes can reduce contaminant levels by over 90%. To date, several pilot and a few full-scale applications have been conducted (Jackson 1999). Because the contaminants are rendered mobile by the process, adequate hydraulic control of the remediation area is required for effective treatment. Surfactant flushing is most applicable to source areas, permeable formations, and sparingly soluble contaminants. For less permeable formations, effectiveness is significantly decreased as indicated by results at the Camp Lejune, CA project (Yeh 1999). This experience implies that surfactant flushing is only applicable to the RGA.

The Partitioning Interwell Tracer Test (PITT) is a proprietary partnering technology marketed by Duke Engineering and Services that can be used prior to surfactant flushing to assess DNAPL volumes. The PITT uses surfactant techniques to measure the volume and describe the spatial distribution of sub-surface DNAPL contamination zones. The PITT may be used in both the vadose and saturated zones, and can locate low volume quantities (1 gallon) of DNAPL.

At Paducah, the technology has most application in areas of high contaminant concentration in the RGA. The cost of the technology can often be quite high and should be compared to the costs of similar technologies. Costs estimates of the technology were developed by a commercial vendor and are presented in Section 5.

5.6. Chemical Oxidation

In the Chemical oxidation process, low concentrations of oxidants are injected in the subsurface to oxidize organic contaminants. Tc-99 is not expected to be remediated by chemical oxidation. As discussed previously, commercially available chemical oxidation technologies include: Fenton's processes that use high concentrations of hydrogen peroxide together with iron sulfate; low concentration hydrogen peroxide that can be injected with iron and a catalyst; ozonation that can be used in either the saturated or vadose zone, and permanganate. The technology has potential application to both contaminated soil and groundwater problems at the site. However, it is expected to be more effective in the RGA than in the saturated UCRS because the lower permeability in the saturated UCRS will hinder distribution of the reactant. Costs at a site will depend on contaminant concentration. The TAG tried to identify the expected costs and treatment performance for the different oxidants on the contaminants of concern. Cost and performance estimates were obtained for application of the technology in several areas and are presented in Section 5.

5.7. Thermal Treatment Technologies

The TAG considered both direct / resistive heating and microwave heating of the soil and groundwater as treatment options for TCE and other VOCs. Tc-99 is not remediated by thermal treatment technologies. As discussed previously, a vendor with the experience and equipment for microwave heating could not be identified and the TAG concentrated on direct heating applications, particularly Six-Phase Heating. Some description of Six-Phase Heating is provided in Section 3.

Because of the relative maturity and low overall costs, Six-Phase Heating remains a candidate for groundwater treatment. Costs are expected to be higher for treatment in the saturated zones than in the vadose zone. The TAG believes Six-Phase Heating is applicable to the vadose and saturated zones of the UCRS and may be used in the RGA. Costs may be higher for application in the RGA due to heat removal by the higher water flows in the RGA. Cost estimates were obtained for applying Six-Phase Heating to the contaminated groundwater and presented in Section 5.

Safety issues related to high voltage are discussed in Section 3 and not repeated here.

5.8. Steam Stripping

Steam Stripping uses a 3-phase (i.e., NAPL/water/gas phase) extraction approach. The technology cycle alternatively injects low-pressure steam (12-25 psig) and oxygen (air) into contaminated zones to displace contaminated groundwater and create a thermal destruction zone. Contaminated ground-water flows into the hot reaction zone when injection stops and the contaminants are destroyed. The cycle is repeated until remediation objectives are met. The use of steam at lower pressures reduces the steam's potential to rise vertically and encourages horizontal penetration/contaminant mobilization. Near-surface technology concerns include elevated pressures and temperatures, and adequate overburden characterization to ensure steam breakthrough does not occur. Vendors of the technology include IT, IWT, and Steam Tech. Some vendors use electro-resistance technology [ERT] (similar to CAT scan; resolution to 1 yd³) to monitor the sub-surface flow of steam. Monitoring is crucial for guiding the remediation.

The technology works best in permeable soils such as the RGA. A typical remediation pattern is to work from outside the contamination zone inwards. Horizontal drilling has been used to maneuver under building foundations to enhance contamination zone access. Several recent large-scale applications have been conducted. The technology appears appropriate for application to the RGA in the areas with high contaminant concentrations but not appropriate for the low-permeability UCRS. Estimates of the cost of using the technology at Paducah were assessed and are presented in Section 5.

5.9. Aquifer Leveling

Aquifer leveling includes the use of vertical or horizontal wells to reduce the hydraulic heads often driving contaminant migration. In many cases the pumped water is not contaminated and therefore does not require treatment. By decreasing the hydraulic heads, migration can often be stopped or reversed, minimizing the areas needing treatment. At Paducah it appears that large volumes of process water (possibly up to 1 MGD) might be lost on-site. This volume of water could be contributing to or modifying contaminant migration. If this is the case, then aquifer leveling may be an appropriate technique to include in an overall site remediation strategy. The TAG chose to continue to look at the process water infiltration volumes to determine if aquifer leveling would be a cost-effective enhancement to the site remediation strategy. System costs will vary based on the volume and area of groundwater to be manipulated.

5.10. Permeable Reactive Treatment Zones

This technology has been demonstrated to be a low-cost passive *in situ* treatment option by several commercial firms including Golder-Sierra, Foremost Solutions, and McLaren-Hart. For deep applications such as those needed at Paducah, the technology typically uses jet grouting or hydraulic fracturing with injection of iron filings or other reactive media to create reactive treatment zones. At shallow depths, the standard reactive zone thickness is approximately 3'. Deep zones of approximately 4"-6"(?) thickness of reactive media can be emplaced with hydraulic fracturing. Multiple parallel zones can be emplaced to increase effectiveness. Four deep projects addressing chlorinated solvent contamination of groundwater have been completed to date. The technology has been used in depths ranging from 50'-120' bgs. Most reactive wall applications are designed to address contamination levels in the 1-10 ppm range because the size of the treatment zone required to address higher contaminant concentrations is prohibitive. Typical VOC reductions can be as much as 50 ppm, and the expected life of an iron filing zone can exceed 10 years. The number of deep reactive zones needed for an application depends on the residence time required for contaminant treatment/removal.

Treatment wall performance is very site-specific. It is essential to have good geochemical characterization of groundwaters to understand barrier wall treatment processes and expected performance. Issues of concern for this technology include:

- Reactive media may create by-products (e.g., vinyl chloride, methylene chloride) that must be addressed
- Potential long-term effects of leaving captured concentrated Tc-99/iron media in RGA.
- Capacity of the reactive media and expected life.
- Hydraulic concerns associated with groundwater bypassing the treatment zone.

If the appropriate reactive media for both TCE and Tc-99 can be identified for installation, the technique appears to have application at Paducah. The TAG decided to use laboratory column studies to investigate several reactive media with the potential to remove both Tc-99 and TCE from the groundwater plumes. An estimate of reactive treatment zone costs and performance for several options and techniques are presented in Section 5.

5.11. Aquifer Redox Manipulation

The DOE has demonstrated the Aquifer Redox Manipulation technology that creates a reducing environment in the subsurface. The injection of dithionite has been used in a few applications to reduce *in situ* iron to develop a reactive treatment cell zone. Application of the technology depends on soil mineralogy that allows the available iron to be effectively reduced. The technology has had some success in large-scale applications, and commercial vendors are being asked to help commercialize it. The TAG considered this technology to be applicable as a reactive treatment zone in the RGA, but not in the UCRS where the water flow rates are low. Because the technology is not quite as mature as other chemical treatment or reactive zone technologies, the TAG continues to watch its development but chooses to concentrate on the more mature technologies with available vendors.

5.12. Pump and Treat with Reinjection

This technique has been used successfully to accelerate cleanup of dissolved phase contaminants and limit off-site migration of contaminants using reinjected water as a containment system. Paducah has a pump and treat system in operation that removes both TCE and Tc-99 from the groundwater. The reinjection technique is often limited in its ability to treat areas of high contaminant concentration and therefore would probably be used in conjunction with other technologies.

5.13. Natural Attenuation with Source Control

EPA has established monitored natural attenuation protocols to allow a site to take credit for reduction in contaminants from natural processes such as radioactive decay, sorption, dilution and intrinsic bioremediation. Application of this technique in conjunction with source term removal, containment or control would appear to be a potentially cost-effective strategy. However, review of Paducah site parameters suggests that few if any of the accepted natural attenuation processes are taking place in the groundwater aquifer to a large and quantifiable extent (Clausen et al. 1997). Therefore, application of this technique could be very difficult to justify. The TAG proposes concentrating on assessing the cost-effectiveness of more aggressive remediation techniques first.

5.14. Summary Discussion

The TAG decided to carry forward for further evaluation the application of the following technologies in the RGA:

- Dual-Phase/Two-Phase Extraction
- Recirculating Wells (C-Sparge)
- Air Sparging

eodoea

630402

- Biological Treatment
- Surfactant Flushing
- Chemical Oxidation
- Thermal (Six Phase Heating) Technology
- Rotary Steam Stripping
- Aquifer Leveling
- Permeable Reactive Treatment Zones
- Pump and Treat.

In addition to their potential effectiveness in the RGA, the following technologies are also potentially effective in the saturated zone of the UCRS (the lower permeability in the saturated UCRS may preclude uniform distribution of reactants whether it be an oxidant, a biological nutrient, or air):

- Dual-Phase/Two-Phase Extraction
- Thermal (Six-Phase Heating) Technology
- Rotary Steam Stripping

6. SUMMARY OF TECHNOLOGY IMPLEMENTATION COST AND PERFORMANCE ESTIMATES AT THE PADUCAH SITE

Based on the technologies identified and reviewed, several were considered for detailed engineering evaluations for full-scale application. Detailed information was provided to representative vendors for these promising technologies to develop cost and performance estimates for application at Paducah. Information was provided for three areas at Paducah representative of the soil and groundwater contamination problems that need to be addressed: the C400 Area, the C720 Area, and the C747-C Area (Hightower 1999). The data provided included contaminant concentration contours and depths, information on utility corridors, overhead obstructions, and facility locations that might affect application of a technology in a specific area. Information was provided on the contamination in the UCRS soils and the groundwater contamination in the RGA.

The engineering cost and performance estimates of the different technologies presented in Table 4 are based on contaminant concentration levels and volumes identified by the TAG as representative of the range of expected values across several sites at Paducah. For example, remediating soil in the UCRS with TCE concentrations above 100 ppm will remove the majority of the inventory of TCE in the UCRS. In looking at the soil contamination to be remediated in the UCRS, several sites had individual areas with volumes that range from about 10,000 yd³ up to 40,000 yd³. By obtaining cost data for these two volumes, volume scale effects for remediation cost could be evaluated. That is, this approach allows cost and performance estimates to be made for small, intermediate, and large sites by simply combining the costs of the appropriate treatment areas. The two contamination levels identified in the UCRS to be treated, greater than 100 ppm and greater than 1000 ppm, are representative of the range of levels that should be addressed by remediation. It was expected that different technologies would have greater utility in one or the

other concentration ranges and that the data could be used to mix and match techniques to develop the optimum treatment strategy.

A similar approach was used in the evaluation of RGA treatment technologies. The concentration levels identified were based on the general plume concentrations and the probability of DNAPL presence. It was expected that most areas over approximately 1 ppm for TCE would need to be treated in order to minimize further contaminant migration. The areas at the site with this level of contamination in the groundwater can be relatively large and therefore larger systems would be needed to address them. It is a rule-of-thumb that areas with concentrations of greater than 10% of the contaminant solubility (for TCE ~ 100 ppm) are generally indicative of DNAPL. Therefore, the TAG identified these areas for special consideration knowing that they are most likely to provide a continuing source of contamination to the groundwater.

In evaluating the application of reactive walls or associated technologies, it was important to make sure that the technologies were appropriate for the scale of the containment problem and met the needs of the multiple plumes at the site. It was also important that the reactive wall technologies be able to treat both the TCE and Tc-99 to insure the reduction of both contaminants offsite.

Based upon a review of the information and knowledge of previous applications of the technologies, the TAG compiled vendor-supplied technology cost and performance estimates into Table 4. The vendors and the technology cost and performance data provided include:

- Rotary Steam Stripping: In-situ Fixation (Murry 1999)
- Chemical Oxidation: IT Corp (Lewis 1999 and Wilson 1999)
- Chemical Oxidation/Air Sparging: Morrison Knudsen/K-V Associates (Ehleringer 1999)
- Biological Treatment: WMI (Zielinski 1999) and Enzyme Technologies (Laughlin 1999)
- Steam Stripping: Steam Tech (La Brecque 1999)
- Electrokinetics: Weiss Associates (Ivanetti 1999) and Bechtel Jacobs (Ford 1999)
- High Vacuum Soil Vapor Extraction with Pneumatic Fracturing: McLaren/Hart (King 1999)
- Direct Heating: Current Environmental Solutions (Beyke 1999)
- Surfactant Remediation: Duke Engineering (Jackson 1999)
- Reactive Walls: Foremost Solutions (Meiggs 1999), McLaren/Hart (King 1999), and Weiss Associates (Ivanetti 1999)

The matrix of factors presented in Table 4, such as performance, expected cost, and implementation difficulty, provides an objective basis for developing recommendations for an overall remediation strategy for the site. EPA Region IV, the State of Kentucky and DOE have not collectively decided on an acceptable cleanup level for the source zones. Risk assessment and risk management analyses need to be conducted, taking into consideration technological feasibility and future land/water use, before remedial action decisions can be made. For instance, a technology that accomplishes 95% removal of TCE from soil containing 1000 ppm TCE would result in 50 ppm TCE in the soil, leaving leachate containing more than the drinking water standard of 5 μ g/L

TCE. Clean up objectives must be set before it can be decided whether polishing technologies are required.

Although many of the vendors did not include costs associated with access under buildings and removal of Tc-99 in entrained or pumped water when applicable, the cost comparison nonetheless provides useful information for developing overall remediation strategies. Costs for ion-exchange resin for treating Tc-99, disposal of the resin and for transportation and disposal of well cuttings as mixed waste were all relatively small for C-Sparge. These costs for other technologies should not be significantly different. More explicit requirements for under-building access and treatment of Tc-99 contaminated water can be included in formal requests for proposals for recommended technologies. The comparisons in the table provide an objective basis for recommendations of additional data or pilot-studies needed to verify the performance of the most promising technologies or to assist in optimizing a technology performance or cost. The evaluation and discussion of the results of Table 4 are presented in Section 6.

Table 4a. Engineering Cost and Performance Estimates for Technology Applications at Paducah UCRS – Vadose and Saturated Zones

Technology	TCE in Soil, ppm	Volume, yd ³	Capital Cost ⁺ , S	Treatment Cost ⁺ , \$	Treatment Period/Rate	Residual TCE in Soil, ppm	Implement Difficulty	Waste* Generation	Tc-99 Treatment	Total Costs 3, \$
			v	UCRS -	Vadose Zo	one Only				
SVE w/ Fracturing	> 100	10,000	0.606 M	0.091 M 0.077 M 0.070 M	1 yr 2 yrs 3 yrs	30 10 5	Medium (TAG not sure fractures will stay open)	Water from steam regeneration of GAC; drill cuttings	No	0.697 M 0.774 M 0.844 M
	> 100	40,000	1.1M	0.099 M 0.091 M 0.081 M	1 yr 2 yrs 3 yrs	30 10 5		"	No	1.2 M 1.3 M 1.4 M
	> 1,000	10,000	0.614 M	0.053 M 0.050 M 0.047 M	1 ут 2 утs 3 утs	30 10 5	"	**	No	0.667 M 0.717 M 0.764 M
Ozone Sparge	> 100	10,000	ND	40/yd	l yr	~ 5-10	Med (effectiveness in clay)	Drill cuttings	No	0.4 M
	> 100	40,000	ND	35/yd	l yr	~ 5-10	L L	u	No	1.4 M
e novem na na olivica farefan arria. Hitura tik der instan - Affrika arria	> 1,000	10,000	ND	55/yd	l yr	~ 20-30	"	"	No	0.55 M
			UCR	S – Vados	e Zone and	Saturated	Zone			
Rotary Steam	> 100	10,000	0.2 M		2 mo/250 yd ³ /day	~ 5-10	Low (in easy access)	PPE and NaCl solution	Partial recovery if condensate is subjected to 1X	0.55 M
	> 100	40,000	0.2 M	1.2 M	7 mo/250 yd³/day	~ 5-10	High (utilities probs.)	PPE and NaCl solution	19	1.6 M
	> 1,000	10,000	0.2 M	0.8 M	4 mo/100 yd ³ /day	~ 50	High (utilities probs.)	PPE and NaCl solution	n	1 M

Final Draft – March 2001

630407

Table 4a. Engineering Cost and Performance Estimates for Technology Applications at Paducah UCRS – Vadose and Saturated Zones (Continued)

Technology	TCE in Soil , ppm	Volume, yd ³	Capital Cost⁺, S	Treatment Cost⁺, \$	Treatment Period/Rate	Residual TCE in Soll , ppm	Implement Difficulty	Waste* Generation	Te-99 Treatment	Totai Costs', S
C-Sparge	> 100	10,000	0.15 M	0.05 M	1 ут	~ 1-5	Med (effectiveness in clay)	Drill cuttings; GAC	Possible with resin in well	0.2 M
	> 100	40,000	0.25 M	0.09 M	l yr	~5	H	#	*	0.34 M
	> 1,000	10,000	0.15 M	0.06 M/yr	2 yrs	< 50	1	u	13	0.27 M
Bio	> 100	40,000	0.35 M	0.5 M	l yr	~ 1-5	High: Effectiveness in clay questionable; Fouling	Trenching Waste	No	0.85 M
Steam Enhanced Extraction & Destruction (SEED)	> 100	10,000	ND	137/yd	2-3 yts (6-8 mos. [steam] w/ 1½ yts [HPO])	< 0.1	Medium-High Effectiveness in clay?	Drill cuttings; operational filter cake; PPE; contaminated equipment	Yes, entrained water will contain some Tc-99	1.4M Excludes ion- exchange of extracted Tc-99
	> 1,000	10,000	ND	113/yd	2-3 yrs (6-8 mos. [steam] w/ 1½ yrs [HPO])	<10	High (utilities probs.)	Drill cuttings; operational filter cake; PPE; contaminated equipment	n	1.1M

Technology	TCE in Soli, ppm	Volume, yđ ³	Capital Costs ⁺ , \$	Treatment Cost ⁺ , \$	Treatment Period/Rate	Residual TCE in Soll, ppm	Implement Difficulty	Waste* Generation	Tc-99 Treatment	Total Costs ² , S
ECGO (Electro- Chemical-Geo- Oxidation)	> 100	10,000	0.37 M	0.54 M	l yr	0.010	Medium (trenching & drilling for cables & electrodes)	Electrodes plated with ⁵⁹ Tc; drill cuttings	Yes	0.91 M
	> 100	40,000	1.3 M	1.6 M	l yr	0.1	Medium (trenching & drilling for cables & electrodes)	Electrodes plated with Tc-99; drill cuttings	Yes	2.9 M
	> 1,000	10,000	0.35 M	0.6 M	1 ут	0.1	Medium (trenching & drilling for cables & electrodes)	Electrodes plated with "Tc; drill cuttings	Yes	0.95 M
LASAGNA (electro- kinetics)	> 100	10,000	ND	140/yd	14 yrs	~ 1-50	Med-High (access probs.)	Ground water treatment, Iron(?) GAC(?)	Yes	1.4 M
	> 100	40,000	ND	140/yd	62 yrs	~ 1-50	Med-High (access probs.)	Ground water treatment, Iron(?) GAC(?)	Yes	5.6 M
	> 1,000	10,000	ND	115/yd	12 yrs	~ 10-500	Med-High (access probs.)	Ground water treatment, Iron(?) GAC(?)	Yes	1.2 M

Table 4a. Engineering Cost and Performance Estimates for Technology Applications at Paducah UCRS – Vadose and Saturated Zones (Continued)

Table 4a. Engineering Cost and Performance Estimates for Technology Applications at Paducah UCRS – Vadose and Saturated Zones (Concluded)

Technology	TCE in Soil, ppm	Volume, yd ³	Capital Cost [*] , \$	Treatment Cost ⁺ , \$	Treatment Period/Rate	Residual TCE in Soil, ppm	Implement Difficulty	Waste* Generation	Tc-99 Treatment	Total Costs ¹ , S
ChemOx/										
Permanganate	> 100	10,000	D	id Not Estimat	e – Vendor sugge	ests ozone oxida	ition would be mo	re cost-effective	in the vadose :	zone
	> 100	40,000								
	> 1,000	10,000		- ! ···						
Six Phase Heating	> 100	10,000	0.315 M	0.120 M	6-12 mos.	~1	Low	Vapor/steam condensate; drill cuttings	No	0.435 M
	> 1,000 (UCRS and RGA)	40,000	0.950 M	0.900 M	8 mos.	~ 1	Med		No	1.9 M
Surfactant Flush	> 100	10,000								
	> 100	40,000	NA							
	> 1,000	10,000								

¹ Resin use costs \$0.14/yd³ of treated volume and resin disposal costs \$0.22/yd³ of treated volume assuming 40,000 pCi/L water, soil porosity of 0.3, resin ion exchange capacity of 0.0133 Ci/R³ and resin cost of \$200/ft³. Resin transportation cost is negligible. Decontamination water for drilling is less than 20 gallons per hole drilled.

² Assuming cuttings into RGA is mixed waste, cuttings disposal cost is \$0.90/yd³ of treated volume and transportation is \$0.54/yd³ of treated volume.

³ Cost excludes horizontal drilling for access under buildings where applicable

All costs are in millions, M. ND = Not Determined

*PPE = Personnel Protection Equipment NA = Not Applicable GAC = Granulated Activated Carbon IX = Ion Exchange

Table 4b. Engineering Cost and Performance Estimates for
Technology Applications at Paducah RGA

					RGA	1				p	
Technology	TCE in Water, mg/L	Volume, yd ³	Capital Cost*, \$	Treatment Cost [*] , \$	Treatment Period/Rate	Residual TCE in Water, mg/L	Implement Difficulty	Waste* Generation	Tc-99 Treatment	Total Costs ³ , S	
C-Sparge	>1	50,000	0.193 M	0.032 M/yr	2 yrs	< 0.005	Low	Spent IX resin ¹ Well Cuttings ² GAC	Yes	0.257 M	
	> 100	5,000	0.212 M	0.059 M	l yr	< 0.005	Low	,,	Yes	0.271 M	
Ozone	>1	50,000	· · · · · ·	Did not estimate; Vendor suggests permanganate more efficient							
Sparge	> 100	5,000					17				
Rotary Steam			-	Depth g	enerally limited	d to 40'; not app	licable to RGA				
Aerobic Bio											
	>1	50,000	0.300 M	0.450 M	l yr	< 0.002	Medium	Drill cuttings	No	0.750 M	
	> 100				Not ap	plicable in this h	igh concentratio	Ω			
Steam	> 1	50,000				Not applicable	in this large vo	lume			
Enhanced Extraction & Destruction	> 100	5,000	ND	113/yd	2-3 yrs (6-8 mos. [steam] w/ 1½ yrs [HPO])	~1	High (utilities probs.)	Drill cuttings; operational filter cake; PPE; contaminated equipment	No	0.565 M	

630411

Final Draft – March 2001

Table 4b. Engineering Cost and Performance Estimates forTechnology Applications at Paducah RGA (Continued)

					RGA	-				
Technology	TCE in Water, mg/L	Volume, yd ³	Capitai Cost⁺, \$	Treatment Cost*`\$	Treatment Period/Rate	Residual TCE in Water, mg/L	Implement Difficulty	Waste* Generation	Tc-99 Treatment	Total Costs ³ , \$
ECGO (Electro- Chemical- Geo- Oxidation) [electro- kinetics] w/	> 1 (saturated UCRS & RGA)	2.4 x 10 ⁶	52 M	19.2 M	10 mos.	~ 0.005	Medium (trenching & drilling for conduits, cables & electrodes)	Liquid waste from GAC regeneration; electrodes plated with "Tc; drill cuttings	Yes	71 M
in-well CO ₂ stripping & GAC offgas treatment	> 100 (saturated UCRS & RGA)	3.0 x 10 ⁶	60 M	24 M	10 mos.	~ 0.005	Medium (trenching & drilling for conduits, cables & electrodes)	Liquid waste from GAC regeneration; electrodes plated with ⁹⁹ Tc; drill cuttings	Yes	84 M
Chemical Oxidation/ Permangan- ate	> 100	18.1 M (NW Plume)	ND	1.50- 2.50/yd	-	< 0.1	Medium (Geology causes preferential flow paths)	Drill cuttings	No	27-45M
	> 100	8.8 M (NE Plume)	ND	1.00- 2.00/yd	-	< 0.1	71	Drill cuttings	No	9-17M
	> 100	1.5 M (SW Plume)	ND	3.00- 6.00/yd	-	< 0.1	31	Drill cuttings	No	4-9 M

Table 4b. Engineering Cost and Performance Estimates for Technology Applications at Paducah RGA (Concluded)

	_	-								
Technology	TCE in Water, mg/L	Volume, yd ³	Capital Cost⁺, \$	Treatment Cost ⁺ , S	Treatment Period/Rate	Residual TCE in Water, mg/L	Implement Difficulty	Waste* Generation	Tc-99 Treatment	Total Costs ³ , \$
Six Phase Heating	> 100	20,000 (UCRS) + 20,000 (RGA)	0.950 M	0.900 M	l yr	~ 0.01	Low	Vapor/steam condensate, drill cuttings.	No	1.9 M
Surfactant Flush	>1	50,000			•		ND			
Surfactant Flush	> 100	5,000	0.317 M	1,202	1 mo/35 gpm	< 2	-	Waste Water Trmt \$4.2M including GAC and IX. Drill cuttings.	No	6 M

¹ Resin use costs \$0.14/yd³ of treated volume and resin disposal costs \$0.22/yd³ of treated volume assuming 40,000 pCi/L water, soil porosity of 0.3, resin ion exchange capacity of 0.0133 Ci/ft³ and resin cost of \$200/ft³. Resin transportation cost is negligible. Decontamination water for drilling is less than 20 gallons per hole drilled. ² Assuming cuttings into RGA is mixed waste, cuttings disposal cost is \$0.90/yd³ of treated volume and transportation is \$0.54/yd³ of treated volume.

³ Cost excludes horizontal drilling for access under buildings where applicable

^{*} Costs in Millions, M

*ND = Not Determined NA = Not Applicable GAC = Granulated Activated Carbon IX = Ion Exchange

Table 4c. Engineering Cost and Performance Estimates for Technology Applications at Paducah Reactive Treatment Zones

Technology	TCE Concentration in Water, mg/L	Area	Capital Costs, S	Mainte- nance Costs, S	Usefui Life, years	Contaminant Reduction	Implement Difficulty	Waste Generation	Tc-99 Treatment	Total Costs, S
Reactive Treatment Zones										
Fe (jet grout)	1-10	4000'x50'	3 M (\$15/ft ²)	0.100 M/yr	10 yr/wall (2 walls needed)	TCE 99% ⁹⁹ Tc 99%	Medium Depth and continuity concerns	Spent iron may have to be removed or encapsulated. Drill cuttings	Yes	8 M (2 walls)
	1-10	1000°x50°	0.500 M (\$15/ft ²)	0.050 M/yr	10 yrs/wall (2 walls nceded)	TCE 99% [%] Tc 99%	23	19	Yes	2.5 M
C-Sparge	1	4000'x50'	0.850 M	0.285 М/ут	20	TCE 99.5% ⁹⁹ Tc 97%	Low	Spent IX resin ¹ drill cuttings ²	Yes	6.6 M
ECGO	< 10	900K yd ³	25 M	1 M/yr	20	TCE 99.95% [№] Tc 99.95%	Medium	Liquid waste from GAC regeneration: electrodes plated with "Tc; drill cuttings	Yes	45 M
Pneumatic Injection of Fe	1-10	1000'x60'	8.5 M	0.300 M	20	TCE > 90% ⁹⁴ Tc > 90%	Medium	Spent iron may have to be removed or encapsulated; drill cuttings	Yes	8.8 M

¹ Ion Exchange Resin use costs \$0.14/yd³ of treated volume and resin disposal costs \$0.22/yd³ of treated volume assuming 40,000 pCi/L water, soil porosity of 0.3, resin ion exchange capacity of 0.0133 Ci/ft³ and resin cost of \$200/ft³. Resin transportation cost is negligible. Decontamination water for drilling is less than 20 gallons per hole drilled.

² Assuming cuttings into RGA is mixed waste, cuttings disposal cost is \$0.90/yd³ of treated volume and transportation is \$0.54/yd³ of treated volume.

*PPE = Personnel Protection Equipment ND ~ Not Determined NA - Not Applicable

GAC = Granulated Activated Carbon IX = Ion Exchange

◄.

SUMMARY OF TECHNOLOGIES SUGGESTED FOR POSSIBLE IMPLEMENTATION AT PADUCAH

The TAG discussed the information provided in Tables 4a, 4b, and 4c in detail. Technologies were screened for potential application in the vadose UCRS, the saturated UCRS, the RGA source zones and as a reactive treatment zone, based on expected cost and performance. The reactive treatment zone is located in the distal RGA plume. The TAG recommended several technologies to cover the range of anticipated concentrations, difficulty/ease of access, and use on both vadose and saturated soils. Another factor distinguishing the technologies was whether they would be applicable to the saturated UCRS, the RGA or both. The technologies suggested are generally lower in cost, have less waste generation, or greater maturity than competing technologies in a treatment area. The resulting ranking is as follows:

Zone	Technology Recommendations				
UCRS - Vadose	Rotary Treatment				
	Chemical Oxidation – Ozone with Fracturing				
	Direct Heating – Six Phase				
	Vacuum-Enhanced Recovery with or without Fracturing				
UCRS - Saturated	• Direct Heating – Six Phase				
	Chemical Oxidation - C-Sparge				
	Dual-Phase/Two-Phase Extraction				
RGA	Chemical Oxidation - C-Sparge				
	Chemical Oxidation - Permanganate				
	• Direct Heating – Six Phase				
	• Steam/DUS/HPO				
Reactive Zone	Passive Reactive Media - Iron				
	• Active System - C-Sparge				

It should be noted that "Rotary Treatment" refers to processes that are facilitated by auger mixing of soil with the reactive agent; that is, the reactive agent could be steam, ozone, permanganate, or iron filings. Rotary Steam Treatment will be applicable only in open areas because of utilities and overhead obstructions in some of the contaminated sites of concern. Vacuum-Enhanced Recovery includes SVE and Dual-Phase/Two-Phase extraction.

7.1. UCRS – Vadose Zone

Some of the technologies recommended for the UCRS, such as Six-Phase Heating, Rotary Steam and Dual-Phase/Two-Phase Extraction, provide the option to treat both vadose and saturated zones. However, others, such as Soil Vapor Extraction with Fracturing, address only the vadose zone. More detailed estimates of performance in the UCRS must be made for each technology in cooperation with Paducah site personnel. Some form of fracturing may be necessary to adequately treat the UCRS soils with ozone or SVE technologies. The feasibility of fracturing high-density utility areas needs to be evaluated.

None of the technologies identified for the UCRS will remove Tc-99 from the vadose zone. However, the regulators in the TAG consider treatment of TCE in the vadose zone adequate remediation because the Paducah site baseline remediation plan includes a reactive barrier that addresses Tc-99 migration to the groundwater. *In situ* destruction of contaminants is of major interest to the TAG to minimize waste generation. If extraction technologies (such as SVE or direct heating) are used, the TAG prefers the direct treatment of collected gasses and water in order to minimize potential mixed-waste generation.

7.2. UCRS – Saturated Zone

Six-Phase Heating, Dual-Phase/Two-Phase Extraction and C-Sparge were retained for application to the Saturated Zone of the UCRS. The C-Sparge technology was retained because it may be able to treat both the TCE and Tc-99 in the saturated zone of the UCRS. However, the concept of using ion exchange resin in the well casing of a C-Sparge unit for removal of Tc-99 needs to be tested.

7.3. RGA

Suggested RGA technologies provide a range of options to treat potential DNAPL areas and the large lower-concentration areas. *In situ* contaminant destruction is again preferred. Each of the identified technologies has been recommended because they appear to be able to meet these expectations more cost-effectively than other systems. The C-Sparge system is suggested because TCE and Tc-99 may be treated concurrently in the RGA. The technologies identified also provide options for the areas with access issues.

Few technologies were identified to treat the Tc-99 in the RGA effectively *in situ*. Two reactive zone treatment technologies, Zero-valent iron and C-Sparge, were retained with the potential to treat both the TCE and Tc-99. The maturity of both technologies for this application at Paducah is limited; therefore the TAG thought having two alternatives would be prudent. Additionally, it is possible that the two technologies could complement each other in an actual deployment. Iron reactive media may retard the movement of Tc-99 either through sorption or precipitation following reduction. The Tc-99 can subsequently be released if the geochemical conditions in the groundwater changes. However, the kinetics of the release will likely be much slower than the uptake. Data from the ITRD-funded treatability study provide release rates. To be effective, the C-Sparge system would require the development of the ion exchange module, as suggested in KVA's report.

7.4. Characterization and Pilot Studies

The TAG suggests that a range of characterization technologies able to examine wide areas of contamination be investigated to help optimize the overall remedial design at the different areas. Effective subsurface and 'under building' characterization would help minimize remediation costs at Paducah. The types of technologies that need to be reviewed include geophysical, electromagnetic, magnetic resonance imaging, and other methods.

The TAG endorsed the pilot study planned by the Paducah site for an iron reactive barrier. This should provide the additional data needed to optimize the final remedial strategy for Paducah.

The TAG initially ranked the pilot studies that are the most crucial for a final technology or strategy selection. These consist of:

- Priority 1: C-Sparge in the RGA with ion exchange for Tc-99 Fracturing with ozone and SVE in the UCRS
- Priority 2: Direct Heating Permanganate

The latter two technologies should be considered for pilot deployment if the results of the Interagency DNAPL Consortium Program at Cape Canaveral suggest that they will be useful at Paducah. It should be noted that the priority assigned to the technologies listed for potential pilot studies did not constitute favoring that technology but rather signifies a need for further information regarding that technology's performance under the site-specific conditions at Paducah. Both of the top priority pilot studies were estimated by the vendors to cost \$100-200K At the last TAG meeting on April 25-26, 2000, the TAG decided to pursue C-Sparge and Six-Phase Heating pilots at the C-752A and C-400 areas, respectively.

8. **REFERENCES**

- Beyke, G., "Six Phase Heating-Direct Heating Application", Current Environmental Solutions, Atlanta, GA, presentation at the June 21-22, 1999 Paducah ITRD Project Meeting.
- Burns and McDonnell Waste Consultants, Inc. "Multi-Site Comparison of chlorinated Solvent Remediation Using Innovative Technology". Draft report.
- Clausen, J. L., Sturchio, N.C., Heraty, L.J., Huang, L. and Abrajano, T. Evaluation of Natural Attenuation Processes for Trichloroethylene and Technetium-99 in the Northeast and Northwest Plumes at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. KY/EM-113. November 25, 1997.
- Clayton, W., "Pilot Scale Deployment of in-situ chemical oxidation using ozone, Paducah ITRD Project", IT Corporation, Englewood, CO, letter dated November12, 1999 and amended December 13, 1999.
- Ehleringer, B., "Proposal for Ozone Sparging Demonstration Using the KVA C-Sparge Process at the PGDP, Paducah, Kentucky", Morrison Knudsen Corporation, Cleveland, OH, letter dated October 19, 1999 and amended December 14, 1999.
- Ehleringer, B., "Cost Estimate for Ozone Sparging Pilot Demonstration Additional Information Requested" – Morrison Knudsen Corporation, Cleveland OH, letter dated April 4, 2000.
- EPA 1995. Abstracts of Remediation Case Studies. U.S. Environmental Protection Agency. EPA 542-R-95-001. March 1995. www.clu-in.org.
- EPA 4/99. Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers. United States Environmental Protection Agency. EPA 542-R-99-002, April 1999. www.clu-in.org.
- Ford, B., "Paducah ITRD Project Engineering Cost and Performance Estimates for the LASAGNA Electrokinetic Technology Candidate", Bechtel Jacobs, Paducah, KY, presentation at the June 21-22, 1999 Paducah ITRD Project Meeting.
- Hightower, M.and Kuzio, K., "Paducah ITRD Project Contaminant Information", Sandia National Laboratories, Albuquerque, NM, memo dated October 1,1999.
- Iovanetti, J., "Refined Preliminary Cost Estimate, WA Job#702-0015", Weiss Associates, Emeryville, CA, letter dated December 1, 1999.
- Jackson, R., "Surfactant-Enhanced Aquifer Remediation of SWMU 11", Duke Engineering & Services, Austin, TX, December 1, 1999.
- King, T., "Paducah ITRD Project, Innovative Remedial Technology Applications to Treat Vadose Soils (UCRS) and Groundwater (RGA)", McLaren/Hart, Inc., Warren, NJ, letter dated November 23, 1999 and amended December 7, 1999.
- Kuzio, K., "Paducah ITRD Project Meeting Minutes, February 11-12, 1999, Paducah, Kentucky", Sandia National Laboratories, Albuquerque, NM.
- Kuzio, K., "Paducah ITRD Project Meeting Minutes, April 21-22, 1999, Cincinnati, Ohio", Sandia National Laboratories, Albuquerque, NM.

- Kuzio, K., "Paducah ITRD Project Meeting Minutes, June 21-22, 1999, Paducah, Kentucky", Sandia National Laboriatories, Albuquerque, NM.
- Kuzio, K., "Paducah ITRD Project Meeting Minutes, August 18-19, 1999, Paducah, Kentucky", Sandia National Laboratories, Albuquerque, NM.
- La Brecque, D., letter dated November 5, 1999, Steam Tech Environmental Services, Sparks, NV.
- Laughlin, D., "Aerobic Biological Treatment of TCE-Contaminated Groundwater, Paducah, Kentucky", Enzyme Technologies, Inc., Portland, OR, letter dated December 14, 1999.
- Lewis, R., "Field Demonstration of *In Situ* Chemical Oxidation for Treatment of TCE Impacted Soils, PGDP, Paducah, Kentucky", IT Corporation, Norwood, MA, letter dated November 12, 1999 and amended November 24, 1999.
- Mattson, E. D. and Lindgren, E. R., "Electrokinetic remediation of anionic contamination from unsaturated soil: field application", September 1995. Sandia National Laboratories. SAND95-2063A.
- Meiggs, T., personal communications, Foremost Solutions, Golden, CO
- Murry, R., memo dated June 21, 1999, In-situ Fixation, Inc., Chandler, AZ.
- SCFA 1998. US DOE Office of Environmental Management, Office of Science and Technology. Innovative Technology Summary Report. Hydraulic and Pneumatic Fracturing. DOE/EM-0348. February 1998.
- SCFA 1999. US DOE Office of Environmental Management, Office of Science and Technology - Subsurface Contamination Focus Area FY 1999 Annual Report. DOE/EM-0511.
- Starr, R., Idaho National Environmental Engineering Laboratory. Personal communication with Wu-Ching Cheng (Sandia National Laboratories) March 15, 2000.
- TIE 1999, Technology Information Exchange Conference, Las Vegas, NV, October 1999.
- US DOE 1999. Information Brief for Groundwater Operable Unit, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, January 12, 1999, DOE/OR/07-1786.
- US EPA 1998a. Field Applications of *In Situ* Remediation Technologies: Chemical Oxidation. EPA 542-R-98-008. September 1998. http://www.epa.gov/swertio1, http://clu-in.org.
- US EPA. 1998b Field Applications of *In Situ* Remediation Technologies: Ground-Water Circulation Wells. EPA 542-R-98-009. October 1998. http://www.epa.gov/swertio1. http://clu-in.org.
- Yeh, L., US Navy Presentation at Technology Information Exchange Conference, Las Vegas, NV, October 1999.
- Zielinski, J., "Feasibility Study for *In Situ* Bioremediation of TCE in the Paducah ITRD Project", WMI International, Inc., Houston, TX, letter dated December 9,1999.
630418

~

APPENDIX A

COST ESTIMATES FROM TECHNOLOGY VENDORS

- IT Chemical Oxidation Using Ozone
- IT Chemical Oxidation Using Permanganate
- In-Situ Fixation Rotary Steam Stripping
- Current Environmental Solutions Six Phase Heating
- McLaren/Hart Soil Vapor Extraction with Pneumatic Fracturing
- Morrison Knudsen/ K-V Associates C-Sparge
- SteamTech Steam Enhanced Extraction and in-situ Destruction (SEED)

42 ITRD Paducah Groundwater Technology Summary Report

IT CORPORATION CHEMICAL OXIDATION IN THE VADOSE ZONE USING OZONE

IT Corporation

5600 S. Quebec Street, Englewood, Colorado 80111 Tel. 303.793.5200 Fax. 303.793.5222

A Member of the IT Group

December 13, 1999

Mr. Mike Hightower Sandia National Laboratories Department 6233 MS-0755 P. 0. Box 5800 Albuquerque, NM 87185-0755

Subject Pilot Scale Deployment of in-situ chemical oxidation using ozone Paducah ITRD Project

Dear Mike,

Following our previous correspondence of November 12, 1999, and our telephone conversation last week, IT Corporation provides the following input about the potential costs for pilot scale deployment of in-situ ozonation treatment of TCE contamination at Paducah.

As we discussed, based on the site geology and contaminant distribution, IT recommends that *in situ* ozonation is probably the most cost effective (compared to other available technologies) for vadose zone contamination in the UCRS. While potentially applicable for the saturated zone RGA, in that setting *in situ* ozonation would probably require more intensive operation and maintenance efforts than use of permanganate oxidation.

As we mentioned in out November 12, 1999 correspondence, there are many variable that control the treatment cost for in-situ ozonation, as with all oxidation technologies. Absent extreme conditions such as very highly organic soils, full-scale treatment costs will typically be estimated in the range of \$20 to \$40 per cubic yard. The primary uncertainties in such a 'rule of thumb" relate to depth of contaminant, subsurface permeability, injection well drilling costs, matrix oxidant demand, contaminant mass, and scale of treatment. Generally, larger scale treatments are more cost effective.

IT Corporation has considered preliminary costs for a pilot scale deployment of in-situ ozonation at Paducah. Our preliminary estimate is based an limited site data, and is not a proposal for services. We considered the effort involved to meet the following criteria:

- Perform lab treatability testing to design an appropriate pilot scale deployment system.
- Inject ozone at a sufficient mass flux to obtain 90% treatment in a 6 to 12 month time frame.
- Treat a soil volume of 10,000 cubic yards, in-situ within the unsaturated zone UCRS
- 2 cases of starting TCE concentrations (A) TCE < 100 mg/kg, and (B) TCE -1,000 mg/kg

We estimate that a pilot scale deployment to treat 10,000 cubic yards, starting at < 100 mg/kg TCE would probably cost in the range of \$35 to \$45 per cubic yard (i.e. \$350,000 to \$450,000). For a 10,000 cubic yard area, starting at 1,000 mg/kg TCE, pilot scale deployment costs may be as high as \$50 to \$60 per cubic yard (i.e. potentially \$500,000 to \$600,000).

Please understand that our rough cost data is not based on any detailed site data, and may have significant error, either high or low. We suggest that you do not rely on these cost data for any purpose other than technology screening and cursory planning. We would be happy to provide a more detailed cost estimate and proposal for services in response to a formal request for proposal.

We appreciate the opportunity to contribute to the Paducah ITRD project.

Thank you.

Sincerely, IT Corporation

Wilson S. Clayton, Ph.D. Principal Geological Engineer Technology Applications Group IT CORPORATION CHEMICAL OXIDATION IN THE RGA USING PERMANGANATE

November 12, 1999 Refer: 770869/00000059

Mr. Mike Hightower Paducah ITRD Project Sandia National Laboratories Albuquerque, New Mexico 87185-0755

Mr. Ken Kuzio Paducah ITRD Project Sandia National Laboratories Albuquerque, New Mexico 87185-0755

Subject:

Field Demonstration of In Situ Chemical Oxidation for Treatment of Trichloroethylene Impacted Soils Paducah Gaseous Diffusion Plant (PGDP) Paducah, Kentucky

Dear Sirs:

The following are IT Groups ideas for the treatment of chlorinated contamination at the Paducah, Kentucky Gas Diffusion Facility. Our approach and work plan has been prepared as a conceptual document, providing our thoughts on the field application of permanganate as a treatment for TCE detected in the soil and groundwater at this site. Our approach would include pilot testing the technology at two test cells, selected as discrete treatment areas treating the unsaturated (i.e., source area) and saturated (i.e., plume migration) portions of the site. Using the data collected in the pilot demonstrations, IT would complete a data review and technology evaluation to determine the potential for scale-up application at larger portions of the site. At this time, IT believes that the completion of the pilot projects is prudent to evaluate the effectiveness of the permanganate using actual site conditions. As we have discussed, a significant part of the proposed evaluation will be for the potential mobilization of radioactive isotopes (particularly uranium) by the permanganate. Thus, the pilot projects were developed not only to evaluate the efficacy of TCE oxidation at this site, but also to evaluate the potential for impacting other oxidizable species present at the site.

The effectiveness of treatment depends on three factors: the reaction kinetics between the permanganate and the contaminant(s), the contact between the oxidant and the contaminant(s), and competitive reactions between permanganate ant other reduced/oxidizable species. If the contaminant being targeted for in situ chemical oxidation is reactive (i.e., chlorinated ethenes such as TCE), and sufficient oxidant has been added to overcome the demand from other reduced species, the limiting factor to the successful application of in situ oxidation is the transport of the oxidant to the areas of contamination and not the reaction itself between the permanganate and the contaminant. The oxidation of TCE by permanganate is, compared to the time to transport the permanganate to the treatment zone, an essentially instantaneous reaction. The Paducah site provides several challenges to the application of permanganate - the geology is heterogeneous, the potential presence of hazardous radioactive species and site access limitations. As a result, the

application of permanganate at this site would involve several different approaches for oxidant delivery to the contaminated areas. Push wells (e.g. GeoprobeSTM) may be a good means to apply the permanganate in open areas. An alternative application approach is horizontal wells to distribute the permanganate beneath buildings or other poor access areas.

Based upon our knowledge of the site, coupled with these potential challenges, IT recommends proceeding by completing the pilot projects. Field pilot studies would clarify several technical issues so we could scope and cost a full-scale program.

IT looks forward to discussing the implementation of this demonstration following your approval. If you have any questions regarding these submittals or the project, please call me at 781-769-7600, Ext. 205.

Sincerely, IT Corporation

> Richard Lewis, CPG Vice President – Technology Project Director

cc: Project File

Enclosure

IT Corporation

100 River Ridge Drive Norwood MA 02062-5045 Tel. 781.769.7600 Fax. 781.769.7992

MEMORANDUM

TO: Mike Hightower Via FAX: 505-844-1480

Copy: Ken Kuzio

Date: November 24, 1999

Subject: Supplemental Information

The following information is to address the questions submitted to IT on November 8, 1999.

Costs - include:

Capital Costs Engineering and design - Yes Permitting - Yes (UIC permits only) Mobilization or installation - Yes Hardware, piping, wells, storage, etc., - Yes Utility connections, upgrades, or extensions needed - We assumed that water would be made available at no cost at the site. In addition, power usage was not included since this would be a minor expense. The power usage could be determined and added in at a nominal amount if necessary. Instrumentation and process monitoring equipment, - Yes Demobilization - Yes, however nothing was budgeted for well abandonment.

Operating and Maintenance Costs

System operation manpower - Yes

Energy and Utilities - We did not include any cost for electrical or water. We assumed that both would be provided at the site. Neither would add an appreciable cost to the overall budget. Process materials and conumables - Yes

Treatment Process monitoring - Yes

Waste Treatment, storage and waste disposal - none required since no hazardous waste materials are generated in the process. There may be soils generated in well construction process if Geoprobe points can not be used. No funds were allocated for soil cutting disposal if alternative drilling methods are required.

Hardware or equipment replacement - No, but none is anticipated.

Performance - includes:

Expected treatment area - All areas in having TCE in excess of 1 ppm in groundwater. Expected treatment rate and /or expected treatment period? - Anticipate treatment would take place for 4 to 6 months of the year (late spring through fall) for each application. Two applications are anticipated with one year of post treatment monitoring.

Estimated amount of contaminant reduction - Anticipate two applications would be required to reach 90% reduction in TCE concentrations in groundwater.

Wastes generated volumes, and disposal or treatment - No hazardous wastes requiring disposal will be generated. Small quantities of sampling equipment materials and personal protection equipment

will be the only waste requiring disposal. IT plans to apply the permanganate through Geoprobe drill methods. If alternative drilling methods are required then drill cuttings will require disposal. No cost for drill cuttings disposal has been budgeted at this time.

application of in situ oxidation is the transport of the oxidant to the areas of contamination and not the reaction itself between the permanganate and the contaminant. The oxidation of TCE by permanganate is, compared to the time to transport the permanganate to the treatment zone, an essentially instantaneous reaction. The Paducah site provides several challenges to the application of permanganate - the geology is heterogeneous, the potential presence of hazardous radioactive species and site access limitations. As a result, the application of permanganate at this site would involve several different approaches for oxidant delivery to the contaminated areas. Push wells (e.g. Geoprobes[™] may be a good means to apply the permanganate in open areas. An alternative application approach is horizontal wells to distribute the permanganate beneath buildings or other poor access areas.

Based upon our knowledge of the site, coupled with these potential challenges, IT recommends proceeding by completing the pilot projects. Field pilot studies would clarify several technical issues so we could scope and cost a full-scale program.

IT looks forward to discussing the implementation of this demonstration following your approval. If you have any questions regarding these submittals or the project, please call me at 781-769-7600, Ext. 205.

Sincerely, IT Corporation

Richard Lewis, CPG Vice President – Technology Project Director

cc: Project File

Enclosure

Conceptual Technical Proposal

Field Demonstration of In Situ Chemical Oxidation for Treatment of Trichloroethylene Impacted Soils

Paducah Gaseous Diffusion Plant (PGDP) Paducah, Kentucky

> Prepared by: IT Corporation 100 River Ridge Road Norwood, MA 02062

Submitted to: Mr. Mike Hightower and Mr. Ken Kuzio Paducah ITRD Project Sandia National Laboratories Albuquerque, New Mexico 87185-0755

1.0 INTRODUCTION

This proposal provides a description of the general approach offered by IT Corporation for the implementation of an oxidation treatment remedy for chlorinated solvent contamination detected at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. IT has reviewed a limited amount of information provided by Sandia Laboratories on the facility and has developed a conceptual approach to the treatment of both vadose and aquifer contamination. IT believes that a substantial proportion of the contamination at this facility can be cost effectively treated with potassium or sodium permanganate. Our experience at other sites with the same chlorinated solvents has shown that impacted media can be treated for costs ranging between 10 and 50 dollars per yard. The specific cost of treatment is highly dependent on the depth of treatment and the contaminant concentrations.

The facility in Paducah does have other considerations for the application of oxidant. A critical aspect of our technology evaluation would not only be on chlorinated solvent destruction, but would also be on increasing the solubility of any radioactive materials. Oxidants including potassium permanganate can change the oxidation state of metal ions in the formation. This generally results in the precipitation of most metals. However, certain ions solubility's can be increased through oxidation. One such ion is uranium.

For this reason, we recommend that we undertake a field demonstration at two test cells selected at the site. One test cell will evaluate permanganate oxidation of adsorbed source material in the vadose zone, while the second test cell will treat a portion of the saturated aquifer. This approach was selected to not only prove out the application and effectiveness of the treatment technology, but also to collect pilot test information on the potential mobilization of uranium.

1.1 Conceptual Technical Approach

Our conceptual technical approach is to provide two pilot demonstrations to treat and evaluate the field application of permanganate in the vadose and saturated zones. Through this approach, the results of each test can be evaluated using the site-specific data, to ascertain not only the effectiveness of the test cell treatment, but also the cost and scale up necessary to apply the technology to a larger portion of the site. IT understands that a great deal of information has already been collected at the subject site, most of which was unavailable for review prior to the development of this conceptual approach. Prior to field application or mobilization, IT understands that additional time would be devoted to meeting with site representatives and reviewing historical information. Furthermore, IT also understands that all personnel and contractors working at the subject site will need to attend site-specific radioactive material instruction and training. In order to complete this conceptual plan, IT has assumed that all project teams will require a health and safety person (provided by IT) at all times. Implicit in this assumption is that additional site monitoring and non-IT personnel, if required during completion of project activities, will provide equipment decontamination.

We have considered the appropriate approach for test applications in light of the available technical data and our previous experience. The site consists of discontinuous sand/gravel in a silt/clay matrix collectively referred to as the Regional Gravel Aquifer (RGA), overlying a semi-confining layer of lower permeability silt/clay. Based on the cross-sections provided, the geology is both vertically and laterally non-homogenous resulting in the potential for channeled and preferential flow paths that may inhibit the permeation of permanganate. Therefore, in order to increase the contact between the permanganate and deliver an adequate volume of solution, IT Corporation proposes permanganate solution delivery a series of closely spaced addition points, adding the permanganate to the formation under pressure (although not at high enough pressures to induce hydraulic fracturing). We have used this technique previously in similar

lithologies, and found that it was required for delivery of an adequate volume of fluid into the low permeability formation, and provided enhanced transport of permanganate away from the injection points.

our approach was developed based on a goal to optimize the balance between cost-effective treatment and confidence in decreasing the concentrations sufficiently to meet a treatment objective of greater than 90% removal in soil and groundwater. A primary objective of hydraulic delivery of permanganate solution is to achieve maximum contact of injected solution with subsurface contaminants. This can potentially be achieved by various combinations of addition well spacing, well construction, duration of injection and injection parameters (i.e., pressure and flow). Ultimately, an optimum strategy must consider subsurface permanganate transport mechanism, provide sufficient engineering controls to ensure adequate control over the injection process, and provide reproducible and cost-effective deployment.

Permanganate loading requirements are related to permanganate consumption by TCE contamination as well as oxidation of naturally occurring materials within the aquifer matrix. The total mass of TCE within the treatment zones was estimated using the information provided to provide a basis to evaluate permanganate loading requirements. The estimate of TCE mass is highly simplified, based on the limited characterization data provided. Reasonable estimates were made of aquifer properties in order to perform the calculations to estimate application volumes.

There is considerable uncertainty in the estimates of permanganate loading requirements. This uncertainty is related to difficulty in estimating:

- TCE mass present (i.e., potential losses during the sample collection and handling prior to analysis);
- field-scale matrix demand (i.e., non TCE contaminants, natural metals, organics and other consumers); and,
- a general inability to account for aquifer heterogeneity and anticipated non-homogeneity of the TCE distribution.

IT therefore recommends a conservative approach, where the "likely" estimate of possible permanganate consumption is used for design purposes. Furthermore, this is a more cost-effective approach, since permanganate chemical costs are small compared to labor, equipment and analytical costs involved in fluid delivery.

1.2 Estimated Costs

An estimate of project costs follows in Appendix A. Please note that in order to prepare this estimate, IT had to make a series of assumptions (see Appendix B). Our proposed pilot test area for the vadose treatment area is approximately 30 by 50 feet to evaluate the optimum permanganate mass loading. Our proposed pilot test area for the saturated zone is approximately 50 by 100 feet.

Within this overall treatment cost, we have included an optimization of the fluid delivery process, and collection of substantial injection performance data. We have assumed the subsurface monitoring as specified above and have included a significant level of effort for technical personnel to be on site to evaluate real-time subsurface data.

1.3 Potential Scale-Up Costs

If this technology proves acceptable in the pilot evaluations, the technology could be applied similarly at other impacted portions of the facility. Applications at other portions however will be much more site specific, necessitating the use of directional or horizontal boring (to access beneath the slabs of buildings), interior drilling (to access the subslab areas in impacted buildings (where possible) while providing a competent permanganate distribution system and minimize interference with ongoing activities.

An approximate estimate of project costs is based on treatment of areas of the saturated zone with more than 1,000 μ g/L of TCE. Based on this criteria, IT reviewed the three major plumes at the Paducah facility. We developed rages for the treatment of each of these plumes based on the contamination levels reported and on our prior experience with similar contamination levels. The Northwest plume having a length of approximately 14,000 feet and width of 700 feet (portion >1,000 μ g/1), is estimated to be between 25 to 45 million dollars. The Northeast plume having a length of 12,000 feet and width of 400 feet would be between nine and 17 million dollars. The Southwest plume, which is approximately 4,000 feet long and 200 feet wide, would be between four and nine million dollars. These ranges are very large due to the uncertainties associated with the actual quantities to be treated with in these large areas. But can serve as reasonable order of magnitude estimate based on the available data.

The estimates to treat the vadose source areas can not be estimated until we establish site specific performance data from the proposed demonstration project.

1.4 Past Performance and Waste Management

IT Corporation is an industry leader in the application of in-situ oxidation technology. We have completed approximately 20 field projects using in-situ chemical oxidation by permanganate, and an equal number are in the design or field implementation stage. About 75% of these projects have utilized permeation of permanganate fluid by direct push drilling. This experience includes the ongoing work performed by IT Corporation for TCE treatment at Cape Canaveral Launch Complex 34 for the Interagency DNAPL Consortium (IDC) and at various Superfund sites across the country.

2.0 TECHNICAL APPROACH

2.1 Test Cell #1 - TCE Impacted Vadose Zone Soil

This test well was selected to provide a manageable test location, believed to be readily accessible and limited in extent to evaluate the application. The area selected is the northwest TCE lobe in the SWMU001 area, approximately bounded by borings 001 -109, 001-108, 001-115 and 001 -114. The test area is approximately 50 feet (East-West) by 30 feet (North-South) and consists of a portion of the unsaturated impacted soils at this location. The data provided suggests that total TCE may be approximately 330 to 340 pounds, requiring the addition of 4,100 pounds of permanganate for oxidation (assuming no competing or additional contaminants are present). For application, a 5X factor was assumed for the other soil demands (lesser concentrations of potential daughter degradation products, minor organic material and reduced metals species), thus approximately 21,000 pounds of oxidant is required.

To apply the permanganate, IT has assumed injection points will have a seven-foot radius of influence, resulting in an injection point spacing of approximately 10 feet. This spacing requires 24 points. Again,

assuming six treatment layers (at depths of 5, 10, 20, 30, 40, and 50 feet below grade), a total of 144 individual injection locations are thus proposed, each receiving 145.8 pound of oxidant:

- if 2% KMn04 is used, 870.3 gallons of fluid should be injected in each location
- if 20% NaMn04 is used, 87 gallons of fluid should be injected in each location (selected option).

Each layer should require 2 days to complete. This also allows one day to sample prior to treatment of each layer, plus one remobilization for post treatment sampling, therefore injection will require 3 to 4 weeks to complete.

In addition to the oxidant addition, IT also proposes to inject fluoride along with the permanganate as a non-reactive tracer. This trace will allow delineation of the areas of influence. Four monitoring locations will be installed with four lysimeters and one monitoring well per location. Baseline soil moisture and groundwater samples will be collected before the first injection. Subsequent soil moisture and groundwater samples will then be collected at the end of each layer injection cycle. Samples will be analyzed for ORP, temperature, TCE, uranium, NaMn04, CI and F. Post injection soil moisture and groundwater samples will be collected 2 and 4 weeks after final application. One contingency soil moisture and groundwater sample event may be collected 6 weeks after the final treatment. Soil samples will be collected rom locations adjacent to previously collected soil samples (001-155, 001-165 and 001166). Soil samples will be collected every five feet from 5 feet to 50 feet below grade and analyzed for TCE and uranium. Soil samples will be collected 3 weeks and 6 weeks after final injection

2.2 Test Cell #2 - TCE Impacted Saturated Zone

This demonstration test is proposed to be conducted in the southwest portion of building C-400. We selected that area due to the number of monitoring points in the area and the degree of characterization that has already been completed on this release area. The TCE levels in this are substantial (>1,000 ug/kg at boring 400-015) but the contamination is in a relatively limited area (a treatment cell 200 feet long by 100 foot width would treat the majority of this release). The treatment program would extend to a depth of 100 feet which would encounter a variety of the geologic units that would be characteristic of this site.

If site access is an issue in this area we could conduct a test in other portions of the impacted aquifer. An alternative may be a similar size area, selected further down gradient, away from the building structures in either the Northeast or Northwest plumes.

The testing program would utilize an application of permanganate on a 50-foot spacing (based on an assumed individual radius of influence of 35 feet). Therefore, to treat a 200 by 100-foot area we would drill 6 borings through which we would add permanganate in a solution ranging between 2 and 20 % depending on the TCE concentrations detected. This application would be repeated every 10 vertical feet (6 applications) in the saturated zone from a depth of 50 feet to a depth of 100 feet below ground surface or the base of the Regional Gravel Aquifer (RGA).

To establish a monitoring program in the aquifer six wells be constructed as multi level (5 port samplers) monitoring wells in the treatment cell. A field GC would be utilized to characterize aquifer conditions in each of the wells prior to the treatment program. This water quality data would be used to establish depth and area specific application rate for the permanganate. The monitoring parameters would be the same parameters as described in Test Cell 1.

Two rounds of post treatment sampling will be conducted on existing monitoring wells after the treatment period is completed. The timing of the sampling events will depend on the field monitoring results but we would anticipate sampling 3 and 6 weeks after final application. This data would then be complied into a three dimensional model to aid in the development of the final report.

2.3 Description of Generalized Work Tasks

The following presents a detailed description of the project work tasks. At this time, these tasks provide only generalized information; more specific information and work plans will be developed to support the actual field applications when more information is provided.

Task 1.0 Engineering Design and Permits

IT understands that regulatory approval will be needed for permits necessary for the execution of the project scope. IT will be responsible for providing an engineering plan for submittal to the agencies for the demonstration project. IT will also provide evidence of any regulatory licenses or certifications (e.g. OSHA certificates, previous experience, personnel qualifications) for the staff involved in the project.

Task 1.1 Technical Consultation with PDGP (Conceptual Design Meeting)

IT Corporation recognizes that additional technical input from and interaction with PDDP staff and the project Technical Director will improve the overall technical work plan. In order to maximize this interaction, we propose a working meeting between IT and PGDP personnel. At this time, IT will present our conceptual approach and lead a discussion to allow engineering modifications to be incorporated into the fieldwork based on the site-specific knowledge. Potential modifications include, but are not limited to:

- amount of MnO₄, solution loading;
- variations in concentration of NaMn0₄ solution injected over the treatment area;
- variations in lateral spacing of injection locations;
- variations in vertical intervals for injection; and,
- injection pressures and flow rates.

Task 1.2 Prepare Technical Work Plan

Following this initial strategizing meeting and the review of further information, IT will prepare a technical work plan for approval. This plan will encompass a detailed description and methodology for the NaMn04 injection. Issues to be covered include:

- design basis summary for the work scope (including mass estimates);
- delivery and control of the permanganate;
- permanganate mixing and handling;
- injection spacing rationale and description;
- vertical interval spacing rationale and description;
- design injection volumes, pressures, and feed concentrations;
- injection timing parameters;
- equipment specifications;

costs; waste generation and management; deployment procedures (including utility/subsurface obstruction protocols); contingency plans; proposed process monitoring parameters and schedule; and, data management plans.

IT understands that the Work Plan must be approved prior to initiation of the field effort. Ten copies of the Plan will be prepared. This technical work plan will include subsections for a Quality Assurance Plan (QAP), a Health and Safety Plan (HASP) and other supporting plans as necessary. The following summarizes these additional plans.

Quality Assurance Plan

IT will develop a quality organization structured so that IT's Quality Management Program and specific customer quality requirements are fully integrated. The designated on-site QA representative works closely with the project manager to translate the company's (and Client) quality requirements into achievable implementation steps. The Quality organization provides support for the following functions: quality control, inspection, training, quality engineering, equipment reliability/maintainability, standards, and their components, environmental tests, laboratory services, internal and vendor quality audits, calibration and control and measuring and test equipment. Organizational independence (with stop work authority) of all QA personnel will be assured so that they can perform their duties. A list of the project personnel for the PGDP site and their qualifications is included in Appendix A.

Health and Safety Plan

A Health and Safety Plan (HASP) will be prepared that will reference or include the requirements of the facility HASP for this work and include requirements and controls specific to the permanganate mixing and application system.

Waste Management Plan

IT or its subcontractors will produce soil cuttings, well development water, well purge water and PPE as Investigatory Derived Wastes (IDW) during the completion of project activities. Dispositions of these materials will require characterizations and disposal. At this time, IT has not included any costs associated with IDW characterization or disposal. Based upon the further work and initial discussions with the site personnel, IT will develop or reference an existing Waste Management Plan for approval.

Task 2.0 Finalize Design

The system design will be finalized and incorporated into the Technical Work Plan. The design basis will be initially discussed at the Conceptual Design meeting and issues and decisions reached at this meeting will be incorporated into the design.

Two bench scale tests are proposed to refine the design basis for permanganate consumption. A bench scale tests for permanganate consumption by the aquifer matrix (background reductants) will be performed on a soil sample slurry from a non-impacted area of the site. A second bench scale test will be performed to quantify an expected "use ratio" for permanganate consumption by the TCE impacted soil matrix within the treatment cells. These samples will also be analyzed for metals (uranium only) to provide a baseline to measure oxidant-induced changes in the geochemistry. The bench scale studies will

be run at IT's Technology Development Laboratory in Knoxville. The Technical Work Plan will contain a bench scale study report for each of these tests as appendices.

Task 3.0 Mobilization of Equipment and Supplies

Task 3.1 Procurement

IT will provide all procurement services for sodium permanganate, storage and mixing facilities, drill rig vendor, secondary containment and all materials and supplies. IT Corporations policy is to procure goods and services in an ethical manner, using sound business practices, from sources that provide maximum value for each expenditure. The procurement process and assessment of value consider cost, delivery, reliability and applicable regulations. Upon completion of the final design, IT Corporation will complete procurement of all subcontractors, materials and services to be used for the field demonstration. Purchase orders, material lists, and subcontractor bid unit costs will be finalized.

Task 3.2 Mobilization of Equipment

It will be responsible for packaging, transport, unloading, installation/set-up and checkout of all equipment and materials for the project. It is understood that the equipment and materials will need to be mobilized to a PGDP designated location for required equipment checks and radiological surveys prior to installation and set-up at the site. IT has assumed that all site personnel will attend the RAD Worker I training and site safety and security orientation. The costs presented herein do not include the costs associated with completing this onsite training.

Task 4.0 Field Demonstration and Deployment

IT Corporation will install and operate the permanganate oxidation system for duration of approximately three weeks (test Cell #1) and three weeks (Test Cell #2). This period will include equipment mobilization and setup, on-site testing, application of the oxidant, in-well data analysis and demobilization. Monitoring of the treatment performance will continue periodically over a 6 to 9 week period after the final application is completed.

The understood goal for this operation is to maximize the mass removal of TCE and to attempt to "target" goals. However, the purpose of this project is to demonstrate the cost effectiveness and technical viability for reaching these targets using in-situ chemical oxidation with sodium permanganate. Successfully obtaining these goals is neither stated nor implied as the perceived effectiveness of this technology is highly dependent upon the site specific lithology, mass of contaminant, distribution of contaminant, and timeframe of application. The distribution of the contaminant, site specific lithology, and innovative nature of this work precludes the ability to evaluate the expected final result of the remedy with sufficient accuracy. The endpoint of the demonstration project will be considered met when the proposed scope of work has been met by completion of the specified tasks.

The installation and operation of the sodium permanganate oxidation system will include:

- all equipment, parts, instrumentation, electricity, fuels, chemicals, and other items required for completion of the project;
- all direct and indirect labor including supervisory personnel required for the installation and operation of the system;
- all subcontract charges;

- all mobilization, installation, operations, demobilization, and site restoration activities; and,
- other miscellaneous items.

Task 5.0 Final Technical Repo

Ten (10) copies of a Final Report will be prepared and delivered, An electronic copy (Word or Adobe) will also be provided. The report will contain all of the monitoring results including field and laboratory parameters. The TCE concentrations over time, as well as associated breakdown product concentrations, will be presented. Data tables contour maps and graphs will be used to illustrate the results. The NaMnO, loading rates and utilization rates will be compared to design values. Recommendations for any future changes to the remedial technology application will be presented. Additional features of the report will include:

- treatment process description and history;
- treatment system design summary;
- descriptions of the equipment, operation procedures, and process operation monitoring; operation results including summaries of al data collected, all QA data and documentation; listing of types and amounts of secondary waste; discussion of results detailed cost analysis including mobilization and deployment costs; unit cost breakdown for cubic yard (meter) of soil treated and groundwater; recommendations for monitoring to detect potential rebound; and, conclusions and recommendations.

3.0 Past Performance

IT Corporation has extensive experience in all aspects of the proposed project including project management, project financial control, QA/QC, and health and safety. IT Corporation is also an industry leader in the development and deployment of in-situ remediation technologies. We are recognized as an industry leader in the application of in-situ oxidation, using ozone and permanganate. We have pioneered in-situ ozonation, and have leaded the industry in commercialization of permanganate technology.

3.1 IDC Permanganate Demonstration Project, Cape Canaveral

Ongoing work with permanganate includes the demonstration of TCE DNAPL treatment using permanganate at Cape Canaveral. This ongoing project for the Interagency DNAPL Consortium (IDC) involves direct permeation of permanganate solution along depth discrete intervals using direct push drilling. Field data from this site have not yet been analyzed and reported. We have currently completed preliminary tests involving injection of permanganate solution and fluoride tracer. These results have indicated that tracer transport exceeds permanganate transport. This expected result reflects the limitations of permanganate reactions on permanganate transport. These results have indicated a greater mass of TCE in the subsurface than expected, and are currently being used as a basis to refine our estimate of permanganate loading requirements.

3.2 Lance Permeation in Clays, Australia

The scale of our field efforts with permanganate has ranged from small-scale field pilot tests to full-scale treatment over a 2,000 square meter (0.5 acre) area using 27,000 kg (61,700 lb.) of potassium permanganate. This large-scale project is similar to the proposed lance permeation of the Minford at PORTS. The project involved lance permeation injection of permanganate via 330 injection points, on a 2.5 meter (8 ft) spacing into an overconsolidated low permeability clay. The site is located in Australia. Data from this project have not yet been published, but samples of representative site data are included in Appendix D.

A preliminary test was conducted to compare results on injection under Darcy flow conditions (into PVC wells) to injection by lance permeation at pressures which induced hydraulic fracturing. The hydraulic fracture approach resulted in much greater permanganate transport distances, and allowed injection of significantly greater volumes of fluid in shorter time frames. Peak injection pressures of 1,000 to 3,000 kPa (145 to 400 psi) resulted in hydraulic fracturing, and allowed delivery of 600 liters (158 gal) of solution in a 20 minute time frame.

Based on the results of the preliminary testing, fluid injection was performed at two depths (19 feet and 28 feet) at each lance location. (Note that the vertical spacing of these injection intervals is significantly greater than that proposed for the Minford at PORTS.) Over the 330 lance locations, a total of 396,00 liters (104,600 gallons) of 7% permanganate solution was delivered. Extreme high temperatures in the Australian summer facilitated mixing of the 7% (essentially saturated) potassium permanganate solution.

Following the full scale treatment, initial TCE concentrations in groundwater as high as 5,000 μ g/I (indicating the presence of non-aqueous phase liquid TCE) were reduced below detection limits (< 5 μ g/1) at many locations. An overall mass reduction of 80% was observed. Significantly better result can be expected for the proposed Minford treatment at PORTS, because of the ten-fold smaller vertical spacing of lance injection intervals.

IT Corporation A Member of The IT Group

IT - Appendix B

ASSUMPTIONS

IT has estimated the costs associated with this proposed scope of work based on assumptions and cost for similar projects. This scope of work will be governed by the terms and conditions contained in Groundwater Technology Agreement/Proposal for Environmental Services. Any change in work scope and/or unforeseen field conditions will require a corresponding change in project costs. Any additional services requested of Groundwater Technology that are not described in this proposal will also be billed on a time and materials basis and a request for these services will authorize us to increase the budget accordingly.

As this proposal was designed to provide only approximate costs, the estimated values herein are for discussion only. Should the project proceed forward, IT can generate more refined estimates for approval.

The following assumptions were made to estimate the costs of activities for this project:

- All employees working at the site will be provides with a one day indoctrination (i.e., awareness training). Upon completion of this training, employees will have unrestricted access to the work area and sanitation facilities
- Site personnel will provide all decontamination (if required), soil and residual disposal, marking of buried utilities and access to the property;
- the auger and geoprobe techniques can be utilized to collect soil samples and install monitoring wells, lysimeters, addition points and all other subsurface appurtenances;
- All work may be completed using standard level D personal protective equipment. Contingencies for upgrade to level C conditions (respirators and tyvek suits) will be provided and accessible;
- Office and storage facilities suitable for short term use are available in close proximity to the work areas for temporary use during the field portions of activities;
- Site activities will not require generation or disposal of any material;
- No landscaping repair of any area disturbed on properties;
- All laboratory analyses are to be completed at standard laboratory turn-around time;
- Work will commence within 10 business days from our receipt of signed authorization;
- The work areas will be demarked by temporary traffic cones or plastic fencing and no further traffic control provisions will be required;
- IT will provide three project personnel for two one day meetings to be held on site at the start of the project (for logistical coordination and partnering) at the conclusion of activities after generation of a draft report (for comment to review the technical findings prior to issuance of any final report);
- Five copies of all reports, one draft and final, will be provided with attachments and supporting documentation;
- PGDP or its representatives will provide and make accessible additional information concerning the demonstration sites sufficient to establish potential contaminants of concern and develop plans for site activities including surveyed site plan showing wells, buildings, curb

cuts, concrete or paved areas, significant structures, drainage ways, dry wells, UST/AST locations, and utilities;

- Soil bearing capacity is adequate for support the temporary usage of remedial system components;
- Remedial goals have not been stipulated for the demonstration project;
- Utilities are available at the demonstration sites sufficient to facilitate small capacity pumps and portable equipment;
- Other than a state Underground Injection Control (UIC) Permit, no permits will be required to conduct this work; 0
- 10 copies of report deliverables
- Potable water is available on site readily accessible to the demonstration areas at no charge to IT;
- Site will provide security badge access for its personnel and vendors on-site.

Because this proposal contains information which is proprietary to IT, its contents shall not be disclosed by you to others outside your own organization, nor shall this proposal be duplicated, used, or disclosed by you or others for any purpose other than your evaluation. However, if a contract is awarded to IT, as a result of the submission of this proposal, you will have the right to duplicate, use or disclose any information contained in this proposal which IT agrees, in writing, is not proprietary.

IN-SITU FIXATION ROTARY STEAM STRIPPING

63044668 ITRD Paducah Groundwater Technology Summary Report

In-Situ Fixation P. 0. Box 516 Chandler, AZ. 85244 602-821-0409 602-786-3184 - FAX

Fax

 To: Mr. Mike Hightower

 Fax:
 505-844-0968

 Phone:
 505-844-5499

 Re:
 Cost Breakdown

From: Jan Stevens Pages: 4 Date: June 21, 1999

Mr. Hightower:

Per your request, here is the information Dick e-mailed to you last Thursday. If you need any other information, please let me know.

Jan Stevens

BACKGROUND

What I have tried to complete for you Is a realistic project itemized cost breakdown.

You will notice that I have broken down the indirect costs (i.e. mobilization, site preparation, reports, etc.) You can take out any phase you feel is not appropriate in your presentation. I did not include these in the cubic yard costs because they vary by project condition.

The cubic yard unit cost is based upon our new auger which is larger in size, 48 sq. foot per cell vs 35 sq. foot cell (six foot diameter augers vs five foot). Also experience have shown that the depth used in this estimate, 40 feet, should require between one and two hours per cell for treatment. Treatment time over two hours starts to become uneconomical.

COST BREAKDOWN

1 A.	Mobilization/Setup/Decon/Teardown/De	emob \$120,000 - 170,000
1 B .	Documentation	\$ 10,000 - 38,000
2.	Production cost estimate Steam Only Average cost per cubic yard =	\$36.00
3.	Cost to inject Iron Fillngs 2% Iron = 60 # C.Y. Additional equipment/labor	\$ 15.00 per cubic yard \$ 5.00 per cubic yard \$ 20.00 per cubic yard

Steam / Iron Simultaneous Treatment The finer sized grade of Zero Valent Iron costs approximately \$ 500.00 per ton(.25 lb). Assuming a soil density of I 10 lb per cubic foot (3000lbs per C.Y.) our experience has shown that 2% iron works successfully. Once on the project you might be able to reduce the Iron percentage to as low as 1 % if the soils and contamination are favorable. The simultaneous application of steam and iron adds five major cost items to the steam application. These costs are iron, guar, mixing, pumping, and labor. I have used a \$20.00 per cubic yard cost figure however as more experience is gained working with the iron fillings slurry the possibility could exist where a coarser sized iron (\$350.00 ton) could be used. This could represent a savings of \$4.00 to \$5.00 per cubic yard.

SUMMARY

Indirect costs	\$120,000.00	-	170,000.00	
Reports	10,000.00	-	38,000.00	
Steam Only	28.00	-	49.00	per C.Y.
Steam & Iron	48.00	-	69.00	per C.Y.
Overhead	7%	-	12%	-
Profit	10%	-	23%	

The Indirect Costs can vary, but I believe the range I have presented is realistic. The items for submittals, reports, etc. are not always bid items, but as you know there can be significant time spent on these items. I have outlined these In order for you to pick and choose what you feel is

appropriate for your presentation. The range in the cubic yard unit costs reflect one to two hours of treatment time per 70 cubic yard cell. The Steam & Iron range includes the addition of the iron costs to the <u>Steam Only</u> cubic yard costs. The overhead and profit ranges are what I think the bidders would use. Remember these Summary Costs above <u>do not</u> include overhead and profit.

If you came across any "special" places in the Charleston area let me know, I'll be there sometime in the next month.

Take Care, Dick

CURRENT ENVIRONMENTAL SOLUTIONS (CES) SIX-PHASE HEATING

. . .

Six Phase Heating - Direct Heating Application WAG 6 - UCRS and RGA (955,656 ft ³) 943,000 712,000 228 175 99% Excellent Moderate \$47 WAG 6 - UCRS and RGA (955,656 ft ³) 943,000 923,000 176 226 99.9% Excellent Moderate \$53 WAG 6 - UCRS and RGA (955,656 ft ³) 943,000 923,000 176 226 99.9% Excellent Moderate \$53)
WAG 6 - UCRS and RGA (955,656 ft ³) \$ 943,000 \$ 712,000 228 175 99% Excellent Moderate \$47 WAG 6 - UCRS and RGA (955,656 ft ³) \$ 943,000 \$ 923,000 176 226 99.9% Excellent Moderate \$53 DNM 10 - UCRS and RGA (955,656 ft ³) \$ 943,000 \$ 923,000 176 226 99.9% Excellent Moderate \$53	
WAG 6 - UCRS and RGA (955,656 ft ³) \$ 943,000 \$ 923,000 176 226 99.9% Excellent Moderate \$53	
SVMNUS 2 & / (1,950,000 ft) \$ 890,000 \$ 987,000 323 251 99% Excellent Low \$26	
SWMUs 2 & 7 (1,950,000 (t ³) \$ 890,000 \$ 1,286,000 245 331 99.9% Excellent Low \$30	
SWMU 3 (2,606,800 ít ³) \$ 1,053,000 \$ 1,457,000 293 370 99% Excellent Low \$26	
SWMU 3 (2,606,800 ft ³) \$ 1,053,000 \$ 1,904,000 222 488 99.9% Excellent Low \$31	
WAGs 27 & 1 (225,285 /t ³) \$ 315,000 \$ 80,000 400 23 99% Excellent Low \$47	
WAGs 27 & 1 (225,285 ft ³) \$ 315,000 \$ 113,000 296 32 99.9% Excellent Low \$51	
WAG 28 - UCRS and RGA 99% Excellent Moderate \$45 to \$	60
WAG 28 - UCRS and RGA 99.9% Excellent Moderate \$50 to \$	65

Assumptions:

1) Routine groundwater monitoring and post-remediation monitoring are assumed to be provided by others.

2) Boring subcontractor costs are assumed to be \$54 per foot (12" o.d. borehole).

3) Includes drill cutting disposal at \$1000/ton.

4) Does not include cost for security clearances or escorts.

5) Includes \$10,000 to connect electrical power to SPH equipment. Includes \$0.05/kW-hr for electrical usage (conservative).

6) WAG 6, WAGs 27 & 1, and WAG 28 include vapor treatment by oxidation with no acid gas scrubber.

7) SWMUs include vapor treatment by activated carbon with offsite regeneration.

8) Costs assume that surface equipment does not become radioactively contaminated.

9) WAG 6, Building C-720, and WAG 28 assume below-grade piping and electrical cables.

10) SWMUs and WAGs 27 & 1 assume above-grade piping and electrical cables within fenced areas.

11) Assumes each site is stand-alone. Remediating multiple sites would lead to cost efficiences.

12) Remediation of multiple sites can be performed in parallel or in series.

MCLAREN/HART SOIL VAPOR EXTRACTION WITH PNEUMATIC FRACTURING

630456

July 1, 1999

Mr. Mike Hightower Sandia National Laboratories P.O. Box 5800, MS 0720 Albuquerque, NM 87185

RE:

SOIL VAPOR EXTRACTION/PNEUMATIC FRACTURING REMEDIAL OPTION Paducah ITRD Project Paducah, KY

Dear Mr. Hightower:

Thank you for the opportunity of presenting the capabilities of pneumatic fracturing to you and your technical committee at the recent ITRD meeting in Paducah. As you know, Dr. John Schuring and others developed this technology at the New Jersey Institute of Technology (NJIT) in the early 1990s. In 1992, McLaren/Hart became involved with the development, testing and commercialization of the technology. In 1997, McLaren/Hart obtained a license from NJIT to use the technology for pneumatic enhancement of soil and rock formations and to inject dry or liquid media (e.g., reactive media, proppants, oxidizing liquids) into subsurface soils.

McLaren/Hart has successfully used this technology to enhance the permeability of soil and rock formations impacted with chlorinated solvents. A preliminary review of the information downloaded from the Internet and sent by Ken Kuzio, indicates that the unsaturated soils at the Paducah site can be pneumatically fractured to improve permeability and, consequently, air flow rates for in situ remedial options. These options may be limited by the heterogeneity of the geologic formation.

This improvement in subsurface permeability would lower the operating and maintenance cost for the remediation system and will also reduce the treatment time (i.e., time to move "X" pore volumes through the formation and/or reach asymptotic conditions). For example, this benefit could make a soil vapor extraction (SVE) system more effective and efficient.

In order to provide a more accurate estimate of the costs for conducting a pilot test, and for a full-scale system (i.e., installation, operation and maintenance), McLaren/Hart is requesting that you provide the following:

- 1) A map showing the treatment areas and volumes for each location at PGDF (e.g., for WAG 6 C400 Bldg.)
- 2) A map showing the vertical and horizontal delineation for each location of unsaturated soils at each location (i.e., source)
- 3) The composition of the contaminants of concern (volatile and nonvolatile)
- 4) The maximum and average concentrations of the contaminants of concern
- 5) The soil geology in the unsaturated treatment zone, including transition zones
- 6) The depth to water and capillary fringe
- 7) Any geotechnical engineering information (e.g., grain size, bulk density, porosity, intrinsic permeability)
- 8) Information on utilities and structures if available, and
- 9) The proposed location for the unsaturated zone pilot

Mr. Mike Hightower

07/02/99

During our presentation last week, we indicated that McLaren/Hart has worked with NJIT to evaluate reactive media and also successfully deliver reactive media to a depth of 37 feet at a site located in Kansas City. Based on the success of this pilot test, a reactive treatment wall will be installed as the remedial option for the site.

To date, I am not aware of any sites where reactive media has been successfully delivered to depths greater than 100 feet for the reductive dechlorination of chlorinated COCs. McLaren/Hart believes that the pneumatic delivery system is an extremely viable method for emplacement of media at depth, and is confident that we can engineer and design a system to cost efficiently deliver the media to the targeted saturated treatment zone at the Paducah site.

In order to demonstrate our confidence in using this technology, and to illustrate the level of technical study and testing that has been performed to support the application of pneumatic fracturing and pneumatic injection, we have enclosed three theses from graduate students at NJIT. They are: McLaren/Hart employee, Deborah Schnell's thesis on reactive media and pneumatic injection (Section 3); a thesis on the study of potential effects of pneumatic fracturing on existing structures and utilities; and a thesis that discusses the mechanisms for fracture propagation and particle transport in pneumatically fractured formations

Again, thank you for the opportunity of meeting with you and your technical team. If Jim Mack or I can be of any assistance, or if we can provide you with additional information on the technology or on McLaren/Hart's remedial engineering or risk capabilities, please do not hesitate to contact us at (908) 647-8111.

Sincerely

Trevor King Sr. Engineer Trevor King

Encl. c: J. Mack (M/H)

_.Q.WAFRTY INGVaducah\m*e-h.doe

Marc Cicalese Principal Engineer

Mclaren Hart

FAX COVER SHEET

TO:	Mike Hightown/
	Wu Ching Cheng

DATE: December 07, 1999

FROM: Kumar Selvakumar

FAX NO.: 505/844-0968 NO. OF PAGES: 05 (including this page)

RE: Cost Estimate for C-400 Source Area (B400-200)

We have included the Table 1.1a for the remediation of the source area and updated summary Table 1.0. This cost will be included in the overall remediation in Table 1. 1. If you have any questions, please call us.

Thank you, Kumar

SENT BY: Kumar Selvakumar

TIME:

BILLING CODE:

(PLEASE FILL IN BILLING CODE)

25 Independence Boulevard, Warren, NJ 07059 (908) 647-8111 FAX (908) 647-8162

PNEUMATIC FRACTURING ENHANCED SOIL VAPOR EXTRACTION PADUCAH ITRD PROJECT PADUCAH KENTUCKY

CAPITAL COSTS

CAFIIAL CUSIS		
	Subtotal	\$364,000
	Contingency (25	\$912,000
	Subtotal	\$455,000
Administrative & legal coms (10%)		\$45,500
Construction oversight and certifica	tion (10 %)	\$45,500
Engineering (IS %)		\$68,300
TOTAL CAPITAL COST		\$614,000

٩.

63046284 ITRD Paducah Groundwater Technology Summary Report

Table 1.1a Preliminary Engineering Cost Estimate for C-400 Source(B400-200) Area Pneumatic Fracturing Enhanced Soil Vapor Extraction Paducah ITRD Project Paducah, Kentucky

ITEMS	QUANTITY	UNIT	UNIT COST	TOTAL COST
ANNUAL OPERATION AND MAINTEN	ANCE (O&M) COST	LS		
(For Year 1);				
Annual munitoring report	1	EA.	\$20,000	\$20,000
TS monthly air sampling and analysis	24	EA.	\$120	\$2,880
Quarterly GW monitoring	3	EA.	\$110	\$330
Maintenance and replacement	1	L.S.	\$500	\$500
Operator cost (4 hrs/week)	208	Hour	\$60	\$12,480
Water disposal (75 gallons/month)	900	Gallon	\$3	\$2,700
Blectric power	15	H.P.	\$400	\$6,000
	Subtotal			\$45,000
	Contingency (2)	5%)		\$11,000
	TOTAL ANNU	AL O&M CO	ST	\$56,000
(For Year 2):				
Annual monitoring report	1	EA.	\$20,000	\$20,000
TS monthly air sampling and analysis	24	EA.	\$120	\$2,880
Quarterly OW monitoring	3	BA.	\$110	\$330
Maintenance and replacement	1	L.S.	\$500	\$500
Operator cost (4 hrs/week)	208	Hour	\$60	\$12,480
Water disposal (75 gallons/month)	900	Gallon	\$3	\$2,700
Electric power	12	H.P.	\$400	\$4,800
	Subtotal			\$44,000
	Contingency (2	5%)		\$11 <u>,000</u>
	TOTAL ANNU	JAL O&M CO	T	\$55,000
(For Year 3):				
Annual monitoring report	1	EA.	\$20,000	\$20,000
TS monthly air sampling and analysis	24	EA.	\$120	\$2,880
Quarterly GW monitoring	3	EA.	\$110	\$330
Maintenance and replacement	1	L.S.	\$500	\$500
Operator cost (4 hrs/week)	208	Hour	\$60	\$12,480
Water disposal (75 gailons/month)	900	Gallon	\$3	\$2,700
Electric power	10	H.P.	\$400	\$4,000
	Subtotal			\$43,000
	Contingency (2	5%)		\$11,000
	TOTAL ANN	UAL O&M CO	DST	\$54,000

KselvakWCRScost.xlsW00 hot

ŧ.

Table 1.1a Preliminary Engineering Cost Estimate for C-400 Source(B400-200) Area Pneumatic Fracturing Enhanced Soil Vapor Extraction Paducah ITRD Project Paducah, Kentucky

ITEM	IS	QUAN	TT TT Y	UNIT	UNIT COST	TOTAL COST
O&M PRESENT WORTH (5% discount rate)		Year 1 Year 2			\$53,000 \$50,000	
			, Y	ear 3		\$47,000
		TOTA	L COST	FOR 3 YEAR	OPERATION	\$764,000
L.S.	Lump sum	H.P.	Horse p	wor		
BA.	Each	GW	Groundy	vator		
FT.	Feet	TS	Treatme	nt system		

Assumptions:

1. Monthly treatment system air monitoring, sampling, and analysis is included in the O&M cost.

2. Piping for the system is installed below ground and finished with paving.

3. Blower will provide 10" Hg vacuum at well heads.

- 4. Pilot testing is required to verify applicability and obtain engineering parameters for the full scale design and will be performed in the C745 Area.
- 5. Water is available to be used in the system operation.

6. No reduction in sampling frequency have been assumed.

7. Expected airflow is 400 scfm.

8. Half of the TCE from the air stream will be removed as liquid in the knockout tank and the separated product can be sent for recovery and recycling with no cost.

9. Treatment system operator time of 4 hours/week for this component.

- 10. Treatment air system samples and GW monitoring samples are analyzed for VOCs.
- 11. Water collected during the installation and operation will be sent for offsite disposal.

12. Assumed design parameters for the cost estimation are as follows:

Design/Cost Estimating Paramoter	Hot Ares
Area (Sy. Ft.)	5625
Average concentration (mg/kg)	1000
Radius of influence (ft.)	20
Air flow (scfm)	400

* * Part of these costs will be included in the cumulative cost of overall remediation at the site.

630464 86 ITRD Paducah Groundwater Technology Summary Report MORRISON KNUDSEN/K-V ASSOCIATES C-Sparge

- I -

63046688 ITRD Paducah Groundwater Technology Summary Report

MORRISON KNUDSEN CORPORATION

ENGINEERS & CONSTRUCTORS Mk FERGUSON PLAZA ISM WEST 3RD STREET V CLEVELAND. OHIO U.S.A. 44113-1408 PHONE: (216) 523-5600 FAX-. (216) 523-5822

December 14, 1999

Mr. Michael Hightower Sandia National laboratories P.O. Box 5800 Albuquerque, NM 87195-0755

RE: Summary of Estimated Costs for Ozone Sparging Using the C-Sparge Process

Paducah ITRD Project~ Paducah, KY

Dear Mike:

Attached is a table summarizing the estimated costs for installation and operation of ozone sparging using the C-Sparge Process at the U. S, Department of Energy Paducah Gaseous Diffusion Plant, Paducah, Kentucky. The attached table is arranged in general conformance with your requested format.

Cost scenarios

As requested we have developed costs for seven different site condition scenarios. These scenarios are as follows:

1) Treatment of saturated soil in the Upper Continental Recharge System (UCRS). Treatment volume equals 10,000 cubic yards (yd³). Trichloroethylene (TCE) is the only contaminant and is present at a concentration of greater than 100 parts per million (ppm).

<u>System Design</u> C-Sparge wall mounted unit with 2 groundwater recirculation sparge wells.

2) Treatment of <u>non-saturated</u> soil in the UCRS. Treatment volume equals 10,000 yd³ TCE is the only contaminant and is present at concentration of greater than 100 ppm.

System Design

High vacuum extraction with C-Sparge wall mounted unit. Design includes 4 vapor extraction wells and 6 ozone injection sparge points. Ozone is mixed with TCE in the soil and the combined mixture is oxidized under vacuum extraction The extracted soil

Morrison Knudsen and K-V Associates

830468

MORRISON KNUDSEN CORPORATION

Mr. Michael Hightower December 14, 1999 Page 2

gas contains TCE levels acceptable for discharge to the atmosphere. Carbon adsorption costs are included in the estimate as a contingency.

3) Treatment of soil near the C-400 Building, Treatment volume equals 40,000 yd. TCE is the only contaminant and *is present* at a concentration of greater than 1,000 ppm.

<u>System Design</u> - High vacuum extraction, with C-Sparge palletized unit *in a protected* enclosure. Design includes 3 vapor extraction wells and 5 ozone injection sparge points for treatment of the unsaturated *zone* and 4 recirculation wells for treatment of saturated materials. Ozone 1s mixed with TCE in the soil and the combined mixture is oxidized under vacuum extinction. The extracted soil gas contains TCE levels acceptable *for discharge to* the atmosphere. Carbon adsorption costs are included in the estimate as a contingency.

4) Treatment of additional soil near the C-400 Building. Treatment volume equals 10,000 yd³. TCE is the only contaminant and is present at a concentration of greater than 10,000 PPM.

System-Design

Perozone (combination of peroxide and ozone treatment) injection for addressing and treating possible DNAPL's. C-Sparge trailer unit equipped with ozone generator capable of producing 1,500 grams ozone per day. Hydrogen peroxide and ozone are fed simultaneously into special spargepoints[®] which are placed at shallow and deeper depths in the aquifer. Design includes 1.2 spargepoints[®] placed at 20 foot spacings within the treatment area. During treatment temperature will be monitored.

5) Treatment of groundwater within the Regional Gravel Aquifer (RGA) near the contaminant source. Treatment volume equals 50,000 yd³. TCE and Technetium. (Tc-99) are the only contaminants present. The TCE concentration is greater than 1,000 parts per billion (ppb) and the Tc-99 concentration ranges from 100 to 1,000 pico Curies per liter (pCi/L).

System Design

C-Sparge 4-well palletized unit in an enclosure and 4 groundwater recirculation sparge wells. Recirculation wells are equipped with ion exchange cartridges for Tc-99 removal. Design is based on an 85-foot radius of influence (170 foot zone of capture). Well spacing includes 30% overlap as a factor of safety.

Morrison Knudsen and K-V Associates

MORRZON KNUDSEN CORPORATION

Mr. Michael Hightower December 14, 1999 Page 3

6) Treatment of additional groundwater within the RGA near the source. Treatment volume equals 5,000 yd³. TCE and Tc-99 are the only contaminants present. The TCE concentration is greater than 100,000 ppb and the Tc-99 concentration ranges from 100 to 1,000 pCi/L.

System Design:

Perozone (combination of peroxide and ozone treatment) injection for addressing and treating possible DNAPL's. C-Sparge trailer unit equipped with ozone generator capable of producing 1,500 grams ozone per day. Hydrogen peroxide and oxone are fed simultaneously into special spargepoints® which are placed at shallow and deeper depths in the aquifer. Design includes 10 spargepoints® placed at 15 foot spacings and 2 recirculation wells within the treatment area. Recirculation wells are equipped with ion exchange cartridges for Tc-99 removal

7) Treatment of groundwater within the RGA downgradient of the source. The treatment scheme will involve placing sparge welts in a linear arrangement to contain the plume The containment wall (interceptor fence) is 4,000 feet long. The TCE concentration is less than 1,000 ppb and the Tc-99 concentration ranges from 100 To 1,000 pCi/L

System Design:

Three C-Sparge 10-well palletized units in an enclosure and 30 groundwater recirculation sparge wells. Recirculation wells are equipped with ion exchange cartridges for Tc-99 removal. Design is based on an 85-foot radius of influence (170 foot zone of capture). Well spacing includes 30% overlap as a factor of safety.

Should you have any questions regarding this letter or the attached table, please do not hesitate to call me at (216) 523-5286 or Bill Kerfoot at (508) 539-3002.

Sincerely yours,

Bruce B. Ehleringer Hydrogeologist / Program Manager

CC: William Kerfoot, President K-V Associates

attachments

Morrison Knudsen and K-V Associates

SUMMARY OF ESTIMATED COSTS C-SPARGE OZONE SPARGING PADUCAH - ITRD PROJECT Paducah Cost Summary.xls, Morrison Knudsen and K-V Associate

Cost Item	UCR	S	C-400			RGA	
	Saturated 10,000 yd ³ 100 ppm	Non-Saturated 10,000 yd ³ 100 ppm	40,000 yd ³ 1,000 ppm	10,000 yd ³ 1,000 ppm	50,000 yd ³ 1,000 ppb	5,000 yd ³ 100,000 ppb	4,000 LF 1,000 p pb
Capital Costs							
Number of Wells	2 Wells	1 Wells	12 Wells	12 Wells	4 Wells	12 Wells	30 Wells
Engineering and Design	\$ 10,000	\$10,000	\$ 15,000	\$10,000	\$15,000	\$10,000	\$20,000
Permits / KVA Licensing Fee	\$\$2,600	\$1,500	\$6,600	\$4,800	\$8,400	\$4,800	\$42,000
Mobilization	\$5,000	\$5,000	\$8,000	\$5,000	\$8,000	\$8.000	\$14.000
System Cost	\$34,500	\$41.500	\$82,000	\$99,300	\$82,000	\$99,300	\$410,000
Drilling and Well Construction	\$20.500	\$35,000	\$70.000	\$70,O00	\$80,000	S70,000	\$300,000
Utility Connections (Electrical Hookup	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000
System Installation	\$10.000	\$10.000	\$25,000	\$10.000	\$10.000	\$10.000	\$45,000
Demobilization	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000
Estimated Total Capital Costs	\$92,600	\$113,000	216,500	\$209,100	\$193,400	\$212,100	\$851.000
•			-				\$213/Lin. Ft
Cost per Yd ³	\$9.26	\$11.30	\$5.41	\$20.91	\$3.87	\$42.42	\$1.44
Operation and Maintenance Coals							
System Operation Manpower	\$20,000	\$20,000	\$,35,000	\$50,000	\$20.000	\$20,000	\$100,000
Energy and Utilities	\$6,000	\$8,000	\$12,000	S8,000	\$7.000	\$8,000	\$35,000
Process Materials and Consumables (on	NA	NA	NA	NA	\$8,000	\$2,000	\$30,000
Exchange Resin)							
Treatment Process Monitoring arid	\$8,000	\$8,000	\$25,000	\$15,000	\$ 10,000	\$15,000	\$50,000
Reporting							
Waste Treatment Storage, Disposal	\$2,500	\$6.500	\$10,000	\$8,000	\$8,000	\$8,000	\$40,000
Hardware or Equipment Replacement	\$2,000	\$2,000	\$6.000	\$8000	\$6,000	\$6,000	\$30,000
Estimated Annual 0 & M Costs	\$37,500	\$ 44,500	\$88,000	\$87,000	\$57,000	\$59,000	\$285,000
Performance							
Expected Treatment Period	l Year	1 Year	2 Year	2 Year	2 Year	1 Year	30 Year
Estimated Amount of Contaminant							
Reduction							
TCE	99.5%	95%	95%	95%	>99.5%	95%	>99 .5%
Tc-99	NA	NA	NA	NA	>97%	>97%	>97.0%
Estimated Level of Residual							
Contaminant							
TCE	0.1 ppm	5 ppm	5 ppm	<500 ppm	<5 ppb	<5 ppb	<5ppb
Tc-99	NA	NA	NA	NA	<30 pCi/L	<30 pCi/L	<30pCi/L
Wastes Generated					•	•	
TCE (Carbon)	0	4 Drums	10 Drums	0	0	0	0
Tc-99 (Ion Exchange Resin)	NA	NA	NA	NA	4 ft ³ /year/well	4 ft ³ /year/well	4 ft ³ /year/well

MORRISON KNUDSEN CORPORATION MK-Ferguson Plaza 1500 West 3rd Street Cleveland, OR 44113-1406

FAX COVER SHEET

Date: October 19,1999

Number of pages transmitted: 26 +/-(including cover sheet)

To: Mike Hightower	From: Bruce Ehleringer
Company: Sandia National Laboratories	
Fax No.: 505-844-0968	Fax No.: 216-523-5201
Phone No.: 505-844-5499	Phone No.: 216-523-5286

Subject: Proposal for Ozone Sparging Demonstration Using the KVA C-Sparge Process at the PGDP, Paducah, Kentucky

Message

Mike-

Attached is a fax copy of the demonstration proposal that KVA and NM have jointly prepared. Section 6 presents the one page write-up pertaining to "budgetary unit costs" for ozone sparging that we discussed yesterday.

This proposal is <u>incomplete</u> in that it <u>does not include</u> costs for the demonstration (Section 6) or schedule (Section 7). I am still awaiting some cost information.

If you could review this document and provide comments (expansions and/or deletions) I would appreciate it. In the mean time, I will continue to work on the cost estimate.

Thank you,

Bruce

THE MK/KVA TEAM

million hours without a lost time accident. Two other MK projects surpassed 1,000,000 hours without a lost time accident during 1999: the Rocky Mountain Arsenal and the ALCOA Massena projects.

1.1 C-Sparge Process

The C-Sparge® process involves micro-sparging with an ozone/air mixture to remove dissolved VOCs in groundwater. The extracted VOCs then react with the encapsulated ozone in a gas/gas reaction described by the crigee mechanism (the "C" in C-Sparge). Halogenated VOCs decompose to a short-lived (milliseconds) intermediate (carboxyl oxide) which reacts with water (hydrolyzes) as it exits the bubble to yield reaction end products Cl, H_20 , and $C0_2$. With aromatic VOCs, the decomposition products are H_20 , and $C0_2$. This is a very clean reaction sequence since the VOC is concentrated in the fine bubbles and reacts with the ozone on a mole to mole basis. The concentration of ozone in the bubbles is matched to the expected VOC concentration and field checked by "bubble traps".

The reaction for decomposition of trichloroethylene (TCE) is presented as.

$$H_20 + HC_2CI_3 + 0_3 \sim 2CO_2 + 3HCI$$

Assuming an ozone injection rate of 200 grams per day (4.17 moles/day) yields the following:

 $4.17 \ mol/day \ H_20 + 4.17 \ mol/day \ HC_2CI_3 + 4.17 \ mol/day \ 0_3 = \\ 8.34 \ mo/lday \ CO_2 + 12.51 \ mol/day \ HCl$

and that:

12.51 mol/day HCl + 12.51 mol/day HCO₃, 12.51 mol/day H₂0 + 12.51 mol/day CO₂+ 12.51 mol/day Ct

To determine the amount of HCO₃, which may be consumed it is necessary to know the groundwater pH and the bicarbonate alkalinity.

The C-Sparge-Process® process focuses ozone reaction selectively to air strippable compounds which invade the bubbles. As a result, if the encapsulated ozone concentration is maintained at a low multiplier of the strippable VOCs, then no ozone is available for side reactions with other dissolved organic compounds which have low Henry's numbers. Primary reactions do not create toxic by-products because the reactions proceed so rapidly and bubble rise times are quite

1-2 October 19, 1999

long. As of yet, the only identified end products have been chloride and carbon dioxide. Dissolved oxygen concentrations can also be expected to increase.

One possible concern with ozone sparging is the incomplete oxidation of VOCS and transfer of the stripped VOCs to the unsaturated zone. This is not an issue if the ozone concentration is matched to the groundwater VOC concentration. Depending on regulatory requirements, a vapor control unit within the well may be required during pilot testing or during initial system startup to demonstrate that this situation is not occurring.

The C-Sparge system is designed to efficiently remove VOCs from groundwater and to maximize the radius of influence of the sparge wells. The sparge well design includes placement of a spargepoint® below the well casing and the construction of a 4- or 6-inch diameter well with two screened intervals. The purpose of the two screened intervals is to allow groundwater extraction and re-injection to occur in the same well, thus creating a recirculation flow cell that increases the well radius of influence. An in-well unit consisting of a spargepoint, packer, and groundwater pump is placed within each well. Groundwater is extracted from the upper screened interval, and re-injection and sparging from the two spargepoints® in each sparge well is cycled (pulsed) and each well is operated sequentially to allow greater ozone spreading outward from the well, mixing of the water column to reduce stratification, and increased ozone contact time, thus facilitating more complete VOC removal. Figure I is a drawing showing the C-Sparge® dual well screen design; placement of the spargepoints®, groundwater pump, and replaceable adsorbent (ion exchange resin); the movement of micro-fine bubbles; and groundwater flow in the vicinity of the C-Sparge® wells.

The spargepoints® have openings that vary in size from 20 to 40 microns (0.0008 to 0.002 inch) and generate microfine bubbles that move laterally outward from the sparge well into the aquifer. The bubbles generated are five to 12 times smaller that those generated through conventional sparging using a 0.010-inch slotted well screen and are small enough that they will move through the aquifer intergranular spaces. By combining groundwater re-injection and sparging, lateral movement of bubbles from the sparge well into the formation is substantially greater than with a conventional sparge well and short-circuiting near the well is not an issue.

Results with the C-Sparge® system show that 3-dimensional flow of microfine bubbles increases over time and results in a large effective treatment area. The recirculating bubble cloud treats both dissolved VOCs in groundwater and removes VOCs that may be adsorbed onto the soil matrix. Velocity changes created by the cycling of ozone sparging and

October 19, 1999

630474
96 ITRD Paducah Groundwater Technology Summary Report

THE MK /KVA TEAM

Innovative Treatment Remediation Demonstration Paducah Gaseous Diffusion Plant - Paducah, KY

groundwater extraction/injection within each sparge well and the sequencing of the individual sparge wells increases groundwater circulation. The re-circulation zone created for each sparge well allows multiple treatment passes through the sparge well and ozone bubble cloud before groundwater exits the area of sparge well influence.

C-Sparge® master control units are designed to control one to 10 sparge wells. Electrical power requirement are single-phase 110 volt. The master control units allow sparging with an ozone/air mixture; increased oxygen/air mixture; or air. Depending on the thickness of the saturated water interval or the remedial strategy, the C-Sparge® master control unit can be used for conventional sparging without groundwater extraction/injection and the creation of a groundwater recirculation cell. Ozone sparging using this mode of operation is effective for treatment of VOCs present in perched water, thin water-bearing intervals, and saturated soil in the capillary fringe.

Implementation of the C-Sparge® ozone injection requires performance of a pilot test to obtain optimal operational parameters and to determine the radius of influence of the sparge wells, Pilot testing generally involves the construction of one or two sparge wells and monitoring of three or more monitoring wells positioned at distances ranging from 20 to 80 feet from the sparge wells. Pilot testing is generally performed in areas where 1) existing monitoring wells are present to reduce monitoring well construction cost and to take advantage of historical water quality data, or 2) in the area where the planned sparge wells are to be located so diat the sparge wells can be used in the long-term remedial design.

Prior to pilot testing baseline groundwater samples are collected and analyzed from each well to be used in the pilot study and the depth to water measured. Groundwater flow direction is also determined in each sparge and monitoring well using a KVA groundwater flow meter. Groundwater flow direction determined by the flow meter may differ from that determined using groundwater elevation data and is useful for evaluating aquifer heterogeneity and preferred flow paths.

Pilot study testing involves the performance of a step pressure test and a steady pressure test of each sparge well. After completion of individual well testing and determination of optimal operation parameters, the sparge wells are continuously operated for a three to 14 day period. The testing duration is based on site specific issues: aquifer thickness, aquifer heterogeneity, groundwater velocity, VOC stratification within the aquifer, etc. This longer term test is to evaluate site specific conditions that may impact system performance and to obtain additional groundwater VOC field screening and analytical data. The VOC data provides a preliminary indication of the VOC oxidation rate and information on VOC stratification that may be present within the aquifer.

1-5

October 19, 1999

THE MK / KVA TEAM

Innovative Treatment Remediation Demonstration Paducah Gaseous Diffusion Plant - Paducah, KY

7.0 UNIT COST BUDGETARY ESTIMATE FOR IMPLEMENTATION OF OZONE SPARGING WITH THE C-SPARGEO SYSTEM

A unit cost on the order of \$16 per cubic yard is estimated if the C-Sparge® process is implemented for in-situ groundwater oxidation of VOCs and removal of Tc-99 using an in-well ion exchange resin cartridge. This unit cost estimate is based on a sparge well radius of influence of 50 feet and a saturated aquifer thickness of 30 feet, which equates to a treatment volume of roughly 8,700 cubic yards. The demonstration test is designed to evaluate a radius of influence of up to 80 feet and this unit cost estimate can be expected to decrease based on the actual radius of influence.

Our experience indicates that mobilization of a trailer system to treat only VOCs in groundwater would cost about \$75,000, or about \$ 8.60 per cubic yard of saturated aquifer material (cost includes equipment, installation, startup, and sparge well drilling cost). With Tc-99 removal and normal DOE decontamination procedures, disposal of spent ion exchange resin, the unit cost will increase but most-likely not above \$16 per cubic yard.

The above unit cost estimate does not include operation and maintenance (O&M), compliance monitoring, administrative support, or preparation of design documents and reports. These additional costs are scale dependent, and are higher if distributed over a small treatment volume site versus a large treatment volume site.

raducan II KD rroposal.wpu	Paducah	ITRD	Proposa	.wpd
----------------------------	---------	------	---------	------

7-1

October 19,1999

Table 1.1a

Preliminary Engineering Cost Estimate for C-400 Source(B400-200) Area Pneumatic Fracturing Enhanced Soil Vapor Extraction

Paducah ITRD Project

Paducah, Kentucky

			UNIT	TOTAL
ITEMS ANNUAL OPERATION AND MAINTENANCI (For Year I)	QUANTITY E	МТ (О & N	COST A COSTS)	COST
	Subtotal			\$45,000
Contingency (25%) TOTAL ANNUAL O&M COST				\$11,000 \$56,000
(For Year 2):	Subtotal			\$44,000
Contingency (25 %) TOTAL ANNUAL O&M COST				\$11,000 \$55,000
(For Year 3),	Subtotal			\$43.000
Contingency (25%)	Subiotal			\$11,000
TOTAL ANNUAL O&M COST				\$54,000

100 ITRD Paducah Groundwater Technology Summary Report

STEAMTECH STEAM ENHANCED EXTRACTION AND IN-SITU DESTRUCTION (SEED)

11

630480 102 ITRD Paducah Groundwater Technology Summary Report

By Fax: 5 pages November 5, 1999

Mr. Kenneth Kuzio Sandia National Laboratories P.0, Box 5800, MS 0926 Phone; (505) 284-3145 Fax: (505) W-8237

Dear Mr. Kuzio

I have spent some time going over the documents that you provided to Deldra- I've tried to give an overall assessment of the sites based on the information available to me at this time. Attached is a brief report giving my analysis of these sites. At each of the sites, I tried to outline some of the concerns with applying these technologies. While all of the sites are potential candidates for steam enhanced remediation, it is not possible to make a definite decision without more detailed information- For example, one of the sites contains power and telephone cables. If the cables are buried directly in the ground within the remediation. area, they are likely to be damaged during thermal remediation. However, if the cables are in metal or concrete vaults or nms, they can be adequately protected.

I have also tried to provide reasonably accurate cost estimates of remediating these sites. Note that the pilot say we conducted at the Portsmouth Site was comparable in size to many of the sites in the document discussed here. These estimates reflect the cost of deployment with today's technology improvements in technology over the next few years may reduce these costs significantly. Unfortunately, we have found that a nuclear fuel plant is a difficult and thus expensive environment to work in. I have seen some rather questionable estimates on what it might cost for full scale implementations of other technologies that obviously do not take into account the additional overhead associated with working on a secure DOE facility.

I hope the information provided will be useful to you. If you have any questions you can reach me at: (775) 351-2442 (direct line); (775) 351-2443 (main office line) or (775) (843-0696) cell or by e-mail at <u>labrwaueAstewntecb-cam</u>. Please not that I will be travelling much of the week of November 8, but can generally be reached via my cell phone,

Sincerely,

Douglas I La Brecque, Ph.D Principal Scientist SteamTech Environmental Services Inc. Cost Estimates for the Paducah ITRD Project Contaminant Information

Overview

We believe that Steam Enhanced Extraction and in-situ Destruction (SEED) is potentially applicable to a number of sites at Paducah. In Table 1, we have tried to make our best estimates of cost based on the information available. However, these estimates are for information purposes only; they are not bids and are not legally or contractually binding. More accurate estimates will require additional site characterization data and the completion of an engineering design and are therefore outside the scope of the present effort.

These cost estimates in part are based on SteamTech Environmental Services' experience in working at the Portsmouth Gaseous Diffusion Plant and reflect the unfortunate fad that operating on a secure DOE facility increases costs substantially over those of civilian sites. Some examples of issues that increase costs (that are included in these estimates) are:

- 1) On site construction and operation will fall under Davis-Bacon wage rules or sitespecific wage rules which are generally higher than common labor rates.
- 2) DOE sites require rigorous documentation of health and safety, QA, QC, Waste Management and project progress. Creating and maintaining these documents requires additional personnel and thus cost. Generally, one or more personnel are required simply to handle and maintain this documentation.
- 3) The sites will be secure and require a significant number of personnel with security clearances. In this era of downsizing and cost savings, it is becoming difficult to find personnel with clearances and to obtain clearances for our existing personnel. Also, a significant amount of time is spent simply moving people and materials in and out of a secure site.
- 4) All of the sites are mixed waste containing measurable amounts of Technetium. All workers on the site will need specialized training and monitoring. Workers in contact with subsurface materials or effluent will need rad-worker training.

These cost estimates do not reflect the cost of ultimate disposal of cuttings generated during well drilling & filter cake accrued during operations, and other waste such as personal protective equipment- The amounts of these will depend heavily an the number of wells, size of the site and drilling contractor and technique used.

The cost estimates also do not reflect the cost of equipment that becomes radiologically contaminated and must remain on site. However, every attempt will be made to <u>minimize</u> the amount and likelihood of contamination. For example, designs will minimize or eliminated water treatment components with exposed iron or steel surfaces on which Technetium tends to accumulate.

Goals of SEED

Steam enhanced remedition would address areas of relatively high contamination- For this document, we chose areas with contamination levels greater than 5,000 micrograms per kilogram. The approach would be to remove the bulk of the contaminants (about 99%) by direct removal using steam enhanced extraction during operations of 6 months to 8 months. The remaining contaminants would be reduced by in-situ Hydrous Pyrolysis and Oxidation and enhanced bi-o-remediation. Overall goals would be for a 99% reduction of TCE within the DNAPL bearing zones and reduction to less than 100 micrograms per kilogram within lower concentration zones within the cleanup area within two years of completing steam injection.

Overview of Geology

The geology at Paducah is divided into three major units. From the surface to about 60 feet in depth is the Upper Continental Recharge System (UCRS). The information package provides shows the UCRS to be dominantly clay but has a complex structure with <u>numerous</u> interbedded layers of gravel, sand, and silt that are poorly correlated from borehole to borehole. Most wells have a static water level that is near the base of the UCRS indicating that it is largely unsaturated.

Below the MRS is the Regional Gravel Aquifer (RGA). The RGA is about 40 feet thick, In most of the sections, the boundary between the UCRS and the RGA is a sand layer about 10 ft thick. Below this layer the RGA is mainly gravel with some interbedded sands.

Below the RGA is the McNairy Flow System. The boundary between the McNairy and the RGA is generally a clay layer. The McNairy mountains interbedded sands. The data provided generally show low levels of contaminants in the McNairy and we do not address remediation within this zone.

C400 Building

Steam Enhanced Extraction and in-situ Destruction of TCE (SEED) appears applicable to the source areas around building C400- The major concern at building C400 is the presence of buried utilities within the contaminated zone. As these utilities appear to serve as sources or conduits of contaminant movement, remediation will have to address cleaning the utility corridors. The existing water and sewer lines are probably not a concern as long as they are good repair. However, the electrical and phone conduits and the propane pipe are major concerns. It is not possible with the information provided to determine if these can be adequately protected during the remediation.

The Phase I Independent Investigation Report indicates that storm sewers received TCE from building 400 from 1950s to 1986, Substantial contamination exists on this site exceeding 11,000,000 micrograms per kilogram in soil near the southeast comer of the building. Data provided in this package shows three distinct areas of contamination.

2

SteamTech EnvironmentalServices 11/5/1999. Paducah cost estimate

Area 1) Area I is considered the spill site and is a rectangular area about 100 feet wide and 300 ft long elongated in the north-south direction along the south and east of building 400. The maximum Toe level is 11,000,000 micrograms per Oograrn in the UCRS, 2,8000,000 micrograms per liter in the RGA and 86,000 micrograms per kilogram in the top of the McNairy (note that concentrations are less than 60 micrograms per liter for depths greater than 10 ft into the McNairy).

Area 2) Area 2 is south and west of the building, 100 ft wide and 200 ft long elongated in the east-west direction. Maximum WE levels in the UCRS is 170,000 micrograms per kilogram at a depth of 24 feet. No data was provided for the RGA or McNairy but the values are deamed to be low.

Area 3) Area 3 is north and west of the 400 building. The extent of this contamination is not fully defined by the data provided. A rough guestimate of the extent is 100 by 200 feet elongated in the north-south direction. No data was provided for the UCRS. The maximum value in the RGA is 92,000 micrograms per liter.

Cost estimates for all three areas are given in Table 1.

C-720 Building

The best application of SEED would be the removal of the TCE source area within the UCRS near the southeast comer of the building. The source area appears to be fairly small, of the order of 90 by 80 feet and is adjacent to or below the southeast corner of the building. The major concern is gaining access to all sides of the source area so that it could be surrounded by steam injection wells an all four sides. It appears that some wells have been drilled within C-720 in the past indicating access is possible. Alternatively, horizontal wells could be used. In general, it should not be a problem to steam below a building unless there are plastic cased utiMes, such as PVC or ABS sewage lines below the building. Foundation problems should not occur if the material below the building was properly compacted during construction of the building.

Table I gives cost estimates for the UCRS. No infbn-nation was provided on the presence of contamination within the RGA. The SEED technique -is applicable both above and below the water table and could be applied to contamination in the RGA. These costs could not be estimated here without additional information.

C-745 Building

The information provided shows an area of substantial TCE contamination at in the UCRS south of building C-745A below the former oil land farm. TCE levels as high as 439,000 micrograms per kilogram are shown in the cross-sections. TCE levels tend to decrease with depth but are still quite high 25,000 micrograms per kilogram, at the base of the UCRS. No specific data was provided for the RGA although the conceptual diagram shows the possible presence of DNAPL

SteamTech Environmental Sciences 11/5/1999 Paducah cost estimate

in the RGA. Again, SEED could be applied for the DNAPL within the RGA but was not addressed here due to lack of sufficient information.

An additional consideration not addressed within the documentation is the presence of other organic contaminants. It is our understanding that Phase H site investigations at Paducah indicated the

presence of substantial amounts of PCB *and* other semi-volatile organic compounds at this site near the C-745 Building, and that PCB concentrations are often in excess of the TCE concentrations. Cleanup of PCBs using SEED is not a proven the PCBs have

much higher boiling points and lower vapor pressures than TCE and are much more difficult to remediate with this technology. Despite these problems, we believe significant amounts of PCB can be removed but the operational times would be longer and it is difficult to establish reduction goals and operational times.

The suggested clean-up area is approximately 100 feet -in the north-south direction and 150 feet in the east-west direction *and* extends from the surface to a depth of 60 fed. Ignoring the presence of other contaminants, the estimated cleanup time for the TCE plume is 6 months. Additional characterization work is needed but the existing cross-sections show the presence of a number of sand layers within the UCRS that would serve as conduits for steam The cost estimate is given below in Table 1. Again, a cost estimate could not be generated for the RGA without additional information.

Area/ Geology	Delta X	Delta Y	Delta Z	Volume	Cost Estimate
	Ft	Ft	Ft	yd ³	
C400 Area I UCRS	100	300	80	68,557	\$6,700,000
C400 Area 2 UCRS	200	100	60	44,444	\$5,600,000
C400 Area 3 UCRS	no data				
C400 UCRS Total	100	200	40	29,630	\$12,300.000
C400 Area I RGA	100	300	40	44,444	\$4,400,000
C400 Area 2 RGA	no data				
C400 Area 3 RGA	100	200	40	29,630	\$3,700,000
C400 RGA Total	100	200	40	29,630	\$2,100,000
C-720 Building	50	80	60	14,222	\$2,100,000
UCRS					
C-720 Building	no data				
RGA					
C-745A Building	100	150	60	33,333	\$4,200,000
UCRS					
C-745A Building	no data				

Table I Cost Estimates for Paducah Areas

APPENDIX C3

Fig. C3.1. Predicted Tc-99 Activity Concentrations at the PGDP Receptor Locations due to loading from WAG 22, PGDP

Figure C3.2. Predicted Tc-99 Activity Concentrations at the PGDP Receptor Locations due to loading from WAG 6

Figure C3.3. Predicted TCE Concentrations at the PGDP Receptor Locations due to loading from WAG 6

CBO4BS

Fig. C3.4. Predicted Vinyl Chloride Concentrations at the PGDP Receptor Locations due to loading from WAG 6

esovar

0.007 0.006 0.005 Concentration (mg/L) ---- Fenceline ---Prop. Boundary -- Bayou Creek 0.004 ---- Ohio River 0.003 0.002 0.001 0.000 1000 1500 2000 500 0 Time (year)

Figure C3.5. Predicted Antimony Concentrations in the RGA Groundwater at the PGDP Receptor Locations due to loading from WAG 6

Figure C3.6. Predicted U-238 Activity Concentrations at the PGDP Receptor Locations

Figure C3.7. Predicted U-235 Activity Concentrations at the PGDP Receptor Locations due to loading from WAG 6

Figure C3.8. Predicted U-234 Activity Concentrations at the PGDP Receptor Locations due to loading from WAG 6

Fig. C3.9. Predicted Antimony Concentrations in the RGA Groundwater at the PGDP Receptor Locations due to loading from WAG 27

630498

Figure C3.10. Predicted TCE Concentrations at the PGDP Receptor Locations due to loading from WAG 27

Fig. C3.11. Predicted Vinyl Chloride Concentrations at the PGDP Receptor Locations due to loading from WAG 27

Fig. C3.13. Predicted TCE Concentrations at the PGDP Receptor Locations due to loading from WAG 28 (AOC204)

Fig. C3.14. Predicted Manganese Concentrations in the RGA Groundwater at the PGDP Receptor Locations due to loading from WAG 28

Fig. C3.15. Predicted Lithium Concentrations in the RGA Groundwater at the PGDP Receptor Locations due to loading from WAG 28

POGOGO

Fig. C3.16. Predicted Strontium Concentrations in the RGA Groundwater at the PGDP Receptor Locations due to loading from WAG 28

80.0 70.0 60.0 Concentration (mg/L) -+- Fenceline 50.0 -+- Ohio River 40.0 30.0 20.0 10.0 0.0 *** 0 2000 4000 6000 8000 10000 Time (year)

Figure C3.17. Predicted Chromium Concentrations in the RGA Groundwater at the PGDP Receptor Locations due to loading from WAG 28

Receptor Locations due to loading from WAG 28 0.040 0.035 0.030 Concentration (mg/L) 0.025 Prop. Boundary 0.020 0.015 0.010 0.005 0.000 1000 2000 3000 4000 0 Time (year)

Figure C3.18. Predicted Cobalt Concentrations in the RGA Groundwater at the PGDP

Fig. C3.19. Predicted Tc-99 Activity Concentrations at the DOE Fenceline due to Loading from PGDP Source Areas

Fig. C3.20. Predicted Tc-99 Activity Concentrations at the DOE Property Boundary due to loading from PGDP Source Areas

Fig. C3.21. Predicted Tc-99 Activity Concentrations at the Bayou Creek due to loading from PGDP Source Areas

Concentration (pCi/L) —•— WAG-28 -*-WAG 6 -Total Conc. Time (year)

Fig. C3.22. Predicted Tc-99 Activity Concentrations at the Ohio River due to Loading from PGDP Source Areas

Fig. C3.23. Predicted TCE Concentrations at the Fenceline due to loading from PGDP Source Areas

Fig. C3.25. Predicted TCE Concentrations at the Bayou Creek due to loading from PGDP Source Areas

Fig. C3.26. Predicted TCE Concentrations at the Ohio River due to loading from PGDP Source Areas

Fig. C3.27. Predicted Vinyl Chloride Concentrations at the PGDP Fenceline due to loading from PGDP Source Areas

Fig. C3.28. Predicted Vinyl Chloride Concentrations at the DOE Property Boundary due to loading from PGDP Source Areas

Fig. C3.29. Predicted Vinyl Chloride Concentrations at the Bayou Creek due to loading from PGDP Source Areas

e30218

Fig. C3.30. Predicted Vinyl Chloride Concentrations at the Ohio River due to loading from PGDP Source Areas

Fig. C3.31. Predicted Antimony Concentrations in the RGA Groundwater at the PGDP Fenceline due to loading from PGDP Source Areas

Fig. C3.32. Predicted Antimony Concentrations in the RGA Groundwater at the DOE Property Boundary due to Loading from PGDP Source Areas

Fig. C3.33. Predicted Antimony Concentrations in the RGA Groundwater at the Bayou Creek due to Loading from PGDP Source Areas

Fig. C3.34. Predicted Antimony Concentrations in the RGA Groundwater at the Ohio River due to Loading from PGDP Source Areas

Fig. C3.35. Predicted Chromium Concentrations at the PGDP Fenceline due to loading

Fig. C3.36. Predicted Chromium Concentrations at the DOE Property Boundary due to loading from PGDP Source Areas

E30233

Fig. C3.37. Predicted Chromium Concentrations at the Ohio River due to loading from PGDP Source Areas

Fig. C3.38. Predicted Lithium Concentrations at the PGDP Fenceline due to loading from PGDP Source Areas

loading from PGDP Source Areas Concentration (mg/L) -WAG 28 Time (year)

Fig. C3.39. Predicted Lithium Concentrations at the DOE Property Boundary due to

Fig. C3.40. Predicted Lithium Concentrations at the Ohio River due to loading from PGDP Source Areas

Fig. C3.41. Predicted Manganese Concentrations at the PGDP Fenceline due to loading from PGDP Source Areas

e30233

from PGDP Source Areas 2.5 -2.0 Concentration (mg/L) 0.1 •WAG 28 0.5 0 2000 4000 6000 0 8000 10000 Time (year)

Fig. C3.43. Predicted Manganese Concentrations at the Ohio River due to loading

H

e30231

Fig. C3.45. Predicted Strontium Concentrations at the DOE Property Boundary due to loading from PGDP Source Areas

Fig. C3.47. Predicted Uranium-234 Activity Concentrations at the DOE Property Boundary due to loading from PGDP Source Areas

Time (year)

Fig. C3.48. Predicted Uranium-234 Activity Concentrations at the Bayou Creek due to loading from PGDP Source Areas

Fig. C3.50. Predicted Uranium-235 Activity Concentrations at the PGDP Fenceline due

3.0 2.5 Concentration (pCi/L) 2.0 1.5 -1.0 0.5 -0.0 4000 6000 2000 8000 10000 0 Time (year)

Fig. C3.52. Predicted Uranium-235 Activity Concentrations at the Bayou Creek due to loading from PGDP Source Areas

Fig. C3.53. Predicted Uranium-235 Activity Concentrations at the Ohio River due to loading from PGDP Source Areas

Fig. C3.54. Predicted Uranium-238 Activity Concentrations at the PGDP Fenceline due to loading from PGDP Source Areas

EBOENI

Fig. C3.55. Predicted Uranium-238 Activity Concentrations at the DOE Property Boundary due to loading from PGDP Source Areas

-*- WAG 6 Concentration (pCi/L) 15 -0 >**** Time (year)

Fig. C3.57. Predicted Uranium-238 Activity Concentrations at the Ohio River due to loading from PGDP Sources

Fig. C3.58. Predicted TCE Concentrations in the Surface Air due to Contaminated Soil

Fig. C3.59. Predicted Vinyl Chloride Concentrations in the Atmosphere due to

LPSOE3

· ___

Fig. C3.61. Predicted Copper concentrations at the PGDP fenceline due to loading from WAG 3.

Fig. C3.62. Predicted U-234 activity concentrations at the PGDP fenceline due to loading from WAG 3.

Fig. C3.63. Predicted U-238 activity concentrations at the PGDP fenceline due to loading from WAG 3.

APPENDIX C4

General Response Actions	Remediał Technology Types	Process Ontions	Descriptions	Screening Comments
No Action	None	Not Applicable	No further action to address contaminated media.	Required for consideration by the NCP and NEPA.
Institutional Actions	Access Restrictions	Deed Restrictions	Restrictions on property in the deed and title.	Could be implemented as a component of the ROD or on a site-wide basis.
		Site Protection/Security	Guards to restrict and monitor plant access.	Currently conducted for the PGDP as an operating facility.
		Physical Barriers/ Restrictions	Fencing, warning signs, permits, etc.	Potentially applicable; the PGDP currently is fenced, and "no trespassing" signs are posted. Additional barriers could be located at isolated areas within the PGDP security fence to protect workers, and PGDP permitting could be required before working at the SWMU.
	Monitoring	Surface Soil and Water Monitoring	Periodic monitoring of site conditions through environmental sampling.	Surface-soil monitoring could be enacted as a component of the ROD. Groundwater and surface water monitoring already is conducted routinely at the PGDP on a site-wide basis.
Containment Actions	Capping	Clay/Soil or Asphalt/Concrete	Single or multi-layered soil, clay, and/or pavement (concrete, asphalt) cap designed to minimize dermal contact, exposure, or re-entrainment and/or to provide some reduction of infiltration/vertical movement of precipitation or contaminants into the subsurface.	Potentially applicable as a barrier to mitigate direct contact to COCs. Potentially applicable for reducing infiltration of precipitation since surface water could be directed to storm sewers.
		Multimedia	Multi-layered cap with low permeability, designed for highest degree of reduction of infiltration/ vertical movement of precipitation into contaminated soil.	Potentially applicable as a barrier to mitigate direct contact to COCs. Potentially applicable for reducing infiltration of precipitation, since surface water could be directed to storm sewers.
		Lead Shield	Cap containing lead to reduce exposure to radioactive contamination (gamma-emitting particles).	Potentially applicable to protect workers by reducing radioactivity from surface soils.
	Surface Controls	Grading	Reshaping the topography to manage surface water runoff, control erosion, and reduce infiltration.	Potentially applicable, especially in combination with other technologies.
		Revegetation	Re-vegetating soil can assist with reducing infiltration and erosion control.	Potentially applicable to manage surface water runoff, control erosion, and reduce infiltration.
		Flow Diversion	Collection and diversion systems can divert storm water and runoff to prevent erosion and reduce contaminant migration (infiltration).	Potentially applicable as compatible with other medium technologies to reduce infiltration of precipitation to lower media.
	Bottom Barriers	Jet grouting; Slanted Grout columns; cryogenics	An impermeable layer is placed below the contaminated area to prevent vertical migration/ leaching of contaminants.	Potentially applicable for containment of wastes or in conjunction with process options that could mobilize vapors.

Table C4-1. Identification of Remedial Technologies and Process Options For Upper Continental Recharge System Vadose Zone Soils (0 to 15 ft deep)

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
Containment Actions (Continued)	Vertical Barriers	Slurry Walls	Slurry walls are constructed around the contaminated area to prevent horizontal migration of contaminants.	Potentially applicable for containment of wastes or in conjunction with process options that could mobilize vapors.
		Grout Curtains	Grout curtains are constructed around the contaminated area to prevent horizontal migration of contaminants.	Potentially applicable for containment of wastes or in conjunction with process options that could mobilize vapors.
		Sheet Piles/Vibrating Beam	Pilings or beams are driven around the contaminated area to prevent horizontal migration of contaminants.	Potentially applicable for containment of wastes or in conjunction with process options that could mobilize vapors.
		Cryogenic Walls	Liquid nitrogen or other cryogenic fluids are used to construct a frozen barrier around the contaminated area to prevent horizontal migration of contaminants.	Potentially applicable for containment of wastes or in conjunction with process options that could mobilize vapors.
Removal	Water Collection	Wells and Subsurface Drains	Wells and/or subsurface drains can be installed to collect perched water or water leaking from utilities.	Potentially applicable depending upon each SWMU's specific conditions.
	Excavation	Solids and Semisolids Excavation	Contaminated solids and semisolids can be excavated by ordinary construction equipment (backhoes, trackhoes, bulldozers).	Potentially applicable to the surface soils, especially those contaminated with radiological contamination. Various <i>ex situ</i> treatment technologies are available, depending on the contaminants present. (See <i>Ex Situ</i> Treatment).
		Solidify and Mine (Freeze and Mine)	Cryogenic fluids are used to freeze or immobilize contaminants within the contaminated area to allow excavation.	Potentially applicable to soils containing a number of contaminants, including DNAPLs or radioactive liquids.
	Site Equipment/ Debris Removal	Equipment/Debris Removal and Decontamination	Equipment and/or structures along with debris may require removal and decontamination before surface soils can be removed.	Potentially applicable depending upon each particular SWMU's rate and extent of contamination and the type of contamination.
	Bulk Liquid Removal	Drain or Pump Tanks/Pits and Lines Containing Liquids	Liquids would be drained or pumped from tanks/pits and lines that require removal and treatment/disposal prior to surface soil remediation.	Potentially applicable if liquids are located within tanks/pits and lines prior to remediation of surface soils and other media.
	Bulk Solid/ Liquid Removal	Vacuum Loader	Vacuum system used to pneumatically collect and load solid, semi-solid, sludge, and/or liquid wastes.	Potentially applicable to remove contaminated surface soil and sludge.
<i>In Situ</i> Treatment	Physical/ Chemical Treatment	Solidification/ Stabilization	Contaminants are physically bound or enclosed within a stabilized mass (solidification), or chemical reactions are induced between the stabilizing agent and contaminants to reduce their mobility (stabilization).	Potentially applicable to inorganically contaminated soils.

Table C4-1. (continued)

General Response Actions	Remedial Technology Types	Process Ontions	Descriptions	Screening Comments
In Situ Treatment (Continued)	Physical/ Chemical Treatment (Continued)	Chemical Mixing (Deep Soil Mixing)	Remediation agents are added to contaminated soil and physically mixed into soil at varying depths. A wide range of treatment agents may be used, including solvents, precipitating and neutralizing chemicals, hot air, steam, and stabilizing agents.	Potentially applicable to physical mix surface soil contamination. Use of solvents or surfactants preferred.
		Soil Vapor Extraction/Soil Venting	Vacuum is applied through piping to create a pressure gradient that induces gas-phase volatiles to diffuse through soil to extraction wells. This technology also is known as in situ soil venting, in situ volatilization, enhanced volatilization, or soil vacuum extraction.	Potentially applicable to soils contaminated with VOCs. Not effective for PCBs, dioxins/furans, inorganics, or radionuclides.
	Thermal Treatment	Vitrification	Contaminated soils and wastes are melted at a high temperature using electrodes to form a large glass monolith with very low leaching characteristics.	Potentially applicable to inorganic-contaminated soil.
	Biological Treatment	Bioventing/ Barometric Venting	Oxygen is delivered to contaminated unsaturated soils by forces air movement (either extraction or injection of air) to increase oxygen concentrations and stimulate biodegradation. The system also may include the injection of contaminated gases, using the soil system for remediation.	Potentially applicable to soils contaminated by VOCs, SVOCs, and PCBs.
		Enhanced Bioremediation	Naturally occurring microbes are stimulated by circulating water-based solutions through contaminated soils to enhance <i>in situ</i> biological degradation of organic contaminants. Nutrients, oxygen, or other amendments may be used to enhance biodegradation and contaminant desorption from subsurface materials.	Potentially applicable to soils contaminated by VOCs, SVOCs, and PCBs.
		Phytoremediation	Plants are selected, planted, and managed to uptake contaminants for digestion or degradation.	Potentially applicable to shallow soils contaminated by VOCs, SVOCs, PCBs, and radionuclides.
<i>Ex Situ</i> Treatment	Refer to Table (C-4 for identification of ex s	itu treatment technologies.	

Table C4-1. (continued)

Disposal Actions Refer to Table C-6 for identification of disposal actions.

Notes:

Shaded process options have been screened out.

Identification of copyrighted, patented, or trademarked names does not signify endorsement.

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
No Action	None	Not Applicable	No further action to address contaminated media.	Required for consideration by the NCP and NEPA.
Institutional Actions	Access Restrictions	Deed Restrictions	Restriction on property in the deed and title.	Could be implemented as a component of the ROD or on a site-wide basis.
		Site Protection/Security	Guards to restrict and monitor plant access.	Currently conducted for the PGDP as an operating facility.
		Physical Barriers/Restrictions	Fencing, warning signs, permits, etc.	Potentially applicable; the PGDP currently is fenced and "no trespassing" signs are posted. Additional barriers could be located at isolated areas within the PGDP security fence to protect workers and PGDP permitting could be required before working at the SWMU.
	Monitoring	Groundwater Monitoring	Periodic monitoring of site conditions through environmental sampling.	Soil monitoring could be enacted as a component of the ROD. Groundwater and surface water monitoring already is conducted routinely at PGDP on a site-wide basis.
Containment Actions	Bottom Barriers	Jet Grouting; Slanted Grout Columns; Cryogenics	An impermeable layer is placed below the contaminated area to prevent vertical migration/ leaching of contaminants.	Potentially applicable for containment of wastes or in conjunction with process options that could mobilize vapors.
	Vertical Barriers	Slurry Walls	Slurry walls are constructed around the contaminated area to prevent horizontal migration of contaminants.	Potentially applicable for containment of wastes or in conjunction with process options that could mobilize vapors.
		Grout Curtains	Grout curtains are constructed around the contaminated area to prevent horizontal migration of contaminants.	Potentially applicable for containment of wastes or in conjunction with process options that could mobilize vapors.
		Sheet Piles/Vibrating Beam	Pilings or beams are driven around the contaminated area to prevent horizontal migration of contaminants.	Potentially applicable for containment of wastes or in conjunction with process options that could mobilize vapors.
		Cryogenic Walls	Liquid nitrogen or other cryogenic fluids are used to construct a frozen barrier around the contaminated area to prevent horizontal migration of contaminants.	Potentially applicable for containment of wastes or in conjunction with process options that could mobilize vapors.
Removal	Groundwater Collection	Wells and Subsurface Drains	Wells and/or subsurface drains can be installed to collect perched water or water leaking from utilities.	Potentially applicable depending upon the saturated zone of concern.

Table C4-2. Identification of Remedial Technologies and Process Options For Upper Continental Recharge System Subsurface Saturated Soils

Table C	4-2. (co	ntinued)
---------	----------	----------

	General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
	Removal (Continued)	Groundwater Collection (continued)	Vacuum Enhanced Recovery (2 Phase or Dual Phase)	Vacuum enhanced recover is an enhancement of soil vapor extraction, although groundwater and soil vapor are both extracted. The 2-Phase system uses a high-vacuum pump to extract both groundwater and vapor. The Dual Phase system uses a vacuum pump for vapors and a submersible or pneumatic pump for groundwater.	Potentially applicable.
		Excavation	Solids and Semisolids Excavation	Contaminated solids and semi-solids can be excavated by ordinary construction equipment (backhoes, trackhoes, bulldozers).	Potentially applicable to some of the saturated soils. The depth capacity of conventional excavation equipment [~9 meters (30 feet)] is limited.
			Solidify and Mine (Freeze and Mine)	Patented process in which waste is immobilized for excavation by cryogenic freezing methods.	Potentially applicable to excavate contaminated soil.
	In Situ Treatment	Physical/ Chemical Treatment	Solidification/ Stabilization	Contaminants are physically bound or enclosed within a stabilized mass (solidification), or chemical reactions are induced between the stabilizing agent and contaminants to reduce their mobility (stabilization).	Potentially applicable to inorganically-contaminated soils.
1			Hydrous Pyrolysis Oxidation (used in conjunction with <i>in situ</i> steam stripping)	Steam and possible oxygen are injected together, building a heated oxygenated zone in the subsurface. When the injection is stopped, the steam condenses and contaminated groundwater returns to the heated zone and mixes with the condensate and oxygen, destroying any dissolves contaminants.	Unable to treat the full UCRS. Limited to 30 feet technically unfeasible.
			Oxidation	Oxidants are injected to treat/destroy organic contaminants.	Cannot inject oxidant due to low permeability.
			Electroosmosis (Lasagna TM)	The Lasagna TM technology was developed to remediate soils and groundwater contaminated with TCE and is especially suited to sites with low- permeability soils. The process uses electro-osmosis to move soil contaminants by flushing multiple pore volumes of water through treatment zones where the TCE can be captured or chemically altered to nontoxic products.	Potentially applicable.

General Response	Remedial Technology			
Actions	Types	Process Options	Descriptions	Screening Comments
In Situ <i>Treatment</i> (continued)	Physical/ Chemical Treatment (continued)	Air Sparging and Vacuum Extraction	Air sparging and vacuum extraction rely on the air- stripping mechanism to remove volatile contaminants from the saturated zone. The injection of air into the saturated zone is coupled with vacuum extraction to recover volatile contaminants within the vadose zone.	Potentially applicable.
		<i>In Situ</i> Aeration in the Saturated Zone (Air Sparging and UVB Wells)	Volatile contaminants below the water table can be stripped by injecting air through wells (Air Sparging). Vaporized volatiles move with the air to the unsaturated zone and are recovered using a vacuum extraction system. Another <i>in situ</i> groundwater stripping process is known as the Underpressure- Vaporizer-Well (UVB) method in which contaminated groundwater is stripped by air at negative pressures in a special filtered well. The contaminated gas is collected and treated at the well head.	Potentially applicable.
		Permeable Treatment Zones (Horizontal or Vertical)	In situ treatment zones are permeable and reactive structures using conventional installation technologies. The walls are constructed of granular material or a slurry that permits groundwater flow through the structure under ambient gradients. Treatment is achieved by the contaminant coming in contact with the reactive media (i.e., iron nutrients, bacteria, redox controls carbon) as it passes through wall.	Potentially applicable for sand lenses; however, an induced gradient likely would be required.
		Chemical Mixing (Deep Soil Mixing)	Remediation agents are added to contaminated soil and physically mixed into soil at varying depths using augers. A wide range of treatment agents my be used, including solvents, precipitating chemicals, neutralizing chemicals, hot air, steam, oxidizing agents, and stabilizing agents, depending upon the contaminants of concern.	Potentially applicable to physical mix soil, providing surface and subsurface locations/conditions do not obstruct operation.
	Thermal Treatment	Vacuum/Steam Extraction	Similar to vapor extraction with steam injected for heating the formation. Steam drives the soil, (clay) which increases the permeability of the formation and volatilizes organic contaminants. Vapors re extracted for treatment/storage. The process includes systems for handling offgases.	Potentially applicable to soils contaminated with VOCs. Not effective for PCBs, dioxins/ furans, inorganics, or radionuclides.

Table C4-2. (continued)

General	Remedial			
Response	Technology	Drawn Ontions	Descriptions	Several a Community
In Situ Treatment (Continued)	Thermal Treatment (Continued)	Vitrification	Contaminated soils and wastes are melted at a high temperature using electrodes to form a large glass monolith with very low leaching characteristics.	Potentially applicable to inorganically contaminated soil.
		EM/RF or Six-Phase Soil Heating	Heats the soil by splitting conventional three-phase electricity into six separate phases, producing a heated environment. Each phase is delivered to a single electrode place din a hexagonal pattern. Heat dries the soil, (clay) which increases the permeability of the formation and volitalizes organic contaminants. Vapors are extracted for treatment, storage, or disposal. The process includes systems for handling offgases.	Potentially applicable to soils contaminated with VOCs. Not effective for PCBs, dioxins/furans, inorganics, or radionuclides.
	Biological Treatment	Monitored Natural Attenuation	Naturally-occurring process in soil and groundwater environments that act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in those media. These <i>in situ</i> processes include biodegradation, dispersion, dilution, adsorption, volatilization, and chemical or biological stabilization or destruction of contaminants. Sampling and analysis are required throughout the process.	Potentially applicable to soils contaminated by VOCs, some SVOCs, and PCBs.
		Bioventing/ Barometric Venting	Oxygen is delivered to contaminated saturated soils by forced air movement (either extraction or injection of air) to increase oxygen concentrations and stimulate biodegradation. The system also may include the injection of contaminated gases, using the soil system for remediation.	Potentially applicable to soils contaminated by VOCs, SVOCs, and PCBs.
		Enhanced Bioremediation	Naturally occurring microbes are stimulated by circulating water-based solution through contaminated soils to enhance <i>in situ</i> biological degradation of organic contaminants. Nutrients, oxygen, or other amendments may be used to enhance biodegradation and contaminant desorption from subsurface materials.	Potentially applicable to soils contaminated by VOCs, some SVOCs, and PCBs.
		Phytoremediation	Plants are selected, planted, and managed to uptake contaminants for digestion or degradation.	Potentially applicable to shallow groundwater contaminated by VOCs, SVOCs, PCBs, and radionuclides.

Table C4-2. (continued)

Table C4-2. (continued)

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
<i>Ex Situ</i> Treatment	Refer to Table C-	4 for identification of <i>ex situ</i> treatr	nent technologies.	
Disposal Actions Notes:	Refer to Table <u>C</u> -	6 for identification of disposal act	ons.	

Shaded process options have been screened out. Identification of copyrighted, patented, or trademarked names does not signify endorsement.
General Response	Remedial Technology			
Actions	Types	Process Options	Descriptions	Screening Comments
No Action	None	Not Applicable	No further action to address contaminated media.	Required for consideration by the NCP and NEPA.
Institutional Actions	Access Restrictions	Deed Restrictions	Restrictions on property in the deed and title.	Potentially applicable as one component of a remedial alternative.
		Site Protection/Security	Guards to restrict and monitor plant access.	Potentially applicable as one component of a remedial alternative. As an operating facility, full-time security measures are conducted at the PGDP.
		Physical Barriers/ Restrictions	Fencing, warning signs, permits, etc.	Potentially applicable as one component of a remedial alternative. The PGDP currently is fenced and "no trespassing" signs are posted.
	Administrative Options	Alternate Concentration Limits (ACLs)	Involves establishing ACLs for groundwater under CERCLA or RCRA in lieu of existing groundwater standards (e.g., MCLs).	Potentially applicable as one component of a remedial alternative.
		Technical Impracticability (TI) Waivers	A waiver under CERCLA or RCRA that may be imposed when remediation of contaminants is agreed to be technically impracticable.	Potentially applicable as one component of a remedial alternative. Presence of NDAPL may increase justification for A TI waiver.
	Monitoring	Water Monitoring	Periodic monitoring of site condition through environmental sampling of surface water and/or groundwater.	Potentially applicable as one component of a remedial alternative. Periodic groundwater and surface water monitoring is conducted at PGDP on a site-wide basis.
Groundwater Containment Actions	Subsurface Vertical Barriers	Slurry/Grout Walls	Low permeability, underground barriers constructed to contain or divert groundwater flow. Slurry/grout material is pumped into a trench or injected into soil voids to form a continuous subsurface barrier. Slurry and grout mixtures vary, but generally include fine clays (e.g., bentonite) or cementeous compounds (e.g., Portland cement). Many installation techniques exist, including trenching, vibrating beam, high-pressure injection, low-pressure (permeation) injection, hydromill, and deep soil mixing.	Potentially applicable t contaminated groundwater in the RGA and/or McNairy.
			Horizontal, low-permeability subsurface barriers have been constructed using slurry/grouting through innovative installation techniques.	

Table C4-3. Identification of Remedial Technologies and Process Options For Regional Gravel Aquifer (60 to 100 feet deep) and McNairy (> 100 feet deep) Groundwater

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
Groundwater Containment Actions (Continued)	Subsurface Vertical Barriers (Continued)	Sheet Piling	A steel pile wall is constructed by driving (with an impact or vibratory hammer) individual steel panels through the soil. Various methods exist to from an interlock between panels and help maintain integrity along the sidewalls of the steel sections. This technology has been used for conventional excavations that require support of side slopes and some degree of hydraulic control.	Potentially applicable to contaminated groundwater in the RGA and/or McNairy.
		Polyethylene Wall	Polyethylene walls are fixed, subsurface barriers formed by either insertion of continuous polyethylene liner into an excavated trench or vibration of panels into place with an insertion plate. Polyethylene and other polymer materials are chemically resistant and can be manufactured to exhibit extremely low permeabilities (i.e., on the order of 10 ⁻¹³ cm/s).	Potentially applicable to contaminated groundwater in the RGA and/or McNairy.
		Cryogenic Barriers	A refrigerant (e.g., aqueous ammonia, propylene glycol, liquid nitrogen) is used to freeze a soil layer to form a continuous, low-permeability wall that provides geotechnical stabilization and hydraulic control. Theoretically, horizontal cryogenic barriers may be constructed utilizing innovative installation techniques (e.g., horizontal drilling and casing).	Potentially applicable to contaminated groundwater in the RGA and/or McNairy.
		Bio-barrier	Starved microorganisms are mixed into a slurry and injected into a porous media. Through monitored injection of nutrients, the micro-organisms flourish and form a "slime" wall within the pores of the soil matrix. As the nutrient supply is diminished and the microorganisms go dormant, the low-permeability "slime" wall remains.	Potentially applicable to contaminated groundwater in the RGA and/or McNairy.
	Hydraulic Containment	Hydraulic Containment	Hydraulic containment of dissolved chemicals may be achieved by pumping groundwater from wells and/or grains. Fluid flow control can be augmented by injecting water through wells and/or drains and by the installation of physical barriers (cut-off) walls. Monitoring wells are utilized to determine whether or not the specified hydraulic gradients have been obtained and chemical migration has been arrested. (Methods may include hydraulic bypass, hydraulic isolation, hydraulic manipulation, or aquifer leveling.)	Potentially applicable to contaminated groundwater in the RGA and/or McNairy.

	General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
_	Removal Actions (Groundwater and/or Contaminant)	Extraction	Soil Vapor Extraction (SVE)	A vacuum is applied through piping to create a pressure gradient that induces gas-phase volatiles to diffuse through permeable media to extraction wells. This technology also is known as <i>in situ</i> soil venting, <i>in situ</i> volatilization, enhanced volatilization, or soil vacuum extraction. (One passive form of SVE is titled barometric pumping.)	Not applicable to the RGA or McNairy since they are aquifers.
			Vacuum-Enhanced Recovery (Dual Phase or 2-Phase)	This option is an enhancement of soil vapor extraction, although groundwater and soil vapor both are extracted. The 2-Phase system uses a high- vacuum pump to extract both groundwater and vapor. The Dual Phase system uses a vacuum pump to extract vapors and a submersible pneumatic pump to extract groundwater.	Soil vapor extraction, with or without enhancements, is not applicable to the RGA or McNairy since they are aquifers.
			In-well Stripping [includes: UVB; No VOCs]	Air is injected into the saturated zone, which causes volatile contaminants to be mobilized from the saturated zone by the air-stripping mechanism, and vacuum extraction is used to recover volatile contaminants within the vadose zone. (Bio- sparging may be added to enhance air sparging.)	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved VOCs, but either would require installation of a recovery mechanism at depth (instead of in the vadose zone).
				A significant, <i>in situ</i> variation, known as the Underpressure-Vaporizer-Well (UVB) method, utilizes air at negative pressures to strip volatile contaminants from the groundwater inside specially designed wells. As the groundwater flows through the wells, the volatilized contaminants are recovered at the surface for treatment/disposal and the groundwater remains in the saturated zone(s).	Potentially applicable to groundwater in the RGA contaminated with dissolved VOCs. Not applicable to the McNairy due to the low hydraulic conductivity.

General Response Actions	Remedial Technology Types	Process Ontions	Descriptions	Screening Comments
Removal Actions (Groundwater and/or Contaminant) (Continued)	Extraction (Continued)	Electrokinetics (including Lasagna TM)	An electric potential is established between electrodes in contaminated groundwater to cause contaminant ions to move to the electrodes. The contaminant can be recovered as plating on a solid electrode or, in the case of liquid electrodes, contaminants in the electrolysis fluids.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with metals or radionuclides.
			The LasagnaTM technology was developed to	Not applicable to the McNairy due to large pore size.
			TCE and is especially suited to sites with low- permeability soils. The process uses electro-osmosis to move soil contaminants by flushing multiple pore volumes of water through treatment zones where the TCE can be captured or chemically altered to nontoxic products.	Potentially applicable to groundwater in the McNairy contaminated with dissolved VOCs.
		"Pump and Treat"	Contaminated groundwater is pumped from wells or drains, followed by <i>ex situ</i> treatment. Recovery rates can be optimized by fine-tuning pumping rates, well locations, etc. Extraction wells may be installed vertically or horizontally.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved contaminants.
		In Situ Steam Injection/Vacuum Extraction (including Dynamic Underground Stripping)	Similar to soil vapor extraction with steam injected for heating the formation. Steam dries the soil, increases the permeability of the formation, decreases the viscosity and surface tension of liquids, and volatilizes organic contaminants. Vapors are extracted for treatment.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with VOCs (dissolved or DNAPL).
		Radio Frequency Heating (RFH)	This method involves heating soil with electromagnetic energy in the radio frequency band. Using a modified radio transmitter, the zone of interest is targeted for heating via electrodes placed in an array of boreholes. This energy heats the soil to temperatures between 150°C and 300°C.	Not applicable for use in saturated media, such as the RGA or McNairy.
		Six-Phase Soil Heating	This method involves heating soil by splitting conventional three-phase electricity into six separate phases, producing a heated environment. Each phase is delivered to a single electrode placed in a hexagonal pattern. Heat dries the soil, which increases the permeability of the formation and volatilizes organic contaminants.	Potentially applicable as an enhancement to some other groundwater remediation system in the RGA and/or McNairy, where heating of a low-permeability area needs to be targeted.

-

General Response	Remedial Technology			
Actions	Types	Process Options	Descriptions	Screening Comments
Removal Actions (Groundwater and/or Contaminant) (Continued)	Extraction (Continued)	Microwave	Microwave energy is used to heat the contaminated groundwater, causing it to volatilize. Contaminant and groundwater vapors are extracted for treatment/disposal.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with VOCs (dissolved or DNAPL).
	Secondary/ Enhanced Recovery	Waterflooding or Injection	Referred to as secondary recovery by the oil industry, waterflooding involves the injection of water into strategically-placed wells or drains to move DNAPL hydraulically toward extraction wells. The injection/extraction systems (i.e., line-drive and five spot systems) enhance recovery by allowing development and sustenance of increased hydraulic gradients and flow rates, elimination of dead zones, and overall improved flow control management. This option may be used in combination with other process options (e.g., injected water may include oxidants as an enhancement).	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved contaminants.
		Surfactant Flooding and Pumping	A surfactant solution is injected as a slug in a flooding sequence to decrease the interfacial tension between DNAPL and water by several orders of magnitude. Ultra-low interfacial tension and higher capillary numbers improve the DNAPL displacement efficiency of a flood, promote the coalescence of DNAPL ganglia and development of a DNAPL bank in front of the surfactant slug, and result in increased DNAPL recovery and reduced DNAPL residual saturation. Surfactant flooding also can enhance DNAPL recovery by causing increased wetting, solubilization, and emulsification. (Some surfactants used in operations by the oil industry include petroleum surfactants, synthetic surfactants, ethoxylated surfactants may include beta- cyclodextrins.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved contaminants.

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
Removal Actions (Groundwater and/or Contaminant) (Continued)	Secondary/ Enhanced Recovery (Continued)	Polymer Waterflooding and Pumping	Polymers are large molecules that can be dispersed in a waterflood to increase the viscosity of the flood, thereby reducing the mobility ratio and improving the volumetric sweep efficiency (DNAPL recovery). The mobility ratio is defined as the mobility of the displacing fluid (effective permeability/viscosity for water) divided by the mobility of the displaced fluid (effective permeability/viscosity for DNAPL). Lower mobility ratios favor DNAPL displacement and recovery. An effective polymer will impart a high viscosity at low concentration. In operation, polymer flooding often is used as part of a phased injection sequence consisting of the following: a preflush to adjust the pH and salinity (if required), surfactants and/or alkaline agents to reduce interfacial tension, a polymer solution to increase viscosity and improve the displacement efficiency, and the waterflood to displace the mobilized contaminant solutions.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved contaminants.
		Chemically Enhanced Dissolution and Pumping (Cosolvents)	Co-solvents are injected into a contaminated zone via wells or drains to increase the dissolution of DNAPLs and adsorbed chemicals. Continued flooding of the contamination zone with co-solvents or another flood (water, polymers, etc.) drives the contaminants to extraction wells or drains.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved contaminants.
In Situ Groundwater Treatment	Physical/ Chemical Treatment	Solidification/ Stabilization	Contaminants are physically bound or enclosed within a stabilized mass (solidification), or chemical reactions are induced between the stabilizing agent and contaminants to reduce their mobility (stabilization). Methods for solidification/ stabilization include deep soil mixing, grout injection, hydromill, permeation grouting; and materials include bentonite, epoxy, thermplastic, or cementious materials.	Potentially applicable to the RGA and/or McNairy.
		Hydrous Pyrolysis/ Oxidation	Steam and possibly oxygen are injected together, building a heated, oxygenated zone in the subsurface. When the injection is stopped, the steam condenses and contaminated groundwater returns to the heated zone and mixes with the condensate and oxygen, destroying any dissolved contaminants.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved VOCs.

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
In Situ Groundwater Treatment (Continued)	Physical/ Chemical Treatment (Continued)	Permeable Treatment Walls	Subsurface walls are constructed using reactive granular material or a reactive slurry that permits groundwater flow through the structure under ambient or induced gradients. The contaminant is treated as it comes into contract with the reactive media (i.e., iron, nutrients, bacteria, redox control agent, carbon, humic acids, or other sorptive or reactive materials) as it passes through the wall.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved VOCs or metals.
		<i>In Situ</i> Chemical Treatment (Oxidation)	Oxidizing agents are injected into the contaminated groundwater, resulting in chemical oxidation of targeted contaminants. A wide range of treatment agents may be used, including solvents or precipitating, oxidizing, or stabilizing agents.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved VOCs.
		Ozone Injection (C-Sparge)	Ozone is injected into the contaminated groundwater, resulting in chemical oxidation of targeted VOC contaminants. C-Sparge uses a patented process for small bubble injection, which allows for deeper penetration laterally into the aquifer than normal sparging. This increases efficiency and prevents plugging.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved VOCs
		Sodium Dithionate Injection	The injection of the reducing agent produces a highly reduced treatment zone which can cause dehalogenation of CVOC contaminants. Continued agent addition is needed to maintain the zone.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved VOCs
	Biological Treatment	Monitored Natural Attenuation	Naturally-occurring processes in soil and groundwater environments that act to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in those media. These <i>in situ</i> processes include biodegradation, dispersion, dilution, adsorption, volatilization, and chemical or biological stabilization or destruction of contaminants. Sampling and analysis are required throughout the process.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved VOCs, some SVOCs, PCBs, and possibly with metals and/or radionuclides.

lial logy es Process Options	Descriptions	Screening Comments
I In Situ Biodegradation d)	The activity of naturally-occurring microbes is stimulated by circulating water-based solutions through contaminated soils to enhance <i>in situ</i> biological degradation of organic contaminants. Nutrients, oxygen, or other amendments may be used to enhance biodegradation and contaminant desorption from subsurface materials. Process options may include co-metabolic, nitrate enhancement, or oxygen enhancement.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved VOCs, SVOCs, and PCBs.
Bio-sparging	Amendments may be added to air sparging options to stimulate or enhance biodegradation.	Potentially applicable to groundwater in the RGA and/or McNairy contaminated with dissolved VOCs and possibly with metals and/or radionuclides.
Vitrification (in situ)	Contaminated soils and wastes are melted at a high temperature using electrodes to form a large glass monolith with very low leaching characteristics.	Potentially applicable to inorganically contaminated soil.
Table C-5 for identification of ex s	itu groundwater treatment technologies	
able C-6 for identification of disp	osal actions.	
"a n	ble C-6 for identification of disp screened out.	ble C-6 for identification of disposal actions.

Identification of copyrighted, patented, or trademarked processes does not signify endorsement.

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
<i>Ex Situ</i> Treatment	Solids Handling	Magnetic Processes, Crushing and Grinding, Shredding and Chipping, and Screening	Solids handling equipment is used to screen magnet and non-magnet waste, prepare brittle and non-brittle waste, and segment solids for further treatment or disposal.	Potentially applicable to process excavated solids for treatment or storage.
	Solids Dewatering	Gravity Settling, Filter Press, Dewatering Beds, Belt Filters, Vacuum Filtration, Centrifuges	All methods are used to dewater solids prior to further treatment or storage.	Potentially applicable to process excavated soil for treatment, storage, or disposal.
	Physical Separation	Screening, Classification, Gravity Concentration, Magnetics	<i>Ex situ</i> volume reduction process used to segregate waste streams into components for further treatment, storage, or disposal.	Potentially applicable to extracted groundwater prior to further treatment or storage.
	Physical/ Chemical Separation	Solidification/ Stabilization	Contaminants are physically bound or enclosed within a stabilized mass (solidification), or chemical reactions are induced between the stabilizing agent and contaminants to reduce their mobility (stabilization).	Potentially applicable to inorganic soils.
		Chemical Extraction (Solvent Extraction)	Waste and solvent are mixed in an extractor, dissolving the organic contaminant into the solvent. The extracted organics and solvent are then placed in a separator, where the contaminants and solvent are separated for treatment and further use.	Potentially applicable to excavated surface soils contaminated with VOCs, SVOCs, PCBs, dioxins/furans, and radiological contaminants.
		Electrokinetic Removal	Electrical current is past through soil to separate contaminants.	Potentially applicable to excavated soils contaminated with chlorinated VOCs, SVOCs, or metals.
		Soil Washing/Leaching	Contaminants sorbed onto soil particles are separated from soil in an aqueous-based system. The wash water may be augmented with a basic leaching agent, surfactant, pH adjustment, or chelating agent to help remove organics and heavy metals.	Potentially applicable to excavated soils contaminated with VOCs, PCBs, and dioxins/furans; some techniques may be applicable to uranium and other radionuclides.

Table C4-4. Identification of Remedial Technologies and Process Options for Ex Situ Treatment Technologies for Soils and Solids

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
Ex Situ Treatment (Continued)	Physical/ Chemical Separation (Continued)	Dechlorination: Glycolate/Base- catalyzed	An alkaline polyethylene glycolate (APEG) reagent is used to dehalogenate halogenated aromatic compounds in a batch reactor. Potassium polyethylene glycolate (KPEG) is the most common APEG reagent. Contaminated soils and the reagent are mixed and heated in a treatment vessel. In the APEG process, the reaction causes the polyethylene glycolate to replace halogen molecules and render the compound nonhazardous. For example, the reaction between chlorinated organics and KPEG causes replacement of a chlorine molecule and results in a reduction in toxicity.	Potentially applicable to excavated soils contaminated with halogenated VOCs, PCBs, and dioxins/furans. Not effective for radionuclides.
			Contaminated soil is screened, processed with a crusher and pug mill, and mixed with sodium bicarbonate. The mixture is heated in a rotary reactor to decompose and partially volatilized the contaminants.	Potentially applicable to excavated soils contaminated with halogenated VOCs, PCBs, and dioxins/furans. Not effective for radionuclides.
		Neutralization	Acids are added to an alkaline waste or base added to an acidic water to adjust the pH.	Not applicable for remediation since the majority of the soils do not need pH adjustment.
		Chemical Reduction- Oxidation	Reduction/oxidation chemically converts hazardous contaminants to nonhazardous or less toxic compounds that are more stable, less mobile, and/or inert. The reducing/oxidizing agents most commonly used are ozone, hydrogen peroxide, hypochlorites, potassium permanganate chlorine, and chlorine dioxide.	Potentially applicable to excavated souls contaminated with TCE, PCBs, or radionuclides.
	Biological Treatment	Biodegradation: Composting (Land-farming)	Contaminated soils are mixed with soil amendments and placed in aboveground enclosures that have leachate collection systems and some form of aeration. Processes include prepared treatment beds, biotreatment cells, soil piles, and composting. Moisture, heat, nutrients, oxygen, and pH may be controlled to enhance biodegradation.	Potentially applicable to excavated soils contaminated with VOCs, SVOCs, or PCBs.
			Contaminated soils are applied onto the soil surface or an above grade system and periodically tilled into the soil or turned over to aerate the waste and microbes.	Potentially applicable to some excavated soils contaminated with VOCs, SVOCs, or PCBs.

General	Remedial			
Response Actions	Technology Types	Process Options	Descriptions	Screening Comments
Ex Situ	Biological	Biodegradation:	An aqueous slurry is created by combining soil or	Potentially applicable to some excavated soils contaminated
Treatment (Continued)	Treatment (Continued)	Slurry-Phase Treatment	sludge with water and other additives. The slurry is mixed to keep solids suspended and microorganisms in contact with the soil contaminants. Nutrients, oxygen and pH in the bioreactor may be controlled to enhance biodegradation. Upon completion of the process, the slurry is dewatered and the treated soil is disposed of.	with VOCs, SVOCs, or PCBs.
	Thermal Treatment	Incineration	High temperatures, 871°C to 1,204°C (1,600°F to 2,200 °F), are used to volatilized and combust (in the presence of oxygen) organic constituents.	Potentially applicable to excavated soils contaminated with VOCs, SVOCs, or PCBs.
		Pyrolysis	Chemical decomposition is induced in organic material by heat in the absence of oxygen. Organic materials are transformed into gaseous components and a solid residue (coke) containing fixed carbon and ash.	Potentially applicable to excavated organic soils and some excavated wastes.
		Thermal Desorption	Wastes are heated to 93°C to 538°C (200°F to 4,000°F), are used to volatilize water and organic contaminants. A carrier gas or vacuum system transports volatilized vapors to the treatment system.	Potentially applicable to excavated soils contaminated with VOCs, SVOCs, PCBs, and dioxins/furans. Not effective for radionuclides and inorganics.
		Vitrification (ex situ)	Contaminated soil and sludge are melted at a high temperature to form a glass with very low leaching characteristics.	Potentially applicable to excavated inorganic soils and some excavated wastes.

Notes:

Shaded process options have been screened out. Identification of copyrighted, patented, or trademarked names does not signify endorsement.

C4-21

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Comments
<i>Ex Situ</i> Treatment Actions	Physical/ Chemical/ Biological Treatment	Air Stripping	A separation process in which volatile contaminants are partitioned to the gas phase process and rate are a function of the difference in contaminant concentration in each phase. Aeration methods include packed towers, diffused aeration, try aeration, and spray aeration.	Presumptive technology for treatment of extracted groundwater; potentially applicable for treatment of dissolved organic contaminants (e.g., VOCs, halogenated SVOCs). (EPA, 1996. Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R- 96/023, October 1996.)
		Granular Activated Carbon	A separation process in which groundwater contaminants are sorbed onto activated carbon. Periodic replacement or regeneration of saturated carbon is required.	Presumptive technology for treatment of extracted groundwater; potentially applicable for treatment of dissolved organic contaminants (e.g., VOCs, SVOCs). (EPA 1996. Presumptive Response Strategy and Ex-Situ Treatmen Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996.
	Ch Ae Re	Chemical/UV Oxidation	A treatment process in which chemicals (e.g., oxygen, ozone, hydrogen peroxide, chlorine) and/or ultraviolet (UV) radiation are used to oxidize organic contaminants as water flows into a treatment tank. An ozone destruction unit is used to treat off-gases from the treatment tank.	Presumptive technology for treatment of extracted groundwater; potentially applicable for treatment of dissolved organic contaminants (e.g., VOCs, SVOCs). Also may be applicable to cyanides. (EPA, 1996. <i>Presumptive</i> <i>Response Strategy and Ex-Situ Treatment Technologies for</i> <i>Contaminated Ground Water at CERCLA Sites, Final</i> <i>Guidance</i> , EPA 540/R-96/023, October 1996.)
		Aerobic Biological Reactors	A treatment process in which contaminated groundwater is treated using fixed or suspended microbiological systems, In fixed or attached systems, such as rotating biological contactors and tricking filters, microorganism are established on an inert support matrix to aerobically degrade groundwater contaminants. In suspended systems, such as activated sludge, contaminated groundwater is circulated in an aeration basin where a microbial population aerobically degrades organic matter and produces new cells.	Presumptive technology for treatment of extracted groundwater; potentially applicable for treatment of dissolved organic contaminants (e.g., VOCs SVOC). (EPA, 1996. Presumptive Response Strategy and Ex-Situ Treatmen Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996.)
		Chemical Precipitation	A separation technology in which chemicals are added to encourage dissolved metals and suspended particles to form insoluble (or precipitated) metal hydroxides, sulfides, carbonates, or other salts.	Presumptive technology for treatment of extracted groundwater; potentially applicable for treatment of dissolved metals. (EPA, 1996. Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996.

Table C4-5. Identification of Presumptive Technologies for Treatment of Extracted Groundwater

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Comments
<i>Ex Situ</i> Treatment Actions (Continued)	Physical/ Chemical/ Biological Treatment (Continued)	Ion Exchange/Adsorption	A separation technology in which a resin media adsorbs, or removes, contaminants from groundwater or leachate. Cation resins, anion resins, or chelating resins may be used, depending upon the contaminant(s). The resins are contained in a pressurized vessel and may require regeneration.	Presumptive technology for treatment of extracted groundwater; potentially applicable for treatment of dissolved metals. Also, potentially applicable for sulfates, nitrates, and radionuclides. (EPA, 1996. Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996.
		Electrochemical Methods	A separation technology in which direct electrical current is placed between two immersed electrodes to drive chemical oxidation-reduction reactions in an aqueous solution. Dissolved metals (e.g., hexavalent chromium, arsenic, cadmium, molybdenum, aluminum, zinc, copper) either deposit on the cathode or precipitate from the solution. (EPA, 1996. Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996.	Presumptive technology for treatment of extracted groundwater; potentially applicable for treatment of dissolved metals. Also, potentially applicable for sulfates, nitrates, and radionuclides. (EPA, 1996. <i>Presumptive</i> <i>Response Strategy and Ex-Situ Treatment Technologies for</i> <i>Contaminated Ground Water at CERCLA Sites, Final</i> <i>Guidance</i> , EPA 540/R-96/023, October 1996.
		Aeration of Background Metals	A separation technology in which aeration removes some metals (e.g., iron, manganese) from water by promoting chemical oxidation and the formation of insoluble hydroxides that precipitate from the water. The precipitants then may be removed by flocculation, sedimentation, and/or filtration. Methods of aeration include aeration tanks, aeration basins, or cascade aeration. (EPA, 1996. <i>Presumptive Response Strategy and Ex-Situ</i> <i>Treatment Technologies for Contaminated Ground</i> <i>Water at CERCLA Sites, Final Guidance</i> , EPA 540/R-96/023, October 1996.)	Presumptive technology for treatment of extracted groundwater; potentially applicable for treatment of dissolved metals. Also, potentially applicable for sulfates, nitrates, and radionuclides. (EPA, 1996. Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996.
		Membrane Separation	A selective semipermeable membrane is used to separate, or remove, dissolved solids from water. Types of membrane separation include the following processes: microfiltration, ultrafiltration, reverse osmosis, dialysis, and electrodialysis. (McGraw-Hill, 1988. <i>The NALCO Water</i> <i>Handbook</i> , 2nd edition.)	Potentially applicable for treatment of radionuclides.

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Comments
Pretreatment Actions	Solids Dewatering	Gravity Settling, Filter Press, Dewatering Beds, Belt Filters, Vacuum Filtration, Centrifuges, In Situ Dewatering	Separation methods which are used to dewater solids prior to further treatment or storage.	Potentially applicable to support other treatment technologies.
	Physical Separation	Screening, Classification, Gravity Concentration, Coagulation/Flocculation, Magnetic separation	Separation methods which are used to segregate waste streams into components for further treatment, storage, or disposal.	Potentially applicable to support other treatment technologies.
	Physical/Chemi cal Treatment	Neutralization	Treatment method in which either an acid is added to an alkaline waste or a base is added to an acidic water to adjust the pH.	Potentially applicable to support other treatment technologies.
		Solidification/ Stabilization	Contaminants are bound Physically or enclosed within a stabilized mass (solidification), or chemical reactions are induced between the stabilizing agent and contaminants to reduce their mobility (stabilization).	Potentially applicable to process sludge.

Notes: Shaded process options have been screen

Shaded process options have been screened out. Identification of copyrighted, patented, or trademarked names does not signify endorsement.

General Response Actions	Remedial Technology Types	Process Options	Descriptions	Screening Comments
Disposal Actions	On-Site Disposal	Permitted Facility	Wastes placed in an approved DOE-owned facility at the PGDP.	Potentially applicable for excavated soil/waste or treatment residuals. The C-746-U Contained Landfill is limited to 49 ppm PCBs and <30 pCi/g radionuclides (average total uranium).
		Constructed Disposal Cell	Excavate and place the generated wastes in a disposal cell specifically constructed for this purpose.	Depending upon the availability of a suitable location, potentially applicable for excavated soil.
	Off-Site Disposal	RCRA Facility	RCRA-hazardous wastes transported to a permitted, commercial RCRA disposal facility.	Potentially applicable to process residuals identified as hazardous waste. Must meet facility's waste acceptance criteria and land disposal restrictions.
		TSCA Facility	TSCA wastes transported to a permitted, commercial TSCA disposal facility.	Potentially applicable to soil and/or process residuals containing >50 ppm PCBs. (Currently limited to DOE-owned facilities if material contains radionuclides.) Must meet facility's waste acceptance criteria.
		(Low-Level) Radioactive Waste Facility	Low-level radioactive wastes transported to a DOE-approved facility.	Potentially applicable to soil and/or process residuals identified as low-level radioactive waste. Currently limited to DOE-owned facilities. Must meet facility's waste acceptance criteria.
		Mixed-Waste Facility	Mixed waste (RCRA-hazardous waste plus low- level radioactive waste) transported to a DOE- approved facility.	Potentially applicable to process residuals identified as mixed waste. Currently limited to DOE-owned facilities (due to radioactive component). Must meet facility's waste acceptance criteria.
	Interim Storage	On-Site Storage	Interim storage for an indefinite period in a DOE- owned facility at the PGDP.	Potentially applicable, but PGDP currently does not have such a facility available.

Notes:

Shaded process options have been screened out. Identification of copyrighted, patented, or trademarked names does not signify endorsement.

63057)0-001(doc)/0
5	c)/04
_	1301

Effectiveness Implementability Cost Volumes, General Remedial Response Technology Media. & Short-term Provenness & Technical Administrative Capital Actions Types **Process** Options Rem. Goals Impacts Reliability Feasibility Feasibility Cost **O&M** Cost No Action None Not Applicable 0 NA Option does not achieve RAOs. Option poses no No action involved with this Option requires minimal short-term risks option: therefore, it is technically ("baseline") or no cost. and administratively feasible to implement. Institutional Deed Restrictions Access Option applicable to all volumes, media, and Actions Restrictions Option is technically and Option requires relatively contaminants, but provides no contaminant administratively feasible to little capital to implement reduction. Option produces no short-term impacts. implement. and little or no O&M. Option is proven and reliable for restricting access. compared to other access restriction technologies. . . Site Protection/ 0 Option applicable to all volumes, media, and Security Option is technically and Option requires moderate contaminants, but provides no contaminant administratively feasible to capital to implement and reduction. Option produces no short-term impacts. implement. A full security significant O&M. Option is proven and reliable for restricting access. program already is implemented compared to other access at the PGDP. restriction technologies. . Physical Barriers/ 4 ⇔ Restrictions Option applicable to all volumes, media, and Option is technically and Option requires moderate contaminants, but provides no contaminant administratively feasible to capital to implement and reduction. Option may produce minimal short-term implement. Physical barriers are moderate O&M. compared impacts. Option is proven and reliable for already implemented at the PGDP to other access restriction restricting access. (i.e., a security fence surrounds technologies. the entire PGDP) Monitoring Surface Soil and Φ Water Monitoring Option applicable to all volumes, media, and Option is technically and Option may require contaminants, but provides no contaminant administratively feasible to relatively moderate to low reduction. Option may produce minimal short-term implement. Routine groundwater capital to implement and impacts, depending upon the level of construction and surface- water monitoring is moderate O&M. Costs are required. Option is proven and reliable for conducted at the PGDP. dependent upon the evaluating groundwater and/or surface water number of samples and characteristics, contaminants, and trends. analyses conducted.

Table C4-7. Evaluation of Remedial Technologies and Process Options for Upper Continental Recharge System Vadose Zone Soils (0 to 15 ft deep)

				Effectiveness		Implem	entability	C	ost
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
Containment	Capping	Clay/Soil or	•	•	\$	•	•	•	\$
Actions		Asphalt/Concrete	Option applicab contaminants, bu Option may prod upon the level o proven and relia and reducing inf contaminants into require regular n	le to all volumes, it provides no cont duce short-term in f construction req ible for reducing e filtration/vertical o the subsurface. T naintenance to ens	media, and aminant reduction. npacts, depending uired. Option is exposure potential movement of These types of caps ure effectiveness.	Option is techni administratively implement in m include using ex in developed are	cally and feasible to ost areas. Could isting floor slabs eas.	Option requir costs to imple for soil cover O&M costs a for cap inspe- maintenance.	res moderate ement. Costs are low. re moderate ction and
		Multimedia	•		•	•	•	\$	•
			Option applicab contaminants, bu reduction. Option depending upon Option is prover potential and red movement of co	le to all volumes, ut provides no com- on may produce sh the level of consi- n and reliable for ducing infiltration ontaminants into the	media, and ntaminant nort-term impacts, truction required. reducing exposure /vertical he subsurface.	Option is techni administratively implement in m	cally and feasible to ost areas.	Option requir costs to imple costs are mod inspection an maintenance.	res moderate ement. O&M lerate for cap d
		Lead Shield	\$	\$				0	
			Option applicable to gamma-emitting radionuclides only. Probably applies to smaller areas only. Provides no contaminant reduction. Option would produce some short term impacts, especially in developed areas.			Option is techni administratively implement.	cally and feasible to	Option is cos implement ar	tly to nd maintain.
	Surface Controls	Grading	\$	•	\$	•	•	•	
			Option available to all volumes, media, and contaminants, but provides no contaminant reduction. May produce short term impacts if surficial soils are contaminated. Could increase soil erosion. Option is proven and reliable for reducing infiltration/vertical movement of contaminants. Option does not limit surface exposure		Option is techni administratively implement.	cally and feasible to	Option is of little O&M.	low cost with	

			Effectiveness		Implem	entability	C	ost	
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
Containment	Surface Controls	Revegetation	¢	•	•	•	•	•	•
Actions (Continued)	(Continued)		Option applicab contaminants, bu Option may pro- upon the level o of site developm of surface conta to workers durin proven and relia movement of co Option does not	le to all volumes, at provides no cond duce short-term in f grading and req nent. Could cause mination and sho ing implementation able for reducing in intaminants into t limit surface exp	media, and taminant reduction. mpacts, depending uired and degree increased erosion rt term exposure n. Option is infiltration/vertical he subsurface. osure	Option is techni administratively implement.	ically and y feasible to	Option is of little O&M.	low cost with
		Flow Diversion				•		• • •	
			Option applicab contaminants, bu Option produces upon the degree cause minimal v and reliable for movement of co Option does not	le to all volumes, at provides no con- s few short-term in of construction r vorker exposure. reducing infiltration taminants into t limit surface exp	media, and taminant reduction. npacts, depending equired. Should Option is proven on/vertical he subsurface. osure.	Option is techni administratively implement. Cou incorporated as existing stormw network.	ically and y feasible to uld be improvements to vater drainage	Option is of little O&M.	low cost with
	Bottom Barriers	Jet grouting;	•		0	•	•	0	\$
		Slanted Grout columns; cryogenics	Option available may be degrade concentrations of or exposure risk known to be reli	e for all volumes d in presence of h of VOCs. Few sho s. Options are net iable at PGDP.	and media. Grout high ort-term impacts ither proven or	Option is techni administratively implement in m	ically and y feasible to lost areas.	Options are l costs. O&M comparable t containment	high in capital costs are to other options.
	Vertical Barriers	Slurry Walls	\$		•	•	•	\$	\$
			Option applicab contaminants, b reduction and is migration. Optio impacts. Techno many settings. U zone limited to	le to all volumes, ut provides no co not effective in l on produces few s blogy is proven at Jse of vertical bas perched matter sy	media, and ntaminant imiting vertical short-term nd reliable in rrier in vadose rstems.	Option is techni administratively implement	ically and y feasible to	Costs are mo compared to barriers.	oderate other vertical

			Effectiveness		Implem	entability	Co	ost	
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
Containment	Vertical Barriers	Grout Curtains	\$	•	•	•	•	\$	\$
Actions (Continued)	(Continued)		Option applicable to all volumes, media, and contaminants, but provides no contaminant reduction and is not effective in limiting vertical migration. Option produces few short-term impacts. Technology is proven and reliable in many settings. Use of vertical barrier in vadose zone limited to perched matter systems.Optior admin implex			Option is techni administratively implement	cally and feasible to	Costs are mod compared to o barriers.	derate other vertical
		Sheet Piles/	\$		÷	•	•	•	•
		Vibrating Beam	Option applicab contaminants, bu and is not effect Option produces limited by site c vadose zone lim	le to all volumes, it provides no con ive in limiting ve s no short-term in onditions. Use of ited to perched n	media, and taminant reduction rtical migration. npacts. May be 'vertical barrier in natter systems.	Option is techni administratively implement	cally and feasible to	Option requir low capital ar compared to barriers.	es relatively nd O&M, vertical
		Cryogenic Walls	.			•	•	\$	
			Option applicab contaminants, be reduction and is migration. Optio impacts. Technor many settings. U zone limited to	le to all volumes, ut provides no co not effective in l on produces few s ology is proven au Jse of vertical ba perched matter sy	media, and ntaminant imiting vertical short-term nd reliable in rrier in vadose ystems.	Option is technically and administratively feasible to implement		Costs are mod compared to o barriers.	derate other vertical
Removal	Water	Wells and	¢		\$	•		•	
	Collection	Subsurface Drains	Option available for areas of high recharge, leaking utilities, or perched groundwater, otherwise not effective for vadose zone contaminants. Would cause minimal to moderate short-term impacts or worker exposure. Generally unproven to remediate vadose contaminants.				cally and feasible to	Option requir low capital to and low to me compared to collection tec	es relatively implement oderate O&M other hnologies.
	Excavation	Solids and	\$	\$	•	•	•	•	•
		Semisolids Excavation	Option applicable to shallow (< 30 ft.) volumes, media, and contaminants only. Relies on <i>ex situ</i> means of treatment or disposal. Option produces short-term impacts, of worker exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impacts. Option is proven and meliable for exposure and other construction-related impact. Determine the proven and meliable for exposure and other construction-related impact. Option is proven and meliable for exposure and other construction-related impact. Determine the proven and meliable for exposure and other meliable for exposure and other meliable for exposure and other meliable for exposure and other meliable for exposure and the proven and meliable for exposure an				Capital costs depending on worker protect and method of treatment. Litt required	generally low amount of ction required of disposal or the O&M is	

			Effectiveness		lmplem	entability	Cost				
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goais	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost		
Removal	Excavation	Solidify and Mine		•	0	\$	\$	\$	•		
(Continued)	(Continued)	(Freeze and Mine)	Option available for rather homogeneous, specialized wastes. Most applicable for explosive or reactive wastes. Minimal worker exposure and site impacts. Option is proven only for controlled environments. It is unproven for large scale applications.				eze and Mine) Option available for rather homogeneous, specialized wastes. Most applicable for explosive or reactive wastes. Minimal worker exposure and site impacts. Option is proven only for controlled environments. It is unproven for large scale applications.		roven for many tions. Handling langerous esult in permitting	Capital costs to high, while be quite low other <i>ex situ</i> : technologies.	are moderate e O&M can compared to separation
	Site Equipment/	Equipment/Debris	¢	\$	•	•	•	¢	\$		
	Debris Removal	Removal and Decontamination	Option limited of structures and d <200mR/hr. Rel disposal. Potent workers. Option	only to removable ebris of material e lies on <i>ex situ</i> dec ial for short-term is proven effecti	cally and feasible to	Costs are highly variable due to ease of removal and nature and degree of contamination.					
	Bulk Liquid	Drain or Pump				•		•			
	Removal	Tanks/Pits and Lines Containing Liquids	Option limited to containment structures and their appurtenances. Could cause short-term impacts depending on location of containment structure and nature of material. Location of con- could impede re Option is admir feasible.				ks/Pits and es Containing uids Option limited to containment structures and their appurtenances. Could cause short-term impacts depending on location of containment structure and nature of material. Detion of containment structure and poption limited to containment structure and poption limited to containment structure and poption limited to containment structure and feasible.		tainment structure moval actions. istratively	Capital costs providing eas containment O&M costs a to or lower th removal option	are low sy access to structure. re comparable nan other ons.
	Bulk Solid/	Vacuum Loader	\$	•				•			
	Liquid Removal		Option limited t appurtenances. Should cause m proven for liquid	o containment str May not be effect inimal worker ex ds and semi-solid	uctures and their ive on all sludges. posure. Generally s.	Option is techni administratively implement.	cally and / feasible to	Low cost cor other remova	npared to Il options.		
In Situ Treatment	Physical/	Solidification/	\$	•		•	•	\$	•		
	Chemical Treatment	Stabilization	Option uses sev applied to all vo contaminants. N Carbonate-based radionuclides (e in areas of burie opportunity for proven and relia	eral methods to the slumes, all media IAPL could limit d gravels could me.g., uranium). Post ed materials. Prod worker exposure.	hat could be and all effectiveness. obilize ssible limitations uces little Most methods are	Technology is to administratively	echnically and / feasible.	Capital costs with the tech employed bu similar to oth technologies, moderate to b	are variable nology t overall ter <i>in situ</i> . Generally low O&M.		
		Chemical Mixing	•	¢	¢	\$	\$	¢			
		(Deep Soil Mixing)	Option available contaminants. P buried materials worker exposur- reliable.	e to all volumes, a ossible limitation s. Produces some e. Most methods a	all media and most s in areas of opportunity for are proven and	Must use care n incompatible wa reactive substan is problematic in infrastructure. C administratively	ot to mix astes or introduce ices. Accessibility n areas of dense Option is y feasible.	Capital costs comparable t compared to technologies are low.	are o low other <i>in situ</i> . O&M costs		

				Effectiveness		Implem	entability	C	ost			
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cos			
In Situ	Physical	Soil Vapor	\$	•	•	•	•	•	•			
		Extraction/Soil Venting	Option available Applicable to V Produces few sh proven and relia	for all volumes OCs and some SV ort-term impacts ble.	and media. /OCs only. Method is	Technology is to administratively	echnically and feasible.	Capital and O&M costs are low compared to other in situ technologies.				
	Thermal	Vitrification	•	\$	0	- •	\$	0	\$			
			Option available for most volumes, media and contaminants, but generally not feasible below ~Technology is technically feasible. Potential administrative difficulties based on perceived safety concerns.Hig cont cont mode25ft. Releases hot gases and potential for contaminant release. Has not proven to be reliable in field demonstrations.Technology is technically feasible. Potential administrative safety concerns.Hig cont contaminant release					Option available for most volumes, media and contaminants, but generally not feasible below ~Technology is technically feasible. Potential administrative difficulties based on perceived safety concerns.High ca compar technol modera operationera			High capital compared to technologies. moderate to H operations. L O&M is very	costs other <i>in situ</i> O&M is nigh during ong- term y low.
	Biological	Bioventing/	\$	•	•	•	•	\$	•			
	Treatment	Barometric Venting	Option available Applicable to V few short-term i reliable. Not app	e for all volumes OCs and some S' mpacts. Method blicable to radion	and media. VOCs. Produces is proven and uclides.	Technology is to administratively	echnically and / feasible.	Capital costs moderate and are comparab biological tre technologies.	are low to I O&M costs ble to other eatment			
	Biological	Enhanced	\$	•	•	\$	\$		\$			
		Bioremediation	Option available Applicable to V few short-term i reliable.	oCs and some S mpacts. Method	and media. VOCs. Produces is proven and	Technology is to difficult in vado of amendments co-metabolic re permitting prob	echnically ose zone. Addition (e.g., toluene) for actions may cause lems.	High costs co other biologi technologies	ompared to cal treatment			
		Phytoremediation	¢	¢	\$	•		¢	¢			
			Option is applicable to shallow to moderate depths and many contaminants in soil. Could produce vegetation containing radionuclides. Largely proven and reliable, but not for all applications.			Technology is t administratively	echnically and (feasible.	Capital and C are moderate other biologi technologies	D&M costs compared to cal treatment			
Ex Situ Treatmen	nt Refer to Table (C-10 for evaluation of ex	situ treatment te	chnologies.								
Disposal Action	s Refer to Table (C-12 for evaluation of d	isposal actions.									

Notes: Shaded process options have been screened out. Identification of copyrighted, patented, or trademarked names does not signify endorsement.

	Legend												
	Effectiveness		Implementability		Cost								
	Satisfies effectiveness criteria	•	Feasible to implement	•	Low cost compared to other options within the same technology type								
ф	Satisfies some, but not all, criteria	¢	May be feasible to implement	¢	Moderate cost compared to other options within the same technology type								
0	Does not satisfy effectiveness criteria	Ō	Unfeasible to implement	0	High cost compared to other options within the same technology type								

Explanation of Evaluation Criteria

- Effectiveness (primary focus) includes:
 - Potential effectiveness in handling the areas/volumes of media or recovering contaminated media and meeting remediation goals,
 - -- Potential impacts to human health and environment during construction and implementation phase, and
 - How proven and reliable the process is with respect to site contaminants and conditions.

• Implementability includes:

- Technical feasibility (e.g., availability of TSD and adequate capacity, availability of equipment and workers) and
- Administrative feasibility (e.g., ability to obtain permits).

• Cost includes:

- Capital cost and
- O&M cost.

~ 0	
ю́а	
4130	
-	

Effectiveness Implementability Cost General Volumes. Remedial Media. & Response Technology Short-term Provenness & Technical Administrative Capital Actions Types **Process Options** Rem. Goals Impacts Reliability Feasibility Feasibility Cost O&M Cost No Action None Not Applicable 0 NA Evaluation of this alternative is required by the No action involved with this Option requires minimal NCP. Option does not achieve RAOs. Option poses ("baseline") or no cost. option; therefore, it is technically no short-term risks. and administratively feasible to implement. Institutional Access Deed Restrictions . Option applicable to all volumes and contaminants, Actions Restrictions Option is technically and Option requires relatively but provides no contaminant reduction. Option administratively feasible to little capital to implement produces no short-term impacts. Option is proven implement. Option may require and little or no O&M. and reliable for restricting access to groundwater. approval by the public. compared to other access restriction technologies. • • ð Site Protection/ Φ Ō Security Option applicable to all volumes, media, and Option is technically and Option requires moderate contaminants, but provides no contaminant administratively feasible to capital to implement reduction. Option produces no short-term impacts. implement. A full security because existing system in Option is proven and reliable for restricting access. program already is implemented place, but significant at the PGDP. O&M, compared to other access restriction measures. . Physical Barriers/ ¢ ¢ Option applicable to all volumes, media, and Option is technically and Option requires some Restrictions contaminants, but provides no contaminant administratively feasible to expenditures capital to reduction. Option may produce minimal short-term implement. Physical barriers is implement and moderate impacts. Option is proven and reliable for already implemented at the PGDP O&M, compared to other restricting access. (i.e., a security fence surrounds access restriction the entire PGDP). technologies. ¢ ¢ Groundwater Monitoring Option applicable to all volumes, media, and Option is technically and Option may require Monitoring administratively feasible to additional wells to contaminants, but provides no contaminant reduction. Option may produce minimal short-term impacts, implement. Routine groundwater implement and moderate depending upon the level of construction required. monitoring is conducted at the O&M. Costs are dependent Option is proven and reliable for evaluating PGDP. upon the number of samples and analyses conducted. groundwater characteristics, contaminants, and trends. ō \$ 0 Ф Bottom Barriers Jet Grouting: Containment Slanted Grout Option available for all volumes and media. Grout Option is technically and Options are high in capital Actions administratively feasible to costs. O&M costs are Columns; may be degraded in presence of high comparable to other concentrations of VOCs. Few short term impacts or implement in most areas. Cryogenics containment options. exposure risks. Options are not proven at PGDP.

Table C4-8. Evaluation of Remedial Technologies and Process Options For Upper Continental Recharge System Subsurface Saturated Soils (15 to 60 ft deep)

C4-33

299062

				Effectiveness		İmplem	entability	C	ost
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
Containment	Vertical Barriers	Slurry Walls	\$	•	•	•	•	•	\$
Actions (Continued)			Option applicab contaminants, bu and is not effect Option produces is proven and re	le to all volumes, it provides no cont ive in limiting ve few short-term in liable in many set	media, and caminant reduction rtical migration. npacts. Technology ttings.	Option is technic administratively implement	cally and feasible to	Costs are more compared to barriers.	derate other vertical
		Grout Curtains	\$			•	•		
			Option applicab contaminants, bu and is not effect Option produces is proven and re	le to all volumes, it provides no con- ive in limiting ve few short-term in liable in many se	media, and taminant reduction rtical migration. npacts. Technology ttings.	Option is techni administratively implement	cally and feasible to	Costs are mo compared to barriers.	derate other vertical
		Sheet Piles/	\$	•		•		•	•
		Vibrating Beam	Option applicab contaminants, b reduction and is migration. Option May be limited	le to all volumes, ut provides no co not effective in lin on produces no sh by site conditions	media, and ntaminant niting vertical ort-term impacts.	Option is techni administratively implement	cally and feasible to	Option require low capital and compared to barriers.	res relatively nd O&M vertical
		Cryogenic Walls	\$				•		•
			Option applicab contaminants, b reduction and is migration. Optio impacts. Technor many settings.	le to all volumes, ut provides no co not effective in l on produces few s ology is proven at	media and ntaminant imiting vertical short-term nd reliable in	Option is techni administratively implement	cally and feasible to	Costs are mo compared to barriers.	derate other vertical
Removal	Groundwater	Wells and	\$		\$	•			\$
	Collection	Subsurface Drains	Available to all However, only t appreciable perr short-term impa- is proven and re effective in low	volumes and satu hat portion of UC neability would c cts or worker expo liable, but extract permeability mate	rated media. CRS with ause minimal osure. Technology tion may not be trial of the UCRS.	Option is techni administratively implement.	cally and feasible to	Option requir to low capita and moderate compared to technologies	res moderate l to implement e to low O&M other removal
		Vacuum Enhanced		•	•			\$	\$
		Recovery (2 Phase or Dual Phase)	Available to all short-term impact is proven and re may limit effect simple extractio	volumes and mec ts or worker expo liable. Low perm iveness but is mo n.	lia only. Minimal sure. Technology eability of UCRS re effective than	Option is techni administratively implement.	cally and feasible to	Option requi capital to imp moderate O8 to other remo technologies	res moderate plement and kM compared oval

00-001(doc)/041301

			_	Effectiveness		Implem	entability	C	ost
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
Removal	Excavation	Solids and		\$		\$		•	
(Continued)		Semisolids Excavation	Option applicab media, and conta those areas with situ means of tre produces short-t and other constr proven but diffie	le to shallow (< 3 aminants only. Li limited infrastruc eatment or dispose erm impacts, of v uction-related im cult in saturated z	0 ft.) volumes, mited to only cture. Relies on <i>ex</i> al. Option vorker exposure pacts. Option is one.	Option is readily but not feasible permanent build Option is admin feasible.	y implementable beneath lings/structures. istratively	Capital costs depending or worker prote and method of treatment. Li required.	generally low a amount of ction required of disposal or ttle O&M is
		Solidify and Mine	\$	\$	0	\$	¢	\$	•
		(Freeze and Mine)	Option available specialized wast or reactive wast site impacts. Op environments. It applications.	e for rather homog tes. Most applicat es. Minimal work tion is proven on t is unproven for l	geneous, ble for explosive er exposure and ly for controlled large-scale	Technology is in Handling highly dangerous mater permitting issue	mplementable. toxic or rial could result in s.	Capital costs to high, while quite low con other <i>ex situ</i> technologies	are moderate e O&M can be npared to separation
In Situ Treatment	Physical/	Solidification/	\$	\$		Ŭ		\$	•
	Chemical Treatment	Stabilization	Option uses seve applied to all vol NAPL could lim gravel could mo uranium). Possil materials. Produc exposure. Most	eral methods to th umes, all media ar lit effectiveness. C bilize certain radio ble limitations in a ces some opportur methods are prov	hat could be ad all contaminants. Carbonate-based onuclides (e.g., reas of buried nity for worker en and reliable.	Technology is to administratively	echnically and r feasible.	Capital costs with the tech employed bu similar to oth technologies moderate to	are variable nology t overall er <i>in situ</i> Generally ow O&M.
		Electroosmosis	\$	•	\$	\$		\$	\$
		(Lasagna TM)	Option available Applicable to V Produces some term impacts. M limited applicat	e for all volumes OCs and some SV off-gas but relativ lethod is proven a ions at PGDP.	and media. VOCs only. vely few short- and reliable for	Technology is n below 30 ft, but administratively	ot as effective is / feasible.	Capital and C comparable t technologies	D&M costs are o other in situ
		Air Sparging and	\$			\$	•	•	
		Vacuum Extraction	Option available Applicable to V term impacts. N	e for all volumes OCs only. Produc lethod is proven a	and media. ces few short- and reliable.	Technology is to administratively Technology mu conjunction wit fracturing.	echnically and / feasible. st be used in h hydraulic	Capital and C low to mode to other <i>in si</i> chemical tec	D&M costs are rate compared u physico- hnologies.
		In Situ Aeration in	\$		¢	\$			
		the Saturated Zone (Air Sparging and UVB Wells)	• • • • • Option is available to VOCs only, probably limited to gravel zones in UCRS. Few short- term impacts. Air sparging technology is widely proven and reliable, but UVB wells are not widely used. Not proven in low parmeability materials. Technology is technically and administratively feasible. Capital and O&M low to moderate c to other <i>in situ</i> physical technology is technical technology.					D&M costs are rate compared tu physico- hnologies.	

00-001(doc)/041301 630586

630281

				Effectiveness		Implem	entability	C	ost
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
In Situ Treatment	Physical	Permeable		•	¢	•	•	\$	\$
(Continued)		Treatment Zones (Horizontal or Vertical)	Option available to all groundwater volumes and many contaminants. Few short-term impacts. Technology is proven and generally reliable, but some problems with long-term effectiveness.			Technology is to administratively	echnically and r feasible.	Capital and O&M costs are comparable to other <i>in situ</i> physio-chemical technologies.	
		Chemical Mixing	•	¢	\$	\$	\$	\$	•
		(Deep Soil Mixing)	Option available contaminants. Po buried materials worker exposure reliable.	to all volumes, a ossible limitation Produces little o Most methods a	all media and most s in areas of opportunity for are proven and	Must use care n incompatible wa reactive substan limited in some intricate intrastr	ot to mix astes or introduce ces. Accessibility areas with in uctive. Option is	Capital costs are comparable to low compared to other <i>in</i> <i>situ</i> technologies. O&M costs are low.	
	Thermal	Vacuum/Steam				administrativery	reasible.	A	
	Treatment	Extraction	Option available Potential for sur Applicable to V Produces few sh proven and relia	for all volumes a face expulsion at OCs and some SV ort-term impacts. ble.	and media. these depths. /OCs only. Method is	Technology is technically and administratively feasible. Will require hydraulic fracturing to be implemented in low permeability zones.		Capital and O&M costs are comparable to other <i>in situ</i> technologies.	
		Vitrification	\$	\$	0	¢ .	0	0	
			Option available contaminants, bu ft. Releases hot a release. Has not demonstrations.	e for all volumes, ut generally not for gases and potentia proven to be relia	media and easible below ~25 al for contaminant able in field	Technology is to but only at shall UCRS. Potentia difficulties base safety concerns.	echnically feasible ow portions of l administrative d on perceived	High capital c to other in sit O&M is mod during operat term O&M is	costs compared u technologies. lerate to high tions. Long s very low.
		EM/RF or Six-	\$	•	\$	\$	•	\$	\$
		Phase Soil Heating	Option available Few short-term i operation of off- used technology	Option available for VOCs and some SVOCs only. Few short-term impacts except for completion and operation of off-gas treatment system. Not a widely used technology. Not proven in this environment			echnically s with substantial ires. y feasible.	Costs are cor other thermal	nparable with I technologies.
	Biological	Monitored Natural	\$			\$	•	•	•
	Treatment	Attenuation	Option available Produces few sh reliable for many time frames.	e to VOCs and ma ort-term impacts, y constituents. M	any radionuclides. , proven and ay require long	Technology is to administratively	echnically and	Capital and C low compare biological tre technologies.	D&M costs are d to other eatment
		Bioventing/	\$	•		•	•	\$	
		Barometric Venting	Option available require co-metal chemicals). App Produces few sh proven and relia	for all volumes a polic processes, (licable to VOCs ort-term impacts. ble.	and media. May ex. addition of and some SVOCs. Method is	Technology is to administratively	echnically and / feasible.	Capital costs moderate and are comparab biological tre technologies.	are low to I O&M costs ble to other eatment

				Effectiveness		Implem	entability	C	ost	
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost	
In Situ	Biological	Enhanced	\$	•	•	•	•	÷	\$	
(Continued)	Treatment	Bioremediation	Option available	for all volumes a	and media.	Technology is to	echnically and	Capital and C	&M costs are	
	(Continued)		Applicable to V	OCs and some SV	OCs. Produces	administratively	feasible.	comparable to	o other	
			few short-term i	mpacts. Method i		biological tre	atment			
			reliable.			-		technologies.		
		Phytoremediation	\$	•	\$	•		\$	\$	
			Option is applicable to shallow to moderate depths and many contaminants in soil and shallow groundwater. Produces few short-term impacts and is largely proven and reliable, but not for all applications.Technology is technically and administratively feasible.Capital and O&M costs moderate compared to other biological treatment technologies.					0&M costs are npared to cal treatment		
Ex Situ Treatment	Refer to Table 3-J for evaluation of ex situ treatment technologies.									
Disposal Actions	Refer to Table 3-	Refer to Table 3-L for evaluation of disposal actions.								

Notes:

Shaded process options have been screened out.

Identification of copyrighted, patented, or trademarked names does not signify endorsement.

00-001005000 301

	Effectiveness	Implementability		Cost	
	Satisfies effectiveness criteria	•	Feasible to implement		Low cost compared to other options within the same technology type
•	Satisfies some, but not all, criteria	¢	May be feasible to implement	¢	Moderate cost compared to other options within the same technology type
0	Does not satisfy effectiveness criteria	0	Unfeasible to implement	0	High cost compared to other options within the same technology type

Explanation of Evaluation Criteria

- Effectiveness (primary focus) includes:
 - Potential effectiveness in handling the areas/volumes of media or recovering contaminated media and meeting remediation goals,
- Potential impacts to human health and environment during construction and implementation phase, and
- How proven and reliable the process is with respect to site contaminants and conditions.

• Implementability includes:

- Technical feasibility (e.g., availability of TSD and adequate capacity, availability of equipment and workers) and
- Administrative feasibility (e.g., ability to obtain permits).
- Cost includes:
 - Capital cost and
- O&M cost.

				Effectiveness		Implem	entability	Cost	
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
No Action	None	Not Applicable	O NA Option does not achieve RAQ. Option poses no short-term risks.			No action invol option; therefor and administrat implement.	ved with this e, it is technically ively feasible to	Option requires minimal y ("baseline") or no cost.	
Institutional Actions	Access Restrictions	Deed Restrictions	Option applicab but provides no produces no sho and reliable for	e to all volumes contaminant redu rt-term impacts. (restricting access	and contaminants, action. Option Option is proven	Option is techni administratively implement. Opt approval by the	cally and treasible to ion may require public.	Option requires relatively little capital to implement and little or no O&M, compared to other access	
		Site Protection/Security	Option applicable to all volumes and contaminants, but provides no contaminant reduction. Option produces no short-term impacts. Option is proven and reliable for restricting access. Option is technically and administratively feasible implement. A full securi program is already impl at the PGDP.					Option requir high capital to and significar compared to restriction tec	O es relatively o implement nt O&M, other access chnologies.
		Physical Barriers/Restrictions	Option applicab contaminants, b reduction. Option impacts. Option restricting acces	e to all volumes, ut provides no co on may produce n is proven and rel s.	• media, and ntaminant ninimal short-term liable for	Option is techn administratively implement. Phy already implem (i.e., a security the entire PGDI	fically and reasible to resical barriers are ented at the PGDP fence surrounds P).	O Option requir high capital to and moderate compared to restriction tec	♦ es relatively o implement O&M, other access chnologies.
	Administrative Options	Alternate Concentration Limits (ACLs)	• • • Option applicable to limited volumes of dissolved phase contamination. Option may produce limited short-term impacts. Provenness and reliability may be questionable for use in the RGA; prospects may be better in the McNairy.			Option does no technically imp throughout the technically imp McNairy. Optic administratively	t appear to be lementable RGA; may be lementable in the on should be y implementable.	φ φ Will require groundwater monitoring.	
		Technical Impracticability (TI) Waivers	Option applicab contaminants, b reduction. Optic impacts during and reliable	ele to all volumes, at provides no co on would not prov "implementation.	• , media, and ontaminant vide short-term " Option is proven	Option likely to contingency act	be used only as a tion.	• Will require g monitoring.	⊕ groundwater

Table C4-9. Evaluation of Remedial Technologies and Process Options For Regional Gravel Aquifer (60 to 100 feet deep) and McNairy (> 100 feet deep) Groundwater

				Effectiveness		Implementability		Cost	
General	Remedial		Volumes,						
Response	Technology		Media, &	Short-term	Provenness &	Technical	Administrative	Capital	O&M
Actions	Types	Process Options	Rem. Goals	Impacts	Reliability	Feasibility	Feasibility	Cost	Cost
Institutional	Monitoring	Water Monitoring	•		•		•	\$	\$
Actions			Option applicabl	le to all volumes,	media, and	Option is techni	cally and	Option may re	quire
(Continued)			contaminants, bu	ut provides no co	ntaminant	administratively	feasible to	relatively mod	lerate to high
			reduction. Optio	n may produce m	inimal short-term	implement. Rou	tine groundwater	capital to impl	lement and
			impacts, depend	ing upon the leve	l of construction	and surface wate	er monitoring is	moderate to h	igh O&M.
			required. Option	is proven and re	liable for	conducted at the	PGDP.	Cost is depend	lent upon the
			evaluating grour	ndwater and/or su	rface water			number of san	nples and
			characteristics, c	contaminants, and	trends.			analyses cond	ucted.
Groundwater	Subsurface	Slurry/Grout Walls	•	¢	\$	•	•	0	•
Containment	Vertical Barriers		Option applicab	le to all volumes,	media, and	Option is techni	cally and	Capital costs r	may range
Actions			contaminants. V	arious installation	n methods exist;	administratively	feasible to	from \$15 to \$2	$300/\mathrm{ft}^2$ (DOE,
			installation of a	vertical barrier in	to the	implement; how	ever, installation	1993a, ORNL	Technology
			RGA/McNairy c	could produce sig	nificant short-	near undergrour	d utilities may	Logic Diagrai	m, Vol I, Pt
			term impacts, de	epending upon the	e installation	require significa	int design	B, ORNL Tech	hnology Logic
			method. Althoug	gh this option is p	roven and reliable	consideration. C	ption is	Diagram, Vol	1, Pt B).
			for reducing hor	izontal migration	of groundwater	commercially av	allable from	Costs are like	ly to be
			and dissolved co	ontaminants, this	option is	several vendors	that may be	greater for dep	oths > 60 feet.
			unproven at dep	ths > 60 feet, and	the continuity of	capable of instal	liation to depths >	Option may g	enerate
			a deep installatio	on may be question	onable.	100 ieet.		wastes that re	quire
								additional nan	idling and
						1		disposal. Othe	r than use of
								groundwater i	tiveness this
								option require	e minimal
								O&M	3 mininai
		Sheet Piling	\$	\$	0	0	•	0	•
			Option applicab	le to all volumes,	media, and	Option is admin	istratively	Capital costs	may range
			contaminants. Ir	nstallation of a ve	rtical barrier into	feasible to imple	ement; however,	from \$30 to \$	$40/ft^2$ (DOE,
		1	the RGA/McNa	iry using pile driv	ing or vibratory	installation near	underground	1993a, ORNL	Technology
ļ			hammer method	ls will produce le	ss waste than	utilities may req	uire significant	Logic Diagra	m, Vol I, Pt
			installation of sl	urry/grout walls.	Although this	design consider	ation. Option is	B, ORNL Tech	hnology Logic
			option is proven	and reliable for	reducing	commercially a	vailable from	Diagram, Vol	1, Pt B).
			horizontal migra	ation of groundwa	ater and dissolved	several vendors	that may be	Costs are like	ly be greater
			contaminants, th	his option is unpre	oven at depths >	capable of insta	llation to depths >	for depths > 6	0 feet. Other
			60 feet, and the	hydraulic integrit	y of joints in a	100 feet, howev	er, installation of	than use of gr	oundwater
			deep installation	n may be of conce	em.	sheet piling into	/through the RGA	monitoring to	evaluate
						has proven near	ly impossible.	effectiveness,	this option
								requires minin	mal O&M.

00-001(doc)/041301 630590

Table C4-9.	(continue	ed)
-------------	-----------	-----

				Effectiveness		Implem	entability	Cost		
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost	
Groundwater	Subsurface	Polyethylene Wall	\$	\$	•	÷	•	0	•	
Containment Actions (Continued)	Vertical Barriers (Continued)		Option applicab contaminants. Ir trenching/excava vertical barrier i produce signific upon the installa is proven and re migration of gro contaminants, th 40 feet. Continu other subsurface	le to all volumes, astallation require ation techniques; nto the RGA/Mcl ant short-term im tion method. Alt liable for reducin bundwater and dis as option is unpro- ity of poly walls barriers.	media, and s use of installation of a Nairy could pacts, depending hough this option g horizontal solved oven at depths > may be better than	Option is techni administratively implement; how near undergrour require significa consideration. C commercially av vendors that mai installation to do Option may req (e.g., bentonite)	Capital costs may range from \$12 to \$45/ft ² (Gundwall). Costs are likely to be greater for depths > 40 feet. Option may generate wastes that require additional handling and disposal. Other than use of groundwater monitoring to evaluate effectiveness, this option			
						underflow.		requires minin	nal O&M.	
		Cryogenic Barriers	Option applicab contaminants. Ir augering/excava power usage; ins RGA/McNairy of term impacts, de method. Althoug for reducing hor and dissolved co unproven at dep	It to all volumes, installation requires ition techniques a stallation of a bar could produce sig epending upon the gh this option is p rizontal migration ontaminants, this ths > 40 feet.	media, and es use of nd high electrical rier into the nificant short- e installation proven and reliable of groundwater option is	Option is techni administratively implement; how near undergroun require significa consideration. C commercially a vendors that ma installation to d May be more eff interim action	ically and y feasible to vever, installation nd utilities may ant design Option is vailable from by be capable of epths > 100 feet. ffective as an	O Capital costs r than other con walls. Costs a greater for dep Active operati relatively high which are grea other alternati	O nay be highe tainment re likely to b oths > 40 fee on requires o O&M costs aer than all ves.	

				Effectiveness		Implem	entability	Cost		
General	Remedial		Volumes,							
Response	Technology		Media, &	Short-term	Provenness &	Technical	Administrative	Capital	O&M	
Actions	Types	Process Options	Rem. Goals	Impacts	Reliability	Feasibility	Feasibility	Cost	Cost	
Groundwater	Subsurface	Bio-barrier			0	0	¢	0	0	
Containment	Vertical Barriers		Option may be a	applicable to all v	olumes, media,	Option has not l	peen installed >	Capital costs may be higher		
Actions	(Continued)		and contaminan	ts. Requires instal	lation of injection	20 feet deep, an	d high VOC or	than all except the cryogenic		
(Continued)			system for imple	ementation, whicl	n may generate	metals may affe	ct microorganisms	barrier due to	preliminary –	
			wastes and coul	d produce minima	al short-term	adversely; there	fore, option may	engineering r	equirements.	
			impacts. Althou	gh this option is e	effective for	not be technical	ly feasible;	Costs are like	y to be greater	
			reducing horizo	ntal migration of	ground water and	therefore, option	n may not be	for depths > 2	20 feet.	
			dissolved contai	minants, this optic	on is unproven at	technically feas	ible to implement.	Installation m	nay generate	
			depths > 20 feet	wastes that rec	uire additional					
			concentrations of	handling and	disposal.					
			effective in the	RGA.		implement. Opti	on is commercially			
			available from vendors that may Active operation required to a substruction to a sub							
			be capable of installation to relatively high $O\&M$ (
						better suited for	formations with	Other than us	e ol monitoring to	
						smaller pore size	ronnations with	groundwater	nonitoring to	
						velocities (e.g.	UCRS) Option	option require	es minimal	
						has not been uti	lized for	O&M	es minimar	
						environmental a	applications (i.e.	ou		
1						oil field use onl	v).			
	Hvdraulic	Hvdraulic	•	¢	•		" •	\$	0	
	Containment	Containment	Option applicab	le to all volumes,	media, and	Option is techn	ically and	Typically lov	v to moderate	
	1		contaminants. V	Vith the exception	n of installing	administratively	y feasible to	capital cost a	nd high O&M	
			additional groui	ndwater extraction	n wells or	implement (in t	he RGA using	cost due to th	e long-term	
		21	monitoring well	ls, no significant s	short-term impacts	pump and treat	technology).	operations ne	eded to	
			expected. Prove	en effective at con	trolling migration	Option may be	operated	maintain and	verify	
			of groundwater	and dissolved pha	ase contaminants	indefinitely or u	intil contaminant	containment.		
			using pump and	I treat technology	Effectiveness in	sources are rem	oved/depleted.			
			the McNairy Fo	ormation is less ce	rtain due to the	Materials neces	sary for			
			low hydraulic c	onductivity of the	formation. The	implementation	are readily			
			overall effective	eness depends on	the design and	available.				
			operation of the	system (injection	wells can be					
			utilized to enha	nce effectiveness`).	1				

Table C4-9.	(continued)
-------------	-------------

			Effectiveness		Implementability		Cost				
General	Remedial		Volumes,								
Response	Technology		Media, &	Short-term	Provenness &	Technical	Administrative	Capital	O&M		
Actions	Types	Process Options	Rem. Goals	Impacts	Reliability	Feasibility	Feasibility	Cost	Cost		
Removal Actions	Extraction	In-well Stripping	♦	• · · • ·	.			•	¢		
(Groundwater		lincludes: UVB; No	Option applicable to all volumes and media. Option is technically and		Capital costs	Capital costs may range					
and/or		VOCs]	Option applicab	le to VOCs; optic	on not effective for	administratively	teasible to	from \$50K to 120K per			
Contaminant)			metals or radion	uclides. With the	exception of	implement. (ins	implement. (Installation near		well (EG&G). Operations		
			installing addition	onal groundwater	extraction wells	underground uti	lities should not	may generate wastes during installation that require			
			or monitoring w	ells, no significar	it short-term	require significa	int design				
			impacts expected	d. Option has bee	n used at several	modifications.) Option is commercially available from		additional handling and disposal. Operations			
			sites, but is less-	proven than P&1							
						vendors. May b	e useful for source	require moderate O&M			
						control, but not source (DNAPL)		(including electricity to			
						removal.		power the pumps). O&M			
								may be less the	nan for pump-		
								and-treat.			
		Electrokinetics	∲		O di mini		•		•		
			Option applicab	le to all volumes.	Option effective	Although implementability in $(50.0, d_{200})$ is		Option requir	es low to		
		Lasagna ^(m)	for moving grou	indwater with dis	solved	shallow soils (<	50 ft deep) is	moderate cap	ital and low		
			contaminants in	tine-grained soil	such as the	proven, installat	ion in the McNairy	O&M costs,	out costs are		
			Wichairy Forma	tion; technology		Formation may	require fracturing	dependent on the energy			
			ineffective in the	e RGA. Option ap	oplicable to VOCs	technologies to e	emplace electrodes	supply and di	iration of		
			(Including DNA	PL), metals, and/	or radionuclides.	and in the situ ti	eatment zones	remediation t	ime. Costs		
			Some snort-term	i impacts expecte	d; degree of	(for Lasagna	Standard	may range fro	m \$20 to		
			Impact is depend	ient upon installa	tion methods. The	electroosmosis	may be	\$225/yd (G)	VRIAC,		
			Lasagna	roosmosis techno	logy has been	implementable	by installing	Electrokinetic	cs, 10-97-03,		
			demonstrated at	the PGDP in the	UCKS (i.e., < 50	electrodes in we	en bores that allow	July 1997; als	so Dran Rapia		
			feet deep).			contaminated gr	oundwater to be	Commerciali	zation		
						pumped to the s	urface for	Initiative Ver	Ification		
						treatment. There	store, this option is	Statement for	Lasagna ^m ,		
						to believed to be to	connically reasible	undated). Op	uon may		
						io implement. C	puon may be	generate was	les during		
						foosible to imm	mistratively	additional ba	at require		
						alastrosamosis	ement. Standard	auditional ha	nunng and		
						electroosmosis	is commercially	disposal.			
						available.					

			Effectiveness			Implem	entability	Cost	
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
Removal Actions (Groundwater and/or Contaminant) (Continued)	Extraction (Continued)	"Pump and Treat"		♦ Interpretext of the product of	And contaminants ort-term impacts Extensive time dial goals. Option Superfund sites including two	Option is techni administratively implement. Opt operated indefin contaminant sou removed/deplet necessary for in readily available treat projects ar at the PGDP. O source control, (DNAPL) remo	reasibility ically and γ feasible to ion may be nitely or until urces are ed. Materials nplementation are e. Two pump and e being conducted ption useful for but source val.	Capital costs may range from < \$50 to \$100 (Evaluation of Technologia for In-situ cleanup of DNAPL Contaminated Sites, EPA/600/R-94/120, August 1994). Costs are likely to be greater for deptl > 60 feet. Installation of this option may generate wastes that require additional handling and disposal. Current pump ar treat O&M costs at the PGDP range from \$5/1,00 gal water treated (Northea Plume facility) to \$16/1,000 gal water treated (Northwest Plume facility (B. Ford 4/19/99 telephon call to D. Jolly. BJC).	
		Injection/Vacuum Extraction (including Dynamic Underground Stripping)	Option applicab contaminants, a permeable zone objectives in cla remedial action options. Modera of steam are exp Option demonst favorable result contaminants.	le to all volumes, nd DNAPL. Opti s, and it may achi ay zones, also. Op objectives quicke ate short-term imp pected during imp trated at three to f s on dissolved ph	dissolved on effective in eve remedial tion may achieve er than other bacts related to use elementation. Your sites with ase and NAPL	Option is techn administratively implement; how near undergrou require signific consideration. S option is comm for several venc is available from vendors. Most source zone red be cost-effectiv phase plumes.	ically and y feasible to vever, installation nd utilities may ant design Steam injection ercially available dors; DUS option m two licensed appropriate for luction; may not e for dissolved-	Option may r relatively hig O&M costs, l costs may be shorter remed frame. Costs from \$46 to \$ (EPA, 1997, <i>Selected enha</i> <i>SVE</i>). Option wastes during that require a handling and	equire h capital and out the high offset by a liation time may range 5166/yd ³ Analysis of ancements for may genera g installation dditional disposal.

Table C4-9.	(continued)
-------------	-------------

			Effectiveness		Implementability		Cost			
General	Remedial		Volumes,							
Response	Technology		Media, &	Short-term	Provenness &	Technical	Administrative	Capital	O&M	
Actions	Types	Process Options	Rem. Goals	Impacts	Reliability	Feasibility	Feasibility	Cost	Cost	
Removal Actions	Extraction	Six-Phase Soil	¢	¢	0	0	•	¢	¢	
(Groundwater	(Continued)	Heating	Option applicab	le to all volumes.	Option is	Option may be t	echnically and	Low to moder	Low to moderate capital	
and/or			effective for ext	raction of VOCs f	action of VOCs from low- administratively feasible to and O&M c			and O&M cos	sts, but may	
Contaminant)			permeability zor	nes, but ineffectiv	e for metals and	implement; how	ever, installation	ition be offset by a shorter		
(Continued)			radionuclides. N	loderate short-ter	m impacts may be	near undergrour	nd utilities may	remediation ti	me frame.	
			expected during	implementation of	due to safety	require signification	nt design	Costs may range from \$40		
			concerns associa	ited with use of h	igh voltages.	consideration. C	Option is	to \$99 yd ³ , including		
			Option has been	demonstrated in	unsaturated and	commercially a	vailable from one	treatment of secondary		
			saturated solls.	offectiveness is	ed in a flowing	hean installed to	. Option has not donthe > 40.6	wastes (Initiatives Online,		
			denth below the	water table is inc	reased		$\frac{1}{2}$ depths $\frac{1}{4}$ 40 ft.	Vol. 5, Spring 1998), but		
			depth below the	water table is me	itascu.			Ontion likely	is not cost	
								effective in th	e RGA or	
								McNairy, sind	ce it would	
								involve high o	energy	
								requirements	to adequately	
								heat the aquif	er and	
								contaminants		
		Microwave	Option unprover	Option unproven, and effectiveness is unknown.		Vendor, equipm	ent, and experts	Cost information is		
			Option is not av	ailable commerci	ally.	are unavailable.		unavailable.		
	Secondary/	Waterflooding or	¢	\$	\$			\$	\$	
	Enhanced	Injection	Option applicab	le to all volumes	and contaminants	Option is techni	cally and	Capital costs	may range	
	Recovery		except DNAPL.	Minimal short-te	erm impacts	administratively	feasible to	from \$75 to \$	125	
			expected during	implementation,	but extensive	implement. Mat	erials necessary	(Evaluation of	f Technologies	
			O&M period ma	ay be required. Of	ption likely	for implemental	ion are readily	for In-situ cle	anup of	
			incapable of ach	heving remedial g	goals. Hydraulic	available.		DNAPL Cont	aminated	
			ontion to be offer	ine KUA may be	iou great for this			August 1004	10/R-94/120, This option	
			option to be effe	cuve. Option cor	isidered proven			may generate	wastes that	
			and renaule.					require additi	onal handling	
								and disposal.	onal handling	

				Effectiveness		Implem	entability	Cost	
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
Removal Actions (Groundwater and/or Contaminant) (Continued)	Secondary/ Enhanced Recovery (Continued)	Surfactant Flooding and Pumping	Option applicable applicable for al flooding is specificable for a	Ie to al columns. I contaminants, b ific to VOCs (inc erm impacts expe Option not fully ing may be requir actant does not re ry Formation.		 ⊕ O Capital costs may range from \$75 to \$125 (Evaluation of Technologies for In-situ cleanup of DNAPL Contaminated Sites, EPA/600/R-94/120, Augus 1994). This option may generate wastes that requir additional handling and disposal. 			
		Polymer Waterflooding and Pumping	 Option applicab (including DNA expected during proven; it appea only one environ 	It to all volumes PL). Minimal sho implementation. rs to have been do mental project.	O and media ort-term impacts Option not fully emonstrated at	O Option not com available from v limited. Option i feasible to imple requires permits polymer(s).	the provided state with the second state withet with the second state with the second state with the second st	O Costs are unavailable. This option may generate wastes that require additional handling and disposal.	
		Chemically Enhanced Dissolution and Pumping (Cosolvents)	Option applicab applicable for al effective only for Minimal short-to implementation. Treatability testi	It to all volumes. I contaminants, b or VOCs (includir erm impacts experim Option not fully ing is suggested.	O Pumping out cosolvents are ng DNAPL). cted during proven.	Option not com available; vendo limited. Option administratively implement. Opti permits for inject cosolvents.	tion of	Capital costs from \$75 to \$ (Evaluation of Technologies cleanup of DI Contaminated EPA/600/R-9 1994). This of generate wast additional har disposal.	O may range 125 f for In-situ VAPL ! Sites, 4/120, August otion may es that require idling and
In Situ Groundwater Treatment	Physical/ Chemical Treatment	Solidification/ Stabilization	 Option uses sevents to all contaminal effectiveness. Comobilize certain Possible limitati Produces some of Most methods a effective in the limitation 	or a straight for the straight for th	could be applied limit ravel could g., uranium). uried materials. orker exposure. iable. May not be	↔ Technical feasit questionable. O administratively	Dility in RGA is ption is trasible.	Greater than S 1993b, ORNA Technology L Diagram, Vol \$150/yd ³ (DC ORNL Techn Diagram, Vol ORNL Techn Diagram, Vol	• 570/m ³ (DOE, AL ogic 2, Pt b) to E, 1993a, ology Logic 1, Pt B, ology Logic 1, Pt B).

			Effectiveness		Implementability		Cost			
General	Remedial		Volumes,							
Response	Technology		Media, &	Short-term	Provenness &	Technical	Administrative	Capital	O&M	
Actions	Types	Process Options	Rem. Goals	Impacts	Reliability	Feasibility	Feasibility	Cost	Cost	
In Situ	Physical/	Hydrous Pyrolysis/		\$	\$	\$	•	•	۲	
Groundwater	Chemical	Oxidation	Requires installation of injection network and Innovative technology v				ology which has	< \$20 per cubic yard		
Treatment	Treatment		electrodes; potential for generation of contaminated only be assessed emp				empirically. Has	(Faster Clean	up of	
(Continued)	(Continued)		wastes. Case study indicates very high not been evaluated without Contar				Contaminated	Contaminated Soil and		
			effectiveness for removing residual contamination. implementing DUS at same site.		Groundwater, Science &					
			Option used at o	only two sites.		Requires a relati	ively dense strata	Technology R	eview, May	
						to ensure thermal acceleration of		1998); potential for no		
Į						media and entrapment of		O&M costs. Option		
				condensate.				patented by LLNL.		
		Permeable	•	•	\$	•	•	¢	•	
		Treatment Walls	Option available	to all groundwar	ter volumes and	Technology is to	echnically and	Capital and O	&M costs are	
			many contamina	ints. Few short-te	rm impacts.	administratively	feasible.	comparable to	o other in situ	
			Technology is p	Technology is proven and generally reliable, but					nical	
			some problems with long-term effectiveness may					technologies.	Costs have	
			exist. Geochemi	cal and biologica	i concerns may			wide range fro	om < \$2/SF to	
			2000 at Southw	ss. 15 is deing co	onducted in FY			> \$30/SF		
		In Sity Chamical	2000 at Southwest Plume site.		A		<u>م</u>	<u>ф</u>		
		Treatment	Effective for dis	solved phase TC	F Not effective	Requires injecti	Φ		w and intensive	
		(Oxidation)	for DNAPI No	t effective for ⁹⁹ T	C. Potential	aquifer(s)		O&M	and intensive	
		(Oxidation)	concern regardin	ng nossihle reacti	ons with organic	aquiter(s).		Octivi.		
			carbon in the M	cNairy.	ons with organic					
		Ozone Injection	\$	•••••••	•	•	•	•	•	
		(C-Sparge)	Effective for dis	solved phase TC	E. Not effective	Technically and administratively				
		(for DNAPL. No	t effective for 99T	c, vendor claims	feasible.		Low capital a	nd O & M	
l			add-on option ca	an treat ⁹⁹ Tc.						
		Sodium Dithionate	\$	0	0	\$	0	\$	0	
		Injection	Effective for 99T	c, but unproven.	Not applicable for	applicable for Option believed		Option patent	Option patented by PNNL.	
			DNAPL. Reaction	on may be revers	ible.	feasible. Option requires permits		Commercial costs		
					for injection of reducing agent.		unavailable.			
	Biological	Monitored Natural	\$		¢	\$	¢	¢	•	
	Treatment	Attenuation	Ineffective for 9	Tc or DNAPLs.	Not effective for	Implementable.	Requires	Low capital a	nd low to	
			removing VOCs	from the RGA.	Additional site	additional grour	ndwater	moderate O&	M costs	
			characterization	would be require	ed to determine if	monitoring data	to define decay	associated wi	th long-term	
			it is able to addr	ess low concentration	ations of TCE in	rates and to mor	nitor	groundwater	monitoring.	
			the McNairy.			effectiveness. N	INA accepted by	Extensive mo	nitoring and	
						EPA, but never	used in Kentucky.	modeling req	uired.	
Table C4-9. (continued)

				Effectiveness		Implem	Implementability		ost
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
In Situ	Biological	In Situ	•	•	¢	•	•	•	\$
Groundwater	Treatment	Biodegradation	Both co-metabol	lic and anaerobic	biodegradation	Technology is in	mplementable	Costs are unc	ertain due to
Treatment	(Continued)	-	are effective in r	emoving TCE fro	om the	with appropriate	e approvals and	limited inform	nation on
(Continued)			groundwater. UC	groundwater. UCRS without DNAPL is a prime UIC per				Anaerobic Bi	oremediation.
Ì Í			target, but RGA	or McNairy could	d be another			Costs for simi	ilar operations
			target. Anaerobi	c bioremediation	will require			at Dover AFE	and INEEL
			larger quantities of electron donor to render RGA					TEN North Si	ite are not yet
	ļ		anaerobic and pi	rovide environme	nt for degradation			published.	
			of TCE. Techno	logy will not rem	ove metals and or				
			radioactive cont	aminants.					
		Bio-sparging	\$	•	\$	\$	\$	\$	\$
			Co-metabolic, se	ee above for TCE		See above			
								See above	
Ex Situ	Refer to Table 3-	E for identification of	ex situ groundwate	er treatment techr	nologies				
Groundwater									
Treatment									
Disposal Action	Refer to Table 3-	L for evaluation of dis	posal actions.						

C4-47

Notes: Shaded process options have been screened out. Identification of copyrighted, patented, or trademarked names does not signify endorsement.

	Effectiveness		Implementability	Cost			
	Satisfies effectiveness criteria		Feasible to implement	•	Low cost compared to other options within the same technology type		
\$	Satisfies some, but not all, criteria	\$	May be feasible to implement	\$	Moderate cost compared to other options within the same technology type		
0	Does not satisfy effectiveness criteria	0	Unfeasible to implement	0	High cost compared to other options within the same technology type		

Table C4-9. (continued)

Explanation of Evaluation Criteria

- Effectiveness (primary focus) includes:
 - Potential effectiveness in handling the areas/volumes of media or recovering contaminated media and meeting remediation goals,
 - Potential impacts to human health and environment during construction and implementation phase, and
 - How proven and reliable the process is with respect to site contaminants and conditions.

• Implementability includes:

- Technical feasibility (e.g., availability of TSD and adequate capacity, availability of equipment and workers) and
- Administrative feasibility (e.g., ability to obtain permits).
- Cost includes:
- Capital cost and
- O&M cost.

				Effectiveness		Implem	entability	C	ost
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
Ex Situ	Solids Handling	Magnetic Processes,	\$	0	\$	•		\$	\$
Treatment Crushing and Grinding, Shredding and Chipping, and Screening			Option available conjunction with could result duri could occur. Wa increased waste most waste areas	e for soils and oth a excavation. We ng handling; ero ste segregation e volumes. Option s.	ner solids in orker exposure sion of material elsewhere has not proven for	Option is technically and administratively feasible. Would require a large, secure area as a staging and processing area.		Capital costs for equipment and labor; O&M on equipment and residual material are comparable or higher compared to other <i>ex</i>	
	Solids	Gravity Settling,	\$	\$	•	\$	•		\
Dewatering		Filter Press, Dewatering Beds, Belt Filters, Vacuum Filtration, Centrifuges	Option available conjunction with wastes. Worker handling. Option clayey soils.	e for soils and set of excavation to set exposure could r or requires long ti	misolids in egregate saturated esult during me intervals in	Option is techni May be difficult volumes. Option administratively	ically feasible. t for large waste n is y feasible.	Moderate capital costs. O&M costs are comparable to other <i>ex situ</i> treatment technologies.	
	Physical	Screening,	\$	\$	•	•		•	•
	Separation Classification, Gravity Concentration Magnetics		Option available most contaminar groundwater. W manual methods most material.	e for saturated so nts. Also applica orker exposure c s. Option is prove	ils and solids and ble for NAPL in could occur for en and effective for	Option is techni administratively implement.	ically and / feasible to	Capital costs compared to technologies. intensive ope in moderate (are low other <i>ex situ</i> Labor eration results O&M costs.
	Physical/	Solidification/	\$		•	•		\$	\$
	Chemical Separation	Stabilization	Option available for most volumes, media, and many contaminants; however there is no volume reduction. Option is largely proven but long-term effectiveness is uncertain.			Option is techni administratively applications.	ically and y feasible for most	Capital and O&M costs comparable to other <i>ex situ</i> separation technologies.	
		Chemical Extraction		\$	•	\$	\$	¢	¢
		(Solvent Extraction)	Option available for most small to medium volumes, some media, and certain contaminants. Could increase waste volumes. Possible worker exposure and site impacts. Option is proven and reliable for some wastes			Technology un of these applica may be adminis due to permittin	proven for many tions. Technology stratively difficult ng.	Capital costs are moderate to high, while O&M also could be high compared to other <i>ex situ</i> separation technologies.	
		Electrokinetic	¢	\$	0	\$	•	\$	•
		Removal	Option available volumes some n Possible worker is not proven or environment.	e for most small nedia, and certain exposure and sit known to be reli	to medium n contaminants. te impacts. Option able in this	Technology unp of these applica is administrativ	proven for many tions. Technology ely feasible.	Capital costs to high, while quite low con other <i>ex situ</i> technologies.	are moderate e O&M can be mpared to separation

Table C4-10. Evaluation of Remedial Technologies and Process Options for Ex Situ Treatment Technologies for Soils and Solids

Table C4-10. (continued)

				Effectiveness		Implem	entability	C	ost
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
Ex Situ Treatment (Continued)	Physical/ Chemical Separation (Continued)	Soil Washing/Leaching	 ◆	 for small to media (soil, sedi result in increase worker exposure. 	• ium volumes, and ment and some d waste volumes. Operation is	Technology is n materials, but is is administrative leachate may ha issues.	• not proven for all feasible. Option ely feasible but twe permitting	Capital costs and O&M are comparable to or lower than other <i>ex situ</i> separation technologies. O&M costs can be high due to long processing times	
Dechlorination: Glycolate/Base- catalyzed			Option available most media. Ap benefit from deh organics, PCBs, exposure. Optio	to read to med plicable only to c alogenation (i.e., dioxin, etc.). Cou n is unproven for	• lium volumes, and onstituents that solvent-related ld result in worker large volumes.	• Technology is fr applications. Ha toxic material co permitting issue	easible for limited andling of highly ould generate ss.	Capital and C comparable to separation teo	0&M costs are b other <i>ex situ</i> chnologies.
		Chemical Reduction- Oxidation	Option available most media. Typ result in worker		• lium volumes, rganics. Could	• Technology is to feasible. Permit problematic.	echnically ting may be		
	Biological Treatment	Biodegradation: Composting (Land-farming)	Image: system Image: system Option available for small to medium volumes of some soils/sludges contaminated with organics. Option not proven or reliable for all wastes.			Technology is to administratively	echnically and y feasible.	Capital costs low compare biological tre technologies. O&M costs of time frames.	are relatively d to other atment Moderate ue to long
		Biodegradation: Slurry-Phase Treatment	Option available some soils/sludg Option not prov	Image: system of the system			echnically and y feasible.	Capital and C comparable w biological tec	• • • • • • • • • • • • • •
	Thermal Treatment	Incineration				• Technology is t administratively Permitting may	echnically and y feasible. be difficult.	Capital costs compared to thermal techn high due to fi monitoring re	are moderate other ex situ ologies. O&M uel costs and equirements.
		Pyrolysis	Option available some soils/sludg Option is proven	or small to meet the for small to meet the small the small to meet the small the small the small to meet the small the sm	ium volumes of with organics.	• Technology is t administratively Permitting may	echnically and y feasible. be difficult.	Capital and C comparable v situ thermal t	• • • • • • • • • • • • • •

Table C4-10. (continued)

				Effectiveness		Implem	Implementability		ost
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Administrative Feasibility	Capital Cost	O&M Cost
Ex Situ	Thermal	Thermal Desorption	\$		•		•	•	•
Treatment (Continued)	Treatment (Continued)		Option available for most volumes of soils and sludges contaminated with organics and volatile metals. Option is proven and reliable.			Technology is technically and administratively feasible.		Capital and O&M costs are lower compared to other <i>ex</i> <i>situ</i> thermal technologies.	
		Vitrification (ex	\$	¢	•	•	•	0	
		situ)	Option available for smaller volumes, solid or semisolid media, and all contaminants. NAPL could limit effectiveness. Carbonate-based gravel could release certain radionuclides (e.g., uranium). Technology produces manageable short-term impacts and is proven and reliable.			Technology is to administratively	chnically and feasible.	High capital a costs compare situ thermal te O&M include consumption storage of mo	and O&M ed to other <i>ex</i> echnologies. s power and disposal/ noliths.

Notes:

Shaded process options have been screened out.

Identification of copyrighted, patented, or trademarked names does not signify endorsement.

	Effectiveness	Implementability			Cost		
	Satisfies effectiveness criteria		Feasible to implement		Low cost compared to other options within the same technology type		
4	Satisfies some, but not all, criteria	¢	May be feasible to implement	\$	Moderate cost compared to other options within the same technology type		
C	Does not satisfy effectiveness criteria	0	Unfeasible to implement	0	High cost compared to other options within the same technology type		

Explanation of Evaluation Criteria

- Effectiveness (primary focus) includes:
 - Potential effectiveness in handling the areas/volumes of media or recovering contaminated media and meeting remediation goals,
 - -- Potential impacts to human health and environment during construction and implementation phase, and
 - How proven and reliable the process is with respect to site contaminants and conditions.

• Implementability includes:

- Technical feasibility (e.g., availability of TSD and adequate capacity, availability of equipment and workers) and
- Administrative feasibility (e.g., ability to obtain permits).

• Cost includes:

-- Capital cost and

— O&M cost.

General	······································		
Response Actions	Remedial Technology_Types	Process Options	Effectiveness, Implementability, and Cost Screening Comments
<i>Ex Situ</i> Treatment Actions	Physical/Chemical/ Biological Treatment	Air Stripping	This is a presumptive technology for treatment of extracted groundwater. The Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996, constitutes this phase of the screening for this process option.
		Granular Activated Carbon	This is a presumptive technology for treatment of extracted groundwater. The <i>Presumptive</i> Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996, constitutes this phase of the screening for this process option.
		Chemical/UV Oxidation	This is a presumptive technology for treatment of extracted groundwater. The Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996, constitutes this phase of the screening for this process option.
		Aerobic Biological Reactors	This is a presumptive technology for treatment of extracted groundwater. The Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996, constitutes this phase of the screening for this process option.
		Chemical Precipitation	This is a presumptive technology for treatment of extracted groundwater. The Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996, constitutes this phase of the screening for this process option.
		Ion Exchange/Adsorption	This is a presumptive technology for treatment of extracted groundwater. The Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996, constitutes this phase of the screening for this process option.
		Electrochemical Methods	This is a presumptive technology for treatment of extracted groundwater. The Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996, constitutes this phase of the screening for this process option.
		Aeration of Background Metals	This is a presumptive technology for treatment of extracted groundwater. The Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996, constitutes this phase of the screening for this process option.
		Membrane Separation	This is a presumptive technology for treatment of extracted groundwater. The Presumptive Response Strategy and Ex-Situ Treatment Technologies for Contaminated Ground Water at CERCLA Sites, Final Guidance, EPA 540/R-96/023, October 1996, constitutes this phase of

the screening for this process option.

Table C4-11. Evaluation of Presumptive Technologies for Treatment of Extracted Groundwater

Table C4-11. (continued)

General Response Actions	Remedial Technology Types	Process Options	Effectiveness, Implementability, and Cost Screening Comments
Pretreatment Actions	Solids Dewatering	Gravity Settling, Filter Press, Dewatering Beds, Belt Filters, Vacuum Filtration, Centrifuges, In Situ Dewatering	These pre-treatments are retained as-needed to support other ex situ treatment process options.
	Physical Separation	Screening, Classification, Gravity Concentration, Coagulation/Flocculation, Magnetic separation	These pre-treatments are retained as-needed to support other ex situ treatment process options.
	Physical/Chemical Treatment	Neutralization	This pre-treatment is retained as-needed to support other ex situ treatment process options.
		Solidification/Stabilization	This pre-treatment is retained as-needed to support other ex situ treatment process options.

Notes:

Shaded process options have been screened out. Identification of copyrighted, patented, or trademarked names does not signify endorsement.

				Effectiveness		Implem	entability	C	ost
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Admini- strative Feasibility	Capital Cost	O&M Cost
Disposal Actions	On-Site	Permitted Facility	 			Diseasel at this	• •	•	
			PGDP is the C-7 hazardous and lo 30 pCi/g uranium not be applicable radionuclides.	permitted dispo- 746-U Landfill. C ow-level waste co n are allowed to e for media with	al facility at only non-RCRA ontaining less that be disposed. May ≥ 30 pCi/g	Disposal at this technically and feasible. But ap narrow range or concentrations.	actility is administratively plicable only to a a contaminant	Low cost con other disposa	npared to 1 actions.
		Constructed	<u> </u>	•	•	0	¢	0	0
		Disposal Cell	Effective for all (depending on c have few short-t main plant area. reliable.	volumes, media, onstruction). Cor erm impacts if lo Constructed cell	and contaminants astruction should cated outside s are proven and	Facility does no implementable extensive permi opposition may construction of be cost effective	t exist. Could be but will require tting. Public delay or halt facility. May not	High cost compared to other disposal actions.	
	Off-Site	RCRA Facility	.	\$	•	•	•	0	NA
	Disposal		Effective for disposal of RCRA Hazardous Waste. Not suitable for most radionuclides or TSCA wastes. May cause worker or public exposure from transport. RCRA landfills are proven and reliable.			Technologically administratively Transport requir permitting.	y and y feasible. res additional	other disposal actions.	
		TSCA Facility	¢	\$	•	•	¢	0	NA
			Applies only to public exposure Technology is p	TSCA wastes. The during loading a roven and reliable	nreat of worker or nd transport. e.	Technologically administratively Transport requir permitting.	y and y feasible. res additional	High cost con other disposa	mpared to I actions.
		(Low-Level)	\$	\$		•	\$	\$	NA
	Radioactive Waste Facility		Effective disposal for low-level wastes comprising most media. Worker and public exposure is possible during transport. Technology is proven and reliable.			Substantial was be disposed of i Transport requi permitting.	te volumes could n such a facility. res additional	Moderately h compared to actions.	iigh cost other disposal
		Mixed-Waste	•	\$		•	•	0	NA
	Facility		Effective for disposal of waste containing TCE, PCBs, and low-level constituents. This includes solids, stabilized sludges, soils, building rubble, concrete, ash, and asbestos. Potential worker/public exposure during transport. Proven and reliable option.			Substantial was be disposed of i Transport requi all affected state	te volumes could n such a facility. res permits from es.	Very high co to other dispo	st compared osal actions.

Table C4-12. Evaluation of Remedial Technologies and Process Options for Disposal Actions

Table C4-12. (continued)

				Effectiveness			entability	Cost	
General Response Actions	Remedial Technology Types	Process Options	Volumes, Media, & Rem. Goals	Short-term Impacts	Provenness & Reliability	Technical Feasibility	Admini- strative Feasibility	Capital Cost	O&M Cost
Disposal Actions	Interim Storage	On-Site Storage	\$	\$	•	\$	•	¢	\$
(Continued)			Does not provid volumes could p Potential for wo implementation.	e final dispositior produce perception rker exposure dur Option is proven	n of wastes. Large n problems. ing n and reliable.	Interim storage unavailable. Ma additional perm	facility currently y require itting.	Capital costs comparable to options. O&M inspection/ m requirements.	are o other A includes ionitoring

Notes:

Shaded process options have been screened out.

Identification of copyrighted, patented, or trademarked names does not signify endorsement.

	Effectiveness	Implementability			Cost		
•	Satisfies effectiveness criteria	•	Feasible to implement	•	Low cost compared to other options within the same technology type		
¢	Satisfies some, but not all, criteria	\$	May be feasible to implement	¢	Moderate cost compared to other options within the same technology type		
0	Does not satisfy effectiveness criteria	0	Unfeasible to implement	0	High cost compared to other options within the same technology type		

Explanation of Evaluation Criteria

- Effectiveness (primary focus) includes:
 - -- Potential effectiveness in handling the areas/volumes of media or recovering contaminated media and meeting remediation goals,
- --- Potential impacts to human health and environment during construction and implementation phase, and
- How proven and reliable the process is with respect to site contaminants and conditions.
- · Implementability includes:
 - Technical feasibility (e.g., availability of TSD and adequate capacity, availability of equipment and workers) and
 - Administrative feasibility (e.g., ability to obtain permits).

Cost includes:

- Capital cost and
- O&M cost.

APPENDIX C5

ERRATTA SHEET

1) On page 8, paragraph 2, change

11

"As an approximation, it is assumed that the mass of TCE is 1901 (50 gal)."

to

"As an approximation, it is assumed that the volume of TCE is 1901 (50 gal)."

2) On page 42, paragraph 1, change

"The upgradient 100 mg/L (ppm) TCE isoconcentration contour appears to map the DNAPL source zones of the RGA. Moreover, the US Environmental Protection Agency recommends the use of 1% of the solubility of DNAPL (1% of the solubility of TCE is 110 mg/L) as an indication of DNAPL presence (EPA, 1992)."

to

"The upgradient 100 mg/L (ppm) TCE isoconcentration contour appears to map the DNAPL source zones of the RGA. Moreover, the US Environmental Protection Agency recommends the use of 1% of the solubility of DNAPL (1% of the solubility of TCE is 11 mg/L) as an indication of DNAPL presence (EPA, 1992)."

Jacobs Engineering Group Inc.

MEMORANDUM

DATE:	November 18, 1999	JE/PAD/99-0019
TO:	Bryan Clayton, Bechtel Jacobs Company LLC	
FROM:	Bruce M. Ford TS, we TES	
SUBJECT:	Task 116 — Waste Area Group 27 Trichloroethene Sour	rce Estimates

Attached is the final version of the *Waste Area Group 27 Trichloroethene Source Estimates*. These estimates were developed in support of the Groundwater Operable Unit (GWOU) Feasibility Study (FS) and incorporate comments from the GWOU FS team.

If you have any questions please contact me at (270) 462-2550.

Attachment

cc:	Bruce Phillips, SAIC
	Sarah Maudlin, SAIC
	Document Control

THIS PAGE INTENTIONALLY LEFT BLANK

extent of elevated dissolved TCE levels indicates the DNAPL source zone is relatively small and restricted to the UCRS. (Similar trends associated with UCRS source zones occur at the C-400 Building.) Three process areas in the vicinity of Boring P4-H7 must be considered initially as the potential original source of the TCE DNAPL: C-409, C-720, and C-728.

The C-409 Stabilization Building is located approximately 68.6 m (225 ft) northeast of Boring P4-H7. C-409 Building activities included testing of waste handling processes. A TCE recovery system was housed in the building (but experienced little use). The building is designed to retain any spills from process leaks.

The WAG 27 RI Borings 720-029 and 720-030 are located immediately west of the C-409 Building. Soil and water samples from the borings indicate that only low concentrations of TCE exist in the subsurface of the C-409 area. Trichloroethene levels in all UCRS soil samples are less than the WAG 27 RI laboratory detection limits and the maximum dissolved TCE level in RGA water samples is 33 μ g/l. Moreover, the RGA potentiometric surface in the C-720 Building area, as measured during the WAG 27 RI, shows the C-409 Building is cross-gradient to Boring P4-H7. Thus, the C-409 Building does not appear to be the source of TCE observed in Boring P4-H7.

The C-728 Motor Cleaning Facility is approximately 53.3 m (175 ft) northwest of Boring P4-H7. No use of TCE is reported in descriptions of C-728 facility processes. Mineral spirits were used as the cleaning agent; thus, it is unlikely that the C-728 Building is the source of TCE to an area DNAPL zone.

Boring P4-H7 is adjacent to an outside concrete pad that is contiguous with the C-720 Building. Anecdotal evidence suggests that machinery/equipment being brought into the C-720 Building for repair occasionally was cleaned (degreased) on the concrete pad prior to entry into C-720. Runoff of TCE, used as the degreasing agent, is a likely source of DNAPL in the vicinity of Boring P4-H7.

As part of the WAG 27 RI, Boring 720-027 sampled UCRS soils to a depth of 14.6 m (48 ft) [elevation 99.4 m (326 ft) amsl] adjacent to Boring P4-H7 [0.84 m (2.8 ft) to the west]. Sample analyses reveal elevated TCE levels beginning at a depth of 6.1 m (20 ft) that range up to 8,100 μ g/kg. Well MW204 is screened in the UCRS and located approximately 30.5 m (100 ft) to the south. Analyses of dissolved TCE levels in MW204 range up to 320 μ g/l. These data suggest that Boring P4-H7 is near the DNAPL source zone but not located within it. Soil concentrations within the heart of the DNAPL zone can be expected to be approximately 65,000,000 μ g/kg (assuming 30% DNAPL saturation), declining to 10,000 μ g/kg and less within a distance of 3 to 6.1 m (10 to 20 ft) (refer to Attachments 1 and 2). The dissolved TCE levels observed in MW204 are much less than expected of a UCRS DNAPL source zone. Characterization sampling of the Cylinder Drop Test DNAPL zone, for comparison, commonly revealed TCE concentrations of 300,000 μ g/l in UCRS water samples.

For the purposes of estimating a source volume, the conceptual model of the DNAPL source is a small volume of TCE runoff from an undocumented degreasing operation on the C-720 concrete pad. In the conceptual model, the TCE runoff infiltrated over a small area at the edge of the concrete pad to the base of the HU2 horizon sands in the UCRS, where the interface with the underlying HU3 clay horizon would halt further migration.

Boring 720-018: 720-018 is located at the northwest corner of the same concrete pad. Table 2 presents the results of TCE analyses of water samples from the boring. The consistent dissolved TCE level throughout most of the RGA is difficult to interpret. Contaminant trends in Boring P4-H7 and at the southwest and northeast corners of Building C-400 show that a UCRS DNAPL typically will result in elevated dissolved TCE levels only in the uppermost RGA. However, a DNAPL source distributed throughout most of the thickness of the RGA would be expected to result in much higher levels of dissolved TCE. The sample density in the C-720 area, and downgradient to the northwest, appears to be sufficient to rule out the occurrence of an undetected core of much higher dissolved TCE levels.

Location	Elevation	Elevation	TCE
	(m amsl)	(ft amsl)	(µg/1)
Upper RGA	93.9	308	1197
Upper RGA	92.4	303	1170
Middle RGA	90.8	298	1262
Middle RGA	89.3	293	1118
Lower RGA	87.8	288	1045
Lower RGA	86.3	283	289

Table 2. Trichloroethene Analyses for Boring 720-018

This apparent contradiction of source effects can be resolved in the context of the hydrology of the C-720 area. The subcrop of the Porters Creek Clay, which defines the southern extent of the RGA, occurs nearby and south of the C-720 Building. Most of the area south of the C-720 Building that overlies the RGA is paved. Thus, little area recharge to the RGA is realized south of the C-720 Building (upgradient of Boring 720-018) and little lateral throughflow is developed. In consequence, sources of recharge south of the C-720 Building "fan" across the thickness of the RGA.

The conceptual model to account for the dissolved TCE levels in Boring 720-018 is a DNAPL zone located in the UCRS and upgradient (via flow in the RGA) of the boring. This potential DNAPL source is restricted to the east side of the C-720 Building and most likely occurs south of the building.

The WAG 27 RI report identified a storm sewer exiting near the southeast corner of the C-720 building as a likely DNAPL source, based on TCE-in-soil levels observed in Boring 720-002. For the dissolved TCE contamination found in Boring 720-018, the conceptual model of the DNAPL source is a leak in the storm sewer system servicing the C-720 Compressor Shop Pit area, at the point where the storm sewer passes from beneath the building (adjacent to Boring 720-002). Because dissolved TCE concentrations in the RGA at Boring 720-018 do not approach levels that would be expected to be derived from an RGA source zone, it is assumed that the DNAPL migrated downward no further than the base of the HU2 sand horizon in the UCRS.

DNAPL Source Zone Volumes: C-720 Area

Boring P4-H7 Area: WAG 27 Boring 720-027, located adjacent to Boring P4-H7, sampled TCE levels in soils through the UCRS. Trichloroethene levels were highest in HU2 sandy silt and silty sandy gravel layers to a depth of 10.7 m (35 ft), elevation 103.6 m (340 ft) amsl. Table 3 summarizes the lithologic log and TCE analyses from Boring 720-027.

Two lines of evidence suggest the DNAPL mass is relatively small. The lack of significant TCE-in-soil levels at the Boring 720-027 location, adjacent to Boring P4-H7 (the presumed source area), demonstrates little lateral extent of the DNAPL zone. TCE-

in-soil levels and the limited extent of the dissolved-phase plume indicate the DNAPL source is restricted to the UCRS. Apparently inadequate DNAPL mass was available to penetrate beyond a depth of 10.7 m (35 ft). The available data is insufficient to derive a mass or volume of the DNAPL source zone.

DEPTH		ELEVATION		LITHOLOGY SUMMARY	TCE LEVELS (µg/kg)
(m)	(ft)	(m)	(ft)		
1.5-5.5	5-18	108.5-112.5	356-369	Silty clay	<900; <900; <900
6.1-7.0	20-23	107.0-107.9	351-354	Gravely clay	5,000
7.0-7.9	23-26	106.1-107.0	348-351	Sandy gravel	500
7.9-8.5	26-28	105.5-106.1	346-348	Gravely sand	not sampled
8.5-9.4	28-31	104.5-105.5	343-346	Clay	not sampled
9.4-10.1	31-33	103.9-104.5	341-343	Silty, clayey sand	8,100
10.1-10.7	33-35	103.3-103.9	339-341	Gravely sand	not sampled
10.7-14.6	35-48	99.4-103.3	326-339	Clay	1,800; 300; <900

Table 3. Lithology and Trichloroethene Levels in Boring 720-027

As an approximation, it is assumed that the mass of TCE is 190 l (50 gal). The average TCE saturation for the UCRS DNAPL source zones at WAG 6 (including both the high-saturation core and the surrounding soils with greater than 0.1% TCE saturation) was found to be 5.7%. Using a DNAPL saturation of 5.7%, the DNAPL zone would encompass 9.2 m³ (326 ft³) (assuming a soil porosity of 36%). If distributed evenly over the 10.7 m (35 ft) depth, the plan view area of the DNAPL zone would be 0.8 m² (9 ft²).

Southeast C-720 Storm Sewer: WAG 27 Borings 720-022 and 720-002 define the lithology and TCE levels in the area of the Southeast C-720 storm sewer. Table 4 summarizes the data for this area:

Table 4. Lithology and Trichloroethene Levels Near the Southeast C-720	
Storm Sewer	

DEPTH		ELEVATION		LITHOLOGY SUMMARY (720-022)	TCE LEVELS (720-002) (μg/kg)	
(m)	(ft)	(m)	(ft)			
1.5-3.7	5-12	109.7-111.9	360-367	Silty clay	37; 17,000	
3.7-5.5	12-18	107.9-109.7	354-360	Gravely clay	19,000	
6.1-10.1	20-33	103.3-107.3	339-352	Gravely sand	32,000; 68,000	
10.1-15.2	33-50	98.1-103.3	322-339	Silty clay	not sampled	

The following assumptions are used to estimate the volume of the DNAPL source zone.

- (1) The TCE leak occurred at the point where the storm sewer passes from beneath the building [4.0 m (13 ft) from Boring 720-002].
- (2) The source begins at a depth of 2.6 m (8.5 ft) (depth of the area storm sewers).
- (3) The depth to water table is 5.8 m (19 ft) (based on a conceptual water table map for the PGDP).

.

(4) The base of the DNAPL zone coincides with the base of the HU2 sand horizon.

For the purpose of estimating the volume of the vadose DNAPL zone, the DNAPL zone is assumed to approximate a cylinder with height of 3.2 m (10.5 ft) [depth to water table/5.8 m (19 ft), less depth to source zone/2.6 m (8.5 ft)] and radius of 4.0 m (13 ft) (distance from Boring 720-002 to assumed leak source). This cylinder (the vadose DNAPL zone) has a volume of 157.9 m³ (5,575 ft³).

The DNAPL zone below the water table will again be assumed to approximate a cylinder. The height of the cylinder is 4.3 m (14 ft) [depth to base of the HU2 sand horizon/10.1 m (33 ft), less depth to the water table/5.8 m (19 ft)] and the radius remains 4.0 m (13 ft). Thus, the saturated DNAPL zone has a volume of 210.5 m³ (7,433 ft³).

The following assumptions are used to determine the mass of TCE and the average DNAPL saturation of the DNAPL zone.

- (1) The average DNAPL saturations of the vadose and saturated zones are different.
- (2) The vadose zone has an average water saturation of 50%.
- (3) TCE levels of 18,000 μ g/kg characterize the vadose DNAPL zone and 68,000 μ g/kg characterize the saturated DNAPL zone at Boring 720-002.
- (4) The DNAPL saturation of the center of the DNAPL zone (where vertical migration occurred) is 30%
- (5) The zone of vertical migration has minimal width.

Attachment 1 presents the calculation of the TCE-in-soil level for water saturations of 10%, 30%, 50%, and 70% and a DNAPL saturation of 30%. The TCE concentration for a 50% water saturated soil is 66,992,964 μ g/kg. A soil with DNAPL saturation of 30% occurring below the water table (water saturation of 70%) has a TCE-in-soil level of 61,746,186 µg/kg. By assuming that the decline in DNAPL saturation (and TCE concentration) with distance from the zone of vertical migration is similar to dispersion, the DNAPL saturation (TCE concentration) at a given location can be determined through application of a fixed multiplier per unit distance. Attachment 2 documents the multiplier (derived through iteration) required to match TCE concentrations in the core of the DNAPL zone and at Boring 720-002 for both above and below the water table. The total distance used in these calculations is the radius of the DNAPL zone [4.0 m (13 ft)]. The average TCE concentration of the DNAPL zone is derived by averaging the TCE concentrations over all of the unit distances [0.3 m (1 ft) increments] and an average DNAPL saturation is determined, based on the TCE level. Table 5 presents the average derived DNAPL saturation and, assuming a UCRS soil porosity of 36%, the volume of DNAPL present above and below the water table.

				-			
	ELEVATION		DNAPL SATURATION		DNA VOLL	.PL JME	
	(m)	(ft)	(%)	(m ³)	(ft ³)	(1)	(gal)
Vadose Zone	107.6-110.8	353-363.5	3.7	2.1	74	2,103	556
Saturated Zone	103.3-107.6	339-353	4.2	3.2	112	3,183	841

Table 5. Dense Nonaqueous Phase Liquid Volume in the Southeast C-720Storm Sewer Source

<u>Other DNAPL Zones</u>: WAG 27 soil borings at other locations proximal to the storm sewer system around the C-720 Building sampled soils with TCE-in-soil levels less than 20,000 μ g/kg. The above DNAPL source zones and their dissolved-phase plume do not account for additional occurrences of dissolved TCE in the upper RGA (up to 10 μ g/l). TCE has not been used in a plant process at the PGDP for over five years. Thus, these occurrences likely attest to other DNAPL occurrences. It is anticipated that the storm sewer network around the C-720 Building, in general, is a DNAPL source zone with very low DNAPL saturation.

Conceptual Model: C-747-C Former Oil Landfarm

The WAG 27 investigation of the C-747-C Former Oil Landfarm included seven soil borings yielding soil samples with 10,000 μ g/kg TCE or greater (see attached Figure 4.4 from the WAG 27 RI Report for a map of area boreholes). These soil borings define a "hotspot" area with greater than 10,000 μ g/kg TCE of up to 471.5 m² (5,075 ft²). By assuming these TCE occurrences result from DNAPL presence, a DNAPL (liquid) volume of 56.4 m³ (1,991 ft³ or 56,379 1/14,895 gal) can be derived using the same procedures as above. However, there is no evidence, otherwise, of mass disposal of TCE at C-747-C. More likely, the TCE release was the disposal of a single drum of spent solvent.

As a conceptual model, the TCE release has been assumed to occur into a single plow "lane" of the former landfarm. Highest TCE-in-soil concentrations were routinely found in Boring 001-065. Thus, the route of vertical DNAPL migration appears to have occurred near Boring 001-065.

DNAPL Source Zone Volume Assessment: C-747-C Former Oil Landfarm

The Cylinder Drop Test Area, a nearby TCE spill site with adequate characterization, provides a useful comparison for the Former Oil Landfarm. At the Cylinder Drop Test Area, dissolved-phase TCE concentrations are 300,000 μ g/l or greater in the DNAPL source zone. For water saturated soil with 36% porosity and 300,000 μ g/l TCE in the water, the TCE-in-soil concentration would be 52,000 μ g/kg (assuming no sorbed TCE is present).

With one exception, [a soil sample from Boring 001-065, at 4.7 m (15.5 ft) depth, with 400,000 μ g/kg TCE] the highest TCE-in-soil levels in the "hot spot" ranged between 10,000 and 87,000 μ g/kg. These levels are easily accounted for by dissolved phase contamination derived from a small DNAPL source zone. For the lone sample outlier with 400,000 μ g/kg, the DNAPL saturation may have been as much as 0.13%, assuming a dry soil. The TCE mass represented in the WAG 27 samples from the Former Oil Landfarm is diminishingly small.

ATTACHMENT 1

Derivation of TCE in soil (µg/kg) for 30% DNAPL Saturation (expected only in the core of the DNAPL source zone)

Assumptions:

- Soil grain density = 2.65 g/cm^3
- TCE specific gravity = 1.46 g/cm³
- Water specific gravity = 1.00 g/cm^3
- Soil porosity = 36%

Water Saturation (%)	Total Density (g/cm³)	TCE* (g/cm³)	TCE (μg/kg)
10	1.95	0.16	80,709,226
30	2.15	0.16	73,214,219
50	2.35	0.16	66,992,964
70	2.55	0.16	61,746,186

*TCE (g/cm³) = specific gravity x (porosity x DNAPL saturation)

=1.46 x (0.36 x 0.30) = 0.157

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT 2

Derivation of TCE in soil (µg/kg) for the DNAPL Zones

Boring 720-002 Area

Depth to water = 5.8 m (19 ft)Distance to presumed source = 4.0 m (13 ft)

Sample Data Summary

	TCE	
(m)	(ft)	(µg/kg)
2.1	7	37
3.0	10	17,000
4.3	14	19,000
6.7	22	68,000
6.7	22	32,000

	Vadose Zone Saturation = 50%	%	Saturated Zone			
M	ultiplier = 0.531	283	Multiplier = 0.5921803			
Distance	e	TCE	Distatnee	2	TCE	
(m)	(ft)	(µg/kg)	(m)	(ft)	(µg/kg)	
0.0	0	66,992,964	0.0	0	61,746,186	
0.3	1	35,592,223	0.3	1	36,564,875	
0.6	2	18,909,543	0.6	2	21,652,999	
0.9	3	10,046,319	0.9	3	12,822,479	
1.2	4	5,337,438	1.2	4	7,593,220	
1.5	5	2,835,690	1.5	5	4,496,555	
1.8	6	1,506,554	1.8	6	2,662,771	
2.1	7	800,407	2.1	7	1,576,841	
2.4	8	425,242	2.4	8	933,774	
2.7	9	225,924	2.7	9	552,963	
3.0	10	120,030	3.0	10	327,454	
3.4	11	63,770	3.4	11	193,912	
3.7	12	33,880	3.7	12	114,831	
4.0	13	18,000	4.0	13	68,000	
Average =		10,207,713	Average =	-	10,807,633	
					·	
DNAPL Saturation = 3.7%			DNAPL Satura	ation =	4.2%	

* The multiplier is an approximation of the percentage of DNAPL mass remaining with unit distance (1 ft interval, in this case) from the core of the DNAPL zone.

THIS PAGE INTENTIONALLY LEFT BLANK

.

. .

ATTACHMENT 3

TCE in Soil (μ g/kg) at the C-747-C Former Oil Land Farm

(contour intervals are 1,000 and 10,000 µg/kg)

 \mathbf{X} without a value = non detect

THIS PAGE INTENTIONALLY LEFT BLANK

C-747-C "HOT SPOT" SOIL BORINGS

Plant East (ft)

 $|\alpha|$

TCE LEVEL (365.0 - 371.5)

Plant East (ft)

i"

TCE LEVEL (360.0 - 364.9)

Plant East (ft)

h:

TCE LEVEL (345.0 - 349.9)

Plant East (ft)

TCE LEVEL (340.0 - 344.9)

Plant East (ft)

:*

TCE LEVEL (335.0 - 339.9)

Plant East (ft)

TCE LEVEL (330.0 - 334.9)

Plant East (ft)

:*

630631

TCE LEVEL (325.0 - 329.9)

Plant East (ft)

TCE LEVEL (320.0 - 324.9)

Plant East (ft)

.

THIS PAGE INTENTIONALLY LEFT BLANK

DERIVATION OF

ì

TRICHLOROETHENE AND 99 TECHNETIUM

SOURCE ZONE VOLUMES

FOR THE WAG 6 AREA

PADUCAH GASEOUS DIFFUSION PLANT

PADUCAH, KENTUCKY
THIS PAGE INTENTIONALLY LEFT BLANK

¥

CONTENTS

INTRODUCTION TCE DNAPL SOURCE ZONES ⁹⁹TECHNETIUM SOURCE ZONES DISSOLVED PHASE PLUMES DEPTH OF MIGRATION OF TCE DNAPL DEPTH OF 99 TECHNETIUM SOURCE DNAPL VOLUME CALCULATION IN THE UCRS Southeast C-400 Block (TCE Transfer Pump and TCE Leak Site/SWMU 11 Source Zones) South-End C-400 Building Storm Sewer and C-403 Neutralization Pit/SWMU 40 Source Zones DNAPL VOLUME CALCULATION IN THE RGA NOTES ON CALCULATION OF DNAPL VOLUMES ⁹⁹TECHNETIUM SOURCE ZONE CALCULATION IN THE UCRS Technetium Storage Tank/SWMU 47 Source Zone C-403 Neutralization Pit/SWMU 40 Source Zone MASS OF ⁹⁹TECHNETIUM IN THE UCRS SOURCE ZONES REFERENCES APPENDICES Appendix A: Isoconcentration Maps of TCE in Soil for the Southeast C-400 Block

- Appendix B: TCE in Soil Analyses for the Area of the C-400 Building Southwest Storm Sewer
- Appendix C: Contoured Isoconcentration Maps of Dissolved-Phase TCE and Contoured Isoactivity Maps of Dissolved Beta Activity for the RGA

630637

		TABLES
Table	1.	Summary of UCRS Properties in the Southeast
Table	2.	Area and Volume of the TCE DNAPL Zone in the
		UCRS in the Southeast C-400 Area
Table	3.	Calculation of TCE DNAPL for the Southeast C-400 Block
Table	4.	Summary of UCRS Properties in the Southwest
	_	C-400 Area and the North C-400 Area
Table	5	Calculation of TCE DNAPL for the South-End
	•••	Storm Sewer and C-403 Sources
Table	6	Unner RGA DNAPL Source Zone Assumptions
Table	· · ·	Colculation of the Volume of the PCA DNAPL
Table	/.	Source Zones
Table	8.	Distance to TCE Isoconcentration Contours
		Along Transect
Table	9.	Fit of Unit Factor (0.67) to Transect Data
Table	10.	Derived DNAPL Saturation of the Source Zone
Table	11.	Calculation of the Volume of DNAPL in the
		RGA Source Zones
Table	12.	Volume of DNAPL in the RGA Source Zones
Table	13.	Summary of UCRS Soil Textures for the Former
		Location of the Technetium Storage Tank
Table	14	⁹⁹ Technetium in Subsurface Soil Analyses for
+4010	-	Boring 047-002
Table	15	Summary of UCRS Textures for the Area of the
10010	10.	C-403 Neutralization Dit
Table	16	C-105 Medicialization Fit
rabie	το.	Summary of OCRS Technetium Source Zones
		FIGURES

- Figure 1. Plot of Dissolved Beta Activity Versus Dissolved ⁹⁹Technetium Activity from the WAG 6 Data Base
- Figure 2. Average DNAPL Saturation of UCRS DNAPL Source Zone

630636

DERIVATION OF SOURCE ZONE VOLUMES

INTRODUCTION

The WAG 6 Remedial Investigation (RI) collected subsurface soil and water samples from 133 boreholes within and adjacent to the C-400 block. As anticipated and documented in this calculation package, the data confirm that the C-400 area contains the primary sources of trichloroethene (TCE) and ⁹⁹technetium (⁹⁹Tc) to the Northwest Plume and a plume trending east from the north corner of the C-400 block. Useful characterization data are largely derived from soil samples in the UCRS and water samples within the RGA.

Taken together, the data indicate the presence of four discrete sources of TCE and two discrete sources of ⁹⁹Tc near C-400. In addition, there is a diffuse source of ⁹⁹Tc on the east side of the C-400 building and an undefined source of ⁹⁹Tc south of the C-400 block that impacts water quality in the lower RGA on the east side of the C-400 Building.

TCE DNAPL SOURCE ZONES

This analysis of the WAG 6 data infers the presence of four TCE DNAPL source zones located: 1) at the site of a former TCE transfer pump (southeast C-400 block), 2) along the storm sewer at the C-400 Leak Site/SWMU 11 (southeast C-400 block), 3) along the storm sewer exiting the south end of the C-400 Building (southwest C-400 block), and 4) beneath the C-403 Neutralization Pit/SWUM 40 (northeast corner C-400 block).

Only the southeast corner of the C-400 block is sufficiently sampled in 3-dimensions to map/model TCE levels within the UCRS DNAPL zone. Because no meaningful data regarding TCE levels in RGA soils could be collected by the WAG 6 RI, the depth and width of the RGA source zone must be inferred from the dimensions and vertical trends of the resulting dissolved-phase plumes and conceptual models. Appendix A presents isoconcentration maps of TCE in soil for the southeast C-400 block.

For the DNAPL source zone associated with the C-400 Building southwest storm sewer, the UCRS soil data define TCE in soil concentrations near the edge of the DNAPL zone and a perimeter of very low to nondetect levels of TCE in soil. Appendix B presents the TCE-in-soil analyses for this area. The presence of DNAPL at the C-403 Neutralization Pit (SWMU 40) is inferred solely from levels of dissolved-phase TCE, both in the RGA and in water that collected within the C-403 Neutralization Pit during the RI.

⁹⁹TECHNETIUM SOURCE ZONES

The dimensions of the ⁹⁹Tc source zones in the UCRS are based on conceptual models. Too few ⁹⁹Tc analyses resulted from the WAG 6 RI. However, the plot of dissolved beta activity to ⁹⁹Tc activity shows a strong, near 1:1, relationship (Figure 1). The RI provides sufficient analyses of dissolved beta activity to map the primary ⁹⁹Tc source to the Northwest Plume in the northwest corner of the C-400 block. This source zone is south of the Waste Discard Sump/SWMU 203 (located at the northwest corner of the C-400 Building). The former Technetium Storage Tank/SWMU 47 appears to be the likely remaining candidate spill source. Elevated ⁹⁹Tc activity in soil was detected in soil borings at the former tank location.

Dissolved beta activity suggests a second discrete source of ⁹⁹Tc exists at the northeast corner of the C-400 Building. The C-403 Neutralization Pit/SWMU 40 appears to be the ⁹⁹Tc source. High dissolved ⁹⁹Tc activity has been reported from a shallow well adjacent to C-403. The water that collected in the C-403 Pit during the RI had high beta activity.

The upper RGA on the east side of the C-400 Building has a near uniform beta activity of 100-200 pCi/L. This activity appears to be derived from a diffuse source. The fan room plenum basement on the east side of the building is a potential release mechanism with appropriate size to generate an UCRS source with low activity.

Much higher dissolved beta activity, 800-900 pCi/L appears near the base of the RGA on the east side of the C-400 Building. This increase in beta activity appears to be due to a separate plume flowing into the C-400 area from the south. The source of this plume remains undefined.

DISSOLVED PHASE PLUMES

Appendix C provides TCE isoconcentration contour maps and beta isoactivity contour maps of the RGA in the C-400 area. Previous interpretations of the groundwater contaminant plumes at PGDP, consistent with the present interpretation, indicate significant lateral and vertical development of the plumes. Consequently, the data set was discretized vertically to generate 'slice' maps. As determined by the sampling frequency, the dissolved phase contaminant levels are grouped for mapping in five ft thick intervals between the elevations of 285 ft and 315 ft above mean sea level.

To constrain the possibilities regarding the number and locations of source areas and location and orientation of plumes, these maps have been contoured to be compatible (flow directions inferred from dissolved TCE trends match flow directions inferred from dissolved ⁹⁹Tc trends). An additional constraint placed on the contour maps was that the inferred flow direction could not significantly change between adjacent depth intervals. Thus, data from adjacent depth intervals biases the contour interpretation, maximizing the use of the available data.

Vertical flow predominates in the UCRS and has significant impact in the uppermost RGA, where the sediments typically are finer grained than the middle and lower RGA (interpreted to mean the upper RGA has a lower hydraulic conductivity than the middle and lower RGA). Thus, the high contaminant levels in the top 'slice' interval mark the entry point of the DNAPL or core of dissolved contamination into the RGA and help to point to the spill location.

Lateral trends of the main contaminant plumes sourced in the C-400 area are well developed in the next lower interval, 305.0 - 309.9 ft. With increasing depth, the impact of the shallow DNAPL sources are diminished and the areal extent of the high concentration TCE core of the plume becomes smaller.

DEPTH OF MIGRATION OF TCE DNAPL

As interpreted by these vertical trends, the C-403 DNAPL source is constrained to the UCRS. (This site impacts dissolved phase TCE levels only down to an elevation of 310 ft). It appears that the DNAPL source zones associated with the TCE Leak Site/ SWMU 11 and the south-end storm sewer penetrate to the upper RGA. (These sites influence dissolved phase TCE levels down to an elevation of 300 ft.) TCE, as DNAPL, from the TCE transfer pump appears to have migrated to the base of the RGA where a small DNAPL pool has formed. (TCE levels in nearby boring 400-037 increase at the base of the RGA.)

DEPTH OF 99 TECHNETIUM SOURCE

Dissolved-phase beta activity is limited to the upper RGA beneath C-403, suggestive of a source term in the UCRS. This is consistent with the expected behavior of 99 Tc. The high solubility of 99 Tc in oxidized water, such as the RGA, would tend to inhibit the development of a secondary source in the RGA.

The depth of penetration of the ⁹⁹Tc source tentatively associated with the Technetium Storage Tank (SWUM 47) remains uncertain.

Here, the dissolved-phase beta activity penetrates to the base of the RGA. One possible interpretation is that the oil containing the ⁹⁹Tc concentrate (a mixture of polyaromatic hydrocarbons) also was a DNAPL that has penetrated to the base of the RGA. No indications of a polyaromatic hydrocarbon source are known from the northwest C-400 Building area. Presumably, these oils have very low solubilities that would not result in an appreciable dissolved-phase plume of polyaromatic hydrocarbons.

DNAPL VOLUME CALCULATION IN THE UCRS

Southeast C-400 Block (TCE Transfer Pump and TCE Leak Site/ SWMU 11 Source Zones

Table 1 summarizes the soil textures described from boring 400-207. This boring is being used to represent the geology of the UCRS for the source zones in the southeast C-400 area. The assumed porosity for the UCRS sediments is the mean of measurements from 16 UCRS samples collected for the WAG 6 RI.

Depth	Elevation of Base of	Representative	Assumed
Interval	Interval	Lithology	Porosity
(ft)	(ft)		(%)
0-33	346	silt to silty clay	36
33-45	334	gravely sand	36
45-57	322	silty sand to fine sand	36

Table 1. Summary of UCRS Properties in the Southeast C-400 Area

For the purpose of calculating a TCE DNAPL volume in the UCRS for the southeast C-400 block, the maps of Appendix A have been used to define the area containing soil with 100 μ g/g or greater TCE. Assuming the density of the TCE DNAPL is 1.46 g cm³, the specific gravity of the UCRS soil grains is 2.65 g/cm³, and the soil has a porosity of 36% with a 0.1% DNAPL saturation, the associated soil TCE concentration is 308,948 μ g/Kg or 309 μ g/g. Thus, the maps define the area containing soils with approximately 0.1% saturation and greater.

Note: In Estimating Potential for Occurrence of DNAPL at Superfund Sites (EPA, 1992), a DNAPL saturation of 1% in soil is presented as an indication of DNAPL presence. The use of a 0.1% saturation level to define the DNAPL zone is due to the limits of resolution capable with the data set. The WAG 6 RI analyzed soils from the southeast C-400 block with greater than 1% DNAPL saturation.

The approximate area for each depth interval slice is presented in Table 2.

Depth Interval	Area Containing 100	Thickness	Volume
(ft)	PPM TCE or Greater	Represented	Represented
	(ft^2)	(ft)	(ft ³)
365.0 - 369.9	4,000	14*	56,000
360.0 - 364.9	3,400	5	17,000
355.0 - 359.9	5,070	5	25,350
350-0 - 354.9	3,730	5	18,650
345.0 - 349.9	2,500	5	12,500
340.0 - 344.9	3,560	5	17,800
335.0 - 339.9	2,130	5	10,650
330.0 - 334.9	3,330	8**	26,640

Table 2. Area and Volume of the TCE DNAPL Zone in the UCRS in the Southeast C-400 Area

* Land surface to subsurface elevation 365.0 ft.

** Elevation 334.9 ft to top of the RGA at 327 ft elevation.

Characterization data from the original SWMU 11 investigation and the WAG 6 and WAG 27 RIs all suggest the DNAPL migration pathways through the UCRS are essentially straight down. This is consistent with the general texture of the UCRS silts and clays which have no observable lateral-to-vertical anisotropy. Thus, the 'footprint' of the leak source is the width of the source zone with highest DNAPL saturation.

The distribution of TCE levels in the southeast C-400 block suggests the TCE concentration declines near-logarithmically with distance from the DNAPL migration pathway. Several assumptions have been made to derive a representative DNAPL saturation of the source zone:

- The DNAPL volume in the area containing less than 100 $\mu g/g$ (~0.1% saturation) of TCE in soil is insignificant.
- The vertical migration pathway of the DNAPL has an insignificant width.
- The residual TCE saturation of the vertical DNAPL migration pathway (center of the DNAPL zone) is 30% (the maximum residual saturation suggested for the PGDP site by Dr. B. H. Kueper, 1991).
- DNAPL levels decline at a uniform percentage per unit distance from the source zones (similar to dispersion effects). Thus, for a DNAPL zone with a 30% saturation at the center and a 0.1 % saturation at the edge, the average DNAPL saturation in soil is 5.7% (Figure 2).

The calculation of volume of TCE DNAPL is the product of the volume of the TCE DNAPL source zone, the porosity, and the saturation. Table 3 documents the calculation of volume of DNAPL for the southeast C-400 block.

630643

630642

Unit Factor = 0.751872

Figure 2. Average DNAPL Saturation of UCRS DNAPL Source Zone

Table 3. Calculation of TCE DNAPL for the Southeast C-400 Block

Depth	Volume	Assumed	Assumed	TCE DNAPL	
Interval	Represented	Porosity	Saturation	Volume	
(ft)	(ft ³)	(%)	(%)	(ft ³)	
322 - 379	184,590	36	5.7	3,788	

A volume of 3,788 ft^3 is equal to 28,338 gallons (107,259 liters).

South-End C-400 Building Storm Sewer and C-403 Neutralization Pit/SWMU 40 Source Zones

Soil characterization data are sufficient for the south-end C-400 Building storm sewer to determine that a DNAPL source zone exists at the point where the storm sewer exits from beneath the building. However, the data are inadequate to define the TCE DNAPL levels in three dimensions. The inference that a DNAPL source zone exists at the C-403 Neutralization Pit is based only on dissolved TCE levels, in the upper RGA and in the fill water that collected within the pit during the RI.

As previously discussed, the DNAPL source zone associated with the south-end storm sewer apparently extends to the RGA whereas the C-403 source zone is constrained within the UCRS. Borings 400-045 and 400-042 will be used to represent the geology of the UCRS for the south-end storm sewer and C-403 DNAPL source zones, respectively.

Table	4.	Sum	nary	of	UCRS	Proj	perties	in	the	Southwest	C-400	Area
		and	the	Nor	th C	-400	Area					

Depth	Elevation of Base	Representative	Assumed
Interval	of Interval	Lithology	Porosity
(ft)	(ft)		(%)
	Boring 400-045	(Southwest C-400 Area)	
0-16	360.5	silt to silty clay	36
16-47	329.5	silty sand and gravel?	36
47-52	324.5	silt and clay	36
	Boring 400-042	2 (North C-400 Area)	
0-20	358.5	silt to silty clay	36
20-42	336.5	silty sand and gravel	36
42-62	316.5	silty clay	36
		with sand and gravel	

It will be assumed that the UCRS DNAPL zone extends the full 52 ft depth of the UCRS soils in the southwest C-400 block but is limited to a depth of 42 ft beneath C-403.

630644

The width of these TCE DNAPL zones remains largely undefined.

South-End Storm Sewer Source

Boring density is sufficient to determine that the width of the south-end sewer system DNAPL zone does not extend 100 ft from the source. If we assume that 100 μ g/g (~0.1% saturation) of TCE in soil defines the DNAPL source zone, only one WAG 6 boring was completed in the source zone. The TCE levels (94 and 200 μ g/g) suggest the boring, located approximately 30 ft south of the C-400 Building, is near the edge of the source zone.

Following calculations of the south-end storm sewer source will be based on the assumption that the DNAPL leak occurred at the edge of the building footprint and that the source zone is symmetrical. Thus, the south-end storm sewer source will be a cylinder with a 30 ft radius, centered on the south end of the C-400 Building where the storm sewer exits from beneath the building.

C-403 Source

WAG 6 borings around the perimeter of the C-403 Neutralization Pit did not return soil samples with TCE levels approaching 100 μ g/g. As a default value, the following calculations of the C-403 source zone will be based on the assumption that the source zone (defined by TCE levels in soil greater than 100 μ g/g) extends half the width of C-403. The C-403 Neutralization Pit measures 25 ft square in plan view. The C-403 Neutralization Pit source zone will be approximated as a cylinder centered below C-403, with a radius of 6.25 ft.

Table	5.	Calculation	of T	CE	DNAPL	for	the	South-End	Storm	Sewer
		and C-403 Sc	ources	5						

Height	Radius	Volume	Assumed	Assumed	TCE		
(ft)	(ft)	Represente	Porosity	Saturation*	DNAPL		
		d	(%)	(%)	Volume		
		(ft ³)			(ft ³)		
Sout	South-End Storm Sewer Source (324.5-376.5 ft elevation)						
52	30	147,027	36	5.7	3,017		
C-403 Neutralization Pit Source (336.5-378.5 ft elevation)					evation)		
42	6.25	5,154	36	5.7	106		

* From the derived saturation of the southeast C-400 area source zones.

The 3,017 ft³ of DNAPL in the south-end storm sewer source is equal to 22,570 gallons (85,427 liters) and the 82 ft³ of DNAPL in the C-403 source is equal to 793 gallons (3,002 liters).

DNAPL VOLUME CALCULATION IN THE RGA

The upgradient 100 mg/L (ppm) TCE isoconcentration contour appears to map the DNAPL source zones of the RGA. Moreover, the US Environmental Protection Agency recommends the use of 1% of the solubility of DNAPL (1% of the solubility of TCE is 110 mg/L) as an indication of DNAPL presence (EPA, 1992). Table 6 presents the assumptions used to define the area of the DNAPL source zones in the upper RGA (based on the TCE isoconcentration contour map for the elevation interval 310.0 - 314.9 ft).

TCE DNAPL Source Zone	Areal Extent Assumption	Area (ft ²)
TCE Transfer Pump	cylinder with radius of 90 ft	25,447
TCE Leak Site (SWMU 11)	line source 200 ft long by 5 ft wide	1,000
South-End Storm Sewer	cylinder with radius of 25 ft	1,963

Table 6. Upper RGA DNAPL Source Zone Assumptions

The geologist's logs and geophysical logs of WAG 6 borings 400-038 and 400-207 provide the most detailed description of soil properties for the south end of the C-400 Building. These borings will be used to represent the RGA DNAPL source zones. In both borings, an upper fine to medium grained sand horizon (base at elevation 323 ft in boring 400-038 and elevation 322 ft in boring 400-207) overlies a thick interval of coarse sand and gravel.

As previously discussed, the slice maps of dissolved-phase TCE levels suggest different depths of penetration for the DNAPL source zones. All three of the RGA source zones are represented in the slice map for the elevation range 310.0 - 314.9 ft. The influence of the south-end storm sewer diminishes rapidly with depth. For the approximation of the south-end storm sewer DNAPL zone, the base of the DNAPL zone will be assumed to be the base of the upper sand horizon at 322 ft.

The influence of the TCE Leak Site (SWMU 11) DNAPL source zone is evident down to an elevation of approximately 305 ft in the slice maps of dissolved-phase TCE levels. This depth closely corresponds to the depth (307 ft elevation) of an anomaly on the neutron porosity log of boring 400-207 and the depth (302 ft elevation) of an abrupt decline in field measurements of volatile organic compound levels (FID) in the soil core of boring 400-207. The base of the TCE Leak Site DNAPL zone will be assigned an elevation of 305 ft.

TCE isoconcentration contours indicate a DNAPL source zone extends to the base of the RGA near the location of the TCE

transfer pump. Moreover, an increase in dissolved-phase TCE levels from boring 400-207 at the base of the RGA may signify the presence of a DNAPL pool at the base of the RGA. For the estimate of the DNAPL source zone below 305 ft elevation, the source zone will be assumed to approximate a cylinder measuring 25 ft in radius (based on the TCE isoconcentration contour map for the elevation interval 290.0 - 294.9 ft) and to extend to the base of the RGA, at an elevation of 286 ft.

Table 7. Calculation of the Volume of the RGA DNAPL Source Zones

TCE DNAPL Source Zone	Areal Dimensions (ft)	Area (ft ²)	Thickness (ft)	Volume (ft ³)
TCE Transfer Pump (305-327 ft elevation)	radius = 90	25,447	22	559,834
TCE Transfer Pump (286-305 ft elevation)	radius = 25	1,963	19	37,297
TCE Leak Site/SWMU 11 (305-327 ft elevation)	length = 200 width = 5	1,000	22	22,000
South-End Storm Sewer (322-324.5 ft elevation)	radius = 25	1,963	2.5	4,908

The WAG 6 RI characterized soil properties around the C-400 Building. The mean of 26 measurements of porosity of RGA soils is 40%. An average TCE saturation level is required for the calculation of DNAPL volume. Unfortunately, no suitable samples for measurement of TCE levels in soil have been recovered from the coarse sand and gravel of the RGA.

The only available data related to DNAPL saturation in the RGA are the dissolved-phase levels of TCE. These limited measurements cannot be directly linked to a saturation level. However, the decline of dissolved-phase TCE levels with lateral distance from the center of the DNAPL source zone (with the exception of the direction of groundwater flow) may be a model of decrease of DNAPL saturation.

The following derivation of average DNAPL saturation for the source zone (upgradient area with dissolved-phase TCE levels greater than 100 mg/L) assumes that the profile of dissolved-phase TCE levels in a direction normal to groundwater flow is a direct measure of the distribution of DNAPL saturation. Dispersion will also reduce dissolved-phase TCE levels away from the source zone. For this derivation, the effect of DNAPL distribution is assumed to be dominant.

This derivation is based on a conceptual model of a narrow pathway of vertical migration at the center of the DNAPL source zone. The coarse sand and gravel of the RGA is assumed to retain

630649

a DNAPL saturation of 20% (33% less than expected in the UCRS) in the core of the DNAPL source zone. As in the UCRS, DNAPL saturation in the RGA soils is assumed to decrease away from the center of the source zone by a uniform factor per unit distance.

The profile of dissolved-phase TCE levels for this derivation is taken east of the location of the former TCE transfer pump from the elevation slice 310.0 - 314.9 ft. Table 8 summarizes the relevant data from this transect.

Table	8.	Distance	to	TCE	Isoconcentration	Contours	Along
		Transect					

Dissolved-Phase	Lateral Distance From
TCE Level	TCE Transfer Pump
(mg/L)	(ft)
1,100	0
100	60
10	120
1	160

Table 9 demonstrates the fit of the chosen unit factor (multiplier to derive the decline in dissolved-phase TCE levels for unit distance) for the transect. The unit distance arbitrarily has been selected as 10 ft.

Table 9. Fit of Unit Factor (0.67) to Transect Data

Lateral Distance From	Derived Dissolved-	Transect Dissolved-
TCE Transfer Pump	Phase TCE Level	Phase TCE Level
(ft)	(mg/L)	(mg/L)
0	1,100.0	1,100
10	737.0	
20	493.8	
30	330.8	
40	221.7	
50	148.5	
60	99.5	100
70	66.7	
80	44.7	
90	29.9	
100	20.1	
110	13.4	
120	9.0	10
130	6.0	
140	4.0	
150	2.7	
160	1.8	1

By assuming the decline in TCE concentration is directly related to decrease in DNAPL saturation and that the residual DNAPL saturation of the center of the source zone is 20%, the derived unit factor is a multiplier to calculate DNAPL saturation in the source zone along the transect. Table 10 presents the calculated saturation levels.

Lateral Distance From	Derived
TCE Transfer Pump	DNAPL Saturation
(ft)	(%)
0	20.0
10	13.4
20	9.0
30	6.0
40	4.0
50	2.7
60	1.8
Average DNAPL Saturation	8.1

Table 10. Derived DNAPL Saturation of the Source Zone

By applying this derived average saturation to all RGA DNAPL zones, Table 11 presents the calculation of DNAPL volume in the RGA.

Table	11.	Calculation	of	the	Volume	of	DNAPL	in	the	RGA	Source
		Zones									

TCE DNAPL	Volume (ft ³)	Assumed	Assumed	TCE DNAPL Volume
bource zone	(10)	(%)	(%)	(ft ³)
TCE Transfer				
Pump	559,834	40	8.1	18,139
(305-327 ft				
elevation)				
TCE Transfer				
Pump	37,297	40	8.1	1,208
(286-305 ft				
elevation)				
TCE Leak Site				
(SWMU 11)	22,000	40	8.1	713
(305-327 ft				
elevation)				
South-End				
Storm Sewer	4,908	40	8.1	159
(322-324.5 ft				
elevation)				

Table	12.	Volume	of	DNAPL	in	the	RGA	Source	Zones
-------	-----	--------	----	-------	----	-----	-----	--------	-------

	TCE DNAPL	TCE DNAPL	TCE DNAPL
TCE DNAPL Source Zone	Volume	Volume	Volume
	(ft ³)	(gallons)	(liters)
TCE Transfer Pump	18,139	135,698	513,696
(305-327 ft elevation)			
TCE Transfer Pump	1,208	9,037	34,210
(286-305 ft elevation			
TCE Leak Site (SWMU 11)	713	5,334	20,189
(305-327 ft elevation)			
South-End Storm Sewer	159	1,189	4,503
(322-324.5 ft elevation)			

NOTES ON CALCULATION OF DNAPL VOLUMES

The above calculations ignore the presence of pooled DNAPL. Where pooled DNAPL occurs, the DNAPL volume will be significantly greater than the derived volumes. Dissolved-phase TCE levels in WAG 6 boring 400-207 increase at the base of the RGA, suggesting a DNAPL pool may be present at the base of the RGA. The WAG 6 data are insufficient to quantify the dimensions or volume of pooled DNAPL.

DNAPL pools tend to develop at the interface of permeability barriers. The base of the sand and gravel horizon in the UCRS is another horizon where significant DNAPL pools should be expected.

⁹⁹TECHNETIUM SOURCE ZONE CALCULATION IN THE UCRS

Technetium Storage Tank/SWMU 47 Source Zone

The lithologic log of the soil boring for well MW175 will be used to represent the soil textures of the Technetium Storage Tank source zone. Table 13 summarizes the dominant UCRS textures with depth.

		-
Depth	Elevation of	Representative
Interval	Base of Interval	Lithology
(ft)	(ft)	
0-20	358	clay
20-30	348	gravely sand
30-32	346	sandy clay
32-39	339	gravely sand
39-49	329	clay and sandy silt

Table 13. Summary of UCRS Soil Textures for the Former Location of the Technetium Storage Tank

The WAG 6 RI found the UCRS soils were unsaturated in the vicinity of the Technetium Storage Tank location down to an elevation of approximately 335 ft. Because 99 Tc has a high solubility in oxidized waters (approximately 4,300 pCi/L), this calculation assumes that the only soils retaining 99 Tc are in the unsaturated zone. Thus, the base of the 99 Tc source zone is at an elevation of 335 ft, a depth of 43 ft.

All of the seven surface soil samples collected within and adjacent to the bermed area that marks the former location of the Technetium Storage Tank exhibit high ⁹⁹Tc activity. The surface soil ⁹⁹Tc activity ranges from 4.5 to 53 pCi/g. The only subsurface soil ⁹⁹Tc activity data comes from analysis of samples from boring 047-002. Table 14 presents the ⁹⁹Tc analyses for subsurface soil samples of 047-002.

Depth Interval (ft)	⁹⁹ Technetium Activity (pCi/g)
1.0-4.5	8.1
8.5-12.0	0.5
15.5-19	2.2
26-29.5	0.4
Average "Technetium Activity	2.8

Table 14. ⁹⁹Technetium in Subsurface Soil Analyses for Boring 047-002

The average 99 Tc activity of soils from boring 047-002 will be used as the measure of 99 Tc activity of the source zone soils.

The three-dimensional distribution of data is insufficient to define the limits of the Technetium Storage Tank source zone. As a default value, the area enclosed by the berm will be used to define the lateral dimensions of the source zone. The basis for this assumption is that spills or leaks from the storage tank are not expected to spread beyond the berm at the land surface and groundwater flow (the likely mechanism for ⁹⁹Tc migration) is predominately vertical in the UCRS.

The bermed area has a surface area of approximately 625 ft^2 . Thus, approximately 26,875 ft^3 of soil is contained within the ⁹⁹Tc source area. At an average ⁹⁹Tc activity of 2.8 pCi/g and a bulk density of approximately 1.70 g/cm³ (specific gravity of 2.65 g/cm³ and porosity of 36%), the total ⁹⁹Tc activity of the source zone is:

26,875 ft³ x 28,317 cm³/ft³ x 1.70 g/cm³ x 2.8 pCi/g = 3.62 x 10⁹ pCi

C-403 Neutralization Pit/SWMU 40 Source Zone

The lithologic logs of the soil boring for well MW178 and boring 040-008 represent the soil textures of the C-403 Neutralization Pit source area. Table 15 presents a summary of the area geology.

Depth	Elevation of	Representative
Interval	Base of Interval	Lithology
(ft)	(ft)	
0-17	359	fill (clayey gravel)
17-24	352	clayey silt
24-38	338	gravely sand
38-52	324	clayey silt

Table 15. Summary of UCRS Textures for the Area of the C-403 Neutralization Pit

One soil boring sampling the backfill of the C-403 Neutralization Pit found water at shallow depth. However, nearby piezometers document the depth of the UCRS saturated zone to be much deeper, at an elevation of approximately 341 ft. Apparently, the depth to water in the saturated backfill of the C-403 pit represents a localized perched water table. For the purposes of approximating a ⁹⁹Tc source zone, the source zone will be assumed to extend between the base of the C-403 Neutralization Pit (elevation 351 ft) and an elevation of 341 ft.

The only 99 Tc in soil analyses for the source zone depths at SWMU 40 are for single samples taken from the east and west sides of the C-403 pit. In both samples, the 99 Tc activity was minimal (0.1 and 0.4 pCi/g). For the purposes of defining a source zone volume for the C-403 Neutralization Pit, it will be assumed that the source zone approximates a cylinder with a diameter extending one half of the width of the pit (the pit is 25 ft wide).

For lack of better data, it will also be assumed that the average 99 Tc activity in soil and the bulk density of the soil is the same as the average for the Technetium Storage Tank area, 2.8 pCi/g and 1.70 g/cm³, respectively. The total 99 Tc activity of the source zone is:

 $1,227 \text{ ft}^3 \ge 28,317 \text{ cm}^3/\text{ft}^3 \ge 1.70 \text{ g/cm}^3 \ge 2.8 \text{ pCi/g} = 1.65 \ge 10^8 \text{ pCi}$

MASS OF ⁹⁹TECHNETIUM IN THE UCRS SOURCE ZONES

Table 16 summarizes the volume and total activity of the two discrete UCRS 99 Tc source zones as well as the mass of 99 Tc present, assuming a specific activity of 0.017 Ci/g (Shleien, 1992).

Table 16. Summary of UCRS 99 Technetium Source Zones

⁹⁹ Tc Source Zone	⁹⁹ Tc Source Zone Volume (ft ³)	Total ⁹⁹ Tc Activity in ⁹⁹ Tc Source Zone (Ci)	Total ⁹⁹ Tc Mass in ⁹⁹ Tc Source Zone (g)
Technetium Storage Tank (SWMU 47)	26,875	3.62×10^{-3}	2.13×10^{-1}
C-403 Neutralization Pit (SWMU 40)	1,227	1.65×10^{-4}	9.71 x 10^{-3}

REFERENCES

EPA, 1992. Estimating Potential for Occurrence of DNAPL at Superfund Sites, Publication 9355.4-07FS, United States Environmental Protection Agency, R.S. Kerr Environmental Research Laboratory, January, 1992.

Kueper, B.H., 1991. The Occurrence of Dense, Non-Aqueous Phase Liquids in the Subsurface at the Paducah Gaseous Diffusion Plant, KY/ER/Sub/0815-1015/91/2, Queens University, Kingston, Canada, November, 1991.

Shleien, 1992. Shleien, Bernard, ed., The Health Physics and Radiological Health Handbook, Scinta, Inc., Silver Springs, MD, 1992.

630655

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix A Isoconcentration Maps of TCE in Soil (µg/g or ppm) for the Southeast C-400 Block

soil sampleX water sample

THIS PAGE INTENTIONALLY LEFT BLANK

TCE LEVEL (375.0 - 379.9)

Plant East (ft)

Plant North (ft)

TCE LEVEL (365.0 - 369.9)

Plant East (ft)

.*

.

TCE LEVEL (360.0 - 364.9)

Plant East (ft)

TCE LEVEL (355.0 - 359.9)

TCE LEVEL (350.0 - 354.9)

Plant East (ft)

.*

TCE LEVEL (345.0 - 349.9)

TCE LEVEL (340.0 - 344.9)

TCE LEVEL (335.0 - 339.9)

TCE LEVEL (330.0 - 334.9)

Plant East (ft)

Plant North (ft)

Appendix B TCE in Soil Analyses (µg/g or ppm) for the Area of the C-400 Building Southwest Storm Sewer

THIS PAGE INTENTIONALLY LEFT BLANK

TCE LEVEL (370.0 - 374.9)

TCE LEVEL (365.0 - 369.9)

Plant East (ft)

TCE LEVEL (360.0 - 364.9)

Plant East (ft)

÷

TCE LEVEL (355.0 - 359.9)

TCE LEVEL (350.0 - 354.9)

Plant East (ft)

Plant North (ft)

:*

TCE LEVEL (345.0 - 349.9)

TCE LEVEL (340.0 - 344.9)

Plant East (ft)

Plant North (ft)

:*

.

TCE LEVEL (335.0 - 339.9)

Appendix C Contoured Isoconcentration Maps of Dissolved-Phase TCE (µg/L or ppb) and Contoured Isoactivity Maps of Dissolved Beta Activity (pCi/L) for the RGA

K water sample
value is biased low by sampling or analytical methods
value is biased high by sampling or anlytical methods
()
DNAPL source zone associated with the TCE transfer pump leak site

THIS PAGE INTENTIONALLY LEFT BLANK

TCE LEVEL (310.0 - 314.9)

Plant East (ft)

p.

:*

BETA ACTIVITY (310.0 - 314.9)

TCE LEVEL (305.0 - 309.9)

Plant East (ft)

÷

BETA ACTIVITY (305 - 309.9 ft amsl)

TCE LEVEL (300.0 - 304.9)

Plant East (ft)

1

e.

BETA ACTIVITY (300-304.9 ft amsl)

TCE LEVEL (295.0 - 299.9)

Plant East (ft)

J. C

:*

.

BETA ACTIVITY (295 - 299.9 ft amsi)

TCE LEVEL (290.0 - 294.9)

Plant East (ft)

:*

BETA ACTIVITY (290 - 294.9 ft amsl)

TCE LEVEL (285.0 - 289.9)

Plant East (ft)

 $\| \cdot \|^2$

:*

BETA ACTIVITY (285-289.9 ft amsl)

APPENDIX C6

GWOU

WAG	SWMU	Description				
WAG 6	11	C-400 Trichloroethylene Leak Site (GW)				
	26	C-400 to C-404 Underground Transfer Line (GW)				
	40	C-403 Neutralization Tank (GW)				
	47	C-400 Technetium Storage Tank Area (GW)				
	203	C-400 Sump (GW)				
WAG 27	1	C-747-C Oil Land Farm				
	209	C-720 Compressor Shop Pit Sump (GW)				
	211	C-720 TCE Spill Site Northwest				
WAG 28	99	C-745 Kellogg Building Site (previously AOC #C) (GW)				
	183	McGraw UST (GW)				
	193	McGraw Const Facilities (Southside Cylinder Yards) (GW)				
	194	McGraw Construction Facilities (Southside) (GW)				
	204	Dykes Road Historical Staging Area (GW)				
WAG 22	2	C-749 Uranium Burial Ground ^A				
	3	C-404 Low-Level Radioactive Waste Burial Ground A				
	7	C-747-A Burial Ground (GW)				
	30	C-747-A Burn Area (GW)				
WAG 26	201	Northwest Groundwater Plume				
	202	Northeast Groundwater Plume				
	210	Southwest Groundwater Plume				
WAG 3	4s	C-747 Contaminated Burial Ground (GW) ^A				
Lasagna	91	UF6 Cylinder Drop Test Area				

Footnotes:

ΞĒ

A - Remedial action decisions for contaminated groundwater beneath these burial grounds will be deferred until the burial grounds are remediated; and DNAPL subsurface sources are to be addressed under BGOU.

SWOU

WAG	SWMU	Description
WAG 30	70	C-333-A Vaporizer ^C
	71	C-337-A Vaporizer ^C
WAG 8	82	C-531 Switchyard ^C
	83	C-533 Switchyard ^C
	84	C-535 Switchyard ^C
	85	C-537 Switchyard ^C
WAG 25	58	N-S Diversion Ditch (Outside Plt Security Area)
	59	N-S Diversion Ditch (Inside Plt Security Area) A
	60	C-375-E2 Effluent Ditch (KPDES 002) ^{B, C}
	61	C-375-E5 Effluent Ditch (KPDES 013) ^{B, C}
	64	Little Bayou Creek
	66	C-375-E3 Effluent Ditch (KPDES 010) ^{B, C}
	67	C-375-E4 Effluent Ditch (C-340 Ditch) C
	93	Concrete Disposal Area East of Plant Security Area
	105	Concrete Rubble Pile (3)
	106	Concrete Rubble Pile (4)
	107	Concrete Rubble Pile (5)
	108	Concrete Rubble Pile (6)
	109	Concrete Rubble Pile (7)
	113	Concrete Rubble Pile (11)
	168	KPDES Outfall Ditch 012 ^c
	171	C-617-A Lagoons ^C
WAG 29	102	Plant Storm Sewer (previously 96a, 96b, and 96c) ^{B, C, D}
WAG 18	62	C-375-S6 Southwest Ditch (KPDES 009) ^{B, C}
	63	C-375-W7 Oil Skimmer Ditch (KPDES 008) ^{B, C}
	65	Big Bayou Creek
	68	C-375-W8 Effluent Ditch (KPDES 015) ^{B, C}
	69	C-375-W9 Effluent Ditch (KPDES 001) ^{B, C}
	129	Concrete Rubble Pile (27)
	175	Concrete Rubble Pile (28)
	199	Big Bayou Creek Monitoring Station
	205	Eastern Portion of Yellow Water Line
WAG 7	8	C-746-K Inactive Sanitary Landfill ^E
N/A	N/A	Internal Ditches
N/A	N/A	C-340 Building Complex
WAG 12	17	C-616-E Sludge Lagoon ^C
	18	C-616-F Full-Flow Lagoon ^C
	42	C-616 Chromate Reduction Facility ^C

SWOU

WAG	SWMU	Description
WAG 13	21	C-611-W Sludge Lagoon ^C
	22	C-611-Y Overflow Lagoon ^C
	23	C-611-V Lagoons ^C
	185	C-611-4 Horseshoe Lagoon ^C
WAG 24	12s	C-747-A UF4 Drum Yard (SW) ^F
	14s	C-746-E Contaminated Scrapyard (SW) F
	15s	C-746-C Scrapyard (SW) ^F
WAG 14	13s	C-746-P Clean Scrapyard (SW) F
	16s	C-746-D Classified Scrapyard (SW)

Footnotes:

ьŧ

- A Groundwater will be addressed under the GWOU.
- B Pipes and sewers under buildings will be addressed as part of the D&D scope.

C - Active facility.

- D Sanitary portion included in Soils OU.
- E Existing ROD focused on surface soils.
- F Scrap is scope of ongoing early action; underlying soil will fall within BGOU scope.

SSOU

WAG	SWMU	Description				
WAG 2	86	C-631 Pumphouse and Cooling Tower				
	87	C-633 Pumphouse and Cooling Tower ^A				
	88	C-635 Pumphouse and Cooling Tower ^A				
	89	C-637 Pumphouse and Cooling Tower A				
WAG 5	31	C-720 Compressor Pit Water Storage Tank				
	76	C-632-B Sulfuric Acid (H ₂ SO ₄₎ Storage Tank				
	77	C-634-B Sulfuric Acid (H ₂ SO ₄₎ Storage Tank				
	169	C-410-E HF Vent Surge Protection Tank				
WAG 6	11s	C-400 Trichloroethylene Leak Site (SS)				
	26s	C-400 to C-404 Underground Transfer Line (SS)				
	40s	C-403 Neutralization Tank (SS)				
	47s	C-400 Technetium Storage Tank Area (SS)				
	203s	C-400 Sump (SS)				
WAGs 9&11	27	C-722 Acid Neutralization Tank ^A				
	28	C-712 Acid Neutralization Tank ^A				
	165	C-616-L Pipeline and Vault Soil Contamination ^A				
	170	C-729 Acetylene Building Drain Pits				
	19	C-410-B Neutralization Lagoon				
	20	C-410-E H Emergency Holding Pond				
	41	C-410-C Neutralization Tank				
WAGs 16&19	78	C-420 PCB Spill Site				
	137	C-746-A Inactive PCB Transformer/Sump				
	153	C-331 PCB Soil Contamination (West side)				
	155	C-333 PCB Soil Contamination (West side)				
	156	C-310 PCB Soil Contamination (West side)				
	161	C-743-T01 Trailer Site (Soil Backfill)				
	164	KPDES Outfall Ditch 017 Flume (Soil Backfill)				
	75	C-633 PCB Spill Site				
	92	Fill Area for Dirt from the C-420 PCB Spill Site				
	135	C-333 PCB Soil Contamination (North side of C-333)				
	154	C-331 PCB Soil Contamination (Southeast side)				
	160	C-745 Cylinder Yard Spoils Area (PCB Soil Contamination)				
	162	C-617-A Sanitary Water Line (Soil Backfill)				
	163	C-304 Bldg/HVAC Piping System (Soil Backfill)				
WAG 20	166	C-100 Trailer Complex Soil Contamination (East side)				
	172	C-726 Sandblasting Facility				
	195	Curlee Road Contaminated Soil Mound				
	200	Soil Contamination South of TSCA Waste Storage Facility				
	212	C-745-A Radiological Contamination Area				

SSOU

WAG	SWMU	Description				
WAG 21	138	C-100 Southside Berm				
	158	Chilled Water System Leak Site				
	176	C-331 RCW Leak Northwest Side				
	177	C-331 RCW Leak East Side				
	180	Outdoor Firing Range (WKWMA) ^A				
	181	Outdoor Firing Range (PGDP) ^A				
WAG 27	196	C-746-A Septic System				
	209s	C-720 Compressor Shop Pit Sump (SS)				
WAG 28	99s	C-745 Kellogg Building Site (previously AOC #C) (SS)				
	183s	McGraw UST (SS)				
	193s	McGraw Construction Facilities (Southside Cylinder Yards) (SS)				
	194s	McGraw Construction Facilities (Southside) (SS)				
	204s	Dykes Road Historical Staging Area (SS)				
WAG 23	32	C-728 Clean Waste Oil Tank ^A				
	33	C-728 Motor Cleaning Facility				
	56	C-540-A PCB Waste Staging Area				
	57	C-541-A PCB Waste Staging Area				
	74	C-340 PCB Spill Site				
	79	C-611 PCB Spill Site				
	80	C-540 PCB Spill Site				
	81	C-541 PCB Spill Site				
	1s	C-747-C Oil Land Farm (SS)				
WAG 29	38	C-615 Sewage Treatment Plant				
	159	C-746-H3 Storage Pad				
	178	C-724-A Paint Spray Booth				
	179	Plant Sanitary Sewer System				
WAG 30	55	C-405 Incinerator				
	98	C-400 Basement Sump (previously AOC #B)				
	101	C-340 Hydraulic System (previously AOC #E)				
	167	C-720 Whiteroom Sump				
	192	C-710 Acid Interceptor Pit				
	198	C-410-D Area Soil Contamination				
N/A	N/A	Site-Wide RAD				
N/A	N/A	Site-Wide PCBs				

Footnotes:

1.1

A - Active facility.

BGOU

WAG	SWMU	Description				
WAG 3	4	C-747 Contaminated Burial Ground ^A				
	5	C-746-F Classified Burial Ground				
	6	C-747-B Burial Ground				
WAG 14	13	C-746-P Clean Scrapyard				
	16	C-746-D Classified Scrapyard				
WAG 22	2	C-749 Uranium Burial Ground ^A				
	3s	C-404 Low-Level Radioactive Waste Burial Ground ^A				
	7s	C-747-A Burial Ground (BG)				
	30s	C-747-A Burn Area (BG)				
WAG 24	12	C-747-A UF4 Drum Yard				
	14	C-746-E Contaminated Scrapyard				
	15	C-746-C Scrapyard				
N/A	145	Residential/Inert Landfill Borrow Area				

Footnotes:

A - DNAPL subsurface source from GWOU is to be addressed under BGOU.

APPENDIX C7

L Li

Basis of Estimate Feasibility Study for the GWOU Alternative 2

Description: This alternative will continue the groundwater monitoring program currently in place plus an expansion by 32 monitoring wells. Also, 15 existing monitoring wells will be plugged and abandoned. In addition to the above, the Northwest and Northeast Plume treatment actions will continue for 30 years, pumping and treating the cores (1,000 ppb). The Southwest Plume will be added to the Northwest Plume treatment facility. It also is assumed that the Paducah Gaseous Diffusion Plant (PGDP) will shut down after seven years, requiring a new Northeast Plume treatment system to be put into place. The period of the action is 30 years. Although not costed in this estimate, the action will be required to be repeated for a period of approximately 7,000 years until the remediation is complete.

General: The estimate was generated with the Automated Estimating System (AES) using the standard value file RRB2668A.val.
Management and Integration (M&I) contract management is included at 20% of all costs.
Overhead is included at 41.96%.
Contingency is included at 25%.

Schedule: Initial installation is assumed to last nine months. Reconstruction of treatment system after seven years is assumed to last six months. Operation and Maintenance (O&M) is assumed to last 30 years.

Work Breakdown Structure (WBS)

WBS 2.01.01 General Conditions (initial):

- Includes mobilization and set-up and utility hook-ups for a construction trailer and a shower/change trailer. Nine months rental cost is included for trailers and a port-o-let.
- A safety and health officer is included for the 9-month duration.
- Training and security requirements are included for 8 workers at 28 hours each.
- Includes general safety plan, QA plan, waste management plan, work plan, hoisting and rigging plan, and site-specific safety and health plan.

WBS 2.01.02 Monitoring Wells:

- Wells are separated as 27 inside and 5 outside the fence.
- Three hundred feet per well of access roads includes clearing and grubbing of light trees, grading, a filter fabric underlayment, and a 6-inch gravel base.
- Monitoring wells are 100 ft deep, with stainless steel tubing and screen and are included at \$14,500 each, based on a vendor quote. Mobilization is included at \$150,000.

- Disposal of water includes a 5,000 gal tanker truck with driver on-site full time (no disposal fee). Water is included at 1,000 gal per well. (27 wells I/S fence = 27,000 gal = 6 tankers) (5 wells O/S fence = 5,000 gal = 1 tanker)
- Disposal of solids includes 2 laborers, a fork truck with operator, and a flatbed truck with driver to load and haul the drums to the landfill (no tipping fee). Solids are included at 4 drums per well. Estimate assumes 50 drums per load and 1 load per day. (27 wells I/S fence = 3 loads, 5 wells O/S = 1 load.)
- Sampling of water assumes 1 per well and includes \$25 and 2 hours each with modified Level D personal protective equipment (PPE).
- Sampling of solids assumes 1 per well and includes \$25 and 2 hours each with modified Level D PPE.
- Analysis of the samples includes volatile organic compounds (VOCs) (8260), gross alpha, gross beta, and ⁹⁹Tc at a total cost of \$400 per sample. Costs are included for Site Management Office (SMO) oversight at 16.4%.
- Two extraction wells with 8-inch polyvinyl chloride (PVC) risers. Estimate includes clearing and grubbing, labor, and waste disposal.

WBS 2.01.03 Plug and Abandon Wells:

- Plugging and abandoning of 15 existing wells is included at \$40,833 each. Cost is based on a feasibility study for White Oak Creek.
- Disposal of water includes a 5,000-gal tanker truck with driver on-site full time (no disposal fee). Water is included at 1,000 gal per well. (15 wells = 15,000 gal = 3 tankers)
- Disposal of solids includes 2 laborers, a fork truck with operator, and a flatbed truck with driver to load and haul the drums to the landfill (no tipping fee). Solids are included at 5 drums per well. Estimate assumes 50 drums per load and 1 load per day (15 wells = 2 loads). Drums are included assuming 5 per well at \$55 each.
- Sampling of water assumes 1 per well and includes \$25 and 2 hours each with modified Level D PPE.
- Sampling of solids assumes 1 per well and includes \$25 and 2 hours each with modified Level D PPE.
- Analysis of the samples includes VOCs (8260), gross alpha, gross beta, and ⁹⁹Tc at a total cost of \$400 per sample. Costs are included for SMO oversight at 16.4%.

WBS 2.01.04.01 General Conditions for Water Treatment Plant Reconstruction (7 Years):

- Includes mobilization and set-up and utility hook-ups for a construction trailer and a shower/change trailer. Six months rental cost is included for trailers and a port-o-let.
- A safety and health officer is included for the 6-month duration.
- Training and security requirements are included for 8 workers at 28 hours each.
- Includes general safety plan, quality assurance (QA) plan, waste management plan, work plan, hoisting and rigging plan, and site-specific safety and health plan.

WBS 2.01.04.02 New Northeast Treatment Systems [includes excavation of Solid Waste Management Unit (SWMU) 99]:

- Two new 200 GPM, skid mounted air strippers are included at \$35,000 based on a vendor quote.
- A new permitted outfall is included at \$25,000 based on estimator's judgment.
- Breaking, loading, and hauling a concrete pad of 120 ft by 240 ft at SWMU 99.
- Excavation of 6,019 yds³ of earth.

WBS 2.02 Indirect Costs:

- Indirect costs include design, project integration, and M&I oversight. These costs are dependent on level of effort and project schedule.
- Indirect costs are included for initial capital work and are included separately for installation of the treatment system in 7 years.

WBS 2.03.01.01 Operation and Maintenance (O&M) (First 3 Years):

- Maintenance is included for the 32 new and 90 existing monitoring wells. Costs are included at 2% of the well capital cost annually (122 × \$14,500 × .02 = \$35,380/year). Two percent annually is equivalent to total replacement every 50 years.
- O&M of the existing northwest treatment system is included at \$1,098,774 per year based on information from Bechtel Jacobs Company LLC (BJC).
- O&M of the existing northeast treatment system is included at \$346,362 per year based on information from BJC.

WBS 2.03.01.02 Sample Collection (First 3 Years):

Sample collection is included quarterly for the 32 new and 90 existing monitoring wells. A cost of \$1,059 per sample is included as provided by BJC. Quarterly sampling of 122 wells = 488 samples per year × \$1,059 = \$516,792 per year.

WBS 2.03.01.03 Sample Analysis (First 3 Years):

Sample analysis is included quarterly for the 32 new and 90 existing monitoring wells. A cost of \$400 per sample is included for VOCs (8260), gross alpha, gross beta, and ⁹⁹Tc. Quarterly analysis of 122 wells = 488 samples per year × \$400 = \$195,200 per year. Costs are included for SMO oversight at 16.4%.

WBS 2.03.01.04 Management and Integration (M&I) on Operation and Maintenance (O&M) (First 3 Years):

• M&I contract management is included at 8% of all other O&M costs.

WBS 2.03.02.01 Operation and Maintenance (O&M) (Years 4-7):

Maintenance is included for the 32 new and 90 existing monitoring wells. Costs are included at 2% of the well capital cost annually (122 × \$14,500 × .02 = \$35,380/year). Two percent annually is equivalent to total replacement every 50 years.

- O&M of the existing northwest treatment system is included at \$1,098,774 per year based on information from BJC.
- O&M of the existing northeast treatment system is included at \$346,362 per year based on information from BJC.

WBS 2.03.02.02 Sample Collection (Years 4-7):

Sample collection is included semiannually for the 32 new and 90 existing monitoring wells. A cost of \$1,059 per sample is included as provided by BJC. Semiannual sampling of 122 wells = 244 samples per year × \$1,059 = \$258,396 per year.

WBS 2.03.02.03 Sample Analysis (Years 4-7):

Sample analysis is included semiannually for the 32 new and 90 existing monitoring wells. A cost of \$400 per sample is included for VOCs (8260), gross alpha, gross beta, and ⁹⁹Tc. Semiannual analysis of 122 wells = 244 samples per year × \$400 = \$97,600 per year. Costs are included for SMO oversight at 16.4%.

WBS 2.03.02.04 Management and Integration (M&I) on Operation and Maintenance (O&M) (Years 4-7):

• M&I contract management is included at 8% of all other O&M costs.

WBS 2.03.03.01 Operation and Maintenance (O&M) (Years 8-30):

- Maintenance is included for the 32 new and 90 existing monitoring wells. Costs are included at 2% of the well capital cost annually (122 × \$14,500 × .02 = \$35,380/year). Two percent annually is equivalent to total replacement every 50 years.
- O&M of the existing northwest treatment system is included at \$1,098,774 per year based on information from BJC.
- O&M of the new northeast treatment system is assumed to be equal to the O&M of the existing system at \$346,362 per year.

WBS 2.03.03.02 Sample Collection (Years 8-30):

Sample collection is included semiannually for the 32 new and 90 existing monitoring wells. A cost of \$1,059 per sample is included as provided by BJC. Semiannual sampling of 122 wells = 244 samples per year × \$1,059 = \$258,396 per year.

WBS 2.03.03.03 Sample Analysis (Years 8-30):

Sample analysis is included semiannually for the 32 new and 90 existing monitoring wells. A cost of \$400 per sample is included for VOCs (8260), gross alpha, gross beta, and ⁹⁹Tc. Semiannual analysis of 122 wells = 244 samples per year × \$400 = \$97,600 per year. Costs are included for SMO oversight at 16.4%.

WBS 2.03.03.04 Management and Integration (M&I) on Operation and Maintenance (O&M) (Years 8-30):

• M&I contract management is included at 8% of all other O&M costs.

Line items within the detailed estimate contain references to cost guides. The following is a glossary for those references.

FCM-845	Facility Construction Means		Page 845
HCM-41	Heavy Construction Means		Page 41
BCM-21	Building Construction Means		Page 21
ECHOS-8-107	ECHOS Cost Guide	Section 8	Page 107
RRBB-20-7	Rental Rate Blue Book	Section 20	Page 7
E.J.	Estimator's Judgment		-

SUMMARY REPORT Project Number: 35T08116 PGDP GWOU ALT 2

÷4,

Project ESO Number.....NA Revision Number.....1 Last Update.....05/31/2000

> Sort Order 1. WBS - Level 3 2. WBS - Level 4 3. Building/Area

Approved by:

Project Estimator Date

۱

Estimating Manager

Date

AES Version 6.1

Base Fiscal Year/Quarter: 99/4 STANDARD VALUE: C:@ESTIMAM1@RRB2668A.val EXPIRES: 09/15/1999 ESTIMATE FILE: C:@ESTIMAM1@ATL2@2ALT2.Est 05/31/2000 SCHEDULE FILE: 2ALT2 REPORT FILE: C:@ESTIMAM1@ATL2@ALT2SUM.Out 05/31/2000 09:07:10

630707

PGDP GWOU ALT 2

SUMMARY REPORT \$1 = \$1

05/31/2000

Arranged By: WBS / WBS / Building

	Unescalated -			Escalated		
	Material	Labor	Total	Material	Labor	Total
	\$	\$	\$	\$	\$	\$
2.01.01 GENERAL CONDITIONS (INITIAL) 2.01.01.01 VARIABLE COSTS (INITIAL)						
GWOU	10074	82320	92394	11164	91228	102392
TOTAL VARIABLE COSTS (INITIAL)	10074	82320	92394	11164	91228	102392
2.01.01.02 FIXED COSTS (INITIAL)	2/07/	(0)1	77047		7/07	7/500
GWOU	26076	6941	33017	28898	(692	36590
TOTAL FIXED COSTS (INITIAL)	26076	6941	33017	28898	7692	36590
TOTAL GENERAL CONDITIONS (INITIAL)	36150	89261	125411	40062	98920	138982
2.01.02 MONITORING WELLS						
2.01.02.01 MONITORING WELLS (I/S FENCE) GWOU	907731	50989	958720	1005960	56507	1062467
L MONITORING WELLS (I/S FENCE)	907731	50989	958720	1005960	56507	1062467
2.01.02.02 MONITORING WELLS (O/S FENCE)						
GWOU	280070	13729	293799	310377	15215	325592
TOTAL MONITORING WELLS (O/S FENCE)	280070	13729	293799	310377	15215	325592
TOTAL MONITORING WELLS	1187801	64718	1252519	1316337	71722	1388059
2.01.03 P&A WELLS						
2.01.03 P&A WELLS GWOU	811186	7037	818223	898967	7798	906765
TOTAL P&A WELLS	811186	7037	818223	898967	7798	906765
TOTAL P&A WELLS	811186	7037	818223	898967	7798	906765
SUMMARY REPORT \$1 = \$1

05/31/2000

Arranged By: WBS / WBS / Building

٠

•

	U	inescalated -			Escalated	
	Material	Labor	Total	Material	Labor	Totai
	\$	\$	\$	\$	\$	\$
2.01.04 EXCAVATION OF SWMU 099						
2.01.04 EXCAVATION OF SWMU 099 GWOU	34060	38378	72438	38132	42967	81099
TOTAL EXCAVATION OF SWMU 099	34060	38378	72438	38132	42967	81099
2.01.04.01 GENERAL CONDITIONS (7 YRS) GWOU	32792	64061	96853	36712	71720	108432
TOTAL GENERAL CONDITIONS (7 YRS)	32792	64061	96853	36712	71720	108432
2.01.04.02 NEW NE TRTMT SYSTEM GWOU	152640	21120	173760	170890	23645	194535
TOTAL NEW NE TRTMT SYSTEM	152640	21120	173760	170890	23645	194535
TOTAL EXCAVATION OF SUMU 099	219492	123559	343051	245734	138332	384066
2.02.01 INDIRECTS (INITIAL) 2.02.01.01 DESIGN (INITIAL) 2ALT 2 IND	0	46660	46660	0	50946	50 5 ~~
TOTAL DESIGN (INITIAL)	0	46660	46660	0	50946	50946
2.02.01.02 PROJECT INTEGRATION (INITIAL) 2ALT 2 IND	0	129300	129300	0	143292	143292
TOTAL PROJECT INTEGRATION (INITIAL)	0	129300	129300	0	143292	143292
TOTAL INDIRECTS (INITIAL)	0	175960	175960	0	194238	194238
2.02.02 INDIRECTS (7 YRS) 2.02.02.01 DESIGN (7 YRS) 2ALT 2 IND	0	24620	24620	0	32347	32347
TOTAL DESIGN (7 YRS)	0	24620	24620	0	32347	32347

SUMMARY REPORT

\$1 = \$1

05/31/2000

Arranged By: WBS / WBS / Building

•

	····· U	nescalated			Escalated -	
	Material	Labor	Total	Material	Labor	Total
	\$	\$	\$	\$	\$	\$
2.02.02 INDIRECTS (7 YRS)						
2.02.02.02 PROJECT INTEGRATION (7 YRS)						
ZALT 2 IND	0	29420	29420	0	39101	39 101
TOTAL PROJECT INTEGRATION (7 YPS)	0	29420	29420		30101	30101
	·	27420	2/420	Ū	59101	37101
TOTAL INDIRECTS (7 YRS)	0	54040	54040	0	71448	71448
2.03.01 1ST 3 YRS 0&M						
2.03.01.01 OPS & MAINT 1ST 3 YRS 2ALT 2 O&M	5649649	0	5649649	6459842	0	6459842
TOTAL OPS & MAINT 1ST 3 YRS	5649649	0	5649649	6459842	0	6459842
2.03.01.02 SAMPLE COLLECTION 1ST 3 YRS						
ZALT 2 O&M	1972079	0	1972079	2254886	0	2254886
TOTAL SAMPLE COLLECTION 1ST 3 YRS	1972079	0	1972079	2254886	0	2254886
3.01.03 SAMPLE ANALYSIS 1ST 3 YRS						
_ALT 2 08M	722536	0	722536	826152	0	826152
TOTAL SAMPLE ANALYSIS 1ST 3 YRS	722536	0	722536	826152	0	826152
TOTAL 1ST 3 YRS ORM	8344264	0	8344264	9540880	0	9540880
2.03.02 YRS 4-7 O&M						
2.03.02.01 OPS & MAINT YRS 4-7						
2ALT 2 0&M	7532866	0	7532866	9521349	0	9521349
TOTAL OPS & MAINT YRS 4-7	7532866	0	7532866	9521349	0	9521349
2.03.02.02 SAMPLE COLLECTION YRS 4-7						
2ALT 2 O&M	1314719	0	1314719	1661771	0	1661771
TOTAL SAMPLE COLLECTION YRS 4-7	1314719	0	1314719	1661771	0	1661771

SUMMARY REPORT \$1 = \$1

•••••

05/31/2000

Arranged By: WBS / WBS / Building

	····· U	inescalated			Escalated ·	
	Material	Labor	Total	Material	Labor	Total
	\$	\$	\$	\$	\$	\$
2.03.02 YRS 4-7 0&M						
2.03.02.03 SAMPLE ANALYSIS YRS 4-7						
2ALT 2 O&M	481692	0	481692	608846	0	608846
TOTAL SAMPLE ANALYSIS YRS 4-7	481692	0	481692	608846	0	608846
TOTAL YRS 4-7 O&M	9329277	0	9329277	11791966	0	11791966
2.03.03 YRS 8-30 0&M						
2.03.03.01 OPS & MAINT YRS 8-30 2ALT 2 O&M	43313976	0	43313976	81947819	0	81947819
TOTAL OPS & MAINT YRS 8-30	43313976	0	43313976	81947819	0	81947819
2.03.03.02 SAMPLE COLLECTION YRS 8-30						
2ALT 2 O&M	7559633	0	7559633	14302438	0	14302438
TOTAL SAMPLE COLLECTION YRS 8-30	7559633	0	7559633	14302438	0	14302438
2.03.03.03 SAMPLE ANALYSIS YRS 8-30 2ALT 2 O&M	2769724	0	2769724	5240175	0	5240.
TOTAL SAMPLE ANALYSIS YRS 8-30	2769724	0	2769724	5240175	0	5240175
TOTAL YRS 8-30 D&M	53643333	0	53643333	101490432	0	101490432
SUB - TOTAL	73571503	514575	74086078	125324378	582458	125906836
OVERHEAD	30870602	215916	31086518	52586109	244399	52830508
SUB - TOTAL	104442105	730491	105172596	177910487	826857	178737344
CONTINGENCY	26110526	182623	26293149	44477622	206714	44684336
GRAND TOTAL	130552631	913114	131465745	222388109	1033571	223421680

DETAIL REPORT Project Number: 35T08116 PGDP GWOU ALT 2

Project ESO Number.....NA Revision Number.....1 Last Update.....05/31/2000

> Sort Order 1. WBS - Level 9 2. Participant 3. Discipline

Approved by:

Project Estimator

Date

Estimating Manager

Date

Base Fiscal Year/Quarter: 99/4 STANDARD VALUE: C:@ESTIMAM1@RRB2668A.val EXPIRES: 09/15/1999 ESTIMATE FILE: C:@ESTIMAM1@ATL2@2ALT2.Est 05/31/2000 SCHEDULE FILE: 2ALT2 REPORT FILE: C:@ESTIMAM1@ATL2@ALT2DET.Out 05/31/2000 09:06:12

AES Version 6.1

Creation Date 09/07/1999 Revision Number 1				Estima	iting Job Number	0116-20
<pre>F</pre>	Projec Buildi Plant Contra Fundir Source Discip Quanti Trace Expire	t Engineer ng/Area Site ng Type site site Site bline Estimator ty Take-Off By Number stion Date: 09/15/1	S MAUDLIN GWOU R G General EXPENSE PADUCAH GEN CONDITIONS C.1.1 0			
Estimate File C. CESIIMA TOALL202ALI2.EST		/:UJa	**********			
· · · · · · · · · · · · · · · · · · ·	T MATL. T	Quantity	Unit ¶	Unit Price	Total Material	Total Cost
¶ Item ¶ Description	1 / 1	/	1 / 1	/	/	R+L ¶
1 1	LABOR	Hours	Craft ¶	Rate	Total Labor	l I
¶	••••••				•••••••	¶
GENERAL CONDITIONS - VARIABLE COST	1				1	9
	1					
•	1 F					
•	1					
1 -A CONSTRUCTION TRAILER RENTAL	¶ Matl.	9.00	MON	300.00	2.700	1 1 1 ¶
1	Labor	0		0.00	0 9	2.700
ſ	ſ					
¶ 2 -A SHOWER/CHANGE TRAILER RENTAL	Matl.	9.00	MON	500.00	4,500	۰ ۲
1	Labor	0		0.00	0 9	4,500 9
1	1			40.00	1	I
1 A PORT-O-LET (1 @ \$80 FOR 2 MONTHS)	Matl.	9.00	MON	` ~80.00 •	720 9	٩
	Labor	C		0.00	0 9	720
	1 E Master -	0.00	MON	0.00		
4 - A SAFEIT & REALTH UFFICER	labor	9.00	Y	00.0	U 1 67 000 4	۲ ۲ ۲ ۵۵۵ ۲
1 •	i rano:	1,575	^	40.00 1	03,000	03,000 1
5 -A TRAINING: SECURITY REGMNT, GET ETC (28)	Matl.	8.00	EA	0.00	0	
1 HOURS/PERSON)	Labor	224	22	25.00	5,600	5,600
٩ ،	٩			•		1
¶ **** SUBTOTAL ****	Mati.			•	7,920	٩ ا
1	Labor	1,799		٩	68,600	76,520 ¶
	1					1
1	1			٩	•	1

1

630713

•

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	**********************	*************	===========	*===============	=======================================		==
	1 Material		l I	Labor	1	Total Cost	1
T DICC OF MATCRIAL SUMMART			 				- 4
¶ TOTAL DIRECT ¶ SALES TAX	9	7,920 475			68,600	76,520 475	4
SUBTOTAL TOTAL INDIRECT	20.00%	8,395 1,679		20.00%	68,600 13,720	76,995 15,399	4
¶ TOTAL	۱۰۰۰۰۰ ۲	10,074 ¶	(hrs.	1,799)	82,320	92,394	ר- א
¶ TOTAL (ESCALATED COST)	1	11,164			91,228 9	102,392	¶ ==

WBS Cost	Cod cip	2.01.01.02 FIXED COSTS (I) e 6100 REMEDIAL ACTION ant FP51 FIXED PRICE SUBCONT	Building/Area GWOU Plant Site R Contracting Type G General									
	. of	Estimate . P Planning/Feasibility Est	timate			Fundi	ng Type	EXPENSE				
8/M /	Attr	ibute 2ALT 2				Source Site PADUCAH						
Disc	ipli	ne C CIVIL AND SITE				Discipline Estimator GEN CONDITIONS						
B/M	litle	e MOB/DEMOB/GEN COND - FIXED	D			Quant	ity Take-Off By					
Rece	iving	g Site PADUCAH				Trace	Number	. C.1.2 0				
Cros:	s-Cui	t Code										
Stan	bret	Value File C:@ESTIMA#1@RRBZ668A.val		o of		Expira	ation Date: 09/15/	1999				
ESTI	nate	File C: SIIMA MISAIL2 ZALI2.ES	t 5-31-00	9:058								
 •		<pre></pre>	C MATI	Quantity	C Unit C	Loit Deice	E Totol Matarial d					
. 19	• em	Bescription		/	¶ / ¶	/ /						
• •		<pre>4</pre>		Hours	¶ Craft¶	Pate (I / I I Total Labor (
• • • • • •		•	•••¶•••••									
ŗ		*GENERAL CONDITIONS - FIXED COST*	Í			,	, ,					
i			4									
5			1	•		•	1 (
1	-A	CONSTRUCTION TRAILER MOB/DEMOB	¶ Mati.	1.00	LS	0.00	1 01					
1			¶ Labor	40	TD	22.60	904	904				
1			ſ			•	1					
12	-A	MOB/DEMOB SUPPORT LABOR	¶ Matl.	1.00	LS	0.00	1 01					
ſ			¶ Labor	40	L	24.85	994	994				
l I			1			•	٩ ٩	•				
3 -		SET-UP-LABOR	- 9 Hoti.	-1.00	-16			┝ ─ ─ •				
Í					<u>_</u>		f 994-4	i				
I			٩			•	1 1	•				
4	-8	UTILITIES HOOK UP (ELEC, WATER,	¶ Matl.	1.00	LS	3,000.00	1 3,000 9	•				
		SEWER)	¶ Labor	0		0.00	1 01	3,000 4				
			1				٩ ٩	l				
	-A	SHOWER/CHANGE TRAILER MOB/DEMOB	¶ Matl.	1.00	LS	0.00	0	•				
			¶ Labor	40	TD	22.60	904 9	904				
			1									
0	- A	MOB/DEMOB SUPPORT LABOR	¶ Matt.	1.00	15	0.00 •						
l ,				40	L	24.87	994	994				
7	- 6		1 ¶ Nati	1.00	16	250 00 0	1 750					
	- 4	SET OF LABOR	¶ Labor	40	1	2/ 85 (1 7//				
			¶	40	-	24.05	1 774 j 1 (1,244				
8	- A	UTILITIES HOOK-UP (ELEC. WATER.	¶ Mati.	1.00	LS	3,000,00						
_	••	SEWER)	¶ Labor	0		0.00		3.000 (
			ſ				1					
***	*	SUBTOTAL ****	¶ Matl.			•	1 6,500 1	•				
I			¶ Labor	240		•	5,784	12,284				
i			٩			•	1					
I			٩			•	1 1	i •				
9	-A	GENERAL SAFETY PLAN	¶ Matl.	1.00	LS	2,000.00	1 2,000 ¶	l •				
			¶ Labor	0		0.00 4	¶ 0¶	2,000				
I			1				۹ ۱	•				
10	-A	QUALITY ASSURANCE PLAN	¶ Matl.	1.00	LS	1,000.00	1,000	•				
			¶ Labor	0		0.00	909	1,000				
			1				٩ ٩	•				
11	-A	WASTE MANAGEMENT PLAN	¶ Mati.	1.00	LS	2,000.00	2,000 9					
			Labor	0		0.00		2,000				
			1		1.6	7						
12	-A	WUKK PLAN	¶ mati.	1.00	rs -	5,000.00 ·	× ۵٫۵۵۵ ۲					
			6) -baa	•		0.00	.	7 000				

ļ

	1	¶ MATL. ¶	Quantity ¶ Ur	nit¶Un	it Price	Total Material	Total Cost
em	1 Description	9 / 9	I / ¶	/ ¶	/		¶ M+L 4
	1	I LABOR	Hours ¶ Cr	aft ¶	Rate	Total Labor	1
		•••••				f	f
і I 13 - А	HOISTING & RIGGING PLAN	¶ Mati.	1.00 LS		1,000.00	1 ,000 °	, 1 (
		¶ Labor	0		0.00	I 0 4	1,000 ·
ſ		ſ				ſ '	1
[14 -A	SITE SPECIFIC SAFETY & HEALTH PL	AN ¶ Matl.	1.00 LS		5,000.00 •	5,000 4	1 (
		¶ Labor	0		0.00	0 '	1 5,000 •
***		¶ ¶					
****	SUBTOTAL ****	¶ Matl.	0			14,000	
1		¶ Labor	U				1 14,000 ·
		•					1 (
	•		======================================	•••••			Total Cost
BILL OF	T MATERIAL SUMMARY			•••••• ¶	Labo)r	Total Cost M + L
BILL OF	MATERIAL SUMMARY 9	 Mate	rial 20.50	¶ ¶ -¶	Labo	or 5,784 (Total Cost M + L 26.284
BILL OF	MATERIAL SUMMARY AL DIRECT STAX	Mate	rial 20,50 1,23	¶ ¶ ¶ 0 ¶ 0 ¶	Labo	5,784	Total Cost M + L 26,284 1,230
BILL OF	MATERIAL SUMMARY 9 NL DIRECT 9 S TAX 9	Mate	rial 20,50 1,23 21,73	¶ ¶ ¶ 0 ¶ 0 ¶ ¶	Labo	5,784 5,784	Total Cost M + L 26,284 1,230 27,514
BILL OF TOTA SALE SUBTOTA	MATERIAL SUMMARY	Mate 	20,50 1,23 21,73 4,34	¶ ¶ -¶ 0¶ -¶ 0¶ 6¶	Labo 20.00%	5,784 5,784 1,157	Total Cost M + L 26,284 1,230 27,514 5,503
BILL OF TOTA SALE SUBTOTA TOTAL	MATERIAL SUMMARY	Mate 20.00%	20,50 1,23 21,73 4,34 26,07	9 9 0 9 0 9 -9	Labo 20.00% 240)	5,784 5,784 1,157 6,941	Total Cost M + L 26,284 1,230 27,514 5,503 33,017

PGDP GWOU ALT 2

1.11

WBS . Cost Parti Level B/M A Disci B/M T Recei Cross Stand Estim	Code cipa of ttri plin itle ving -Cut lard nate	2.01.02.01 MONITORING WELLS 	(I/S FENC mate 5-31-00	Έ) 9:05a		Buildi Plant Contra Fundin Source Discip Quanti Trace Expira	ng/Area Site Site g Type Site Site Unne Estimator ty Take-Off By Number Number	GWOU R GGeneral EXPENSE PADUCAH MONT WELLS C.2.1 0
***** ¶	==25		¶ MATL. ¶	Quantity	¶ Unit ¶	Unit Price ¶	Total Material	Total Cost 9
¶ It ¶	em	9 Description 9	1 / 1 1 LABOR 1	/ Hours	¶ / ¶ ¶ Craft ¶	/ / Rate	/ Total Labor	[M+L ¶ [¶
¶		*27 WELLS INSIDE FENCE*	¶					1
1 1 1 1		(143 DAYS PER VENDOR)	1 ¶ ¶			1		
9 9 9 9 9		*ACCESS ROAD (300//WELL)*	¶ ¶ ¶ ¶			1		
¶ 1 ¶	- A	SITE PREP: CLEAR & GRUB LIGHT TREES, GRUB & RMV STUMPS (HCM-41)	¶ Matl. ¶ Labor ¶	0.95 57	ACRE OP	1,975.00 30.95	1,876 1,764	3,640
¶ 2 ¶	- A	GRADER RENTAL (HCM-17)	¶ Matl. ¶ Labor €	5.00 0	DAYS	670.00 0.00	3,350 0	3 , 350¶
¶ 3 ¶	- A	OPERATING COST & OPERATOR (HCM-17)	¶ Mati. ¶ Labor	40.00 40	HRS OP	16.92 30.95	677 1,238	1,915
¶ 4 ¶	- A	FILTER FABRIC UNDERLAYMENT (ECHOS-8-107)	¶ Matl. ¶ Labor	18,150.00 227	SY L	1.03 24.85	18,695 5,641	24,336
¶5 ¶	- A	GRAVEL BASE - 6" DP, SPREAD & COMPACT (HCM-58)	¶ Mati. ¶ Labor €	18,150.00 91	SY OP	2.62 30.95	47,553 2,816	50,369
, , , , , , , , , , , , , , , , , , ,	*	SUBTOTAL ****	¶ Mati. ¶ Labor ¶ ¶	415			72,151 11,459	83,610
۹ ۲ ۲		*INSTALL MONITORING WELLS*	9 9 9			1		
¶ ¶		(COST FROM VENDOR QUOTE)	¶ ¶ ¶			1		
96 9 9	- A	MOBILIZATION (INCL. MOB. 1 RIG, SET-UP, DECON PAD, PPE, ETC)	¶ Matl. ¶ Labor ¶	1.00 0	LS	150,000.00 0.00	150,000 0	150,000
¶7 ¶7 ¶	- A	MONITORING WELL W/ 2" SS TUBING, 6" OPEN HOLE, 10' SS SCREEN, 100' DP, 4 DRUMS/WELL SOLIDS,	¶ Matl. ¶ Labor ¶	27.00 0	EA	14,500.00 0.00	391,500 0	3 91,500

***** ¶	2522	1 1	¶ MATL. ¶	Quantity	======================================	Unit Price	Total Material	Total Cost
•	em	¶ Description		/	1 / 1	/		M+L
¶		1 	1 LABUR 1			Kale		[
ſ		1000 GAL/WELL PURGE WATER	1					•
۹ •			¶ ¶					í (
י ¶ ***	ir str	SUBTOTAL ****	¶ Matl.			•	541,500	Į –
1			¶ Labor	0			0	541,500
¶ ∢			¶ ∢					
Í			, ¶			•	i (
9		*DISPOSAL OF WATER*	٩					
¶ <			¶ ∢					
1 ¶		(1000 GAL/WELL)	• ¶			•	l l	í (
1			¶					
¶8 ¶	- A	5000 GAL TANKER RENTAL FOR	¶ Matl. ¶ Labor	143.UO 0	DAYS	320.00 ·	45,760 ¶	45 760
ſ		DEVELOPMENT WATER (RADD ED 7)	¶	•		•••••		45,700
9	- A	OPERATING COST & DRIVER (RRBB-20-7)	¶ Matl.	1,144.00	HRS	20.70	23,681	٩ ا
1			¶ Labor ¶	1,144	TD	22.60	25,854	49,535
¶ 10	- A	SAMPLE COLLECTION (27,000 GAL @	¶ Matl.	27.00	EA	25.00	675 (l l
1		ONE/WELL)	¶ Labor	54	X	25.00	1,350 ¶	2,025
¶ ¶ 11	- 4		¶ ¶ Mati	54 00	HRS	8 00 4	432 (
¶		LEVEL MODIFIED D FFE (SAMPLE ONLY)	1 Labor	0	IINU	0.00	0	432 4
9			٩				•	•
¶ 6	•	SUBTOTAL ****	¶ Matl. ¶ Labor	1 198			70,548 ¶ 27 204 ¶	97 752 •
ſ			1	1,170		•		
1			1					
۹ ۲		*DISPOSAL OF SOLIDS*	1 4				1	
ſ			1			•		
1		(4 DRUMS/WELL, 50 DRUMS/LOAD, 1	1					
1 (LOAD/DAY)	٩				U G	
1 2	- A	2 LABORERS TO LOAD & HAUL DRUMMED	¶ Matl.	24.00	HRS	0.00	0	
1		SOLIDS TO LANDFILL (NO TIPPING FEE)	¶ Labor	48	L	24.85	1,193	1,193
¶ ¶ 13	- A	55 GALLON DRUMS	¶ Matl.	108.00	EA	55.00	1 5,940 4	
1			4 Labor	0		0.00	T 0 •	5,940
1		FORK TRUCK OF ITAL (DOM 21)	¶ ¶ Noti	7 00	DAYS	175.00		i
1 14 9	- A	FURN INUUN KENIAL (BUM-21)	¶ Labor	0.00	DATS	0.00		525
ſ		· · · · · · · · · · · · · · · · · · ·	1	-			- -	- f
15	- A	OPERATING COST & OPERATOR (BCM-21)	¶ Matl.	24.00	HRS	9.20		04/
1 ¶			T Labor ¶	24	UP	20.92	יז 743 י ק	1 904 1
1 6	- A	FLATBED TRUCK RENTAL (BCM-20)	• ¶ Matl.	3.00	DAYS	138.00	- ¶ 414 9	- 7
1			¶ Labor	0		0.00	0	414
¶ ¶ 17	- ^	OPERATING COST & DRIVED (RCM-20)	¶ ¶ Mati	24.00	HRS	11.13	1 1 267 (7
9 '' 9	A	OF ENVITED COST & DETACH (DOM: CO)	¶ Labor	24	TD	22.60	¶ 542 °	809

PGDP GWOU ALT 2

630718

1.11

============================	***************************************		********		********		*****	352;				========
¶ ¶		•	MATL.	1 0	Quantity	ſ	Unit	ſ	Unit Price	Total Material	Total	Cost
¶ Item ¶	Description	4	I /	ſ	/	ſ	1	ſ	/	I / I	¶ M+	L
¶ ¶		•	LABOR	ſ	Hours	ſ	Craft	ſ	Rate	Total Labor	ſ	
٩			[•••••			[¶	
9			[1	٩
¶ 18 -A SAMPLE	E COLLECTION (1/WELL)		Matl.		27.00)	EA		25.00	675		
1			Labor		54	•	X		25.00	1,350	1	2,025
					F / 00						1	
1 19 -A LEVEL	MODIFIED D PPE (SAMPLI	NG UNLT)	Mat(.		54.00	,	nks		8.00	432		(77)
1			Labor			,			0.00			432
	A: ****		l Mati							1 F 8 / 7/ (1 F	
	AL AND				150					1 0,474 ·	1	12 302
•					150	,				l 3,020 (ſ	12,302
- -											ſ	
			, ;=====###	====	********	===	=====	==22	***************	. # 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2555222522	
**************				====		===	\$== : \$#	====	************	******************		
٩		1					ſ			•	Total	Cost
¶ BILL OF MATERI	AL SUMMARY	ſ	Mat	eria	al		ſ		Labo	or e	¶ M+	L
¶		••••••				•	¶				f	
1 TOTAL DIREC	T	1				692	,673 ¶			42,491	ſ	735,164
SALES TAX	•	1				41	,560 ¶			•	1	41,560 •
¶		[¶				[
¶ SUBTOTAL	•	1				734	,233 ¶			42,491	1	776,724
TOTAL INDIR	ECT	1	20.00	%		146	,847 ¶		20.00%	8,498	ſ	155,345
1							•••••¶					
¶ TOTAL						881	,080 ¶	(hrs	1,763)	50,989	1	932,069
				====	122121291	07/		====	.2321222222222222	E	1222;#1222 • ·	
T IUIAL (ESCALAT	ED COST)	1				9/0	,423 1			56,507	۱ <u>۱</u> ,	052,9
TOTAL (ESCALAT	ED COST)			====	******	976	,425 ¶	====		56,507		032,9

WBS							Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator MONT WELLS Quantity Take-Off By Trace Number C.2.2 0 Expiration Date: 09/15/1999			
1 1	••••••••••••••••••••••••••••••••••••••	======= Matl. ¶	Quantity	¶ Unit	•===== •	Unit Price	Total Material	Total Cost ¶		
Item Description	1		/ Hours	1 / • Craf	¶ -	/ Pate	/ ·	1 M+L 1		
1 1 ¶	1 ۹۰۹				• •			י ¶¶		
T -A ANALYSIS OF SOLID LASTE SAMD	1	Mati	27 00	FA		۹ • ۵۵ ۵۵۸	10 800 9	1 1		
(ASSUME 1 PER WELL)	1 I I	Labor	0	54		0.00	0	10,800 ¶		
1	1					1		1 1		
1	1 1					ו ק		1 1 1 1		
1 2 - A ANALYSIS OF LIQUID WASTE SAM	PLES ¶i	Matl.	27.00	EA		400.00	10,800	1 1		
Y (ASSUME 1 PER WELL)	¶ ¶	Labor	0			0.00		10,800 ¶		
¶ **** SUBTOTAL ****	¶	Matl.				•	21,600	, , , , , , , , , , , , , , , , , , ,		
1	1	Labor	0			1	0	21,600 ¶		
1	1									
1	ſ					1	· · · · · · · · · · · · · · · · · · ·	i i		
- A SMO OVERSIGHT (16 4%)	1	Mati	21 60	K\$		164 00 ¶	3 542 0			
1 1	¶	Labor	0	NO		0.00	0	3,542 ¶		
1	1					9		٩٩		
	292 2332 23 32 2			.222322				19=12032825282385222		
		2232282	**********	*******	 -	*************				
T BILL OF MATERIAL SUMMARY	י ¶	Mater	ial		י ¶	Labo	or .			
1	¶	••••••			¶			[
TOTAL DIRECT	1 1			25,142	ך ק		0	1 25,142 ¶ 1 1.509 ¶		
¶	¶	•••••			• •			،۹		
¶ SUBTOTAL	¶ ¶			26,651	¶ ¶		0 9	26,651 ¶		
¶ TOTAL	1			26,651	¶(hrs	. 0)	0 4	26,651 ¶		
TOTAL (ESCALATED COST)	======================================		2222222222	29,535	===== ¶	**************		••••••••••••••••••••••••••••••••••••••		
	238822988883		===============	=======				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

1.1.1.

WBS Cos Par Lev B/M Dis B/M Rec Cro: Stai Est	t Cod ticip el of Attr cipli Titl eivin ss-Cu ndard imate	2.01.02.02 MONITORING WELLS e	(O/S FENCI Nate 5-31-00 S	E) 2:05a		Buildi Plant Contra Fundin Source Discip Quanti Trace Expira	ng/Area Site cting Type g Type Site line Estimator ty Take-Off By Number tion Date: 09/15/1	GWOU R GGeneral EXPENSE PADUCAH MONT WELLS C.2.3 0 999
1	_	1	¶ MATL. ¶	Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost ¶
¶ ¶	ltem	¶ Description ¶	¶ / ¶ ¶ LABOR ¶	/ Hours	1 / 1 ¶ Craft ¶	/ ¶ Rate ¶	/ Total Labor	[M+L ¶ [1
9 9 9 9 9 9 9 9 9 9		*2 WELLS ADDED FOR S.W. PLUME INCLUSION* *5 WELLS QUTSIDE FENCE* (27 DAYS PER VENDOR) *ACCESS ROAD (300'/WELL)*	9 9 9 9 9 9 9 9 9 9 9			¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶		
9 9 9 1 1 1	-A	SITE PREP: CLEAR & GRUB LIGHT TREES, GRUB & RMV STUMPS (HCM-41)	¶ ¶ ¶ Matl. ¶ Labor ¶	0.28 17	ACRE OP	¶ 1,975.00 ¶ 30.95 ¶	553 q 526 q	1,079 ¶
¶ 2 ¶	- A	GRADER RENTAL (HCM-17)	¶ Matl. ¶ Labor	2.00 0	DAYS	670.00 ¶ 0.00 ¶	1,340 ¶ 0 ¶	1,340
1 13 1	- A	OPERATING COST & OPERATOR (HCM-17)	¶ Matl. ¶ Labor ¶	11.00 11	HRS OP	16.92 30.95	186 1 340 1	526
4 4 1	-A	FILTER FABRIC UNDERLAYMENT (ECHOS-8-107)	¶ Matl. ¶ Labor ¶	4,690.00 59	SY L	1.03 ¶ 24.85 ¶	4,831 4 1,466 4	6,297
• 5 •	-A	GRAVEL BASE - 6" DP, SPREAD & COMPACT (HCM-58)	¶ Matl. ¶ Labor ¶	4,690.00 23	SY Op	2.62 30.95	12,288 712	13,000
96 9 9 9 9 9 9 9 9 9	-A	UTILITIES FOR 2-EA WELLS IN S.W. PLUME 500 LF FROM EXIST. 13200 KW ELECTRICAL SERVICE, AND 2000 LF. OF 4" HDPE PIPE (DIRECT BURIED) TO C-612 FOR TREATMENT AND DISPOSAL.	- ¶ Matl. ¶ Labor ¶ ¶ ¶	2.00 0	EA	28,100.00 0.00	56,200 0	56,200
۲ ۲ ۲ ۲ ۹ ۹ ۹ ۹ ۹	***	SUBTOTAL **** *INSTALL MONITORING WELLS*	Y ¶ Matl. ¶ Labor ¶ ¶ ¶ ¶	110		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	75,398 3,044	78,442

¶ ¶		••••••••••••••••••••••••••••••••••••••	9 MATL. 9	Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost
• 'ti	em	1 Description 1	¶ / ¶ ¶ LABOR ¶	/ Hours	¶ / ¶ ¶ Craft¶	/ Rate	/ Total Labor	M+L ¶ ¶
¶ ¶		(COST FROM VENDOR QUOTE)	¶ ¶				[[۱۰۰۰۰۰۹ ۲
¶ ¶		(MOB. INCL. W/ WELLS I/S FENCE)	1					
, , 7 , , ,	-A	MONITORING WELL W/ 2" SS TUBING, 6" OPEN HOLE, 10' SS SCREEN, 100' DP, 4 DRUMS/WELL SOLIDS, 1000 GAL/WELL PURGE WATER	¶ ¶ Matl. ¶ Labor ¶ ¶	5.00 0	EA	14,500.00 0.00	72,500 0	72,500 ¶
9 9 B 9 1	-A	MONITORING WELL W/8" HDPE PIPE RISER, 14" OPEN HOLE, 8"X 30'SS SCREAN, 100'DP 8 DRUMS/WELL SOLIDS, AND 2000 GAL./WELL PURGE WATER.	¶ Matl. ¶ Labor ¶ ¶ ¶	2.00 0	EA	25,400.00 0.00	50,800 D	50,800 ¶
[**** 	,	SUBTOTAL ****	¶ Matl. ¶ Labor ¶	0			123,300 0	123,300 ¶
			1					
		"DISPUSAL OF WATER"	1					1
ļ		(1000 GAL/WELL)	ן ק ת					
9 9 1	- A	5000 GAL TANKER RENTAL FOR DEVELOPMENT WATER (RRBB-20-7)	Matl. Labor	38.00 0	DAYS	320.00 0.00	12,160 0	12,160
10 1	-A	OPERATING COST & DRIVER (RRBB-20-7)	¶ Matl. ¶ Labor	304.00 304	HRS TD	20.70 22.60	6,293 6,870	13,163
 11 	- A	SAMPLE COLLECTION (5,000 GAL a ONE/WELL)	l Matl. Labor	7.00 14	EA X	25.00 25.00	175 350	¶ ¶ 525 ¶
 12 	-A	LEVEL MODIFIED D PPE (SAMPLE ONLY)	¶ Matl. ¶ Labor	14.00 0	HRS	8.00 0.00	112 0	¶ ¶ ¶ 112 ¶
 **** 	,	SUBTOTAL ****	¶ Matl. ¶ Labor ¶	318			18,740 7,220	25,960
I I		*DISPOSAL OF SOLIDS*	, 1 1					
		(4 DRUMS/WELL, 50 DRUMS/LOAD, 1 LOAD/DAY) (+8 DRUMS/ADDED WELL=16 DRUMS	1 1 7 7					
[[17	_ •		¶ ¶ Not!	8.00	NDC	0.004	¶	, , , , , , , , , , , , , , , , , , ,
[13	-A	SOLIDS TO LANDFILL (NO TIPPING FEE)	T Mart. Labor	16 10	L	24.85	1 398 (י א 398 ¶

630722

1

litem	Description	T MA	TL. ¶ / ¶	Quantity 4	 ¶ Unit ¶ /	ייייייייייייייייייייייייייייייייייייי	Unit Price (Total Material	Total Cost¶
I •	l	¶ LA	BOR ¶	Hours	Craft	ſ	Rate	Total Labor	
[[٩ ٩					••••••		· · · · · · · · · · · · · · · · · · ·
14 -A	55 GALLON DRUMS	¶ Ma	atl.	36.00	EA		55.00	1,980	1
l		¶ La	bor	0			0.00	0	1,980 \$
I I 15 - A	FORK TRUCK RENTAL (BCM-21)	1 ¶ Ma	tl.	1.00	DAYS		175.00	 175 •	
l i l		¶ La	рог	0			0.00	0	175 ¶
		1		8 00			0 20 4		1
10 -A	UPERATING COST & UPERATOR (BC	м-21) тма ¶La	iti. ibor	8.00	OP		30.95		322
Ī		ſ					٩	l I	••••••••••••••••••••••••••••••••••••••
17 -A	FLATBED TRUCK RENTAL (BCM-20)	¶ Ma	tl.	1.00	DAYS		138.00	138	9
l T		¶ La ¶	DOL	U			0.00	יט	138 9
18 - A	OPERATING COST & DRIVER (BCM-	20) ¶ Ma	tl.	8.00	HRS		11.13	89	1
l		¶ La	bor	8	TD		22.60	181 •	270 ¶
 (10) -∆	SAMPLE COLLECTION (1/UELL)	¶ ¶ Ma	+1	7 00	FA		25 00 9	175 (¶
		¶ La	bor	14	x		25.00	350 9	525 ¶
		1					•	٩	1
20 -A 	LEVEL MODIFIED D PPE (SAMPLIN	GONLY) ¶Ma ¶la	itl. Dor	14.00 0	HRS		8.00 ¶ 0.00 ¶	112 ¶	¶ 112 ¶
		¶					9.00	i en	2 1 2
****	SUBTOTAL ****	¶ Ma	tl.				٩	2,743	l 1
		¶ La ∢	bor	46				1,177	3,920 ¶
Ĭ		Ś					•		רי ו
	******************************			23232222889:		*****			
			======						
ſ	1				ſ	Ī		•	Total Cost ¶
BILL OF	MATERIAL SUMMARY	·	Mater	ial	٩		Labo	or .	M+L
TOTAL	DIRECT			22	20,181 ¶	 -		11,441	231,622
SALES	TAX ¶				13,211 ¶	[•	13,211
SURTOTAL	· • • • • • • • • • • • • • • • • • • •			27	····¶ 33 392 ¶	 			¶ 244 אזז
TOTAL	INDIRECT 1	2	0.00%		46,678 ¶	ſ	20.00%	2,288	48,966 ¶
					••••••	[·			
TOTAL	۲ ====================================			28	50,070 ¶ =======	(hrs. ======	474) ===================================	13,729	293,799 ¶
TOTAL (E	SCALATED COST)			3	10,377 ¶	[15,215	325,592
IUIAL (E	SCALATED CUST)			د	10,377			15,215	225,572 T

Cost Code						Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator P&A EXIST WELLS Quantity Take-Off By Trace Number C.3.1 0 Expiration Date: 09/15/1999			
1		1	¶ MATL. ¶	Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost ¶	
¶ I1 ¶	tem	1 Description 1	¶ / ¶ ¶ LABOR ¶	/ Hours	¶ / ¶ ¶ Craft ¶	/ Rate	/ ¶ Total Labor ¶	M + L ¶	
1 ¶ ∢		*P&A WELLS (BASED ON VENDOR QUOTE)*	¶ ¶					1	
1 ¶ ¶		(OVERHEAD & PROFIT INCLUDED BELOW AS	1						
1 ¶ ¶		(USE 1 WELL/DAY = 15 DAYS)	1 ¶ ¶				r 1 1 1	 	
¶ ¶ 1 ¶	- A	P&A CEMENT-FILL AND SQUEEZE	¶ ¶ Matl. ¶ Labor ¶	15.00 0	WELL	40,833.00 0.00	612,495 ¶ 0 ¶	¶ 612,495¶ ¶	
¶ ¶ ¶		*DISPOSAL OF WATER*	¶ ¶ ¶			1		¶ 	
• ¶		(USE 1000 GAL/WELL)	1				9	9	
י 12 1 4	- A	5000 GAL TANKER RENTAL FOR Development water (RRBB-20-7)	¶ Matl. ¶ Labor ¶	15.00 0	DAYS	320.00 0.00	4,800 ¶ 4,800 ¶ 0 ¶	4,800 ¶	
¶3 ¶	- A	OPERATING COST & DRIVER (RRBB-20-7)	¶ Matl. ¶ Labor	120.00 120	HRS TD	20.70 22.60	2,484 2,712	5,196 T	
ז 174 17	- A	SAMPLE COLLECTION (15,000 GAL Ə ONE/WELL)	1 ¶ Matl. ¶ Labor	15.00 30	EA X	25.00 25.00	375 1 750 1	1,125 ¶	
יז 15 1	- A	LEVEL MODIFIED D PPE (SAMPLE ONLY)	¶ ¶ Matl. ¶ Labor	30.00 0	HRS	8.00 0.00	240 ¶ 1 0 ¶	9 240 ¶	
۲ ۲ *** ۲ ۲ ۲	* #*	SUBTOTAL ****	¶ ¶ Matl. ¶ Labor ¶ ¶	150			620,394 3,462	623,856	
1 ¶ ¶		*DISPOSAL OF SOLIDS*	1 ¶ ¶						
¶ ¶		(USE 5 DRUMS/WELL, 50 DRUMS/LOAD, 1 LOAD/DAY = 2 DAYS)	¶ ¶				1 1 1 1		
¶ 6 ¶	-A	2 LABORERS TO LOAD & HAUL DRUMMED SOLIDS TO LANDFILL (NO TIPPING FEE)	¶ Matl. ¶ Labor	16.00 32	HRS L	0.00 24-85	0 1 0 1 795	795	

=============			*********			53332222222¢	2222252	2225222225722226223	29222882222842222
۹ ۹		•	T MATL. 9	Quantity	¶ Unit	¶ Unit Pr	ice ¶	Total Material	Total Cost 🌉
¶ Item ¶ ¶ ¶	Description		/ /	/ Hours	¶ / ¶ Craft	¶ / ¶ Rate	۹ ۹ ۹	/ Total Labor	[M + L [
¶ ¶ 7 -A : ¶	55 GALLON DRUMS		Matl.	75.00 0	EA	!	¶ 55.00 ¶ 0.00 ¶	4,125 0	4,125
1 ¶ 8 - A ¶	FORK TRUCK RENTAL (BCM-21)		Matl. Labor	2.00 0	DAYS	1	75.00 ¶ 0.00 ¶	350 0	350
1 ¶9 -A (¶	OPERATING COST & OPERATOR	(BCM-21)	Matl. Labor	16.00 16	HRS OP	:	۲ 9.20 ¶ 30.95 ¶	147 495	642
¶ 10 -A	FLATBED TRUCK RENTAL (BCM-	20)	Mati. Labor	2.00 0	DAYS	1:	ר 38.00 ¶ 0.00 ¶	276 0	276
¶ 11 -A (¶	OPERATING COST & DRIVER (B	ICM-20)	 Matl. Labor	16.00 16	HRS TD	:	ץ 11.13 ¶ 22.60 ¶	178 362	540
¶ 12 -A : ¶	SAMPLE COLLECTION (1/WELL)		Matl. Labor	15.00 30	EA X	:	25.00 ¶ 25.00 ¶	375 750	1,125
¶ 13 -A ¶	LEVEL MODIFIED D PPE (SAMP	PLE ONLY)	Matl. Labor	30.00 0	HRS		8.00 ¶ 0.00 ¶	240 0	240
9 **** : 9 9	SUBTOTAL ****		Matl. Labor 	94			۰ ۲ ۲	5,691 2,402	8,093
¶ ====================================			 =========		=======	-*********	¶ =======		
BILL OF	MATERIAL SUMMARY	••••••••••••••••••••••••••••••••••••••	Mate	:=====================================	••••••• ¶ ¶	- \$ = 2 2 3 8 5 5 5 5 5	Labo		Total Cost M + L
TOTAL SALES	DIRECT Tax	1		6	26,085 ¶ 37,565 ¶			5,864	631,949 37,565
SUBTOTAL TOTAL	INDIRECT	1	20.00%	6 (1)	63,650 ¶ 32,730 ¶	2	0.00%	5,864 1,173	669,514 133,903
TOTAL		1		7	96,380 ¶	(hrs.	244)	7,037	803,417
TOTAL (E	SCALATED COST)	¶		8	82,559 ¶	-52222832222	5228627	7,798	¶ 890,357 9

WBS 2.01.03 P&A WELLS Cost Code 6100 REMEDIAL ACTION 'cipant SC01 OFFSITE SUB #1 (of Estimate . P Planning/Feasibility Est B/M Attribute 2ALT 2 Discipline C CIVIL AND SITE B/M Title P&A WELLS Receiving Site PADUCAH Cross-Cut Code Standard Value file C:@ESTIMA™1@RRB2668A.val Estimate file C:@ESTIMA™1@ATL2@2ALT2.Est	imate 5-31-00 9:05a	Buildi Plant Contra Fundin Source Discip Quanti Trace Expira	ng/Area Site cting Type g Type Site line Estimator ty Take-Off By Number tion Date: 09/15/1	GWOU R GGeneral EXPENSE PADUCAH P&A EXIST WELLS C.3.2 0
1 1 1 Item 1 Description 1 1	¶ MATL. ¶ Quantity ¶ Unit ¶ / ¶ / ¶ / ¶ LABOR ¶ Hours ¶ Craf	¶ Unit Price ¶ ¶ / ¶ t¶ Rate ¶	Total Material / Total Labor	Total Cost M + L
¶ ¶ 1 -A ANALYSIS OF SOLID WASTE SAMPLES ¶ (ASSUME 1 PER WELL) ¶	¶ ¶ Matl. 15.00 EA ¶ Labor O ¶ ¶	¶ 400.00 ¶ 0.00 ¶ ¶	6,000 0	6,000
1 12 - A ANALYSIS OF LIQUID WASTE SAMPLES 1 (ASSUME 1 PER WELL) 1	¶ ¶ Matl. 15.00 EA ¶ Labor O ¶	¶ 400.00 ¶ 0.00 ¶ ¶	6,000 1 0 1	6,000 ¶
¶ **** SUBTOTAL **** ¶ ¶ ¶	¶ Matl. ¶ Labor 0 ¶ ¶	9 9 1 1 1 1	12,000 9 0 9 1	12,000
ነ -A SMO OVERSIGHT (16.4%) ¶ ¶	¶ Matl. 12.00 K\$ ¶ Labor 0 ¶	164.00 ¶ 0.00 ¶ ¶	1,968 0 1	1,968 ¶
¶ ¶ ¶ BILL OF MATERIAL SUMMARY ¶	Material	Labo	 r	Total Cost ¶ M + L
TOTAL DIRECT TAX	13,968 838	1	0	13,968 ¶ 838 ¶
¶ SUBTOTAL ¶	14,806	 	0 1	14,806 ¶
¶ TOTAL ¶	14,806	¶(hrs. 0)	0 9	14,806 ¶
TOTAL (ESCALATED COST)	16,408	1	0 9	16,408 ¶

WBS Cost Cod cip L of B/M Attr Discipli B/M Title Receiving Cross-Cu Standard Estimate	2.01.04 EXCAVATION OF SWMU (e 6100 REMEDIAL ACTION ant FP51 FIXED PRICE SUBCONT Estimate . P Planning/Feasibility Estim ibute 2ALT 2 ne C CIVIL AND SITE e C CIVIL AND SITE e EXCAVATION OF SWMU 099 g Site PADUCAH t Code Value File C:@ESTIMAM1@RRB2668A.val File C:@ESTIMAM1@RRB2668A.val	099 nate 5-31-00	9:05a	£ = + + +	Build Plant Contr Fundi Source Discij Quant Trace Expire	ing/Area Site acting Type ng Type e Site bline Estimator ity Take-Off By Number ation Date: 09/15/	. GWOU . R . G General . EXPENSE . PADUCAH . NEW NE SYSTEM . C.4.2 0
ſ	1	4 MATL.	Quantity	Unit 9	Unit Price	Total Material	Total Cost
¶ ltem	Description	9 / 9		1 / 1	/		M + L
1	1	I LABOR	Hours	Craft ¶	Rate	Total Labor	· · · -
9 9 9 1 -A 9 9 2 -A 9 9 3 -A 9 9 3 -A 9 9 4 -A	EXCAVATION OF EXISTING CONCRETE PAD SWMU 099 BREAK, LOAD AND HAUL PAD 120' X 240' SUPPORT CRAFT DUMP TRUCK AND DRIVER HAUL TO LANDFILL AT PGDP EXCAVATION OF EARTH UNDRER PAD AND 5'	9 9 9 Matl. 9 Matl. 9 Matl. 9 Matl. 9 Matl. 9 Matl.	1,067.00 160 1.00 160 2 <u>-3.00</u> 360 6,019.00	CY OP LS L WK TD	3.50 30.95 1,000.00 24.85 500.00 22.60	3,735 4,952 1,000 3,976 1,500 8,136 16,853	8,687 4,976 9,636
¶ .	AROUND PEREMITER TO A DEPTH OF 5'	1 Labor	482	OP	30.95	14,918	I 31 771
,		9				1	
1 1	MOD. C PROTECTIVE CLOTHING PPE a 50%	¶ Matl.	461.00		8.00	1 3,688 (7
1		Labor	0		0.00	I 04	3,688
٩		٩			•	1 4	i i
 		*******			======================================	***************************************	Total Cost

¶ ¶ BILL OF NATERIAL SUMMARY	¶ Material	1	Labor	1	Total Cost H + L
TOTAL DIRECT SALES TAX	1	26,776 ¶ 1,607 ¶		31,982 ¶	58,758 1,607
SUBTOTAL TOTAL INDIRECT	20.00%	28,383 ¶ 5,677 ¶	20.00%	31,982 ¶ 6,396 ¶	60,365 12,073
TOTAL	1	34,060 ¶(hrs.	1,162)	38,378 ¶	72,438
TOTAL (ESCALATED COST)	1	38,132 ¶		42,967 1	B1,099 ¶

M C C C C C C C C C C	BS ost /M A isci /M T ecei ross tand stim	Code cipa of ttr plin itle ving -Cut ard ate	2.01.04.01 GENERAL CONDITIO e	NS (7 YRS mate 5-31-00) 9:05a			Build Plant Contra Fundin Source Discin Quant Trace Expire	ing/Area Site acting Type e Site e Site pline Estimator ity Take-Off By Number ation Date: 09/15/	. GWOU . R . G General . EXPENSE . PADUCAH . NEW NE SYSTEM . C.4.3 0
1			٩	¶ MATL.	Quantity	¶ Uni	it¶	Unit Price	Total Material	Total Cost
1	It	em	Description	¶ / ¶ LABOR	/ Hours		/ ¶ aft¶	/ Rate	/ / Total Labor	M+L ¶
¶• ¶	••••		*GENERAL CONDITIONS - FIXED COST*	•¶ ¶					 [¶
İ				1				•		i i
٩				1				•	ا ا	I 1
1	1	- A	CONSTRUCTION TRAILER MOB/DEMOB	¶ Matl.	1.00	LS		0.00	0	1
1				¶ Labor €	40	ĨŬ		22.60	904	904 ¶
ł	2	- A	MOB/DEMOB SUPPORT LABOR	1 ¶ Mati.	1.00	LS		0.00	1 [0 4	1 1 1 4
İ	-			Labor	40	L		24.85	994	994 ¶
ſ				ſ				•	I 9	i i
٩	3	-A	SET-UP LABOR	¶ Matl.	1.00	LS		250.00	250	I ¶
1				¶ Labor	40	L		24.85	994	1,244 ¶
1	,			¶ ¶ Noti	1 00	16		7 000 00 0		1
	4	- 4	SEVED)		1.00	23		3,000.00		I 3.000 €
ļ			SEWER /	¶ Labor	Ū			0.00		5,000 ¶
١		- A	SHOWER/CHANGE TRAILER MOB/DEMOB	¶ Mati.	1.00	LS		0.00		r f
٩				¶ Labor	40	TD		22.60	904	904 ¶
ſ				ſ					1	I 1
1	6	-A	MOB/DEMOB SUPPORT LABOR	¶ Matl.	1.00	LS		0.00	0	1
1				¶ Labor	40	L		24.85	994	994
	7	- 4		¶ ¶ Mati.	1.00	15		250.00	1 250 e	
ŝ	•	~		¶ Labor	40	L		24.85	994	1.244 ¶
i				1					· · · · · ·	1
1	8	-A	UTILITIES HOOK-UP (ELEC, WATER,	¶ Matl.	1.00	LS		3,000.00	3,000	۱ ۱
٩			SEWER)	¶ Labor	0			0.00	1 0 •	3,000 ¶
1	***			¶ ¶ Noti					4 500 4	1
1			SUBIUTAL ****	¶ Matt.	240				1 0,000 ° I 5 78/ (1 12 284 €
ł				¶	240				I 5,704	I 12,204 I
Í				٩					۲ (i i
ſ	9	-A	GENERAL SAFETY PLAN	¶ Matl.	1.00	LS		2,000.00	2,000	1 1
٩				¶ Labor	0			0.00	0 .	2,000 ¶
1	10	- •		¶ Moti	1 00	16		1 000 00 4		
	10	- A	WUALIIT ASSUKANLE PLAN	¶ Labor	1.00	L3		0.00	1 1,000 S	
4				¶	Ū			0.00	1	1,000 T
Í	11	-A	WASTE MANAGEMENT PLAN	¶ Matl.	1.00	LS		2,000.00	2,000	1 1
٩				¶ Labor	0			0.00	0	2,000 ¶
٩				1					۲. · ·	1 1
1	12	-A	WORK PLAN	¶ Matl.	1.00	LS		3,000.00	3,000	
٩				Labor	0			0.00	1 0 1	ז 3,000 א

********	=======================================								
ſ	1		¶ MATL. 4	Quantity	¶ Un	it ¶	Unit Price	¶ Total Material	Total Cost
¶ Item	¶ Description		¶ / •		ſ	/ 1	/	¶ / 9	¶ M+L
ſ	1		LABOR	Hours	¶ Cr	aft ¶	Rate	Total Labor	1
¶			[
¶				1 00			1 000 00		
¶ 13 -A	HOISTING & RIGGING PLAN		Matl.	1.00	LS		1,000.00		1 1 000 /
			l Labor	0			0.00		1,000
1 ¶ 14 - A	CITE SDECIEIC SAFETY & HEAL		l Mati	1 00	15		5 000 00 0		
1 4 -∧. €	SITE SPECIFIC SAFETT & HEAC		Labor	1.00			0,00	1 3,000 1 0 4	۱ ۲ 5 ۵۵۵ -
1 ¶				•			0.00		1 3,000 1
¶ ****	SUBTOTAL ****		Mati.					• • 14.000 •	(
İ			Labor	0				¶ 04	14,000 ·
Ŷ			ſ					1	9
ſ		•	ſ					ſ (ſ
									• • • • • • • • • • • • • • • • • • • •
********				**********	======	822\$22; 222\$22;			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
 1		••••••••••••••••••••••••••••••••••••••		******					Total Cost
¶ BILL OF	MATERIAL SUMMARY	••••••••••••••••••••••••••••••••••••••				 1 1 1	Lab		Total Cost M + L
¶ BILL OF	MATERIAL SUMMARY	¶				-	Lab	or (Total Cost M + L
BILL OF	MATERIAL SUMMARY	¶ 1 1 1		:	20,50	¶ ¶ ¶ ¶	Lab	or 5,784	Total Cost M + L 26,284
BILL OF TOTA SALE	MATERIAL SUMMARY L DIRECT S TAX	¶ ¶ ¶ ¶	Mate		20,50 1,23	¶ ¶ ¶ ¶ 0 ¶ 0 ¶	Lab	or 5 , 784	Total Cost M + L 26,284 1,230
BILL OF TOTA SALE	MATERIAL SUMMARY	¶ ¶ ¶ ¶ ¶	Mate	rial	20,50	¶ ¶ ¶ 0¶ 0¶ ¶	L ab	or 5,784 4	Total Cost M + L 26,284 1,230
BILL OF TOTA SALE SUBTOTA	MATERIAL SUMMARY	¶ ¶ ¶ ¶ ¶ ¶	Mate	rial	20,50 1,23 21,73	¶ ¶ •••¶••••• 0¶ ••¶•••• 0¶ ••¶•••	Lab. 20.00%	5,784 4	Total Cost M + L 26,284 1,230 27,514 5,503
BILL OF TOTA SALE SUBTOTA TOTA	MATERIAL SUMMARY L DIRECT S TAX L L INDIRECT	¶ ¶ ¶ ¶ ¶ ¶	Mate 20.007	:rial	20,50 1,23 21,73 4,34	¶ ¶ •¶ 0 ¶ 0 ¶ ¶ 0 ¶ 6 ¶	Lab. 20.00%	or 5,784 5,784 1,157	Total Cost M + L 26,284 1,230 27,514 5,503
BILL OF TOTA SALE: SUBTOTA TOTA	MATERIAL SUMMARY L DIRECT S TAX L L INDIRECT	¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶	Mate 20.007	erial	20,50 1,23 21,73 4,34	¶ ¶ • • • • • • • • • • • • • • • • • •	Lab 20.00%	5,784 5,784 1,157 6,941	Total Cost M + L 26,284 1,230 27,514 5,503 33,017
BILL OF TOTA SALE SUBTOTA TOTA	MATERIAL SUMMARY L DIRECT S TAX L L INDIRECT	¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶	Mate 20.007	erial	20,50 1,23 21,73 4,34	¶ ¶ 0¶ 0¶ 0¶ 0¶ 6¶ 6¶	Lab 20.00% s. 240)	5,784 5,784 1,157 6,941	Total Cost M + L 26,284 1,230 27,514 5,503 33,017
BILL OF TOTA SALE SUBTOTA TOTA TOTAL	MATERIAL SUMMARY L DIRECT S TAX L L INDIRECT ESCALATED COST)	¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶	Mate 20.007	r i a l	20,50 1,23 21,73 4,34 26,07	¶ ¶ 0¶ 0¶ 0¶ 6¶ ¶	Lab 20.00% s. 240)	5,784 5,784 1,157 6,941	Total Cost M + L 26,284 1,230 27,514 5,503 33,017 36,9

<pre>WBS 2.01.04.01 GENERAL CONDITIONS (7 YRS) Cost Code 6100 REMEDIAL ACTION</pre>						Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator NEW NE SYSTEM Quantity Take-Off By Trace Number C.4.1 0 Expiration Date: 09/15/1999			
ſ	1	¶ MATL. ¶	Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost		
¶ ltem ¶	¶ Description ¶	¶ / ¶ ¶ LABOR ¶	/ Hours	¶ / ¶ ¶ Craft ¶	/ Rate	1 / Total Labor	Г M+L 9 Г 9		
1 1 1 1 1 1	GENERAL CONDITIONS - VARIABLE COST	1 1 1 1 1 1							
¶1 -A ¶ ¶	CONSTRUCTION TRAILER RENTAL	¶ Matl. ¶ Labor ¶	6.00 0	MON	300.00 0.00	1,800 · 0 ·	1,800		
¶ 2 -A ¶	SHOWER/CHANGE TRAILER RENTAL	¶ Matl. ¶ Labor ¶	6.0 0 0	MON	500.00 0.00	3,000 0	3,000		
• ¶3 -A ¶	PORT-O-LET (1 @ \$80 FOR 2 MONTHS)	¶ Matl. ¶ Labor ¶	6.00 0	MON	80.00 0.00	480 0	480		
₹ -∧ 1	SAFETY & HEALTH OFFICER	¶ Matl. ¶ Labor ¶	6.00 1,050	MON X	0.00 40.00	0 42,000	42,000		
¶5 -A ¶	TRAINING:SECURITY REQMNT, GET ETC (28 HOURS/PERSON)	¶ Matl. ¶ Labor ¶	8.00 224	EA ZZ	0.00 25.00	0 5,600	5,600		
• • • •	SUBTOTAL ****	¶ Matl. ¶ Labor ¶	1,274			5,280 47,600	52,880		
1		1				[•			

1	1	٩		٩	Total Cost						
9 BILL OF MATERIAL SUMMARY	Material	1	Labor	٩	M + L						
TOTAL DIRECT SALES TAX	1	5,280 ¶ 317 ¶		47,600	52,880 317						
¶ SUBTOTAL ¶ TOTAL INDIRECT	20.00%	5,597 ¶ 1,119 ¶	20.00%	47,600 9,520	53,197 10,639						
¶ TOTAL	1	6,716 ¶(hrs.	1,274)	57,120 ¶	63,836						
TOTAL (ESCALATED COST)	f 	7,519 ¶		63,949 ¶	71,468 9						

WBS	YSTEM timate RS) : 5-31-00 9:05a	Build Plant Contr Fundi Sourc Disci Quant Trace Expir	Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator NEW NE SYSTEM Quantity Take-Off By Trace Number C.4.4 O Expiration Date: 09/15/1999			
1 1	¶ MATL. ¶ Quantity ¶ U	nit ¶ Unit Price	¶ Total Material	Total Cost ¶		
Item The provided and the p	¶ / ¶ / ¶ ¶ LABOR ¶ Hours ¶ C	/¶// raft¶Rate	¶ / ¶ Total Labor	1 M+L 1 1 1		
 VENDOR QUOTE 1 -A 400 GPM AIR STRIPPER (2 a 200 GPM/EA 2 -A CONTAINMENT STRUCTURE FOR AIR STRIPPERS (E.J.) 3 -A PERMITTED OUTFALL (E.J.) 	<pre>Matl. 2.00 EA Labor 500 PF Matl. 1.00 EA Labor 0 Matl. 1.00 LS Labor 0</pre>	35,000.00 35.20 25,000.00 0.00 25,000.00 0.00	1 1 1 1 1 1 1 2 5,000 1 1 2 5,000 1 1 2 5,000 1 1 2 5,000 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	87,600 25,000 25,000		
	1 		¶	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
T BILL OF MATERIAL SUMMARY	Material	Lab	or			
TOTAL DIRECT SALES TAX	120,0 7,2	9999999	17,600	137,600 ¶ 7,200 ¶		
SUBTOTAL ¶ TOTAL INDIRECT ¶	127,2 20.00% 25,4	00 ¶ 20.00%	17,600 3,520	144,800 ¶ 28,960 ¶		
1 TOTAL	152,6	0 ¶(hrs. 500)	21,120	173,760 ¶		
TOTAL (ESCALATED COST)	170,8	20 ¶	23,645	¶ 194,535 ¶		

WBS							2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-I X.5.3 0	1	
1 1 1 Item ¶ Description 1 1		¶ MATL. ¶ / ¶ LABOR	Quantity / Hours	¶ Unit ¶ / ¶ Craft	9 Ur 9 9	nit Price ¶ / ¶ Rate ¶	Total Material / Total Labor	Total Cos M + L	st ¶ ¶
AE TITLE II DESIGN 1 1 1 -A RD REPORT (TITLE II) (1 FTE X 1	(3 MOS)	¶ ¶ ¶ Matl. ¶ Labor ¶	520.00 520	HOUR T2		¶ ¶ 0.00 ¶ 65.00 ¶	0 33,800	33	¶ ¶ ¶ \$,800 ¶ ¶
1 9 BILL OF MATERIAL SUMMARY	======================================	======= Mate	erial	1		Labo		Total Cos	st ¶
TOTAL DIRECT	 			0 ¶ ••••••¶ 0 ¶	(hrs.	520)	33,800 33,800	32 	5,800 ¶ ¶ 5,8
¶ TOTAL (ESCALATED COST)	======================================			0 ¶	3328222 222222		36,905	30	6,905 ¶

W8S	ITIAL) NT AL y Estimate N N Val 2.Est 5-31-00	9:05a			Build Plant Contra Fundir Source Discip Quanti Trace Expira	ing/Area Site acting Type of Type Site Site bline Estimator ity Take-Off By Number ation Date: 09/15/	2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-I X.5.5 0
1 1	¶ MATL. ¶	Quantity	¶ Unit	¶ (Unit Price	Total Material	Total Cost
Item Description	1 / 1	/	1 /	1	/	/	M+L ¶
1 1	¶ LABOR ¶	Hours	¶ Craft	t¶	Rate	Total Labor	1
1	¶					[
1 -C AE REVIEW RA WORK PLAN	¶ Matl.	20.00	HOUR		0.00	0	1
1	¶ Labor	20	T2		65.00	1,300	1,300
1	¶ 				۹ ۲=======		1
1 1				ſ			Total Cost
¶ BILL OF MATERIAL SUMMARY ¶	Mate	rial		¶ 	Labo		M + L
TOTAL DIRECT			0	, , ,		1,300	1,300
1 TOTAL			0	(hrs.	20)	1,300	1,300
L (ESCALATED COST)			0	1		1,419	1,419

L L

WBS 2.02.01.01 DESIGN Cost Code 9100 PROJECT MANAG Participant AE01 A-E, ENVIRONM Level of Estimate . P Planning/Feasibi B/M Attribute 2ALT 2 Discipline X ENGINEERING B/M Title AE RD WORK PLAN Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMA™1@RRB2666 Estimate File C:@ESTIMA™1@ATL2@24	(INITIAL) EMENT ENTAL lity Estima BA.val ALT2.Est 5	ite i-31-00	9:0	5a				Buildi Plant Contra Fundir Source Discip Quant Trace Expira	ing/Area Site acting Type Site Site Site Site Site Site Site Sit	2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-I X.5.1 0 999
1 1 1 Item 1 Description 1 1	1	MATL. / LABOR	9 Q 9 9 9	uantity / Hours	¶ ¶ ¶	Unit / Craft	¶ ¶ ¶	Unit Price / Rate	Total Material / Total Labor	Total Cost ¶ M + L ¶
¶ ¶ 1 -C AE WRITE RD WORK PLAN ¶	1	 Matl. Labor		40.00 40)	HOUR T2		0.00 65.00	0 2,600	¶ 2,600 ¶
¶ BILL OF MATERIAL SUMMARY	 1 1	Mate	==≠= eria	•••••••	===	 ¶ ¶		Labo) Dr	Total Cost ¶ M + L ¶
TOTAL DIRECT						0 ¶			2,600	2,600
1 TOTAL						0 1	(hrs	. 40)	2,600	2,600 ¶
1 TOTAL (ESCALATED COST)	1		=====		===	0 1			2,839	2,8

ļ

|

WBS 2.02.01.01 DESIGN Cost Code 9100 PROJECT MANAG 'icipant R032 PAD ENG & TEC l of Estimate P Planning/Feasibi B/M Attribute 2ALT 2 Discipline X B/M Title CM RA WORK PLAN Receiving Site PADUCAH Cross-Cut Code Standard Value File Stimate File C:@ESTIMA™1@RRB2666	(INITIAL) EMENT H SVCS Lity Estimu BA.val ALT2.Est !	ate 5-31-00	9:05	5a				Buildi Plant Contra Fundir Source Disci Quant Trace Expire	ing/Area Site acting Type ng Type e Site bline Estimator ity Take-Off By Number ation Date: 09/15/	2ALT 2 IN R G General EXPENSE PADUCAH INDIRECTS X.5.6 0	D :- I
¶ ¶ ¶ Item ¶ Description ¶ ¶		MATL.	9 QL 9 QL 9 9	Jantity / Hours	9 9 9 9	Unit / Craft	¶ ¶ t ¶	Unit Price / Rate	Total Material / Total Labor	Total C M +	cost ¶ L ¶
¶ ¶ ¶ 1 -A CM WRITE RA WORK PLAN ¶		¶ Matl. ¶ Labor		40.00))	HOUR MX		0.00	0 2,560	 	9 9 2,560 9
¶ BILL OF MATERIAL SUMMARY			===== erial			****** 1 1	:=== [[Lab		Total C	cost ¶ L ¶
¶ TOTAL DIRECT	 			• • • • • • • • •		0	[[2,560	 -	2,560 ¶
¶	1					0	(hr	·s. 40)	2,560	1	2,560 ¶
AL (ESCALATED COST)	[0 9	 [2,795		2,795 ¶

i

WBS 2.02.01.01 DESIGN Cost Code 9100 PROJECT MANAGI Participant R032 PAD ENG & TECI Level of Estimate P Planning/Feasibi B/M Attribute 2ALT 2 Discipline X ENGINEERING B/M Title CM REVIEW RD WORK H Receiving Site PADUCAH Cross-Cut Code Standard Value File Standard Value File C:@ESTIMA™1@ATL2@2/	(INITIAL) EMENT H SVCS lity Estima PLAN BA.val ALT2.Est 5	ate 5-31-00	9:0	05a				Build Plant Contra Fundia Source Discig Quant Trace Expira	ing/Area Site acting Type Type Site Site Site Site Site Site Site Sit	2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-I X.5.2 0	1
1 1 1 Item 1 Description 1 1	1	MATL. / LABOR	1 (1 1	Quantity / Hours	9 9 9 9	Unit / Craft	¶ ¶ 1	Unit Price / Rate	Total Material / Total Labor	Total Cost M + L	= ¶ ¶ ¶
1 1 - A CM REVIEW RD WORK PLAN 1 1	1	 Mati. Labor		20.00 20))	Hour MX		0.00 64.00	0 1,280	1,280	۹ ۹ ۹
					:2=:						:=
9 9 BILL OF MATERIAL SUMMARY	1	Mat	eri:	al		1		Labo	or	Total Cost M + L	¶ 1
TOTAL DIRECT	1					0 9	 		1,280	1,280	1
¶ TOTAL	1 [0 9	(hr	's. 20)	1,280	¶ 1,280	ר ¶
TOTAL (ESCALATED COST)						0 ¶			1,398	۹ 1,3	11

WBS	(INITIAL) EMENT H SVCS Lity Estim T BA.val ALT2.Est	ate 5-31-00	9:05a			Buildi Plant Contra Fundin Source Discip Quant Trace Expire	ing/Area Site Site Type Site Site Site Site Site Site Site Sit	2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-I X.5.4 0		
Item 1 MATL 1 Quantity 1 Unit 1 Unit Price 1 Total Material 1 Total Cost 1 Item 1 Description 1 <td< th=""></td<>										
¶ ¶ BILL OF MATERIAL SUMMARY ¶ TOTAL DIRECT ¶ ¶ TOTAL	 	Mate			 ¶ ¶ ¶ ¶(hrs	Labo	5,120	Total Cost M + L 5,120 5,120		
TAL (ESCALATED COST)			**********	0	* ¶ *-	************************	5,590 4	5,590 ¶		

WBS	ION (INITIAL) mate 5-31-00 9:05a	Build Plant Contr Fundi Sourc Disci Quant Trace Expir	ing/Area Site acting Type ng Type e Site pline Estimator ity Take-Off By Number ation Date: 09/15/	2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-I U.7.1 0
1 1	¶ MATL. ¶ Quantity	Unit ¶ Unit Price	¶ Total Material	Total Cost ¶
1 Item 1 Description		I / ¶ /	1 / ·	M+L ¶
1 1 9	TLABUK T HOURS	у сгатт у кате	¶ lotal Labor ¶	1 7 [q
1	Í		¶	i i
1 -A AE TITLE III ENGINEERING (1/2 FTE X 9	¶ Matl. 780.00	HOUR 0.00	٩ ٥٠	1 1
¶ MOS) ≪	¶Labor 780 ¶	T3 55.00	¶ 42,900 ¶	42,900 1
] 1251===================================	 ====================================) F====================================	
1	**********************	¶	5343222\$22222222 (Total Cost
BILL OF MATERIAL SUMMARY	Material	f Lab	or	M + L ¶
TOTAL DIRECT		0 1	42,900	42,900
TOTAL T		0 ¶(hrs. 780)	42,900	42,900 ¶
TOTAL (ESCALATED COST)		0 ¶	47,542	47,5

WBS 2.02.01.02 PROJECT INTEGRA Cost Code 9100 PROJECT MANAGEMENT F icipant R032 PAD ENG & TECH SVCS of Estimate P Planning/Feasibility Est B/M Attribute 2ALT 2 Discipline U CM Title CM FINAL REPORTS Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMA™1®RRB2668A.val Estimate File C:@ESTIMA™1@ATL2@2ALT2.Est	TION (INITIAL) imate 5-31-00 9:05a	Building/Area Plant Site Contracting Type Funding Type Source Site Discipline Estimator Quantity Take-Off By Trace Number Expiration Date: 09/1	<pre> 2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-I U.7.3 0 5/1999</pre>
 ۱ ۱	¶ MATL. ¶ Quantity ¶ Unit ¶	Unit Price ¶ Total Material	¶ Total Cost ¶
¶ Item ¶ Description	1/1/1/1	/ 1 /	¶ M+L ¶
	¶ LABOR ¶ Hours ¶ Craft ¶	Rate ¶ Total Labor	1 1
¶ 1 -A CM FINAL CONSTRUCTION REPORTS ¶	¶ ¶ Matl. 40.00 HOUR ¶ Labor 40 MR ¶	¶ 0.00 ¶ 54.00 ¶ 2,16 ¶	¶ 0¶ 0¶ 2,160¶ ¶
T T T T T T T T T T T T T T T T T T T	¶ Material	Labor	¶ Total Cost ¶ ¶ M + L ¶
TOTAL DIRECT	¶ 0¶	2,16	¶¶ 0 ¶ 2,160 ¶
1 TOTAL	0 ¶(hr	's. 40) 2,16	0¶ 2,160¶
1 L (ESCALATED COST) 1	0 ¶	2,39	2,394 ¶

MBS 2.02.01.02 PROJECT INTEGRATION (INITIAL) Building/Area 2ALT Cost Code 9100 PROJECT INTEGRATION (INITIAL) Plant Site 2ALT Participant 9100 PROJECT NANAGEMENT Plant Site 2ALT Participant R053 PAD FIELD SERVICES Contracting Type G Ge Level of Estimate P Planning/Feasibility Estimate Funding Type EXPE SM Attribute 2ALT 2 Source Site PADU Discipline								
1 1 1 Item 1 Description 1 1	¶ MATL. ¶ Quantity ¶ ¶ / ¶ / ¶ ¶ LABOR ¶ Hours ¶	Unit ¶ Unit Price /¶// Craft¶ Rate	¶ Total Material ¶ ¶ / ¶ ¶ Total Labor ¶	Total Cost ¶ M + L ¶ ¶				
T T T A CM CONSTRUCTION OVERSIGHT (1 FTE MOS) T	¶ X 9 ¶ Matl. 1,560.00 ¶ Labor 1,560 ¶	HOUR 0.00 MR 54.00	1 9 1 0 1 1 84,240 1 1 9	¶ ¶ 84,240 ¶ ¶				
TILL OF MATERIAL SUMMARY	Material	¶ 1 Lab	¶ or	Total Cost ¶ M + L ¶				
TOTAL DIRECT		0 ¶	84,240 ¶	84,240 ¶				
1 TOTAL 1		¶ 0¶(hrs. 1,560)	84,240 ¶	84,240 ¶				
1 TOTAL (ESCALATED COST) 1		0 ¶	93,356 ¶	93,3				

WBS	timate : 5-31-00 9:05a	Buildi Plant Contra Fundir Source Discip Quant Trace Expire	ing/Area Site acting Type og Type e Site Site Estimator ity Take-Off By Number ation Date: 09/15/19	2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-7 X.6.5 0
T T T T T T T T T T T T T T T T T T T	¶ MATL.¶ Quantity¶ ¶ /¶ /¶ ¶ LABOR¶ Hours¶	Unit ¶ Unit Price /¶// Craft¶ Rate	Total Material ¶ / ¶ Total Labor ¶	Total Cost ¶ M + L ¶
¶ ¶ 1 -C AE REVIEW RA WORK PLAN ¶	¶ ¶ Matl. 20.00 ¶ Labor 20 ¶	HOUR 0.00 T2 65.00	¶ [0 ¶ [1,300 ¶ [¶	¶ ¶ 1,300 ¶ ¶
1 1 9 BILL OF MATERIAL SUMMARY 9	Material	¶ ¶ Labo)r ¶	Total Cost ¶ M + L ¶
TOTAL DIRECT		0 ¶	1,300 ¶	1,300
¶ TOTAL ¶		0¶(hrs. 20)	1,300 ¶	1,300 ¶
(L (ESCALATED COST)		0 ¶	1,708 ¶	1,708 ¶

WBS 2.02.02.01 DESIGN (7 YRS) Building/Area 22 Cost Code 9100 PROJECT MANAGEMENT Plant Site Reference Participant AE01 A-E, EWVIRONMENTAL Contracting Type G Level of Estimate P Planning/Feasibility Estimate Funding Type ED B/M Attribute 24LT 2 Source Site Planting Type Discipline AE RD WORK PLAN Quantity Take-Off By N Receiving Site PADUCAH Trace Number X TossCut Code Standard Value File C:@ESTIMAMI@RB2668A.val Expiration Date: 09/15/1999 Estimate File Description 1 1 Y / 1 Texe Number 1 / / / 1 Item 1 Description 1 / / / 1 Item 1 Description 1 / / / / 1 -C AE WRITE RD WORK PLAN Matl. 20.00 HOUR 0.00 1 0 1 1 -C AE WRITE RD WORK PLAN Material Labor 1 1 1						2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-7 X.6.1 0			
1 1 1 Item 1 Description 1 1	1	MATL. / LABOR	¶ Quanti ¶ / ¶ Hour	ty ¶ ¶ 5 ¶	Unit / Craft	¶ ¶ t ¶	Unit Price / Rate	Total Material / Total Labor	Total Cost ¶ M + L ¶
¶ ¶ 1 -C AE WRITE RD WORK PLAN ¶ ¶	9 9 9 9	Matl.	20	.00 20	HOUR T2		0.00 65.00	0 1,300	¶ ¶ 1,300 ·¶ [¶
	==============		============		======				
T BILL OF MATERIAL SUMMARY		Mat	erial			 	Labo	or	Total Cost ¶ M + L ¶
TOTAL DIRECT					0	1 [[1,300	1,300 ¶
¶ TOTAL ¶	******	========		****	0	(hr:	s. 20)	1,300	1,300 ¶
¶ TOTAL (ESCALATED COST) ¶					0	1		1,708	1, ^{- ~~}

¶ TOTAL (ESCALATED COS	T)	1					0 ¶	*===		22,204	 	22,204 ¶
*AL		, 	{ ============				====	• • •	(hrs.	. 260)	16,900		16,900 ¶
ТОТА	L DIRECT		, , ,					0 ¶ •			16,900		16,900 ¶
¶ ¶ BILL OF	MATERIAL SUM	MARY			eri	al		<u></u> ۹ ۹		Labo	pr	Total	Cost ¶ + L ¶
¶ ¶ ¶ 1 -A ¶	**AE TITLE I RD REPORT (T MOS)	I DESIGN** ITLE II) (1/2 FT	E X 3	¶ ¶ ¶ Mati. ¶ Labor ¶	221	260.00 260	H T ====	OUR 2 		0.00 65.00	0 16,900		¶ ¶ 16,900 ¶ ¶
¶ ¶ ltem ¶	¶ ¶ ¶	Description		¶ MATL. ¶ / ¶ LABOR ¶	¶ ¶ ¶	Quantity / Hours	¶ ¶ ¶	Unit / Craft 	¶ ¶ ¶	Unit Price / Rate	Total Material / Total Labor	Total M + 	Cost ¶ + L ¶ ¶
WBS Cost Code icipa l of B/M Attri Disciplin B/M Title Receiving Cross-Cut Standard Estimate	2. 91 ant	02.02.01 DESIGN 00 PROJECT MANAG 01 A-E, ENVIRONM Planning/Feasibi LT 2 ENGINEERING RD REPORT DUCAH DESTIMA™10RRB2666 DESTIMA™10ATL202	(7 YRS) EMENT ENTAL lity Estim 8A.val ALT2.Est	ate 5-31-00	9:	:05a				Build Plant Contra Fundir Source Discip Quanti Trace Expira	ng/Area Site Site Type Site Site Site Site Site Site Site Sit	2ALT 2 R G Genera EXPENSE PADUCAH INDIRECT X.6.3 (999	nd ns-7 0
WBS 2.02.02.01 DESIGN of Cost Code 9100 PROJECT MANAGE Participant R032 PAD ENG & TECH Level of Estimate . P Planning/Feasibil B/M Attribute 2ALT 2 Discipline X ENGINEERING B/M Title CM REVIEW RD WORK F Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMA™1@RRB2668 Estimate File C:@ESTIMA™1@ATL2@2/	W (7 YRS) Building/Area ZALT 2 IND AGEMENT Plant Site R ECH SVCS Contracting Type G General pility Estimate Funding Type EXPENSE Source Site Source Site INDIRECTS-7 Quantity Take-Off By Indirector X.6.2 S68A.val Expiration Date: 09/15/1999												
--	---	-------------------------	-------------	----------------------	-------------------	-------------------------	------------------------------------	-------------------------	------------				
1 1 1 Item 1 Description 1 1		MATL. / LABOR	Quantity	¶ Un ¶ J ¶ Cri	it¶ /¶ aft¶	Unit Price / Rate	Total Material / Total Labor	Total Cost ¶ M + L ¶	 				
1 1 - A CM REVIEW RD WORK PLAN 1 1	1	[[Matl. [Labor	20.00 20	HOUI MX	?	0.00 64.00	1 0 1 1,280	1,280 ¶	 				
T T BILL OF MATERIAL SUMMARY		 Mate	rial		¶	Lab	or	Total Cost ¶ M+L ¶	: 				
TOTAL DIRECT	[- <i>-</i> [(••¶		1,280	1,280	Í				
TOTAL	 			() ¶(hrs	s. 20)	1,280	1,280 ¶	1				
¶ TOTAL (ESCALATED COST)				=======	0 ¶		1,682 (1 <i>,</i> ć					

WBS 2.02.02.01 DESIGN Cost Code 9100 PROJECT MANAGE F tipant R032 PAD ENG & TEC L of Estimate P Planning/Feasibility B/M Attribute 2ALT 2 Discipline X ENGINEERING B/M Title CM REVIEW RD REPOR Receiving Site PADUCAH Cross-Cut Code Standard Value File Standard Value File C:@ESTIMA™1@RRB2666	(7 YRS) EMENT H SVCS lity Estimu T 8A.val ALT2.Est	ate 5-31-00	9:05a			Build Plant Contr Fundi Sourc Disci Quant Trace Expir	ing/Area Site acting Type ng Type e Site pline Estimator ity Take-Off By Number ation Date: 09/15/	2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-7 X.6.4 0
¶ ¶ ¶ Item ¶ ¶ ¶		MATL. ¶ / ¶ LABOR ¶	Quantity / Hours	¶ Unit ¶ / ¶ Craf	¶ ¶ t¶	Unit Price / Rate	Total Material / Total Labor	Total Cost M + L
¶ ¶ ¶ 1 -A CM REVIEW RD REPORT ¶ ¶	•	Matl. Labor	40.00 40	Hour Mx		0.00	2,560	2,560
*****	***********	********			=====			
¶ ¶ BILL OF MATERIAL SUMMARY	1	Mate	rial		¶ ¶	Lab	or	Total Cost M + L
TOTAL DIRECT	1			0	1 1 4		2,560	2,560
1 TOTAL	1			0	¶(hrs	. 40)	2,560	2,560
<pre> f L (ESCALATED COST) </pre>	1			0	¶		3,363	3,363

WBS 2.02.02.01 DESIGN (7 YRS) Building/Area 2ALT 2 IND Cost Code 9100 PROJECT MANAGEMENT Plant Site R Participant R032 PAD ENG & TECH SVCS Contracting Type G General Level of Estimate P Planning/Feasibility Estimate Funding Type EXPENSE B/M Attribute 2ALT 2 Source Site PADUCAH Discipline X ENGINEERING Discipline Estimator INDIRECTS-7 B/M Title CM RA WORK PLAN Quantity Take-Off By X.6.6 0 Cross-Cut Code Standard Value File C:@ESTIMA™I@RRB2668A.val Expiration Date: 09/15/1999 Estimate File Expiration Date: 09/15/1999								
1 1 1 Item 1 Description 1 1	¶ MATL.¶ Quantity ¶ /¶ / ¶ LABOR¶ Hours	Unit ¶ Unit Price / ¶ / Craft ¶ Rate	Total Material / Total Labor	Total Cost ¶ M+L ¶				
¶ ¶ 1 - A CM WRITE RA WORK PLAN ¶ ¶	¶ ¶ Mati. 20.00 ¶ Labor 20 ¶	HOUR 0.00 MX 64.00	0 1,280	1,280				
9 9 9 BILL OF MATERIAL SUMMARY 9	Material	¶ ¶ Labo	or .	Total Cost M + L				
TOTAL DIRECT		0 1	1,280	1,280				
¶ TOTAL ¶		0 ¶(hrs. 20)	1,280 •	1,280 ¶				
¶ TOTAL (ESCALATED COST) ¶		0 ¶	1,682	1,68				

<pre>WBS 2.02.02.02 PROJECT INTEGRATIC Cost Code 9100 PROJECT MANAGEMENT icipant AE01 A-E, ENVIRONMENTAL i of Estimate . P Planning/Feasibility Estima B/M Attribute 2ALT 2 Discipline U PROJECT ENGINEERING B/M Title AE T-III ENGINEERING Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMA™1@RRB2668A.val Estimate File C:@ESTIMA™1@ATL2@2ALT2.Est 5</pre>	DN (7 YRS) ate 5-31-00 9:05a	Buildi Plant Contra Fundir Source Discip Quanti Trace Expira	ing/Area Site acting Type by Type e Site bline Estimator ity Take-Off By Number ation Date: 09/15/19	2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-7 U.8.1 0 999
1 1 1 ltem 1 Description 1 1	MATL. ¶ Quantity / ¶ / LABOR ¶ Hours	Unit ¶ Unit Price / ¶ / Craft ¶ Rate	Total Material ¶ / ¶ Total Labor ¶	Total Cost ¶ M + L ¶ ¶
1 1 -A AE TITLE III ENGINEERING (1/2 FTE X 3 MOS) 1	Matl. 260.00 Labor 260	HOUR 0.00 T3 55.00	0 ¶ 14,300 ¶	¶ 14,300 ¶ ¶
1 1 1 BILL OF MATERIAL SUMMARY 1	Material	¶ Labo	n 1	Total Cost ¶ M + L ¶
TOTAL DIRECT		0 1	14,300 ¶	14,300 ¶
1		0¶(hrs. 260)	14,300 ¶	14,300 ¶
AL (ESCALATED COST)		0 ¶	19,005 ¶	19,005 ¶

WBS 2.02.02.02 PROJECT INTEGRATION (7 YRS) Building/Area 2ALT Cost Code 9100 PROJECT MANAGEMENT Plant Site R Participant R032 PAD ENG & TECH SVCS Contracting Type G Gen Level of Estimate P Planning/Feasibility Estimate Funding Type EXPENS B/M Attribute 2ALT 2 Source Site PADUCA Discipline U PROJECT ENGINEERING Discipline Estimator INDIR B/M Title CM FINAL REPORTS Quantity Take-Off By Trace Number U.8.3 Cross-Cut Code Standard Value File C:@ESTIMA™1@RB2668A.val Expiration Date: 09/15/1999 Estimate File C:@ESTIMA™1@ATL2@2ALT2.Est 5-31-00 9:05a								
1 1 1 Item 1 Description 1 1	¶ MATL.¶ Quant ¶ /¶ / ¶ LABOR¶ Hou	tity ¶ Unit ¶ / ¶ / ¶ urs ¶ Craft¶	Unit Price ¶ T / ¶ Rate ¶	otal Material ¶ / ¶ Total Labor ¶	Total Cost ¶ M + L ¶			
T T T -A CM FINAL CONSTRUCTION REPORTS T	¶ ¶ Matl. 2 ¶ Labor ¶	20.00 Hour 20 Mr	¶ 0.00 ¶ 54.00 ¶ ¶	9 0 ¶ 1,080 ¶ ¶	1,080 ¶			
T BILL OF MATERIAL SUMMARY	Material	1	Labor	••••••••••••••••••••••••••••••••••••••	Total Cost ¶ M+L ¶			
TOTAL DIRECT		0 9		1,080	1,080 ¶			
¶ TOTAL ¶		0 ¶(hr	s. 20)	1,080 ¶	1,080 ¶			
¶ TOTAL (ESCALATED COST) ¶		0 ¶		1,435 ¶				

WBS 2.02.02.02 PROJECT INTEGRAT Cost Code 9100 PROJECT MANAGEMENT P icipant R053 PAD FIELD SERVICES of Estimate P Planning/Feasibility Esti B/M Attribute 2ALT 2 Discipline U PROJECT ENGINEERING B/M Title CM CONST OVERSIGHT Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMA™1@RRB2668A.val Estimate file C:@ESTIMA™1@ATL2@2ALT2.Est	ION (7 YRS) mate 5-31-00 9:05a	Building/Area Plant Site Contracting Type Funding Type Source Site Discipline Estimator . Quantity Take-Off By . Trace Number Expiration Date: 09/15	2ALT 2 IND R G General EXPENSE PADUCAH INDIRECTS-7 U.8.2 0 /1999
1 1 1 Item ¶ Description 1 1	¶ MATL. ¶ Quantity ¶ Unit ¶ / ¶ / ¶ / ¶ LABOR ¶ Hours ¶ Craft	<pre>¶ Unit Price ¶ Total Material ¶ / ¶ / ¶ Rate ¶ Total Labor</pre>	¶ Total Cost ¶ ¶ M+L ¶ ¶
1 1 -A CM CONSTRUCTION OVERSIGHT (1/2 FTE X 3 MOS) 1	¶ ¶ Matl. 260.00 HOUR ¶ Labor 260 MR ¶	¶ 0.00 ¶ 0 54.00 ¶ 14,040 ¶	14,040
***************************************		***************************************	
1 9 1 BILL OF MATERIAL SUMMARY 1	Material	Labor	1 Total Cost 1 1 M + L 1
TOTAL DIRECT	0	14,040	14,040
1 TOTAL 1	0	(hrs. 260) 14,040	1 4,040 ¶
* AL (ESCALATED COST) 1	0	18,660	¶ 18,660 ¶

WBS 2.03.01.01 OPS & MAINT 1ST 3 YRS Cost Code 7300 OPERATIONS AND MAINTENANCE Participant FP51 FIXED PRICE SUBCONT Level of Estimate . P Planning/Feasibility Estimate B/M Attribute 2ALT 2 Discipline 0 OTHER B/M Title OPS & MAIN 1ST 3 YRS Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMA™1@RRB2668A.val Estimate File C:@ESTIMA™1@RRB2668A.val					9:05a		Buildi Plant Contra Fundir Source Discip Quanti Trace Expira	Building/Area 2ALT 2 O&M Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator O&M Quantity Take-Off By Trace Number 0.9.1 O Expiration Date: 09/15/1999			
ſ		٩	ſ	¶ MATL. ¶	Quantity	¶ Unit '	¶ Unit Price ¶	Total Material	Total Cost 🖣		
ſ	ltem	٩	Description	9 / 9	/	1 /	1 / 1	i / ¶	[M+L ¶		
1		9	l	I LABOR	Hours	¶ Craft	¶ Rate ¶	Total Labor	1		
	1 -A	1	MAINTENANCE OF MONITORING WELLS INCLUDED AT 2% OF CAPITAL COST PER YEAR, EQUALS COMPLETE REPLACEMENT EVERY 50 YEARS (90 EXISTING AND 32 NEW WELLS = 122 X \$14,500/EA = \$1,769,000) MAINTENANCE OF MONITORING WELLS (2% X	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.00	YRS	35,380.00	106,140			
¶ ¶ ¶ ¶	2 - 4		3 YRS)	¶ Labor ¶ ¶ ¶ Mati	3 00	YPS	0.00 ¶ ¶ 1.098.774.00 ¶		106,140 ¶		
1 1 1		•	JACOBS - MINUS OVERHEAD = \$1,098,774/YR)	1 Labor	0		0.00	0	3,296,?		
¶3 ¶ ¶ ¶	5 - A	•	O&M OF NE SYSTEM (COST FROM BECHTEL JACOBS - MINUS OVERHEAD = \$346,362/YR)	¶ Matl. ¶ Labor ¶ ¶	3. 00 0	YRS	346,362.00 0.00	1,039,086 0 1	1,039,086		
¶ ' ¶ ¶ ¶	****		SUBTOTAL ****	¶ Matl. ¶ Labor ¶	0			4,441,548 0 1	4,441,548		

· · · · · · · · · · · · · · · · · · ·		***************************************	I = = = = = = = = = = = = = = = = = = =
¶ BILL OF MATERIAL SUMMARY	Material	f Labor	Total Cost ¶ M + L ¶
TOTAL DIRECT SALES TAX	4,441,548 266,493	0	4,441,548 ¶ 266,493 ¶
SUBTOTAL TOTAL INDIRECT	4,708,041 20.00% 941,608	0 20.00% 0	4,708,041 941,608
¶ TOTAL	5,649,649	9(hrs. 0) 0	5,649,649 ¶
1 TOTAL (ESCALATED COST)	6,459,842 ·	¶	¶ 6,459,842 ¶

WBS	ON 1ST 3 YRS WANCE imate 5-31-00 9:05a	I 3 YRS Building/Area Plant Site Plant Site Contracting Type Funding Type Funding Type Source Site Source Site Discipline Estimator Quantity Take-Off By Trace Number Trace Number Expiration Date: 09/15				
۲ ۲	¶ MATL. ¶ Qua	entity ¶ Unit	¶ Unit Price	¶ Total Material	Total Cost 9	
Item Description	1 / 1 1 LABOR 1	/ ¶ / Hours ¶ Crat	¶ / t¶ Rate	¶ / ¶ Total Labor	9 M+L 9	
T *MONITORING - 3 YEARS*	1			¶ ¶	۹۹ ۲ ۹	
	1			1	1 1	
SAMPLE COLLECTION-	1			1		
(COST BY BECHTEL JACOBS)	1			1	1	
1 ¶	1			¶		
1 -A QUARTERLY SAMPLING OF 122 WELLS =	¶ Matl.	3.00 YRS	516,792.00	1 ,550,376	1 1	
¶ 488/YR X \$1,059/EA	¶ Labor ¶	0	0.00	¶ 0'	1,550,376 ¶	
¶ **** SUBTOTAL ****	¶ Matl.			1,550,376 ·	i i	
¶ ¶	¶ Labor ¶	0		¶ 0'	1,550,376	
٩	İ			•	1 1	
1 1			1		Total Cost	
¶ BILL OF MATERIAL SUMMARY ¶ ¶	Material		¶ Lab ¶	or	1 M + L 1	
TOTAL DIRECT		1,550,376	1	0	1,550,376	
¶ SALES TAX ¶		93,023	¶ •		93,023	
¶ SUBTOTAL ¶		1,643,399	1	0	1,643,399	
TOTAL INDIRECT	20.00%	328,680	¶ 20.00%	0	328,680	
1 TOTAL 1		1,972,079	¶(hrs. 0)	0	1,972,079	
TOTAL (ESCALATED COST)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,254,887	**=*=*=*=*=*=*= ¶		¶ 2,254,887 ¶	

WBS 2.03.01.03 SAMPLE Cost Code	2ALT 2 O&M R S Subcontractor EXPENSE PADUCAH O&M 0.9.3 0					
1 1	¶ MATL. ¶	Quantity ¶	Unit	Unit Price	Total Material	Total Cost
1 Item 1 Description	¶ / ¶ ¶ LABOR ¶	/ ¶ Hours ¶	Craft	1 / 1 1 Rate 1	/ Total Labor	[M+L ¶ [¶
LAB ANALYSIS - 3 YEARS 1 -A QUARTERLY ANALYSIS OF 122 WE 488/YR X \$400/EA **** SUBTOTAL **** 2 -A SMO OVERSIGHT (16.4%)	¶ ¶ ¶ LLS = ¶ Matl. ¶ Labor ¶ ¶ Matl. ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶	3.00 0 0 585.60 0	YRS K S	195,200.00 0.00 164.00 0.00	585,600 0 585,600 0 96,038 0	585,600 585,600 96,038
¶ ¶ BILL OF MATERIAL SUMMARY	l Mater	ial	1	Labo	۲ ۲	Total Cost ¶ M+L ¶
TOTAL DIRECT SALES TAX		681 40	1,638 ¶ 0,898 ¶		0	681,638 ¶ 40,898 ¶
SUBTOTAL		722	2,536 ¶		0	722,536
TOTAL		722	2,536 ¶(†	nrs. 0)	0	722,536 ¶
TOTAL (ESCALATED COST)		826	6,152 ¶		0 9	826,152 ¶

We Co Pa Le B/ Di B/ Re Cr St Es	S st (vel M A1 sci; M Ti ceiv oss- anda tima	Code cipa of ttri plin itle ving -Cut ard ate	2.03.02.01 OPS & MAINT YRS 4 2	-7 NNCE nate 5-31-00	9:05a		Build Plant Contra Fundir Source Discip Quanti Trace Expira	ing/Area Site Site Type Site Site Site Site Site Site Site Sit	2ALT 2 0&M R G General EXPENSE PADUCAH 0&M 0.9.4 0
ſ			1	¶ MATL. ¶	Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost ¶
ſ	Ite	em	1 Description	1 / 1	1	¶ / ¶	/	I / 9	M+L ¶
ſ			1	¶ LABOR ¶	Hours	¶ Craft ¶	Rate	Total Labor	1
¶• ¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶	1	-A	MAINTENANCE OF MONITORING WELLS INCLUDED AT 2% OF CAPITAL COST PER YEAR, EQUALS COMPLETE REPLACEMENT EVERY 50 YEARS (90 EXISTING AND 32 NEW WELLS = 122 X \$14,500/EA = \$1,769,000) MAINTENANCE OF MONITORING WELLS (2% X 4 YRS)	9 1 1 1 1 1 1 1 1 1 4 1 1 2 1 1 1 1 1 1	4.00 0	YRS	35,380.00 0.00	141,520 0	141,520
• • • •	2	- A	O&M OF NW SYSTEM (COST FROM BECHTEL JACOBS - MINUS OVERHEAD = \$1,098,774/YR)	¶ Matl. ¶ Labor ¶	4.00 0	YRS	1,098,774.00 0.00	4,395,096 0	4,395,
• ¶: ¶ ¶	3	-A	O&M OF NE SYSTEM (COST FROM BECHTEL JACOBS - MINUS OVERHEAD = \$346,362/YR)	¶ Matl. ¶ Labor ¶	4.00 0	YRS	346,362.00 0.00	1,385,448 D	1,385,448
• • • •	****	•	SUBTOTAL ****	¶ Matl. ¶ Labor ¶ ¶	0			5,922,064	5,922,064

		************************		========================	
	1	ſ		ſ	Total Cost ¶
9 BILL OF MATERIAL SUMMARY	Materia	۱ ۹	Labor	٩	M + L ¶
TOTAL DIRECT SALES TAX		5,922,064 ¶ 355,324		0 ¶	5,922,064 355,324
SUBTOTAL TOTAL INDIRECT	20.00%	6,277,388 ¶ 1,255,478 ¶	20.00%	0 ¶ 0 ¶	6,277,388 1,255,478
TOTAL	1	7,532,866 ¶(hrs	. 0>	0 ¶	7,532,866 ¶
TOTAL (ESCALATED COST)		9,521,349 ¶		0 ¶	9,521,349 ¶

WBS Cost Code Participa Level of B/M Attrii Disciplin B/M Title Receiving Cross-Cut Standard Estimate		COLLECTION D MAINTENAN UBCONT Lity Estima BA.val ALT2.Est S	YRS 4-7 NCE ate 5-31-00	9:05a			Buildi Plant Contra Fundir Source Discip Quanti Trace Expira	ng/Area Site Site Site Site Site Site Site Site	2ALT 2 0&M R G General EXPENSE PADUCAH 0&M 0.9.5 0 1999
1	1	٩	MATL. 1	Quantity	¶ Unit	t¶	Unit Price	Total Material	Total Cost
¶ Item ¶	Description			/	¶ /	1	/ Pato		M+L 1
۲ ۲	1			nours	1 Lra	···1	ĸate		ז י ן ¶
1	*MONITORING - 4 YEARS*		I						1
¶ ¶	-SAMPLE COLLECTION-		6				•		9 1 6 •
1	SARTER COLLECTION	ſ	f						, , ,
1	(COST BY BECHTEL JACOBS)	٩	l				1		1 1
1		1							1 1 7 7
¶1 -A	SEMI-ANNUAL SAMPLING OF 122	WELLS =	Matl.	4.00	YRS		258,396.00	1,033,584	1
¶ ∢	244/YR X \$1,059/EA		Labor	0			0.00	0	1,033,584
¶ ****	SUBTOTAL ****	•	Matl.				•	1,033,584	, , , , , , , , , , , , , , , , , , ,
1			Labor	C				0	1,033,584
1			[
2552255222				*********	******	922 <u>9</u> 2		:222222222222222222222	-
		********				****			
1		1				٩			Total Cost
¶ BILL OF	MATERIAL SUMMARY	1	Mate	rial		¶ 	Labo)r	¶ M+L ¶
TOTA	L DIRECT	1		1,	033,584	q		0	1,033,584
SALE	STAX	1			62,015	1			62,015
	L	1 1		1.	095,599	•1 ¶		0	1,095,599
TOTA	LINDIRECT	٩	20.00%		219,120	٩	20.00%	0	219,120
¶		¶ ¶		1.	314,719	-¶ ¶(br	s. 01	 ۱	¶ ¶ 1.314.710
225223223	******************************	, 23223228825	-=======	, . 20050253253	2222222	=====			
TOTAL (ESCALATED COST)	f 		1, ================	661,771	¶ =====		0	¶ 1,661,771 ¶

WBS			1-30 NCE wate 5-31-00	9:05a		Buildi Plant Contra Fundir Source Discip Quanti Trace Expire	Building/Area 2ALT 2 O&M Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator O&M Quantity Take-Off By Trace Number 0.9.7 O Expiration Date: 09/15/1999			
 ¶		1	¶ MATL. ¶	Quantity	Unit	¶ Unit Price ¶	Total Material	Total Cost ¶		
1 It 1	:em	¶ Description ¶	¶ / ¶ ¶ LABOR ¶	/ / Hours ·	/ Craft	¶ / ¶ Rate	/ ¶ / Rate ¶ Total Labor			
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶	-A	MAINTENANCE OF MONITORING WELLS INCLUDED AT 2% OF CAPITAL COST PER YEAR, EQUALS COMPLETE REPLACEMENT EVERY 50 YEARS (90 EXISTING AND 32 NEW WELLS = 122 X \$14,500/EA = \$1,769,000) MAINTENANCE OF MONITORING WELLS (2% X 23 YRS) O&M OF NEW NE TRTMT SYSTEM EQUALS O&M OF EXISTING SYSTEM	9 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1	23.00 0	YRS	35,380.00 0.00	813,740 0	813,740		
4 9 9 9	-A	O&M OF NEW NE TREATMENT SYSTEM (2% X 23 yrs)	¶ Matl. ¶ Labor ¶	23.00 0	YRS	346,362.00 0.00	7,966,326 0	7,966,326		
• ¶3 ¶ ¶	- A	Q&M OF NW SYSTEM (COST FROM BECHTEL JACOBS - MINUS OVERHEAD = \$1,098,774/YR)	¶ Mati. ¶ Labor ¶	23.00 0	YRS	1,098,774.00 0.00	25,271,802 0	25,271,802		
• • • • •	*	SUBTOTAL ****	¶ Matl. ¶ Labor ¶ ¶	0		•	34,051,868 0 1	34,051,868 ¶		

***************************************			2222222222222
1	ſ	1	Total Cost
9 BILL OF MATERIAL SUMMARY	Material	Labor	1 M+L 1
¶ TOTAL DIRECT ¶ SALES TAX	34,051,868 2,043,112	1 0 ·	34,051,868 2,043,112
¶ SUBTOTAL ¶ TOTAL INDIRECT	36,094,980 20.00% 7,218,996	9 0 9 20.00% 0	36,094,980 7,218,996
¶ TOTAL	43,313,976	(hrs. 0) 0	43,313,976
TOTAL (ESCALATED COST)	81,947,819	1 0 1	¶ 81,947,819 ¶

WBS	COLLECTION YRS D MAINTENANCE UBCONT lity Estimate D BA.val ALT2.Est 5-31-	8-30 00 9:05a		Build Plant Contr Fundi Sourc Disci Quant Trace Expir	ing/Area Site ng Type e Site pline Estimator ity Take-Off By Number ation Date: 09/15/	2ALT 2 0&M R G General EXPENSE PADUCAH 0&M 0.9.8 0
1 1	¶ MAT	L.¶ Quantity	¶ Unit	¶ Unit Price	¶ Total Material	Total Cost ¶
Item Description Image: Image of the second s	¶ / ¶ LAB	¶ / OR¶ Hours	¶ / ¶ Craft	¶ / t¶ Rate	¶ / ¶ Total Labor '	9 M+L 9 9 9
 MONITORING - 23 YEARS -SAMPLE COLLECTION- (COST BY BECHTEL JACOBS) 1 -A SEMI-ANNUAL SAMPLING OF 122 W 244/YR X \$1,059/EA ***** SUBTOTAL **** 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L. 23.0 or L. or) YRS)	258,396.00 0.00	5,943,108 5,943,108 5,943,108	5,943,108 5,943,108
	[Material		[[or	Total Cost
TOTAL DIRECT SALES TAX	 	5	,943,108 356,586		0	5,943,108 356,586
SUBTOTAL TOTAL INDIRECT	20	.00% 1	,299,694 ,259,939	20.00%	0	6,299,694 1,259,939
¶ TOTAL		7	,559,633	(hrs. 0)	0	7,559,633
¶ TOTAL (ESCALATED COST)	Source Funding type EXPENSE 30 Source Site PADUCH 30 Quantity Take-Off By CALT 30 RATL 1 Quantity Take-Off By O.9.8 0 68A.val Expiration Date: 09/15/1999 O.9.8 0 2ALT2.Est 5-31-00 9:05a Expiration Date: 09/15/1999 MATL 1 Quantity 1 Unit 1 Unit Price Total Material Total Cost 1 / / / / H + L Image: Calter of the tal take of tal tal					

WBS 2.03.03.03 SAMPLE ANALYSIS YRS 8-30 Cost Code 7300 OPERATIONS AND MAINTENANCE Participant SC01 OFFSITE SUB #1 Level of Estimate P Planning/Feasibility Estimate B/M Attribute 2ALT 2 Discipline 0 OTHER B/M Title MONIT YRS 8-30 (ANALYSIS) Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMA™1@RRB2668A.val Estimate File C:@ESTIMA™1@ATL2@2ALT2.Est 5-31-00 9:05a					Bui Pla Con Fun Sou Dis Qua Tra Exp	Building/Area 2ALT 2 O&M Plant Site R Contracting Type S Subcontract Funding Type EXPENSE Source Site PADUCAH Discipline Estimator O&M Quantity Take-Off By Trace Number 0.9.9 0 Expiration Date: 09/15/1999			
1	1	¶ MATL.	¶ Quantity	¶ Unit	¶ Unit Price	¶ Total Material	¶ Total Cost ¶		
¶ Item ¶	¶ Description ¶	¶ / ¶ LABOR	¶ / ¶ Hours	¶ / ¶ Craft	¶ / ¶ Rate	¶ / ¶ Total Labor	1 M+L 1 1 1		
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶	*LAB ANALYSIS - 23 YEARS* SEMI-ANNUAL ANALYSIS OF 122 244/YR X \$400/EA SUBTOTAL **** SMO OVERSIGHT (16.4%)	¶ ¶ WELLS = ¶ Matl. ¶ Labor ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶	23.00 0 0 2,244.80 0	YRS K\$	97,600.0 0.0 164.0 0.0	0 2,244,800 0 0 0 1 2,244,800 0 0 1 0 1 0 1 0 1 0 1 0 1 0	2,244,800 2,244,800 2,244,800 368,147		
¶ ¶ BILL OF	MATERIAL SUMMARY	1 1 Mai	terial	1	 L	abor	¶ Total Cost ¶ ¶ M + L ¶		
¶ TOTAI ¶ SALES	L DIRECT S TAX	1	2,6 1	12,947 56,777		0	2,612,947 2,612,947 156,777		
SUBTOTAL	L	1	2,7	69,724		0	2,769,724		
¶ TOTAL		¶ ¶	2,7	69,724 ¶	(hrs.	0) 0	9 2,769,724		
TOTAL (ESCALATED COST)	1	5,2	40,176		0	¶ 5,240,176 ¶		

Disciplines

1.1.1

C: CIVIL AND SITE O: OTHER

- U: PROJECT ENGINEERING
- X: ENGINEERING

Total Labor Hours: 11,716

	COST	SUMMARY
--	------	---------

=======================================	===#2==================================	**==*==*=###==***===##==***************	*****************
9 9 COST SUMMARY	¶ Material	Labor	Total Cost ¶ M + L ¶
¶ Line Item Cost	58,470,584	467,146	58,937,730
¶ Total Sales Tax	3,508,236		3,508,236
¶ SUBTOTAL	61,978,820	467,146	62,445,966
¶ Total Indirect	11,592,683	47,429	11,640,112
¶ SUBTOTAL	73,571,503	514,575	74,086,078
¶ Overhead	30,870,603	215,916	31,086,519
¶ SUBTOTAL	104,442,106	730,491	105,172,597
¶ Contingency	26,110,526	182,623	26,293,149
' 'OTAL arket Adjustment	130,552,632	913, 114	131,465,746 0
¶ TOTAL	۹ •	1 1 *******	131,465,746 ¶
<pre>¶ TOTAL (ESCALATED DOLLARS) ¶ including overhead & contingency </pre>	¶ 222,388,113 9	1,033,568 9	¶ 223,421,681 ¶
	¶	1	¶ ¶

 11

Basis of Estimate Feasibility Study for the GWOU Alternative 3

Description: This alternative will continue the groundwater monitoring program currently in place plus an expansion by 32 monitoring wells. Also, 15 existing monitoring wells will be plugged and abandoned. Source areas will be treated by Dual Phase Extraction for the Upper Continental Recharge System (UCRS) unsaturated soils and by Dynamic Underground Stripping for the Regional Gravel Aquifer (RGA). The on-site Northwest, Southwest, and Northeast Plumes dissolved phases that are between the source zone and the fence will be C-Sparged. Additionally, the cores of the Northwest, Southwest, and Northeast Plumes located outside the security fence also will be C-Sparged. The period of the action is 30 years. Although not costed in this estimate, the action will be required to be repeated for a period of approximately 2,000 years until the remediation is complete.

- General: The estimate was generated with Automated Estimating System (AES), using the standard value file RRB2668A.val.
 Management and Integration (M&I) contract management is included at 20% of all costs.
 Overhead is included at 41.96%.
 Contingency is included at 25%.
- Schedule: Installation is assumed to last 9 months. Operation and Maintenance (O&M) is assumed to last 30 years.

Work Breakdown Structure (WBS)

11

WBS 3.01.01 General Conditions:

- Includes mobilization and set-up and utility hook-ups for a construction trailer and a shower/change trailer. Nine months rental cost is included for trailers and a port-o-let.
- A safety and health officer is included for the 9-month duration.
- Training and security requirements are included for 8 workers at 28 hours each.
- Includes general safety plan, quality assurance (QA) plan, waste management plan, work plan, hoisting and rigging plan, and site-specific safety and health plan.

WBS 3.01.02 Monitoring Wells (includes C-Sparge wells):

- Wells are separated as 27 inside and 5 outside the fence.
- Three hundred feet per well of access roads includes clearing and grubbing of light trees, grading, a filter fabric underlayment, and a 6-inch gravel base.
- Monitoring wells are 100 ft deep with stainless steel tubing and screen and are included at \$14,500 each based on a vendor quote. Mobilization is included at \$150,000.

- Disposal of water includes a 5,000 gal tanker truck with driver on-site full time (no disposal fee). Water is included at 1,000 gal per well. (27 wells I/S fence = 27,000 gal = 6 tankers) (5 wells O/S fence = 5,000 gal = 1 tanker)
- Disposal of solids includes 2 laborers, a fork truck with operator, and a flatbed truck with driver to load and haul the drums to the landfill (no tipping fee). Solids are included at 4 drums per well. Estimate assumes 50 drums per load and 1 load per day. (27 wells I/S fence = 3 loads, 5 wells O/S = 1 load)
- Sampling of water assumes 1 per well and includes \$25 and 2 hours each with modified Level D personal protective equipment (PPE).
- Sampling of solids assumes 1 per well and includes \$25 and 2 hours each with modified Level D PPE.
- Analysis of the samples includes volatile organic compounds (VOCs) (8260), gross alpha, gross beta, and ⁹⁹Tc at a total cost of \$400 per sample. Costs are included for Site Management Office (SMO) oversight at 16.4%.
- Seven injection wells inside the secured area. 6-inch polyvinyl chloride (PVC) pipe with 10-inch drilled hole.
- Electrical service, power, and equipment assumed for all 7 wells.
- Twelve injection wells outside the secured area. 6-inch PVC pipe with 10-inch drilled hole.
- Electrical service, power, and equipment assumed for 12 wells outside secured area.

WBS 3.01.03 Plug and Abandon Wells:

- Plugging and abandoning of 15 existing wells is included at \$40,833 each. Cost is based on a feasibility study for White Oak Creek.
- Disposal of water includes a 5,000-gal tanker truck with driver on-site full time (no disposal fee). Water is included at 1,000 gal per well. (15 wells = 15,000 gal = 3 tankers)
- Disposal of solids includes 2 laborers, a fork truck with operator, and a flatbed truck with driver to load and haul the drums to the landfill (no tipping fee). Solids are included at 5 drums per well. Estimate assumes 50 drums per load and 1 load per day (15 wells = 2 loads). Drums are included assuming 5 per well at \$55 each.
- Sampling of water assumes 1 per well and includes \$25 and 2 hours each with modified Level D PPE.
- Sampling of solids assumes 1 per well and includes \$25 and 2 hours each with modified Level D PPE.
- Analysis of the samples includes VOCs (8260), gross alpha, gross beta, and ⁹⁹Tc at a total cost of \$400 per sample. Costs are included for SMO oversight at 16.4%.

WBS 3.01.04 Shut Down Northeast Northwest Systems [includes excavation of Solid Waste Management Unit (SWMU) 99]:

• The cost to shut down the Northeast and Northwest treatment systems (cold stand-by) is included at \$65,000 and is based on costs from CDM Federal as provided by Bechtel Jacobs Company LLC (BJC).

- Breaking, loading, and hauling a concrete pad of 120 ft by 240 ft at SWMU 99.
- Excavation of $6,019 \text{ yds}^3$ of earth.

WBS 3.01.05 Source Remedial Actions:

- Dual Phase extraction at the following locations: C-400 Northeast, C-400 Southeast, C-720 East, and SWMU 1. Lump sum costs using previous estimates developed by Science Applications International Corporation (SAIC) include the following: royalty fees, surface and subsurface piping, pumps, electrical substation, on-site monitoring equipment, ion exchanges system, activated carbon, and instruments and controls.
- Dynamic Underground Stripping in the RGA at C-400. Lump sum cost of \$4,850,000 using previous estimates developed by SAIC includes the following: 16 steel wells 8 inches in diameter, 8 extraction wells, steam generator and water conditioning system, Catalytic Oxidation off-gas system and scrubber, air monitoring system, ion exchange, air compressor, steam piping and equipment, instruments and controls, electrical substation, and gas line installation.

WBS 3.02 Indirect Costs:

• Indirect costs include design, project integration, and M&I oversight. These costs are dependent on level of effort and project schedule.

WBS 3.03.01.01 Maintenance (30 Years):

• Maintenance is included for the 32 new and 90 existing monitoring wells. Costs are included at 2% of the well capital cost annually for 30 years (122 × \$14,500 × .02 = \$35,380/year). Two percent annually is equivalent to total replacement every 50 years.

WBS 3.03.01.02 Sample Collection (30 Years):

• Sample collection is included quarterly for the 32 new and 90 existing monitoring wells. A cost of \$1,059 per sample is included as provided by BJC. Quarterly sampling of 122 wells = 488 samples per year × \$1,059 = \$516,792 per year for 30 years.

WBS 3.03.01.03 Sample Analysis (30 Years):

Sample analysis is included quarterly for the 32 new and 90 existing monitoring wells. A cost of \$400 per sample is included for VOCs (8260), gross alpha, gross beta, and ⁹⁹Tc. Quarterly analysis of 122 wells = 488 samples per year × \$400 = \$195,200 per year for 30 years. Costs are included for SMO oversight at 16.4%.

WBS 3.03.01.04 Management and Integration (M&I) on Operation and Maintenance (O&M) (30 Years):

• M&I contract management is included at 8% of all other O&M costs.

Line items within the detailed estimate contain references to cost guides. The following is a glossary for those references.

FCM-845	Facility Construction Means		Page 845
HCM-41	Heavy Construction Means		Page 41
BCM-21	Building Construction Means		Page 21
ECHOS-8-107	ECHOS Cost Guide	Section 8	Page 107
RRBB-20-7	Rental Rate Blue Book	Section 20	Page 7
E.J.	Estimator's Judgment		-

SUMMARY REPORT Project Number: 35T08116 PGDP GWOU 1ALT 3

Project ESO Number.....NA Revision Number.....1 Last Update.....05/31/2000

> Sort Order 1. WBS - Level 3 2. WBS - Level 4 3. Building/Area

Approved by:

Project Estimator

Date

Estimating Manager

Date

Base Fiscal Year/Quarter: 99/4 STANDARD VALUE: C:@ESTIMAM1@RRB2668A.val EXPIRES: 09/15/1999 ESTIMATE FILE: C:@ESTIMAM1@ATL3@1ALT3.Est 05/31/2000 SCHEDULE FILE: 1ALT3 REPORT FILE: C:@ESTIMAM1@ATL3@ALT3SUM.Out 05/31/2000 08:53:04

AES Version 6.1

630767

i.1

SUMMARY REPORT

\$1 = \$1

05/31/2000

Arranged By: WBS / WBS / Building

	U	nescalated		•••••	Escalated -	
	Material	Labor	Total	Material	Labor	Total
	\$	\$	\$	\$	\$	\$
3.03.01 30 YRS 08M						
3.03.01.01 MAINTENANCE (30 YRS)						
1ALT 3 O&M	1350101	0	1350101	2340204	0	2340204
TOTAL MAINTENANCE (30 YRS)	1350101	0	1350101	2340204	0	2340204
3.03.01.02 SAMPLE COLLECTION (30 YRS)						
1ALT 3 O&M	19720783	0	19720783	34183110	0	34183110
TOTAL SAMPLE COLLECTION (30 YRS)	19720783	0	19720783	34183 110	0	34183110
3.03.01.03 SAMPLE ANALYSIS (30 YRS)						
1ALT 3 O&M	7225367	0	7225367	12524123	0	12524123
TOTAL SAMPLE ANALYSIS (30 YRS)	7225367	0	7225367	12524123	0	12524123
TOTAL 30 YRS O&M	28296251	0	28296251	49047437	0	49047437
SUB - TOTAL	41480427	401105	41881532	63725688	451853	64177
OVERHEAD	17405187	168304	17573491	26739299	189598	26922
SUB - TOTAL	58885614	569409	59455023	90464987	641451	91106438
CONTINGENCY	14721403	142352	14863755	22616247	160363	22776610
GRAND TOTAL	73607017	711761	74318778	113081234	801814	113883048

DETAIL REPORT Project Number: 35708116 PGDP GWOU 1ALT 3

Project ESO Number.....NA Revision Number.....1 Last Update.....05/31/2000

> Sort Order 1. WBS - Level 9 2. Participant 3. Discipline

Approved by:

Project Estimator

Date

Estimating Manager

Date

Base Fiscal Year/Quarter: 99/4 STANDARD VALUE: C:⊕ESTIMA™1®RRB2668A.val EXPIRES: 09/15/1999 ESTIMATE FILE: C:⊕ESTIMA™1®ATL3®1ALT3.Est 05/31/2000 SCHEDULE FILE: 1ALT3 REPORT FILE: C:⊕ESTIMA™1®ATL3@ALT3DETA.Out 05/31/2000 08:51:56

AES Version 6.1

1.11

Creation Date 09/07/1999 Revision Number 1				Estima	iting Job Number	. 0116-20
Project Estimator J LOLLAR/NLE WBS	ate			Projec Buildi Plant Contra Fundir Source Discip Quanti Trace	t Engineer ng/Area Site toting Type g Type s Site bline Estimator ty Take-Off By Number	S MAUDLIN GWOU R G General EXPENSE PADUCAH GEN CONDITIONS
Standard Value File C:@ESTIMAM1@RRB2668A.val Estimate File C:@ESTIMAM1@ATL3@1ALT3.Est	5-31-00	8:51a		Expira	tion Date: 09/15/	1999
¶ ¶ ¶ Item ¶ Oescription ¶ ¶	¶ MATL. ¶ ¶ / ¶ ¶ LABOR ¶	Quantity / Hours	¶ Unit ¶ ¶ / ¶ ¶ Craft ¶	Unit Príce / Rate	Total Material	Total Cost ¶ M + L ¶
GENERAL CONDITIONS - VARIABLE COST	9 1 1 1					
1 1 - A CONSTRUCTION TRAILER RENTAL 1	¶ Matl. ¶ Labor	9.00 0	MON	300.00 ¶ 0.00 ¶	2,700 0	2,700
¶ 2 -A SHOWER/CHANGE TRAILER RENTAL ¶ ¶	¶ Matl. ¶ Labor ¶	9.00 0	MON	500.00 ¶ 0.00 ¶	4,500 0	1 1 1 9 1 4,500 ¶
3 -A PORT-O-LET (1 @ \$80 FOR 2 MONTHS)	¶ Matl. ¶ Labor ¶	9.00 0	MON	80.00 ¶ 0.00 ¶	720 0	720 9
4 -A SAFETY & HEALTH OFFICER	¶ Matl. ¶ Labor ¶	9.00 1,575	MON X	0.00 40.00	63,000	63,000
5 ~A TRAINING:SECURITY REQMNT, GET ETC (28 HOURS/PERSON)	¶ Matl. ¶ Labor ¶	8.00 224	EA ZZ	0.00 25.00	0 5,600	5,600
9 **** SUBTOTAL **** 1 1	¶ Matl. ¶ Labor ¶	1,799			7,920 68,600	76,520
ı SSS==IESSS2BRC#BRCC#ESS2EFF72#02##4857#5=27055	 ==========			42273222222222	 8778552575222222	

. •

		2222223222222	********		***********	=======================================
¶ BILL OF MATERIAL SUMMARY	¶ Material	1		Labor	¶ ¶	Total Cost ¶ M + L ¶
TOTAL DIRECT SALES TAX	9 9 9	7,920 475	 		68,600 ¶	76,520 ¶ 475 ¶
SUBTOTAL TOTAL INDIRECT	20.00%	8,395 1,679		20.00%	68,600 ¶ 13,720 ¶	76,995 ¶ 15,399 ¶
¶ TOTAL	ſ	10,074	(hrs.	1,799)	82,320 ¶	92,394 ¶
TOTAL (ESCALATED COST)		11,164 ¶	 ======================		91,228 ¶	102,392 ¶

BS					Build Plant Contra Fundir Source Discip Quanti	Building/Area GW Plant Site R Contracting Type G Funding Type EX Source Site PA Discipline Estimator GE		
ecei ross tand	ving -Cut ard	I Site PADUCAH ∵Code Value File C:⊕ESTIMA™1®RRB2668A.val				Trace Expira	Number	C.1.2 0 999
stim ====	ate ====	File C:⊕ESTIMA™1®ATL3®1ALT3.Est ====================================	5-31-00 ¶ MATL. ¶	8:51a Quantity	•=====================================	Unit Price	Total Material ¶	Total Cost
It	em	¶ Description ¶	¶ / ¶ ¶ LABOR ¶	/ Hours	1 / 1 1 Craft 1	/ Rate	/ / Total Labor	M + L 9
		GENERAL CONDITIONS - FIXED COST	•••¶-••••• ¶ ¶				19 9 9 1 9	
1	- A	CONSTRUCTION TRAILER MOB/DEMOB	¶ ¶ Matl. ¶ Labor	1.00 40	LS TD	0.00 22.60	¶ ¶ 0 ¶ ¶ 904 ¶	904
2	-A	MOB/DEMOB SUPPORT LABOR	¶ ¶ Matl. ¶ Labor	1.00 40	LS L	0.00 24.85	994 1	994
3	- A	SET-UP LABOR	¶ ¶ Matl. ¶ Labor	1.00 40	LS L	250.00 24.85	250 ¶ 994 ¶	1,244
4	- A	UTILITIES HOOK UP (ELEC, WATER, SEWER)	¶ Matl. ¶ Labor	1.00 0	LS	3,000.00 0.00	3,000 0	3,000
5	- A	SHOWER/CHANGE TRAILER MOB/DEMOB	¶ ¶ Matl. ¶ Labor	1.00 40	LS TD	0.00	0 904	904
6	- A	MOB/DEMOB SUPPORT LABOR	¶ ¶ Matl. ¶ Labor	1.00 40	LS L	0.00 24.85	1 0 1 1 994 1	994
7	-A	SET-UP LABOR	¶ ¶ Matl. ¶ Labor	1.00 40	LS L	250.00 24.85	250 ¶ 994 ¶	1,244
8	- A	UTILITIES HOOK-UP (ELEC, WATER, SEWER)	¶ ¶ Matl. ¶ Labor	1.00 0	LS	3,000.00 0.00	3,000 0	3,000
***	*	SUBTOTAL ****	¶ Matl. ¶ Labor ¶	240			6,500 5,784	12,284
9	-A	GENERAL SAFETY PLAN	¶ ¶ Matl. ¶ Labor ¶	1.00 0	LS	2,000.00	1 2,000 1 0 0	2,000
10	- A	QUALITY ASSURANCE PLAN	¶ Matl. ¶ Labor ¶	1.00 0	LS	1,000.00 0.00	1,000 1 0 1	1,000
11	- A	WASTE MANAGEMENT PLAN	¶ Matl. ¶ Labor ¶	1.00 0	LS	2,000.00	1 2,000 1 1 0 1	2,000
12	- A	WORK PLAN	¶ Matl. ¶ Labor	1.00 0 3	LS	3,000.00 0.00	¶ 3,000 ¶ 0	3,000

********	=======================================	3288322222	2222222222	*********	======		228222222222222	.=====================================	=======================================
٩ ٩	1	•	MATL. ¶	Quantity	¶ Unit	t ¶	Unit Price	Total Material	Total Cost
en e	Description	•	I / 1	/	1 /	ſ	/	I / 1	¶ M+L 4
1	ſ		LABOR 1	Hours	¶ Cra	ft¶	Rate	Total Labor	
¶			 						[
• • 13 • A	HOISTING & RIGGING PLAN		Matl.	1.00	LS		1,000.00	1.000 ·	
Í			Labor	0			0.00	I 0 4	1,000
¶		٩	l I				٩	í (1
¶ 14 -A	SITE SPECIFIC SAFETY & HEALT	H PLAN	Matl.	1.00	LS		5,000.00	5,000	1 1
٩		•	Labor	0			0.00 4	i 04	5,000
1		9						•	1 1
¶ ****	SUBTOTAL ****	1	Matl.					14,000	1
1		1	Labor	0				0	14,000
1									
1		۲					1		1

1		ſ				1		•	Total Cost
SILL OF	MATERIAL SUMMARY	1	Mater	ial		1	Labo	or 🔹	M+L
¶	DIDECT				20 500	¶		E 70/ 4	
		1			1 230	۱ ۲		5,784	20,204
1 JALLO ¶		1 (1 {			·····
SUBTOTAL		, (21,730	÷		5.784	27.514
TOTAL	INDIRECT		20.00%		4,346	İ	20.00%	1,157	5,503
¶		[
TOTAL		ſ			26,076	¶(hrs	s. 240)	6,941	33,017
	SCALATED COST)		#2888¤323	*====38\$===	28,898	9 1	122222388422223	7,692	36,590

1 - - i

.

WE Co Pa Le B/ Di B/ Re Cr St Es	IS Inst (Inst Code cipa of ttri plin itle ving -Cut ard		(I/S FENC ate 5-31-00	E) 8:51e		Buildi Plant Contra Fundir Source Discip Quanti Trace Expira	ng/Area Site ng Type e Site bline Estimator ty Take-Off By Number htion Date: 09/15/1	GWOU R G General EXPENSE PADUCAH MONT WELLS C.2.1 0 999	
** ¶	**21	*==#		¶ MATL. ¶	Quantity	¶Unit¶	Unit Price	Total Material	Total Cost ¶
1	Ite	em	1 Description	¶ / ¶ ¶ LABOR ¶	/ / Hours	1 / 1 1 Craft 1	/ Rate	/ Total Labor	. M+L ¶ . ¶
1-				¶					1
1			*27 WELLS INSIDE FENCE*	1 ¶					1
٩			**7 ADDITIONAL INJECTION WELLS INSIDE	1					1
1			(143 DAYS PER VENDOR)	1 ¶					1
1 1 1			**(180 DAYS/WITH 7 INJ. WELLS)**	1					1
9 9 9 9 9			*ACCESS ROAD (300'/WELL)*	1 1 1					1
1 1	1	- A	SITE PREP: CLEAR & GRUB LIGHT TREES, GRUB & RMV STUMPS (HCM-41)	¶ ¶ Matl. ¶ Labor	1.20 72	ACRE OP	1,975.00 30.95	2,370 2,228	4, ⁴ ,
1 9 9	2	- A	GRADER RENTAL (HCM-17)	¶ Matl. ¶ Labor	7.00 0	DAYS	670.00 0.00	4,690 0	4,690 ¶
4	3	- A	OPERATING COST & OPERATOR (HCM-17)	¶ Matl. ¶ Labor ¶	50.00 50	HRS OP	16.92 30.95	846 1,548	2,394
9	4	- A	FILTER FABRIC UNDERLAYMENT (ECHOS-8-107)	¶ Matl. ¶ Labor	22,855.00 286	SY L	1.03 24.85	23,541 7,107	¶ 30,648 ¶
1	5	- A	GRAVEL BASE - 6" DP, SPREAD & COMPACT (HCM-58)	¶ Matl. ¶ Labor	22,855.00 114	SY OP	2.62 30.95	59,880 3,528	63,408 ¶
1 9 9 9	****	•	SUBTOTAL ****	¶ Matl. ¶ Labor ¶	522			91,327 14,411	105,738 ¶
1			*INSTALL MONITORING WELLS*	, 1 1					
1			**INSTALL INJECTION WELLS-ALT.3**	1				1	1
1			(COST FROM VENDOR QUOTE)	1 1 1					
1 1 1	6	- A	MOBILIZATION (INCL. MOB. 1 RIG, SET-UP, DECON PAD, PPE, ETC)	¶ Matl. ¶ Labor	1.00	LS	150,000.00 0.00	¶ 150,000 ¶ 0 9	150,000 ¶

<u>د</u>	===		1	¶ MATL. ¶	Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost ¶
	.6	em	1 Description		/	1 / 1	/		M+L ¶
• •			۲ 	1 LABOR 1	Hours		Kate	IOTAL LADOR	 ¶
ſ				í			٩	i q	i f
¶ 7		- A	MOB.OF ADDITIONAL CREW AND EQUIPMENT	Mati.	1.00	LS	27,000.00	27,000	1
1 «			FOR INJECTION WELLS	Labor	0		0.00	0	27,000 ¶
, ¶ 8		-A	MONITORING WELL W/ 2" SS TUBING, 6"	Matl.	27.00	EA	14,500.00	391,500	
ſ			OPEN HOLE, 10' SS SCREEN, 100' DP, 4	Labor	0		0.00	0 9	391,500 ¶
1			DRUMS/WELL SOLIDS,	1					9
1 ¶			TODU GAL/WELL PORGE WATER	l I					
i									· · ·
**	**		SUBTOTAL ****	Mati.			٩	568,500	٩
1				Labor	0			0	568,500 1
1 ¶				ſ					
9		-A	INJECTION WELL W/6"PVC PIPE, AND 10"	Mati.	7.00	EA	52,000.00 ¶	364,000	1
1			DRILL HOLE, 100' DP.	Labor	0		0.00	0	364,000 ¶
¶ ∢ 1∩		- 4	ASSOCIATED DIDING AND FOULDMENT	Mati	7.00	FA	12 500 00	87 500 C	1
¶ 10		Ŷ		Labor	0		0.00	0 9	87,500 ¶
9			٩				٩	ſ	¶
¶ 11		-A	ELECTRICAL SERVICE, POWER AND	Mati.	7.00	EA	22,850.00	159,950	¶
۲ •			EQUIPMENT	Labor	U		0.00		159,950 ¶
• ••	**		SUBTOTAL ****	Matl.			•	611,450	i ¶
4			٩	Labor	0		٩	0 1	611,450 ¶
							1		1
1 ¶			"DISPOSAL OF WATER"						1
Ś			(1000 GAL/WELL)				•	•	i ¶
٩							1	٩	1
ן ק 12		- A	5000 GAL TANKER RENTAL FOR	Mati.	180.00	DAYS	320.00	57,600	
1			DEVELOPMENT WATER (RRBB-20-7)	Labor	0		0.00	0 9	57,600 ¶
1			1				1	9	1
¶ 13 ¶		-A	OPERATING COST & DRIVER (RRBB-20-7)	Mati.	1,440.00	HRS TD	20.70	29,808 ¶	42 352 C
Í					1,440		1	i 52,544 i	1
¶ 14		-A	SAMPLE COLLECTION (27,000 GAL a	Matl.	34.00	EA	25.00	850 9	٩
۹ •			ONE/WELL)	Labor	68	x	25.00	1,700	2,550
1 ¶ 15		- A	LEVEL MODIFIED D PPE (SAMPLE ONLY)	Matl.	68.00	HRS	8.00	544	
٩			1	Labor	0		0.00	0 9	544
۲ • •••	**			Mati				99,902	
ſ			SUBTOTAL ANAL	Labor	1,508		•	34,244	123,046
9			1		•		4		1
1			1						
1			*DISPOSAL OF SOLIDS*						
Ś							•		
ſ			(**2 DRUMS/WELL FOR 7 ADDITIONAL				•		1 1
٩			WELLS**)					•	r 1

PGDP GWOU 1ALT 3

630775

1.1.1

==	******	******	*********						
1	1+00			MATL.	Quantity	¶ Unit	Unit Price	Total Material	Total Cost
ſ	I Cenii	1 Description ¶	1	LABOR	Hours	1 / ¶ Craft	¶ Rate	¶ Total Labor ¶	M T L
¶- ¶ ¶		(4 DRUMS/WELL, 50 DRUMS/LOAD LOAD/DAY)	, 1	[[••••••¶
1 1 1	16 -A	2 LABORERS TO LOAD & HAUL DRU SOLIDS TO LANDFILL (NO TIPPII	JMMED Ng FEE)	 Matl. Labor	38. 00 76	HRS L	0.00 24.85	1 0 1 1 0 1 1,889 1	1 1,889 ¶
¶ ¶ ¶	17 -A	55 GALLON DRUMS	1	[[Matl. [Labor	122.00 0	EA	55.00 0.00	1 6,710 1 0	¶ 6,710 ¶
1 1	18 - A	FORK TRUCK RENTAL (BCM-21)	1	 Matl. Labor	3.00 0	DAYS	175.00 0.00	525 0	1 1 525 1
	19 -A	OPERATING COST & OPERATOR (BO	CM-21)	Matl.	24.00	HRS	9.20	221 7/3	1 1 1 1
1	20 -A	FLATBED TRUCK RENTAL (BCM-20)) 1	[Matl.	3.00	DAYS	138.00	1 414 1 414	704 1 1 1 1
1 1 1	21 -A	OPERATING COST & DRIVER (BCM-	-20)	Labor Matl.	0 24.00	HRS	11.13	0 1 267	414 ¶
¶ ¶ ¶	22 -A	SAMPLE COLLECTION (1/WELL)	1	Labor Matl.	24 34.00	TD EA	22.60 ° 25.00 °	542 (1 850 (809 ¶ ¶
1	27 .4			Labor	68	X	25.00	1,700	2,550 ¶
1 ¶ ¶	2J - N	LEVEL HOUTFIED D FFE (SAMPLIF		Labor	0	nka	0.00		
¶ ¶ ¶	***	SUBTOTAL ****	1	[Matl. Labor 	192			9,531 4,874 1	¶ 14,405 ¶ ¶
{ ==			٩	[========	=================	********		{ ====================================	¶ ====================================
==	522522							#223722222222222	
¶ ¶ ¶-	BILL OF	MATERIAL SUMMARY	 	Mate	rial	۹ ۹ ۹۰۰۰۰۰۹	Lab	or 	[Total Cost ¶ [M + L ¶ [¶
 -	TOTA SALE	AL DIRECT	- 		1,3	69,610 ¶ 82,177 ¶		53,529	1,423,139 ¶ 82,177 ¶
¶ ¶	SUBTOTA TOTA	AL AL INDIRECT		20.00%	1,4 2	51,787 ¶ 90,357 ¶	20.00%	53,529 10,706	1,505,316 ¶ 301,063 ¶
1" ¶	TOTAL		1		1,7	42,144 ¶ ((hrs. 2,222)	64,235	1,806,379 ¶
	TOTAL ((ESCALATED COST)	1		1,9	30,667 ¶		71,186	2,001,853 ¶

WBS					Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator MONT WELLS Quantity Take-Off By Trace Number C.2.2 0 Expiration Date: 09/15/1999		
1 1	••••••••••••••••••••••••••••••••••••••	L.¶ Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost ¶	
¶ Item ¶ Description	¶ /	1 /	1 / 1	/	/	M+L 9	
1 1	¶ LABC	DR¶ Hours	¶ Craft ¶	Rate	Total Labor	۹ •۹	
1 -A ANALYSIS OF SOLID WASTE SAMPL (ASSUME 1 PER WELL)	¶ ES ¶ Mati ¶ Labo ¶	l. 34.00 or C) EA)	400.00 0.00	13,600 0	13,600	
1 1 2 -A ANALYSIS OF LIQUID WASTE SAMP 1 (ASSUME 1 PER WELL)	PLES ¶ Matt ¶ Labo ¶ Labo	t. 34.00 pr 0	EA	400.00 0.00	13,600 0	1 1 13,600 ¶	
9 **** SUBTOTAL **** 9 9 9	¶ Matl ¶ Labo ¶ ¶	t. or C	I		27,200	27,200 ¶	
<pre> -A SMO OVERSIGHT (16.4%) 1 </pre>	¶ ¶ Matl ¶ Labo ¶	L. 27.20 pr 0) K\$)	164.00 0.00	4,461	¶ ¶ 4,461 ¶ [¶	
Image: State of the state o	M	Material	¶ ¶	Lapo		Total Cost ¶ M + L ¶	
TOTAL DIRECT SALES TAX			31,661 ¶ 1,900 ¶		0	31,661 1,900	
SUBTOTAL			33,561 ¶		0 •	33,561	
¶ ¶ TOTAL			33,561 ¶(hr	s. 0)	0	33,561	
1 TOTAL (ESCALATED COST)			37,193 ¶		0 •	37,193	

i - 1

WBS . Cost Parti Level B/M A Disci B/M T Recei Cross Stand Estim	Code cipa of ttri plir itle ving -Cut lard ate	3.01.02.02 MONITORING WELLS 4	(O/S FENC Wate 5-31-00	E) 8:51a		Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator MONT WELLS Quantity Take-Off By Trace Number C.2.3 0 Expiration Date: 09/15/1999					
 ¶	¥ 2 2 2 2		======= ¶ MATL. ¶	Quantity	======================================	Unit Price	Total Material	Total Cost			
¶ It ¶	em	¶ Description ¶	¶ / ¶ ¶ LABOR ¶	/ Hours	¶ / ¶ ¶ Craft ¶	/ Rate	/ Total Labor	M + L ¶			
1		*5 WELLS OUTSIDE FENCE*	¶			1		1			
1		** 12 INJECTION WELLS OUTSIDE FENCE	1 ¶			1	l l	1 1 1 1			
¶ ¶		** (27 DAYS PER VENDOR)	¶ ¶			٩		i 1 i 1			
¶ ¶		(92 DAYS W/12 ADDED INJ. WELLS)	¶ ∢			9					
1			1			1		1			
1 1 1 1		*ACCESS ROAD (300'TO 500 /WELL)*	1 ¶ ¶			1					
¶ ¶ 1	- 4	SITE DEED. CIEAD & CHIR LIGHT THEES	¶ ¶ Nati	0.68	ACPE	1 975 00	1 3/3	1			
1	Ŷ	GRUB & RMV STUMPS (HCM-41)	¶ Labor	41	OP	30.95	1,269	2,6			
¶ ¶ 2	-A	GRADER RENTAL (HCM-17)	¶ ¶ Matl.	4.00	DAYS	670.00 ¶	2,680	 1			
¶ •			¶ Labor ¶	0		0.00	0	2,680 ¶			
¶ 3	- A	OPERATING COST & OPERATOR (HCM-17)	¶ Matl.	32.00	HRS	16.92	541	i 1			
¶ ¶			¶ Labor ¶	32	OP	30.95	990	i 1,531 ¶ I ¶			
¶ 4	-A	FILTER FABRIC UNDERLAYMENT	¶ Matl.	11,390.00	SY	1.03	11,732	1			
1		(ECHOS-8-107)	¶ Labor ¶	142	L	24.85	3,529	15,261 ¶ 1			
¶ 5 ¶	-A	GRAVEL BASE - 6" DP, SPREAD & COMPACT	¶ Matl. ¶ Labor	11,390.00 57	SY	2.62	29,842	1 1 404 1			
Í			1 Labor 1	5,	Ur.	10.95	1,704	1 51,000 ¥			
¶ **** ¶	*	SUBTOTAL ****	¶ Matl. ¶ Labor	272		•	46,138 7,552	1 1 53,690 ¶			
1			1					1			
1 ¶6	- A	ADDED FOR INJECTION WELL REQUIRMENTS	1 ¶ Matl.	53.69	K\$	600.00	32,214	I 1			
1		60% OF TOT.	¶ Labor	0		0.00	0	32,214			
1 ¶ ***	*	SUBTOTAL ****	¶ Matl.			1	32,214	1 1 1 1			
¶ ¶			¶ Labor ¶	0			0	32,214 ¶			
1			1					י 1 ז			
1			1					1 ¶			

===== ¶		۱ 	9 MATL. 9	Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost ¶
1	UI ?	1 Description 1	LABOR	/ Kours	¶ / ¶ ¶ Craft ¶	/ Rate	/ / Total Labor	[M+L ¶ [¶
¶ ¶		*INSTALL MONITORING WELLS*5EA*	1 1					¶
¶ ¶ ¶		(COST FROM VENDOR QUOTE)	¶ ¶ ¶					
' ¶ ¶		(MOB. INCL. W/ WELLS I/S FENCE)	1			•		
¶ ¶ 7 ¶ ¶ ¶	-A	MONITORING WELL W/ 2" SS TUBING, 6" OPEN HOLE, 10' SS SCREEN, 100' DP, 4 DRUMS/WELL SOLIDS, 1000 GAL/WELL PURGE WATER	Matl. Labor	5.00 0	EA	14,500.00 0.00	72,500 0	72,500 ¶
1 1 8 1	-A	INJECTION WELL W/6" PVC PIPE, AND 10" DRILLED HOLE,EACH YIELDS 2 DRUMS OF SOLIDS & 1000 GAL. PURGE	Matl. Labor	12.00 0	EA	52,000.00 0.00	624,000 0	624,000 ¶
19 1	- A	EQUIPMENT, PIPE,& INSTRUMENTATION	Matl. Labor	12.00 0	EA	12,500.00 0.00	150,000 0	150,000
10 1	-A	ELECTRICAL SERVICE	Mati. Labor	12.00 0	EA	22,823.00 0.00	2 73,8 76	1 1 273,876
1 1 *** 1 7	•	SUBTOTAL ****	Matl. Labor	0			1,120,376 0	1,120,376
1 ¶ ¶		*DISPOSAL OF WATER*						
יי 1 1		(1000 GAL/WELL)	l I					
¶ ¶ 11 ¶	- A	5000 GAL TANKER RENTAL FOR DEVELOPMENT WATER (RRBB-20-7)	Matl. Labor	91.00 0	DAYS	320.00 0.00	29,120 0	29,120
י ין 12 ין יו	-A	OPERATING COST & DRIVER (RRBB-20-7)	Matl. Labor 	728.00 728	HRS TD	20.70 22.60	15,070 16,453	31,523
y 13 I	-A	SAMPLE COLLECTION (5,000 GAL a ONE/WELL)	Matl. Labor 	5.00 10	EA X	25.00 25.00	125 250	375
14	- A	LEVEL MODIFIED D PPE (SAMPLE ONLY)	Matl. Labor	10.00 0	HRS	8.00 0.00	80 0	80
• *** •	*	SUBTOTAL ****	Matl. Labor 	738			44,395 16,703	61,098
, , ,		*DISPOSAL OF SOLIDS*	[[9

PGDP GWOU TALT 3

630779

1.00

. •
======= {	*=************************************	==================		Quantity	s==s=== ¶ Unit	¶ Unit Price	Total Material	¶ Total Cost ¶
• ¶ Item	¶ Description	•	1 / 1	/	¶ /	¶ /	¶ /	¶ M+L %¶
¶	1		LABOR ¶	Hours	¶ Craft	¶ Rate	¶ Total Labor	1
¶ ¶ ¶ ¶	(4 DRUMS/WELL, 50 DRUMS/LOAD LOAD/DAY)	, 1	[[[¶ ¶ ¶	11 1 1 1
∎ ¶15 -A	A 2 LABORERS TO LOAD & HAUL DR	UMMED 4	Matl.	18.00	HRS	0.00		י ז ק
ſ	SOLIDS TO LANDFILL (NO TIPPI	NG FEE)	Labor	36	L	24.85	§¶ 895	1 895 ¶
ſ		٩	1				1	1 1
¶ 16 -A	A 55 GALLON DRUMS		Matl.	44.00	EA	55.00	2,420	1 1
1			Labor	0		0.00		1 2,420 1
1 ¶ 17 -4	A FORK TRUCK RENTAL (BCM-21)		l Mati	3.00	DAYS	175 00	1)¶ 525	1 1 ¶ ¶
1 '' ' ¶	A TORK TROCK REWIRE (DOA ET)		Labor	0	51110	0.00		f 525 f
Í			[ſ	1 1
¶ 18 -A	A OPERATING COST & OPERATOR (B	CM-21)	Matl.	24.00	HRS	9.20)¶ 221	f f
1		٩	Labor	24	OP	30.95	1 743	¶ 964 ¶
1		9					1	1 1
¶19 -A	A FLATBED TRUCK RENTAL (BCM-20)	Matl.	3.00	DAYS	138.00		¶ ¶
1 •			Lapor	U		0.00	 	ן 414 ן ר ר
∎ ¶20 -∆	A OPERATING COST & DRIVER (BCM	-20) (I [Matl.	24.00	HRS	11,17	∎ 1 267	1 1 ¶ ¶
¶			Labor	24	TD	22.60)¶ 542	• ¶ 809 ¶
ſ		•	ſ				1	1 1
¶ 21 -A	A SAMPLE COLLECTION (1/WELL)	•	Matl.	17.00	EA	25.00)¶ 425	1 ¶
1		٩	Labor	34	x	25.00	§ 8 50	¶ 1,275¶
1		· · · · · · · · · · · · · · · · · · ·	[-			1	1 1
¶ 22 -A	A LEVEL MODIFIED D PPE (SAMPLI	NG ONLY)	Matl.	34.00	HRS	8.00	272 2 72	
1 ¶			Labor	U		0.00	יי ויי	1 1 •
• • ****	SUBTOTAL ****		Matl.				¶ 4,544	, , , , , , , , , , , , , , , , , , ,
1			Labor	118			1 3,030	¶ 7,574¶
1		•	I				ſ	¶ 1
ſ			I				1	1 1
		======================================		**=*=********		*******************		
9		1			ſ			¶ Total Cost ¶
¶ BILL C	OF MATERIAL SUMMARY	1	Mater	rial	1	. Li	abor	¶ M+L ¶
		۹		 م م	•••••¶			¶¶
101 F	IAL DIRECI	1		1,2	74.860 ¶	ſ	21,205	ן 1,274,932 ¶ 76,860 ¶
¶		• ¶•••••			¶	· ·		¶¶
¶ SUBTOT	TAL	¶		1,3	22,527 ¶		27,285	1,349,812 ¶
¶ тот	TAL INDIRECT	1	20.00%	2	64,505 ¶	20.00	5 ,457	¶ 269,962 ¶
¶		¶		•••••	¶			۹۹
TOTAL		1		1,5	87,032 ¶	(hrs. 1,128	32,742	¶ 1,619,774 ¶
		======================================	122222222	1 7	58 770 4	89338222982228 	74 995	■ 1 705 ∩55 d
I IVIAL	(ESUALATED LUST)	1		، ، ا				ך כנט, כפז, י ך

WBS 3.01.02.02 MONITOR: Cost Code 6100 REMEDIAL ACTIO ' icipant SC01 OFFSITE SUB #' of Estimate P Planning/Feasibil B/M Attribute 1ALT 3 Discipline C CIVIL AND SITE B/M Title MON WELLS (O/S FENG Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMA™1@RRB2668 Estimate File C:@ESTIMA™1@ATL3@14	NG WELLS (O/S FEN) ity Estimate E) A.val LT3.Est 5-31-00	CE) 8:51a	ng/Area Site Site Ing Type Site Site Une Estimator ty Take-Off By Number Stion Date: 09/15/	. GWOU . R . G General . EXPENSE . PADUCAH . MONT WELLS . C.2.4 0		
1 1	¶ MATL. ¶	Quantity		Unit Price	Total Material	Total Cost
¶ Item ¶ Description ¶ ¶	¶ / ¶ ¶ LABOR ¶	l / · Hours ·	¶ / ¶ ¶ Craft ¶	/ Rate	/ / Total Labor	[M+L ¶ [
¶ ¶ ¶ ¶ ¶ (ASSUME 1 PER WELL) ¶	The second secon	17.00 0	EA	400.00 0.00	6,800 0	6,800
1 1 2 -A ANALYSIS OF LIQUID WASTE SAMP 1 (ASSUME 1 PER WELL)	¶ LES ¶ Matl. ¶ Labor ¶	5.00 0	EA	۲ 400.00 ۹ 0.00 ۹	2,000	2,000
¶ **** SUBTOTAL **** ¶ ¶ ¶	¶ Matl. ¶ Labor ¶ ¶	0			8,800 0	8,800
-A SMO OVERSIGHT (16.4%) ¶ ¶	¶ ¶ Matl. ¶ Labor ¶	8.80 0	K\$	164.00 (0.00 (164.00 (1,443	1,443

9 9 BILL OF MATERIAL SUMMARY	Mate	erial	¶ ¶	Labo	ir (Total Cost M + L
TOTAL DIRECT SALES TAX			10,243 ¶ 615 ¶		0	10,243 615
SUBTOTAL		,	10,858 ¶		0	10,858
TOTAL			10,858 ¶(hr	s. 0)	0	10,858
TOTAL (ESCALATED COST)			12,033 ¶		0 4	12,033

WBS Cos Par Lev B/M Dis B/M Rec Cro Sta Est	st iti vel IA sci IT seiv oss anda :ima	Code cipa of ttri plir itle ving -Cut ard ate	3.01.03 P&A WELLS 	nate 5-31-00	8:51a		Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator P&A EXIST WELLS Quantity Take-Off By Trace Number C.3.1 0 Expiration Date: 09/15/1999			
=== ¶	==:	22#2	1	¶ MATL. ¶	Quantity	Unit ¶	Unit Price ¶	Total Material	Total Cost ¶	
¶ ¶	It	em	Description	¶ / ¶ ¶ LABOR ¶	/ / Hours	f / ¶ Craft ¶	/ ¶ Rate ¶	/ Total Labor	M+L ¶	
¶ ¶			*P&A WELLS (BASED ON VENDOR QUOTE)*	¶ ¶			1		•••••••	
1			(OVERHEAD & PROFIT INCLUDED BELOW AS	1 ¶ ¶			1		1 1 1	
4 4			(USE 1 WELL/DAY = 15 DAYS)	1			1	1		
• • • • • •		-A	P&A CEMENT-FILL AND SQUEEZE	¶ ¶ Matl. ¶ Labor ¶	15.00 0	WELL	40,833.00 ¶ 40,833.00 ¶ 0.00 ¶	612,495 ¶ 0 ¶	612,495 ¶	
¶ ¶			*DISPOSAL OF WATER*	¶ ¶			1	1	¶ ¶	
1 ¶ ¶			(USE 1000 GAL/WELL)	1			1		1 1 1	
¶ ¶ 2 ¶	!	- A	5000 GAL TANKER RENTAL FOR Development water (RRBB-20-7)	¶ Matl. ¶ Labor	15.00 0	DAYS	320.00 0.00	4,800 0	4,800	
¶ 3 ¶	5	- A	OPERATING COST & DRIVER (RRBB-20-7)	¶ Matl. ¶ Labor	120.00 120	HRS TD	20.70 22.60	2,484 2,712	5,196	
14	•	- A	SAMPLE COLLECTION (15,000 GAL a ONE/WELL)	¶ Matl. ¶ Labor	15.00 30	EA X	25.00 25.00	375 750	1,125	
1 ¶ 5 ¶	l	- A	LEVEL MODIFIED D PPE (SAMPLE ONLY)	¶ Matl. ¶ Labor	30.00 0	HRS	8.00 0.00	240 0	240	
1 1 1 1 1	***	*	SUBTOTAL ****	¶ Matl. ¶ Labor ¶ ¶	150			620,394 3,462	623,856	
1			*DISPOSAL OF SOLIDS*	۲ ۹ ۹						
1 ¶ ¶			(USE 5 DRUMS/WELL, 50 DRUMS/LOAD, 1 LOAD/DAY = 2 DAYS)	1 ¶ ¶						
¶ 6 ¶	•	-A	2 LABORERS TO LOAD & HAUL DRUMMED SOLIDS TO LANDFILL (NO TIPPING FEE)	¶ Matl. ¶ Labor	16.00 32	HRS L	0.00 24.85	0 ° 1 795 °	1 1 1 795 1	

=== ¶	222:	292	**************************************	********	:====≠== [MATL.	•==• ¶	Guantity	=== ===== ¶ Unit	==== ¶	Unit Price	Total Material	Total Cost ¶
	te	m '	1 Description	9		ſ	1	1 /	ſ	/	[/]	1 M+L 1
		•	1	٩	LABOR	ſ	Hours	¶ Craf	t¶	Rate	Total Labor	f 1
¶					[•••••				٩
¶ • ~							75 00					1 1
• ·		- A	55 GALLON DRUMS		Matl.		15.00	EA		55.00	4,125	¶ (105 4
ר •							U			0.00		4,125
1 ¶ 8		- A	FORK TRUCK RENTAL (BCM-21)		Matl.		2.00	DAYS		175.00	I 350 (1 1 1 (
ſ				•	Labor		0			0.00		350 ¶
Í				9						•	l I	i ¶
¶ 9	•	A	OPERATING COST & OPERATOR (BCM-2	1) ¶	Matl.		16.00	HRS		9.20	147 •	l 1
ſ				1	Labor		16	OP		30.95	495	642 ¶
1	_			1						•	٩	٩
¶ 1(0.	• A	FLATBED TRUCK RENTAL (BCM-20)	1	Matl.		2.00	DAYS		138.00	276	1
1					Labor		U			0.00	0	276 ¶
1 • 11	1.		OPERATING COST & DRIVER (RCH-20)		Mati		16 00	HDC		11 17	179	
1 '' ¶		^	OFERALING COST & DRIVER (BLM-20)	· 1			10.00	TD		22,60	1/0 1 362 (1 1 1 540 ¶
Ś				•						22.00		i 540 i
ý 12	2.	A	SAMPLE COLLECTION (1/WELL)	Í	Mati.		15.00	EA		25.00	375	i i
9				ſ	Labor		30	x		25.00	750	1,125 ¶
ſ				•	T					•	۱ ۹	<u>۱</u>
¶ 13	3-	A	LEVEL MODIFIED D PPE (SAMPLE ONL	Y) ¶	Matl.		30.00	HRS		8.00	240	I 9
ſ				1	Labor		0			0.00	0 9	240 ¶
1				1								1
1 "	***		SUBTOTAL ****	1	Mati.		0/				5,691	¶ ¶
1]	Labor		94				2,402	8,093 Y
1				1								
	-==			1 =======	==== = =	===			====			
*==:	2223	.==:	-	=======	2253222	= 3 1		*====				
7 4 e		05			Moto	.	ial		1	l abr		I IOTAL COST
¶	·								1 ¶	Lab.	л 	। м∓⊾ 1 ¶
ġ.	тс	DTAL	DIRECT				6	26,085	Ŷ		5,864	631,949 ¶
9	SA		S TAX				:	37,565	9			37,565 ¶
9			¶				•••••	• • • • • • • •	¶	•••••		¶
¶ SI	UBTO	DTAL	L ¶				6	63,650	9		5,864	669,514 ¶
1	TC	DTAL	LINDIRECT		20.00	%	1	32,730	9	20.00%	1,173 •	133,903 ¶
1 4	 	••••	······································					04 790	1 1/			¶
	≈===		, 			===	/ 	70,300 2======	1(1/	5. 244) 23232222222222	/,03/	003,41/ ¶
¶ T(OTAL	. (ESCALATED COST)				8	82,559	P		7,798	890,357 ¶

PGDP GWOU 1ALT 3

٠

WBS Cost Code Participan Level of E: B/M Attribu Discipline B/M Title Receiving S Cross-Cut (Standard Va Estimate F		LLS ACTION JB #1 sibility Estim SITE 32668A.val .3@1ALT3.Est	Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAN Discipline Estimator P&A EXIST WELLS Quantity Take-Off By Trace Number C.3.2 0 Expiration Date: 09/15/1999						
1 1			¶ MATL. ¶	Quantity	¶ Unit	¶	Unit Price ¶	Total Material	Total Cost ¶
1 Item 1 1 1 1	Description		¶ / ¶ ¶ LABOR ¶ ¶	/ Kours	¶ / ¶ Craft	¶ t ¶	/ Rate	/ / · · · · · · · · · · · · · · · · · ·	H+L ¶ ¶
¶ ¶1 -A / ¶ ¶	ANALYSIS OF SOLID WASTE S (ASSUME 1 PER WELL)	SAMPLES	¶ ¶ Matl. ¶ Labor ¶	15.00 0	EA		400.00 0.00	6,000 0	6,000 ¶
¶ ¶2 -A / ¶ (ANALYSIS OF LIQUID WASTE (ASSUME 1 PER WELL)	SAMPLES	¶ ¶ Matl. ¶ Labor ¶	15.00 0	EA		400.00 0.00	6,000	4 6,000
9 **** 5 9 9 9 9	SUBTOTAL ****		¶ Matl. ¶ Labor ¶ ¶	0			9	12,000	12,000 ¶
¶ ¶ 3 -A 5 ¶ ¶	SMO OVERSIGHT (16.4%)		¶ ¶ Matl. ¶ Labor ¶	12.00 0	K\$		164.00 0.00	1,968 0 0	1,968 ¶
********			1222038223			*****		****************	
1 BILL OF N	MATERIAL SUMMARY	¶ ¶	Mater	ial	•	¶ ¶	Labo)r	Total Cost ¶ M + L ¶
TOTAL SALES	DIRECT TAX	1			13,968 838	1 1 1		0	13,968 838
SUBTOTAL		1			14,806	1		0	14,806
TOTAL		1			14,806	(hrs	. 0)	0	14,806
¶ TOTAL (ES	SCALATED COST)	1			16,408	 1		0 9	¶ 16,408 ¶

WBS Cost Disc B/M Rece Cros Stan Estin	Code icipa . of Attr iplin Title iving s-Cun dard mate	3.01.04 SHUT DN NE/NW SYSTEM ant 6100 REMEDIAL ACTION ant FP51 FIXED PRICE SUBCONT Estimate . P Planning/Feasibility Estim ibute 1ALT 3 ne C CIVIL AND SITE e SHUT DN NE/NW SYSTEMS g Site PADUCAH t Code Value File C:@ESTIMA™1@RRB2668A.val File C:@ESTIMA™1@ATL3@1ALT3.Est	Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator SHUT DN NE/NW Quantity Take-Off By Trace Number C.4.1 0 Expiration Date: 09/15/1999									
1 1 MATL. 1 Quantity 1						¶ Unit ¶ Unit Price ¶ Total Material ¶ Tota						
¶ 1. ¶	tem	T Description	¶ / ¶ LABOR 9	/ Hours	¶ / ¶ ¶ Craft¶	/ Rate	/ ¶ Total Labor ¶	M + L ¶				
¶ ¶ ¶		(BASED ON CDM COST - DOES NOT INCLUDE WELL ABANDONMENT)	1 1 1			1	1	۰۹ ۹ ۲				
¶ 1 ¶	-A	SHUT DOWN NE/NW TREATMENT SYSTEMS (COLD STAND-BY)	¶ Matl. ¶ Labor	1.00 0	LOT	65,000.00 ¶ 0.00 ¶	65,000 ¶ 0 ¶	¶ 65,000 ¶				
; **' ¶ ¶	**	SUBTOTAL ****	¶ Matl. ¶ Labor	0		1	65,000 ¶ 0 ¶	65,000 ¶				
• ¶ ¶		EXCAVATION OF EXISTING CONCRETE PAD AND SOIL AT SWMU 99	, 1 1			1	1	۔ ۲ ۲				
¶ 2 ¶	-A	BREAK, LOAD AND HAUL PAD 120' X 240'	Matl. Labor	1,067.00 160	CY OP	3.50 30.95	3,735 ¶ 4,952 ¶	¶ 8,687 ¶ ¶				
¶ ¶	-A	SUPPORT CRAFT	¶ Matl. ¶ Labor	1.00 160	L S L	1,000.00 ¶ 24.85 ¶	1,000 ¶ 3,976 ¶	¶ 4,976 ¶				
94 9 9	-A	DUMP TRUCK AND DRIVER HAUL TO LANDFILL AT PGDP	Matl. Labor	3.00 120	WKS TD	500.00 ¶ 22.60 ¶	1,500 ¶ 2,712 ¶	4,212 ¶				
9 9 9	- A	EXCAVATION OF EARTH UNDER PAD AND 5' AROUND PEREMITER TO A DEPTH OF 5'	Matl. Labor	6,019.00 482	CY OP	2.80 ¶ 30.95 ¶	16,853 ¶ 14,918 ¶	31,771 ¶				
• • • •	**	SUBTOTAL ****	¶ Matl. ¶ Labor	922		1	23,088 ¶ 26,558 ¶ ¶	9,646 1 1				
។ ។ 6 ¶ ¶	-A	MOD.C PROTECTIVE CLOTHING PPE @ 50%	¶ Matl. ¶ Labor	461.00 0	HRS	8.00 ¶ 0.00 ¶	3,688 ¶ 3,688 ¶ 0 ¶ ¶	¶ ¶ 3,688 ¶ ¶				
¶ ¶ ¶ ¶			1 1 1			1	¶ ¶ ¶	1 1 1				

.

╡╒╤╤╒╡╛┙╛┥╅┆┱╕╕╴╡┍╡┙╕┲╕╡╡╴╴╴╴╡╸╡╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴											
¶ ¶ BILL OF MATERIAL SUMMARY	l Material	1	Lab	or	Total Cosi						
(······				· · · · · · · · · · · · · · · · · · ·						
TOTAL DIRECT SALES TAX	 	91,776 ¶ 5,507 ¶		26,558	118,334 ¶ 5,507 ¶						
SUBTOTAL TOTAL INDIRECT	20.00%	97,283 ¶ 19,457 ¶	20.00%	26,558 5,312	123,841 ¶ 24,769 ¶						
TOTAL	 	116,740 ¶((hrs. 922)	31,870	148,610 ¶						
TOTAL (ESCALATED COST)		159,070 ¶		43,426	202,496 ¶						

WBS	Build Plant Contra Fundir Source Discip Quant Trace Expire	Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator SHUT DN NE/NW Quantity Take-Off By Trace Number C.4.2 O Expiration Date: 09/15/1999			
1 1 1 Item 1 Description 1 1	¶ MATL.¶ Quantity¶ ¶ /¶ /¶ ¶ LABOR¶ Hours¶	Unit ¶ Unit Price / ¶ / Craft ¶ Rate	Total Material / Total Labor	Total Cost ¶ M + L ¶	
2 PHASE EXTRACTION SOURCE AREA ON SAIC ESTIMATE)	S (BASE ¶			1	
1 -A 2 PHASE EXTRACTION AT C-400 NE	¶ Matl. 1.00 ¶ Labor 0 ¶	0 270,600.00 0.00	270,600 ¶ 0 ¶	270,600	
2 -A 2 PHASE EXTRACTION AT C-400 SE	¶ Matl. 1.00 ¶ Labor 0 ¶	0 1,100,200.00 0.00	1,100,200 ¶ 0 ¶	1,100,200 ¶	
3 -A 2 PHASE EXTRACTION AT C-720 SE	¶ Matl. 1.00 ¶ Labor 0 ¶	367,000.00 0.00	367,000 0	367,000	
¶ 4 −A 2 PHASE EXTRACTION AT SWMU 001 ¶ ♥	• Matl. 1.00 ¶ Labor 0 ¶	367,000.00 0.00	367,000 ¶ 0 ¶	¶ 367,000 ¶	
9 -A DUS AT C-400 9 9	¶ Matl. 1.00 ¶ Labor 0 ¶	4,850,000.00 0.00	4,850,000 ¶ ¶ 0 ¶	4,850,000 ¶ ¶	
1 1 1 BILL OF MATERIAL SUMMARY 1	Material	1 1 Labe	or ¶	Total Cost ¶ M+L ¶	
9 TOTAL DIRECT 9 SALES TAX 9	6,954 417	,800 ¶ ,288 ¶	9 0 9	6,954,800 ¶ 417,288 ¶	
1 SUBTOTAL 1 1 TOTAL INDIRECT	7,372 20.00% 1,474	,088¶ ,418¶ 20.00%	0 ¶ 0 ¶	7,372,088 ¶ 1,474,418 ¶	
¶ TOTAL ¶	8,846	,506 ¶(hrs. 0)	0 ¶	8,846,506 ¶	
¶ TOTAL (ESCALATED COST) ¶	9,841	,490 ¶	0 ¶	9,841,490 ¶	

. .

WBS	EMENT ENTAL lity Estim 8A.val ALT3.Est	ate 5-31-00 (8:51a			Buildi Plant Contra Fundir Source Discip Quanti Trace Expira	ng/Area Site ng Type Site Site line Estimator ty Take-Off By Number ation Date: 09/15/	. 1ALT 3 IND R G General EXPENSE PADUCAH INDIRECTS X.5.3 0	1 4
1 1		9 MATL. 9	Quantity	¶ Unit	1	Unit Price	Total Material	Total Cost	4
Tem Description		1 / 1 1 LABOR 1	/ Hours	¶ / ¶ Craf	1 t 1	/ Rate	/ Total Labor	1 M + L 1	1
1 **AE TITLE II DESIGN**		¶ ¶				••••••		 	1
¶ ¶ ¶ 1 -A RD REPORT (TITLE II) (1 FTE) ¶ ¶	X 3 MOS)	¶ ¶ Matl. ¶ Labor ¶	520.00 520	Hour T2		0.00 65.00	33,800	1 1 1 33,800	1 1 1 1
***************************************	92222 2 \$722	828332 <u>8</u> 281	==========	:5822225	223335	*************	2222472222282822:		:=
¶ ¶ BILL OF MATERIAL SUMMARY	*********** 1 1	zzzzzzzz		.9322223	***** ¶ ¶	Labo	·==#±##================================	Total Cost	:= ¶ ¶
TOTAL DIRECT	1 1.			0	9 9		33,800	33,800	•¶ •
¶ ¶ TOTAL	1 1			0	¶ ¶(hrs.	520)	33,800	33,′	1
1 TOTAL (ESCALATED COST)	**************************************	222323222	=======================================	0	====== 1 		36,905	36,9 05	1

WBS	EMENT ENTAL lity Estim PLAN BA.val ALT3.Est	ate 5-31-00	8:51a				Build Plant Contra Fundin Source Discip Quant Trace Expire	ing/Area Site acting Type of Type Site Site bline Estimator ity Take-Off By Number ation Date: 09/15/	. 1ALT 3 IND . R . G General . EXPENSE . PADUCAH . INDIRECTS . X.5.5 0 1999
¶ ¶ ¶ Item ¶ Description ¶		MATL. / / LABOR	¶ Quantii ¶ / ¶ Hours	y 1 1	Unit / Craft	۹ ۹ ۲ :	Unit Price / Rate	Total Material / Total Labor	Total Cost M + L
¶ ¶ 1 -C AE REVIEW RA WORK PLAN ¶		¶ Matl. ¶ Labor	20.	00 20	HOUR T2		0.00 65.00	0 1,300	1,300
			**********	:2222 :2222	*******	12221			***************************************
¶ ¶ BILL OF MATERIAL SUMMARY	f 1	Mate	erial			[[[Labo	or .	Total Cost M + L
TOTAL DIRECT	1				0	 		1,300	1,300
¶ TOTAL	[0	(hrs	s. 20)	1,300	1,300
AL (ESCALATED COST)					0			1,419	¶ 1,419 ¶

WBS	EMENT ENTAL lity Estim 8A.val ALT3.Est	ate 5-31-00	8:51a			Build Plant Contra Fundin Source Discip Quant Trace Expira	ing/Area Site acting Type of Type e Site bline Estimator ity Take-Off By Number ation Date: 09/15/	. 1ALT 3 IND . R . G General . EXPENSE . OTHER (NO OH) . INDIRECTS . X.5.1 0
1 1 1 Item 1 Description 1 1		¶ MATL. ¶ ¶ / ¶ ¶ LABOR ¶	Quantity / Hours	¶ Unit ¶ / ¶ Craft	¶ ¶ t ¶	Unit Price / Rate	Total Material / Total Labor	Total Cost M + L
¶ ¶ 1 -C AE WRITE RD WORK PLAN ¶		¶ Mati. ¶ Mati. ¶ Labor ¶	40.00 40	Hour T2		0.00	0 2,600	9 9 2,600 9
*******		=======================================	***********					
9 9 BILL OF MATERIAL SUMMARY	1	Mate	erial		¶ ¶	Lab	or	Total Cost
TOTAL DIRECT	1			0	1		2,600	2,600
¶ TOTAL	1			0 9	¶(hrs.	40)	2,600	2,600
¶ TOTAL (ESCALATED COST)	¶			0 4	٩		2,839	1 2,8 [°] '

Cost Code										
¶ ¶	¶ MATL. ¶ Quantity	Unit ¶ Unit Price	¶ Total Material	Total Cost						
Item Description	1 / 1 /	1 / 1 /	1 /	M+L 9						
۹ ۹ «	¶ LABOR ¶ Hours	¶ Craft ¶ Rate	¶ Total Labor	1						
¶ ¶ 1 -A CM WRITE RA WORK PLAN ¶	¶ ¶ Matl. 40.00 ¶ Labor 40 ¶	HOUR 0.00 MX 64.00	0 1 2,560	2,560						
1 1 9 BILL OF MATERIAL SUMMARY	Material	¶ ¶ Lab	or	Total Cost M + L						
TOTAL DIRECT		0 ¶	2,560	2,560						
¶ TOTAL ¶		0 ¶(hrs. 40)	2,560	2,560						
Image: Provide state of the		0¶	2,795	2,795						

WBS	MENT SVCS ity Estime LAN A.val	ate - 31-00	9.5	1.				Build Plant Contr Fundi Sourc Disci Quant Trace Expir	ing/Area Site acting Type ng Type e Site pline Estimator ity Take-Off By Number ation Date: 09/15/	. 1ALT 3 IN R G General EXPENSE PADUCAH INDIRECTS X.5.2 0	D .
Item ¶ Description ¶ Item ¶ Description ¶ ¶ 1 -A CM REVIEW RD WORK PLAN ¶		MATL. / LABOR Matl. Labor	¶ @ ¶	uantity / Hours 20.0(20	¶ ¶ ¶	Unit / Craft HOUR MX	¶ ¶ t ¶	Unit Price / Rate 0.00 64.00	Total Material / Total Labor 0 1,280	Total C M + I I I I I I I I I I	ost ¶ L ¶ ¶ ¶ 1,280 ¶
¶ ¶ ¶ BILL OF MATERIAL SUMMARY ¶ ¶ TOTAL DIRECT ¶ ¶ TOTAL ¶		Mat	eria 	L		0	[[[[[[(hrs	Lab 3. 20)	or 1,280 1,280	Total C M +	ost ¶ L ¶ 1,280 ¶ 1,280 ¶
¶ TOTAL (ESCALATED COST) ¶					.==:	0 9	*===: [-===:			*====*****	1,7 ***

<pre>WBS</pre>	NT VCS y Estimate val 3.Est 5-31-00 8:51a	Build Plant Contra Fundir Source Discip Quant Trace Expira	ing/Area Site acting Type ng Type e Site bline Estimator ity Take-Off By Number ation Date: 09/15/1	1ALT 3 IND R G General EXPENSE PADUCAH INDIRECTS X.5.4 0 999
¶ ¶ ¶ Item ¶ Description ¶ ¶ ¶ ¶ ¶ ¶ ¶	¶ MATL.¶ Quantity ¶ / ¶ / ¶ LABOR¶ Hours ¶	¶ Unit ¶ Unit Price ¶ / ¶ / ¶ Craft ¶ Rate	Total Material ¶ / ¶ Total Labor ¶	Total Cost ¶ M + L ¶ ¶
¶ -A CM REVIEW RD REPORT ¶ ¶	¶ Matl. 80.00 ¶ Labor 80 ¶	HOUR 0.00 MX 64.00	0 ¶ 5,120 ¶ I ¶	¶ 5,120 ¶ ¶
¶ ¶ ¶ BILL OF MATERIAL SUMMARY ¶	Material	¶ ¶Labo	1 1 1	Total Cost ¶ M+1 ¶
TOTAL DIRECT		0 ¶	5,120	5,120 \$
TOTAL T		0¶(hrs. 80)	5,120 ¶	5,120 ¶
• AL (ESCALATED COST) ¶		0 ¶	5,590 ¶	5,590 ¶

,

WBS	DN timate t 5-31-00 8:51a	Bui Plar Cont Fund Sour Disc Quar Trac Exp	ding/Area at Site racting Type ling Type rcc Site sipline Estimator atity Take-Off By ration Date: 09/15/	. 1ALT 3 IND R G General EXPENSE PADUCAH INDIRECTS U.6.1 0 1999
¶ ¶ ¶ Item ¶ Description	<pre>¶ MATL. ¶ Quantity ¶ / ¶ / ¶ LABOP ¶ Hours</pre>	Unit ¶ Unit Price 1 / ¶ /	¶ Total Material ¶ / ¶ Total Jahan	Total Cost M + L
1 1 ¶			-¶	ו ¶י¶
1	1		1	1 1
1 -A AE TITLE III ENGINEERING (1/2 FTE X	9 ¶ Matl. 780.00	HOUR 0.00)¶ 0°)¶ 42 000	¶
1 1037	¶ 2001 700	15 55.00	¶ 42,900	1
	Motorial	1	han	Total Cost
9 DILL OF MATERIAL SUMMART 9	material	ں۔ ۹۹		1 ™ + ∟ 1 ¶
TOTAL DIRECT		0 9	42,900	42,900
¶ TOTAL ¶		0¶(hrs. 780) 42,900	42,900
¶ TOTAL (ESCALATED COST) ¶		0¶	47,542	¶ 47,5

WBS	ION stimate st 5-31-00 8:51a	Buildi Plant Contra Fundir Source Discip Quanti Trace Expira	ng/Area Site Site g Type Site Site Une Estimator ty Take-Off By Number Number	1ALT 3 IND R G General EXPENSE PADUCAH INDIRECTS U.6.3 0 999
1 1 1 Item 1 Description 1 1	¶ MATL.¶ Quantity¶ ¶ /¶ /¶ ¶ LABOR¶ Hours¶	Unit ¶ Unit Price ¶ / ¶ / Craft ¶ Rate ¶	Total Material ¶ / ¶ Total Labor ¶	Total Cost ¶ M + L ¶
¶ ¶ 1 -A CM FINAL CONSTRUCTION REPORTS ¶	¶ ¶ Matl. 40.00 M ¶ Labor 40 M ¶	10UR 0.00 1R 54.00	0 ¶ 2,160 ¶	1 1 2,160 ¶ ¶
Image: State of the state o	Materíal	f Labo		Total Cost ¶ M + L ¶
TOTAL DIRECT		0 9	2,160	2,160 1
¶ TOTAL ¶		0 ¶(hrs. 40)	2,160	2,160 ¶
1 'L (ESCALATED COST) 1		0 1	2,394 ¶	2,394 1

-

WBS	mate 5-31-00 8:51a		Building/Area Plant Site Contracting Type Funding Type Source Site Discipline Estimator Quantity Take-Off By Trace Number Expiration Date: 09/15/	. 1ALT 3 IND . R . G General . EXPENSE . PADUCAH . INDIRECTS . U.6.2 0 1999
1 1 1 Item 1 Description 1 1	<pre>¶ MATL. ¶ Quantity ¶ / ¶ / ¶ LABOR ¶ Hours</pre>	¶ Unit ¶ Unit P ¶ / ¶ / ¶ Craft¶ Rat	rice ¶ Total Material ¶ / Te ¶ Total Labor	Total Cost ¶ M + L ¶
¶ ¶ 1 - A CM CONSTRUCTION OVERSIGHT (1 FTE X 9 ¶ MOS) ¶	¶ ¶Matl. 1,560.00 ¶Labor 1,560 ¶	HOUR MR	¶ 0.00 ¶ 0 54.00 ¶ 84,240 ¶	84,240 ¶
	======================================	222222222222222222222222222222222222222		************************
¶ ¶ ¶ BILL OF MATERIAL SUMMARY ¶	Material	¶ ¶	Labor	Total Cost ¶ M + L ¶
TOTAL DIRECT		0 ¶	84,240	84,240
¶ TOTAL ¶		0 ¶(hrs.	1,560) 84,240	¶ 84,240 ¶
TOTAL (ESCALATED COST)		0 ¶	93,356	93,3 ^r

W8S	(RS) INCE Nate 5-31-00 8:51a	Build Plant Contro Fundin Source Discip Quant Trace Expire	ing/Area Site acting Type Type Site Site Site Site Site Site Site Sit	. 1ALT 3 O&M R G General EXPENSE PADUCAH O&M 0.7.1 0
1 1	¶ MATL. ¶ Quantity ¶ Unit	1 Unit Price	Total Material	Total Cost ¶
Item 1 Description Image: State St	¶ / ¶ / ¶ / ¶ LABOR ¶ Hours ¶ Craft	¶ / ¶ Rate	/ / Total Labor	M + L ¶
MAINTENANCE OF MONITORING WELLS INCLUDED AT 2% OF CAPITAL COST PER YEAR, EQUALS COMPLETE REPLACEMENT REPLACEMENT EVERY 50 YEARS (90 EXISTING AND 32 NEW WELLS = 122 X \$14,500/EA = \$1,769,000) 1 -A MAINTENANCE OF MONITORING WELLS (2% X 30 YRS)	Matl. 30.00 YRS Labor O	35,380.00 0.00	1,061,400 0	1,061,400

BILL OF MATERIAL SUMMARY	Material	Labo	or •	M + L ¶
TOTAL DIRECT T SALES TAX	1,061,400 63,684		0	1,061,400 63,684
SUBTOTAL 1 TOTAL INDIRECT	1,125,084 20.00% 225,017	20.00%	0 0	1,125,084 225,017
TOTAL 1	1,350,101	(hrs. 0)	0	1,350,101 ¶
1 TOTAL (ESCALATED COST)	2,340,204 ¶		0	2,340,204 ¶

L D

-

WBS			Build Plant Contra Fundir Source Discip Quant Trace	ing/Area Site acting Type og Type Site Site Dline Estimator ity Take-Off By Number Ation Date: 09/15/1	ALT 3 O&M R G General EXPENSE PADUCAH O&M 0.7.2 0	
	••••••••••••••••••••••••••••••••••••••	¶ Quantity	========= ¶ Unit	¶ Unit Price	Total Material	Total Cost ¶
Item T Description	LABOR	/ Hours	¶ / ¶ Craft	¶ / ¶ Rate	/ Total Labor	M + L
<pre>*MONITORING - 30 YEARS* -SAMPLE COLLECTION- (COST BY BECHTEL JACOBS) 1 -A QUARTERLY SAMPLING OF 122 WEL 48B/YR X \$1,059/EA **** SUBTOTAL **** </pre>	¶ IS ≈ ¶ Matl. I Labor ¶ ¶ ¶ Matl. I Labor ¶	30.00 0 0	YRS	516,792.00	15,503,760 0 15,503,760 0	15,503,760 15,503,760
	**************	220222522323				
9 BILL OF MATERIAL SUMMARY	n [Ma	terial	1	Lab	or	
TOTAL DIRECT SALES TAX	 	15,5 9	03,760 ¶ 30,226 ¶		0	15,503,760 ¶ 930,226
SUBTOTAL TOTAL INDIRECT	20.0	16,4 10% 3,2	33,986 ¶ 86,797 ¶	20.00%	0	16,433,986 3,286,797
¶ TOTAL	1	19,7	20,783 ¶	(hrs. 0)	0	19,720,783
¶ TOTAL (ESCALATED COST)		34,1	83,110 ¶		0 ·	¶ 34,183,110 ¶

WBS	Build Plant Contr Fundi Sourc Disci Quant Trace Expir	Building/Area 1ALT 3 O&M Plant Site R Contracting Type S Subcontractor Funding Type EXPENSE Source Site PADUCAH Discipline Estimator O&M Quantity Take-Off By Trace Number 0.7.3 O Expiration Date: 09/15/1999			
Image: State	¶ MATL.¶ Quantity¶ Uni ¶ /¶ /¶ /¶ / ¶ LABOR¶ Hours¶ Cra	t ¶ Unit Price ¶ / ft¶ Rate	¶ Total Material ¶ ¶ / ¶ Total Labor ¶	Total Cost ¶ M + L ¶	
LAB ANALYSIS - 30 YEARS 1 1 -A QUARTERLY ANALYSIS OF 122 WEL 488/YR X \$400/EA 1 **** SUBTOTAL ****	¶ ¶ LS = ¶ Matl. 30.00 YRS ¶ Labor 0 ¶ ¶ Matl. ¶ Labor 0 ¶ ¶	195,200.00 0.00	1 1 1 5,856,000 1 5,856,000 1 0	5,856,000 5,856,000	
¶ ¶ 2 -A SMO OVERSIGHT (16.4%) ¶	¶ ¶ Matl. 5,856.00 K\$ ¶ Labor 0 ¶	164.00 0.00	¶ 960,384 ¶ ¶ 960,384 ¶ ¶ 0 ¶	960,384 ¶	
			********	*****************	
¶ ¶ BILL OF MATERIAL SUMMARY	Material	¶ ¶ Lab	or	Total Cost ¶ M+L ¶	
TOTAL DIRECT SALES TAX	6,816,384 408,983	1	0	6,816,384 ¶ 408,983 ¶	
SUBTOTAL	7,225,367	¶ 	0	7,225,367	
¶ TOTAL	7,225,367	¶(hrs. 0)	0	7,225,367 ¶	
TOTAL (ESCALATED COST)	12,524,123	¶ ================================	•	12,524,12 3 ¶	

•

Total Labor Hours: 9,655

Disciplines

- C: CIVIL AND SITE O: OTHER U: PROJECT ENGINEERING X: ENGINEERING

COST SUMMARY

¶ ¶ COST SUMMARY	¶ Material	Labor	Total Cost ¶ M + L
Line Item Cost Total Sales Tax	3 3,755,774 2 ,025,348	363,580 1	34,119,354 2,025,348
¶ SUBTOTAL ¶ Total Indirect	1 35,781,122 1 5,699,306	363,580 37,525	36,144,702 5,736,831
¶ SUBTOTAL ¶ Overhead	1 41,480,428 1 17,405,188	401,105 168,304	41,881,533 17,573,492
<pre>SUBTOTAL Contingency</pre>	1 58,885,616 1 14,721,404	569,409 142,352	59,455,025 14,863,756
¶ SUBTOTAL ¶ Market Adjustment	¶ 73,607,020 ¶	711,761	74,318,7′
¶ TOTAL	٩ ([74,318,781

<pre>¶ TOTAL (ESCALATED DOLLARS) ¶ including overhead & contingency</pre>	¶ 113,081,239 9 ¶	801,815 1	¶ 113,883,054 ¶

630800

Basis of Estimate Feasibility Study for the GWOU Alternative 4

Description: This alternative will continue the groundwater monitoring program currently in place plus an expansion by 32 monitoring wells. Also, 15 existing monitoring wells will be plugged and abandoned. In addition to the above, a permeable treatment zone (PTZ) will be constructed at the security fence area to remove contaminants from the Regional Gravel Aquifer (RGA) in the Southwest, Northwest, and Northeast Plumes. Also, PTZs will be constructed in the area where the Regional Gravel Aquifer recharges the Little Bayou Creek. The cores (>1,000 ppb) of the Northwest, Southwest, and Northeast off-site plumes also will be captured by a PTZ. The period of the action is 30 years. Although not costed in this estimate, the action will be required to be repeated for a period of approximately 7,000 years until the remediation is complete.

General: The estimate was generated with Automated Estimating System (AES), using the standard value file RRB2668A.val.
Management and Integration (M&I) contract management is included at 20% of all costs.
Overhead is included at 41.96%.
Contingency is included at 25%.

Schedule: Installation is assumed to last 9 months. Operation and Maintenance (O&M) is assumed to last 30 years.

Work Breakdown Structure (WBS)

WBS 4.01.01 General Conditions:

- Includes mobilization and set-up and utility hook-ups for a construction trailer and a shower/change trailer. Nine months rental cost is included for trailers and a port-o-let.
- A safety and health officer is included for the 9-month duration.
- Training and security requirements are included for 8 workers at 28 hours each.
- Includes general safety plan, quality assurance (QA) plan, waste management plan, work plan, hoisting and rigging plan, and site-specific safety and health plan.

WBS 4.01.02 Monitoring Wells (includes PTZ wells):

- Wells are separated as 27 inside and 5 outside the fence.
- Three hundred feet per well of access roads includes clearing and grubbing of light trees, grading, a filter fabric underlayment, and a 6-inch gravel base.
- Monitoring wells are 100 ft deep with stainless steel tubing and screen and are included at \$14,500 each based on a vendor quote. Mobilization is included at \$150,000.
- Disposal of water includes a 5,000-gal tanker truck with driver on-site full time (no disposal fee). Water is included at 1,000 gal per well. (27 wells I/S fence = 27,000 gal = 6 tankers) (5 wells O/S fence = 5,000 gal = 1 tanker)

- Disposal of solids includes 2 laborers, a fork truck with operator, and a flatbed truck with driver to load and haul the drums to the landfill (no tipping fee). Solids are included at 4 drums per well. Estimate assumes 50 drums per load and 1 load per day. (27 wells I/S fence = 3 loads, 5 wells O/S = 1 load)
- Sampling of water assumes 1 per well and includes \$25 and 2 hours each with modified Level D personal protective equipment (PPE).
- Sampling of solids assumes 1 per well and includes \$25 and 2 hours each with modified Level D PPE.
- Analysis of the samples includes volatile organic compounds (VOCs) (8260), gross alpha, gross beta, and ⁹⁹Tc at a total cost of \$400 per sample. Costs are included for Site Management Office (SMO) oversight at 16.4%.
- Two hundred fifty wells for the PTZ. Wells are 6-inch polyvinyl chloride (PVC) casing with a total depth of 120 ft.
- Two thousand eight hundred thirty-three yds³ of granular iron and 100,000 pounds of guar gum for PTZ.
- Four hundred 3.5-inch cased holes for resistivity probes.
- Four hundred 5-sensor nodes with 1-inch-diameter connections and wire.

WBS 4.01.03 Plug and Abandon Wells:

- Plugging and abandoning of 15 existing wells is included at \$40,833 each. Cost is based on a feasibility study for White Oak Creek.
- Disposal of water includes a 5,000 gal tanker truck with driver on-site full time (no disposal fee). Water is included at 1,000 gal per well. (15 wells = 15,000 gal = 3 tankers)
- Disposal of solids includes 2 laborers, a fork truck with operator, and a flatbed truck with driver to load and haul the drums to the landfill (no tipping fee). Solids are included at 5 drums per well. Estimate assumes 50 drums per load and 1 load per day (15 wells = 2 loads). Drums are included assuming 5 per well at \$55 each.
- Sampling of water assumes 1 per well and includes \$25 and 2 hours each with modified Level D PPE.
- Sampling of solids assumes 1 per well and includes \$25 and 2 hours each with modified Level D PPE.
- Analysis of the samples includes VOCs (8260), gross alpha, gross beta, and ⁹⁹Tc at a total cost of \$400 per sample. Costs are included for SMO oversight at 16.4%.

WBS 4.01.04 Shut Down Northeast and Northwest Systems [includes excavation of Solid Waste Management Unit (SWMU) 99]:

- The cost to shut down the Northeast and Northwest treatment systems (cold stand-by) is included at \$65,000 and is based on costs from CDM Federal as provided by Bechtel Jacobs Company LLC (BJC).
- Breaking, loading, and hauling a concrete pad of 120 ft by 240 ft at SWMU 99.
- Excavation of $6,019 \text{ yds}^3$ of earth.

WBS 4.02 Indirect Costs:

• Indirect costs include design, project integration, and M&I oversight. These costs are dependent on level of effort and project schedule.

WBS 4.03.01.01 Maintenance (30 Years):

• Maintenance is included for the 32 new and 90 existing monitoring wells. Costs are included at 2% of the well capital cost annually for 30 years (122 × \$14,500 × .02 = \$35,380/year). Two percent annually is equivalent to total replacement every 50 years.

WBS 4.03.01.02 Sample Collection (30 Years):

• Sample collection is included quarterly for the 32 new and 90 existing monitoring wells. A cost of \$1,059 per sample is included as provided by BJC. Quarterly sampling of 122 wells = 488 samples per year × \$1,059 = \$516,792 per year for 30 years.

WBS 4.03.01.03 Sample Analysis (30 Years):

Sample analysis is included quarterly for the 32 new and 90 existing monitoring wells. A cost of \$400 per sample is included for VOCs (8260), gross alpha, gross beta, and ⁹⁹Tc. Quarterly analysis of 122 wells = 488 samples per year × \$400 = \$195,200 per year for 30 years. Costs are included for SMO oversight at 16.4%.

WBS 4.03.01.04 Management and Integration (M&I) on Operation and Maintenance (O&M) (30 Years):

• M&I contract management is included at 20% of all O&M costs.

Line items within the detailed estimate contain references to cost guides. The following is a glossary for those references.

FCM-845	Facility Construction Means		Page 845
HCM-41	Heavy Construction Means		Page 41
BCM-21	Building Construction Means		Page 21
ECHOS-8-107	ECHOS Cost Guide	Section 8	Page 107
RRBB-20-7	Rental Rate Blue Book	Section 20	Page 7
E.J.	Estimator's Judgment		

SUMMARY REPORT Project Number: 35708116 PGDP GWOU 1ALT 4

Project ESO Number.....NA Revision Number.....1 Last Update.....05/31/2000

> Sort Order 1. WBS - Level 3 2. WBS - Level 4 3. Building/Area

Approved by:

Project Estimator Date

Estimating Manager

Date

AES Version 6.1

Base Fiscal Year/Quarter: 99/4 STANDARD VALUE: C:⊕ESTIMA™1⊕RRB2668A.val EXPIRES: 09/15/1999 ESTIMATE FILE: C:⊕ESTIMA™1⊕ATL4⊕ALT4.Est 05/31/2000 SCHEDULE FILE: 1ALT4 REPORT FILE: C:⊕ESTIMA™1⊕ATL4⊕ALT4SUM.Out 05/31/2000 09:33:34

, .

SUMMARY REPORT \$1 = \$1

05/31/2000

Arranged By: WBS / WBS / Building

i i

	(Unescalated			Escalated		
	Material	Labor	Total	Material	Labor	Total	
	\$	\$	\$	\$	\$	\$	
4.01.01 GENERAL CONDITIONS							
4.01.01.01 VARIABLE COSTS							
GWOU	10074	82320	92394	11164	912 28	102392	
TOTAL VARIABLE COSTS	10074	82320	92394	11164	91228	102392	
4.01.01.02 FIXED COSTS							
GWOU	26076	6941	33017	28898	7692	36590	
TOTAL FIXED COSTS	26076	6941	33017	28898	7692	36590	
TOTAL GENERAL CONDITIONS	36150	89261	125411	40062	98920	138982	
4.01.02 MONITORING WELLS							
4.01.02.01 MONITORING WELLS (I/S FENCE)							
GWOU	22374743	188124	22562 8 67	24795991	208482	25004473	
L MONITORING WELLS (I/S FENCE)	22374743	188124	22562867	24795991	208482	25004473	
4.01.02.02 MONITORING WELLS (0/S FENCE)							
GWOU	335888	14213	350101	372236	15751	387987	
TOTAL MONITORING WELLS (O/S FENCE)	335888	14213	350101	372236	15751	387987	
TOTAL MONITORING WELLS	22710631	202337	22912968	25168227	224233	25392460	
4.01.03 P&A WELLS							
4.01.03 P&A WELLS							
GWOU	811186	7037	818223	898967	7798	906765	
TOTAL P&A WELLS	811186	7037	818223	898967	7798	906765	
TOTAL P&A WELLS	811186	7037	818223	898967	7798	906765	

SUMMARY REPORT \$1 = \$1

05/31/2000

Arranged By: WBS / WBS / Building

	U	Unescalated				Escalated		
	Material	Labor	Total	Material	Labor	Total		
	\$	\$	\$	\$	\$	\$		
4.01.04 SHUT DN NE/NW SYSTEMS								
4.01.04 SHUT DN NE/NW SYSTEMS								
GWOU	116740	38378	155118	129372	42531	171903		
TOTAL SHUT DN NE/NW SYSTEMS	116740	38378	155118	129372	42531	171903		
TOTAL SHUT DN NE/NW SYSTEMS	116740	38378	155118	129372	42531	171903		
4.02.01 DESIGN								
4.02.01 DESIGN								
1ALT 4 IND	0	46660	46660	0	50946	50946		
TOTAL DESIGN	0	46660	46660	0	50946	50946		
TOTAL DESIGN	0	46660	46660	0	50946	50946		
4.02.02 PROJECT INTEGRATION 4.02.02 PROJECT INTEGRATION 1ALT 4 IND	0	129300	129300	0	143292	14		
TOTAL PROJECT INTEGRATION	0	129300	129300	0	143292	143292		
TOTAL PROJECT INTEGRATION	0	129300	129300	0	143292	143292		
4.03.01 30 YRS 0&M 4.03.01.01 MAINTENANCE (30 YRS) 1ALT 4 0&M	1350101	0	1350101	2340204	0	2340204		
TOTAL MAINTENANCE (30 YRS)	1350101	0	1350101	2340204	0	2340204		
4.03.01.02 SAMPLE COLLECTION (30 YRS) 1ALT 4 O&M	19720783	0	19720783	34183110	0	34183110		
TOTAL SAMPLE COLLECTION (30 YRS)	19720783	0	19720783	34183110	0	34183110		

SUMMARY REPORT \$1 = \$1

05/31/2000

Arranged By: WBS / WBS / Building

1 1

· . .

	L	Escalated				
	Material	Labor	Total	Material	Labor	Total
	\$	\$	\$	\$	\$	\$
4.03.01 30 YRS 0&M						
4.03.01.03 SAMPLE ANALYSIS (30 YRS)						
1ALT 4 08M	7225367	0	7225367	12524123	0	12524123
TOTAL SAMPLE ANALYSIS (30 YRS)	7225367	0	7225367	12524123	0	12524123
TOTAL 30 YRS O&M	28296251	0	28296251	49047437	0	49047437
SUB - TOTAL	51970958	512973	52483931	75284065	567720	75851785
OVERHEAD	21807014	215243	22022257	31589194	238215	31827409
SUB - TOTAL	73777972	728216	74506188	106873259	805935	107679194
CONTINGENCY	18444493	182054	18626547	26718315	201484	26919799
GRAND TOTAL	92222465	910270	93132735	133591574	1007419	134598993

DETAIL REPORT Project Number: 35T08116 PGDP GWOU 1ALT 4

Project ESO Number.....NA Revision Number.....1 Last Update.....05/31/2000

> Sort Order 1. WBS - Level 9 2. Participant 3. Discipline

Approved by:

Project Estimator

Date

Estimating Manager

Date

AES Version 6.1

 Base Fiscal Year/Quarter: 99/4

 STANDARD VALUE:
 C:@ESTIMA™1@RRB2668A.val EXPIRES: 09/15/1999

 ESTIMATE FILE:
 C:@ESTIMA™1@ATL4@ALT4.Est 05/31/2000

 SCHEDULE FILE:
 1ALT4

 REPORT FILE:
 C:@ESTIMA™1@ATL4@ALT4DET.Out 05/31/2000

630808

Creation Date 09/07/1999 Revision Number 1				Estima	ating Job Number .	. 0116-20
Ject Estimator J LOLLAR/nle WBS	ate -31-00 9:	32a		Projec Buildi Plant Contra Fundir Source Discip Quanti Trace Expira	tt Engineer ing/Area Site ing Type g Type Site .	S MAUDLIN GWOU R GGeneral EXPENSE PADUCAH GEN CONDITIONS C.1.1 0
¶ ¶ ¶ Item ¶ ¶ Item ¶	MATL. ¶ / ¶ LABOR ¶	Quantity / Hours	Unit ¶ / ¶ Craft ¶	Unit Price / Rate	Total Material / Total Labor	Total Cost M + L
GENERAL CONDITIONS - VARIABLE COST						
1 -A CONSTRUCTION TRAILER RENTAL	Mati. Labor	9.00 0	MON	300.00 0.00	2,700 0	2,700
2 -A SHOWER/CHANGE TRAILER RENTAL	Matl. Labor	9.00 0	MON	500.00 0.00	4,500 0	4,500
. J -A PORT-O-LET (1 @ \$80 FOR 2 MONTHS)	Mati. Labor	9.00 0	MON	80.00 0.00	720 0	720
4 -A SAFETY & HEALTH OFFICER	Matl. Labor	9.00 1,575	MON X	0.00 40.00	0 63,000	63,000
5 -A TRAINING:SECURITY REQMNT, GET ETC (28 HOURS/PERSON)	Mati. Labor	8.00 224	EA ZZ	0.00 ¶ 25.00 ¶	0 5,600	5,600
1 **** SUBTOTAL **** 1 1 1 1 1	Mati. Labor	1,799			7,920 68,600	76,520

, ¹ •

1	9	•	1		٩	Total Cost					
SILL OF MATERIAL SUMMARY	Materi	al	l 	Labor	1	M+L					
TOTAL DIRECT	I [7,920	[[68,600 ¶	76,520					
SALES TAX	1	475	1		٩	475					
¶ SUBTOTAL	I	8,395	[[68,600 ¶	76,995					
TOTAL INDIRECT	20.00%	1,679	 	20.00%	13,720	15,399					
¶ TQTAL	 	10,074	(hrs.	1,799)	82,320 ¶	92,394					
¶ TOTAL (ESCALATED COST)		11,164	 =========		91,228 ¶	102,392					

<pre>WBS</pre>							Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator GEN CONDITIONS Quantity Take-Off By Trace Number C.1.2 O Expiration Date: 09/15/1999				
1			1	¶ MATL. ¶	Quantity	¶ Unit ¶	Unit Price	Total Material ¶	Total Cost ¶		
1	Ite	em	1 Description	¶ / ¶ ¶ LABOR ¶	/ Hours	¶ / ¶ ¶ Craft ¶	/ Rate	/ Total Labor ¶	M+L ¶		
¶•• ¶			*GENERAL CONDITIONS - FIXED COST*	۲ ۲					••••••		
i				ſ				i ¶	Í		
Í.	I	-A	CONSTRUCTION TRAILER MOB/DEMOB	¶ Matl.	1.00	LS	0.00	l o ¶	ſ		
1				¶ Labor	40	TD	22.60	904 ¶	904 1		
1	,	_	NOR (DENOR CURDORT LABOR	¶ ¶ Hati	1 00	16	0 00 0	¶	1		
14		- 4	HUB/DEHUB SUPPORT LABOR	¶ Labor	40	L	24.85	i − 1 1 994 ¶	994 ¶		
Í				1		-		l IIII	¶		
1	5	-A	SET-UP LABOR	¶ Matl.	1.00	LS	250.00	250 ¶	ſ		
1				¶ Labor	40	L	24.85	994 ¶	1,244 ¶		
٩				9				1	1		
14		-A	UTILITIES HOOK UP (ELEC, WATER,	¶ Mati.	1.00	LS	3,000.00	3,000 ¶	1		
,			SEWER)	1 Labor	U		0.00		3,000 ¶		
		- 4	SHOWER/CHANGE TRAILER MOB/DEMOB	¶ Mati.	1.00	LS.	0.00	1 1 1	•		
Ì		Ŷ	SHOWER/CHARGE TRATEER MOD/DEMOD	¶ Labor	40	TD	22.60	904 ¶	904 ¶		
i				1			•	· ۲	¶		
1 0	5	-A	MOB/DEMOB SUPPORT LABOR	¶ Matl.	1.00	LS	0.00 •	I 0 ¶	¶		
1				¶ Labor	40	L	24.85	994 ¶	994 ¶		
1				¶	1 00	10	250.00	¶ 1 250 @	1		
14		-A	SET-UP LABOR	¶ Matt.	1.00	13	230.00	200 ¶ 1 004 ¶	1 244 4		
1				¶	-0	-	24.05	774]	۰,۲++ ۱ ۹		
1	3	-A	UTILITIES HOOK-UP (ELEC, WATER,	¶ Matl.	1.00	LS	3,000.00	3,000 ¶	Í		
ſ			SEWER)	¶ Labor	0		0.00	0 9	3,000 ¶		
1				ſ				٩	1		
1	***1	*	SUBTOTAL ****	¶ Mati.				6,500 ¶	¶		
1				¶ Labor ¶	240			, 5,784 ¶	12,204 ¶		
1				1					 ¶		
19	,	-A	GENERAL SAFETY PLAN	¶ Mati.	1.00	LS	2,000.00	2,000	Í		
1				¶ Labor	0		0.00		2,000 ¶		
1				٩				1 1	9		
1	10	-A	QUALITY ASSURANCE PLAN	¶ Matl.	1.00	LS	1,000.00	1,000	¶		
1				¶ Labor	0		0.00		1,000 ¶		
1	11	- A	WASTE MANAGEMENT PLAN	¶ Mati.	1.00	LS	2.000.00	2.000			
Í	•••	~		1 Labor	0	-	0.00	1 0 1	2,000 ¶		
1				1				1	r •		
Ţ	12	-A	WORK PLAN	¶ Matl.	1.00	LS	3,000.00	¶ 3,000 ¶	٩ ا		
1				¶ Labor	0		0.00	9 0 9	3,000 ¶		
					3						

=======			*****	:=============		252223		**=================			æ
¶	1	٩	MATL.	Quantity	¶ (Unit	ſ	Unit Price	Total Material	Total Cost	ſ
¶ Item	¶ Description	9	1/		ſ	1	ſ	/	I / I	M + L	Ĩ
1	٩	9	LABOR 9	Hours	1	Craft	ſ	Rate	Total Labor	ſ	1
¶		·9							[l	ſ
1		1	ĺ					•	•	ſ	ſ
¶ 13 -A	HOISTING & RIGGING PLAN	1	Matl.	1.00) L:	S		1,000.00 •	1,000	1	ſ
ſ		1	Labor	C)			0.00 •		1,000	٩
1		1	ĺ						í (I	ſ
¶ 14 -A	SITE SPECIFIC SAFETY & HEALTH	IPLAN ¶	Matl.	1.00) L!	S		5,000.00	5,000		1
9		1	Labor	C	1			0.00	0 •	5,000	1
1		1									1
1 ****	SUBTOTAL ****	1	Matl.						14,000		1
1		1	Labor	Ĺ						14,000	1
1		1									1
1		ا]	1	1
										· · · · · · · · · · · · · · · · · · ·	
172222882 1	=======================================	:===\$====== 			====:	====== •			=======================================	::::::::::::::::::::::::::::::::::::::	:= •
1 E RILL OF		1	Mate	cial				Labr		า เอเลเ cosi f м.+.i	1
	MAILKIAL SUMMARI	 								9 Fi · L 8	ן ייי
∎ ∎ ד∩ד∆		l I			20 4	500 ¶			5 784	1 26 284	•
SALE	S TAX				1.2	230 ¶			5,104	1.230	ſ
¶						q.				· · · · · · · · · · · · · · · · · · ·	Í
¶SUBTOTA	L	ſ			21.3	730 ¶			5.784	1 27.514	Í
TOTA			20.00%		4.	346 9		20.00%	1,157	5,503	ſ
•••••						q.					4
TOTAL		Ī			26,0	076 ¶(hrs	. 240)	6,941	33,017	ſ
				===========				*=================			:=
TOTAL (ESCALATED COST)				28,8	898 ¶			7,692 4	36,	Ţ

PGDP GWOU 1ALT 4

WBS Cost Pr LL B/M Disc B/M Rece Cros Star Esti	t Cod ip of Attr ciplin Title eiving ss-Cun ndard	4.01.02.01 MONITORING WELLS e 6100 REMEDIAL ACTION ant FP51 FIXED PRICE SUBCONT Estimate . P Planning/Feasibility Estim ibute 1ALT 4 ne C CIVIL AND SITE e resistivity wells(I/S FENCE) g Site PADUCAH t Code Value File C:@ESTIMA™1@RRB2668A.val File C:@ESTIMA™1@ATL4@ALT4.Est 5	Build Plant Contr Fundin Source Disci Quant Trace Expire	Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator MONT WELLS Quantity Take-Off By Trace Number C.2.3 O Expiration Date: 09/15/1999				
9		1	¶ MATL.	Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost ¶
¶ I ¶	tem	Description	¶ / ¶ ¶ LABOR ¶	/ Hours	¶ / ¶ ¶ Craft ¶	/ Rate	/ Total Labor	¶ M+L ¶ ¶ ¶
¶ ¶		400 RESISTIVITY PROBE WELLS	¶ ¶			•••••••	[۹۹ ۱
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶		DRILL W/ISOLATION CASING, _ 3.5" OPEN HOLE, 120' DP. PROBE IS 1" DIA.	1 1 1 1 1 1					
9 9 9		*ACCESS ROAD (100'/WELL)*	1					
1 ¶ 1 ¶	- A	SITE PREP: CLEAR & GRUB LIGHT TREES, GRUB & RMV STUMPS (HCM-41)	¶ Matl. ¶ Labor	2 .3 8 143	ACRE OP	1,975.00 30.95	4,701 4,426	9,127
¶ 2 ¶	- A	GRADER RENTAL (HCM-17)	¶ Matl. ¶ Labor	21.00 0	DAYS	670.00 0.00	14,070 0	14,070 ¶
¶ 3 ¶	-A	OPERATING COST & OPERATOR (HCM-17)	¶ Matl. ¶ Labor	160.00 160	HRS OP	16.92 30.95	2,707 4,952	7,659
14 1	- A	FILTER FABRIC UNDERLAYMENT (ECHOS-8-107)	Matl. Labor	45,520.00 569	SY L	1.03 24.85	46,886 14,140	61,026
¶ 5 ¶	- A	GRAVEL BASE - 6" DP, SPREAD & COMPACT ((HCM-58)	Matl. Labor	45,520.00 228	SY OP	2.62 30.95	119,262 7,057	126,319
• • • •	**	SUBTOTAL ****	Matl. Labor	1,100			187,626 30,575	218,201
ץ 1 1		*INSTALL RESISTIVITY WELLS*	י 1 1				1 1 1	ין ד ק ק ק
f 1 1		* 190 WELLS*	1 1 1					
¶ ¶ 6 ¶	-A	MOBILIZATION (INCL. MOB. 1 RIG, SET-UP, DECON PAD, PPE, ETC)	¶ Matl. ¶ Labor	1.00 0 5	LS	150,000.00 0.00	1 1 1 50,000 1 0	ן ק 150,000 ק

630813

L I.

, **•**

#332222		=======================================			*********	**************		
٩		٩	¶ MATL. ¶	Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost
¶ Iten	n (Description	¶ / ¶	/	¶ / ¶	/	[/ •	M + L
ſ	•	٩ ٠	LABOR	Hours	¶ Craft ¶	Rate	Total Labor	í .
¶			¶					[¶
1			1	(7 050 00		[
¶7 -	A	RESISTIVITY WELL W/ 3.5" OPEN HOLE,	¶ Matl.	400.00	EA	7,250.00	2,900,000	¶
9		120' DP, 2 DRUMS/WELL SOLIDS,	Labor	U		0.00	0	2,900,000
1		SUU GAL/WELL PURGE WATER	1					
1			1					
1		INSTRUMENTATION DRODGE 16 DIA		(00.00	E 4	1 800 00 0		
10 - •	~	INSTRUMENTATION, PROBES-1" DIA.,	f Labor	400.00	EA	0.00		1 720 000 ¶
1 •		CORRECTIONS, AND FILL MATERIAL		Ŭ		0.00		· · · · · · · · · · · · · · · · · · ·
1 (****			∎ ¶ Matl.				3.770.000 (i i
ſ			Labor	0				3.770.000 ¶
Ś			¶	·				۱ دوری (۱ ۲
Ś			•				i e	i f
İ			•				i e	i i
ſ			1					l í
ſ			1				I (1 1
ſ			ſ			•	í (Í Í
ſ			ſ			•	i (í 1
ſ			1			•	I (I 1
٩			1			•	· ۱	I 1
ſ			1			•	I (I 1
ſ			1			•	I (I 1
1		•	1			·	•	I 1
1			1			•		٩
1		*DISPOSAL OF SOLIDS*	1			•	[· · · ·	٩. I
ſ			1					
1		(2 DRUMS/WELL, 50 DRUMS/LOAD, 1	1					1
9		LOAD/DAY)	1					
1			1	474 00		0.00		
19 .	A	2 LABORERS TO LOAD & HAUL DRUMMED	Mati.	134.00	HKS	24 85 1		
1		SOLIDS TO LANDFILL (NO TIPPING FEE)	Labor	208	L	24.05	0,000	
ן ∎ 10 .		55 GALLON DRIMS	1 ¶ Mati	380 00	FA	55 00 0	1 20 000 0	1 1 f (
1 10 ° €	~	JJ GALLON DROMS	¶ Hatt. ¶ Labor	0	5	0.00		י ר 20 000 €
1 ¶			¶ Labor	Ŭ		0.00		
. 11 .	A	FORK TRUCK RENTAL (BCM-21)	¶ Mati.	17.00	DAYS	175.00	2.975	
4			¶ Labor	0	-	0.00	¶ 0 1	2,975
1			ſ				ſ	· · ·
¶ 12 ·	A	OPERATING COST & OPERATOR (BCM-21)	¶ Matl.	136.00	HRS	9.20	1,251	1 1
1			¶ Labor	136	OP	30.95	4,209	5,460 9
ſ			٩				1 '	۹ ۹
¶ 13 ·	·A	FLATBED TRUCK RENTAL (BCM-20)	¶ Matl.	17.00	DAYS	138.00	1 2,346	۹ ۹
1			¶ Labor	0		0.00	¶ 0 '	2,346
1			٩				1	1 1
¶ 14	- A	OPERATING COST & DRIVER (BCM-20)	¶ Matl.	136.00	HRS	11.13	1 ,514	1 1
1			¶ Labor	136	TD	22.60	9 3,074	4,588
٩			٩				1	1 1
¶ 15 ·	- A	SAMPLE COLLECTION (1/WELL)	¶ Matl.	190.00	EA	25.00	4,750	9
1			Labor	380	X	25.00	9,500	14,250
1			1	700 00			1	
1 16	- A	LEVEL MODIFIED D PPE (SAMPLING ONLY)	¶ Matl.	380.00	HRS	8.00	3,040	
٩			Labor	0		0.00	N 0	3,040

#======================================			*********	**************	=============================	=======================================
1 1	¶ MATI	L.¶ Quantity	¶ Unit ¶	Unit Price ¶	Total Material	Total Cost ¶
<pre> `em ¶ Description</pre>	¶ /	/ 1 /	1 / 1	/ 1	/ 1	M+L ¶
. 1	¶ LAB	BOR ¶ Hours	¶ Craft ¶	Rate ¶	Total Labor ¶	¶
¶ ¶ ¶ **** SUBTOTAL **** ¶ ¶ ¶	¶ ¶ ¶ Mat ¶ Labo ¶ ¶	tl. por 920		••••••• 1 1 1 1 1 1	36,776 ¶ 23,443 ¶ 1	60,219 ¶ ¶
			1		1	Total Cost ¶
BILL OF MATERIAL SUMMARY	P	Material	1	Labo	r ¶	M+L ¶
TOTAL DIRECT SALES TAX	 	3,9 2	94,402 ¶ 39,664 ¶		54,018 ¶	4,048,420 ¶ 239,664 ¶
SUBTOTAL TOTAL INDIRECT	20.	4,2 0.00% 8	34,066 ¶ 46,813 ¶	20.00%	54,018 ¶ 10,804 ¶	4,288,084 ¶ 857,617 ¶
¶ TOTAL		5,0	80,879 ¶(hr:	s. 2,020)	64,822 ¶	5,145,701 ¶
TOTAL (ESCALATED COST)		5,6	30,698 ¶		71,837 ¶	5,702,535 ¶

ь I
WE Cc Pa Le B/ Di B/ Re Cr St Es	S st vel M A sci M T cei oss and tim	Code cipa of ttri plir itle ving -Cut ard ate	A 4.01.02.01 MONITORING WELLS A 6100 REMEDIAL ACTION ant FP51 FIXED PRICE SUBCONT Estimate . P Planning/Feasibility Estim bute ALT 1 A.L. C CIVIL AND SITE A.L. Inj. WELLS (I/S FENCE) J Site PADUCAH Code Value File C:@ESTIMAM1@RRB2668A.val File C:@ESTIMAM1@ATL4@ALT4.Est 5	(I/S FEN Wate -31-00	9:32a		Build Plant Contra Fundin Source Discij Quant Trace Expira	ing/Area Site acting Type g Type Site Site Site Site Site Site Site Sit	GWOU R G General EXPENSE PADUCAH MONT WELLS C.2.2 0 999
4			1	¶ MATL.	¶ Quantity	¶ Unit ¶	Unit Price	Total Material ¶	Total Cost ¶
¶ ¶	It	em	1 Description	¶ / ¶ LABOR	¶ / ¶ Hours	¶ / ¶ ¶ Craft ¶	/ Rate	/ ¶ Total Labor ¶	M+L ¶
٩.				¶				[¶	q
¶ ¶ ¶			*INJECTION WELLS TO FORM PTZ AT SECURITY FENCE*	¶ ¶ ¶					1
¶ ¶ ¶	1	-A	INJECTION WELL, 6" PVC CASING W/ 10" OPEN HOLE, 120' DP.(PER PHONE CALL 2-9-00)	¶ Matl. ¶ Labor ¶	250.00 0	EA	10,000.00 0.00	2,500,000 ¶ 0 ¶	2,500,000
· ¶ ¶	2	- A	ADDITIONAL PIPE, PUMPS AND EQUIPMENT	¶ Matl. ¶ Labor ¶	114.00 0	EA	35,000.00 0.00	3,990,000 ¶ 0 ¶	3,990,000 ¶
1 : 1	3	- A	ADDITIONAL MOB.DEMOB, AND STAFFING	¶ Matl. ¶ Labor	1.00 0	LS	27,000.00 0.00	27,000 ¶ 0 ¶	27,000
ר ¶ ¶			-PIZ MATERIAL OF CONSTRUCTION-	1 ¶ ¶				ר ר ק ר	1
¶ 4 ¶ ¶	4	- A	258,000 GAL. OF GUAR GUM	¶ Matl. ¶ Labor ¶	100,000.00 0	LBS	2.00	200,000 ¶ 0 ¶	200,000
• • •	5	- A	2,300,000 LBS. OF GRANULAR IRON (MASTERBUILDERS)	¶ Matl. ¶ Labor ¶	2,833.00 0	CY	2,000.00	5,666,000 ¶ 0 ¶	5,666,000 ¶
• • •	6	- A	PORTABLE 10 KW GENERATOR TO POWER OPERATIONS TRAILERS	¶ Mati. ¶ Labor ¶	2.00 0	EA	4,360.00 0.00	8,720 0	8,720
• • •	****	•	SUBTOTAL ****	¶ Matl. ¶ Labor ¶	0			12,391,720 0	12,391,720
¶ ¶			*DISPOSAL OF WATER*	• ¶					
¶ ¶ ¶			(1000 GAL/WELL)	9 ¶ ¶					
¶ ¶ ¶	7	- A	5000 GAL TANKER RENTAL FOR DEVELOPMENT WATER (RRBB-20-7)NO WATER USED PER 2-9-00 CONVERSATION	¶ Matl. ¶ Labor ¶	0.00 0		0.00		0
¶ 8 ¶	8	- A	OPERATING COST & DRIVER (RRBB-20-7)	¶ Matl. ¶ Labor ¶	0.00 1,152	TD	0.00	0 26,035	26,035
Í Í	9	-A	SAMPLE COLLECTION (27,000 GAL @ ONE/WELL)	¶ Matl. ¶ Labor	0.00 228	x	0.00	¶ 0 ¶ ¶ 5,700 ¶	5,700

""""	em	1 1 Description 1	MATL.	Quantity / Hours	¶ Unit ¶ ¶ / ¶ ¶ Craft ¶	Unit Price / Rate	Total Material / Total Labor	Total Cost ¶ M + L
¶ ¶ ¶ 10 ¶	-A	LEVEL MODIFIED D PPE (SAMPLE ONLY)	[Matl. [Labor	0.00 0		0.00 0.00	0	0
∥ ∦ ★★★ ľ	*	SUBTOTAL ****	Matl. Labor	1,380			0 31,735	31,735
		DISPOSAL OF SOLIDS						
 11	- 4	(4 DRUMS/WELL, 50 DRUMS/LUAD, 1 LOAD/DAY) 2 LABOREDS TO LOAD & HAUL DRUMMED	 Matl.	192-00	HRS	0.00		
	Ŷ	SOLIDS TO LANDFILL (NO TIPPING FEE)	Labor	384	L	24.85	9,542	9,542
12 	- A	55 GALLON DRUMS	[Matl. [Labor 	456.00 0	EA	55.00 ¶ 0.00 ¶	25,080	25,080
13 	- A	FORK TRUCK RENTAL (BCM-21)	Matl. Labor	10.00 0	DAYS	175.00 0.00	1,750 0	1,750
14 	- A	OPERATING COST & OPERATOR (BCM-21)	Matl. Labor	80.00 80	HRS OP	9.20 9 30.95 9	736 2,476	3,212
	- A	FLATBED TRUCK RENTAL (BCM-20)	Matl. Labor	10.00 0	DAYS	138.00 ¶ 0.00 ¶	1,380 I 0	1,380
16 	- A	OPERATING COST & DRIVER (BCM-20)	Matl. Labor 	80.00 80	HRS TD	11.13 ¶ 22.60 ¶	I 890 1,808 1	2,698
17 	- A	SAMPLE COLLECTION (1/WELL)	[Matl. Labor	114.00 228	EA X	25.00 25.00	2,850 5,700	8,550
18 	-A	LEVEL MODIFIED D PPE (SAMPLING ONLY)	Matl. Labor	228.00 0	MRS	8.00 0.00	1,824	1,824
*** 	*	SUBTOTAL ****	Matl. Labor	772			34,510 4 19,526 4 1	54,036
l 		•	 	***********		1	· · · · · · · · · · · · · · · · · · ·	1

1 1

•

99297782222988926788222 <i>92227722722</i> 23		£=====================================	
1	1	1 1	Total Cost
9 BILL OF MATERIAL SUMMARY	Material	Labor 9	M+L ¶
¶ TOTAL DIRECT ¶ SALES TAX	12,426,230 745,574	51,261	12,477,491 745,574
SUBTOTAL TOTAL INDIRECT	13,171,804 20.00% 2,634,361	51,261 20.00% 10,252	13,223,065 2,644,613
¶ TOTAL	15,806,165	1 (hrs. 2,152) 61,513 (15,867,678 ¶
TOTAL (ESCALATED COST)	17,516,604	¶ 68,170 ¶	17,584,774 ¶

WBS Cos P L L B/M Dis B/M Rec Cro Sta Est	A ci T ei ss nda ima	Code ipa of ttri plir itle ving -Cut ard	4.01.02.01 MONITORING WELLS e	(1/S FEN wate -31-00	CE) 9:32a		Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator MONT WELLS Quantity Take-Off By Trace Number C.2.1 0 Expiration Date: 09/15/1999			
=== ¶	==:		••••••••••••••••••••••••••••••••••••••		¶ Quantity	 ¶ Unit ¶	Unit Price	Total Material	Total Cost	
¶ ¶	Ite	em	¶ Description ¶	¶ / ° ¶ LABOR °	¶ / ¶ Hours	¶ /¶ ¶ Craft¶	/ Rate	/ Total Labor	M + L 9	
¶			*25 WELLS INSIDE FENCE*	9 1				[[¶	
¶ ¶			**18 ADDITIONAL PZT MONITORING	¶ ¶						
1			WELLS**	1					1	
1			(143 DATS PER VENDOR)	1 ¶					1 1	
¶ ¶ ¶			**(246 DAYS INCL. ADDITIONAL WELLS)**	1 1 1					i 9 i 9	
¶ ¶ ¶			*ACCESS ROAD (300'/WELL)*	¶ ¶ ¶						
1 ¶ 1 ¶		-A	SITE PREP: CLEAR & GRUB LIGHT TREES, GRUB & RMV STUMPS (HCM-41)	1 ¶ Matl. ¶ Labor ¶	1.63 98	ACRE OP	1,975.00 30.95	3,219 3,033	6,252	
1 2 1 1		- A	GRADER RENTAL (HCM-17)	¶ Mati. ¶ Labor ¶	9.00 0	DAYS	670.00 0.00	6,030 0	6,030	
4 3		-A	OPERATING COST & OPERATOR (HCM-17)	¶ Matl.	72.00	HRS	16.92	1,218	i i	
¶ •				¶ Labor ¶	72	OP	30.95	2,228] 3,446 ¶	
4		-A	FILTER FABRIC UNDERLAYMENT	¶ Matl.	31,218.00	SY	1.03	32,155	1 1	
1			(ECHOS-8-107)	¶ Labor	390	L	24.85	9,692	41,847 ¶	
1		-A	GRAVEL BASE - 6" DP, SPREAD & COMPACT	¶ Matl.	31,218.00	SY	2.62	81,791		
٩			(HCM-58)	¶ Labor	156	OP	30.95	4,828	86,619 ¶	
¶ ¶ ≠ਾ	r dr sk	,	SUBTOTAL ****	¶ ¶ Matl.				124,413	i 9 5 9	
٩.				Labor	716		•	19,781	144,194	
¶ •				¶ <				۲ ۵		
ſ				1				5	i i	
1			*INSTALL MONITORING WELLS*	¶ «				ſ		
ſ			(COST FROM VENDOR QUOTE)	۱ ۹				۲ ۲	r 1 f f	
٢				1				5	1 1	
¶ ¶ 4		- 4	MOBILIZATION (INCL. NOR 1 PIG	¶ ¶ Mati	1 00	LS	150.000.00	¶ 150.000	द १ द व	
1			SET-UP, DECON PAD, PPE, ETC)	Labor	0		0.00	1 0	150,000	

630819

.

•••===== { •	**32	1	¶ MATL. ¶	Quantity	¶ Unit ¶	Unit Price	Total Material	Total Cost
¶ Ite ¶	em	1 Description 1	¶ / ¶ ¶ LABOR ¶	/ ⁽ Hours ⁽	¶ / ¶ ¶ Craft ¶	Rate	/ / Total Labor	[M+L ~~~~ [
[[¶ ¶			•••••••••••••••••••••••••••••••••••••••	[[[
7	-A	MONITORING WELL W/ 2" SS TUBING, 6"	¶ Matl.	43.00	EA	14,500.00	623,500	r I 1
1		OPEN HOLE, 10' SS SCREEN, 100' DP, 4	¶ Labor	0		0.00	0	623,500
I		1000 GAL/WELL PURGE WATER	• ¶			•		, , , , , , , , , , , , , , , , , , ,
ſ			1					1
 ****	,	SUBTOTAL ****	1 ¶ Matl.				773.500	
I			¶ Labor	0		٩	i o	773,500
ſ			1			•		
1			1					1 1 1 1
ſ		*DISPOSAL OF WATER*	1					1
l T		(1000 GAL/WELL)	1 ſ					1 9 1 9
ſ		·····	ſ			٩	· · · · ·	i i
	- 4	5000 CAL TANKED DENTAL FOR	¶ ¶ Nati	143 00	DAVS	320 00 4	[
	Ŷ	DEVELOPMENT WATER (RRBB-20-7)	Labor	0	DAIS	0.00	i 43,780 -	45,760
I			1				•	
9	- 4	OPERATING COST & DRIVER (RRBB-20-7)	¶ Matl. ¶ Labor	1,144.00 1.144	HRS TD	20.70	23,681 •	۹ ۵۹ ۵۹ ۵۹ ۱
ſ			1			22100	[ا دور به ۱
10	-A	SAMPLE COLLECTION (27,000 GAL a	Matl.	25.00	EA	25.00	625	1
 		UNE/WELL)	l Labor	50	*	25.00	1,250	1,8/5 1
11	- A	LEVEL MODIFIED D PPE (SAMPLE ONLY)	¶ Matl.	34.00	HRS	8.00 4	272	Í .
[T			¶ Labor ¶	0		0.00	0	272
****	,	SUBTOTAL ****	¶ Matl.			•	70,338	, , , , , , , , , , , , , , , , , , , ,
I			Labor	1,194			27,104	97,442
l Í			1 ¶					
			ſ			•	[•	1
[*DISPOSAL OF SOLIDS*	1 ¢					
		(4 DRUMS/WELL, 50 DRUMS/LOAD, 1	ſ			•	, ,	r ·
		LOAD/DAY)	1					
12	-A	2 LABORERS TO LOAD & HAUL DRUMMED	¶ Matl.	24.00	HRS	0.00		1 1
l		SOLIDS TO LANDFILL (NO TIPPING FEE)	Labor	48	L	24.85	1,193	1,193
I I 13	-A	55 GALLON DRUMS	¶ ¶ Matl.	172.00	EA	55.00	1 9.460 (
			Labor	0		0.00	0	9,460
1 1/	- 1	FOR TRUCK DENTAL (PCN-21)	¶ ¶ Noti	4 00	DAYS	175 00 9		
• ••• [~	IONN INVERTIAL (DEM"21)	Labor	4.00		0.00	1 0 0	1 700
			1				1	9
15 1	-A	OPERATING COST & OPERATOR (BCM-21)	¶ Matl. ¶ Labor	32.00 32	HRS OP	9.20 ° 30.95 °	1 294 [·] 1 00 0 ·	¶ 1,284 (
ſ			1				1	¶ (,,204
16	-A	FLATBED TRUCK RENTAL (BCM-20)	¶ Matl.	4.00	DAYS	138.00	552	¶
1			l rador	12		0.00	1 U	י 252 ר

630820

¢

=::=====	===		====	========	===:	*********	===		====				*=
1	•	ſ	1	MATL.	¶ 4	Duantity	٩	Unit	ſ	Unit Price	[Total Material	Total Cost	ſ
חוי 🎙	1	Description	1	/ '	1	/	ſ	1	ſ	/	I / •	¶ M+L	ſ
1		ſ	1	LABOR	ſ	Hours	ſ	Craft	ſ	Rate	Total Labor	1	1
•••••			·¶										-¶
1 €17 -	۵	OPERATING COST & DRIVER (BCM-20)	1	Mati		32.00		HRS		11.13	I 356 (1	1
, ., . ,	^		Í	Labor		32		TD		22.60	723 9	1.079	Í
Í			Í							•	· · · · · · · · · · · · · · · · · · ·	ſ	1
1 8 -	A	SAMPLE COLLECTION (1/WELL)	ſ	Matl.		34.00	I	EA		25.00	850	ſ	ſ
1			ſ	Labor		68	2	x		25.00	1, 700 •	2,550	ſ
1	_		1									1	ſ
19 -/	A	LEVEL MODIFIED D. PPE (SAMPLING ONLY)) 1	Matl.		68.00		HRS		8.00	544		1
1				Labor		U				0.00	r u	Y 344 F	1
1 [****			ļ	Matl.							I 12 756 (1	1
ŕ			Ì	Labor		180					4,606	∎ ∎ 17.362	Ś
ſ			ſ							•	I (, , , , , , , , , , , , , , , , , , ,	Í
ſ			1							•	(1	ſ
*******	===		:322:	======			===:						==
1328889: (221		:222:				:=:;		:223	***************			==
1 ¶ Bill (OF	MATERIAL SUMMARY		Mate	eria	nt		I I		Labo	а г (1
[······	[٠ţ
T0	TAL	DIRECT				5	81	,007 ¶			51,491	1,032,498	ſ
SA SA	LES	TAX ¶					58	,860 ¶			•	58,860	ſ
[••••••••••••••••••••••••••••••••••••••						·····¶·				f	-1
SUBTO	TAL	·				1,0)39	,867 ¶			51,491	1,091,358	1
10	TAL	INDIRECT ¶		20.007	%	2	:07	,975 ¶		20.00%	10,298	218,271	1
•• ا		•				1 7	247	840 ¶(hrs	2 090)	61 789	1 300 620	-1 •
	===	 	:===:				:2=:		====				==
TOTAL	(E	SCALATED COST)				1,3	82	,873 ¶			68,475	1,451,348	ſ

WBS Cos Par Lev B/M Dis 8/M Rec Cro Sta Est	t (tic el At cip Ti eiv ss- nda	Code ipa of ttri olin itle ving Cut ard		Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator MONT WELLS Quantity Take-Off By Trace Number C.2.4 0 Expiration Date: 09/15/1999						
ſ		. ,	¶	¶ MATL.	¶ Quantity	¶ u	nit ¶	Unit Price	Total Material ¶	Total Cost ¶
1	Ite	:m '	9 Description		¶ /	¶ • •	/ ¶	/ Pata	l / ¶	M+L ¶
1 ¶			1 ••••••	¶	1 nours	1 ¢		Kale	¶	۱ ¶
Í				ſ					i i	1
¶ 1		-A	ANALYSIS OF SOLID WASTE SAMPLES	¶ Matl.	34.00	EA		400.00	i 13,600 ¶	1
1			(ASSUME 1 PER WELL)	¶ Labor	0			0.00	01	13,600 ¶
¶ € 2		- 4	ANALYSIS OF SOLID LASTE FOR IN LECTION	¶ Nati	114 00	F۵		400 00	ן ז ג ג ג ג ג ג ג	
1 C ¶		- 7	WELLS	¶ Labor	0	54		0.00	ר 5,500 ע 1 0 1	45.600 ¶
İ				1 1	-				• •	¶
¶ 3		-A	ANALYSIS OF SOLID WASTE FOR	¶ Matl.	190. 00	EA		400.00	76,000 ¶	٩
ſ			RESISTIVITY WELLS	¶ Labor	0			0.00	I 0¶	76,000 ¶
1				1	7/ 00			(00.00)	۹	1
14		- A	ANALYSIS OF LIQUID WASTE SAMPLES	¶ Matt.	34.00	EA		400.00	13,600 ¶	٦ ١٦ ٨٥٥ ٩
1			(ASSUME I PER WELL)	¶ Labo:	Ŭ			0.00	I 91 I 9	۲ 5,000 T
§ 5		- A	ANALYSIS OF LIQUID WASTE FOR	¶ Matl.	114.00	EA		400.00	45,600 ¶	· · ·
ſ			INJECTION WELLS	¶ Labor	0			0.00		45,6'
1				1				•	I 1	
¶ 6		-A	ANALYSIS OF LIQUID WASTE FOR	¶ Matl.	0.00			0.00	0 ¶	9
1			RESISTIVITY WELLS. NO WATER USED PER.	¶ Labor	0			0.00	0 ¶	0 9
1			2-9-UU CONVERSATION	1 «					1	1
1 ¶ *	***		SUBTOTAL ****	¶ Matl.					194,400 ¶	
İ				¶ Labor	0			•	0 1	194,400 ¶
1				1				•	1	٩
1				1				•	1 9	٩
1				٩					1	1
1		- 4	SMO OVERSIGHT (16 /9)	¶ ¶Ma+i	104 40	K¢		164 00 4	₹1.887 m	
•		~	SHO GAEKSTOUL (10:4%)	¶ Labor	0	κÐ		0,00		1 31.882 ¶
i				¶	•				, ° 1	1
	_									

ŧ.

:	======================================	***************************************		
١	1	1	1	Total Cost 🛛 ¶
¶ BILL OF MATERIAL SUMMARY	¶ Material	Labor	ſ	M + L ¶
¶ TOTAL DIRECT ¶ SALES TAX	226,282 13,577	1 1 1	۹ ۱ ۵	226,282 ¶ 13,577 ¶
¶ SUBTOTAL	239,859	1	0 ¶	239,859
¶ TOTAL	239,859	(hrs. 0)	0 ¶	239,859 ¶
¶ TOTAL (ESCALATED COST)	265,815	 { 	0 1	265,815 ¶

1 .

к. ^с

WBS Cost Part Leve B/M / Disc B/M / Rece Cross Stand Estin	Cod icip l of Attr ipli itl iving s-Cu dard mate	4.01.02.02 MONITORING WELLS e	(O/S FENC nate 5-31-00 9	E) :32a		Building/Area GWOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator MONT WELLS Quantity Take-Off By Trace Number C.2.5 0 Expiration Date: 09/15/1999			
 ¶	•	••••••••••••••••••••••••••••••••••••••	¶ MATL. ¶	euentity	¶ Unit (f Unit Price f	Fotal Material	Total Cost	
¶ 11 ¶	tem	9 Description	¶ / ¶ ¶ LABOR ¶	/ Hours	¶ / ° ¶ Craft °	/ Rate	/ Total Labor	M+L ¶ ¶	
¶ ¶		*15 WELLS OUTSIDE FENCE*	¶ ¶			•••••••••••••••••••••••••••••••••••••••		q	
1 1 1		(38 DAYS PER VENDOR)	9 9 9					9	
1 1 1 1		*ACCESS ROAD (300'/WELL)*	1 1 1 1						
¶ ¶ 1 ¶	-A	SITE PREP: CLEAR & GRUB LIGHT TREES, GRUB & RMV STUMPS (HCM-41)	¶ ¶ Matl. ¶ Labor	0.28 17	ACRE OP	1,975.00 30.95	553 526	1,079	
¶ 2 ¶	-A	GRADER RENTAL (HCM-17)	¶ Matl. ¶ Labor	3.00 0	DAYS	670.00 0.00	2,010 0	2,010	
1 13 1	- A	OPERATING COST & OPERATOR (HCM-17)	¶ Matl. ¶ Labor	24.00 24	HRS OP	16.92 30.95	406 743	1,149	
¶ 4 ¶ 4	- A	FILTER FABRIC UNDERLAYMENT (ECHOS-8-107)	¶ Matl. ¶ Labor	4,690.00 59	SY L	1.03 24.85	4,831 1,466	6,297	
¶ 5 ¶	-A	GRAVEL BASE - 6" DP, SPREAD & COMPACT (HCM-58)	¶ Matl. ¶ Labor	4,690.00 23	SY OP	2.62 30.95	12,288 712	13,000	
*** 	*	SUBTOTAL ****	¶ Matl. ¶ Labor ¶	123			20,088 3,447	23,535	
1		*INSTALL MONITORING WELLS*	1						
1 ¶		(COST FROM VENDOR QUOTE)	1					7	
4		(MOB. INCL. W/ WELLS I/S FENCE)	1						
1 96 9 9 9	- A	MONITORING WELL W/ 2" SS TUBING, 6" OPEN HOLE, 10' SS SCREEN, 100' DP, 4 DRUMS/WELL SOLIDS, 1000 GAL/WELL PURGE WATER	¶ Matl. ¶ Labor ¶ ¶ ¶	15.00 0	EA	14,500.00 0.00	217,500 0	217,500	

630824

•

PGDP GWOU 1ALT 4

e::=::: C	12251						F=====================================	
ı ¶	٩R	1 Description	¶ MAIL.	¶ wuantity	1 Unit 1 /	¶ Unit Price		
1		¶	I LABOR	¶ Hours	¶ Craft	¶ Rate	Total Labor	1
1			¶				۱ ۲	-
1 ***	**	SUBTOTAL ****	¶ Matl.			•	217,500	۹
ſ			¶ Labor	0		•	0	217,500 ¶
			1					
1			1					
ſ		*DISPOSAL OF WATER*	1 ¶				, ,	i i
ŀ	-		Í.				· ·	i 1
ſ		(1000 GAL/WELL)	ſ			•	1 4	I 1
-			1					9
. 7	- 4		¶ Mati	38 00	DAYS	320 00 0		
	- 4	DEVELOPMENT WATER (RRBB-20-7)	¶ Labor	0.00	DATS	0.00		12.160 ¶
			1				I	¶
8	-A	OPERATING COST & DRIVER (RRBB-20-7)	¶ Matl.	304.00	HRS	20.70	6,293	I I
1			¶ Labor	304	TD	22.60	6,870	13,163 ¶
			¶	7 00	EA	3E 00 4		¶ ¶
y I	- A	SAMPLE COLLECTION (5,000 GAL &	¶ Matt. ¶ Labor	14	X	25.00		1 1 525 ¶
ſ			¶	14	n	23.00		ا ۱ ۹
10	-A	LEVEL MODIFIED D PPE (SAMPLE ONLY)	¶ Matl.	14.00	HRS	8.00	112	i 1
I			¶ Labor	0		0.00	I 0 •	112 ¶
l 			1					1
***	*	SUBTOTAL ****	¶ Matl.	719			18,740	¶ 25.040 ¶
				518			7,220	25,960 ¶ I ¶
			1			•	i · ·	i f
			1			•	1 4	I ¶
		DISPOSAL OF SOLIDS	1			•		ſ
			1					
		(4 DRUMS/WELL, 50 DRUMS/LUAD, 1	1					1 1 1 4
			İ				, 1 (i i
11	-A	2 LABORERS TO LOAD & HAUL DRUMMED	¶ Matl.	8.00	HRS	0.00	1 0 4	ſ
		SOLIDS TO LANDFILL (NO TIPPING FEE)	¶ Labor	16	L	24.85	398	398 ¶
13			¶ ¶ Noti	28.00	EA	55 00 0		1 1
12	- A	JJ GALLUN DRUMS	¶ Labor	20.00	EA	0.00	י,540 [הי	1.540 ¶
			1				i i	· · · · · · · · · · · · · · · · · · ·
13	-A	FORK TRUCK RENTAL (BCM-21)	¶ Matl.	1.00	DAYS	175.00	175	1 1
			¶ Labor	0		0.00	0	175 ¶
		OPERATING GOOD & OPERATOR (DOM 24)	¶ ¶ Noti	9 00	HDC	0.00	1 7/ 1	
14	-4	UPERALING CUST & UPERALUK (BCM+21)	¶ Labor	8.00	OP	30.95	248	322 ¶
			1				1	1 4
15	-A	FLATBED TRUCK RENTAL (BCM-20)	¶ Matl.	1.00	DAYS	138.00	138	۹ ۹
			¶ Labor	0		0.00	0	138
• /		ODEDATING COOT & DOTIED (DEW CO)	1	B 00	HDC	11 17	1 00	
15	-A	UPERATING COST & DRIVER (BCM-20)	¶ matt. ¶labor	0.00 R	TD	22_60	1 89 1 181	ا 270 (
			¶	5		22.00	1	1 1
17	-A	SAMPLE COLLECTION (1/WELL)	¶ Matl.	7.00	EA	25.00	1 175	1
			¶ Labor	14	x	25.00	1 3 50	¶ 525 ¶
				17				

630825

L i

•

f f Item f Description f f	¶ MATL. 9 ¶ / 9 ¶ LABOR 9	¶ Quantity ¶ Unit ¶ / ¶ / ¶ Hours ¶ Craft	¶ Unit Price ¶ / t¶ Rate	Total Material / Total Labor	Total Cost ¶ M+L
18 - A LEVEL MODIFIED D PPE (SAMPLIN	¶ GONLY) ¶ Matl. ¶ Labor	14.00 HRS 0	8.00 0.00	112 0	112
**** SUBTOTAL **** 	¶ Matl. ¶ Labor ¶ ¶	46	•	2,303 1,177	¶ 3,480 ¶
BILL OF MATERIAL SUMMARY	Mate	erial	Labo		Total Cost ¶ M + L ¶
TOTAL DIRECT SALES TAX		258,631 15,518		11,844	270,475 ¶ 15,518 ¶
SUBTOTAL TOTAL INDIRECT	20.00	274,149 \$ 54,830	20.00%	11,844 2,369	285,993 ¶ 57,199 ¶
TOTAL		328,979	(hrs. 487)	14,213	343,192 ¶
TOTAL (ESCALATED COST)		364,579		15,751 (380,330 ¶

WBS	ORING WELLS FION #1 Dility Estim FE ENCE) 668A.val PALT4.Est 5	Building/Area GHOU Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator MONT WELLS Quantity Take-Off By Trace Number C.2.6 O Expiration Date: 09/15/1999						
1 1	292323222	¶ MATL. 9	Quantity	¶ Uni	===== t ¶	Unit Price	Total Material	Total Cost ¶
Item Description				¶ /	¶ 6+ €	/ Pate	/ /	1 M+L 1
1 -A ANALYSIS OF SOLID WASTE SAN (ASSUME 1 PER WELL)	PLES	¶ ¶ ¶ Mati. ¶ Labor ¶	7.00) EA		400.00 0.00	2,800	2,800
2 -A ANALYSIS OF LIQUID WASTE SA (ASSUME 1 PER WELL)	MPLES	¶ Matl. ¶ Labor ¶	7.00) EA		400.00 0.00	2,800	2,800
**** SUBTOTAL **** 1		¶ Mati. ¶ Labor ¶ ¶	C)			5,600	5,600
<pre>4 4 4 5 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>		¶ ¶ Matl. ¶ Labor ¶	5.60) K\$		164.00 0.00	918 0	918 918
\$8:1000000000000000000000000000000000000	22225222252				***==	3253325532633253	\$188572225522 <u>5</u> 222	******
9 9 BILL OF MATERIAL SUMMARY	1	Mate	erial		¶ ¶	Labo	זר	Total Cost M + L
TOTAL DIRECT SALES TAX	1			6,518 391	¶ ¶		0	6,518 391
SUBTOTAL	1			6,909	9		0	6,909
¶ TOTAL	•¶ ¶	•••••		6,909	¶ ¶(hr:	s. 0)	0	6,909
¶ TOTAL (ESCALATED COST)	<pre>successions= { </pre>			7,657	1		0	¶ 7,657 ¶

WBS 4.01.03 P&A WELLS Cost Code 6100 REMEDIAL ACTION Participant FP51 FIXED PRICE SUBCONT Level of Estimate . P Planning/Feasibility Estimate B/M Attribute 1Alt 4 Discipline C CIVIL AND SITE B/M Title P&A WELLS Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMAM1@RRB2668A.val Estimate File C:@ESTIMAM1@ATL4@ALT4.Est 5-31-00 9:32a							Plant Site Gwou Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator P&A EXIST WELLS Quantity Take-Off By Trace Number C.3.1 0 Expiration Date: 09/15/1999					
 1		==:		¶ MATL. ¶	Quantity	======================================	Unit Price ¶	Total Material	Total Cost ¶			
¶ 1 ¶	tem		Description	¶ / ¶ ¶ LABOR ¶	/ Hours	¶ / ¶ ¶ Craft¶	/ ¶ Rate ¶	/ ¶ Total Labor ¶	M+L ¶			
¶ ¶ ¶ ¶ ¶		·	*P&A WELLS (BASED ON VENDOR QUOTE)* (OVERHEAD & PROFIT INCLUDED BELOW AS INDIRECTS) (USE 1 WELL/DAY = 15 DAYS)	9 9 9 9 9 9 9 9			۹ ۹ ۹ ۹ ۲	1 1 1 1 1 1 1	1 1 1 1 1			
¶ ¶ 1 ¶	-,	A	P&A CEMENT-FILL AND SQUEEZE	¶ ¶ Matl. ¶ Labor ¶	15.00 0	WELL	¶ 40,833.00 ¶ 0.00 ¶	612,495 ¶ 0 ¶	4 612,495 4			
1			*DISPOSAL OF WATER*	1			1					
1			(USE 1000 GAL/WELL)	1			1		1 1			
1 12 1	- 4	A	5000 GAL TANKER RENTAL FOR DEVELOPMENT WATER (RRBB-20-7)	¶ Matl. ¶ Labor ¶	15.00 0	DAYS	320.00 ¶ 0.00 ¶	4,800 0	4,800			
• • • •	-#	A	OPERATING COST & DRIVER (RRBB-20-7)	¶ Matl. ¶ Labor	120.00 120	HRS TD	20.70 ¶ 22.60 ¶	2,484 2,712	5,196 ¶			
• • • •	- /	A	SAMPLE COLLECTION (15,000 GAL ລ ONE/WELL)	¶ Matl. ¶ Labor	15.00 30	EA X	25.00 ¶ 25.00 ¶	375 750	1,125			
¶ 5 ¶	- /	A	LEVEL MODIFIED D PPE (SAMPLE ONLY)	¶ Matl. ¶ Labor	30.00 0	HRS	8.00 0.00	240 0	240			
- - - - - - - -	**		SUBTOTAL ****	¶ Mati. ¶ Labor ¶ ¶	150			620,394 3,462	623,856 ¶			
1			*DISPOSAL OF SOLIDS*	1			1					
1 ¶ ¶			LOAD/DAY = 2 DAYS)	1 ¶ ¶			1					
¶6 ¶	-1	A	2 LABORERS TO LOAD & HAUL DRUMMED SOLIDS TO LANDFILL (NO TIPPING FEE)	¶ Matl. ¶ Labor	16.00 32	HRS L	0.00 24.85	0 ° I 795 °	¶ 795¶			

*** 1 1	*=:	ن ال	¶ Description		MATL.	¶ Quantity	¶ Unit ¶ /	¶ Unit Price ¶ /	¶ Total Material ¶ /	Total Cost M + L
1			1		LABOR	Hours	¶ Craf	t¶ Rate	¶ Total Labor	¶
Í					 1				1	¶ (
¶ 7		-A	55 GALLON DRUMS	9	Mati.	75.00	EA	55.00	1 4,125	ſ
1				1	Labor	0		0.00	¶ 0 '	¶ 4,125
¶ • •			FORK TOUCH DENTAL (DOM-21)		Mati	2 00	DAVE	175 00	1 750	
10 ¶		- 4	FORK TRUCK RENTAL (BCM-21)		Labor	2.00	DATS	0.00	1 350 °	1 1 350 (
İ				1		·			1	1 1 1
¶ 9		-A	OPERATING COST & OPERATOR (BC	M-21) ¶	Matl.	16.00	HRS	9.20	¶ 147	Í (
ſ				1	Labor	16	OP	30.95	¶ 495	¶ 642 9
1	•			1	M_A1	2 00	DAYC	170 00	1	1
¶ 10 €		-A	FLATBED TRUCK RENTAL (BCM-20)		Matt.	2.00	UATS	138.00	1 2/0 1	276
ł				ſ		U			i i	1
<u>i</u> 1'	1	-A	OPERATING COST & DRIVER (BCM-	20) ¶	Matl.	16.00	HRS	11.13	¶ 178 1	1 4
1				1	Labor	16	TD	22.60	¶ 362	¶ 540 •
1				1	Mad	45.00		25.00	1	1
¶ 14 €	2	-A	SAMPLE COLLECTION (1/WELL)		Mati.	15.00	EA Y	25.00	1 375 1	
ł				ſ		50	~	23100	1	1 1,125
1 3	3	-A	LEVEL MODIFIED D PPE (SAMPLE	ONLY) ¶	Matl.	30.00	HRS	8.00	1 240	¶ •
ſ				ſ	Labor	0		0.00	¶ 0 '	1 240 •
1				1					1	1
¶ "'		•	SUBTOTAL ****	1	Matt.	94			5,69 1	8.003
1 ¶				1	Labor	74			1 2,402 ⁻	¶ 6,075 (
İ				1					İ	, ,
z .			*****************************					***************************************	\$2225522222222222222222222222222222222	
 {								¶		¶ Total Cost
¶В:	ILL	. OF	MATERIAL SUMMARY		Mate	erial		¶ La	bor	¶ H+L 4
¶		• • • •	¶	•••••				¶		9
1	T	IATO	LDIRECT			6	26,085	1	5,864	1 631,949
۹ ۹	s 	SALE	5 IAX					1 4		י כסכ, <i>ז</i> נ •
¶ SL	JBT	OTAL				6	63,650	1	5,864	669,514
ſ	T	OTAI	LINDIRECT		20.007	، 1	32,730	1 20.00%	1,173	133,903
¶			••••••••					¶		¶
¶ TO	DTA	AL.	1			7	96,380	¶(hrs. 244) 7,037	¶ 803,417 ·
¶ 7(=== 0ta	-= <i>=</i> =: Al (1	ESCALATED COST)			8	82,559			¶ 890,357 °
					23======			- 4250222\$2220422224	#======================================	

1.11

==

MBS 4.01.05 P&A WELLS Building/Area Generating/Area Cost Code 6100 REMEDIAL ACTION Plant Site F Participant SC01 OFFSITE SUB #1 Contracting Type Generating Type									
1 1	I22928888888888888888888888888888888888	¶ MATL. ¶	Quantity	¶ Unit ¶	Unit Price	Total Material	Total C		
¶ Item ¶ Description ¶ ¶	n	¶ / ¶ ¶ LABOR ¶	/ Hours	¶ Craft ¶	Rate	/ ¶ Total Labor ¶	M +		
¶ ¶ 1 -A ANALYSIS OF SOLID WASTE ¶ (ASSUME 1 PER WELL) ¶	E SAMPLES	¶ ¶ Matl. ¶ Labor ¶	15.00 0	EA	400.00 0.00	6,000 0			
12 -A ANALYSIS OF LIQUID WAST (ASSUME 1 PER WELL)	TE SAMPLES	¶ Matl. ¶ Labor ¶	15.00 0	EA	400.00 0.00	6,000 0			
¶ **** SUBTOTAL **** ¶ ¶		¶ Matl. ¶ Labor ¶	0			12,000 ¶ 0 ¶			
¶ ¶ 3 -A SMO OVERSIGHT (16.4%) ¶ ¶		¶ ¶ Matl. ¶ Labor ¶	12.00 0	K S	164.00 0.00	1,968 ¶ 0 ¶			
	************	**************	2225522552	12222233453	======================================	***************************************	*********		
¶ ¶ BILL OF MATERIAL SUMMARY	1	Mater	ial	1	Lab	pr 1	Total (M +		
TOTAL DIRECT SALES TAX	¶ ¶			13,968 ¶ 838 ¶		0 ¶			
SUBTOTAL	¶ 			14,806 ¶		0 9			
TOTAL	, {		******	14,806 9(1	rs. 0)	0 9	2222222222		
¶ TOTAL (ESCALATED COST)	1			16,408 ¶		0 ¶			

==: ```````````````````````````````````	22222222222222222222222222222222222222			#==±±============	5782225782222273	22\$23223222323	***
1	1	•	ſ		ſ	Total Cost	ſ
¶ BILL OF MATERIAL SUMMARY	¶ Material		f f	Labor	۹ ۲	M + L	۹ ۲
TOTAL DIRECT SALES TAX	, 1 1	91,776 5,507	, , , ,		31,982 ¶ ¶	123,75 5,50	3 ¶ 7 ¶
SUBTOTAL TOTAL INDIRECT	20.00%	97,283 19,457	1 1 1	20.00%	31,982 ¶ 6,396 ¶	129,26 25,85	5 ¶ 5 ¶
¶ TOTAL	1 1 1	116,740	(hrs.	1,162)	38,378 ¶	155,11	3 ¶
TOTAL (ESCALATED COST)	 { de===##################################	129,373	[==================================		42,531 ¶	171,90	÷ ¶ ===

.

i (*

۰. ۱

ABS 4.02.01 DESIGN Building/Area Cost Code 9100 PROJECT MANAGEMENT Plant Site Plant Site Participant AE01 A-E, ENVIRONMENTAL Contracting Type Contracting Type .evel of Estimate P Planning/Feasibility Estimate Funding Type Estimate J.M Attribute 1ALT 4 Source Site Estimator Jiscipline X ENGINEERING Discipline Estimator I J/M Title AE RD REPORT Quantity Take-Off By I Receiving Site PADUCAH Trace Number X Cross-Cut Code Standard Value File C:@ESTIMA™1@RRB2668A.val Expiration Date: 09/15/199								1ALT 4 IND R G General EXPENSE PADUCAH INDIRECTS X.5.3 0
1 1	¶ MA	ATL. ¶	Quantity	¶ Unit	1	Unit Price	Total Material	Total Cost
I Item I Description	1 1 LA	ABOR ¶	/ Hours	¶ Craf	1 t ¶	/ Rate	/ Total Labor	M+L
<pre>**AE TITLE II DESIGN** 1 1 -A RD REPORT (TITLE II) (1 FTE > 1 </pre>	¶ ¶ ¶ (3 MOS) ¶ Ma ¶ La ¶	atl. abor	520.00 520	Hour T2		0.00	0 33,800	33,800
				*******	****			
¶ ¶ BILL OF MATERIAL SUMMARY		Materi	ial		1	Labo	or o	Total Cost M + L
TOTAL DIRECT				0	1 1		33,800	33,800
¶ ¶ TOTAL				0	¶ ¶(hrs	s. 520)	33,800	33,8
¶ TOTAL (ESCALATED COST)	 			0	 ¶		36,905	36,905

MSS										
1 1 1 Item 1 Description 1 1		¶ MATL. ¶ / ¶ LABOR	۹ ۹ ۹	Quantity / Hours	¶ ¶ ¶	Unit / Craft	۹ ۹ ۹	Unit Price / Rate	Total Material / Total Labor	Total Cost M + L
¶ ¶ 1 -C AE REVIEW RA WORK PLAN ¶ ¶		¶ Matl. ¶ Matl. ¶ Labor ¶		20.00 20		HOUR T2		0.00 65.00	0 1,300	1,300
	*******	\$222222 2		*=#2=#2=	*==	s=2=2;	===	************		***********
¶ BILL OF MATERIAL SUMMARY	1	Mat	eri	ial		۹ ۹		Labe	Dr .	Total Cost M + L
TOTAL DIRECT	1					0 ¶			1,300	1,300
1 TOTAL	, , ,				===	0 9	(hr:	s. 20)	1,300 •	1,300 ¶
1 'L (ESCALATED COST)	1					0 ¶			1,419	1,419 ¶

1 - 1-

WBS Cost Code Participant Level of Estima B/M Attribute . Discipline B/M Title Receiving Site Cross-Cut Code Standard Value	Sost Code										. 1ALT 4 IND . R . G General . EXPENSE . PADUCAH . INDIRECTS . X.5.1 0 1999
Estimate File .	C:@ESTIMAM1@ATL4	@ALT4.Est	5-31-	00 9	9:32a						
••••••••••••••••••••••••••••••••••••••	Description		1 MA 1 1 LA 1	ATL. 4	¶ Quant ¶ / ¶ Hou	ity rs	¶ Uni ¶ / ¶ Cra	t ¶ ft¶	Unit Price / Rate	¶ Total Material 9 ¶ / 9 ¶ Total Labor 9 ¶9	Total Cost M + L
¶ 1 -C AE WR ¶ ¶	ITE RD WORK PLAN		¶ Ma ¶ La ¶	atl. abor	4	0.00 40	Hour T2	2232	0.00 65.00	1 0 0 1 2,600 0 1	2,600
¶ ¶ BILL OF MATER	IAL SUMMARY	¶		Mate	erial	*****	:32222	 1 1	Lab	••••••••••••••••••••••••••••••••••••••	Total Cost M + L
1 TOTAL DIRE	ст	1					0	9		2,600	2,600
TOTAL		¶					0	-1 ¶(h	rs. 40)	2,600	2,600
¶ TOTAL (ESCALA	TED COST)	1					0	1		2,839	¶ 2,8 [°]

.

WBS 4.02.01 DESIGN Cost Code 9100 PROJECT MANAGEN ^ 'icipant R032 PAD ENG & TECH _ of Estimate P Planning/Feasibility B/M Attribute 1ALT 4 Discipline X ENGINEERING B/M Title CM RA WORK PLAN Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMA™1@RRB2668/ Estimate File C:@ESTIMA™1@ATL4@AL1	MENT SVCS ity Estimate A.val 14.Est 5-31-0	00 9:3	2a				Buildi Plant Contra Fundir Source Discip Quanti Trace Expira	ing/Area Site Site Type Site Site Site Site Site Site Site Sit	1ALT 4 IN R G General EXPENSE PADUCAH INDIRECTS X.5.6 0	D
Item Item Item Description I Item	9 MA1 9 / 9 LAE 9 9 Mat 9 Lat 9	IL. ¶ 90R ¶ SOR ¶	Quantity / Hours 40.00 40	1 1 1 	Unit / Craft OUR X	¶ ¶ ¶	Unit Price / Rate 0.00 64.00	Total Material / Total Labor 0 2,560	Total C M + 1	ost ¶ L ¶ ¶ 2,560 ¶
1 1 1 BILL OF MATERIAL SUMMARY 1 1 TOTAL DIRECT 1 1 TOTAL 1		Materi	al		¶ ¶ 0 ¶ ¶-	 (hrs	Labo	2,560 2,560	Total Ca M + 1	ost ¶ ¶ 2,560 ¶ 2,560 ¶
AL (ESCALATED COST)			********		0 ¶			2,795		2,795 ¶

•

WBS 4.02.01 DESIGN Cost Code 9100 PROJECT MANAGE Participant R032 PAD ENG & TEC Level of Estimate P Planning/Feasibi B/M Attribute 1ALT 4 Discipline X B/M Title CM REVIEW RD WORK I Receiving Site PADUCAH Cross-Cut Code Standard Value File C:@ESTIMA™1@RRB2664 Estimate File C:@ESTIMA™1@ATL4@AH	EMENT H SVCS lity Estima PLAN BA.val LT4.Est 5-	ate 31-00	9:3	32a				Build Plant Contro Fundir Source Discip Quant Trace Expire	ing/Area Site acting Type e Site e Site bline Estimator ity Take-Off By Number ation Date: 09/15/	. 1ALT 4 IND . R . G General . EXPENSE . PADUCAH . INDIRECTS . X.5.2 0 1999	20% i
1 1 1 1 1 1	1	MATL. / LABOR	¶ ¶ ¶	Quantity / Hours	¶ ¶ ¶	Unit / Craft	¶ ¶ ¶	Unit Price / Rate	Total Material / Total Labor	Total Cost M + L	== ¶ ¶
¶ ¶ 1 -A CM REVIEW RD WORK PLAN ¶ ¶	1 1 1	Matl. Labor		20.00 20)	HOUR MX	===	0.00	1 0 1,280	1,280 1	۲- ۲ ۲ ۲ ۲
		2242221	:221			 1	===	#=====================================		Total Cost	== ¶
BILL OF MATERIAL SUMMARY	 	Mat	eri	ial 		۹ ۹		Labo	or ([M + L [۹ ۹-
TOTAL DIRECT	[[0 ¶	·		1,280 •	1,280	¶ •¶
¶ TOTAL	[0 ¶	(hr	s. 20)	1,280	1,280	1
1 TOTAL (ESCALATED COST)						0 ¶			1,398	f 1,?	

t

WBS 4.02.01 DESIGN Cost Code 9100 PROJECT MANAGEMENT PP `ipant R032 PAD ENG & TECH SVCS L of Estimate P Planning/Feasibility Es B/M Attribute 1ALT 4 Discipline X ENGINEERING B/M Title CM REVIEW RD REPORT Receiving Site PADUCAH Cross-Cut Code Standard Value File Standard Value File C:@ESTIMA™1@ATL4@ALT4.Est	timate 5-31-00 9:32a	Buildi Plant Contra Fundin Source Discip Quanti Trace Expira	ing/Area Site acting Type g Type Site bline Estimator ity Take-Off By Number ation Date: 09/15/15	1ALT 4 IND R G General EXPENSE PADUCAH INDIRECTS X.5.4 0
1 1 1 Item 1 Description 1 1	¶ MATL. ¶ Quantity ¶ / ¶ / ¶ LABOR ¶ Hours	Unit ¶ Unit Price / ¶ / Craft ¶ Rate	Total Material ¶ / ¶ Total Labor ¶	Total Cost ¶ M + L ¶
T T T T T T T	¶ Matl. 80.00 ¶ Labor 80 ¶	HOUR 0.00 MX 64.00	0 ¶ 5,120 ¶	5,120 ¶ 1
¶ BILL OF MATERIAL SUMMARY ¶	Material	1 1 1 Labo	f f	Total Cost ¶ M + L ¶
TOTAL DIRECT		0 ¶	5,120 ¶	5,120 ¶
¶ TOTAL ¶		0 ¶(hrs. 80)	5,120 ¶	5,120 ¶
1 '. (ESCALATED COST) 1		0 1	5,590 (5,590 1

.

WBS	DN timate 5-31-00 9:32a	Buildi Plant Contra Fundir Source Discip Quanti Trace Expira	ng/Area Site Ing Type Site Site Site Site Area Site Ty Take-Off By Number Stion Date: 09/15/1	1ALT 4 IND R G General EXPENSE PADUCAH INDIRECTS U.6.1 0 999
1 1 1 Item 1 Description 1 1	¶ MATL.¶ Quantity¶ ¶ /¶ /¶ ¶ LABOR¶ Hours¶	Unit ¶ Unit Price / ¶ / Craft¶ Rate	Total Material ¶ / ¶ Total Labor ¶	Total Cost ¶ M + L ¶
¶ ¶ 1 -A AE TITLE III ENGINEERING (1/2 FTE X ¶ MOS) ¶	¶ 9¶Matl. 780.00 ¶Labor 780 ¶	HOUR 0.00 T3 55.00	0 42,900 4	42,900 ¶ 1
T T T T T T T T T T T T T T T T T T T	Material	¶ Labo	1 Dr q	Total Cost ¶ M + L ¶
TOTAL DIRECT		0 9	42,900 ¶	42,900 ¶
¶ TOTAL ¶		0 ¶(hrs. 780)	42,900 ¶	42,900 ¶
TOTAL (ESCALATED COST)		0 ¶	47,542 ¶	4 ^{- ***} ' ¶

.

<pre>WES</pre>	2 PROJECT INTEGRATION ROJECT MANAGEMENT AD ENG & TECH SVCS ning/Feasibility Estin OJECT ENGINEERING AL REPORTS H IMAM1@RRB2668A.val IMAM1@ATL4@ALT4.Est	mate 5-31-00 S	9:32a			Build Plant Contra Fundin Source Discip Quant Trace Expira	ing/Area Site acting Type of Type Site Site Site Site Site Site Site Sit	1ALT 4 IND R G General EXPENSE PADUCAH INDIRECTS U.6.3 0
1 1 1 ltem 1 Desc 1 1 1	cription	¶ MATL. ¶ / ¶ ¶ LABOR ¶	Quantity / Hours	¶ Unit ¶ / ¶ Crafi	¶ L ¶ t¶	Jnit Price / Rate	Total Material / Total Labor	Total Cost M + L
¶ ¶ 1 -A CM FINAL CONSTRUM ¶ ¶	CTION REPORTS	¶ ¶ Mati. ¶ Labor ¶	40.00 40	Hour Mr		0.00	0 2,160	2,160
						1222251222255	*****	
¶ ¶ BILL OF MATERIAL SUMMARY	1	Mate	erial		¶ ¶	Lab	or	Total Cost M + L
TOTAL DIRECT	ſ			0	¶ ¶		2,160	2,160
¶ TOTAL	¶			0	(hrs.	40)	2,160	2,160
AL (ESCALATED COST)	٩			0 (1		2,394	2,394

WBS	ate -31-00 9:32a	Building/Area Plant Site Contracting Type Funding Type Source Site Discipline Estimator Quantity Take-Off By Trace Number Expiration Date: 09/15/	. 1ALT 4 IND . R . G General . EXPENSE . PADUCAH . INDIRECTS . U.6.2 0 1999
1 1 I Item 1 Description 1 1	MATL. Quantity Unit / T / T / LABOR Hours Craft	¶ Unit Price ¶ Total Material ¶ / ¶ / t¶ Rate ¶ Total Labor	Total Cost ¶ M + L ¶
1 -A CM CONSTRUCTION OVERSIGHT (1 FTE X 9 MOS) 1	¶ Matl. 1,560.00 HOUR Labor 1,560 MR	¶ 0.00 ¶ 0 54.00 ¶ 84,240 ¶	84,240 ¶
1 I SUMMARY 1	Material	Labor	Total Cost ¶ M + L ¶
TOTAL DIRECT	0	84,240	84,240 ¶
TOTAL T	0 4	(hrs. 1,560) 84,240	¶ 84,240 ¶
TOTAL (ESCALATED COST)	0 •	93,356	1 93,3′

. .

WBS Cost Code icipant of Est B/M Attribut Discipline . B/M Title Receiving Si Cross-Cut Co Standard Val Estimate Fil	4.03.01.01 MAINTEN 7300 OPERATIONS AN FP51 FIXED PRICE S imate P Planning/Feasibi te 1ALT 4 MAINTENANCE - 30 Y te PADUCAH de ue File C:@ESTIMA™1@RRB2666 e C:@ESTIMA™1@ATL4@A	ANCE (30 Y. D MAINTENA UBCONT Lity Estim EARS BA.val LT4.Est 5:	RS) NCE ate -31-00 9	1 :32 a			Build Plant Contr Fundi Sourc Disci Quant Trace Expir	ing/Area Site acting Type ng Type e Site e Site bline Estimator ity Take-Off By Number ation Date: 09/15/	. 1ALT 4 O&M . R . G General . EXPENSE . PADUCAH . O&M . 0.7.1 0 1999
1 1	13535222222222222225252525222222		••••••••••••••••••••••••••••••••••••••	Quantity	•====== ¶ Uni	t 1	Unit Price	¶ Total Material	Total Cost
¶ Item ¶	Description		1 / 1	1	1 /	1	/	1 /	¶ M+L ¶
¶ ¶			LABOR ¶	Hours	¶ Cra	↑t ¶ 	Rate	Total Labor	٩ ٩
¶ МА ¶ IN	INTENANCE OF MONITORING WE		, 1 (
¶ YE	AR, EQUALS COMPLETE REPLACE	MENT	r					1 .	1 1
¶ RE	PLACEMENT EVERY 50 YEARS	•	1					1	1 1
¶ ¶ (9	O EXISTING AND 32 NEW WELLS	s = 122 x 4	5					1 1	
¶ \$1	4,500/EA = \$1,769,000X 2%=	5386)	r					Í ·	i i
1				70.00			75 780 00 0	1	1 1
¶ 30	YRS)	LS (2% X)	Labor	30.0L) 1KS)		0.00	1 1,061,400 ° 1 0 °	1.061.400
1		٩	I					1	1 1
*=*******	===124=================================	322593318:	********	********		8287 7			
						= 1			Total Cost
LL OF MA	TERIAL SUMMARY	I	Mate	rial		1	Lab	or	1 M+L 1
¶	IPECT	[· [1.	061.400	•¶		۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	¶¶
SALES T	AX				63,684	İ		Ŭ	¶ 63,684 ¶
۹						-1			1
¶ SUBTOTAL ¶ TOTAL I	NDIRECT		20.00%	1,	225.017	1	20.00%	0	1,125,084 225.017
¶						-¶			¶
¶ TOTAL				1,	350,101	¶(hr:	s. 0)	0	¶ 1,350,101 ¶
TOTAL (ESC	ALATED COST)	[2,	,340,204	1			1 2,340,204 1
************		*********				=====		===================================	

WBS				Building/Area 1ALT 4 O&M Plant Site R Contracting Type G General Funding Type EXPENSE Source Site PADUCAH Discipline Estimator O&M Quantity Take-Off By Trace Number 0.7.2 O Expiration Date: 09/15/1999		
¶ ¶ ¶ Item ¶ Description ¶ ¶	¶ MATL.¶ Quanti ¶ /¶ / ¶ LABOR¶ Hour	ty ¶ Unit ¶ ¶ /¶ s ¶ Craft¶	Unit Price / Rate	Total Material	Total Cost ¶ M+L ¶	
<pre>*MONITORING - 30 YEARS* -SAMPLE COLLECTION- (COST BY BECHTEL JACOBS) 1 -A QUARTERLY SAMPLING OF 122 WEI 488/YR X \$1,059/EA ***** SUBTOTAL ****</pre>	¶ ¶ ¶ ¶ ¶ Labor ¶ ¶ Matl. ¶ ¶	.00 YRS 0 0	516,792.00 0.00	15,503,760 0 15,503,760 0	15,503,760 15,503,760	
¶ ¶ BILL OF MATERIAL SUMMARY	Material	9	Labo)r	Total Cost ¶ M + L ¶	
TOTAL DIRECT SALES TAX		15,503,760 ¶ 930,226 ¶		0	15,503,760 930,226	
SUBTOTAL TOTAL INDIRECT	20.00%	16,433,986 ¶ 3,286,797 ¶	20.00%	0	16,433,986 3,286,797	
1 TOTAL		19,720,783 ¶(h)	rs. 0)	0 •	19,720,783	
¶ TOTAL (ESCALATED COST)		34,183,110 ¶		0 9	34,183,110	

WBS	NALYSIS (30 YRS) Building/Ard MAINTENANCE Plant Site Contracting ity Estimate Funding Type Source Site Discipline E ALYSIS) Quantity Tal Trace Number A.val Expiration D T4.Est 5-31-00 9:32a	Pa 1ALT 4 0&M R R Type S Subcontractor P EXPENSE PADUCAH Estimator 0&M Ke-Off By 0.7.3 Oate: 09/15/1999
	MATI & Quentity & Unit & Unit Price & Total	Naterial C Total Cost C
Item Description		/ ¶ M+L ¶
1 1	<pre>¶ LABOR ¶ Hours ¶ Craft ¶ Rate ¶ Tot</pre>	tal Labor ¶ ¶
LAB ANALYSIS - 30 YEARS 1 -A QUARTERLY ANALYSIS OF 122 WEI 488/YR X \$400/EA **** SUBTOTAL **** 2 -A SMO OVERSIGHT (16.4%)	LS = Matl. 30.00 YRS 195,200.00 Labor 0 0.00 Matl. Labor 0 Matl. 5,856.00 K\$ 164.00 Labor 0 0.00	5,856,000 0 5,856,000 5,856,000 0 5,856,000 960,384 0 960,384

BILL OF MATERIAL SUMMARY	۲ Material ۹ Labor	¶ Total Cost ¶ ¶ M + L ¶
TOTAL DIRECT SALES TAX	6,816,384 ¶ 408,983 ¶	0 ¶ 6,816,384 ¶ 408,983 ¶
¶ SUBTOTAL	7,225,367 ¶	0 ¶ 7,225,367
¶ TOTAL	7,225,367 ¶(hrs. 0)	0 ¶ 7,225,367 ¶
¶ TOTAL (ESCALATED COST)	12,524,123 ¶	0¶ 12,524,123¶

,

L i

4 × 1 1

Disciplines

C: CIVIL AND SITE O: OTHER

- U: PROJECT ENGINEERING
- X: ENGINEERING

Total Labor Hours: 13,294

¹⁵ 1

COST SUMMARY

			9222###222222222#######################			.====
1	1		9	٩	Total Cost	: 1
¶ COST SUMMARY ¶	۹ ۹	Material	¶Labor ¶	۹ ۲۹	M + L	¶ • • • • •
¶ Line Item Cost	Í	42,034,863	¶	456,804 ¶	42,491,	,667 ¶
¶ Total Sales Tax	1	2,522,092	1	1	2,522,	,092 ¶
¶ SUBTOTAL	1	44,556,955	1 1	456,804 ¶	45,013,	,759 ¶
¶ Total Indirect	1	7,414,003	1	56,169 ¶	7,470,	172
¶ SUBTOTAL	1	51,970,958	1	512,973 ¶	52,483,	,931 ¶
¶ Overhead	1	21,807,014	1	215,243 ¶	22,022,	,257
¶ SUBTOTAL	1	73,777,972	1	728,216 ¶	74,506,	,188 ¶
Contingency	¶ 	18,444,493	¶ ¶	182,054 ¶	18,626,	,547 ¶
¶ SUBTOTAL	Í	92,222,465	1	910,270 ¶	93,132,	,7
¶ Market Adjustment	¶ 		¶ 【	1		
¶ TOTAL	9		1	٩	93,132,	, 73 5 ¶
	127287222227 2 321		8#3=2=3#################################	=======================	***********	/23222
TOTAL (ESCALATED DOLLARS)	• • • • • • • • • • • • • • • • • • •	133.591.574	*==****===============================	1.007 419 4	======================================	·===== 003 •
f including overhead & contingency	1		¶	1,001,417 1	134,370	9
		=======================================		=======================================	========================	;=====

APPENDIX C8

THIS PAGE INTENTIONALLY LEFT BLANK

Summary of Previous Remedial Investigation Fate and Transport Modeling

The purposes of this task is to summarize all previous remedial investigation (RI) fate and transport models at the Paducah Gaseous Diffusion Plant (PGDP), to tabulate all available hydrogeologic and chemical-specific parameters, and to develop a consistent set of parameters and values, or methods for arriving at the appropriate parameters and values, to recommend for use in future fate and transport modeling tasks at PGDP. The parameters will be those reported in the feasibility study (FS) data summary report and the RI reports summarized therein. Specific values and parameters reported in modeling reports have been tabulated, along with ranges of values reported in standard references. Several RI reports did not list specific values. For example, it was common to report soil–water partition coefficient (K_d) values used in estimating the travel time in the regional gravel aquifer (RGA) from directly beneath the contaminant source to a receptor point without listing the K_d values used in modeling the vertical migration of the contaminant to the water table.

FATE AND TRANSPORT MODELING

Previous modeling efforts are briefly summarized below. They are organized according to the model used. A more detailed summary is available in the data summary report (DOE 2000), and the specific constituents modeled at each site are listed in the spreadsheets accompanying this report.

<u>Summers Model</u>: The Summers model was used to predict contaminant transport to receptor points for Waste Area Groupings (WAGs) 1 and 7, Solid Waste Management Units (SWMUs) 8, 38, 100, 131, 132, 133, 134, and 136. Model parameters are listed in the Summers portion of the database included on the accompanying CD. The Summers Transport sheet presents the values of the hydrogeologic parameters used in the modeling effort, along with the hydrologic unit modeled, the document and page number from which each value was extracted, the value of the parameter, the source of the parameter quoted in the document, and a source code as listed in the Notes sheet. This format is followed for presenting the data for each model used in fate and transport modeling. The Summers Const sheet lists the contaminants modeled, including many for which no distribution coefficients are available. The RI report (DOE 1996a) listed a value or a range of values of K_d for each constituent, but there was not a single value used at a particular location in a particular hydrologic unit, so a value could not be determined from the information in the RI. The only values listed are those for which it is clear that a specific value was used in a specific hydrologic unit at a known modeling site.

<u>MEPAS Modeling</u>: The Multimedia Environmental Pollutant Assessment System (MEPAS) model was the most widely used fate and transport model at PGDP and is expected to be used for any future modeling. The FS states that "Since 1997, such screening-level modeling has been consolidated to use of the MEPAS code at the site for consistency. It was selected as the best model to use (1) to simulate both partially saturated and saturated conditions; (2) to simulate degrading source terms; (3) to simulate several exposure pathways other than groundwater; (4) to perform risk calculations; and (5) for its ease of use" (DOE 2001). MEPAS has been applied at the following locations:

- WAG 27, SWMUs 1, 91, and 196 and area C-720
- WAG 28, SWMUs 99, 93, and 194 and Area of Concern 204
- WAG 3, SWMUs 4, 5, and 6
- WAG 6
- WAG 22, SWMU 2

Values and parameters used in the MEPAS modeling at PGDP are listed in the MEPAS portion of the database included on the accompanying CD in the same format described above for the Summers model.

SESOIL and AT123D Modeling: The Seasonal Soil Compartment (SESOIL) model was applied at

- WAG 22, SWMUs 7 and 30; and
- WAG 27, SWMU 91 as part of the Lasagna process assessment.

SESOIL is used in conjunction with the Analytical Transient 1-, 2-, 3-Dimensional (AT123D) model in a modeling system from RISKPRO[®]. SESOIL is used to simulate the migration of contaminants from the source(s) to the water table. An output file from SESOIL is then input into AT123D to predict the concentration of the contaminant in the groundwater directly beneath the source and to simulate the horizontal migration to receptor locations. The SESOIL portion of the database included on the accompanying CD contains the hydrogeologic parameters used in these modeling efforts, along with the K_d and the organic carbon – water partition coefficient (K_{oc}) values used in the WAG 22 modeling. The properties of the RGA used in the SWMU 91 modeling are presented in the AT123D portion of the database included on the accompanying CD, but the values used in the WAG 22 modeling were not included in the RI. K_d and K_{oc} values were also not available for either site

<u>RESRAD Modeling</u>: The RESRAD model is designed for radioisotopes and was used to model radioisotope migration at SWMU 2 in WAG 22. Hydrogeologic properties and distribution coefficients used in the modeling are presented in the RESRAD portion of the database included on the accompanying CD.

It should be noted that all <u>available</u> values of parameters used in fate and transport modeling have been included in this compilation. The result of this is that some modeling sites will be unequally represented in the statistical summary, particularly for K_d values. As an example the MEPAS modeling of SWMU 2 of WAG 22 included six layers in the model of vertical migration of contaminants to the water table with varying K_d values, whereas the model for WAG 6 included only topsoil, the Upper Continental Recharge System (UCRS), and the RGA.

<u>MODFLOW Modeling</u>: The regional ground-water flow model developed for the DOE in 1994 and revised in 1996 (DOE 1994, DOE 1996b) and 1997 (DOE 1997a, 1997b) and 1998 (DOE 1998a), covers nearly 100 km² (38.60mi²) and simulates ground-water flow on a regional scale in the principal water-bearing units beneath the site. Previous revisions to the model (DOE 1997a) included refinements to better characterize geologic data, specifically the location of the Porters Creek Clay Terrace, the thickness of the Eocene Sands, and the extent of the finer grained material located in the vicinity of the C-746-K Sanitary Landfill. The regional model simulates ground water, sand, and gravel lenses within the UCRS (HU2), the RGA (HU 4/HU 5), and the distribution of heterogeneous sediments comprising the Upper Continental Deposits (HU 2). MODFLOW, the United States Geological Survey's three-dimensional modular ground-water flow program, was used to perform the simulations with the regional model (McDonald and Harbaugh 1988).

The boundaries of the regional model coincide with natural boundaries, where possible, and minimize the influence of model boundaries on simulation results at the site. The model domain extends well beyond the PGDP to approximately 7.82 km (4.86 miles) from the east to the west boundaries and 11.00 km (6.86 miles) from the north to south boundaries. The finite-difference grid consists of 190 columns, 167 rows, and four layers for a total of 126,920 grid cells or nodes. The model grid uses a uniform 15.25 m (50 ft) areal grid spacing in the vicinity of the plant to provide increased computational detail in the area of interest and grades to larger grid spacing at greater distances from the site. A complete description of the conceptual model, overall model construction and calibrations can be found in the 1997 modeling report (DOE 1997a, DOE 1997b, and DOE 1998a). Final calibrated hydraulic parameters are presented in the MODFLOW portion of the database included on the accompanying CD.

In 1998 a transport model was constructed using the MODFLOW numerical model (DOE 1998a). Since that time, several refinements have been made. The refinements include changes in the transport code utilized, as well as transport parameters. Transport parameters for the primary contaminants that comprise the major offsite plumes were adjusted to approximate the current configurations of the plumes. The major transport parameters are the soil/water partitioning coefficient (K_d), and the decay constant (λ). In order to simulate sufficient transport of the plume to approximate the current observed migration of the TCE plume, TCE K_d values were used that ranged from 0.025 to 0.05 L/kg. Predictive transport simulations were conducted using TCE K_d-value of 0.05 L/kg. A TCE half-life of 26.6 years was used, and was based on the degradation rate for TCE that was presented in *Evaluation of Natural Attenuation Processes for Trichloroethylene and Technetium-99 in the Northeast and Northwest Plumes at the Paducah Gaseous Diffusion Plant Paducah, Kentucky* (LMES 1997). The regional model is being used and also, will be used in the future for supporting feasibility studies and various remedial designs.

Transport Parameters

The data from the spreadsheets were imported into ACCESS[™] so that selected data sets could easily be created. From the ACCESS[™] database, EXCEL[™] spreadsheets were generated for all values of the following hydrogeologic parameters:

- bulk density;
- percent sand, silt, and clay;
- disconnectedness index;
- effective porosity;
- percent Fe + Al;
- field capacity;
- percent organic carbon;
- horizontal hydraulic conductivity in the RGA and terrace sand and gravel (TSG);
- intrinsic permeability;
- pH; and
- total porosity.

For each parameter the average, minimum, and maximum values were tabulated for all values, and for topsoil, the UCRS (HU1, HU2, HU3), the RGA, and the TSG. Average values were computed to best represent the particular parameter. For example, the percent organic carbon is an arithmetic average, while for the average of intrinsic permeability, the following formula was used:

$$k_{avg} = \frac{\sum H_i}{\sum (H_i * k_i)},$$

where k_i is the permeability and H_i is the thickness of the model layer to which that permeability was assigned. The results are summarized in the Table C8.1.

Partition Coefficients

 K_d and K_{oc} values for 50 commonly modeled constituents at PGDP were exported from ACCESSTM database to spreadsheets. All modeled inorganics and several organic constituents were included. Included in these data are values of K_{oc} computed from the following equation:

$$K_d = foc * K_{oc}$$

when the fraction of organic carbon (foc) was known and K_d was given for an organic contaminant but K_{oc} was not.

630850

00-001(doc)/082401

C8-5

Parameter	Hydrologic Unit	Average	Minimum	Maximum
Bulk Density (g/cc)	All	1.74	1.46	2.25
	UCRS	1.75	1.46	2.25
	RGA	1.71	1.67	2.16
Measured Values	UCRS	1.76	1.66	1.82
Measured Values	RGA	1.74	1.67	1.77
Recommended	Site-specific measurements o	r use 1.75.		
% Sand	HU1	20.5	8.0	33.0
	HU2	67.0	67.0	67.0
	HU3	8.7	8.0	10.0
	HU12	21.5	5.0	38.0
	HU123	41.3	17.0	72.0
	RGA	78.8	74.0	96.0
	UCRS	24.2	5.0	72.0
% Silt	HU1	44.5	37.0	52.0
	HU2	19.0	19.0	19.0
	HU3	35.3	30.0	38.0
	HU12	46.0	27.0	65.0
	HU123	40.3	16.0	63.0
	RGA	13.3	3.0	17.0
	UCRS	39.1	16.0	65.0
% Clay	HU1	35.0	30.0	40.0
-	HU2	14.0	14.0	14.0
	HU3	56.0	54.0	60.0
	HU12	32.5	30.0	35.0
	HU123	18.5	12.0	21.0
	RGA	8.0	1.0	10.0
	UCRS	36.7	12.0	60.0
Recommended	Site-specific measurements of	r use averages for	HUI, HU2, HU3, I	RGA, and UCRS as needed.
Effective Porosity	UCRS	23.2	13.0	35.0
	RGA	28.9	25.0	30.0
Recommended	All data were estimate. Const	ult reference on so	il type or use 25 for	UCRS and 30 for RGA.
%Fe+Al	Topsoil	3.88	2.40	4.00
	UCRS	3.75	2.00	4.20
	RGA	2.75	2.00	3.00
Recommended	Values were all from a few re	ports. Make site-s	pecific measuremen	its or use the averages.
Field Capacity (%)	UCRS	23.8	9.0	42.0
	HU1	26.20	24	28
	HU2	14.67	9	35
	HU3	27.24	10	42
Recommended	These are estimates. Use refe	rences on soil type	es or the averages.	
Organic Carbon (%)	Topsoil	0.054	0.050	0.100
	UCRS	0.094	0.050	0.260
	RGA	0.034	0.020	0.200
	HU1	0.14	0.09	0.26
	HU2	0.10	0.07	0.20
	HU3	0.07	0.05	0.20
Recommended	Site-specific measurements. (Otherwise, use aver	rages.	
Horizontal Hyd	RGA	0.306	0.026	0.529
Cond (cm/s)	TSG	0.0010	0.0010	0.0010
0.53 was used in seve	ral MEPAS modeling efforts to	estimate a "Darcy	" velocity.	
Recommended	Use sitewide groundwater me	odel to estimate ho	rizontal velocity for	r migration in RGA.

Table C8.1. Transport parameter tabulation results

Parameter	Hydrologic Unit	Average	Minimum	Maximum	
Intrinsic	UCRS	8.54E-12	3.40E-13	3.10E-08	
Permeability (cm ²)	RGA	8.90E-12	7.13E-12	1.25E-10	
[Vertical]	TSG	5.39E-12	3.77E-12	6.04E-12	
	HU1	3.51E-12	1.00E-12	1.30E-09	
	HU2	6.08E-10	1.25E-10	3.10E-08	
	HU3	3.35E-12	3.40E-13	3.78E-10	
	Eight measurements consiste	ed of permeameter,	slug, and pump tes	ts.	
Recommended	Use averages for layers as ne	eded.			
pH	Topsoil	5.70	5.00	8.25	
Measured Values	Topsoil	7.26	5.50	8.25	
Measured Values	UCRS	6.14	5.80	6.76	
Measured Values	RGA	6.39	6.20	6.60	
Recommended	Take site-specific measureme	nts. If necessary, u	se 7.2 in topsoil and	d 6.2 elsewhere.	
Porosity (%)	UCRS	38.8	15.0	48.0	
	RGA	36.6	30.0	48.0	
Measured Values	UCRS	33.5	30.0	37.2	
Measured Values	RGA	37	37	37	
Recommended	Most values were estimated. Make site-specific measurements, infer from bulk density, or use				
	34 in UCRS and 37 in RGA.			· · · · · · · · · · · · · · · · · · ·	

Fable C8.1. Transpor	t parameter tabulation	results (continued)
-----------------------------	------------------------	---------------------

It should be noted that values of K_{oc} computed from K_d and foc often do not agree with tabulated values of K_{oc} . The results of this summary are presented in Tables C8.2 and C8.3. In general, all modeling reports cited K_d and K_{oc} values from accepted references and the MEPAS database. Only specific values were included in this compilation. If a value was given for sand and another for loam or clay, those values were not included. If a range of values was given, that range was not included. Only specific values clearly linked to a specific modeling site and an identifiable model layer are included in this tabulation.

From this tabulation and several references on K_d values, a set of recommended K_d values to be used in the UCRS, RGA, and sand and loam, if several layers are used in the vertical model, are listed in Tables C8.4 and C8.5.

DISCUSSION

K_d Values for Inorganics

As can be seen from the tabulation of K_d values, a wide range of values has been used for specific contaminants. Examples are nickel, for which K_d values used at PGDP have ranged from 1.2 to 650; plutonium, for which values have ranged from 0 to 1200; and even technetium for which values have ranged from 0.1 to 20. While these values are found within the ranges of values in the literature (except for $K_d = 0$), the use of these K_d values can lead to widely varying results in the predictions of fate and transport modeling. This fact is well recognized by the regulatory community. The report *Understanding the Variation in Partition Coefficient*, K_d Values (EPA 1999) discusses this issue as follows:

"It is important to note that soil scientists and geochemists knowledgeable of sorption processes in natural environments have long known that generic or default partition coefficient values found in the literature can result in significant errors when used to predict the absolute impacts of contaminant migration or site-remediation options. Accordingly, one of the major recommendations of this report is

that for site-specific calculations, partition coefficient values measured at site-specific conditions are absolutely essential."

And as follows:

"Ideally, site-specific K_d values would be available for the range of aqueous and geological conditions in the system to be modeled. Values for K_d not only vary greatly between contaminants, but also vary as a function of aqueous and solid phase chemistry (Delegard and Barney 1983; Kaplan and Sern 1995; Kaplan et al. 1994c). For example, uranium K_d values can vary over 6 orders of magnitude depending on the composition of the aqueous and solid phase chemistry."

To compensate for the lack of knowledge on site-specific K_d values, modelers often adopt a "conservative" approach, using K_d values near the lower end of the literature values. While this approach has some merit in not ruling out contaminants that may cause off-site risk, it does not yield an accurate prediction of fate and transport and may underestimate the problem of cleanup of the site. The U.S. Environmental Protection Agency (EPA) recognizes this conundrum. It states that

"To address some of this concern when using generic or default K_d values for screening calculations, modelers often incorporate a degree of conservatism into their calculations by selecting limiting or bounding conservative K_d values. For example, the most conservative estimate from an off-site risk perspective of contaminant migration through the subsurface natural soil is to assume that the soil has little or no ability to slow (retard) contaminant movement (i.e., a minimum bounding K_d value). Consequently, the contaminant would migrate in the direction and, for a K_d value of 0.0, travel at the rate of water. Such an assumption may in fact be appropriate for certain contaminants such as tritium, but may be too conservative for other contaminants, such as thorium or plutonium, which react strongly with soils and may migrate 10^2 to 10^6 times more slowly than the water. On the other hand, to estimate the maximum risks (and costs) associated with on-site remediation options, the bounding K_d value for a contaminant will be a maximum value (i.e., maximize retardation)."

It is well recognized that K_d values for a single constituent may vary significantly depending on the aqueous- and solid-phase chemistry of the soil/aquifer through which the contaminant is migrating. EPA has created a series of lookup tables for selecting K_d values by correlating reported K_d values with a set of geochemical parameters measured at the site. (EPA 1990) The constituents for which lookup tables are currently available are cadmium, cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium, and uranium. Even with these results, the lookup tables contain a wide range of K_d values for a single constituent.

Other approaches are geochemical modeling to estimate K_d values for a particular site and site-specific K_d measurements. While modeling does give insight into appropriate values, site-specific measurements implicitly take nearly all processes into account and should give the most reliable values. While the conservative approach (using low K_d values) is valid for the initial screening process, to keep under consideration constituents that might cause off-site risk, more accurate predictions of the fate and transport of the remaining candidate constituents are necessary to make decisions on appropriate remediation efforts.

Properties of Organics

To compute the K_d values appropriate for organic constituents, the normal approach is to multiply the foc in the soil by the K_{oc} . As reported by EPA (1996), this approach is appropriate for foc values of .001 or greater. EPA also recommends a ratio of 1.724 to convert measured organic material to organic carbon.

For organic acids and bases, the degree of ionization is a function of pH. Because the anion of an organic acid is less likely to sorp than the neutral species, the resultant K_{oc} is likely to be lower. For

organic bases, the opposite is true. The variation of K_{∞} with pH may exceed an order of magnitude for a difference in pH between 6.8 and 4.9. While such extremes in pH are rare, the modeler should be aware of this phenomenon and adjust K_{oc} values where appropriate. K_{oc} values for ionizing organic acids as a function of pH in increments of 0.1 pH unit have been tabulated by EPA (2001).

Recommendations

The parameters needed for additional fate and transport modeling may be broadly divided into soil properties and constituent properties. Soil properties include soil and aquifer characteristics that determine the infiltration of water through the vadose zone to the water table and the subsequent horizontal flow to receptor locations as well as those properties that influence the leaching and migration of contaminants from the source areas to the receptor locations.

Constituent properties are those properties of contaminants that influence the rate at which they leach from the source and migrate as well as the concentration and time of arrival of the contaminants at receptor locations. The important parameters are listed below with recommendations for determining appropriate values for fate and transport modeling applications.

Soil properties

- Hydraulic
 - Horizontal hydraulic conductivity: The most reliable approach is to refer to the sitewide groundwater model and use the value for the zone or zones through which the contaminant must travel to reach receptor locations. When more than one hydraulic conductivity zone is encountered, they must be averaged to reproduce the correct travel time according to

$$K_{avg} = \frac{\sum L_i}{\sum (L_i * K_i)} ,$$

where K_i is the hydraulic conductivity in a zone of the sitewide groundwater model and L_i is the distance that the contaminant travels through that zone.

- Vertical intrinsic permeability: Use the recharge rate determined from the sitewide groundwater model and calibrate on the intrinsic permeability of the small-scale fate and transport model to match the recharge rate. In areas not representative of the general site surface, such as landfill covers, use a model such as the Hydrologic Evaluation of Landfill Performance (HELP) model to estimate the infiltration rate and then calibrate on the permeability to match that recharge rate.
- Porosity: Use site-specific measurements or the average values in the transport parameter tabulation results table above.
- Field capacity: This parameter is difficult to measure. Use reference values from the literature or model database or the average values in the transport parameter tabulation results table above.
- -- Effective porosity: Usually this parameter is not measured or known. In that case the MEPAS guidance suggests using sand = 25%, silt = 15%, and clay = 10%.
- Layer thickness: Site-specific measurement from boring logs.

00-001(doc)/082401

• Chemical

- pH: Site-specific measurement from geotechnical data.
- --- % Sand, Silt, and Clay: Site-specific measurement from geotechnical data.
- --- Total organic carbon: Site-specific measurement from geotechnical data.
- % Fe and Al: Site-specific measurement from geotechnical data. If these data cannot be collected, use the average values from the transport parameter tabulation results table above.
- --- Bulk density: Site-specific measurement from geotechnical data.
- --- Freundlich exponent: If a site-specific value is not known, use 1.0.

Constituent Properties

- Organics: The most important properties of organic constituents that determine their leaching and migration rates and their concentrations at receptor locations are
 - -- K_{oc}, the water-carbon partitioning coefficient;
 - solubility;
 - -- Henry's Constant, which defines partitioning between air and water; and
 - biodegradation rate, which is the rate of contaminant loss through biochemical transformation.

Each of these parameters is a property of the contaminant of interest. These values are tabulated and regularly updated. EPA maintains a database of these values, and values for most organic contaminants of interest are found in the Soil Screening Guidance User's Guide and Technical Background Document, both published by EPA in 1996. Other references should be used for the contaminants not included in EPA's soil screening guidance. These references include EPA's Treatability Database (EPA 1994), EPA's STF Database (EPA 1991), and Chemistry Handbooks. Extensive care must be taken for the selection of the biodegradation rate. The standard reference for biodegradation rates is the *Handbook of Environmental Degradation Rates* (Howard et al. 1991).

- Inorganics
 - Soil-water partition coefficient, K_d

As stated earlier, the values used in fate and transport modeling at Paducah were all chosen from the MEPAS database or from the standard references mentioned earlier, with the exception of uranium. K_d values for uranium were measured in soil from each of the hydrologic units and these values should be used in preference to literature values. For many contaminants there is a variation in measured K_d values of several orders of magnitude in the literature. The values used in the fate and transport modeling were often the geometric mean of a subset of the measured values, but these may not be the appropriate values to use for accurate modeling.

The soil-water partition coefficient strongly influences the predicted peak concentration and the time of the peak at receptor locations, the literature values are highly variable, and the values recommended by EPA in the soil screening guidance are very conservative in that they tend to lead to overpredictions of concentrations at receptor locations. To build reliable fate and transport models, it is necessary to have

available more reliable and accurate site-specific partition coefficients. This can be accomplished by a combination of site-specific measurements and geochemical modeling.

Conceptually, this approach consists of measuring soil-water partition coefficients at several sites representative of the range of soil chemistry at PGDP. These values would then be used to *r*-calibrate a chemical reaction code such as MINTEQA2. The model would be used to estimate K_d values at contaminated sites with varying geochemistry.

There are several methods of measuring K_d values. Use of laboratory batch studies is the most common laboratory method for determining K_d values. A soil of known mass is added to a beaker. A known volume and concentration of an aqueous contaminant solution is added to the soil in the beaker. The beaker is sealed and mixed until sorption is estimated to be complete, typically 1 to 7 days. The solutions are centrifuged or filtered, and the remaining concentration of the contaminant in the supernatant is measured. The concentration of adsorbate sorbed on the solid phase and the soil–water partition coefficient are then computed from these results.

An alternative batch method is the in situ batch method developed to produce a K_d value for which the precise solution chemistry and solid-phase mineralogy is used for the modeling. A core sample containing a paired solid and aqueous phase is removed directly from an aquifer. The aqueous phase is separated from the solid phase by centrifugation or filtration, and then analyzed for the solute concentration. The solid is then analyzed for the concentration of the contaminant associated with the solid phase, and the K_d value is computed.

The second most common technique is the column method. A solution containing known amounts of a contaminant is introduced into a column of packed soil of known bulk density and porosity. The effluent concentration is monitored as a function of time. A known amount of a nonadsorbing tracer may also be introduced into the column, and its time-varying concentration provides information about the pore-water velocity. The resulting data are plotted as a breakthrough curve. The velocity of each constituent (i.e., tracer and contaminant) is calculated as the length of the column divided by the constituent's mean residence time. These data are used to compute a retardation factor and, hence, a partion coefficient.

Of these three techniques, the laboratory batch method is recommended because of its relatively low cost and the shorter time required for its application. The results will be reliable and greatly enhance the reliability of fate and transport modeling. Other approaches may be more appropriate for specific sites and contaminants.

Once a set of K_d values has been measured, these values can be used to calibrate and verify a geochemical model such as MINTEQA2. Such a model can predict K_d values given appropriate soil and geochemistry data. Once the model has been calibrated, it will be used to estimate K_d values at other contaminant sources.

Following the above recommendations will lead to consistent fate and transport modeling for the PGDP site that is more reliable and accurate than the screening level modeling done in the past.

BIBLIOGRAPHY

- Baes, C.F. (III), and R.D. Sharp 1983. "A proposal for estimation of soil leaching and leaching constants for use in assessment models," J. Environ. Qual. 12(1):17-28.
- Baes, C.F. (III), R.D. Sharp, A.L. Sjoreen, and R.W. Shor 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture, Oak Ridge National Laboratory Report ORNL-5786, Oak Ridge, Tennessee.
- Battelle Memorial Institute 1989. Chemical Data Bases for the Multimedia Environmental Pollutant Assessment System (MEPAS): Version 1, prepared for the U.S. Department of Energy under Contract DE-AC06-76RKI 1830 by Pacific Northwest Laboratory, operated by Battelle Memorial Institute.
- Cougherty, P. J., D. Jackson, and M. C. Thorne 1985. Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystem. A Compendium of Data, A. A. Balchema, Netherlands.
- DOE (U.S. Department of Energy) 1994. Feasibility Study for Solid Waste Management Units 2 and 3 of Waste Area Group 22 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/06-1246&D1, United States Department of Energy, Paducah, KY, October 1994.
- DOE (U.S. Department of Energy) 1996a. Feasibility Study for Waste Area Groups 1 and 7 and Kentucky Ordnance Works Solid Waste Management Units 94, 95 and 157 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/06-1416&D2, United States Department of Energy, Paducah, KY, August 1997.
- DOE (U.S. Department of Energy) 1996b. Resource Conservation and Recovery Act Facility Investigation/ Remedial Investigation Report for Waste Area Groupings 1 and 7 at Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1404&D2, April.
- DOE (U.S. Department of Energy) 1996c. Preliminary Site Characterization/Baseline Risk Assessment/ Lasagna[™] Technology Demonstration at Solid Waste Management Unit 91 of the Paducah Gaseous Diffusion Plant, Paducah Kentucky, KY/EM-128, May.
- DOE (U.S. Department of Energy) 1997a. Ground-Water Flow Model Recalibration and Evaluation of the Northwest Plume Interim Remedial Action Report for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, JE/PAD/97-0185, United States Department of Energy, Paducah, KY, July, 1997.
- DOE (U.S. Department of Energy) 1997b. Ground-Water Flow Model Recalibration and Interim Remedial Action Evaluation of the Northeast Plume at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, JE/PAD/97-0238, United States Department of Energy, Paducah, KY, September, 1997.
- DOE (U.S. Department of Energy) 1998a. Ground-Water Flow Model Recalibration and Transport Model Construction at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1742&D), United States Department of Energy, Paducah, KY, June 1998.
- DOE (U.S. Department of Energy) 1998b. Remedial Investigation Report for Solid Waste Management Units 7 and 30 of Waste Area Grouping 22 at Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1604/D2, January.
- DOE (U.S. Department of Energy) 1998c. Technetium-99 Transport Modeling Results for Sources at SWMUs 7 and 30 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, KY/EM-266, March.

- DOE (U.S. Department of Energy) 1998d. Remedial Investigation Report for Waste Area Grouping 27 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1777&D1, December.
- DOE (U.S. Department of Energy) 1999a. Remedial Investigation Report for Waste Area Grouping 6 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1727/D2, May.
- DOE (U.S. Department of Energy) 1999b. Remedial Investigation Report for Waste Area Grouping 28 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1846/D0, November.
- DOE (U.S. Department of Energy) 2001a. Feasibility Study for the Groundwater Operable Unit at Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1857, June.
- DOE (U.S. Department of Energy) 2001b. Remedial Investigation Report for Waste Area Grouping 3 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1846/D1.
- EPA (U.S. Environmental Protection Agency) 1991. Soil Transport and Fate (STF) Database and Model Management System, Ver. 2.0, R.S. Kerr Environmental Research Laboratory, Ada, OK.
- EPA (U.S. Environmental Protection Agency) 1994. Risk Reduction Engineering Laboratory (RREL) Treatability Database, Ver. 4.0, Office of Research and Development, Cincinnati, Ohio.
- EPA (U.S. Environmental Protection Agency) 1996a. Soil Screening Guidance: User's Guide Second Edition, EPA/540/R-96/018, July.
- EPA (U.S. Environmental Protection Agency) 1996b. Soil Screening Guidance: Technical Background Document, Second Edition, Publication 9355.4-17A, May.
- EPA (U.S. Environmental Protection Agency) 1999. Understanding Variation in Partition Coefficient, K_d, Values, The K_d Model, Methods of Measurement, and Application of Chemical Reaction Codes, EPA 402-R-99-004A, August.
- EPA (U.S. Environmental Protection Agency) 2000a. Soil Screening Guidance for Radionuclides: User's Guide, EPA/540-R-00-007, October.
- EPA (U.S. Environmental Protection Agency) 2000b. Soil Screening Guidance for Radionuclides: Technical Background Document, Publication 9355.4-16, October.
- EPA (U.S. Environmental Protection Agency) 2001. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (Peer Review Draft), OSWER 9355.4-24, March.
- Howard, P. H., R. S. Boethling, W. F. Jarvis, W. M. Meylan, and E. M. Michalenko 1991. Handbook of Environmental Degradation Rates, Lewis Publishers, Inc., Chelsea, Michigan.
- LMES 1997. Evaluation of Natural Attenuation Processes for Trichloroethylene and Technetium-99 in the Northeast and Northwest Plumes at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, KY/EM-113, Lockheed Martin Energy Systems, November 25, 1997.
- Looney, B.B., M. W. Grant, and C. M. King 1987. Estimation of Geochemical Parameters for Assessing Subsurface Transport at the Savannah River Plant, prepared for the U.S. Department of Energy under Contract DE-AC09-76SR00001 by E.I. du Pont Nemours & Co., Report No. DPST-85-904.

Shepard, M. I., and D. H. Thibaul, 1990, "Default Soil Solid/Liquid Partition Coefficients, K_ds, for Four Major Soil Types: A Compendium," *Health Physics*, Vol. 59, No. 4, pp. 471–482.

SUPPORTING DOCUMENTATION

THIS PAGE INTENTIONALLY LEFT BLANK

DESCRIPTION OF PGDP MODELING OF PARAMETER SUMMARY DATABASE

Eight tables imported from the spreadsheets MEPAS.xls, SESOIL.xls, RESRAD.xls, and SUMMERS.xls:

- MEPAS Const containing K_d and K_{oc} values used on MEPAS modeling,
- MEPAS Transport containing soil and aquifer properties used in MEPAS modeling,
- SESOIL Const containing K_d and K_{oc} values used on SESOIL modeling,
- SESOIL Transport containing soil and aquifer properties used in SESOIL modeling,
- RESRAD Const containing K_d and K_{oc} values used in RESRAD modeling,
- RESRAD Transport containing soil and aquifer properties used in RESRAD modeling,
- Summers Const containing K_d and K_{oc} values used in Summers modeling, and
- Summers Transport containing soil and aquifer properties used in Summers modeling.

The queries included are

- MEPAS transport variable,
- SESOIL transport variable,
- RESRAD transport variable, and
- SUMMERS transport variable,

which must be customized to extract the values of variables such as porosity, bulk density, fraction organic carbon (foc), etc. used in each of the models.

To extract the K_d and K_{oc} values used in all modeling efforts, use the queries

• MEPAS, SESOIL, RESRAD and SUMMERS K_d and K_{oc} ******

The one, two, and three chemical versions are designed to accommodate different spellings of the same modeled constituent. As an example, using the "two chemical" option and entering Tc*, and Tec* into the windows that appear will extract all the examples of K_d for ⁹⁹Tc listed as "Technetium and ⁹⁹Tc" but will not list thallium or thorium.

The source of K_d and K_{oc} values is often unclear. The original design was to denote by a letter code the source of these values. After going through the exercise, the conclusions below were reached.

• RI reports generally listed properties of organic chemicals including K_{oc}. These lists were often more extensive than the chemicals modeled in the investigation. Although the accepted practice is to use a K_d for organics computed from

$$K_d = \text{foc } * K_{\text{oc,}}$$

where foc is the fraction of organic carbon in the soil, there were many cases in which a K_{oc} , a K_d , and an foc were listed and the above equation was not true. Calculated values of K_{oc} were computed from the above equation with K_d and foc known. The K_{oc} values listed were generally from

- the Risk Reduction Engineering Laboratory (RREL) Treatability Database (EPA 1994),
- -- EPA Soil Screening Guidance (EPA 1996),

00-001(doc)/082401

- EPA's WATER 7 Database, and
- other standard references.

Many K_d values were from the MEPAS database, but the K_{oc} value was often not listed.

- K_d values for MEPAS modeling of inorganics were typically those in the MEPAS database. There is an algorithm available from the MEPAS distributors for adjusting the K_d values as a function of soil chemistry, but has not yet been made available.
- For other models the K_d values for inorganics were estimated from ranges listed in the following sources:
 - --- Shepard and Thibault 1990,
 - Baes and Sharp 1984,
 - Looney, Grant, and King 1987, and
 - -- EPA Soil Screening Guidance 1996
- The only site-specific values were those measured for uranium (DOE 1998c).

Contaminant	K _d Distr	ibution (mL/g)	K _d Stat	K _d Statistics (mL/g)	
Aluminum	Value	Frequency	Min	1500	
	1500	9	Max	35300	
All Values	3980	1	Number	20	
	35300	10	Average	18524	
Topsoil	Value	Frequency	Min	3980	
F	3980	1	Max	35300	
	35300	2	Number	3	
	20200	-	Average	24860	
UCRS	Value	Frequency	Min	1500	
0.010	1500	1	Max	35300	
	35300	5	Number	6	
	22200	5	Average	29666 67	
RGA	Value	Frequency	Min	1500	
KOM	1500	R R	Max	35300	
	35300	3	Number	11	
	55500	5	Average	10718 18	
Amorioium	Value	Eroqueneu	Min	82	
All Values	v alue		Max	0600	
All values	82 200	6	Number	9000	
	200	0	Number Aussona	20	
	1000	4	Average	1343.7	
	1900	1			
Taurail	9000 Valua	2	Min	on	
Topson	value	Frequency	Min	82	
	82	1	Max	200	
	200	1	Number	Z	
LICE		F	Average	141	
UCKS	Value	Frequency	Min	82	
	82	4	Max	9600	
	200	3	Number	13	
	1000	4	Average	1856	
D GA	9600	2			
RGA	Value	Frequency	Min	82	
	82	2	Max	1900	
	200	1	Number	4	
	1900		Average		
Antimony	Value	Frequency	Min	2	
All Values	2	1	Max	150	
	6	2	Number	8	
	45	4	Average	43	
	150	1		•	
Topsoil	Value	Frequency	Min	2	
	2	1	Max	2	
			Number	1	
			Average	2	
UCRS	Value	Frequency	Min	6	
	6	1	Max	150	
	150	1	Number	2	
			Average	78	
RGA	Value	Frequency	Min	6	
	6	1	Max	45	
	45	4	Number	5	
			Average	37.2	

Table C8.2. Summary of transport parameters, inorganics

L D

Contaminant	K _d Distrib	oution (mL/g)	K _d Statistics (mL/g)		
Arsenic	Value	Frequency	Min	5.86	
All Values	5.86	4	Max	25	
	19.4	8	Number	21	
	25	9	Average	19.22095	
Topsoil	Value	Frequency	Min	5.86	
r opoon	5 86	1	Max	19.4	
	19.4	1	Number	2	
	17.4	•	Average	12.63	
LICRS	Value	Frequency	Min	5 86	
CCRD	5.86	2	Max	19.4	
	10 4	6	Number	8	
	17.4	0	Average	16.015	
PGA	Value	Fraguanau	Min	5.96	
KUA		1	Mor	3.60	
	5.80	1	Iviax Number	25	
	19.4		Number	11	
	<u>25</u>	9	Average	22.75091	
Barium	Value	Frequency	Min	0.5	
All Values	0.5	8	Max	16000	
	60	2	Number	17	
	530	3	Average	2312.59	
	2800	2			
	16000	2			
Topsoil	Value	Frequency	Min	2800	
	2800	1	Max	2800	
			Number	1	
			Average	2800	
UCRS	Value	Frequency	Min	60	
	60	2	Max	16000	
	530	2	Number	7	
	2800	1	Average	5140	
	16000	2			
RGA	Value	Frequency	Min	0.5	
	0.5	8	Max	530	
	530	1	Number	9	
			Average	59.33333	
Beryllium	Value	Frequency	Min	70	
All Values	70	3	Max	8000	
	650	9	Number	17	
	800	1	Average	1509.41	
	1400	2	_		
	8000	2			
Topsoil	Value	Frequency	Min	1400	
	1400	1	Max	1400	
			Number	1	
			Average	1400	
UCRS	Value	Frequency	Min	70	
	70	2	Max	8000	
	800	1	Number	6	
	1400	1	Average	3056 667	
	8000	2	Average	5050.007	
PGA	Value	L Frequency	Min	70	
КUA		1 requency	May	/0 650	
	/U	1	IVIAX	10	
	020	9	Number	10	
			Average	592	

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K _d Distr	ibution (mL/g)	K _d Stat	tistics (mL/g)
Cadmium	Value	Frequency	Min	14.9
All Values	14.9	3	Max	567
	40	2	Number	13
	80	4	Average	186.52
	423	2	-	
	567	2		
Topsoil	Value	Frequency	Min	423
	423	1	Max	423
			Number	1
			Average	423
UCRS	Value	Frequency	Min	14.9
	14.9	2	Max	567
	40	2	Number	7
	423	1	Average	238.1143
	567	2 .		
RGA	Value	Frequency	Min	14.9
	14.9	1	Max	80
	80	4	Number	5
			Average	66.98
Calcium	Value	Frequency	Min	25
All Values	25	4	Max	25
			Number	4
			Average	25
Topsoil				
UCRS				
RGA	Value	Frequency	Min	25
	25	4	Max	25
			Number	4
			Average	25
Cesium	Value	Frequency	Min	10
All Values	10	2	Max	4600.00
	249	4	Number	13
	280	5	Average	893.5385
	4600	2		
Topsoil	Value	Frequency	Min	10
	10	2	Max	10
			Number	2
			Average	10
UCRS	Value	Frequency	Min	249
	249	2	Max	4600
	4600	2	Number	4
		-	Average	2424.5
RGA	Value	Frequency	Min	249
	249	2	Max	280
	280	5	Number	/
<u></u>	<u> </u>		Average	2/1.1429
Chromium	v alue	Frequency	Min	1
All Values	1		Max	3000
	10		Number	32
	16.8	3	Average	574.325
	30	2		
	35	9		
	56.5	4		
	168	2		
	360	2		

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K _d Distri	bution (mL/g)	K _d Stat	istics (mL/g)
	565	4		
	3600	4		
Topsoil	Value	Frequency	Min	1
	1	1	Max	168
	10	1	Number	5
	56.5	1	Average	80.7
	168	2		
UCRS	Value	Frequency	Min	16.8
	16.8	2	Max	3600
	30	2	Number	13
	56.5	2	Average	1222.431
	360	2	-	
	565	1		
	3600	4		
RGA	Value	Frequency	Min	16.8
	16.8	1	Max	565
	35	9	Number	14
	56.5	1	Average	148.8071
	565	3	φ.	
Cobalt	Value	Frequency	Min	0.2
All Values	0.2	7	Max	1300
All vulues	1.94	2	Number	26
	8 81	6	Average	203 7362
	60	9	nveruge	203.7302
	200	4		
	1300	3		
Topsoil	Value	Frequency	Min	0.2
ropson		7	Max	1.94
	1.94	2	Number	4
	1.74	L	Average	1.07
UCRS	Value	Frequency	Min	8.81
UCRS	8 81	2	Max	1300
	200	2 4	Number	9
	1300	3	Average	524 18
RGA	Value	Frequency	Min	8 81
NOA	8 81	A requercy	Max	60
	60	9	Number	13
	00)	Average	44 24923
Copper	Value	Frequency	Min	4 10
All Values	1 10	2	Max	336
All values	22	2 4	Number	20
	35	2	Average	107 369
	<u>41 0</u>	2	Average	107.507
	$\frac{1}{022}$	6		
	32.2	0		
Topsoil	Value	Frequency	Min	4 10
ropson	1 10	riequency	May	410
	4.19	2	IvidX	41.7
	41.9	2	number	4
LICDC	17-1	F	Average	25.045
UCKS	value	Frequency	Min	33
	35	2	Max	550
	92.2	2	Number	8
	336	4	Average	199.8

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K _d Distr	ibution (mL/g)	K _d Statistics (mL/g)	
RGA	Value	Frequency	Min	22
	22	4	Max	92.2
	92.2	4	Number	8
			Average	57.1
Iron	Value	Frequency	Min	10
All Values	10	2	Max	800
	15	12	Number	24
	220	9	Average	124.1667
	800	1	Ð	
Topsoil	Value	Frequency	Min	10
	10	2	Max	15
	15	2	Number	4
			Average	12.5
UCRS	Value	Frequency	Min	15
	15	6	Max	800
	800	1	Number	7
			Average	127.1429
RGA	Value	Frequency	Min	15
	15	4	Max	220
	220	9	Number	13
			Average	156.9231
Lead	Value	Frequency	Min	10
All Values	10	1	Max	16000
	234	5	Number	28.00
	270	9	Average	1220.429
	597	6	U	
	1830	6		
	16000	1		
Topsoil	Value	Frequency	Min	10
•	10	1	Max	234
	234	2	Number	3
			Average	159.3333
UCRS	Value	Frequency	Min	234
	234	2	Max	16000
	597	2	Number	11
	1830	6	Average	2603.818
	16000	1	c	
RGA	Value	Frequency	Min	234
	234	1	Max	597
	270	9	Number	13
	597	3	Average	342.6923
Lithium	Value	Frequency	Min	0
All Values	0	1	Max	0.2
	0.2	2	Number	3
			Average	0.13
Topsoil	Value	Frequency	Min	0
	0	1	Max	0
			Number	1
			Average	0
UCRS	Value	Frequency	Min	0.2
	0.2	1	Max	0.2
			Number	1
			Average	0.2

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K _d Distr	ibution (mL/g)	K _d Stat	istics (mL/g)
RGA	Value	Frequency	Min	0.2
	0.2	1	Max	0.2
	- 12	-	Number	1
			Average	0.2
Magnesium	Value	Frequency	Min	1.6
All volues	1.6	A	Max	1.6
All values	1.0	4	Number	1.0
			Aurogo	4
T			Average	1.0
LICDS				
UCKS	V. h.	D	Ma	1.6
KGA	value	Frequency	Min	1.0
	1.0	4	Max	1.0
			Number	4
			Average	1.6
Manganese	Value	Frequency	Min	1.5
All Values	1.5	2	Max	750
	16.5	5	Number	32
	25.3	8	Average	76.85313
	36.9	6		
	50	9		
	750	2		
Topsoil	Value	Frequency	Min	1.5
	1.5	2	Max	25.3
	16.5	2	Number	5
	25.3	1	Average	12.26
UCRS	Value	Frequency	Min	16.5
	16.5	2	Max	750
	25.3	3	Number	13
	36.9	6	Average	140.7923
	750	2	8	
RGA	Value	Frequency	Min	16.5
	16.5	1	Max	50
	25.3	4	Number	14
	50	9	Average	40.55
Mercury	Value	Frequency	Min	10
All Values	10	2	Max	82
Thi vulues	82	8	Number	10
	0 4	0	Average	67 60
Topsoil			Trenuge	01.00
UCRS	Value	Frequency	Min	10
0010	10	2	Max	10
	10	-	Number	2
			Average	10
RGA	Value	Frequency	Min	82
NOA	82	a requeite y	Max	82
	02	0	Iviax Number	02 0
			Number	0 01
X 1 1 1	V-1		Average	02
Molybdenum	value	Frequency	Min	125
All Values	125	1	Max	125
			Number	1
			Average	125
Topsoil				
UCRS	Value	Frequency	Min	125
	125	1	Max	125
			Number	1

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K _d Distr	ribution (mL/g)	K _d Statistics (mL/g)	
	u		Average	125
RGA			_	
Neptunium	Value	Frequency	Min	3
All Values	3	28	Max	25
	5	5	Number	37.00
	25	4	Average	5.648649
Topsoil	Value	Frequency	Min	3
•	3	5	Max	3
			Number	5
			Average	3
UCRS	Value	Frequency	Min	3
0 0 1 10	3	16	Max	25
	25	4	Number	20
	20	•	Average	74
RGA	Value	Frequency	Min	3
NOA	2	f requercy	Max	5
	5	5	Number	11
	5	5	Average	2 000001
NU.1.1	<u>V</u> 1		Average	3.909091
Nickel	Value	Frequency	Min	1.2
All Values	1.2	2	Max	650
	12.2	3	Number	23.00
	58.6	6	Average	243.0696
	300	1		
	400	9		
	650	2		
Topsoil	Value	Frequency	Min	1.2
	1.2	2	Max	58.6
	58.6	1	Number	3
			Average	20.33333
UCRS	Value	Frequency	Min	12.2
	12.2	2	Max	650
	58.6	3	Number	8
	300	1	Average	225.025
	650	2	8	
RGA	Value	Frequency	Min	12.2
	12.2	1	Max	400
	58.6	2	Number	12
	400	9	Average	310 7833
Protectinium	Value	Frequency	Min	0
All Volues		2	May	500
All values	50	3 7	Number	7.00
	500	2	Augrage	7.00
Tomanil	300	2	Avelage	137.1423
LODS	Value	Fragmanar	Min	0
UCKS	value	Prequency	Min	0
	0	2	Max	500
	50	1	Number	5
DOL	500	2	Average	210
KGA	Value	Frequency	Min	U
	0	1	Max	0
			Number	1
			Average	0
Plutonium	Value	Frequency	Min	0
All Values	0	3	Max	1200
	4	2	Number	33
	10	6	Average	196

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K ₄ Distribution (mL/g)		K _d Statistics (mL/g)		
·····	50	2	u	8/	
	100	9			
	250	4			
	500.00	2			
	550	4			
	1200	1			
Topsoil	Value	Frequency	Min	4	
	4	2	Max	100	
	50	1	Number	4	
	100	1	Average	39.5	
UCRS	Value	Frequency	Min	0	
	0	2	Max	1200	
	10	4	Number	18	
	50	1	Average	205	
	100	4			
	250	4			
	500	2			
	1200	1			
RGA	Value	Frequency	Min	0	
	0	1	Max	550	
	10	2	Number	10	
	100	3	Average	252	
	550	4			
Potassium	Value	Frequency	Min	15	
All Values	15	4	Max	15	
			Number	4	
			Average	15	
Topsoil			C		
UCRS					
RGA	Value	Frequency	Min	15	
	15	4	Max	15	
			Number	4	
			Average	15	
Radium	Value	Frequency	Min	2.43	
All Values	2.43	1	Max	36000	
	24.3	5	Number	22.00	
	100	6	Average	4998.542	
	124	6			
	500	1			
	36000	3			
Topsoil	Value	Frequency	Min	2.43	
	2.43	1	Max	24.3	
	24.3	2	Number	3	
NOD G		-	Average	17.01	
UCRS	Value	Frequency	Min	24.3	
	24.3	2	Max	36000	
	100	2	Number	13	
	124	6	Average	8384.046	
	36000	3			
RGA	Value	Frequency	Min	24.3	
	24.3	1	Max	500	
	100	3	Number	5	
	500	1	Average	164.86	

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K _d Distrib	oution (mL/g)	K _d Statistics (mL/g)	
Radon	Value	Frequency	Min	0
All Values	0	8	Max	0
			Number	8
			Average	0
Topsoil	Value	Frequency	Min	0
ropoon	0	2	Max	0
	0	-	Number	2
			A verage	0
UCRS	Value	Frequency	Min	0
UCKS	0	A requests	Max	0
	0	т	Number	4
			Average	0
PGA	Value	Frequency	Min	0
KUA	value	riequency	May	0
	0	2	Iviax	0
			Number	2
<u> </u>			Average	0
Selenium	Value	Frequency	Min	150
All values	150	4	Max	500
	500	2	Number	6
			Average	266.67
Topsoil				
UCRS	Value	Frequency	Min	500
	500	2	Max	500
			Number	2
			Average	500
RGA	Value	Frequency	Min	150
	150	4	Max	150
			Number	4
			Average	150
Silver	Value	Frequency	Min	0.4
All Values	0.4	4	Max	120
	4	4	Number	17
	40	2	Average	46.33
	9 0	5		
	120	2		
Topsoil	Value	Frequency	Min	0.4
	0.4	1	Max	4
	4	1	Number	2
			Average	2.2
UCRS	Value	Frequency	Min	0.4
	0.4	2	Max	120
	4	2	Number	8
	40	2	Average	41.1
D O 1	120	2		0.4
RGA	Value	Frequency	Min May	0.4
	0.4	1	Number	90 7
	4	5		, 64 91428
Strontium	Value	Frequency	Min	2.34
All Values	2.34	1	Max	100
	100	2	Number	3
		-	Average	67.45
Topsoil	Value	Frequency	Min	2.34
- r	2.34	1	Max	2.34
			Number	1
			Average	2.34

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K _d Distrib	oution (mL/g)	K _d Statistics (mL/g)	
UCRS	Value	Frequency	Min	100
	100	1	Max	100
			Number	1
			Average	100
RGA	Value	Frequency	Min	100
	100	1	Max	100
			Number	1
			Average	100
Tc-99	Value	Frequency	Min	0.1
All Values	0.1	14	Max	20
	1	8	Number	39
	3	7	Average	5.907692
	20	10	U	
Topsoil	Value	Frequency	Min	1
•	1	3	Max	20
	3	1	Number	5
	20	1	Average	5.2
UCRS	Value	Frequency	Min	0.1
	0.1	2	Max	20
	1	5	Number	18
	3	4	Average	8 733334
	20	7	i i oi ugo	0.700007
RGA	Value	Frequency	Min	0.1
	0.1	12	Max	20
	3	2	Number	15
	20	-	Average	1.813333
Thallium	Value	Frequency	Min	0.00
All values	0	4	Max	1500
	0.2	4	Number	16
	0.8	2	Average	117.03
	74	5		
	1500	1		
Topsoil	Value	Frequency	Min	0
1	0	1	Max	0.2
	0.2	1	Number	2
			Average	0.1
UCRS	Value	Frequency	Min	0
	0	2	Max	1500
	0.2	2	Number	7
	0.8	2	Average	214.5714
	1500	1	e	
RGA	Value	Frequency	Min	0
	0	1	Max	74
	0.2	1	Number	7
The	74	5	Average	52.88572
1 norium	value	Frequency	Min	40
All values	40	5	Max Number	5800
	500	14	Average	54 1650 27
	2700	12	Average	1030.37
	3300	2		
	5800	7		
Topsoil	Value	Frequency	Min	40
r	40	3	Max	500
	100	2	Number	7
	500	2	Average	188.5714

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K _d Distr	ibution (mL/g)	K _d Stat	istics (mL/g)
UCRS	Value	Frequency	Min	100
	100	8	Max	3300
	500	7	Number	29
	2700	12	Average	1493.103
	3300	2	0	
RGA	Value	Frequency	Min	100
Ron	100	4	Max	5800
	500	5	Number	16
	500	7	Average	2718 75
	<u>5800</u>		Average	450
110	value	Frequency	Min	450
All Values	450	2	Max	450
			Number	2
			Average	450
Topsoil				
UCRS	Value	Frequency	Min	450
	450	2	Max	450
			Number	2
			Average	450
RGA				
Uranium	Value	Frequency	Min	0
All Values	0	9	Max	3640
_	35	26	Number	119
	50	16	Average	615.6381
	62.98	3		
	66.8	5		
	243	6		
	245	18		
	2 <i>33</i> 500	10		
	500	4		
	900	0		
	11/0	10		
	1580	6		
	3640	10		
Topsoil	Value	Frequency	Min	0
	0	9	Max	253
	243	3	Number	13
	253	1	Average	75.53846
UCRS	Value	Frequency	Min	50
	50	7	Max	3640
	243	3	Number	59
	253	13	Average	1176
	500	4	0	
	906	6		
	1170	10		
	1580	6		
	3640	10		
PGA	Value	Frequency	Min	35
NUA	25	76	Max	66.8
	55	20	Max	42
	50	9	Number	43
	62.98	3	Average	43.7893
	66.8	5		
Vanadium	Value	Frequency	Min	50
All Values	50	3	Max	1000
	100	4	Number	17.00
	1000	10	Average	620.5883

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K _d Distrib	ution (mL/g)	K _d Statistics (mL/g)	
Topsoil	Value	Frequency	Min	100
	100	1	Max	100
			Number	1
			Average	100
UCRS	Value	Frequency	Min	50
	50	2	Max	1000
	100	3	Number	7
	1000	2	Average	342.8571
RGA	Value	Frequency	Min	50
	50	1	Max	1000
	1000	8	Number	9
			Average	894.4445
Zinc	Value	Frequency	Min	3
All Values	3	1	Max	1300.00
	200	8	Number	13
	939	2	Average	467.7692
	1300	2		
Topsoil	Value	Frequency	Min	3
-	3	1	Max	3
			Number	1
			Average	3
UCRS	Value	Frequency	Min	939
	939	1	Max	1300
	1300	2	Number	3
			Average	1179.667
RGA	Value	Frequency	Min	200
	200	8	Max	939
	939	1	Number	9
			Average	282.1111

Table C8.2. Summary of transport parameters, inorganics (continued)

Contaminant	K _d I	Distribution	K _d S	K _d Statistics		istribution	K _{oc} Statistics		
1,1-DCE	Value	Frequency	Min	0.1	Value	Frequency	Min	65	
,	0.1	8	Max	0.169	65	9	Max	65	
All Values	0.169	1	Number	9			Number	9	
			Average	0.11			Average	65	
Topsoil			0				0-		
UCRS	Value	Frequency	Min	0.169	Value	Frequency	Min	65	
	0.169	1	Max	0.169	65	1	Max	65	
		-	Number	1			Number	1	
			Average	0.169			Average	65	
RGA	Value	Frequency	Min	0.1	Value	Frequency	Min	65	
	0.1	8	Max	0.1	65	8	Max	65	
		U	Number	8	00	0	Number	8	
			Average	01			Average	65	
1.2-DCE	Value	Frequency	Min	0.02	Value	Frequency	Min	77 5	
1,2 000	0.016	1	Max	0.202	77 5	2	Max	126.5	
All Values	0.0253	1	Number	6	80	1	Number	6	
	0.0233	1	Average	0.09	864	1	Δ verage	94 31667	
	0.0492	1	riverage	0.07	118	1	Average	74.51007	
	0.000	2			126.5	1			
Topsoil	Value	Frequency	Min	0.0432	Value	Frequency	Min	86.4	
1005011	0.0432	1	Max	0.0432	86.4	1	Max	86.4	
	0.0452	1	Number	1	00.4	1	Number	1	
				0.0432			Δ verage	86.4	
UCRS	Value	Frequency	Min	0.0432	Value	Frequency	Min	77 5	
UCRD	0.059	1	Max	0.000	77 5	2	Max	118	
	0.000	2	Number	3	118	1	Number	3	
	0.202	2	Average	0 15433	110	1	Average	01	
RGA	Value	Frequency	Min	0.13433	Value	Frequency	Min	126.5	
KUA	0.0253	1	Max	0.0253	126.5	1 requercy	Max	126.5	
	0.0255	1	Number	1	120.5	1	Number	120.5	
			Average	0.0253			Average	126.5	
Aroclor-1254	Value	Frequency	Min	328	Value	Frequency	Min	395000	
All Values	328	1	Max	26300	395000	2	Max	1 32E±08	
All values	305	2	Number	0	1003333	2	Number	0	
	4020	2	Average	8377	4020000	2	Average	2 12277502	
	6360	2	Average	0322	8475000	2	Avelage	42377393	
	6780	1			132E+08	1			
	26300	2			1.00E+08	1			
	20500	2			1.32E+08	1			
Topsoil	Value	Frequency	Min	4020	Value	Frequency	Min	4020000	
ropson	4020	1	Max	4020	4020000	1	Max	4020000	
	1020	1	Number	1	1020000	•	Number	1	
			Average	4020			Average	4020000	
UCRS	Value	Frequency	Min	395	Value	Frequency	Min	395000	
CORD	395	7	Max	6780	395000	2	Max	9085714	
	4020	1	Number	5	4020000	1	Number	5	
	6360	1	Average	3590	8475000	1	Average	J 4474143	
	6780	1	Average	5570	908571/	1	Average		
RGA	Value	I Frequency	Min	378	Value	Frequency	Min	1003333	
	328	1	Max	26300	1003332	1	Max	1 32E±08	
	26300	1	Number	20500	1 37 5 + 08	1	Number	1.52E+08	
	20300	1	Average	13314	1.52E+06	1	Average	<u>-</u> 66206667	
			Average	15514			Average	0029000/	

Table C8.3. Summary of transport parameters, organics

FT80E3

Contaminant	K, D	istribution	K, S	tatistics	K _{ar} D	istribution	Kor Statistics		
Benzene	Value	Frequency	Min	0.161	Value	Frequency	Min	62	
All Values	0.161	2	Max	0.161	62	2	Max	62	
		_	Number	2		_	Number	2	
			Average	0.161			Average	62	
Topsoil							B-		
UCRS	Value	Frequency	Min	0 161	Value	Frequency	Min	62	
CORD	0 161	2	Max	0.161	62	2	Max	62	
	0.101	2	Number	2	02	2	Number	2	
			A verage	0 161			Average	<u>6</u> 2	
RGA			Average	0.101			Average	02	
Carbon Tet	Value	Frequency	Min	0.1	Value	Frequency	Min	152	
All Values	0.1	A requerce y	Max	3.00	152	A requerce y	Max	6600	
All values	1 3 2		Number	3.09 7	4520		Number	7	
	2.26	1	Average	, 1.01	4J20 6180	1	Average	1558 286	
	2.20	1	Average	1.01	6600	1	Average	2558.280	
Tennail	5.09 Valua	1 5	Min	2.26	0000 Valua	1 Г	Min	4520	
Topson		Frequency	Min	2.20	v alue	Frequency	Min	4520	
	2.20	1	Max	2.20	4520	1	Max	4520	
			Number	1			Number	1	
LICDO	17.1	5	Average	2.26		F	Average	4520	
UCRS	Value	Frequency	Min	3.09	Value	Frequency	Min	6180	
	3.09	1	Max	3.09	6180	1	Max	6180	
			Number	1			Number	1	
		_	Average	3.09		_	Average	6180	
RGA	Value	Frequency	Min	0.1	Value	Frequency	Min	152	
	0.1	4	Max	1.32	152	4	Max	6600	
	1.32	1	Number	5	6600	1	Number	5	
			Average	0.344			Average	1441.6	
Chloroform	Value	Frequency	Min	0.04	Value	Frequency	Min	53	
All Values	0.04	4	Max	0.04	53	4	Max	53	
			Number	4			Number	4	
			Average	0.04			Average	53	
Topsoil									
UCRS									
RGA	Value	Frequency	Min	0.04	Value	Frequency	Min	53	
	0.04	4	Max	0.04	53	4	Max	53	
			Number	4			Number	4	
			Average	0.04			Average	53	
Cis-1,2-DCE	Value	Frequency	Min	0	Value	Frequency	Min	0	
All Values	0	1	Max	0.092	0	1	Max	35.5	
	0.03	8	Number	11	35.5	10	Number	11	
	0.092	2	Average	0.03855			Average	32.27273	
Topsoil									
UCRS	Value	Frequency	Min	0.092	Value	Frequency	Min	35.5	
	0.092	2	Max	0.092	35.5	2	Max	35.5	
			Number	2			Number	2	
		_	Average	0.092		_	Average	35.5	
RGA	Value	Frequency	Min	0	Value	Frequency	Min	0	
	0	1	Max	0.03	0	1	Max	35.5	
	0.03	8	Number	9	35.5	8	Number	9	
N 1- 41	Value	F	Average	0.02667			Average	31.55556	
Naphinalene	value	rrequency	value	rrequency					
All values	5.1	1	1190	1					
LICRS	Value	Frequency	Value	Frequences					
UCRS	v alue 3 1	1	1100	1					
RGA	5.1	1	1190	1					
NOA									

Table C8.3. Summary of transport parameters, organics (continu
--

Contaminant	K_ D	istribution	K ₄ Statistics		K _{or} Di	stribution	K _{oc} Statistics		
Np237	Value	Frequency	Min	3					
All Values	3	28	Max	25					
	5	5	Number	37					
	25	4	Average	5.64865					
Topsoil	Value	Frequency	Min	3					
•	3	5	Max	3					
			Number	5					
			Average	3					
UCRS	Value	Frequency	Min	3					
	3	16	Max	25					
	25	4	Number	20					
			Average	7.4					
RGA	Value	Frequency	Min	3					
	3	6	Max	5					
	5	5	Number	11					
			Average	3.90909					
Pentachlorophenol	Value	Frequency	Min	1.54	Value	Frequency	Min	592	
All Values	1.54	1	Max	715	592	1	Max	1430000	
	140	3	Number	12	476000	3	Number	12	
	238	3	Average	315.128	652000	1	Average	735049.3	
	326	1			700000	3			
	445	2			890000	2			
	715	2			1430000	2			
Topsoil	Value	Frequency	Min	238	Value	Frequency	Min	476000	
	238	3	Max	238	476000	3	Max	476000	
			Number	3			Number	3	
			Average	238		_	Average	476000	
UCRS	Value	Frequency	Min	1.54	Value	Frequency	Min	592	
	1.54	1	Max	715	592	1	Max	1430000	
	326	1	Number	6	652000	1	Number	6	
	445	2	Average	441.257	890000	2	Average	882098.7	
201	715	2		1.40	1430000	2	<i></i>	700000	
RGA	Value	Frequency	Min	140	Value	Frequency	Min	700000	
	140	3	Max	140	/00000	3	Max	700000	
			Number	3			Number	3	
	17.1	F	Average	140	V-1	F	Average	700000	
TCE	value	Frequency	Min	0	value	Frequency	Man	0	
All values	0 0 4 2 8	1	Max	1.01	0	1	Number	2157.145	
	0.0428	1	Average	0.300	94 214	12	Average	23 654 7724	
	0.0779	1	Average	0.399	214	1	Average	034.7724	
	0.094	2			955	2			
	0.1	1			1134	2			
	0.244	1			1550	2			
	0.332	2			1660	2			
	0.567	2			2012.5	1			
	0.77	2			2157.143	1			
	0.955	2							
	1.51	1							
	1.61	1							
Topsoil	Value	Frequency	Min	0.567	Value	Frequency	Min	955	
	0.567	2	Max	0.955	955	1	Max	1134	
	0.955	1	Number	3	1134	2	Number	3	
			Average	0.69633			Average	1074.333	

1 adie Co.5. Summary of transport darameters, organics (continue	Table C	C8.3. Summary	of transport	parameters.	organics	(continued
--	---------	---------------	--------------	-------------	----------	------------

Contaminant	K _d D	istribution	K _d S	tatistics	K _{oc} Di	stribution	K _{oc} Statistics		
UCRS	Value	Frequency	Min	0.094	Value	Frequency	Min	94	
	0.094	2	Max	1.61	94	4	Max	2157.143	
	0.244	1	Number	9	955	1	Number	9	
	0.2444	1	Average	0.70016	1550	2	Average	955.627	
	0.775	2	· ·		2012.5	1	-		
	0.955	1			2157.143	1			
	1.51	1							
	1.61	1							
RGA	Value	Frequency	Min	0	Value	Frequency	Min	0	
	0	1	Max	0.332	0	1	Max	1660	
	0.0428	1	Number	13	94	8	Number	13	
	0.0779	1	Average	0.1219	214	1	Average	349.6667	
	0.1	8			259.6667	1			
	0.332	2			1660	2			
Trans-1,2-DCE	Value	Frequency	Min	0	Value	Frequency	Min	0	
All Values	0	1	Max	0.115	0	1	Max	164.2857	
	0.0059	1	Number	18	7	2	Number	18	
	0.007	2	Average	0.03558	15	1	Average	36.03069	
	0.012	1			19.66667	1			
	0.0278	2			27.8	2			
	0.03	8			38	10			
	0.1	2			164.2857	1			
	0.115	1							
Topsoil	Value	Frequency	Min	0.0278	Value	Frequency	Min	27.8	
	0.0278	1	Max	0.0278	27.8	1	Max	27.8	
			Number	1			Number	1	
			Average	0.0278			Average	27.8	
UCRS	Value	Frequency	Min	0.007	Value	Frequency	Min	7	
	0.007	2	Max	0.115	7	2	Max	164.2857	
	0.012	1	Number	7	15	1	Number	7	
	0.0278	1	Average	0.0524	27.8	1	Average	42.44082	
	0.099	2			38	2			
	0.115	1			164.2857	1			
RGA	Value	Frequency	Min	0	Value	Frequency	Min	0	
	0	1	Max	0.03	0	1	Max	38	
	0.0059	1	Number	10	19.66667	1	Number	10	
	0.03	8	Average	0.02459	38	8	Average	32.36667	
Vinyl Chloride	Value	Frequency	Min	0	Value	Frequency	Min	0	
All Values	0	4	Max	0.729	0	1	Max	978.5714	
	0.002	5	Number	21	2.51	8	Number	21	
	0.0352	1	Average	0.15525	18.6	2	Average	236.9255	
	0.0425	2			42.5	2			
	0.048	2			117.3333	1			
	0.15	1			432	2			
	0.256	1			512	1			
	0.35	1			700	1			
	0.432	2			/50	1			
	0.685	1			911.25	1			
The state	0.729				978.5714	1		42.0	
I opsoil	Value	Frequency	Min	0.256	Value	Frequency	Min	432	
	0.256	I 1	Max	0.432	432	1	Max	512	
	0.432	I	Number	2	512	1	Number	2	
			Average	0.344			Average	472	

Table C8.3. Summary of transport parameters, organics (continued)

Contaminant	K _d Distribution		K _d S	K _d Statistics		stribution	K _{oc} Statistics		
UCRS	Value	Frequency	Min	0.0425	Value	Frequency	Min	18.6	
	0.0425	2	Max	0.729	18.6	2	Max	978.5714	
	0.048	2	Number	8	42.5	2	Number	8	
	0.35	1	Average	0.29712	432	1	Average	393.0027	
	0.432	1			700	1	-		
	0.685	1			911.25	1			
	0.729	1			978.5714	1			
RGA	Value	Frequency	Min	0	Value	Frequency	Min	0	
	0	4	Max	0.15	0	1	Max	750	
	0.002	5	Number	11	2.51	8	Number	11	
	0.0352	1	Average	0.01775	117.3333	1	Average	80.67394	
	0.15	1			750	1			

Table C8.3. Summary of transport parameters, organics (continued)

 K_{oc} and K_{d} values are reported in mL/g.

Analyte	Sand	Loam	UCRS	RGA	Comments
Analyte	Sanu	Louin		Mod	el Data ^a
Aluminum	1500	1500	1500.0	1500	
Antimony	6	45	25.5	6	
Arsenic	5.86	25	15.4	5.86	
Barium	60	16000	8030.0	60	
Bervllium	650	8000	4325.0	650	
Cadmium	40	567	303.5	40	
Calcium	25	25	25.0	25	
Chromium	35	360	197.5	35	
Copper	22	35	28.5	22	
Iron	15	220	117.5	15	
Lead	270	1830	1050.0	270	
Lithium	0.2	0.2	0.2	0.2	
Magnesium	1.6	1.6	1.6	1.6	
Manganese	16.5	50	33.3	16.5	
Mercury	10	82	46.0	10	
Molyhdenum	125	125	125.0	125	
Nickel	12.2	400	206.1	12.2	
Potassium	15	15	15.0	15	
Selenium	150	500	325.0	150	
Silver	4	40	22.0	4	
Thallium	0.8	74	37.4	0.8	
Tin	450	450	450.0	450	
Vanadium	50	1000	525.0	50	
Zinc	200	1300	750.0	200	
Radioisotones	200	1200	/20.0	200	
Americium	82	1000	541.0	82	
Cesium	249	4600	2424.5	249	
Cobalt	8.71	200	104.4	8.71	
Neptunium	3	25	14.0	3	
Protactinium	50	500	275.0	50	
Plutonium	10	250	130.0	10	
Radium	24.3	124	74.2	24.3	
Strontium	100	100	100.0	100	
Technetium	0.1	3	1.6	0.1	
Thorium	100	2700	1400.0	100	
Uranium	35	253	144.0	35	
				Ration	ale Source ^b
Aluminum	15.9	1500			Only 2 sources - took a low and a high value.
Antimony	45	150			Low value from S&T, B&S and SSG and Loam from S&T
2					although MEPAS sometimes uses 2 and 6
Arsenic	5.86	27			5.86 from Batelle, 27 from SSG modeling.
Barium	30	60			SSG gives 30, 60 from B&S, could also use 530 from Batelle
Bervllium	82	800			82 from SSG, 800 in loam from S&T but number is based
,					on CR in plants
Cadmium	37	40			37 from SSG. 40 from T&S loam
Calcium	5	30			Usually not modeled. From S&T
Chromium	16.8	30			16.8 common in modeling - 30 from S&T loam
Copper	22	35			22 from models - 35 from B&S
Iron	220	800			From S&T sand and loam
Lead	270	1830			270 from models and S&T - 1830 from models
Lithium	?	?			
Magnesium	1.6	4.5			1.6 from models - 4.5 from B&S
1.1mBilesiulli	1.0	4.5			

Table C8.4. Recommended K_d values, inorganics

Analyte	Sand	Loam	UCRS	RGA	Comments					
Manganese	50	750			50 from modeling and S&T - 750 from S&T loam					
Mercury	3.5	82			3.5 from SSG - 82 from modeling					
Molybdenum	10	125			Both from S&T - 125 only number used in modeling					
Nickel	38	300			38 from SSG - 300 from T&S loam					
Potassium	15	55			Usually not modeled - Values from S&T using CR					
					technique - 15 is ony number used in modeling					
Selenium	8.6	150			8.6 from SSG - 150 from T&S and modeling					
Silver	1.3	120			1.3 from SSG - 120 from S&T					
Thallium	58	1500			58 from SSG - 1500 from B&S					
Tin	100	450			100 from Looney - 450 from T&S with CR technique					
Vanadium	50	1000			50 from modeling and Batelle - 1000 from SSG					
Zinc	36	1300		36 from SSG - 1300 from T&S loam						
				Radio	visotopes					
Americium	82	700			82 from modeling - 700 from B&S					
Cesium	30	500			30 from SSG - 500 from S&T sand					
Cobalt	60	550			60 from T&S sand - 550 from T&S clay					
Neptunium	3	25			3 from modeling - 25 from T&S loam					
Protactinium	50	500			both from modeling - S&T data from CR technique not used					
Plutonium	80	250			80 from SSG - 250 from modeling					
Radium	24.3	1262			24.3 from modeling - 1262 from min S&T loam value					
Strontium	15	20			15 from SSG - 20 from S&T loam					
Technetium	0.1	1			.1 from modeling and S&T - 1 from modeling					
Thorium	1700	2700			1700 from SSG - 2700 from modeling					
Uranium	253	1170			100 from SSG - 1170 from modeling					

Table C8.4. Recommended	I K	values.	inorganics	(continued)
THOIC COLLINGCOMMENT	0	, ·	mor Sames	(commaca)

^a Almost without exception K_d should be different in UCRS and RGA Assume UCRS half sand half loam
So that K_d of UCRS = Average of Sand and Loam values
^b In general a low value for sand and a medium to moderately high value for loam is suggested.

00-001(doc)/0	
c)/08240	

						pH=6	Biodegradation rate,						
			S _w @		Vapor	Henry's					•		
	Mol. wt.	Solubility S _w	temp.	KOW	pressure	constant (K _h)	Kh @ temp.	Air Diff. coeff.	KOC		1	Log	
Constituents	(g/mol)	(mg/L)	(°C)	(ml/ml)	(tor @ °C)	(atm.m ³ /mol)	(°C)	(cm²/s)	(ml/g)		(1/d)	(KOW)	
					Volatile Or	ganics ^a							
1,1-Dichloroethane	99	5.06E+03		6.17E+01	234 @25	5.62E-03	25	0.0742	5.34E+01	m	1.13E-03	1.79	
1,1 Dichloroethene	96.9	2.25E+03	25	1.35E+02	591@ 25	2.61E-02	25	0.090 s	6.50E+01	m	3.85E-03	2.13	
1,1,1 Trichloroethane	133.4	1.33E+03	20	3.02E+02	100 @ 20	1.72E-02	25	0.078 s	1.35E+02	m	6.35E-04	2.48	
1,1,2 Trichloroethane	133.4	4.42E+03	20	1.12E+02	30@25	9.13E-04	25#	0.078 #	7.50E+01	m	4.75E-04	2.05	
1,1,2-Trichloro-1,22,-trifluoroethene	187.4	1.70E+02		1.05E+03		3.96E-01	23*	0.0 78 t	6.57E+02		4.81E-04	3.02	*
1,2-Dichloroethane	99.0	8.52E+03		2.95E+01		9.79E-04		0.104	3.80E+01	m	9.63E-04	1.47	
1,2 Dichloroethene	96.9	8.00E+02	#	1.23E+02	200 #	6.60E-03	SSC	0.009	7.75E+01		2.41E-04	2.09	*
cis-1,2-Dichloroethene	96.9	3.50E+03		7.24E+01		4.08E-03		0.074	3.55E+01			1.86	
trans-1,2-Dichloroethene	96.9	6.30E+03		1.17E+02		9.38E-03		0.071	3.80E+01	m		2.07	
1,1,2-Trichloro-1,22,-trifluoroethene	187.4	1.70E+02	25#	1.04E+03		3.96E-01	25*	0.078 1	6.57E+02		4.81E-04	3.02	*
1,2-Dichlorobenzene	147.0	1.56E+02	25	2.69E+03		1.90E-03	25	0.069	3.79E+02	m	9.63E-04	3.43	
1,3-Dichlorobenzene	147.0	1.23E+02	25	2.40E+03		2.63E-03	25	0.069 t	1.51E+03		9.63E-04	3.38	
1,4-Dichlorobenzene	147.0	7.38E+01	25	2.63E+03	1.18 L	2.43E-03	25	0.069 t	6.16E+02	m	9.63E-04	3.42	
2-Butanone	72.1	2.75E+05		1.82E+00	100 @ 25	6.61E-07	25#	0.092 s	1.15E+00		2.48E-02	0.26	
2-Hexanone	100.2	3.50E+04	20	2.40E+01	2 @ 20	7.53E-06	20	0.078	1.51E+01			1.38	
4-Methyl-2-pentanone	100.2	1.91E+04		5.25E+00	10@30	1.03E-06	25#	0.078	3.31E+00		2.48E-02	0.72	
Acetone	58.1	1.00E+06		5.75E-01	2 70 @ 30	3.88E-05	25#	0.124 s	5.75E-01		2.48E-02	-0.24	
Benzene	78.1	1.75E+03	20	1.35E+02	95 @ 25	5.55E-03	25	0.088 s	6.17E+01	m	9.63E-04	2.13	
Bromomethane	94.9	1.75E+04	20	1.26E+01	1420@20	1.53E-04	25#	0.110 s	7.93E+00		6.19E-03	1.10	
Carbon disulfide	76.1	1.19E+03	20	1.00E+02	298 @ 20	3.03E-02	25#	0.104 s	4.57E+01			2.00	
Carbon Tetrachloride	153.8	7.93E+02	20	5.37E+02	113@25	3.04E-02	25	0.078 s	1.52E+02	m	1.93E-03	2.73	
Chlorobenzene	112.6	4.72E+02	25	7.24E+02	11.8 @ 25	3.70E-03	25	0.073 s	2.24E+02	m	1.16E-03	2.86	
Chloroform	119.4	7.92E+03	25	8.32E+01	160 @ 20	3.67E-03	25	0.104 s	5.25E+01	m	3.85E-04	1.92	
Chloroethane	64.5	5.74E+03	20	2.69E+01	2660 @ 25	1.11E-02	24.8	0.107 s	1.70E+01		6.19E-03	1.43	
Chloromethane	50.5	6.36E+03	20	8.13E+00	3800 @ 20	8.82E-03	25	0.110 s	5.12E+00		6.19E-03	0.91	
Cyanide	27.0	1.00E+06		2.24E+00	-	2.98E-06	25#	0.173 #	1.41E+00		1.03E-03	0.35	
Dimethylbenzene	106.2	2.00E+02		5.89E+02	5@20	5.25E-03	25	0.073 s	2.71E+02		1.93E-03	2.77	
Ethylbenzene	106.2	1.69E+02	20	1.38E+03	10 @ 25.9	7.88E-03	25	0.075 t	2.04E+02	m	3.04E-03	3.14	
Methylene chloride	84.9	1.30E+04	25	1.78E+01	429@25	2.19E-03	25	0.101 s	1.00E+01	m	6.19E-03	1.25	
Styrene	104.1	3.10E+02	20	8.71E+02	5 @ 20	2.75E-03		0.071	9.12E+02	m	3.30E-03	2.94	
Tetrachloroethene	165.8	2.00E+02	25	4.68E+02	19@25	1.84E-02	25	0.072 s	2.65E+02	m	4.19E-04	2.67	
Toluene	92.1	5.26E+02	20	5.62E+02	28 @ 25	6.64E-03	25	0.087 t	1.40E+02	m	3.30E-03	2.75	
Trans-1,3-Dichloropropene	111	2.80E+03		1.12E+02	34 @ -	1.80E-03		0.08	7.08E+01			2.05	
Trichloroethene	131.4	1.10E+03	25	5.13E+02	77 @ 25	1.03E-02	25	0.079 s	9.43E+01	m	4.19E-04	2.71	
Vinyl Acetate	86.1	2.00E+04		5.37E+00	0	5.11E-04		0.085 t	5.25E+00			0.73	*
Vinyl Chloride	62.5	2.76E+03	25	3.16E+01		2.70E-02	25	0.106 s	1.86E+01		2.41E-04	1.50	
Xylene	106.2	2.00E+02		5.89E+02	5 @ 20	5.25E-03	25	0.073 s	1.96E+02	m	1.93E-03	2.77	
		_			Semi-volatile	Organics							
1,2,4-Trichlorobenzene	181.46	3.00E+02	22	1.02E+04		1.42E-03	25	0.03	1.66E+03	m	9.63E-04	4.01	
2-Chlorophenol	128.6	2.20E+04	20	1.41E+02	1.05E-5 L	3.91E-04	20	0.0501	3.96E+02			2.15	
2-Methylnaphthalene	142.2	2.60E+01	25	7.24E+03	10@105	2.20E-02		0.056	4.56E+03			3.86	

Table C8.5. Recommended model parameters for organics

C30885

Constituents			S., @	кож		pH=6 for Ionizing Organics				Biodegradation rate,			
		Solubility S _w			Vapor	Henry's							
	Mol. wt.		temp.		pressure	constant (K _h)	Kh @ temp.	Air Diff. co	oeff.	кос		1	Log
Constituents	(g/moi)	(mg/L)	<u>(C)</u>	(mi/mi)	(tor @ °C)	(atm.m ^{-/mol})	<u>(°C)</u>	(cm*/s)		(ml/g)		(1/d)	(KOW
2-methylphenol	108.1	2.60E+04	40	9.77E+01		1.20E-06	25*	0.074	t	9.12E+01		2.48E-02	1.99
-methyl-l-propanoic acid	/4.1	9.50E+04	18	6.76E+00	10@25	2.44E-07				4.26E+00			0.83
,4-Dichlorophenol	163.0	4.50E+03	25	1.20E+03		3.16E-06	20	0.035		1.57E+02		9.90E-03	3.08
,4-Dinitrophenol	184.1	2.79E+03	18	3.55E+01	1.49E-5 L	4.43E-07	18	0.027		2.18E+01		1.30E-03	1.55
,4-Dimethylphenol	122.2	7.87E+03	#	2.29E+02		2.00E-06	25	0.058		2.09E+02		2.48E-02	2.36
2,4,5-Trichlorophenol	197.5	1.20E+03	25	7.94E+03		4.43E-06	225*	0.029		2.21E+03		3.81E-04	3.90
2,4,6-Trichlorophenol	197.5	8.00E+02	25	5.01E+03		7.79E-06	25	0.032		7.96E+02		3.81E-04	3.70
-Methylcholanthrene	268.3	3.00E-03	25	1.29E+07						8.12E+06			7.11
-Chloro-3-methylphenol	142.6	3.85E+03	20	1.26E+03		2.50E-06	20	0.056		7.93E+02			3.10
-Methylphenol	108.1	2.40E+04	40	8.51E+01		5.87E-09	25#	0.075	#	5.36E+01		2.48E-02	1.93
Icenaphthene	154.2	4.24E+00	25	8.32E+03		1.55E-04	25	0.042		4.90E+03	m	1.70E-03	3.92
Acenaphthylene	152.2	3.93E+00	25	1.17E+04		1.14E-04	25	0.062		7.40E+03		2.92E-03	4.07
Acetophenone	120.2	5.50E+03		3.80E+01	1@15	7.80E-07				2.40E+01			1.58
Anthracene	178.2	4.34E-02	25	3.55E+04	1.95E-4 L	6.50E-05	25	0.032		2.35E+04	т	3.77E-04	4.55
Benzo (a) anthracene	228.3	9.40E-03	24	5.01E+05	5E-9 @ 20	3.35E-06	25#	0.051		3.58E+05	m	2.55E-04	5.70
Benzo (a) pyrene	252.3	1.62E-03	25	1.29E+06	5E-9 @ 21	1.13E-06	25	0.043		9.69E+05	m	3.27E-04	6.11
Benzo (b) fluoranthene	252.3	1.50E+03	#	1.58E+06	5E-7 L	1.11E-04	25#	0.023	#	1.23E+06		2.84E-04	6.20
Benzo(g,h,i)perylene	276.3	2.60E-04	25	1.70E+07	1E-10 @ 20	1.40E-07		0.042		1.07E+07		2 67E-04	7 23
Benzo (k) fluoranthene	252.3	8.00E-04	#	1.58E+06	1E-11 @ 20	8.29E-07	25#	0.023		1.23E+06		8 10E-05	6.20
Benzoic Acid	122.1	3.50E+03	20	7.24E+01	10@132	L54E-06		0.054		9.69E-01		0.102 05	1.86
Bis-(2-Ethylhexyl)phthalate	390.6	3.40E-01	25	2.00E+07	1.2 @ 200	L02E-07	20	0.035	s	1 11E+05	m	178E-03	7 30
Butylbenzylphthalate	312.4	2.69E+00		6.92E+04	8.6E-6@20	1.26E-06	25#	0.017	hb	1 37E+04	m	3 85E-03	4 84
Chrysene	228.3	1.60E-03	25	5.01E+05	6.3E-9 @25	9.46E-05	25	0.025	00	3 98E+05		173E-04	5 70
Dibenzo(a,h)anthracene	278.4	2.49E-03	25	4 90E+06	1F-10 1	1 47E-08	25	0.020	hh	1 79E+06	m	1.84E-04	6.69
Dibenzofuran	168.2	1.00E+01		1 32E+04		1.172.00	25	0.068	00	8 31 E+03		6 19E-03	4.12
Diethylphthalate	222.2	1.08E+03		3 16E+02	0.05 @ 70	4 50E-07	25#	0.026	hh	8.22E+01	m	3.095-03	2 50
Di-n-butylnhthalate	278.4	4 00F+02	25	1 58E+05	010115	2 80E-07	25	0.042	00	1.57E+03	m	3.01E.02	5 20
Di-n-octylphthalate	390.6	2.00E-02	25	1.55E+08	0.2 @ 150	6.68E-05	25	0.042		0.08E+08		1.00E.03	8.06
Fluoranthene	202.3	2.06E-01	25	1.32E+05	5E-6 I	1.61E-05	25	0.019		4 01E±04	-	1.90E-05	5.00
Fluorene	166.2	1.986+00	25	1.62E+04	512-0 L	6.36E-05	25	0.036	a hh	7716+04	m	3.940-04	2.12
Hevachlorobutadine	260.8	3 23E+00	20	6.46E+04	0.15.@20	815E 03	20	0.056	00	3 900 + 04		2.09E-03	4.21
Hexachloroethane	200.8	5.00E+01	20	1.000+04	0.13 @20	3 80E 03	20	0.030		9 70E+03		9.03E-04	4.81
Indeno(1,2,3, o, d)nurong	230.7	2 2012 05		1.000004	15 10 1	3.09E-03	25	0.003		0.70E+03		9.03E-04	4.00
Isonborone	128.2	1.200-03		5 01 E±01	0.28 @20	1.00E-00	20	0.019		3.47E±00		2.37E-04	0.03
Sophorone	138.2	1.200+04	25	3.01E+01	0.38 @20	0.04E-00	20	0.062		4.08E+01		0.23E-02	1.70
Napinalene	120.2	3.100-01	25	2.296+03	0.082 @ 25	4.83E-04	25	0.039		1.19E+03	m	2.69E-03	3.30
N-miroso-diphenylamine	196.2	3.31ETUI	20	1.43E+03		5.00E-00	25W	0.031	DD	1.29E+03		5.10E-03	3.16
	200.3	1.95ETU3	20	1.23E+05	10112	2.44E-08	20	0.050	t	1.50E+03		4.56E-04	5.09
r nenanthrene	1/8.2	8.102-01	21	2.885+04	1 @ 118	3.93E-05	25	0.054		1.82E+04		8.66E-04	4.46
Phenoi	94.1	8.28E+04	25	3.02E+01		3.9/E-0/	25	0.082	S	2.88E+01		2.48E-02	1.48
Pyrene	202.3	1.32E-01	26	1.29E+05	2.5 @ 200	1.10E-05	25	0.027	bb	6.80E+04	m	9.12E-05	5.11
	257 0	1005.05			Pesticides	PCBS							
Aroclor-1016	257.9	4.908-02	24	2.40E+04		1.35E-02	25	0.046		1.51E+04			4.38
Aroclor-1248	299.5	5.40E-02		5.62E+05		4.40E-04	25	0.043		3.54E+05			5.75
Aroclor-1254	328.4	5.70E-02	24	1.07E+06		8.37E-03	25	0.041		6.75E+05		4.72E-03	6.07

Table C8.5. Recommended model parameters for organics (continued)

ī

						pH=6 for lonizing Organics			Biodegradation rate,			
			S. @		Vapor	Henry's						
	Mol. wt.	Solubility S _w	temp.	KOW	pressure	constant (K _h)	K₁ @ temp.	Air Diff. coeff.	кос	1	Log	
Constituents	(g/mol)	(mg/L)	(°C)	(ml/ml)	(tor @ °C)	(atm.m ³ /mol)	(°C)	(cm²/s)	(ml/g)	(1/d)	(KOW)	
Aroclor-1260	375.7	8.00E-02	24	1.29E+06		3.36E-04	25	0.038	8.12E+05		6.11	
Octachlorodibenzo-p-dioxin												

Table C8.5. Recommended model parameters for organics (continued)

"Revised from Part 5 of 1996 SSG

Solubilities, Henry's Constant, and Log (K_{im}) have been taken from RREL Treatability Data Base (EPA 1994) unless otherwise indicated. Biodegradation half-lives are taken from Hand Book of Environmental Degradation Rates (Howard et al. 1991) unless otherwise indicated.

Air diffusion coefficients are obtained from EPA 1987 unless otherwise indicated.

[* | Represents calculated values

| ** | indicates the source of Lyman et al. 1990

[#] indicates STF Data Base (EPA 1991) as the source

s | indicates Shen et. al 1993 as the source

|w|-EPA WATER7 database November 1990

m = measured Koc values

L = Source from EPA 1995

bb = Estimated using correlations in WATER8 Model.

00-001(doc)/082401