

Department of Energy

RECEIVED
By Terri.Drake at 7:27 am, Feb 27, 2023

PPPO-02-10023626-23B

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

February 23, 2023

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-U CONTAINED LANDFILL FOURTH QUARTER CALENDAR YEAR 2022 (OCTOBER–DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0245/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the fourth quarter calendar year (CY) 2022 has been uploaded to the Kentucky eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the fourth quarter CY 2022 monitoring well data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the fourth quarter CY 2022, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit. None of the preliminary Type 2 exceedances in downgradient wells had increasing trends and are considered to be a Type 1 exceedances—not attributable to the C-746-U Landfill.

If you have any questions or require additional information, please contact Ryan Callihan at (740) 970-0255.

Sincerely,

April Ladd Date: 2023.02.23 16:10:40 -06'00'

April Ladd
Acting Paducah Site Lead
Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill Fourth Quarter Calendar Year 2022 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0245/V4

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.travis@ky.gov, KDEP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov reinhard.knerr@pppo.gov, PPPO ryan.callihan@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB

cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

C-746-U Contained Landfill Fourth Quarter Calendar Year 2022 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

Date

C-746-U Contained Landfill
Fourth Quarter Calendar Year 2022
(October–December)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2023

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURE	ES		V
ΤA	BLES	S		v
A(CRON	YMS		vii
1.	INT		TION	
	1.1		GROUND	
	1.2	MONI	TORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	
	1.3	KEY F	RESULTS	4
2.	DAT	A EVA	LUATION/STATISTICAL SYNOPSIS	9
	2.1	STAT	ISTICAL ANALYSIS OF GROUNDWATER DATA	10
		2.1.1	Upper Continental Recharge System	10
		2.1.2	Upper Regional Gravel Aquifer	10
		2.1.3	Lower Regional Gravel Aquifer	10
	2.2	DATA	VERIFICATION AND VALIDATION	11
3.	PRC	FESSIC	NAL GEOLOGIST AUTHORIZATION	13
4.	REF	ERENC	ES	15
Αŀ	PENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PENI	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PENI	OIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
Αŀ	PENI	OIX F:	NOTIFICATIONS	F-1
ΑF	PENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PENI	OIX H:	METHANE MONITORING DATA	H-1
ΑF	PENI	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
ΑF	PENI	OIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

APPENDIX K:	LABORATORY ANALYTICAL METHODS	K-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS	L-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
2.	C-746-U Landfill Surface Water Monitoring Locations	5
	TABLES	
1.	Summary of MCL Exceedances	4
	Exceedances of Statistically Derived Historical Background Concentrations	
	Exceedances of Current Background UTL in Downgradient RGA Wells	
4.	C-746-U Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	
5.	Monitoring Wells Included in Statistical Analysis	10

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Fourth Quarter Calendar Year 2022 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL and historical background UTL exceedances that have occurred, beginning in the third quarter, calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water analyses and written comments are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4, 5, and 6, with Phase 7 approved for receipt of waste as of September 27, 2019. A minor permit modification that included upgrades to the leachate storage capacity for Phases 6 and 7 was approved by KDWM on May 21, 2021 (FRNP 2021). Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW359, MW368, MW376, and MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

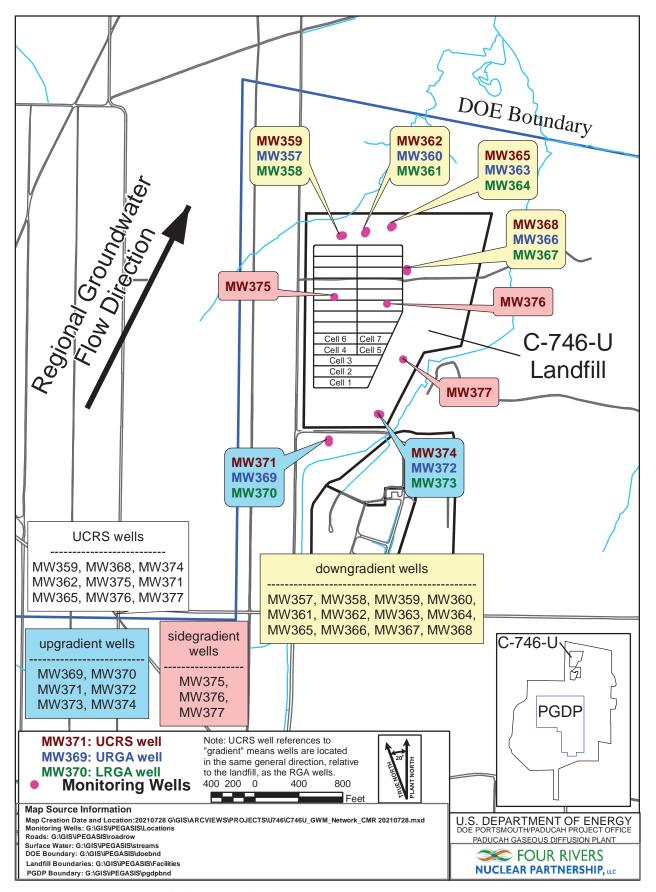


Figure 1. C-746-U Landfill Groundwater Monitoring Well Network

Consistent with the approved *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills* (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2022 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the fourth quarter 2022 was conducted in October and November 2022. MW361 was resampled for volatile organic compounds to verify the original nondetect result for trichloroethene (TCE). TCE levels in MW361 exceeded the MCL in the previous five quarters. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 25, 2022, in MWs of the C-746-U Landfill (see Appendix E, Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Appendix E, Figure E.4). Water level measurements in 38 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During October, RGA groundwater flow in the area of the landfill was oriented northeast. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in October was 6.17×10^{-4} ft/ft (see Appendix E, Table E.2). The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 9.21×10^{-4} ft/ft and 9.16×10^{-4} ft/ft, respectively (see Appendix E, Table E.2). Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.57 to 2.67 ft/day for the URGA and 1.56 to 2.66 ft/day for the LRGA (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Industrial Hygiene staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on December 12, 2022. See Appendix H for a map (see Appendix H, Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Monitoring Report provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059 (FRNP 2021), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water sampling was performed at three locations (Figure 2) monitored for the C-746-U Landfill: (1) instream location L154, (2) downstream location L351, and (3) instream location L150. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the fourth quarter 2022, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be background. Constituents in downgradient wells that exceeded current background UTL are shown on Table 3.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	None	None

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS ^a	URGA	LRGA
MW362: Oxidation-reduction	MW357: Oxidation-reduction	MW358: Nickel, oxidation-
potential, ^b sulfate	potential ^b	reduction potential ^b
MW365: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential, ^b	potential ^b	potential ^b
sulfate		
MW371: Dissolved oxygen,	MW363: Oxidation-reduction	MW364: Oxidation-reduction
oxidation-reduction potential ^b	potential ^b	potential ^b
MW374: Oxidation-reduction	MW366: Oxidation-reduction	MW367: Oxidation-reduction
potential ^b	potential ^b	potential ^b
MW375: Dissolved oxygen,	MW369: Oxidation-reduction	MW370: Dissolved oxygen,
oxidation-reduction potential ^b ,	potential ^b	oxidation-reduction potential ^b
sulfate		
	MW372: Calcium, conductivity,	MW373: Oxidation-reduction
	dissolved solids, oxidation-	potential ^b
The state of the s	reduction potential, b technetium-99	

^a Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

b Oxidation-reduction potential calibrated as Eh.

¹ The UTL comparison for pH uses a two-sided test for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

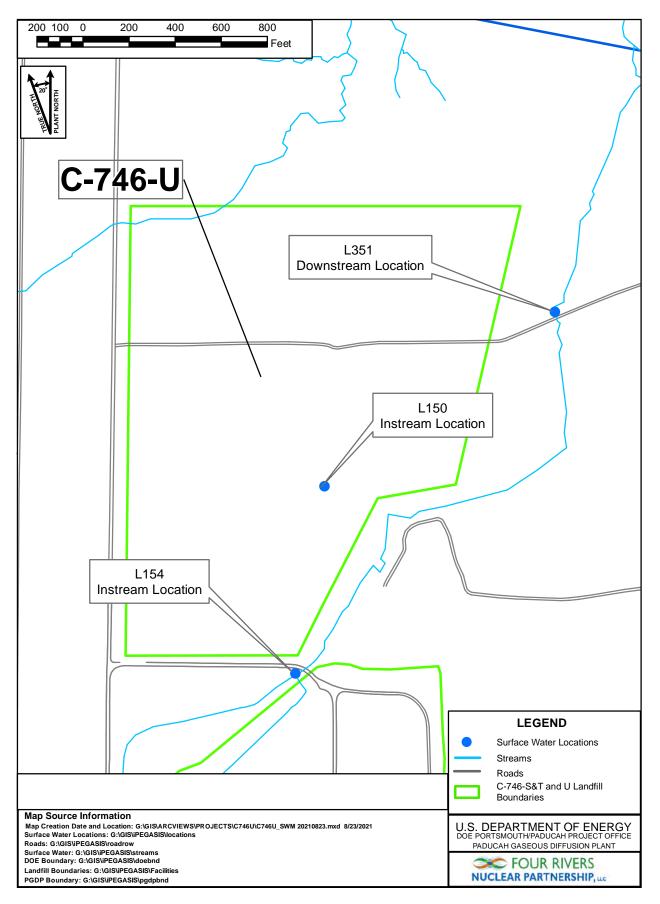


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

Table 3. Exceedances of Current Background UTL in Downgradient RGA Wells

URGA	LRGA		
MW363: Oxidation-reduction potential*	MW358: Nickel		

^{*}Oxidation-reduction potential calibrated as Eh.

The notification of the parameter that exceeded its MCL was submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

Any constituent that exceeded the MCL in downgradient wells would be subjected to a comparison against the UTL concentration calculated using historical concentrations from wells identified as background.

This report is the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient (compliance) well concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill). Except for nickel in MW358 and oxidation-reduction potential in MW363, all UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

Nickel in downgradient LRGA well MW358 and oxidation-reduction potential in MW363, exceeded both the historical background UTL and the current background UTL; therefore, are preliminarily considered to be Type 2 exceedances. To evaluate the preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Neither nickel in MW358 nor oxidation-reduction potential in MW363 showed increasing trends and both are considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

Table 4. C-746-U Landfills Downgradient Wells Trend Summary
Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
C-746-U	MW358	Nickel	8	0.05	0.274	6	No trend
Landfill	MW363	Oxidation-reduction potential	8	0.05	0.274	6	No trend

¹ An alpha of 0.05 represents a 95% confidence interval.

Note: Statistics generated using ProUCL.

²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend. 4 The Mann-Kendall decision operates on two hypotheses; the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

All UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2022 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

Parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6 were documented and evaluated further. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as background) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data were divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data showed a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both a UTL and LTL to determine if statistically significant deviations in concentrations existed with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included in the statistical analyses are listed in Table 5.

Table 5. Monitoring Wells Included in Statistical Analysis^a

UCRS	URGA	LRGA
MW359 ^c	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368 ^c	MW366	MW367
MW371 ^b	MW369 (background)	MW370 (background)
MW374 ^b	MW372 (background)	MW373 (background)
MW375		
MW376 ^c		
MW377 ^c		

^a Map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, calcium, conductivity, dissolved solids, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Oxidation-reduction potential exceeded the current background UTL in downgradient URGA well MW363.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, dissolved oxygen, nickel, and oxidation-reduction potential displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Nickel exceeded the current background UTL in downgradient LRGA well MW358.

^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^c Well had insufficient water to permit a water sample for laboratory analysis.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION: *C-746-U Contained Landfill Fourth Quarter Calendar*

Year 2022 (October-December) Compliance Monitoring Report,

Paducah Gaseous Diffusion Plant, Paducah, Kentucky

(FRNP-RPT-0245/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

PG 113927 K.Davis 2-708-2023

> February 20, 2023 Date

PG113927

13

4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky,* PAD- PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name: U.S. DOE–Paducah Gaseous I (As officially shown on DWM I			Activity:	C-746-	U Contained Landfill		
	(As c		own on DWM	Permit Face)			
Permit No:	SW07300015 SW07300045	,	Fii —	nds/Unit No:	Quarter -	& Year	4th Qtr. CY 2022
Please check to	he following a	s applical	ble:				
Chara	acterization _	<u>X</u> Q	uarterly	Semiannual	Ann	ual _	Assessment
Please check a	pplicable subi	nittal(s):	X	Groundwater	X	X Surface Water	
				Leachate	X	_ Metha	ane Monitoring
45:160) or by staturisdiction of the 48) hours of meanstruction pages. The certify under pendiction with a system design of the person when the person with a system design of the person when the possible of the possible o	his form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 5:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the risdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight 8) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. abmitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the struction pages. Detertify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance in a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my quiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my nowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, cluding the possibility of fine and imprisonment for such violations. MYRNA REDFIELD (Affiliate) Digitally signed by MYRNA REDFIELD (Affiliate) Date: 2023.02.22 18:52:08 -06'00'						
Myrna E. Rec Four Rivers N						Date	
April L	add			/ -	signed by 23.02.23 1		
April Ladd, A U.S. Departm			ead		-	Date	

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date: _	Groundwater: October & Novem Surface water: October & Decen Methane: December 2022		McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045
Facility Name:	U.S. DOE—Paducah Gaseous D				
	(As officially sho	wn on DWM Permit Face	e)		
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053	
	Street	City/State		Zip	
Phone No: (270)) 441-6800 Latitude:	N 37° 07' 45"	Longi	tude: W	88° 47' 55"
	OWI	NER INFORMATION			
Facility Owner:	U.S. DOE, Joel Bradburne, Ma Portsmouth/Paducah Project O		Phone No:	(859) 219	9-4000
Contact Person:	Bruce Ford	<u> </u>	Phone No:		
Contact Ferson.	Director, Environmental	Services	Filone No.	(270) 441	1-3337
Contact Person Tit					
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053	
C	Street	City/State		Zip	
Company: GEC Contact Person: Mailing Address:	(IF OTHER THA O Consultants Corporation Jason Boulton 199 Kentucky Avenue Street	N LANDFILL OR LABO Kevil, Kentucky City/State	Phone No:	(270) 81 42053 Zip	6-3415
	LABO	RATORY RECORD #1			
Laboratory GEL	Laboratories, LLC	Lab	ID No: KY901	129	
Contact Person:	Valerie Davis		Phone No:	(843) 769	9-7391
Mailing Address:	2040 Savage Road	Charleston, South Car	rolina	294	07
	Street	City/State		Zi	p
	LABO	RATORY RECORD #2	}		
Laboratory: N/A	1	Lab I	D No: N/A		
Contact Person:	N/A		Phone No:	N/A	
Mailing Address:	N/A				
	Street	City/State			Zip
	LABO	RATORY RECORD #3	}		
Laboratory: N/A		Lah I	D No: N/A		
Contact Person:	N/A		Phone No:	N/A	
Mailing Address:	N/A		1101101101	- 1,72	
2 1001000.	Street	City/State			Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / 1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-47	799	8004-09	981	8004-4800	
Facility's Loca	al Well or Spring Number (e.g., N	w−1	, MW-2, etc	.)	357		358		359		360	
Sample Sequence	e #				1		1		1		1	
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		10/6/2022 0	9:19	10/6/2022	10:18	NA		10/6/2022 07:	:17
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or '	"N") ³				N		N		N		N	
Facility Sample	acility Sample ID Number (if applicable)					-23	MW358U0	G1-23	NA		MW360UG1	-23
Laboratory Samp	aboratory Sample ID Number (if applicable)						595947	003	NA		59594700	5
Date of Analysi	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis					2	10/9/20	22	NA		10/9/2022	!
Gradient with m	respect to Monitored Unit (UP, DO	WN,	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.373		0.258			*	0.165	J
16887-00-6	Chloride(s)	Т	mg/L	9056	30.6	J	17.5	J		*	7.56	J
16984-48-8	Fluoride	Т	mg/L	9056	0.116	J	0.224	J		*	0.144	J
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.4	J	0.126	J		*	0.632	J
14808-79-8	Sulfate	Т	mg/L	9056	37.9		30			*	12.2	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.08		30.07			*	30.06	
s0145	Specific Conductance	Т	μ MH0/cm	Field	428		544			*	396	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	8	8004-4799)	8004-0981		8004-4800)
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.76		322.76			*	322.78	
N238	Dissolved Oxygen	т	mg/L	Field	5.08		1.95			*	2.41	
s0266	Total Dissolved Solids	Т	mg/L	160.1	217		299			*	223	
s0296	рн	т	Units	Field	5.91		6.2			*	5.96	
NS215	Eh	т	mV	Field	328		280			*	223	
s0907	Temperature	т	°C	Field	15.78		16.89			*	15.17	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0591			*	0.0359	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00703			*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0757		0.0908			*	0.2	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.381		0.134			*	0.0458	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	27		34.5			*	19	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00315	J		*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.036			*	0.00115	
7440-50-8	Copper	т	mg/L	6020	0.000555	J	0.000518	J		*	0.00127	J
7439-89-6	Iron	Т	mg/L	6020	0.0431	J	17.8			*	0.0883	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	11.9		18.2			*	8.34	
7439-96-5	Manganese	Т	mg/L	6020	0.00331	J	2.36			*	0.0104	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

_

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	1	8004-4800)
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.00031	J	0.000534	J		*	<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.000664	J	0.0945			*	0.00149	J
7440-09-7	Potassium	т	mg/L	6020	1.78		3.41			*	0.76	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	0.00169	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	42.2		32.7			*	57.5	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00354	BJ	0.00446	BJ		*	0.00395	BJ
7440-66-6	Zinc	Т	mg/L	6020	0.00381	J	0.0109	J		*	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-4800	
Facility's Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00284		0.00063	J		*	0.00061	J

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	3	8004-479	9	8004-09	81	8004-4800	
Facility's Loc	al Well or Spring Number (e.g., 1	ſW−1	L, MW-2, et	:c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000207		<0.0000202			*	<0.0000205	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.1		<0.106			*	<0.0979	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.106			*	<0.0979	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.106			*	<0.0979	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.106			*	<0.0979	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.106			*	<0.0979	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.106			*	<0.0979	

C

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-4800)
Facility's Loc	cal Well or Spring Number (e.g., N	IW-1	1, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.106			*	<0.0979	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.106			*	<0.0979	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.106			*	<0.0979	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.83	*	4.29	*		*	-0.266	*
12587-47-2	Gross Beta	т	pCi/L	9310	8.45	*	12.3	*		*	1.02	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.244	*	0.428	*		*	0.23	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.43	*	0.967	*		*	2.9	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	35.2	*	17.5	*		*	3.53	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.321	*	0.0968	*		*	-0.201	*
10028-17-8	Tritium	т	pCi/L	906.0	-28.8	*	35.9	*		*	-68.3	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	19.2	J	<20			*	12.5	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.39	J	5.16			*	0.716	J
s0586	Total Organic Halides	т	mg/L	9020	0.00446	J	0.00496	J		*	0.00658	J

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	796	8004-479	97
Facility's Loca	al Well or Spring Number (e.g., N	/W−1	., MW-2, etc	:.)	361		362		363		364	
Sample Sequence	e #				1		1		1		1	
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		10/6/2022 0	7:57	10/6/2022	08:36	10/10/2022	2 07:24	10/10/2022	08:25
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or '	"N") ³				N		N		N		N	
Facility Sample	cility Sample ID Number (if applicable)						MW362U0	G1-23	MW363U0	G1-23	MW364UG	1-23
Laboratory Samp	aboratory Sample ID Number (if applicable)						595947	009	5962530	001	5962530	03
Date of Analysi	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						10/9/20	22	10/14/20	022	10/14/20	22
Gradient with m	respect to Monitored Unit (UP, DO	OWN,	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	N	DOWN	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.459		<0.2		<0.2		0.459	
16887-00-6	Chloride(s)	т	mg/L	9056	36.7	J	2.7	J	24.8	J	36.5	J
16984-48-8	Fluoride	т	mg/L	9056	0.114	J	0.311	J	0.2	J	0.158	J
s0595	Nitrate & Nitrite	т	mg/L	9056	1.19	J	0.396	J	5.83	J	1.2	J
14808-79-8	Sulfate	т	mg/L	9056	80.5		27.7		26.2		69.5	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.07		30.07		30.23		30.25	
s0145	Specific Conductance	т	μ MH0/cm	Field	519		680		414		485	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796		8004-4797	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.77		335.81		322.42		321.62	
N238	Dissolved Oxygen	т	mg/L	Field	4.01		2.39		2.33		3.64	
s0266	Total Dissolved Solids	т	mg/L	160.1	287		385		232		266	
s0296	рн	т	Units	Field	5.75		6.67		6.12		6	
NS215	Eh	т	mV	Field	276		298		470		433	
s0907	Temperature	т	°C	Field	14.83		15.06		15.06		15.33	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0946		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0528		0.103		0.138		0.0559	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.148		0.022		0.0234		0.122	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	34.6		20.5		25.9		31.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.000675	J	<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000922	J	0.00111	J	0.000312	J	<0.002	
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.075	J	<0.1		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	15.6		9.48		10.8	В	14.2	В
7439-96-5	Manganese	т	mg/L	6020	0.00919		0.0024	J	0.0861		0.00257	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	t ¹ , Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	6	8004-479	7
Facility's I	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.0006	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.000842	J	0.00123	J	0.00718		0.00109	J
7440-09-7	Potassium	Т	mg/L	6020	2.56		0.327		2.24		2.08	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	43.6		129		38.6		42.6	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.00282		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00408	BJ	0.00502	BJ	<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		0.0108	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		0.00221	J	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-4795		8004-098	6	8004-47	96	8004-479	97	
Facility's Loc	cal Well or Spring Number (e.g.,)	MW-	1, MW-2, et	:c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00049	J	<0.001		<0.001		0.00301	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-479	96	8004-479	97
Facility's Loc	al Well or Spring Number (e.g., 1	⁄w−1	, MW-2, et	:c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000206		<0.0000208		<0.0000208		<0.0000208	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0972		<0.104		<0.1		<0.109	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0972		<0.104		<0.1		<0.109	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0972		<0.104		<0.1		<0.109	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0972		<0.104		<0.1		<0.109	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0972		<0.104		<0.1		<0.109	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0972		<0.104		<0.1		<0.109	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0972		<0.104		<0.1		<0.109	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0972		<0.104		<0.1		<0.109	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0972		<0.104		<0.1		<0.109	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.04	*	2.23	*	-0.91	*	1.48	*
12587-47-2	Gross Beta	Т	pCi/L	9310	27	*	0.602	*	3.13	*	39.3	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.0882	*	0.253	*	0.401	*	0.518	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.39	*	-0.718	*	-0.907	*	-0.0643	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	45.1	*	-1.8	*	-7.61	*	35	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.03	*	0.641	*	1.6	*	0.196	*
10028-17-8	Tritium	Т	pCi/L	906.0	-19.8	*	-143	*	-153	*	-159	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	15.9	J	22.5		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.671	J	1.52	J	0.737	J	0.594	J
s0586	Total Organic Halides	т	mg/L	9020	0.0041	J	0.0192		0.00852	J	<0.01	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-09	984	8004-	0982	8004-4	1793	8004-0983			
Facility's Lo	cal Well or Spring Number (e.g., 1	/W-1	, MW-2, etc	.)	365		36	6	36	7	368	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/10/2022	09:06	10/10/20	22 09:50	10/10/202	22 10:32	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)		MW365U0	G1-23	MW366	UG1-23	MW3671	JG1-23	NA			
Laboratory San	mple ID Number (if applicable)		5962530	005	59625	3007	59625	3011	NA			
Date of Analy	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					022	10/14/	2022	10/14/	2022	NA	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOW	N	DO'	WN	DOV	VN	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.501		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	2.54	J	39.1	J	7.28	J		*
16984-48-8	Fluoride	т	mg/L	9056	0.357	J	0.163	J	0.104	J		*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.688	J	1.21	J	<10			*
14808-79-8	Sulfate	т	mg/L	9056	54.5		43.8		20.5			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.26		30.26		30.26			*
s0145	Specific Conductance	т	μ MH0/cm	Field	405		491		246			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

For Official Use Only

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-4793		8004-0983	3
Facility's Lo	cal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.63		322.58		322.55			*
N238	Dissolved Oxygen	т	mg/L	Field	4.25		4		1.24			*
s0266	Total Dissolved Solids	т	mg/L	160.1	215		266		120			*
s0296	рН	т	Units	Field	6.23		6.07		5.92			*
NS215	Eh	т	mV	Field	453		434		236			*
s0907	Temperature	т	°C	Field	16.17		16.5		16.78			*
7429-90-5	Aluminum	т	mg/L	6020	0.0365	J	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0969		0.111		0.13			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	0.0066	J	0.0569		0.017			*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	18.2		31.2		13			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.0013		<0.001		0.00615			*
7440-50-8	Copper	Т	mg/L	6020	0.0119		0.000329	J	<0.002			*
7439-89-6	Iron	т	mg/L	6020	0.0372	J	<0.1		6.91			*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	8.75	В	13.6	В	7.22	В		*
7439-96-5	Manganese	Т	mg/L	6020	0.0224		0.00222	J	1.39			*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-0983	
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-02-0	Nickel	т	mg/L	6020	0.00656		0.00171	J	0.00355			*
7440-09-7	Potassium	т	mg/L	6020	0.239	J	2.04		2.84			*
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00261	J	<0.005			*
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5	Sodium	т	mg/L	6020	46.2		47.8		15.9			*
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020	0.000086	J	<0.0002		<0.0002			*
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6	Zinc	Т	mg/L	6020	0.021		<0.02		0.0096	J		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

F

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-0984		8004-098	2	8004-47	93	8004-098	3		
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00203		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-098	4	8004-0982	2	8004-479	93	8004-0983			
Facility's Loc	al Well or Spring Number (e.g., N	1W -1	1, MW-2, et	:c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000207		<0.0000208		<0.0000204			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	0.0741	J	<0.104		<0.102			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.103		<0.104		<0.102			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.103		<0.104		<0.102			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.103		<0.104		<0.102			*
53469-21-9	PCB-1242	т	ug/L	8082	0.0741	J	<0.104		<0.102			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.103		<0.104		<0.102			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-0983	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.103		<0.104		<0.102			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.103		<0.104		<0.102			*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.103		<0.104		<0.102			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.79	*	-1.66	*	2.49	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	6.17	*	34.6	*	11.6	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.412	*	0.181	*	0.398	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.43	*	6.27	*	-0.869	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-11.7	*	54.9	*	-14.3	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.29	*	0.39	*	0.9	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	-114	*	-189	*	-85.4	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		52.5			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060	1.02	J	0.534	J	0.583	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0157		0.0056	J	<0.01			*
		\perp										
												<u> </u>
		Щ										<u> </u>

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-48	320	8004-	4818	8004-4	1819	8004-4	808
Facility's Loc	cal Well or Spring Number (e.g., 1	/W-1	, MW-2, etc	.)	369		37	0	37	1	372	2
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/11/2022	07:21	10/11/20	22 08:06	10/11/202	22 08:58	10/11/2022	2 09:42
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	ility Sample ID Number (if applicable)					G1-23	MW370	JG1-23	MW3711	JG1-23	MW372U	G1-23
Laboratory Sam	ooratory Sample ID Number (if applicable)					001	59641	0003	59641	0005	596410	0007
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analys)22	10/18/	2022	10/18/	2022	10/18/2	022
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	UP		U	Р	UF)	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.344		0.538		<0.2		0.499	
16887-00-6	Chloride(s)	т	mg/L	9056	28.2	J	38.5	J	4.61	J	39.6	J
16984-48-8	Fluoride	т	mg/L	9056	0.216	J	0.18	J	0.239	J	0.2	J
s0595	Nitrate & Nitrite	т	mg/L	9056	1.02	J	1.25	J	0.264	J	1.36	J
14808-79-8	Sulfate	т	mg/L	9056	8.07		19.5		11.8		131	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.2		30.21		30.22		30.22	
s0145	Specific Conductance	т	μ MHO /cm	Field	485		552		870		914	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-482	0	8004-4818	3	8004-4819		8004-4808	j	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.95		323.94		340.54		324.01	
N238	Dissolved Oxygen	т	mg/L	Field	3.44		4.8		2.87		2.55	
s0266	Total Dissolved Solids	т	mg/L	160.1	212		247		424		455	
s0296	рн	т	Units	Field	6.05		6.07		6.48		6.04	
NS215	Eh	т	mV	Field	406		427		409		416	
s0907	Temperature	т	°C	Field	15.44		15.89		16.11		17.06	
7429-90-5	Aluminum	т	mg/L	6020	0.0869		<0.05		0.0535		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.373		0.235		0.195		0.051	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0235		0.311		0.013	J	1.4	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	16		28.9		54.5		62.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.0043		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.0011	J	0.000377	J	0.0033		<0.002	
7439-89-6	Iron	Т	mg/L	6020	0.129		<0.1		0.0536	J	<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	6.84		12.6		18.4		21.7	
7439-96-5	Manganese	Т	mg/L	6020	0.00362	J	0.00122	J	0.00594		<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480	8
Facility's 1	Local Well or Spring Number (e.g.	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.000339	J	<0.001		0.000302	J	<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.00326		0.001	J	0.00177	J	0.00125	J
7440-09-7	Potassium	т	mg/L	6020	0.588		2.6		0.407		2.1	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00336	J	<0.005		<0.005		0.00313	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	50.1		45.3		91.1		62.9	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.00199		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		0.00427	J	<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		0.00539	J	<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.0024	J	<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		0.00037	J	<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

					, 00110.	,						
AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	08
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00102		0.00168		<0.001		0.00278	

Don

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482)	8004-4818	3	8004-481	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., N	/W-1	L, MW-2, et	:c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.0000195		<0.0000195		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.104		<0.0995		<0.1		<0.0983	
12674-11-2	PCB-1016	т	ug/L	8082	<0.104		<0.0995		<0.1		<0.0983	
11104-28-2	PCB-1221	т	ug/L	8082	<0.104		<0.0995		<0.1		<0.0983	
11141-16-5	PCB-1232	т	ug/L	8082	<0.104		<0.0995		<0.1		<0.0983	
53469-21-9	PCB-1242	т	ug/L	8082	<0.104		<0.0995		<0.1		<0.0983	
12672-29-6	PCB-1248	т	ug/L	8082	<0.104		<0.0995		<0.1		<0.0983	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.104		<0.0995		<0.1		<0.0983	
11096-82-5	PCB-1260	т	ug/L	8082	<0.104		<0.0995		<0.1		<0.0983	
11100-14-4	PCB-1268	т	ug/L	8082	<0.104		<0.0995		<0.1		<0.0983	
12587-46-1	Gross Alpha	т	pCi/L	9310	5.48	*	-0.0478	*	3.47	*	2.23	*
12587-47-2	Gross Beta	т	pCi/L	9310	34.3	*	20	*	0.626	*	49.1	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.0125	*	-0.158	*	0.648	*	0.0805	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.92	*	-0.627	*	-0.597	*	-5.66	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	56.4	*	20.9	*	-4.37	*	69.7	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.03	*	0.329	*	3	*	0.529	*
10028-17-8	Tritium	Т	pCi/L	906.0	-11.3	*	28.7	*	69.6	*	12.5	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		16.5	J	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	1.02	J	1.07	J	2.07		0.745	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00678	J	0.00792	J	0.00612	J	0.00874	J
												

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

> FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-09	990	8004-09	85	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	, MW-2, etc	.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	ites)		10/11/2022 1	0:23	10/11/2022	2 11:03	10/11/2022	11:46	NA	
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or		N		N		N		N				
Facility Sampl	le ID Number (if applicable)				MW373UG1	1-23	MW374UG1-23		MW375U0	91-23	NA	
Laboratory San	mple ID Number (if applicable)				596410009		596410011		596410	013	NA	
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	10/18/2022		10/18/2022		10/18/2022		NA	
Gradient with	respect to Monitored Unit (UP, Do	OWN, SIDE, UNKNOWN)			UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.494		0.53		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	37.8	J	47.4	J	3.24	J		*
16984-48-8	Fluoride	т	mg/L	9056	0.194	J	0.25	J	0.325	J		*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.829	J	<10		1.08	J		*
14808-79-8	Sulfate	т	mg/L	9056	143		13.2		22.4			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.22		30.21		30.21			*
S0145	Specific Conductance	т	μ MHO/cm	Field	939		860		415			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	3
Facility's Lo	cal Well or Spring Number (e.g., MW	I-1, I	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324		336.07		330.46			*
N238	Dissolved Oxygen	т	mg/L	Field	2.31		1.92		2.89			*
s0266	Total Dissolved Solids	т	mg/L	160.1	484		405		205			*
S0296	рн	т	Units	Field	6.12		6.71		6.44			*
NS215	Eh	т	mV	Field	401		330		350			*
s0907	Temperature	т	°C	Field	17.22		18.61		17.56			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0251	J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.0026	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0274		0.136		0.168			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	2.93		0.0746		0.0113	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	65.6		25.3		13.1			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.000416	J	0.000675	J	<0.001			*
7440-50-8	Copper	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-89-6	Iron	т	mg/L	6020	<0.1		0.539		<0.1			*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	25.6		6.14		5.49			*
7439-96-5	Manganese	Т	mg/L	6020	0.0229		0.228		0.00153	J		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	8
Facility's	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) CAS RN ⁴ CONSTITUENT T Unit METHO						374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000374	J	<0.001			*
7440-02-0	Nickel	т	mg/L	6020	0.00218		0.000837	J	0.00445			*
7440-09-7	Potassium	т	mg/L	6020	2.73		0.509		0.271	J		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00222	J	0.00247	J		*
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5	Sodium	Т	mg/L	6020	55		125		53.5			*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.00031		<0.0002			*
7440-62-2	Vanadium	Т	mg/L	6020	0.00496	J	<0.02		<0.02			*
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02			*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1	Acetone	Т	mg/L	8260	0.00181	J	<0.005		<0.005			*
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-4792		8004-099	0	8004-09	85	8004-09	88		
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	:c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00413		<0.001		<0.001			*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-099	0	8004-098	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g., N	⁄w−1	L, MW-2, et	:c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.0000198		<0.0000194			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.0988		<0.101		<0.0986			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0988		<0.101		<0.0986			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0988		<0.101		<0.0986			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0988		<0.101		<0.0986			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0988		<0.101		<0.0986			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0988		<0.101		<0.0986			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0988		<0.101		<0.0986			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0988		<0.101		<0.0986			*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0988		<0.101		<0.0986			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.115	*	1.93	*	0.863	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	12.1	*	4.71	*	-1.37	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.468	*	0.436	*	0.313	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.44	*	1.24	*	-2.6	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-1.78	*	-1.37	*	1.78	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.12	*	0.827	*	1.96	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	78.9	*	7.47	*	-26.1	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	16.5	J	23.7		<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060	0.743	J	2.06		0.512	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0084	J	0.0236		0.0053	J		*
		Ш										
		Ш										

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						0000-000	0	0000-0000		0000-0000	
Facility's Loca	al Well or Spring Number (e.g., N	w−1	, MW-2, etc	:.)	377		E. BLANI	<	F. BLANK		T. BLANK 1	
Sample Sequence	e #				1		1		1		1	
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		E		F		Т	
Sample Date and	Sample Date and Time (Month/Day/Year hour: minutes)						10/10/2022	10/10/2022 06:35		10:34	10/6/2022 06	6:30
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or '		N		N		N		N				
Facility Sample	e ID Number (if applicable)				NA		RI1UG1-2	23	FB1UG1-2	23	TB1UG1-23	
Laboratory Samp	ple ID Number (if applicable)				NA		5962530	14	5962530	13	595947011	
Date of Analysi	is (Month/Day/Year) For Volatile	Or	ganics Anal	ysis	NA		10/14/2022		10/14/2022		10/9/2022	
Gradient with	respect to Monitored Unit (UP, DO	WN,	SIDE, UNKN	SIDE		NA		NA		NA		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	145 Specific Conductance T μMH0/cm Field					*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-0989	9	0000-0000)	0000-0000		0000-0000)		
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	377		E. BLAN	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	0.241		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	0.000774	J	<0.002			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	0.0181	BJ	<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	0
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLANI	K	T. BLANK	.1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.001		<0.001			*
7440-02-0	Nickel	т	mg/L	6020		*	0.000883	J	<0.002			*
7440-09-7	Potassium	т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	т	mg/L	6020		*	<0.02		<0.02			*
7440-66-6	Zinc	т	mg/L	6020		*	0.0113	J	<0.02			*
108-05-4	Vinyl acetate	т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260		*	<0.005		0.00418	J	<0.005	
107-02-8	Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	KGWA NUMBER ¹ , Facility Well/Spring Number 'acility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						0000-000	0	0000-00	00	0000-00	00
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	377		E. BLAN	<	F. BLAN	ΙK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

C-37

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-098	9	0000-000)	0000-0000		0000-0000			
Facility's Lo	cal Well or Spring Number (e.g., N	/W -1	L, MW-2, et	:c.)	377		E. BLAN	(F. BLAN	IK	T. BLANK 1	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000207		<0.0000207		<0.0000206	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.1		<0.0984			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.1		<0.0984			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.1		<0.0984			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.1		<0.0984			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.1		<0.0984			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.1		<0.0984			*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	377		E. BLANK		F. BLAN	K	T. BLANK 1	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.1		<0.0984			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.1		<0.0984			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.1		<0.0984			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	1.65	*	2.64	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	2.64	*	0.739	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*	0	*	0.188	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-1.99	*	-2.69	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	-0.978	*	-13.3	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	0.265	*	0.459	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	16.4	*	-68.7	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5		<0.5			*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*
			_									

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: None

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		8004-4793		\	/
Facility's Loca	al Well or Spring Number (e.g., M	w-1	, MW-2, etc	.)	T. BLANK	2	T. BLANK	3	367			
Sample Sequence	#				1	1			2			
If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment							NA		NA			
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		10/10/2022	06:30	10/11/2022	06:35	10/10/2022	10:32		
Duplicate ("Y" or "N") ²					N		N		Y			7
Split ("Y" or "	'N") ³				N		N		N			1
Facility Sample	e ID Number (if applicable)				TB2UG1-23	3	TB3UG1-	23	MW367DU	JG1-23		
Laboratory Samp	ple ID Number (if applicable)				59625301	5	5964100°	15	59625300	9	\ /	
Date of Analysi	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	10/14/202	22	10/16/202	22	10/14/202	22	\ /	
Gradient with r	Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UN		SIDE, UNKN	SIDE, UNKNOWN)		NA			DOWN		V V	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQI6	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*	<0.2			\
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*	7.1	J		
16984-48-8	Fluoride	т	mg/L	9056		*		*	0.103	J		
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*	<10			
14808-79-8	Sulfate	т	mg/L	9056		*		*	20.6			
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		
s0145	Specific Conductance	т	μ MH0/cm	Field		*		*		*	/	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	8004-4793		1	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	367		\	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*	121			
s0296	рн	т	Units	Field		*		*		*		/
NS215	Eh	т	mV	Field		*		*		*	\ /	
s0907	Temperature	т	°C	Field		*		*		*	\ /	
7429-90-5	Aluminum	т	mg/L	6020		*		*	<0.05		\ /	
7440-36-0	Antimony	т	mg/L	6020		*		*	<0.003		\/	
7440-38-2	Arsenic	т	mg/L	6020		*		*	<0.005		X	
7440-39-3	Barium	т	mg/L	6020		*		*	0.126		/\	
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005		/\	
7440-42-8	Boron	т	mg/L	6020		*		*	0.0177		/ \	
7440-43-9	Cadmium	т	mg/L	6020		*		*	<0.001		/ \	
7440-70-2	Calcium	т	mg/L	6020		*		*	12.9			\
7440-47-3	Chromium	т	mg/L	6020		*		*	<0.01			
7440-48-4	Cobalt	т	mg/L	6020		*		*	0.00595			
7440-50-8	Copper	Т	mg/L	6020		*		*	<0.002			
7439-89-6	Iron	т	mg/L	6020		*		*	6.72			
7439-92-1	Lead	т	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	Т	mg/L	6020		*		*	7.27	В		
7439-96-5	Manganese	т	mg/L	6020		*		*	1.38			
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002		/	

C-41

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number	0000-000	0	0000-000	00	8004-479	13	\				
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLANK	2	T. BLAN	(3	367		\	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
7439-98-7	Molybdenum	Т	mg/L	6020		*		*	<0.001			\prod
7440-02-0	Nickel	Т	mg/L	6020		*		*	0.00337			17
7440-09-7	Potassium	Т	mg/L	6020		*		*	2.82			1/
7440-16-6	Rhodium	Т	mg/L	6020		*		*	<0.005			1
7782-49-2	Selenium	Т	mg/L	6020		*		*	<0.005		\ /	
7440-22-4	Silver	Т	mg/L	6020		*		*	<0.001			
7440-23-5	Sodium	Т	mg/L	6020		*		*	16.1		\ /	
7440-25-7	Tantalum	Т	mg/L	6020		*		*	<0.005		\/	
7440-28-0	Thallium	Т	mg/L	6020		*		*	<0.002		X	
7440-61-1	Uranium	Т	mg/L	6020		*		*	<0.0002		/\	
7440-62-2	Vanadium	Т	mg/L	6020		*		*	<0.02		/ \	
7440-66-6	Zinc	Т	mg/L	6020		*		*	0.00949	J	/ \	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		/ /	
67-64-1	Acetone	Т	mg/L	8260	<0.005		0.00509	В	<0.005			\
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			\backslash
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		1	

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-000	0	8004-47	93	\	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	367			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			1/
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			I
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		\	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		\/	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			\setminus
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			$ \cdot $
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001	*	<0.001			
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			

C-4.

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	8004-479	93	\	
Facility's Loc	al Well or Spring Number (e.g., 1	∕w-1	L, MW-2, et	:c.)	T. BLANK	2	T. BLANK	3	367			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			1/
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000205		<0.0000196		<0.0000203		\/	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		$/ \setminus$	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.103		T	
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.103			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.103			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.103			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.103			
12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.103			-

∵-44

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						0000-0000		8004-4793		\
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		367		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED F VALUE L OR PQL6 6
11097-69-1	PCB-1254	Т	ug/L	8082		*		*	<0.103		\
11096-82-5	PCB-1260	Т	ug/L	8082		*		*	<0.103		\
11100-14-4	PCB-1268	Т	ug/L	8082		*		*	<0.103		\ /
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*	2.98	*	\ /
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*	2.12	*	\ /
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\ /
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*	0.678	*	\ /
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*	-0.977	*	V
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*	-6.25	*	Λ
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*	0.888	*	/\
10028-17-8	Tritium	Т	pCi/L	906.0		*		*	-9.46	*	/ \
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*	<20		/ \
57-12-5	Cyanide	Т	mg/L	9012		*		*	<0.2		/ \
20461-54-5	Iodide	Т	mg/L	300.0		*		*	<0.5		/ \
s0268	Total Organic Carbon	Т	mg/L	9060		*		*	<2		
s0586	Total Organic Halides	т	mg/L	9020		*		*	<0.01		
											/

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4798 MW357	MW357UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.49. Rad error is 4.47.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 7.88. Rad error is 7.76.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.497. Rad error is 0.497.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 2.88. Rad error is 2.88.
		Technetium-99		TPU is 9.31. Rad error is 8.45.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.05. Rad error is 1.05.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 148. Rad error is 148.
3004-4799 MW358	MW358UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 5.63. Rad error is 5.58.
		Gross beta		TPU is 7.59. Rad error is 7.31.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.404. Rad error is 0.404.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 3.46. Rad error is 3.45.
		Technetium-99		TPU is 7.76. Rad error is 7.51.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.909. Rad error is 0.908.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 158. Rad error is 158.

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description	
004-0981 MW359		Bromide		During sampling, the well went dry; therefore, no sample wa collected.	
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.	
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.	
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.	
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.	
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.	
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.	
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.	
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.	
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.	
		рН		During sampling, the well went dry; therefore, no sample wa collected.	
		Eh		During sampling, the well went dry; therefore, no sample wa collected.	
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.	
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.	
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.	
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.	
		Barium		During sampling, the well went dry; therefore, no sample wa collected.	
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.	
		Boron		During sampling, the well went dry; therefore, no sample wa collected.	
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.	
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.	
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.	
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.	
		Copper		During sampling, the well went dry; therefore, no sample wa collected.	
		Iron		During sampling, the well went dry; therefore, no sample wa collected.	
		Lead		During sampling, the well went dry; therefore, no sample wa collected.	
			Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.	
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.	

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description				
004-0981 MW359		Molybdenum		During sampling, the well went dry; therefore, no sample wa collected.				
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.				
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.				
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.				
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.				
		Silver		During sampling, the well went dry; therefore, no sample wa collected.				
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.				
						Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
			Thallium		During sampling, the well went dry; therefore, no sample wa collected.			
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.				
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.				
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.				
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.				
		Acetone		During sampling, the well went dry; therefore, no sample wa collected.				
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.				
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.				
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.				
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.				
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.				
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.				
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.				
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.				
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.				
					Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.	
				Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.		
			Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.			
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa collected.				
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.				
		Chloroethane		During sampling, the well went dry; therefore, no sample wa collected.				

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description					
004-0981 MW359	•	Chloroform		During sampling, the well went dry; therefore, no sample was collected.					
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.					
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.					
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.					
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.					
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.					
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.					
						1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.	
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.					
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.					
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.					
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.					
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.					
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.					
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.					
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.					
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.					
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.					
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.					
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.					
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.					
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.					
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.					
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.					
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.					
							cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
				trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.			
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.					
		1,2,3-Trichloropropane	During sampling, the well went dry; therefore, no sample was collected.						

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	<u> </u>	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample w collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample w collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample w collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample w collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample w collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample v collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample v collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample v collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample v collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample vicollected.
		PCB-1268		During sampling, the well went dry; therefore, no sample collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample collected.
		Gross beta		During sampling, the well went dry; therefore, no sample v collected.
		lodine-131		During sampling, the well went dry; therefore, no sample collected.
		Radium-226		During sampling, the well went dry; therefore, no sample collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample collected.
		Tritium		During sampling, the well went dry; therefore, no sample collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample collected.
		Cyanide		During sampling, the well went dry; therefore, no sample collected.
		lodide		During sampling, the well went dry; therefore, no sample vicelected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample vicelected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample v collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4800 MW360	MW360UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.75. Rad error is 2.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.65. Rad error is 6.65.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.345. Rad error is 0.344.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.48. Rad error is 3.45.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.944. Rad error is 0.943.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 145. Rad error is 145.
004-4795 MW361	MW361UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.77. Rad error is 2.76.
		Gross beta		TPU is 10.6. Rad error is 9.62.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.276. Rad error is 0.276.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.09. Rad error is 4.05.
		Technetium-99		TPU is 13.7. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.25. Rad error is 1.24.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 152. Rad error is 152.
004-0986 MW362	MW362UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.53. Rad error is 4.51.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.84. Rad error is 5.84.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.372. Rad error is 0.372.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.66. Rad error is 3.66.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 10.6. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.22. Rad error is 1.21.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 135. Rad error is 135.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4796 MW363	MW363UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.76. Rad error is 1.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 4.36. Rad error is 4.33.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.542. Rad error is 0.542.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.47. Rad error is 3.47.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.47. Rad error is 1.45.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 134. Rad error is 134.
004-4797 MW364	MW364UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.26. Rad error is 4.24.
		Gross beta		TPU is 11.5. Rad error is 9.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.663. Rad error is 0.663.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 3.73. Rad error is 3.73.
		Technetium-99		TPU is 11.8. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.785. Rad error is 0.783.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 133. Rad error is 133.
004-0984 MW365	MW365UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.72. Rad error is 4.71.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 7.27. Rad error is 7.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.579. Rad error is 0.578.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.9. Rad error is 3.88.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 8.32. Rad error is 8.32.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.15. Rad error is 1.14.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 139. Rad error is 139.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring	Facility	Ormatitusest	-	Description
Point	Sample ID	Constituent	Flag	Description
3004-0982 MW366 N	MW366UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.11. Rad error is 3.11.
		Gross beta		TPU is 9.71. Rad error is 7.91.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.506. Rad error is 0.506.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.91. Rad error is 4.8.
		Technetium-99		TPU is 13. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.842. Rad error is 0.838.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 129. Rad error is 129.
8004-4793 MW367	MW367UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.11. Rad error is 4.07.
		Gross beta		TPU is 7.32. Rad error is 7.07.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.694. Rad error is 0.694.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.54. Rad error is 3.54.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.86. Rad error is 8.86.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.09. Rad error is 1.08.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 144. Rad error is 144.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	<u></u>	Bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
		Acetone		During sampling, the well went dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample we collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368		Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample we collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	<u> </u>	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4820 MW369	MW369UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 6.11. Rad error is 5.99.
		Gross beta		TPU is 11. Rad error is 9.47.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.429. Rad error is 0.429.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.38. Rad error is 3.36.
		Technetium-99		TPU is 14.1. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.18. Rad error is 1.17.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 132. Rad error is 132.
004-4818 MW370	MW370UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.12. Rad error is 4.12.
		Gross beta		TPU is 8.08. Rad error is 7.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.388. Rad error is 0.388.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.58. Rad error is 2.58.
		Technetium-99		TPU is 9.85. Rad error is 9.57.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.61. Rad error is 1.61.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 135. Rad error is 135.
004-4819 MW371	MW371UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.41. Rad error is 4.38.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.69. Rad error is 3.69.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.6. Rad error is 0.6.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.87. Rad error is 1.87.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 9.31. Rad error is 9.31.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.81. Rad error is 2.73.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 138. Rad error is 138.
004-4808 MW372	MW372UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.96. Rad error is 4.94.
		Gross beta		TPU is 13.3. Rad error is 10.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.351. Rad error is 0.351.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.7. Rad error is 3.7.
		Technetium-99		TPU is 15.2. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.02. Rad error is 1.01.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4792 MW373	MW373UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.41. Rad error is 4.41.
		Gross beta		TPU is 7.72. Rad error is 7.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.512. Rad error is 0.511.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 3.09. Rad error is 3.09.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.9. Rad error is 1.88.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 139. Rad error is 138.
004-0990 MW374	MW374UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.25. Rad error is 4.23.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 8.06. Rad error is 8.02.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.532. Rad error is 0.532.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.92. Rad error is 3.92.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 8.87. Rad error is 8.87.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.41. Rad error is 1.4.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 133. Rad error is 133.
004-0985 MW375	MW375UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.91. Rad error is 3.91.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.79. Rad error is 4.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.545. Rad error is 0.545.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.9. Rad error is 1.9.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 8.84. Rad error is 8.83.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.15. Rad error is 2.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 131. Rad error is 131.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa
		Aluminum		During sampling, the well went dry; therefore, no sample wa
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Molybdenum		During sampling, the well went dry; therefore, no sample wa collected.
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
		Acetone		During sampling, the well went dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample w collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample we collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Chloroform	-	During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	<u> </u>	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		Iodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Bromide	_	During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Molybdenum		During sampling, the well went dry; therefore, no sample wa collected.
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
		Acetone		During sampling, the well went dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	-	Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		Iodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG1-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.3. Rad error is 3.29.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.11. Rad error is 4.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.682. Rad error is 0.682.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.72. Rad error is 3.72.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.2. Rad error is 1.19.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 157. Rad error is 157.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG1-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.26. Rad error is 4.24.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.04. Rad error is 5.04.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.56. Rad error is 0.56.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.31. Rad error is 3.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 7.76. Rad error is 7.76.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.41. Rad error is 1.4.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 146. Rad error is 146.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG1-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG1-23	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG1-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG1-23	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG1-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
	Thallium	Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG1-23	Zinc		Analysis of constituent not required and not performed.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4793 MW367	MW367DUG1-23	Barometric Pressure Reading	-	Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.17. Rad error is 4.13.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.67. Rad error is 5.65.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.688. Rad error is 0.687.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.06. Rad error is 3.06.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 8.5. Rad error is 8.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.1. Rad error is 1.09.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 149. Rad error is 149.

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

> FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4	795	0000-00	00	\setminus			/
Facility's Loc	cal Well or Spring Number (e.g., N	w−1	., MW-2, etc	.)	MW361	I	T. BLAN	NK 7				
Sample Sequence	ce #				3		3					
If sample is a E	a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment				NA		NA					
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		11/17/2022 (07:57	11/17/2022	07:00				
Duplicate ("Y"	or "N") ²				N		N					
Split ("Y" or	"N") ³				N		N		\			
Facility Sampl	le ID Number (if applicable)				MW361UG1	-23R	TB7UG1-	23		\		
Laboratory Sam	mple ID Number (if applicable)				6012270	01	60122700	2				
Date of Analys	sis (Month/Day/Year) For Volatile	Or	ganics Anal	ysis	11/21/202	2	11/21/20)22				
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	DOWN		NA				V .	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056		*		*	/	/		
16887-00-6	Chloride(s)	т	mg/L	9056		*		*				
16984-48-8	Fluoride	т	mg/L	9056		*		*				
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*			\	
14808-79-8	Sulfate	т	mg/L	9056		*		*	<u> </u>			
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.38			*				
s0145	Specific Conductance	т	μ MH0/cm	Field	523			*	/			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

C-77

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

			,	-								
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	5	0000-0000)	\			$\overline{}$
Facility's Lo	cal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	361		T. BLANK	7				7
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	321.52			*				
N238	Dissolved Oxygen	т	mg/L	Field	3.99			*				
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*			/	
s0296	рн	т	Units	Field	6.01			*	\			
NS215	Eh	т	mV	Field	344			*		\		
s0907	Temperature	т	°C	Field	12.94			*				
7429-90-5	Aluminum	т	mg/L	6020		*		*				
7440-36-0	Antimony	т	mg/L	6020		*		*			/	
7440-38-2	Arsenic	т	mg/L	6020		*		*			(
7440-39-3	Barium	т	mg/L	6020		*		*		7		
7440-41-7	Beryllium	т	mg/L	6020		*		*				
7440-42-8	Boron	т	mg/L	6020		*		*		/		
7440-43-9	Cadmium	т	mg/L	6020		*		*	,	/		
7440-70-2	Calcium	т	mg/L	6020		*		*				
7440-47-3	Chromium	т	mg/L	6020		*		*				
7440-48-4	Cobalt	т	mg/L	6020		*		*				
7440-50-8	Copper	т	mg/L	6020		*		*	7			
7439-89-6	Iron	т	mg/L	6020		*		*				
7439-92-1	Lead	т	mg/L	6020		*		*	/			
7439-95-4	Magnesium	т	mg/L	6020		*		*				
7439-96-5	Manganese	т	mg/L	6020		*		*				1
7439-97-6	Mercury	т	mg/L	7470		*		*	/			_/

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBE	ER ¹ , Facility Well/Spri	ing Number			8004-479	5	0000-000	00	\			
Facility's	Local Well or Spring 1	Number (e.g., MW-	1, MW-2, e	tc.)	361		T. BLAN	< 7				
CAS RN ⁴	CONSTITU	ENT T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	E L A G S
7439-98-7	Molybdenum	т	mg/L	6020		*		*				
7440-02-0	Nickel	Т	mg/L	6020		*		*				
7440-09-7	Potassium	Т	mg/L	6020		*		*				
7440-16-6	Rhodium	Т	mg/L	6020		*		*				
7782-49-2	Selenium	Т	mg/L	6020		*		*	\	\		
7440-22-4	Silver	Т	mg/L	6020		*		*				
7440-23-5	Sodium	Т	mg/L	6020		*		*				
7440-25-7	Tantalum	Т	mg/L	6020		*		*			/	
7440-28-0	Thallium	Т	mg/L	6020		*		*		\setminus		
7440-61-1	Uranium	Т	mg/L	6020		*		*				
7440-62-2	Vanadium	Т	mg/L	6020		*		*				
7440-66-6	Zinc	Т	mg/L	6020		*		*				
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		/			
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005					
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005					
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005					
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001					
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001				\	$\sqrt{}$
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003					
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001					
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001					
74-97-5	Chlorobromomethan	е Т	mg/L	8260	<0.001		<0.001					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		0000-000	0	\			
Facility's Loc	cal Well or Spring Number (e.g., I	MW-1	L, MW-2, et	.c.)	361		T. BLANK	7				
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	VALUE I	A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001					
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001					
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001					
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005					
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005					
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005					
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001					
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001					
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001				Χ	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001					
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001					
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001				\	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		/			
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001					
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		/			
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001					
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001					
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		/			
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001					
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001					
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		/			\square

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	0000-000	0	\		
Facility's Loc	al Well or Spring Number (e.g., N	IW-1	, MW-2, et	.c.)	361		T. BLANK	7			/
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR FQL ⁶	F L A G S	DETECTED F VALUE L OR A PQL ⁶ G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001				
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005				
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		\		
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		\		
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001				
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005				
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005				
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*		*			
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001				X
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001				
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001				
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001				
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			/	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001				
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001				
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001				
1336-36-3	PCB,Total	Т	ug/L	8082		*		*			
12674-11-2	PCB-1016	т	ug/L	8082		*		*			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	/		
11141-16-5	PCB-1232	т	ug/L	8082		*		*			
53469-21-9	PCB-1242	т	ug/L	8082		*		*			
12672-29-6	PCB-1248	т	ug/L	8082		*		*	/		

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	95	0000-0000		\		,
Facility's Loc	cal Well or Spring Number (e.g.,)	MW-1	L, MW-2, et	.c.)	MW361		T. BLANK 7				/
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR POL ⁶	F L A G	DETECTED F L COR A PQL6 G S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*			
11096-82-5	PCB-1260	Т	ug/L	8082		*		*			/
11100-14-4	PCB-1268	Т	ug/L	8082		*		*			
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*	\		
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*			
10043-66-0	Iodine-131	Т	pCi/L			*		*			
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*			
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		\	/
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		/	\land
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*			
10028-17-8	Tritium	Т	pCi/L	906.0		*		*			
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		/	
57-12-5	Cyanide	Т	mg/L	9012		*		*	/		
20461-54-5	Iodide	Т	mg/L	300.0		*		*	/		
s0268	Total Organic Carbon	Т	mg/L	9060		*		*	/		
s0586	Total Organic Halides	Т	mg/L	9020		*		*			
									/		

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description							
04-4795 MW361	MW361UG1-23R	Bromide		Analysis of constituent not required and not performed.							
		Chloride		Analysis of constituent not required and not performed.							
		Fluoride		Analysis of constituent not required and not performed.							
		Nitrate & Nitrite		Analysis of constituent not required and not performed.							
		Sulfate		Analysis of constituent not required and not performed.							
		Total Dissolved Solids		Analysis of constituent not required and not performed.							
		Aluminum		Analysis of constituent not required and not performed.							
		Antimony		Analysis of constituent not required and not performed.							
		Arsenic		Analysis of constituent not required and not performed.							
		Barium		Analysis of constituent not required and not performed.							
		Beryllium		Analysis of constituent not required and not performed.							
		Boron		Analysis of constituent not required and not performed.							
		Cadmium		Analysis of constituent not required and not performed.							
		Calcium		Analysis of constituent not required and not performed.							
		Chromium		Analysis of constituent not required and not performed.							
		Cobalt		Analysis of constituent not required and not performed.							
		Copper		Analysis of constituent not required and not performed.							
		Iron		Analysis of constituent not required and not performed.							
		Iron Lead		Analysis of constituent not required and not performed.							
		Magnesium		Analysis of constituent not required and not performed.							
		Manganese		Analysis of constituent not required and not performed.							
		Mercury		Analysis of constituent not required and not performed.							
		Molybdenum		Analysis of constituent not required and not performed.							
		Nickel		Analysis of constituent not required and not performed.							
		Potassium		Analysis of constituent not required and not performed.							
		Rhodium		Analysis of constituent not required and not performed.							
		Selenium		Analysis of constituent not required and not performed.							
		Silver		Analysis of constituent not required and not performed.							
		Sodium		Analysis of constituent not required and not performed.							
		Tantalum		Analysis of constituent not required and not performed.							
		Thallium		Analysis of constituent not required and not performed.							
		Uranium		Analysis of constituent not required and not performed.							
		Vanadium		Analysis of constituent not required and not performed.							
		Zinc		Analysis of constituent not required and not performed.							
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performed.							
									PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.							
		PCB-1221		Analysis of constituent not required and not performed.							
		PCB-1232		Analysis of constituent not required and not performed.							
		PCB-1242		Analysis of constituent not required and not performed.							

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4795 MW361	MW361UG1-23R	PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB7UG1-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB7UG1-23	Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-980-008-982/1</u>

LAB ID: None

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2022 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). A statistician qualification statement has been provided for this analysis.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2022 data used to conduct the statistical analyses were collected in October and November 2022. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
$MW359^{a,b}$	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
$MW368^{a,b}$	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376a,b	SG	UCRS
$MW377^{a,b}$	SG	UCRS

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells **TW:** downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

^b Well was dry this quarter, and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2022. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data.

upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations:

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Acetone Aluminum Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride Cobalt
Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride Cobalt
Bromide Calcium Chemical Oxygen Demand (COD) Chloride Cobalt
Calcium Chemical Oxygen Demand (COD) Chloride Cobalt
Chemical Oxygen Demand (COD) Chloride Cobalt
Chloride Cobalt
Cobalt
Conductivity
Copper
Dissolved Oxygen
Dissolved Solids
Iron
Magnesium
Manganese
Nickel
Oxidation-Reduction Potential ^a
PCB, Total
PCB-1242
$p\mathrm{H}^\mathrm{b}$
Potassium
Sodium
Sulfate
Technetium-99
Toluene
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Vanadium
Zinc

^a Oxidation-Reduction Potential calibrated as Eh.
^b For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	5	5	0	No
1,1,2,2-Tetrachloroethane	5	5	0	No
1,1,2-Trichloroethane	5	5	0	No
1,1-Dichloroethane	5	5	0	No
1,2,3-Trichloropropane	5	5	0	No
1,2-Dibromo-3-chloropropane	5	5	0	No
1,2-Dibromoethane	5	5	0	No
1,2-Dichlorobenzene	5	5	0	No
1,2-Dichloropropane	5	5	0	No
2-Butanone	5	5	0	No
2-Hexanone	5	5	0	No
4-Methyl-2-pentanone	5	5	0	No
Acetone	5	5	0	No
Acrolein	5	5	0	No
Acrylonitrile	5	5	0	No
Aluminum	5	1	4	Yes
Antimony	5	5	0	No
Beryllium	5	5	0	No
Boron	5	3	2	Yes
Bromide	5	4	1	Yes
Bromochloromethane	5	5	0	No
Bromodichloromethane	5	5	0	No
Bromoform	5	5	0	No
Bromomethane	5	5	0	No
Calcium	5	0	5	Yes
Carbon disulfide	5	5	0	No
Chemical Oxygen Demand (COD)	5	2	3	Yes
Chloride	5	0	5	Yes
Chlorobenzene	5	5	0	No
Chloroethane	5	5	0	No
Chloroform	5	5	0	No
Chloromethane	5	5	0	No
cis-1,2-Dichloroethene	5	5	0	No
cis-1,3-Dichloropropene	5	5	0	No
Cobalt	5	3	2	Yes
Conductivity	5	0	5	Yes
Copper	5	2	3	Yes
Cyanide	5	5	0	No
Dibromochloromethane	5	5	0	No
Dibromomethane	5	5	0	No
Dimethylbenzene, Total	5	5	0	No
Dissolved Oxygen	5	0	5	Yes
Dissolved Solids	5	0	5	Yes
Ethylbenzene	5	5	0	No
Iodide	5	5	0	No
Iodomethane	5	5	0	No
Iron	5	1	4	Yes
Magnesium	5	0	5	Yes
Manganese	5	0	5	Yes
Methylene chloride	5	5	0	No
Molybdenum	5	5	0	No

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
	_	Observation	Observation	Analysis?
Nickel	5	0	5	Yes
Oxidation-Reduction Potential	5	0	5	Yes
PCB, Total	5	4	1	Yes
PCB-1016	5	5	0	No
PCB-1221	5	5	0	No
PCB-1232	5	5	0	No
PCB-1242	5	4	1	Yes
PCB-1248	5	5	0	No
PCB-1254	5	5	0	No
PCB-1260	5	5	0	No
PCB-1268	5	5	0	No
рН	5	0	5	Yes
Potassium	5	0	5	Yes
Radium-226	5	5	0	No
Rhodium	5	5	0	No
Sodium	5	0	5	Yes
Styrene	5	5	0	No
Sulfate	5	0	5	Yes
Tantalum	5	5	0	No
Technetium-99	5	5	0	No
Tetrachloroethene	5	5	0	No
Thallium	5	5	0	No
Thorium-230	5	5	0	No
Toluene	5	5	0	No
Total Organic Carbon (TOC)	5	0	5	Yes
Total Organic Halides (TOX)	5	0	5	Yes
trans-1,2-Dichloroethene	5	5	0	No
trans-1,3-Dichloropropene	5	5	0	No
trans-1,4-Dichloro-2-Butene	5	5	0	No
Trichlorofluoromethane	5	5	0	No
Vanadium	5	4	1	Yes
Vinyl Acetate	5	5	0	No
Zinc	5	3	2	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	4	2	Yes
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	1	5	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	4	2	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	1	5	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Oxygen Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	3	3	Yes
Magnesium	6	0	6	Yes
Manganese	6	1	5	Yes
Methylene chloride	6	6	0	No
1,1001,10110 011101100		J	J	110

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	5	1	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

1,1,1,2-Tetrachloroethane	Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,2,2-Trichloroethane	1.1.1.2-Tetrachloroethane	6			
1,1,2-Trichloroethane			6	0	
1,1-Dichloroethane					
1,2,3-Trichloropropane					
1,2-Dibromo-3-chloropropane	,				
1,2-Dichlorobenzene					
1,2-Dichlorobenzene					
1,2-Dichloropropane	,				
2-Butanone 6 6 6 0 No 2-Hexanone 6 6 6 0 No No 2-Hexanone 6 6 6 0 No No Acetone 6 6 6 0 No No Acetonin 6 6 6 0 No No Acetonin 6 6 6 0 No No Aluminum 6 6 5 1 Yes Antimony 6 6 6 0 No No Beryllium 6 6 6 0 No No Boron 6 0 6 Yes Bromochloromethane 6 1 5 Yes Bromochloromethane 6 6 0 No No Bromodichloromethane 6 6 6 0 No No Romodichloromethane 6 6 6 0 No Romodichloromethane 6 6	,				
2-Hexanone 6 6 6 0 No 4-Methyl-2-pentanone 6 6 6 0 No Accetone 6 5 1 Yes Acrolein 6 6 6 0 No Acrylonitrile 6 6 6 0 No Beryllium 6 6 0 6 Ves Bromide 6 1 5 Yes Bromochloromethane 6 0 0 No Bromodichloromethane 6 0 0 No Calcium 6 0 0 No Calcium 6 0 0 No Calcium 6 0 0 No Chemical Oxygen Demand (COD) 6 3 3 3 Yes Chlorobenzene 6 0 0 No Chlorocthane 6 0 0 No Chloromethane 6 0 0 No Cis-1,2-Dichlorocthene 6 0 0 No Cis-1,3-Dichloropropene 6 0 0 No Cobalt 6 3 3 3 Yes Conductivity 6 0 0 6 Yes Copper 6 3 3 3 Yes Conductivity 6 0 0 6 Yes Copper 6 3 3 3 Yes Conductivity 6 0 0 6 Yes Copper 6 3 3 3 Yes Conductivity 6 0 0 6 Yes Copper 6 0 0 No Dibromomethane 6 0 0 No Dibromethane 6 0 0 No Dibromethane 6 0 0 No	, 1 1				
4-Methyl-2-pentanone 6 6 0 No Accrolen 6 5 1 Yes Acrolein 6 6 0 No Actrolenin 6 6 0 No Actrolein 6 6 0 No Auminum 6 5 1 Yes Antimony 6 6 0 No Beryllium 6 6 0 No Boron 6 6 0 No Bromochloromethane 6 1 5 Yes Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Carbon disulfide 6 6 0 No Chloridia 6 6 6 7 No					
Acetone					
Acrolein	• •				
Acrylonitrile					
Aluminum 6 5 1 Yes Antimony 6 6 0 No Beryllium 6 6 0 No Bromod 6 0 6 Yes Bromide 6 1 5 Yes Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Calcium 6 6 0 No Carbon disulfide 6 6 0 No Calcium 6 6 0 No Chloroide 6 6 0 No Chloride 6 6 0 No Chlorothane					
Antimony					
Beryllium					
Boronide 6 0 6 Yes Bromoide 6 1 5 Yes Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Bromomomethane 6 6 0 No Calcium 6 6 0 No Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloroide 6 6 0 No Chloroide 6 0 6 Yes Chloroide 6 0 No No Chloroide 6 0 No No Chloroidene 6 6 0 No Chloroidene 6 6 0 No <					
Bromide 6 1 5 Yes Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Calcium 6 6 0 No Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloroder 6 0 6 Yes Chlorobenzene 6 0 0 No	·				
Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 6 0 No Chloride 6 6 0 No Chlorobenzene 6 6 0 No Chlorotethane 6 6 0 No cis-1,2-Dichlorotethene 6 6 0 No					
Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No Cobalt 6 6 0 No					
Bromoform 6 6 0 No Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 0 6 Yes Choride (Carbon disulfide) 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 0 6 Yes Chlorodenate 6 6 0 No Chloroethane 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No Cis-1,2-Dichloroethene 6 6 0 No Cis-1,3-Dichloroptoethene 6 6 0 No Cobalt 6 6 0 No Cobalt 6 0 6 Yes <td></td> <td></td> <td></td> <td></td> <td></td>					
Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 6 0 No Chlorobenzene 6 6 0 No Chloroethane 6 6 0 No Chloroform 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No Cis-1,2-Dichloroethane 6 6 0 No Cis-1,2-Dichloroethane 6 6 0 No Cis-1,2-Dichloroethane 6 6 0 No Cobalt 6 6 0 No Cobalt 6 3 3 Yes					
Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chloroform 6 6 0 No Chlorotethane 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No Cis-1,3-Dichlorogene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No					
Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chloroform 6 6 0 No Chloropertane 6 6 0 No Chloropethane 6 6 0 No Chloropethane 6 6 0 No Cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 3 3 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No					
Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 0 6 Yes Chlorobenzene 6 0 No Chloroethane 6 6 0 No Chloroform 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No Cis-1,2-Dichloroethene 6 6 0 No cis-1,2-Dichloropropene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No					
Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No Chloroethane 6 6 0 No Chloroform 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No Cis-1,2-Dichloroptopene 6 6 0 No Cis-1,2-Dichloroptopene 6 6 0 No Cis-1,2-Dichloroptopene 6 6 0 No Cobalt 6 6 0 No Cobalt 6 6 0 No Cobalt 6 6 0 No Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No					
Chlorobenzene 6 6 0 No Chloroethane 6 6 0 No Chloroform 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No Cis-1,2-Dichloroethene 6 6 0 No Cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Ethylbenzene 6 6 0 No <					
Chloroethane 6 6 0 No Chloroform 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No cis-1,2-Dichloroptoethene 6 6 0 No Cobalt 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No					
Chloroform 6 6 0 No Chloromethane 6 6 0 No cis-1,2-Dichloroethene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 No Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodide 6 6 0 No Iod					
Chloromethane 6 6 0 No cis-1,2-Dichloroethene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Disolved Oxygen 6 6 0 No Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes <					
cis-1,2-Dichloroethene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dibromomethane 6 6 0 No Dissolved Oxygen 6 6 0 No Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes					
cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Ethylbenzene 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Methylene chloride 6 0 No					
Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dibromomethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Ethylbenzene 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Methylene chloride 6 0 0 No					
Conductivity 6 0 6 Yes Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Methylene chloride 6 0 No No	· · · · · · · · · · · · · · · · · · ·				
Copper 6 3 3 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dibromomethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Ethylbenzene 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Methylene chloride 6 6 0 No					
Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Methylene chloride 6 6 0 No					
Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Methylene chloride 6 6 0 No					
Dibromomethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Manganese 6 0 6 Yes Methylene chloride 6 6 0 No					
Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Manganese 6 0 6 Yes Methylene chloride 6 6 0 No					
Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Manganese 6 0 6 Yes Methylene chloride 6 6 0 No					
Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Manganese 6 0 6 Yes Methylene chloride 6 6 0 No					
Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Manganese 6 0 6 Yes Methylene chloride 6 6 0 No					
Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Manganese 6 0 6 Yes Methylene chloride 6 6 0 No					
Iodomethane 6 6 0 No Iron 6 4 2 Yes Magnesium 6 0 6 Yes Manganese 6 0 6 Yes Methylene chloride 6 6 0 No					
Iron 6 4 2 Yes Magnesium 6 0 6 Yes Manganese 6 0 6 Yes Methylene chloride 6 6 0 No					
Magnesium 6 0 6 Yes Manganese 6 0 6 Yes Methylene chloride 6 6 0 No	Iodomethane	6	6		No
Manganese606YesMethylene chloride660No		6	4		Yes
Manganese606YesMethylene chloride660No	Magnesium	6			Yes
Methylene chloride 6 6 0 No		6	0	6	Yes
Molybdenum 6 6 0 No	Methylene chloride	6	6	0	No
	Molybdenum	6	6	0	No

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	5	1	Yes
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 26, 25, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

This quarter's results identified historical background exceedances for calcium, conductivity, dissolved solids, oxidation-reduction potential, and technetium-99.

LRGA

This quarter's results identified historical background exceedances for dissolved oxygen, nickel, and oxidation-reduction potential.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW362: Oxidation-Reduction Potential,* Sulfate	MW357: Oxidation-Reduction Potential*	MW358: Nickel, Oxidation- Reduction Potential*
MW365: Dissolved Oxygen, Oxidation-Reduction Potential,* Sulfate	MW360: Oxidation-Reduction Potential*	MW361: Oxidation-Reduction Potential*
MW371: Dissolved Oxygen, Oxidation-Reduction Potential*	MW363: Oxidation-Reduction Potential*	MW364: Oxidation-Reduction Potential*
MW374: Oxidation-Reduction Potential*	MW366: Oxidation-Reduction Potential*	MW367: Oxidation-Reduction Potential*
MW375: Dissolved Oxygen, Oxidation-Reduction Potential,* Sulfate	MW369: Oxidation-Reduction Potential*	MW370: Dissolved Oxygen, Oxidation-Reduction Potential*
	MW372: Calcium, Conductivity, Dissolved Solids, Oxidation- Reduction Potential,* Technetium-99	MW373: Oxidation-Reduction Potential*

^{*}Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW365, MW371, and MW375.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ¹	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW362, MW365, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW362, MW365, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	3.88	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ¹	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	2.67	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	Current results exceed statistically derived historical background concentration in MW370.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	Current results exceed statistically derived historical background concentration in MW358.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential ¹	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	No exceedance of statistically derived historical background concentration.
Toluene	Tolerance Interval	0.80	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Oxidation-Reduction Potential calibrated as Eh.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 5, and 3 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted that none of the UCRS wells exceeded the current TL this quarter.

URGA

This quarter's results showed a statistically significant exceedance of current background TL for oxidation-reduction potential in downgradient URGA well MW363.

LRGA

This quarter's results showed a statistically significant exceedance of current background TL for nickel in downgradient LRGA well MW358.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.10, Exhibit D.11, and Exhibit D.12, respectively.

Exhibit D.10. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.74	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential*	Tolerance Interval	0.26	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.90	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

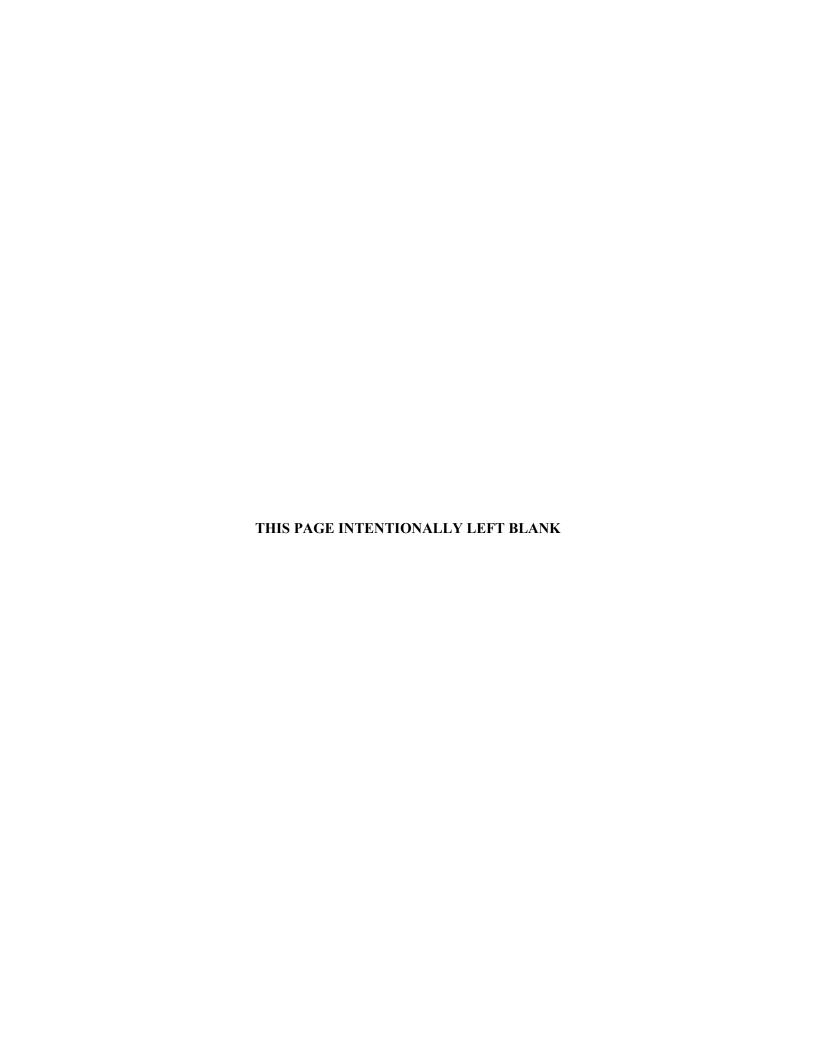
CV: coefficient of variation
*Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.62	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.37	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.41	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential*	Tolerance Interval	0.08	MW363 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.27	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation
*Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—LRGA


Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.36	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Nickel	Tolerance Interval	0.60	MW358 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential*	Tolerance Interval	0.06	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation

^{*}Oxidation-Reduction Potential calibrated as Eh.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

CV(1)=2.078**S**= 6.859

K factor=** 2.523

TL(1)=20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678

CV(2) = -4.521

K factor=** 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.0946	N/A	-2.358	NO
MW365	Downgradient	Yes	0.0365	N/A	-3.310	NO
MW371	Upgradient	Yes	0.0535	N/A	-2.928	NO
MW374	Upgradient	No	0.05	N/A	-2.996	N/A
MW375	Sidegradient	Yes	0.0251	N/A	-3.685	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-3

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor=** 2.523

TL(1)= 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2)= 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 0.2	0.693 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.022	N/A	-3.817	NO
MW365	Downgradient	Yes	0.0066	N/A	-5.021	NO
MW371	Upgradient	No	0.013	N/A	-4.343	N/A
MW374	Upgradient	No	0.0746	N/A	-2.596	N/A
MW375	Sidegradient	No	0.0113	N/A	-4.483	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-4

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394 S = 0.474

CV(1)=0.340

K factor=** 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279 S = 0.332

CV(2) = 1.190

K factor=** 2.523

TL(2)=1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.742
Date Collected	Result	
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2.1 2.1 1.9 1 1.9	0.742 0.742 0.642 0.000 0.642

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW368 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	No	0.2	N/A	-1.609	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.53	NO	-0.635	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-5

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 34.100 **S**= 13.637 **CV(1)**=0.400

K factor=** 2.523

TL(1) = 68.505 LL(1) = N/A

Statistics-Transformed Background Data

X = 3.466 S = 0.356

CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.209
Date Collected	Result	,
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	20.5	NO	3.020	N/A
MW365	Downgradient	Yes	18.2	NO	2.901	N/A
MW371	Upgradient	Yes	54.5	NO	3.998	N/A
MW374	Upgradient	Yes	25.3	NO	3.231	N/A
MW375	Sidegradient	Yes	13.1	NO	2.573	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-6

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

K factor**= 2.523

TL(1)= 251.437 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.000 S = 0.702

CV(2) = 0.175

K factor=** 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	22.5	NO	3.114	N/A
MW365	Downgradient	No	20	N/A	2.996	N/A
MW371	Upgradient	Yes	16.5	NO	2.803	N/A
MW374	Upgradient	Yes	23.7	NO	3.165	N/A
MW375	Sidegradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-7

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor=** 2.523

TL(1)= 310.697 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 3.620 **S**= 1.590

CV(2) = 0.439

K factor=** 2.523

TL(2)= 7.631

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.294
Date Collected	Result	
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	2.7	NO	0.993	N/A
MW365	Downgradient	Yes	2.54	NO	0.932	N/A
MW371	Upgradient	Yes	4.61	NO	1.528	N/A
MW374	Upgradient	Yes	47.4	NO	3.859	N/A
MW375	Sidegradient	Yes	3.24	NO	1.176	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-8

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1)=1.314

K factor**= 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor=** 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	` '
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	No	0.001	N/A	-6.908	N/A
MW365	Downgradient	Yes	0.0013	N/A	-6.645	NO
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	Yes	0.00067	5 N/A	-7.301	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison **Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor**= 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.915
Date Collected	Result	
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	680	NO	6.522	N/A
MW365	Downgradient	Yes	405	NO	6.004	N/A
MW371	Upgradient	Yes	870	NO	6.768	N/A
MW374	Upgradient	Yes	860	NO	6.757	N/A
MW375	Sidegradient	Yes	415	NO	6.028	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072 CV(1) = 1.275

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

915 **CV(2)=**-0.270

K factor**= 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
10/0/2003	0.02	3.712
Well Number:	MW374	3.512
		LN(Result)
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Well Number: Date Collected 10/8/2002	MW374 Result 0.2	LN(Result) -1.609
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 0.2 0.2	LN(Result) -1.609 -1.609
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 0.2 0.2 0.2	LN(Result) -1.609 -1.609 -1.609
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 0.2 0.2 0.2 0.2	LN(Result) -1.609 -1.609 -1.609 -3.912
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 0.2 0.2 0.2 0.2 0.02 0.02	LN(Result) -1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00111	N/A	-6.803	NO
MW365	Downgradient	Yes	0.0119	N/A	-4.431	NO
MW371	Upgradient	Yes	0.0033	N/A	-5.714	NO
MW374	Upgradient	No	0.002	N/A	-6.215	N/A
MW375	Sidegradient	No	0.002	N/A	-6.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-11

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.138 S = 0.621

CV(1)=0.546

K factor**= 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor=** 2.523

TL(2)=1.441

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	2.39	NO	0.871	N/A
MW365	Downgradient	Yes	4.25	YES	1.447	N/A
MW371	Upgradient	Yes	2.87	YES	1.054	N/A
MW374	Upgradient	Yes	1.92	NO	0.652	N/A
MW375	Sidegradient	Yes	2.89	YES	1.061	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW365 MW371

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-12

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor**= 2.523

TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.308 S = 0.

S = 0.383 CV(2) = 0.061

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 7.035
Date Collected	Result	` /
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	385	NO	5.953	N/A
MW365	Downgradient	Yes	215	NO	5.371	N/A
MW371	Upgradient	Yes	424	NO	6.050	N/A
MW374	Upgradient	Yes	405	NO	6.004	N/A
MW375	Sidegradient	Yes	205	NO	5.323	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-13

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612 S = 6.487

CV(1)=0.981

K factor=** 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.363 **S**= 1.147

CV(2) = 0.841

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected	MW374	LN(Result)
	MW374	LN(Result) 3.135
Date Collected	MW374 Result	
Date Collected 10/8/2002	MW374 Result 23	3.135
Date Collected 10/8/2002 1/7/2003	MW374 Result 23 13.9	3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 23 13.9	3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.075	NO	-2.590	N/A
MW365	Downgradient	Yes	0.0372	NO	-3.291	N/A
MW371	Upgradient	Yes	0.0536	NO	-2.926	N/A
MW374	Upgradient	Yes	0.539	NO	-0.618	N/A
MW375	Sidegradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-14

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.347 **S**= 3.019

CV(1) = 0.266

K factor=** 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

K factor=** 2.523

TL(2) = 2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW368 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	9.48	NO	2.249	N/A
MW365	Downgradient	Yes	8.75	NO	2.169	N/A
MW371	Upgradient	Yes	18.4	NO	2.912	N/A
MW374	Upgradient	Yes	6.14	NO	1.815	N/A
MW375	Sidegradient	Yes	5.49	NO	1.703	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-15

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.248 **S**= 0.222

CV(1)=0.894

K factor=** 2.523

TL(1) = 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X= -1.873 **S**= 1.068

8 **CV(2)=**-0.570

K factor=** 2.523

TL(2)= 0.821

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.0024	NO	-6.032	N/A
MW365	Downgradient	Yes	0.0224	NO	-3.799	N/A
MW371	Upgradient	Yes	0.00594	NO	-5.126	N/A
MW374	Upgradient	Yes	0.228	NO	-1.478	N/A
MW375	Sidegradient	Yes	0.00153	NO	-6.482	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-16

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023 S = 0.022

CV(1)=0.980

K factor=** 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

CV(2) = -0.255

K factor=** 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00123	NO	-6.701	N/A
MW365	Downgradient	Yes	0.00656	NO	-5.027	N/A
MW371	Upgradient	Yes	0.00177	NO	-6.337	N/A
MW374	Upgradient	Yes	0.00083	7 NO	-7.086	N/A
MW375	Sidegradient	Yes	0.00445	NO	-5.415	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-17

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.281 **S**= 78.889 **CV(1)**=3.541

K factor**= 2.523

TL(1)= 221.319 LL(1)=N/A

Statistics-Transformed Background Data

X= 3.642 **S**= 1.729

CV(2) = 0.475

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	298	N/A	5.697	YES
MW365	Downgradient	Yes	453	N/A	6.116	YES
MW371	Upgradient	Yes	409	N/A	6.014	YES
MW374	Upgradient	Yes	330	N/A	5.799	YES
MW375	Sidegradient	Yes	350	N/A	5.858	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW362 MW365 MW371

MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-18

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison PCB, Total UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.224 S = 0.207

CV(1)=0.922

K factor=** 2.523

TL(1) = 0.746

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.647 S = 0.440

 $0 \quad \text{CV(2)} = -0.267$

K factor=** 2.523

TL(2) = -0.537

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	1	0.000	
4/22/2002	0.17	-1.772	
7/15/2002	0.17	-1.772	
7/9/2003	0.17	-1.772	
10/6/2003	0.17	-1.772	
7/13/2004	0.18	-1.715	
7/25/2005	0.17	-1.772	
4/5/2006	0.18	-1.715	
Well Number:	MW374		
Well Number: Date Collected	MW374 Result	LN(Result)	
		LN(Result) -1.772	
Date Collected	Result		
Date Collected 7/9/2003	Result 0.17	-1.772	
Date Collected 7/9/2003 10/7/2003	Result 0.17 0.17	-1.772 -1.772	
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.17 0.17 0.18	-1.772 -1.772 -1.715	
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.17 0.17 0.18 0.17	-1.772 -1.772 -1.715 -1.772	
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.17 0.17 0.18 0.17 0.18	-1.772 -1.772 -1.715 -1.772 -1.715	

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	No	0.104	N/A	-2.263	N/A
MW365	Downgradient	Yes	0.0741	NO	-2.602	N/A
MW371	Upgradient	No	0.1	N/A	-2.303	N/A
MW374	Upgradient	No	0.101	N/A	-2.293	N/A
MW375	Sidegradient	No	0.0986	N/A	-2.317	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-19

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.159 **S**= 0.224 **CV(1)**=1.409

K factor=** 2.523

TL(1)=0.726 L

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.134 S = 0.579

CV(2) = -0.272

K factor=** 2.523

TL(2) = -0.672

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	1	0.000	
4/22/2002	0.11	-2.207	
7/15/2002	0.11	-2.207	
7/9/2003	0.13	-2.040	
10/6/2003	0.09	-2.408	
7/13/2004	0.1	-2.303	
7/25/2005	0.09	-2.408	
4/5/2006	0.1	-2.303	
Well Number:	MW374		
Well Number: Date Collected	MW374 Result	LN(Result)	
		LN(Result) -2.040	
Date Collected	Result		
Date Collected 7/9/2003	Result 0.13	-2.040	
Date Collected 7/9/2003 10/7/2003	Result 0.13 0.09	-2.040 -2.408	
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.13 0.09 0.1	-2.040 -2.408 -2.303	
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303	
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303 -2.303	

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	No	0.104	N/A	-2.263	N/A
MW365	Downgradient	Yes	0.0741	N/A	-2.602	NO
MW371	Upgradient	No	0.1	N/A	-2.303	N/A
MW374	Upgradient	No	0.101	N/A	-2.293	N/A
MW375	Sidegradient	No	0.0986	N/A	-2.317	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-20

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295

S = 0.046

CV(1) = 0.045

K factor=** 2.904

TL(1) = 7.48

LL(1)=5.76

Statistics-Transformed Background Data

X = 1.889

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW362	Downgradient	Yes	6.67	NO	1.898	N/A
MW365	Downgradien	Yes	6.23	NO	1.829	N/A
MW371	Upgradient	Yes	6.48	NO	1.869	N/A
MW374	Upgradient	Yes	6.71	NO	1.904	N/A
MW375	Sidegradient	Yes	6.44	NO	1.863	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-21

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

CV(1)=0.718

K factor**= 2.523

TL(1)=3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

S = 0.907

CV(2) = -32.218

K factor=** 2.523

TL(2) = 1.874

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.112
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.327	NO	-1.118	N/A
MW365	Downgradient	Yes	0.239	NO	-1.431	N/A
MW371	Upgradient	Yes	0.407	NO	-0.899	N/A
MW374	Upgradient	Yes	0.509	NO	-0.675	N/A
MW375	Sidegradient	Yes	0.271	NO	-1.306	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-22

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor=** 2.523

TL(1)=367.800 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356 CV(2) = 0.069

K factor=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	129	NO	4.860	N/A
MW365	Downgradient	Yes	46.2	NO	3.833	N/A
MW371	Upgradient	Yes	91.1	NO	4.512	N/A
MW374	Upgradient	Yes	125	NO	4.828	N/A
MW375	Sidegradient	Yes	53.5	NO	3.980	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-23

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

S= 3.153 **CV(1)**=0.487

K factor**= 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794 S = 0.357

CV(2)=0.199

K factor=** 2.523

TL(2)= 2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	,
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5.6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5 6 5 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	27.7	YES	3.321	N/A
MW365	Downgradient	Yes	54.5	YES	3.998	N/A
MW371	Upgradient	Yes	11.8	NO	2.468	N/A
MW374	Upgradient	Yes	13.2	NO	2.580	N/A
MW375	Sidegradient	Yes	22.4	YES	3.109	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW362 MW365

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-24

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.631 **S**= 24.314 **CV(1)**=1.379

K factor**= 2.523

TL(1) = 78.977 L

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979

CV(2) = 0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	1.52	N/A	0.419	NO
MW365	Downgradient	Yes	1.02	N/A	0.020	NO
MW371	Upgradient	Yes	2.07	N/A	0.728	NO
MW374	Upgradient	Yes	2.06	N/A	0.723	NO
MW375	Sidegradient	Yes	0.512	N/A	-0.669	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-25

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor**= 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.867 S =

 $S= 1.065 \quad CV(2)=0.219$

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	,
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	19.2	N/A	2.955	NO
MW365	Downgradient	Yes	15.7	N/A	2.754	NO
MW371	Upgradient	Yes	6.12	N/A	1.812	NO
MW374	Upgradient	Yes	23.6	N/A	3.161	NO
MW375	Sidegradient	Yes	5.3	N/A	1.668	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-26

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.055 **S**= 0.072

CV(1)=1.319

K factor**= 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

0.912 **CV(2)=**-0.265

K factor=** 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	No	0.00502	N/A	-5.294	N/A
MW365	Downgradient	No	0.02	N/A	-3.912	N/A
MW371	Upgradient	Yes	0.00427	N/A	-5.456	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-27

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083 CV(1) = 1.380

K factor**= 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259 S = 0.840

CV(2) = -0.258

K factor=** 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
	0.02	5.71 =
Well Number:	MW374	3.312
Well Number: Date Collected		LN(Result)
	MW374	
Date Collected	MW374 Result	LN(Result)
Date Collected 10/8/2002	MW374 Result 0.025	LN(Result) -3.689
Date Collected 10/8/2002 1/7/2003	MW374 Result 0.025 0.35	LN(Result) -3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 0.025 0.35 0.035	LN(Result) -3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 0.025 0.35 0.035 0.02	LN(Result) -3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 0.025 0.35 0.035 0.02 0.02	LN(Result) -3.689 -1.050 -3.352 -3.912

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

7	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW362	Downgradient	No	0.02	N/A	-3.912	N/A
]	MW365	Downgradient	Yes	0.021	N/A	-3.863	NO
]	MW371	Upgradient	Yes	0.00539	N/A	-5.223	NO
]	MW374	Upgradient	No	0.02	N/A	-3.912	N/A
]	MW375	Sidegradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-28

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 372.563 S = 1447.319CV(1) = 3.885

K factor=** 2.523

TL(1)= 4024.149 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.736 S = 1.603 CV(2) = 0.586

K factor=** 2.523

TL(2) = 6.780

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.609 5 4/22/2002 10 2.303 7/15/2002 14 2.639 10/8/2002 10 2.303 10 1/8/2003 2.303 4/3/2003 10 2.303 7/8/2003 10 2.303 10/6/2003 5800 8.666 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 14 2.639 4/23/2002 10 2.303 10 7/16/2002 2.303 10/8/2002 10 2.303 1/7/2003 10 2.303 10 4/2/2003 2.303 7/9/2003 18 2.890 10 10/7/2003 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	5	N/A	1.609	N/A
MW360	Downgradient	No	5	N/A	1.609	N/A
MW363	Downgradient	Yes	2.21	N/A	0.793	NO
MW366	Downgradient	No	5	N/A	1.609	N/A
MW369	Upgradient	Yes	2.4	N/A	0.875	NO
MW372	Upgradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-29

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.774CV(1)=1.239**K** factor**= 2.523 TL(1) = 2.578**Statistics-Background Data** X = 0.625LL(1)=N/A **Statistics-Transformed Background**

Data

X = -0.973 S = 0.935 CV(2) = -0.961

K factor=** 2.523

TL(2) = 1.386LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.255 -1.3664/22/2002 0.2 -1.6097/15/2002 0.322 -1.13310/8/2002 0.2 -1.609 0.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.689 -0.373Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.61 0.959 4/23/2002 0.2 -1.6097/16/2002 1.14 0.131 10/8/2002 0.862 -0.149

2.32

0.2

0.2

0.2

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.05	N/A	-2.996	N/A
MW360	Downgradient	Yes	0.0359	N/A	-3.327	NO
MW363	Downgradient	No	0.05	N/A	-2.996	N/A
MW366	Downgradient	No	0.05	N/A	-2.996	N/A
MW369	Upgradient	Yes	0.0869	N/A	-2.443	NO
MW372	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.842

-1.609

-1.609

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison UNITS: mg/L **URGA** Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.825CV(1)=0.838**K factor**=** 2.523 **Statistics-Background Data** X = 0.985TL(1) = 3.067LL(1)=N/A **Statistics-Transformed Background** X = -0.430 S = 0.990CV(2) = -2.302**K factor**=** 2.523 TL(2) = 2.068LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 0.693 7/16/2002 2 10/8/2002 0.492 -0.7090.492-0.7091/7/2003 4/2/2003 0.6 -0.5117/9/2003 0.57 -0.562-0.504 10/7/2003 0.604

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.381	NO	-0.965	N/A
MW360	Downgradient	Yes	0.0458	NO	-3.083	N/A
MW363	Downgradient	Yes	0.0234	NO	-3.755	N/A
MW366	Downgradient	Yes	0.0569	NO	-2.866	N/A
MW369	Upgradient	Yes	0.0235	NO	-3.751	N/A
MW372	Upgradient	Yes	1.4	NO	0.336	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-31

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 1.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.000
 S= 0.000
 CV(2)=#Num!
 K factor**= 2.523
 TL(2)= 0.000
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.0004/22/2002 1 0.000 7/15/2002 0.0001 10/8/2002 1 0.0001 0.000 1/8/2003 4/3/2003 1 0.000 7/8/2003 1 0.00010/6/2003 1 0.000 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.0004/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.0004/2/2003 1 0.000 7/9/2003 1 0.000 0.000 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.373	NO	-0.986	N/A
MW360	Downgradient	Yes	0.165	NO	-1.802	N/A
MW363	Downgradient	No	0.2	N/A	-1.609	N/A
MW366	Downgradient	Yes	0.501	NO	-0.691	N/A
MW369	Upgradient	Yes	0.344	NO	-1.067	N/A
MW372	Upgradient	Yes	0.499	NO	-0.695	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-32

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 32.763 **S**= 9.391 **CV(1)**=0.287

K factor=** 2.523

TL(1)= 56.456

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.449 S = 0.299

CV(2) = 0.087

K factor=** 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 29.5 3.384 4/22/2002 29.8 3.395 7/15/2002 25.3 3.231 10/8/2002 21.9 3.086 3.040 1/8/2003 20.9 4/3/2003 22.2 3.100 7/8/2003 22.9 3.131 10/6/2003 21.7 3.077 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 41.5 3.726 4/23/2002 43.6 3.775 3.699 7/16/2002 40.4 10/8/2002 38.8 3.658 1/7/2003 41.1 3.716 4/2/2003 42.9 3.759 7/9/2003 35.1 3.558 10/7/2003 46.6 3.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	27	NO	3.296	N/A
MW360	Downgradient	Yes	19	NO	2.944	N/A
MW363	Downgradient	Yes	25.9	NO	3.254	N/A
MW366	Downgradient	Yes	31.2	NO	3.440	N/A
MW369	Upgradient	Yes	16	NO	2.773	N/A
MW372	Upgradient	Yes	62.2	YES	4.130	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-33

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 35.938 **S**= 3.750 **CV(1)**=0.104

K factor=** 2.523

TL(1)= 45.399

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.578 **S**= 0.089

CV(2) = 0.025

K factor**= 2.523

TL(2) = 3.803

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	50	3.912
1/8/2003	35	3.555
4/3/2003	35	3.555
7/8/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	
Date Collected 3/19/2002	Result 35	3.555
Date Collected 3/19/2002 4/23/2002	Result 35 35	3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 35 35 35	3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 35 35 35	3.555 3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	19.2	NO	2.955	N/A
MW360	Downgradient	Yes	12.5	NO	2.526	N/A
MW363	Downgradient	No	20	N/A	2.996	N/A
MW366	Downgradient	No	20	N/A	2.996	N/A
MW369	Upgradient	No	20	N/A	2.996	N/A
MW372	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-34

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 44.119 **S**= 4.554 **CV(1)**=0.103

K factor=** 2.523

TL(1)= 55.607

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.782 S = 0.099

CV(2) = 0.026

K factor=** 2.523

TL(2) = 4.033

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/15/2002 3.877 48.3 10/8/2002 47.7 3.865 1/8/2003 45.7 3.822 4/3/2003 47.4 3.859 7/8/2003 55.9 4.024 10/6/2003 47.4 3.859 1/7/2004 45.5 3.818 4/7/2004 43.4 3.770 Well Number: MW372 Date Collected Result LN(Result) 7/16/2002 39.8 3.684 10/8/2002 41 3.714 1/7/2003 39.4 3.674 4/2/2003 39.2 3.669 7/9/2003 39.8 3.684 10/7/2003 40 3.689 1/5/2004 43.4 3.770 4/5/2004 42 3.738

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	30.6	NO	3.421	N/A
MW360	Downgradient	Yes	7.56	NO	2.023	N/A
MW363	Downgradient	Yes	24.8	NO	3.211	N/A
MW366	Downgradient	Yes	39.1	NO	3.666	N/A
MW369	Upgradient	Yes	28.2	NO	3.339	N/A
MW372	Upgradient	Yes	39.6	NO	3.679	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-35

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025 S = 0.021

CV(1)=0.845

K factor**= 2.523

TL(1)= 0.077

LL(1)=N/A

Statistics-Transformed Background Data

X= -4.090 **S**= 1.006

CV(2) = -0.246

K factor=** 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.00938 -4.669 -5.207 0.00548 1/8/2003 4/3/2003 0.00587 -5.138 7/8/2003 0.0541 -2.91710/6/2003 0.0689 -2.675Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.025 -3.689 4/23/2002 0.025 -3.689 0.025 7/16/2002 -3.68910/8/2002 0.00158-6.4500.0147-4.2201/7/2003 4/2/2003 0.0116 -4.457 7/9/2003 0.0653 -2.7290.00788 -4.843 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	Yes	0.00115	NO	-6.768	N/A
MW363	Downgradient	Yes	0.000673	5 NO	-7.301	N/A
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.0043	NO	-5.449	N/A
MW372	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-36

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 482.856 S = 57.603 CV(1) = 0.119

K factor**= 2.523

TL(1)= 628.189 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

2)=0.020 K factor

K factor**= 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	428	NO	6.059	N/A
MW360	Downgradient	Yes	396	NO	5.981	N/A
MW363	Downgradient	Yes	414	NO	6.026	N/A
MW366	Downgradient	Yes	491	NO	6.196	N/A
MW369	Upgradient	Yes	485	NO	6.184	N/A
MW372	Upgradient	Yes	914	YES	6.818	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-37

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.025 **S**= 0.010

CV(1)=0.400

K factor=** 2.523

TL(1)= 0.050

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.742 S = 0.307

CV(2) = -0.082

K factor=** 2.523

TL(2) = -2.967

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.05 -2.99610/8/2002 0.02 -3.9120.02 -3.9121/8/2003 4/3/2003 0.02 -3.9127/8/2003 0.02 -3.912-3.91210/6/2003 0.02 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.025 -3.689 4/23/2002 0.025 -3.689 0.05 -2.9967/16/2002 10/8/2002 0.02 -3.9121/7/2003 0.02-3.912 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912-3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.000555	5 NO	-7.497	N/A
MW360	Downgradient	Yes	0.00127	NO	-6.669	N/A
MW363	Downgradient	Yes	0.000312	2 NO	-8.073	N/A
MW366	Downgradient	Yes	0.000329) NO	-8.019	N/A
MW369	Upgradient	Yes	0.0011	NO	-6.812	N/A
MW372	Upgradient	No	0.002	N/A	-6.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-38

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.781 S= 1.351 CV(1)=0.759 K factor**= 2.523 TL(1)=5.190 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.228 S= 1.065 CV(2)=4.665 K factor**= 2.523 TL(2)=2.915 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.688 5.41 4/22/2002 1.57 0.451 7/15/2002 -0.2230.8 10/8/2002 1.09 0.086 0.990 1/8/2003 2.69 4/3/2003 2.04 0.713 7/8/2003 1.19 0.174 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 1.33 0.285 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.9164/2/2003 0.91 -0.0947/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	5.08	NO	1.625	N/A
MW360	Downgradient	Yes	2.41	NO	0.880	N/A
MW363	Downgradient	Yes	2.33	NO	0.846	N/A
MW366	Downgradient	Yes	4	NO	1.386	N/A
MW369	Upgradient	Yes	3.44	NO	1.235	N/A
MW372	Upgradient	Yes	2.55	NO	0.936	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-39

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**=0.157

K factor**= 2.523

TL(1)= 398.489 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor=** 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 173 5.153 4/22/2002 246 5.505 7/15/2002 232 5.447 10/8/2002 275 5.617 5.595 1/8/2003 269 4/3/2003 250 5.521 7/8/2003 295 5.687 10/6/2003 276 5.620 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 295 5.687 4/23/2002 322 5.775 7/16/2002 329 5.796 10/8/2002 290 5.670 1/7/2003 316 5.756 4/2/2003 311 5.740 7/9/2003 347 5.849 10/7/2003 337 5.820

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	217	NO	5.380	N/A
MW360	Downgradient	Yes	223	NO	5.407	N/A
MW363	Downgradient	Yes	232	NO	5.447	N/A
MW366	Downgradient	Yes	266	NO	5.583	N/A
MW369	Upgradient	Yes	212	NO	5.357	N/A
MW372	Upgradient	Yes	455	YES	6.120	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-40

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.385
 S= 6.991
 CV(1)=0.947 K factor**= 2.523
 TL(1)=25.024 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 1.358
 S= 1.323
 CV(2)=0.974 K factor**= 2.523
 TL(2)=4.697 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.4224/22/2002 0.695 -0.3647/15/2002 1.960 7.1 10/8/2002 21.5 3.068 2.918 1/8/2003 18.5 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 0.733 10/7/2003 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0431	NO	-3.144	N/A
MW360	Downgradient	Yes	0.0883	NO	-2.427	N/A
MW363	Downgradient	No	0.1	N/A	-2.303	N/A
MW366	Downgradient	No	0.1	N/A	-2.303	N/A
MW369	Upgradient	Yes	0.129	NO	-2.048	N/A
MW372	Upgradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-41

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 12.864 S = 3.505CV(1)=0.272**K factor**=** 2.523 TL(1) = 21.7Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = 2.517 S = 0.290 CV(2) = 0.115

K factor=** 2.523 TL(2) = 3.248 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 7/15/2002 10 2.303 10/8/2002 8.62 2.154 7.89 1/8/2003 2.066 4/3/2003 7.97 2.076 7/8/2003 10.3 2.332 10/6/2003 9.14 2.213 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 15.7 2.754 4/23/2002 16.6 2.809 7/16/2002 15.4 2.734 10/8/2002 15.8 2.760 1/7/2003 15.8 2.760 4/2/2003 16.4 2.797 7/9/2003 15.2 2.721 10/7/2003 17.6 2.868

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	11.9	NO	2.477	N/A
MW360	Downgradient	Yes	8.34	NO	2.121	N/A
MW363	Downgradient	Yes	10.8	NO	2.380	N/A
MW366	Downgradient	Yes	13.6	NO	2.610	N/A
MW369	Upgradient	Yes	6.84	NO	1.923	N/A
MW372	Upgradient	Yes	21.7	NO	3.077	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.274X = 0.413

CV(1)=0.664

K factor=** 2.523

TL(1)=1.105

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.226 S = 1.008 CV(2) = -0.822

K factor=** 2.523

TL(2) = 1.317

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.034 -3.381 4/22/2002 0.062 -2.7817/15/2002 0.436 -0.83010/8/2002 0.867-0.143-0.1891/8/2003 0.828 4/3/2003 0.672 -0.3977/8/2003 0.321 -1.136 10/6/2003 0.714 -0.337Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.205 -1.585 4/23/2002 0.345 -1.0647/16/2002 0.21 -1.56110/8/2002 0.0539 -2.921 1/7/2003 0.537 -0.622 0.415 -0.879 4/2/2003 7/9/2003 0.654 -0.425-1.370 10/7/2003 0.254

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00331	NO	-5.711	N/A
MW360	Downgradient	Yes	0.0104	NO	-4.566	N/A
MW363	Downgradient	Yes	0.0861	NO	-2.452	N/A
MW366	Downgradient	Yes	0.00222	NO	-6.110	N/A
MW369	Upgradient	Yes	0.00362	NO	-5.621	N/A
MW372	Upgradient	No	0.005	N/A	-5.298	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison **Nickel** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024S = 0.021 CV(1)=0.910

K factor**= 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075 CV(2) = -0.253

K factor=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.05 -2.9964/22/2002 0.05 -2.9967/15/2002 0.05 -2.99610/8/2002 0.005 -5.298 -5.298 0.005 1/8/2003 4/3/2003 0.005 -5.2987/8/2003 0.013 -4.343 0.0104 10/6/2003 -4.566Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.05 -2.996 4/23/2002 0.05 -2.996-2.9967/16/2002 0.05 10/8/2002 0.005 -5.2981/7/2003 0.005-5.298-5.298 4/2/2003 0.005 7/9/2003 0.019 -3.9630.005 -5.298 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result 1	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.000664	NO	-7.317	N/A
MW360	Downgradient	Yes	0.00149	NO	-6.509	N/A
MW363	Downgradient	Yes	0.00718	NO	-4.936	N/A
MW366	Downgradient	Yes	0.00171	NO	-6.371	N/A
MW369	Upgradient	Yes	0.00326	NO	-5.726	N/A
MW372	Upgradient	Yes	0.00125	NO	-6.685	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison **UNITS: mV Oxidation-Reduction Potential URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.563 S = 94.243 CV(1) = 1.264

K factor**= 2.523

TL(1)= 312.337 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	328	N/A	5.793	YES
MW360	Downgradient	Yes	223	N/A	5.407	YES
MW363	Downgradient	Yes	470	N/A	6.153	YES
MW366	Downgradient	Yes	434	N/A	6.073	YES
MW369	Upgradient	Yes	406	N/A	6.006	YES
MW372	Upgradient	Yes	416	N/A	6.031	YES
3.7/4 B						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with	1 Exceedances
------------	---------------

MW357 MW360 MW363

MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-45

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.274 S = 0.194 CV(1) = 0.031 K factor**= 2.904
 TL(1) = 6.84 LL(1) = 5.71

 Statistics-Transformed Background Data
 X = 1.836 S = 0.031 CV(2) = 0.017 K factor**= 2.904
 TL(2) = 1.925 LL(2) = 1.7467

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 1.808 6.1 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 6.26 1.834 1/7/2003 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	5.91	NO	1.777	N/A
MW360	Downgradien	t Yes	5.96	NO	1.785	N/A
MW363	Downgradien	t Yes	6.12	NO	1.812	N/A
MW366	Downgradien	t Yes	6.07	NO	1.803	N/A
MW369	Upgradient	Yes	6.05	NO	1.800	N/A
MW372	Upgradient	Yes	6.04	NO	1.798	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-46

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.663 S= 0.488 CV(1)=0.293 K factor**= 2.523 TL(1)=2.895 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.456 S= 0.362 CV(2)=0.794 K factor**= 2.523 TL(2)=1.368 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2.21 0.793 7/15/2002 0.693 2 10/8/2002 0.966 -0.0351/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 0.693 7/16/2002 2 10/8/2002 1.54 0.432 1/7/2003 1.88 0.6314/2/2003 2.09 0.737 7/9/2003 1.78 0.577 1.79 10/7/2003 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C	urrent	Quarter Data					
We	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
M	W357	Downgradient	Yes	1.78	NO	0.577	N/A
M	W360	Downgradient	Yes	0.76	NO	-0.274	N/A
M	W363	Downgradient	Yes	2.24	NO	0.806	N/A
M	W366	Downgradient	Yes	2.04	NO	0.713	N/A
M	W369	Upgradient	Yes	0.588	NO	-0.531	N/A
M	W372	Upgradient	Yes	2.1	NO	0.742	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-47

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 45.100 S = 11.875 CV(1) = 0.263**K factor**=** 2.523 TL(1) = 75.061**Statistics-Background Data** LL(1)=N/A **Statistics-Transformed Background** X = 3.780

Data

S = 0.242CV(2) = 0.064 **K factor**=** 2.523 TL(2) = 4.390 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 4.079 10/6/2003 59.1 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 1/7/2003 34.1 3.529 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	42.2	NO	3.742	N/A
MW360	Downgradient	Yes	57.5	NO	4.052	N/A
MW363	Downgradient	Yes	38.6	NO	3.653	N/A
MW366	Downgradient	Yes	47.8	NO	3.867	N/A
MW369	Upgradient	Yes	50.1	NO	3.914	N/A
MW372	Upgradient	Yes	62.9	NO	4.142	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-48

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 45.031 S= 33.919 CV(1)=0.753 K factor**= 2.523 TL(1)=131 LL(1)=N/A

Statistics-Transformed Background Data

X= 3.420 **S**= 0.981 **CV(2)**=0.287

K factor**= 2.523

TL(2)= 5.894

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 2.741 15.5 4/22/2002 15.8 2.760 7/15/2002 2.625 13.8 10/8/2002 6.9 1.932 2.351 1/8/2003 10.5 4/3/2003 10.5 2.351 7/8/2003 10.9 2.389 10/6/2003 16.3 2.791 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 71.7 4.272 4/23/2002 74.7 4.313 4.305 7/16/2002 74.1 10/8/2002 70.5 4.256 1/7/2003 75.8 4.328 4/2/2003 81.8 4.404 7/9/2003 83.6 4.426 10/7/2003 88.1 4.478

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
,	MW357	Downgradient	Yes	37.9	NO	3.635	N/A
	MW360	Downgradient	Yes	12.2	NO	2.501	N/A
	MW363	Downgradient	Yes	26.2	NO	3.266	N/A
	MW366	Downgradient	Yes	43.8	NO	3.780	N/A
	MW369	Upgradient	Yes	8.07	NO	2.088	N/A
	MW372	Upgradient	Yes	131	NO	4.875	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-49

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.821 S = 18.044 CV(1) = 0.867

K factor**= 2.523

TL(1)= 66.344

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.770 S = 1.150 CV(2) = 0.415

K factor=** 2.523

TL(2) = 3.972

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	41.7	3.731
4/22/2002	53.1	3.972
7/15/2002	18.1	2.896
10/8/2002	16.4	2.797
1/8/2003	3.49	1.250
4/3/2003	9.34	2.234
7/8/2003	17.5	2.862
10/6/2003	17	2.833
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.802
Date Collected	Result	,
Date Collected 3/19/2002	Result 44.8	3.802
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	35.2	NO	3.561	N/A
MW360	Downgradient	No	3.53	N/A	1.261	N/A
MW363	Downgradient	No	-7.61	N/A	#Error	N/A
MW366	Downgradient	Yes	54.9	NO	4.006	N/A
MW369	Upgradient	Yes	56.4	NO	4.032	N/A
MW372	Upgradient	Yes	69.7	YES	4.244	N/A
NT/A D	1, 11, 10, 1 3	T D ()	1 . 11	1 .	1 / 1:1 /:	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.513
 S= 4.307
 CV(1)=1.226 K factor**= 2.523
 TL(1)=14.378 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.851
 S= 0.828
 CV(2)=0.973 K factor**= 2.523
 TL(2)=2.940 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 9 1/8/2003 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.0004/23/2002 1.2 0.182 0.000 7/16/2002 1 10/8/2002 1 0.000 1/7/2003 1.6 0.4704/2/2003 1.5 0.405 7/9/2003 3 1.099 1.5 10/7/2003 0.405

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.39	N/A	-0.942	NO
MW360	Downgradient	Yes	0.716	N/A	-0.334	NO
MW363	Downgradient	Yes	0.737	N/A	-0.305	NO
MW366	Downgradient	Yes	0.534	N/A	-0.627	NO
MW369	Upgradient	Yes	1.02	N/A	0.020	NO
MW372	Upgradient	Yes	0.745	N/A	-0.294	NO
3.T/A D	1, 11, 26, 1, 3					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-51

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor**= 2.523

TL(1)= 230.231 LL(1)=N/A

Statistics-Transformed Background Data

X=3.772 S=1.023 CV(2)=0.271

K factor=** 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50	5.215 3.912 3.912 3.912 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.46	NO	1.495	N/A
MW360	Downgradient	Yes	6.58	NO	1.884	N/A
MW363	Downgradient	Yes	8.52	NO	2.142	N/A
MW366	Downgradient	Yes	5.6	NO	1.723	N/A
MW369	Upgradient	Yes	6.78	NO	1.914	N/A
MW372	Upgradient	Yes	8.74	NO	2.168	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-52

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.173CV(1)=1.490X = 0.116

K factor**= 2.523

TL(1) = 0.552LL(1)=N/A

Statistics-Transformed Background Data

X = -2.729 S = 1.014 CV(2) = -0.371

K factor=** 2.523

TL(2) = -0.172

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	0.7.2
Well Number: Date Collected	MW372 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 3/19/2002	Result 0.725	LN(Result) -0.322
Date Collected 3/19/2002 4/23/2002	Result 0.725 0.1	LN(Result) -0.322 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.725 0.1 0.1	LN(Result) -0.322 -2.303 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.725 0.1 0.1 0.025	LN(Result) -0.322 -2.303 -2.303 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.725 0.1 0.1 0.025 0.035	LN(Result) -0.322 -2.303 -2.303 -3.689 -3.352

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

sult) LN(Result) >TL(2)
NO
N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-53

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.625 S = 137.818 CV(1) = 2.670

K factor**= 2.523

TL(1)= 399.340 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.777 S = 1.127 CV(2) = 0.406

K factor=** 2.523

TL(2) = 5.621

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	18	2.890
4/23/2002	110	4.700
7/15/2002	10	2.303
10/8/2002	18	2.890
1/8/2003	10	2.303
4/3/2003	10	2.303
7/9/2003	10	2.303
10/6/2003	10	2.303
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 9	LN(Result) 2.197
Date Collected 3/18/2002 4/23/2002	Result 9 560	LN(Result) 2.197 6.328
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 9 560 10	LN(Result) 2.197 6.328 2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 9 560 10 10	LN(Result) 2.197 6.328 2.303 2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 9 560 10 10 10	LN(Result) 2.197 6.328 2.303 2.303 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	5	N/A	1.609	N/A	
MW361	Downgradient	No	5	N/A	1.609	N/A	
MW364	Downgradient	No	5	N/A	1.609	N/A	
MW367	Downgradient	No	5	N/A	1.609	N/A	
MW370	Upgradient	No	5	N/A	1.609	N/A	
MW373	Upgradient	Yes	1.81	N/A	0.593	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 2.026 **S**= 5.626 **CV(1)**=2.777

K factor**= 2.523

TL(1)= 16.219 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380 CV(2) = -1.718

K factor**= 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.66	1.539
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.122
Date Collected	Result	-
Date Collected 3/18/2002	Result 22.7	3.122
Date Collected 3/18/2002 4/23/2002	Result 22.7 1.46	3.122 0.378
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 22.7 1.46 0.253	3.122 0.378 -1.374
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 22.7 1.46 0.253 0.482	3.122 0.378 -1.374 -0.730
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 22.7 1.46 0.253 0.482 0.608	3.122 0.378 -1.374 -0.730 -0.498

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.0591	N/A	-2.829	NO	
MW361	Downgradient	No	0.05	N/A	-2.996	N/A	
MW364	Downgradient	No	0.05	N/A	-2.996	N/A	
MW367	Downgradient	No	0.05	N/A	-2.996	N/A	
MW370	Upgradient	No	0.05	N/A	-2.996	N/A	
MW373	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-55

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.140
 S= 0.780
 CV(1)=0.684
 K factor**= 2.523
 TL(1)= 3.108
 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.235
 S= 1.006
 CV(2)=-4.287
 K factor**= 2.523
 TL(2)= 2.303
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 2. 4/23/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 0.693 7/16/2002 2 10/8/2002 0.79 -0.2361/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 1.28 0.247 0.215 10/7/2003 1.24

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.134	NO	-2.010	N/A	
MW361	Downgradient	Yes	0.148	NO	-1.911	N/A	
MW364	Downgradient	Yes	0.122	NO	-2.104	N/A	
MW367	Downgradient	Yes	0.0177	NO	-4.034	N/A	
MW370	Upgradient	Yes	0.311	NO	-1.168	N/A	
MW373	Upgradient	Yes	2.93	NO	1.075	N/A	
						_	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-56

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S= 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1)=N/A Statistics-Transformed Background X = 0.000 S= 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2)=N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.0004/23/2002 1 0.000 7/15/2002 0.0001 10/8/2002 1 0.0001 0.000 1/8/2003 4/3/2003 1 0.000 7/9/2003 1 0.00010/6/2003 1 0.000 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1 0.0004/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.0004/2/2003 1 0.000 7/9/2003 1 0.000 0.000 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.258	NO	-1.355	N/A		
MW361	Downgradient	Yes	0.459	NO	-0.779	N/A		
MW364	Downgradient	Yes	0.459	NO	-0.779	N/A		
MW367	Downgradient	No	0.2	N/A	-1.609	N/A		
MW370	Upgradient	Yes	0.538	NO	-0.620	N/A		
MW373	Upgradient	Yes	0.494	NO	-0.705	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-57

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 43.413 S = 13.444 CV(1) = 0.310

K factor**= 2.523

TL(1) = 77.331

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.723 S = 0.323 CV(2) = 0.087

K factor=** 2.523

TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 34.8 3.550 4/23/2002 43.4 3.770 7/15/2002 3.503 33.2 10/8/2002 29.2 3.374 1/8/2003 31.3 3.444 4/3/2003 32.4 3.478 7/9/2003 22.9 3.131 10/6/2003 28 3.332 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 61.9 4.126 4/23/2002 59.2 4.081 7/16/2002 47.6 3.863 10/8/2002 46.1 3.831 1/7/2003 49.2 3.896 4/2/2003 57.8 4.057 7/9/2003 52.7 3.965 10/7/2003 64.9 4.173

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	34.5	NO	3.541	N/A		
MW361	Downgradient	Yes	34.6	NO	3.544	N/A		
MW364	Downgradient	Yes	31.9	NO	3.463	N/A		
MW367	Downgradient	Yes	13	NO	2.565	N/A		
MW370	Upgradient	Yes	28.9	NO	3.364	N/A		
MW373	Upgradient	Yes	65.6	NO	4.184	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison **Chemical Oxygen Demand (COD)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.938 S = 24.732 CV(1) = 0.590

K factor**= 2.523

TL(1)= 104.336 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.658 S = 0.339 CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	,
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	20	N/A	2.996	N/A	
MW361	Downgradient	Yes	15.9	NO	2.766	N/A	
MW364	Downgradient	No	20	N/A	2.996	N/A	
MW367	Downgradient	Yes	52.5	NO	3.961	N/A	
MW370	Upgradient	No	20	N/A	2.996	N/A	
MW373	Upgradient	Yes	16.5	NO	2.803	N/A	
3.1/4 D	1, 11, 10, 1, 3	T			4 . 4.4		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.919 S = 7.524

CV(1)=0.164**K** factor**= 2.523 **TL(1)=** 64.901

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.814 S = 0.165 CV(2) = 0.043

K factor=** 2.523

TL(2) = 4.231

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 4.016 55.5 10/8/2002 53.6 3.982 3.968 1/8/2003 52.9 4/3/2003 53.6 3.982 7/9/2003 51.9 3.949 10/6/2003 53 3.970 1/7/2004 53 3.970 3.944 4/7/2004 51.6 Well Number: MW373 Date Collected Result LN(Result) 7/16/2002 40.6 3.704 10/8/2002 38.8 3.658 1/7/2003 39 3.664 4/2/2003 38.4 3.648 7/9/2003 38.1 3.640 10/7/2003 38 3.638 1/6/2004 37.9 3.635 4/7/2004 38.8 3.658

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	17.5	NO	2.862	N/A
MW361	Downgradient	Yes	36.7	NO	3.603	N/A
MW364	Downgradient	Yes	36.5	NO	3.597	N/A
MW367	Downgradient	Yes	7.28	NO	1.985	N/A
MW370	Upgradient	Yes	38.5	NO	3.651	N/A
MW373	Upgradient	Yes	37.8	NO	3.632	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.027

CV(1)=1.165

K factor**= 2.523

TL(1) = 0.108

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.058 S = 1.011 CV(2) = -0.249

S = 0.032

K factor=** 2.523

TL(2) = -1.507

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.0174 -4.051 0.0105 -4.556 1/8/2003 4/3/2003 0.00931 -4.6777/9/2003 0.137 -1.9880.0463 10/6/2003 -3.073Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.025 -3.689 4/23/2002 0.034 -3.381 0.025 -3.6897/16/2002 10/8/2002 0.00411-5.494 0.00344 -5.672 1/7/2003 -5.605 4/2/2003 0.00368 7/9/2003 0.0405 -3.2060.00843 -4.776 10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.036	N/A	-3.324	NO		
MW361	Downgradient	No	0.001	N/A	-6.908	N/A		
MW364	Downgradient	No	0.001	N/A	-6.908	N/A		
MW367	Downgradient	Yes	0.00615	N/A	-5.091	NO		
MW370	Upgradient	No	0.001	N/A	-6.908	N/A		
MW373	Upgradient	Yes	0.00041	6 N/A	-7.785	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-61

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 608.719 **S**= 156.157 **CV(1)**=0.257

K factor=** 2.523

TL(1)= 1002.702 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor=** 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data									
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
,	MW358	Downgradient	Yes	544	NO	6.299	N/A			
	MW361	Downgradient	Yes	523	NO	6.260	N/A			
	MW364	Downgradient	Yes	485	NO	6.184	N/A			
	MW367	Downgradient	Yes	246	NO	5.505	N/A			
	MW370	Upgradient	Yes	552	NO	6.314	N/A			
	MW373	Upgradient	Yes	939	NO	6.845	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-62

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -2.963 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.05 -2.99610/8/2002 0.02 -3.9120.02 -3.9121/8/2003 4/3/2003 0.02 -3.9127/9/2003 0.02 -3.912-3.91210/6/2003 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.6504/23/2002 0.025 -3.689 0.05 -2.9967/16/2002 10/8/2002 0.02 -3.9121/7/2003 0.02-3.912 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912-3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00051	8 NO	-7.566	N/A
MW361	Downgradient	Yes	0.00092	2 NO	-6.989	N/A
MW364	Downgradient	No	0.002	N/A	-6.215	N/A
MW367	Downgradient	No	0.002	N/A	-6.215	N/A
MW370	Upgradient	Yes	0.00037	7 NO	-7.883	N/A
MW373	Upgradient	No	0.002	N/A	-6.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-63

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison **Dissolved Oxygen** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 1.153X = 1.387

CV(1) = 0.831

K factor=** 2.523

TL(1) = 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207 CV(2) = -10.514

K factor=** 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.463 4.32 4/23/2002 1.24 0.215 7/15/2002 0.75 -0.28810/8/2002 0.94 -0.0623.08 1/8/2003 1.125 4/3/2003 1.45 0.372 7/9/2003 1.22 0.199 0.068 10/6/2003 1.07 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 3.04 1.112 4/23/2002 0.03 -3.507-1.4707/16/2002 0.23 10/8/2002 0.86 -0.151 1/7/2003 0.21 -1.561 4/2/2003 1.19 0.174 7/9/2003 0.095 1.1 10/7/2003 1.46 0.378

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	1.95	NO	0.668	N/A	
MW361	Downgradient	Yes	3.99	NO	1.384	N/A	
MW364	Downgradient	Yes	3.64	NO	1.292	N/A	
MW367	Downgradient	Yes	1.24	NO	0.215	N/A	
MW370	Upgradient	Yes	4.8	YES	1.569	N/A	
MW373	Upgradient	Yes	2.31	NO	0.837	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison **Dissolved Solids** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 356.188 S = 106.752 CV(1) = 0.300

K factor**= 2.523

TL(1)= 625.523 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 236 5.464 4/23/2002 337 5.820 7/15/2002 266 5.583 10/8/2002 240 5.481 1/8/2003 282 5.642 4/3/2003 238 5.472 7/9/2003 248 5.513 10/6/2003 224 5.412 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 427 6.057 4/23/2002 507 6.229 7/16/2002 464 6.140 10/8/2002 408 6.011 1/7/2003 404 6.001 4/2/2003 450 6.109 7/9/2003 487 6.188 10/7/2003 481 6.176

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	299	NO	5.700	N/A			
MW361	Downgradient	Yes	287	NO	5.659	N/A			
MW364	Downgradient	Yes	266	NO	5.583	N/A			
MW367	Downgradient	Yes	121	NO	4.796	N/A			
MW370	Upgradient	Yes	247	NO	5.509	N/A			
MW373	Upgradient	Yes	484	NO	6.182	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 9.230 **S**= 8.841

CV(1)=0.958

K factor=** 2.523

TL(1)= 31.535

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.942 S = 0.713

0.713 **CV(2)**=0.367

K factor**= 2.523

TL(2) = 3.740

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 7/15/2002 1.258 3.52 10/8/2002 7.45 2.008 7.04 1.952 1/8/2003 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 2.370 7/16/2002 10.7 10/8/2002 3.75 1.322 1/7/2003 1.353 3.87 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	17.8	NO	2.879	N/A		
MW361	Downgradient	No	0.1	N/A	-2.303	N/A		
MW364	Downgradient	No	0.1	N/A	-2.303	N/A		
MW367	Downgradient	Yes	6.91	NO	1.933	N/A		
MW370	Upgradient	No	0.1	N/A	-2.303	N/A		
MW373	Upgradient	No	0.1	N/A	-2.303	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-66

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.544 S = 5.911CV(1)=0.337 **K** factor**= 2.523

TL(1) = 32.458

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.810 S = 0.343 CV(2) = 0.122

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 2.493 12.1 4/23/2002 15.1 2.715 7/15/2002 2.518 12.4 10/8/2002 12.2 2.501 1/8/2003 11.5 2.442 4/3/2003 12.3 2.510 7/9/2003 10 2.303 10/6/2003 12.1 2.493 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 24.8 3.211 4/23/2002 22.7 3.122 2.934 7/16/2002 18.8 10/8/2002 21.1 3.049 1/7/2003 19.9 2.991 4/2/2003 25.5 3.239 7/9/2003 23.3 3.148 10/7/2003 26.9 3.292

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	18.2	NO	2.901	N/A			
MW361	Downgradient	Yes	15.6	NO	2.747	N/A			
MW364	Downgradient	Yes	14.2	NO	2.653	N/A			
MW367	Downgradient	Yes	7.27	NO	1.984	N/A			
MW370	Upgradient	Yes	12.6	NO	2.534	N/A			
MW373	Upgradient	Yes	25.6	NO	3.243	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.674X = 1.080

CV(1)=0.624

K factor**= 2.523

TL(1) = 2.780

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.114 S = 0.658 CV(2) = -5.762

K factor=** 2.523

TL(2) = 1.547

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.4110.599 4/23/2002 1.82 7/15/2002 0.199 1.22 10/8/2002 0.988 -0.012 -0.3161/8/2003 0.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.355 -1.0364/23/2002 2.16 0.770 0.329 7/16/2002 1.39 10/8/2002 0.717 -0.3331/7/2003 0.587 -0.5334/2/2003 0.545 -0.6077/9/2003 1.76 0.565 -0.562 10/7/2003 0.57

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	2.36	NO	0.859	N/A		
MW361	Downgradient	Yes	0.00919	NO	-4.690	N/A		
MW364	Downgradient	Yes	0.00257	NO	-5.964	N/A		
MW367	Downgradient	Yes	1.39	NO	0.329	N/A		
MW370	Upgradient	Yes	0.00122	. NO	-6.709	N/A		
MW373	Upgradient	Yes	0.0229	NO	-3.777	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-68

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.024 **S**= 0.022

CV(1)=0.901

K factor=** 2.523

TL(1)= 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.239 S = 1.087

CV(2) = -0.256

K factor=** 2.523

TL(2) = -1.497

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C	urrent (Quarter Data					
We	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
M	W358	Downgradient	Yes	0.0945	YES	-2.359	N/A
M	W361	Downgradient	Yes	0.00084	2 NO	-7.080	N/A
M	W364	Downgradient	Yes	0.00109	NO	-6.822	N/A
M	W367	Downgradient	Yes	0.00355	NO	-5.641	N/A
M	W370	Upgradient	Yes	0.001	NO	-6.908	N/A
M	W373	Upgradient	Yes	0.00218	NO	-6.128	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW358

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-69

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison **Oxidation-Reduction Potential UNITS:** mV **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 46.688 S = 60.986 CV(1) = 1.306

K factor=** 2.523

TL(1)=200.555 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.829 S = 1.151 CV(2) = 0.301

K factor=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	280	N/A	5.635	YES		
MW361	Downgradient	Yes	344	N/A	5.841	YES		
MW364	Downgradient	Yes	433	N/A	6.071	YES		
MW367	Downgradient	Yes	236	N/A	5.464	YES		
MW370	Upgradient	Yes	427	N/A	6.057	YES		
MW373	Upgradient	Yes	401	N/A	5.994	YES		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-70

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904
 TL(1) = 6.75 LL(1) = 5.82

 Statistics-Transformed Background Data
 X = 1.837 S = 0.025 CV(2) = 0.014 K factor**= 2.904
 TL(2) = 1.911 LL(2) = 1.7634

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.841 6.3 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 6.1 1.808 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.2	NO	1.825	N/A
MW361	Downgradien	t Yes	6.01	NO	1.793	N/A
MW364	Downgradien	t Yes	6	NO	1.792	N/A
MW367	Downgradien	t Yes	5.92	NO	1.778	N/A
MW370	Upgradient	Yes	6.07	NO	1.803	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

1.812

N/A

6.12

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW373 Upgradient

Yes

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-71

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 2.823 S= 0.522 CV(1) = 0.185 K factor**= 2.523 TL(1) = 4.139 LL(1)=N/A Statistics-Transformed Background X = 1.024 S= 0.167 CV(2) = 0.163 K factor**= 2.523 TL(2) = 1.445 LL(2)=N/A Data

Historical Background Data from

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	3.22	1.169
4/23/2002	3.43	1.233
7/15/2002	2.98	1.092
10/8/2002	2.46	0.900
1/8/2003	2.41	0.880
4/3/2003	2.43	0.888
7/9/2003	2.44	0.892
10/6/2003	2.48	0.908
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.468
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 4.34	1.468
Date Collected 3/18/2002 4/23/2002	Result 4.34 3.04	1.468 1.112
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 4.34 3.04 2.93	1.468 1.112 1.075
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 4.34 3.04 2.93 2.3	1.468 1.112 1.075 0.833
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 4.34 3.04 2.93 2.3 2.45	1.468 1.112 1.075 0.833 0.896

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	3.41	NO	1.227	N/A
MW361	Downgradient	Yes	2.56	NO	0.940	N/A
MW364	Downgradient	Yes	2.08	NO	0.732	N/A
MW367	Downgradient	Yes	2.84	NO	1.044	N/A
MW370	Upgradient	Yes	2.6	NO	0.956	N/A
MW373	Upgradient	Yes	2.73	NO	1.004	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-72

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 51.544 **S**= 15.227 **CV(1)**=0.295

K factor=** 2.523 **TL(1)=** 89.962

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor=** 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.459 31.8 4/23/2002 50 3.912 7/15/2002 44.7 3.800 10/8/2002 40 3.689 44.6 3.798 1/8/2003 4/3/2003 41.9 3.735 7/9/2003 40 3.689 10/6/2003 38.1 3.640 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 43.4 3.770 4/23/2002 79.8 4.380 4.474 7/16/2002 87.7 10/8/2002 61.6 4.121 1/7/2003 59.3 4.083 4/2/2003 62.1 4.129 7/9/2003 50.1 3.914 3.904 10/7/2003 49.6

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	32.7	NO	3.487	N/A
MW361	Downgradient	Yes	43.6	NO	3.775	N/A
MW364	Downgradient	Yes	42.6	NO	3.752	N/A
MW367	Downgradient	Yes	16.1	NO	2.779	N/A
MW370	Upgradient	Yes	45.3	NO	3.813	N/A
MW373	Upgradient	Yes	55	NO	4.007	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-73

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 122.381 S = 195.095 CV(1) = 1.594

K factor**= 2.523

TL(1)= 614.606 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.985 S = 1.323 CV(2) = 0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	30	N/A	3.401	NO
MW361	Downgradient	Yes	80.5	N/A	4.388	NO
MW364	Downgradient	Yes	69.5	N/A	4.241	NO
MW367	Downgradient	Yes	20.6	N/A	3.025	NO
MW370	Upgradient	Yes	19.5	N/A	2.970	NO
MW373	Upgradient	Yes	143	N/A	4.963	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.655
 S= 13.274 CV(1)=1.734
 K factor**= 2.523
 TL(1)= 41.146 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 1.946 S= 0.939 CV(2)=0.483 K factor**= 2.523 TL(2)= 3.833 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.8 2.380 4/23/2002 8.53 2.144 7/15/2002 1.627 5.09 10/8/2002 4.78 1.564 1/8/2003 -5.12#Func! 4/3/2003 5.11 1.631 7/9/2003 4.25 1.447 10/6/2003 6.54 1.878 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 16.5 2.803 4/23/2002 3.49 1.250 7/16/2002 1.42 0.351 10/8/2002 -6.06#Func! 1/7/2003 -8.41 #Func! 4/2/2003 26.3 3.270 7/9/2003 3.06 1.118 10/7/2003 46.2 3.833

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	17.5	N/A	2.862	NO
	MW361	Downgradient	Yes	45.1	N/A	3.809	NO
	MW364	Downgradient	Yes	35	N/A	3.555	NO
	MW367	Downgradient	No	-6.25	N/A	#Error	N/A
	MW370	Upgradient	Yes	20.9	N/A	3.040	NO
	MW373	Upgradient	No	-1.78	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-75

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Toluene UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.250

S = 5.000CV(1)=0.800 **K factor**=** 2.523

TL(1)= 18.865

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.710 S = 0.402CV(2) = 0.235 **K factor**=** 2.523

TL(2) = 2.725

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	5	1.609
4/23/2002	5	1.609
7/15/2002	5	1.609
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 5	1.609
Date Collected 3/18/2002 4/23/2002	Result 5 25	1.609 3.219
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 5 25 5	1.609 3.219 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 25 5 5	1.609 3.219 1.609 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 25 5 5 5	1.609 3.219 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	1	N/A	0.000	N/A
MW361	Downgradient	No	1	N/A	0.000	N/A
MW364	Downgradient	No	1	N/A	0.000	N/A
MW367	Downgradient	No	1	N/A	0.000	N/A
MW370	Upgradient	Yes	0.37	NO	-0.994	N/A
MW373	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 6.169 **S**= 12.072 **CV(1)**=1.957

K factor=** 2.523

TL(1)= 36.626 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 1.069 **S**= 1.014

 $S= 1.014 \quad CV(2)=0.948$

K factor=** 2.523

TL(2) = 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.095
Date Collected	Result	
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	5.16	N/A	1.641	NO
MW361	Downgradient	Yes	0.671	N/A	-0.399	NO
MW364	Downgradient	Yes	0.594	N/A	-0.521	NO
MW367	Downgradient	Yes	0.583	N/A	-0.540	NO
MW370	Upgradient	Yes	1.07	N/A	0.068	NO
MW373	Upgradient	Yes	0.743	N/A	-0.297	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-77

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor**= 2.523

TL(1)= 277.798 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor=** 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	4.96	NO	1.601	N/A
MW361	Downgradient	Yes	4.1	NO	1.411	N/A
MW364	Downgradient	No	10	N/A	2.303	N/A
MW367	Downgradient	No	10	N/A	2.303	N/A
MW370	Upgradient	Yes	7.92	NO	2.069	N/A
MW373	Upgradient	Yes	8.4	NO	2.128	N/A
MW361 MW364 MW367 MW370	Downgradient Downgradient Upgradient	Yes No No Yes	4.1 10 10 7.92	NO N/A N/A NO	1.411 2.303 2.303 2.069	N/A N/A N/A N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-78

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.008CV(1)=0.324**K factor**=** 2.523 **TL(1)=** 0.044 **Statistics-Background Data** X = 0.024LL(1)=N/A **Statistics-Transformed Background** X = -3.749 S = 0.265CV(2) = -0.071**K factor**=** 2.523 TL(2) = -3.080LL(2)=N/A

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.035 -3.352 4/23/2002 0.033 -3.4117/15/2002 0.025 -3.689 10/8/2002 0.02 -3.912 0.02 -3.9121/8/2003 4/3/2003 0.02 -3.9127/9/2003 0.02 -3.912-3.91210/6/2003 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.048 -3.0374/23/2002 0.025 -3.689 0.025 7/16/2002 -3.68910/8/2002 0.02 -3.9121/7/2003 0.02-3.912 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912-3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.00446	N/A	-5.413	N/A
MW361	Downgradient	No	0.00408	N/A	-5.502	N/A
MW364	Downgradient	No	0.02	N/A	-3.912	N/A
MW367	Downgradient	No	0.02	N/A	-3.912	N/A
MW370	Upgradient	No	0.02	N/A	-3.912	N/A
MW373	Upgradient	Yes	0.00496	NO	-5.306	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

C-746-U Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.055 **S**= 0.037

CV(1)=0.673

K factor=** 2.523

TL(1)= 0.147

LL(1)=N/A

Statistics-Transformed Background Data

X= -3.131 **S**= 0.691

CV(2) = -0.221

K factor=** 2.523

TL(2) = -1.388

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 -2.3030.1 4/23/2002 0.1 -2.3037/15/2002 -2.3030.1 10/8/2002 0.025 -3.689 0.035 1/8/2003 -3.3524/3/2003 0.035 -3.3527/9/2003 0.02 -3.91210/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.1 -2.303 4/23/2002 0.1 -2.303-2.3037/16/2002 0.1 10/8/2002 0.025 -3.6890.035-3.352 1/7/2003 4/2/2003 0.035 -3.3527/9/2003 0.0234 -3.7550.02 -3.912 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0109	NO	-4.519	N/A
MW361	Downgradient	No	0.02	N/A	-3.912	N/A
MW364	Downgradient	Yes	0.0108	NO	-4.528	N/A
MW367	Downgradient	Yes	0.0096	NO	-4.646	N/A
MW370	Upgradient	No	0.02	N/A	-3.912	N/A
MW373	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

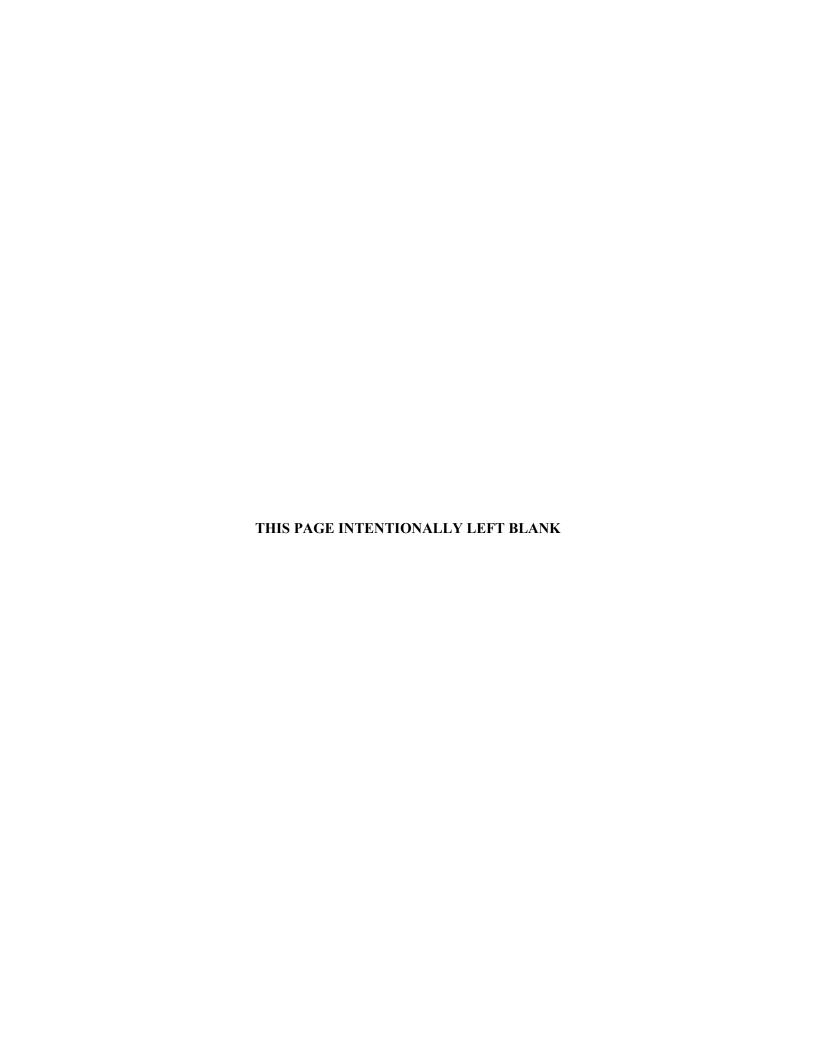
None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)


X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-80

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-U Fourth Quarter 2022 Statistical Analysis Current Dissolved Oxygen UNITS: mg/L

Current Background Comparison
UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 2.844	S = 2.112	CV(1)= 0.743	K factor**= 2.523	TL(1)= 8.171	LL(1)=N/A
Statistics-Transformed Background	X = 0.744	S = 0.857	CV(2)=1.152	K factor**= 2.523	TL(2)= 2.906	LL(2)=N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
10/12/2020	1.34	0.293
1/20/2021	1.6	0.470
4/13/2021	6.07	1.803
7/20/2021	5.52	1.708
10/12/2021	3.36	1.212
1/12/2022	3.82	1.340
4/12/2022	7.49	2.014
7/14/2022	4.25	1.447
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.693
Date Collected	Result	,
Date Collected 10/12/2020	Result 0.5	-0.693
Date Collected 10/12/2020 1/20/2021	Result 0.5 0.92	-0.693 -0.083
Date Collected 10/12/2020 1/20/2021 4/13/2021	Result 0.5 0.92 2.8	-0.693 -0.083 1.030
Date Collected 10/12/2020 1/20/2021 4/13/2021 7/14/2021	Result 0.5 0.92 2.8 0.99	-0.693 -0.083 1.030 -0.010
Date Collected 10/12/2020 1/20/2021 4/13/2021 7/14/2021 10/13/2021	Result 0.5 0.92 2.8 0.99 0.44	-0.693 -0.083 1.030 -0.010 -0.821

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter	· Data
-----------------	--------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW365	Downgradien	t Yes	4.25	NO	1.447	N/A
MW371	Upgradient	Yes	2.87	NO	1.054	N/A
MW375	Sidegradient	Yes	2.89	NO	1.061	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis **UNITS: mV**

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 316.813 S = 82.397 CV(1) = 0.260

K factor**= 2.523

TL(1)= 524.700

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.718S = 0.314CV(2) = 0.055 K factor**= 2.523

TL(2) = 6.510

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Oxidation-Reduction Potential

Well Number: MW371 Date Collected Result LN(Result) 10/12/2020 344 5.841 1/20/2021 296 5.690 4/13/2021 5.961 388 7/20/2021 5.994 401 10/12/2021 344 5.841 1/12/2022 389 5.964 4/12/2022 375 5.927 7/14/2022 5.935 378 Well Number: MW374 Date Collected Result LN(Result) 10/12/2020 207 5.333 1/20/2021 145 4.977 4/13/2021 361 5.889 7/14/2021 349 5.855

202

192

353

345

10/13/2021

1/13/2022

4/12/2022

7/14/2022

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradien	t Yes	298	NO	5.697	N/A
MW365	Downgradien	t Yes	453	NO	6.116	N/A
MW371	Upgradient	Yes	409	NO	6.014	N/A
MW374	Upgradient	Yes	330	NO	5.799	N/A
MW375	Sidegradient	Yes	350	NO	5.858	N/A

Conclusion of Statistical Analysis on Current Data

5.308

5.257

5.866

5.844

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-4

C-746-U Fourth Quarter 2022 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 26.202 S = 23.702 CV(1) = 0.905

K factor**= 2.523

TL(1)= 86.003

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.006

S = 0.679CV(2) = 0.226 K factor**= 2.523

TL(2) = 4.719

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected LN(Result) Result 10/12/2020 29.9 3.398 1/20/2021 29.2 3.374 4/13/2021 90.7 4.508 7/20/2021 34.1 3.529 10/12/2021 11.9 2.477 1/12/2022 14.3 2.660 4/12/2022 75.4 4.323 7/14/2022 28.7 3.357 Well Number: MW374 Date Collected Result LN(Result) 10/12/2020 9.73 2.275 1/20/2021 10.7 2.370 4/13/2021 13 2.565 7/14/2021 2.595 13.4 10/13/2021 12.7 2.542 1/13/2022 12.4 2.518

16.4

16.7

4/12/2022

7/14/2022

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradien	t Yes	27.7	NO	3.321	N/A
MW365	Downgradien	t Yes	54.5	NO	3.998	N/A
MW375	Sidegradient	Yes	22.4	NO	3.109	N/A

Conclusion of Statistical Analysis on Current Data

2.797

2.815

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-5

C-746-U Fourth Quarter 2022 Statistical Analysis

Current Background Comparison

URGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 39.956 S = 24.965 CV(1) = 0.625

K factor**= 2.523

TL(1)= 102.943

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.461

S = 0.723

CV(2) = 0.209

K factor**= 2.523

TL(2) = 5.284

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/12/2020	15.7	2.754
1/20/2021	15.4	2.734
4/13/2021	16.7	2.815
7/13/2021	15.3	2.728
10/12/2021	15.1	2.715
1/12/2022	16.3	2.791
4/12/2022	16.5	2.803
7/14/2022	15.7	2.754

7/14/2022	15.7	2.754
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/12/2020	62.3	4.132
1/20/2021	67.5	4.212
4/13/2021	62.3	4.132
7/14/2021	65	4.174
10/13/2021	64.8	4.171
1/13/2022	67	4.205
4/12/2022	61.1	4.113
7/14/2022	62.6	4.137

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW372	Ungradient	Yes	62.2	NO	4.130	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-6

C-746-U Fourth Quarter 2022 Statistical Analysis **Current Background Comparison URGA Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 547.750 S = 202.650 CV(1) = 0.370

K factor**= 2.523

TL(1)= 1059.035 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.240

S = 0.375CV(2) = 0.060 K factor**= 2.523

TL(2) = 7.187

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369			
Date Collected	Result	LN(Result)		
10/12/2020	373	5.922		
1/20/2021	373	5.922		
4/13/2021	383	5.948		
7/13/2021	378	5.935		
10/12/2021	305	5.720		
1/12/2022	359	5.883		
4/12/2022	378	5.935		
7/14/2022	371	5.916		
//17/2022	3/1	3.710		

7/14/2022	371	5.916
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/12/2020	778	6.657
1/20/2021	822	6.712
4/13/2021	795	6.678
7/14/2021	760	6.633
10/13/2021	484	6.182
1/13/2022	752	6.623
4/12/2022	738	6.604
7/14/2022	715	6.572

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Vec	01/	NO	6.818	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

C-746-U Fourth Quarter 2022 Statistical Analysis Dissolved Solids UNITS: n

Analysis Current Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 337.063 **S**= 139.689 **CV(1)**=0.414

K factor=** 2.523

TL(1)= 689.498

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.732 S = 0.441 CV(2) = 0.077

K factor=** 2.523

TL(2) = 6.845

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369			
Date Collected	Result	LN(Result)		
10/12/2020	220	5.394		
1/20/2021	191	5.252		
4/13/2021	209	5.342		
7/13/2021	194	5.268		
10/12/2021	179	5.187		
1/12/2022	200	5.298		
4/12/2022	234	5.455		
7/14/2022	196	5.278		

// 17/2022	170	3.270	
Well Number:	MW372		
Date Collected	Result	LN(Result)	
10/12/2020	474	6.161	
1/20/2021	447	6.103	
4/13/2021	483	6.180	
7/14/2021	481	6.176	
10/13/2021	461	6.133	
1/13/2022	506	6.227	
4/12/2022	457	6.125	
7/14/2022	461	6.133	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW372	Ungradient	Yes	455	NO	6.120	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-8

C-746-U Fourth Quarter 2022 Statistical Analysis

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mV

Statistics-Background Data

X= 381.688 **S**= 29.518 **CV(1)**=0.077

K factor**= 2.523

TL(1)= 456.161 1

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.942 S = 0.077

CV(2) = 0.013

K factor**= 2.523

TL(2) = 6.135

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Oxidation-Reduction Potential

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/12/2020	362	5.892
1/20/2021	350	5.858
4/13/2021	444	6.096
7/13/2021	352	5.864
10/12/2021	343	5.838
1/12/2022	392	5.971
4/12/2022	382	5.945
7/14/2022	420	6.040
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.832
Date Collected	Result	` ′
Date Collected 10/12/2020	Result 341	5.832
Date Collected 10/12/2020 1/20/2021	Result 341 362	5.832 5.892
Date Collected 10/12/2020 1/20/2021 4/13/2021	Result 341 362 411	5.832 5.892 6.019
Date Collected 10/12/2020 1/20/2021 4/13/2021 7/14/2021	Result 341 362 411 378	5.832 5.892 6.019 5.935
Date Collected 10/12/2020 1/20/2021 4/13/2021 7/14/2021 10/13/2021	Result 341 362 411 378 390	5.832 5.892 6.019 5.935 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	t Yes	328	NO	5.793	N/A
MW360	Downgradient	t Yes	223	NO	5.407	N/A
MW363	Downgradient	Yes	470	YES	6.153	N/A
MW366	Downgradient	t Yes	434	NO	6.073	N/A
MW369	Upgradient	Yes	406	NO	6.006	N/A
MW372	Upgradient	Yes	416	NO	6.031	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW363

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2022 Statistical Analysis Technetium-99 UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 57.300 S = 15.578 CV(1) = 0.272

K factor**= 2.523

TL(1)= 96.603

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.002

S = 0.344

CV(2) = 0.086

K factor**= 2.523

TL(2) = 4.871

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/12/2020	18.6	2.923
1/20/2021	47.7	3.865
4/13/2021	60.3	4.099
7/13/2021	67.7	4.215
10/12/2021	59.8	4.091
1/12/2022	52.8	3.967
4/12/2022	57.2	4.047
7/14/2022	50.8	3.928

7/14/2022	50.8	3.928
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/12/2020	83.4	4.424
1/20/2021	43.5	3.773
4/13/2021	51.3	3.938
7/14/2021	66.6	4.199
10/13/2021	55.9	4.024
1/13/2022	47.6	3.863
4/12/2022	79.4	4.374
7/14/2022	74.2	4.307

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Cullent	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	69.7	NO	4 244	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-10

C-746-U Fourth Quarter 2022 Statistical Analysis Dissolved Oxygen UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Back	kground Data
-----------------	--------------

$$X = 3.129$$

LL(1)=N/A

Statistics-Transformed Background Data

$$X = 1.071$$

$$S= 0.398 \quad CV(2)=0.371$$

$$TL(2) = 2.075$$

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
10/12/2020	3.45	1.238
1/20/2021	4.3	1.459
4/13/2021	3.57	1.273
7/13/2021	4.47	1.497
10/12/2021	4.6	1.526
1/12/2022	4.36	1.472
4/12/2022	3.45	1.238
7/14/2022	4.73	1.554

1/12/2022	4.36	1.472
4/12/2022	3.45	1.238
7/14/2022	4.73	1.554
Well Number:	MW373	
Date Collected	Result	LN(Result)
10/12/2020	1.77	0.571
1/20/2021	1.8	0.588
4/13/2021	1.33	0.285
7/14/2021	2.3	0.833
10/13/2021	2	0.693
1/13/2022	2.72	1.001
4/12/2022	2.79	1.026

2.42

7/14/2022

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Ungradient	Yes	4.8	NO	1 569	N/A

Conclusion of Statistical Analysis on Current Data

0.884

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-11

C-746-U Fourth Quarter 2022 Statistical Analysis

Analysis Current Background Comparison UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Nickel

X = 0.002

CV(1)=0.604

K factor**= 2.523

TL(1)=0.005

LL(1)=N/A

Statistics-Transformed Background Data

X= -6.462 **S=** 0.599

S = 0.001

CV(2) = -0.093

K factor**= 2.523

TL(2) = -4.952

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 10/12/2020 0.00421 -5.4701/20/2021 0.00254 -5.976 4/13/2021 0.00128 -6.661 7/13/2021 0.000726 -7.22810/12/2021 0.002 -6.2151/12/2022 0.000792 -7.141 0.000834 4/12/2022 -7.0897/14/2022 0.000909 -7.003

Well Number: MW373 Date Collected Result LN(Result) 10/12/2020 0.00382 -5.568 0.0027 1/20/2021 -5.9154/13/2021 0.00131 -6.638 7/14/2021 0.00153 -6.4820.000959 -6.95010/13/2021 1/13/2022 0.00248 -5.999 0.000796 -7.136 4/12/2022 7/14/2022 0.00266 -5.929

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradien	t Yes	0.0945	YES	-2.359	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW358

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

 D2-12

C-746-U Fourth Quarter 2022 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 384.250 S = 23.812 CV(1) = 0.062

K factor**= 2.523

TL(1)= 444.327

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.950S = 0.061CV(2) = 0.010

K factor**= 2.523

TL(2) = 6.105

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

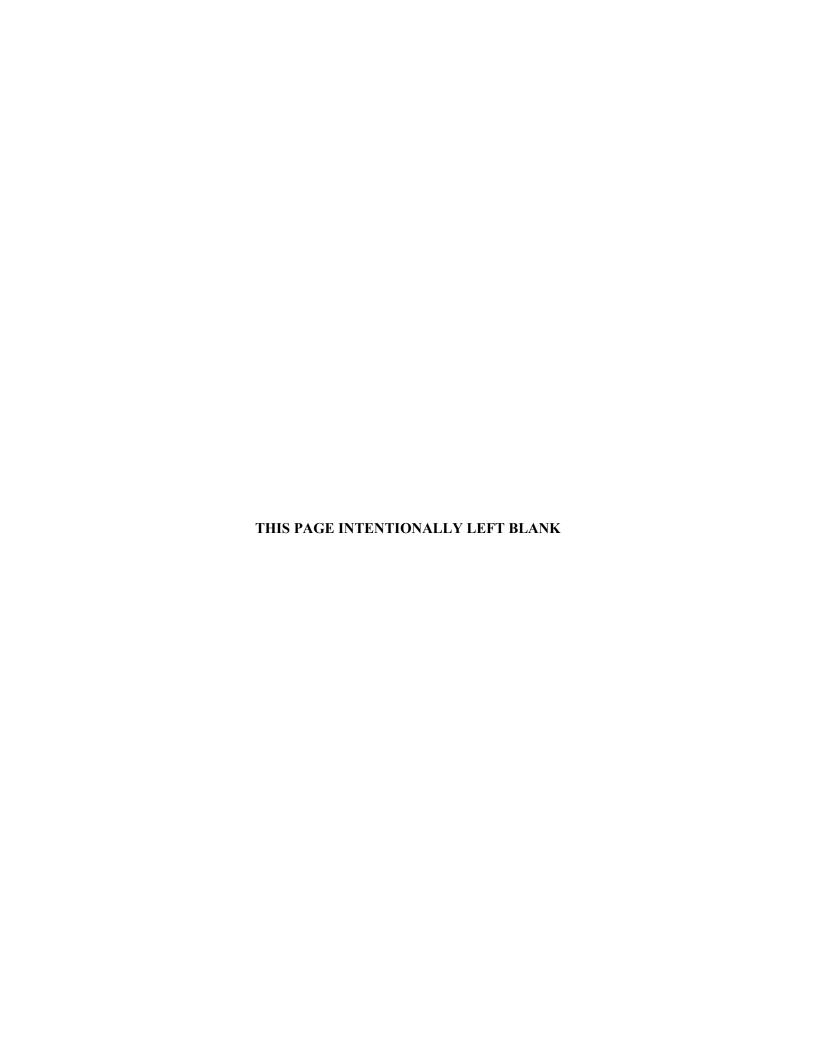
Well Number:	MW370	
Date Collected	Result	LN(Result)
10/12/2020	350	5.858
1/20/2021	395	5.979
4/13/2021	435	6.075
7/13/2021	364	5.897
10/12/2021	359	5.883
1/12/2022	402	5.996
4/12/2022	390	5.966
7/14/2022	415	6.028
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.858
Date Collected	Result	
Date Collected 10/12/2020	Result 350	5.858
Date Collected 10/12/2020 1/20/2021	Result 350 372	5.858 5.919
Date Collected 10/12/2020 1/20/2021 4/13/2021	Result 350 372 407	5.858 5.919 6.009
Date Collected 10/12/2020 1/20/2021 4/13/2021 7/14/2021	Result 350 372 407 380	5.858 5.919 6.009 5.940
Date Collected 10/12/2020 1/20/2021 4/13/2021 7/14/2021 10/13/2021	Result 350 372 407 380 372	5.858 5.919 6.009 5.940 5.919

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

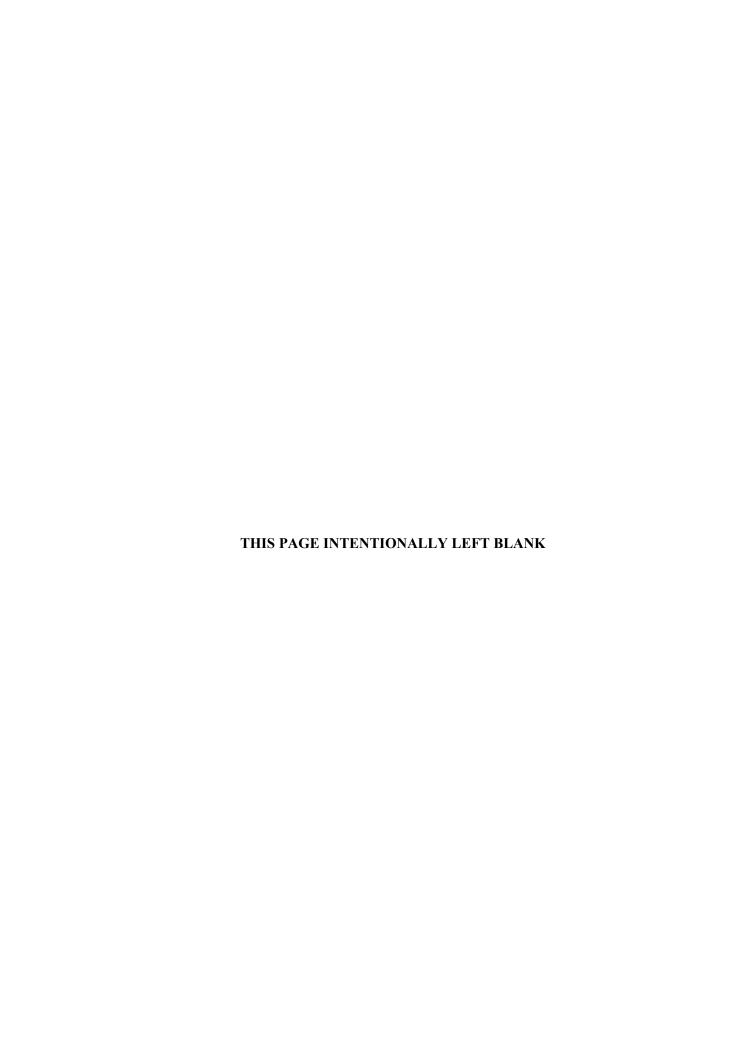
Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	280	NO	5.635	N/A
MW361	Downgradient	Yes	344	NO	5.841	N/A
MW364	Downgradient	Yes	433	NO	6.071	N/A
MW367	Downgradient	Yes	236	NO	5.464	N/A
MW370	Upgradient	Yes	427	NO	6.057	N/A
MW373	Upgradient	Yes	401	NO	5.994	N/A

Conclusion of Statistical Analysis on Current Data


None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.


Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

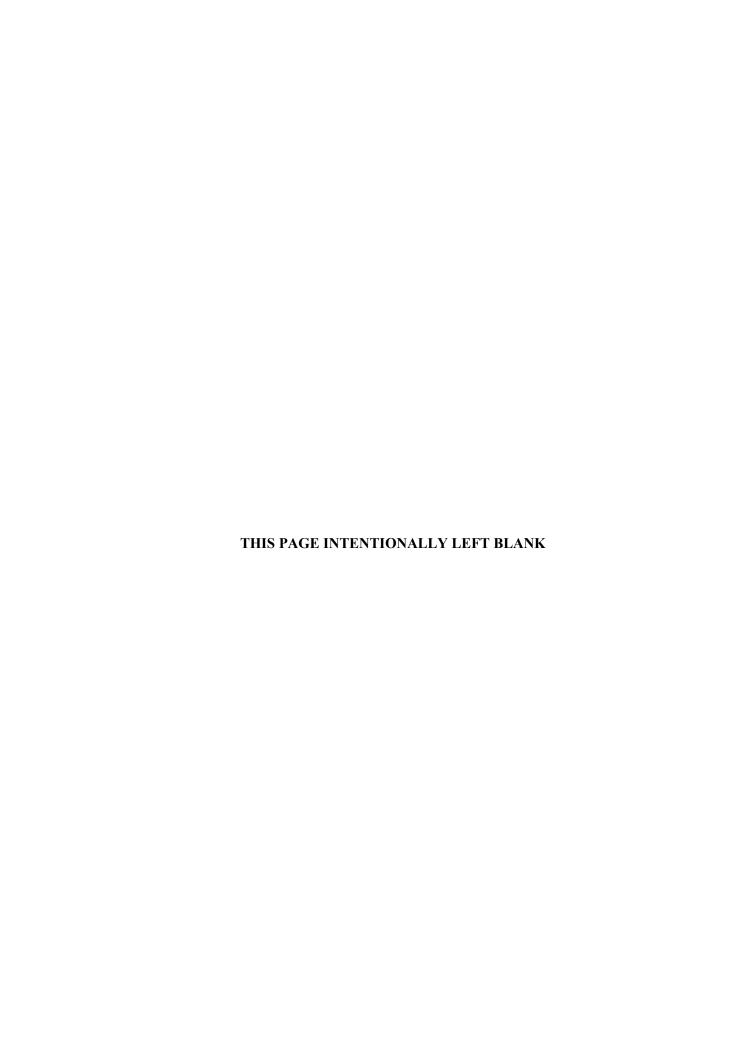
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-13

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

January 23, 2023


Mr. Dennis Greene
 Four Rivers Nuclear Partnership, LLC
 5511 Hobbs Road
 Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the fourth quarter 2022 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—OUARTERLY, 4th CY 2022

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2022 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on October 25, 2022. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement and sampling for laboratory analysis during this reporting period.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 9.21×10^{-4} ft/ft and 9.16×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 6.17×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for October 2022, the groundwater flow direction in the immediate area of the landfill was to the northeast.

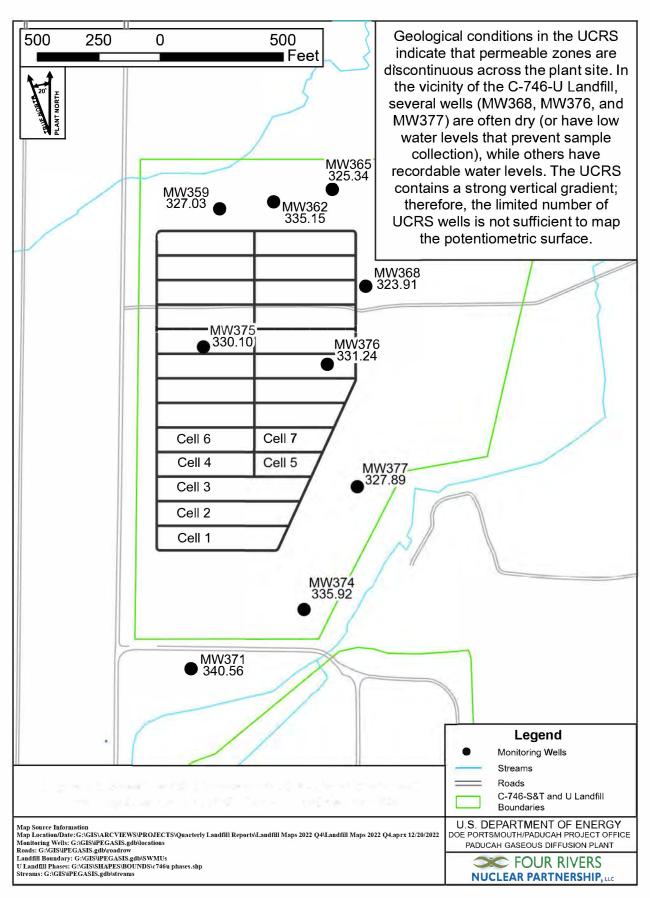


Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-U Landfill, October 25, 2022

Table E.1. C-746-U Landfill Fourth Quarter 2022 (October) Water Levels

C-746-U Landfill (October 2022) Water Levels										
							Rav	w Data	*Corrected Data	
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/25/2022	7:54	MW357	URGA	368.77	29.69	0.00	46.35	322.42	46.35	322.42
10/25/2022	7:55	MW358	LRGA	368.92	29.69	0.00	46.51	322.41	46.51	322.41
10/25/2022	7:56	MW359	UCRS	368.91	29.69	0.00	41.88	327.03	41.88	327.03
10/25/2022	7:59	MW360	URGA	362.07	29.69	0.00	39.63	322.44	39.63	322.44
10/25/2022	8:01	MW361	LRGA	361.32	29.69	0.00	38.91	322.41	38.91	322.41
10/25/2022	8:00	MW362	UCRS	361.85	29.69	0.00	26.70	335.15	26.70	335.15
10/25/2022	8:06	MW363	URGA	368.56	29.69	0.00	46.31	322.25	46.31	322.25
10/25/2022	8:07	MW364	LRGA	368.17	29.69	0.00	45.93	322.24	45.93	322.24
10/25/2022	8:08	MW365	UCRS	368.14	29.69	0.00	42.80	325.34	42.80	325.34
10/25/2022	8:12	MW366	URGA	368.95	29.69	0.00	46.43	322.52	46.43	322.52
10/25/2022	8:14	MW367	LRGA	369.37	29.69	0.00	46.85	322.52	46.85	322.52
10/25/2022	8:13	MW368	UCRS	368.98	29.69	0.00	45.07	323.91	45.07	323.91
10/25/2022	8:46	MW369	URGA	364.23	29.69	0.00	40.31	323.92	40.31	323.92
10/25/2022	8:48	MW370	LRGA	365.12	29.69	0.00	41.20	323.92	41.20	323.92
10/25/2022	8:47	MW371	UCRS	364.64	29.69	0.00	24.08	340.56	24.08	340.56
10/25/2022	8:40	MW372	URGA	359.42	29.69	0.00	35.49	323.93	35.49	323.93
10/25/2022	8:41	MW373	LRGA	359.73	29.69	0.00	35.79	323.94	35.79	323.94
10/25/2022	8:42	MW374	UCRS	359.44	29.69	0.00	23.52	335.92	23.52	335.92
10/25/2022	8:31	MW375	UCRS	370.36	29.69	0.00	40.26	330.10	40.26	330.10
10/25/2022	8:34	MW376	UCRS	370.39	29.69	0.00	39.15	331.24	39.15	331.24
10/25/2022	8:37	MW377	UCRS	365.74	29.69	0.00	37.85	327.89	37.85	327.89
10/25/2022	9:36	MW391	URGA	366.67	29.68	0.01	42.78	323.89	42.79	323.88
10/25/2022	9:37	MW392	LRGA	365.85	29.68	0.01	41.97	323.88	41.98	323.87
Reference Barometric Pressure										

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

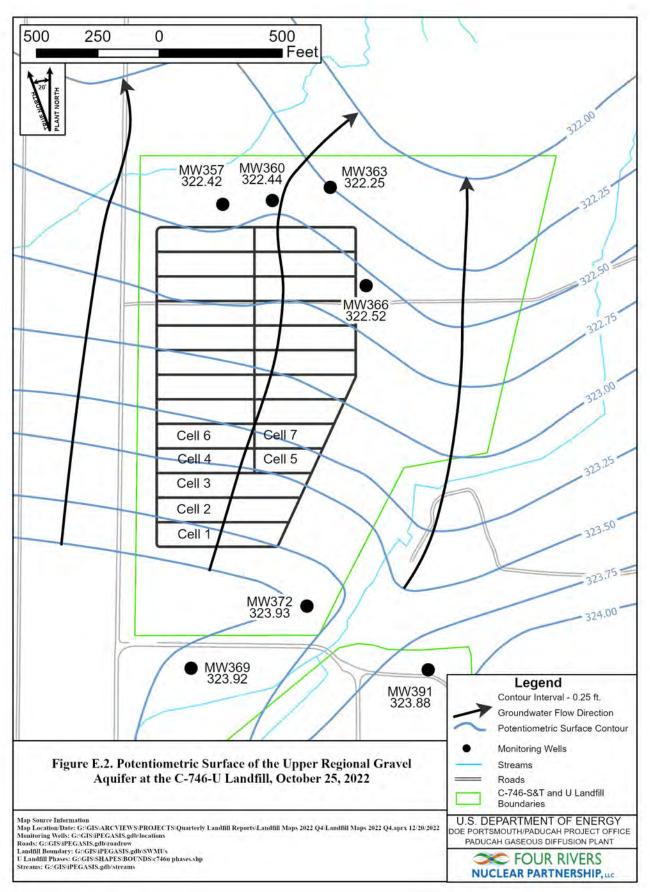


Figure E.2. Potentiometric Surface of the Upper Regional Gravel Aquifer at the C-746-U Landfill, October 25, 2022

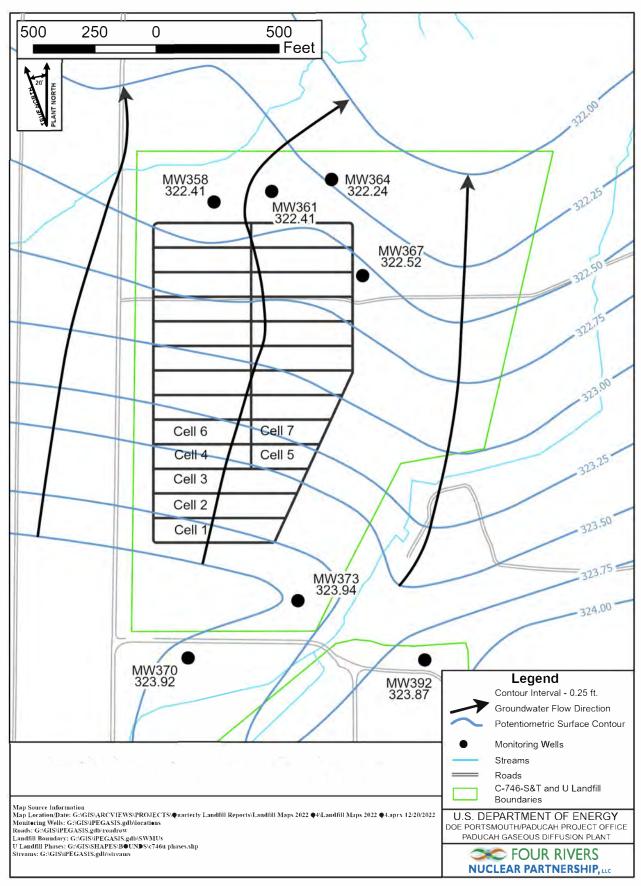


Figure E.3. Potentiometric Surface of the Lower Regional Gravel Aquifer at the C-746-U Landfill, October 25, 2022

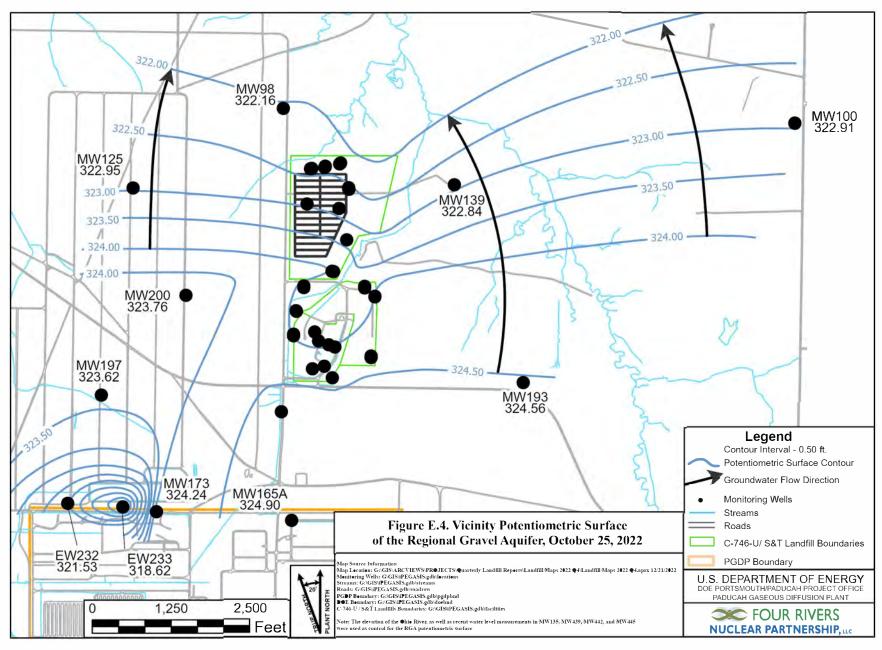


Figure E.4. Vicinity Potentiometric Surface of the Regional Gravel Aquifer, October 25, 2022

Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	9.21 × 10 ⁻⁴
Beneath Landfill—Lower RGA	9.16 × 10 ⁻⁴
Vicinity	6.17 × 10 ⁻⁴

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific	Discharge (q)	Average I	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.668	2.36×10^{-4}	2.67	9.43×10^{-4}
425	0.150	0.391	1.38×10^{-4}	1.57	5.53×10^{-4}
Lower RGA					
725	0.256	0.664	2.34×10^{-4}	2.66	9.38 × 10 ⁻⁴
425	0.150	0.389	1.37×10^{-5}	1.56	5.49×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the fourth quarter 2022 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW372
Lower Regional Gravel Aquifer	Nickel	MW358

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

11/28/2022

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL

No exceedances reported.

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Groundwater Flow System				UCR	S							URC	A					LRG	A		\neg
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									<u> </u>
Quarter 4, 2002										*	*	*									-
Quarter 1, 2003 Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*	-		*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Quarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004																					•
Quarter 2, 2004 Quarter 3, 2009						-															-
ALUMINUM						_															
Quarter 3, 2003											*										
BETA ACTIVITY											- 1										
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004															•					ш	_
Quarter 4, 2005	<u> </u>					<u> </u>			Ш											ш	-
Quarter 1, 2006	├					<u> </u>			\vdash							<u> </u>				$\vdash \vdash$	-
Quarter 2, 2006															_						
Quarter 3, 2006 Quarter 4, 2006			-		-		-	-		-						\vdash	-		-	$\vdash \vdash$	+
Quarter 1, 2007															=						i
Quarter 2, 2007										_											ī
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008										•											
Quarter 2, 2008																					
Quarter 3, 2008																					<u> </u>
Quarter 4, 2008										•									•	$\vdash \vdash$	<u> </u>
Quarter 1, 2009										•							-				—
Quarter 2, 2009 Quarter 3, 2009										•					=	-	-				—
Quarter 4, 2009															i						
Quarter 1, 2010															Ŧ						
Quarter 2, 2010																					
Quarter 3, 2010										•											
Quarter 4, 2010															•						
Quarter 2, 2011																					
Quarter 4, 2011															•						<u> </u>
Quarter 1, 2012										-								<i></i>			<u> </u>
Quarter 2, 2012										÷					-			(1)(II)		\vdash	<u> </u>
Quarter 3, 2012 Quarter 4, 2012										-											
Quarter 1, 2013																					i
Quarter 3, 2013															ī						Ŧ
Quarter 4, 2013															1						Ē
Quarter 1, 2014																					
Quarter 4, 2014																					
Quarter 1, 2015															•	_				ш	_
Quarter 2, 2015	-														_					$\vdash \vdash$	<u> </u>
Quarter 4, 2015 Quarter 3, 2016	-	-	-	-	-	-	-	-		-	-		-	-		 	-	-	•		<u> </u>
Quarter 3, 2016 Quarter 4, 2016			-		-		-	-		-				-	-	\vdash	-		-	-	\vdash
Quarter 4, 2016 Quarter 2, 2017									H					-							
Quarter 3, 2017																					
Quarter 4, 2017																1					
Quarter 1, 2018																					
Quarter 2, 2018														•							
Quarter 3, 2018																				•	
Quarter 4, 2018																				•	<u> </u>
Quarter 1, 2019												-		_							<u> </u>
Quarter 2, 2019	├					<u> </u>			\vdash						_	<u> </u>					<u> </u>
Quarter 3, 2019	-		_		_		_	_				_		_		-	_		_		—
Quarter 4, 2019 Quarter 1, 2020	1	-	-	-	-		-	-	•	-	-		-	-	-	1	-	-	-		—
Quarter 1, 2020 Quarter 2, 2020		†							-				†		-	\vdash					
Quarter 3, 2020																1					
Quarter 4, 2020																1					
BROMIDE																					
Quarter 2, 2004													*								

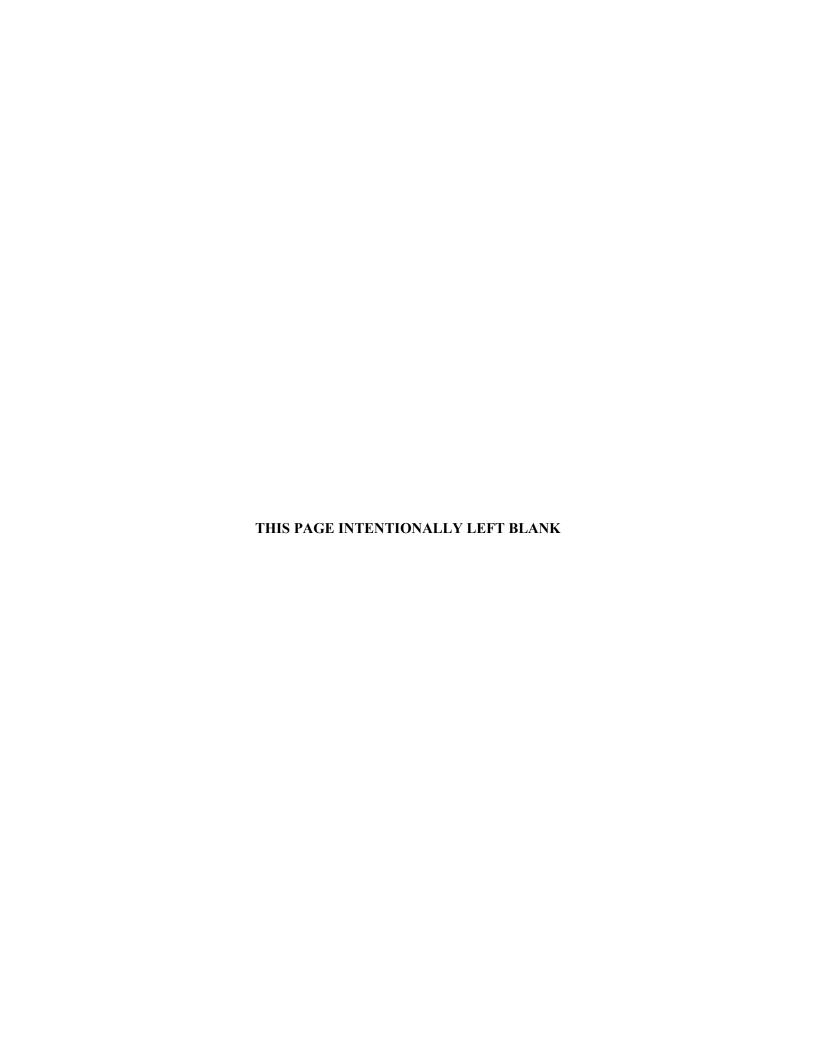
Transferrick D S S S D D D U D D D U D D	Groundwater Flow System				UCR	S							URG	A					LRG	A		
Date of the control o	Gradient	D	S	S			D	D	U	U	D	D			U	U	D	D			U	U
Description	Monitoring Well	368	375	376			362	365	371	374	366	360	363		369	372	367	361	364		370	373
Description	CALCIUM																					
Date	Quarter 3, 2003										*											
Date																						*
Description																_						
Jamers 4, 2000 Jamers 2, 2010 Jamers 3, 2011 Jamers 4, 2012 Jamers 4, 2012 Jamers 4, 2012 Jamers 4, 2013 Jamers 4, 2013 Jamers 4, 2014 Jamers 4, 2015 Jamers 4, 2015 Jamers 4, 2015 Jamers 4, 2016 Jamers 4, 2017 Jamers 4, 2016 Jamers 4, 2016 Jamers 4, 2017 Jamers 4, 2018 Jamers 4, 2019 Jamers 6, 2019 Jamers 7, 2019																						
Disaster 1, 2010 Disaster 3, 2010 Disaster 3, 2010 Disaster 1, 2011 Disaster 1, 2011 Disaster 2, 2012 Disaster 2, 2012 Disaster 2, 2012 Disaster 2, 2013 Disaster 2, 2015 Disaster 2, 2016 Disaster 2,																						
Quarter 2, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 5, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 7, 2014 Quarter 7, 2014 Quarter 7, 2014 Quarter 7, 2014 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2016 Quarter 7, 2017 Quarter 7,																						
Daurter 1, 2011 Daurter 2, 2011 Daurter 3, 2011 Daurter 3, 2011 Daurter 4, 2011 Daurter 4, 2011 Daurter 4, 2012 Daurter 3, 2012 Daurter 3, 2013 Daurter 3, 2014 Daurter 4, 2014 Daurter 4, 2016 Daurter 3, 2015 Daurter 3, 2015 Daurter 3, 2015 Daurter 3, 2015 Daurter 3, 2016 Daurter 3, 2016 Daurter 3, 2017 Daurter 3, 2018 Daurter 3, 2018 Daurter 3, 2019 Daurter 4, 2019 Daurter 3, 2019 Daurter 3, 2019 Daurter 4, 2019 Daurter 5, 2020 Daurter 6, 2020 Daurter 7, 2020 Daurter 6, 2020 Daurter 7, 2020 Daurter 7, 2020 Daurter 7, 2020 Daurter 7, 2020 Daurter 8, 2020 Daurter 9,																						
Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2019 Quarter 4, 2000 Quarter 4,																						
Spanter 1,9012 Spanter 1,9013 Spanter 1,9014 Spanter 1,9014 Spanter 1,9014 Spanter 1,9014 Spanter 1,9015 Spanter 1,9016 Spanter 1,9017 Spanter 1	Quarter 1, 2011																					
Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 2000 Quarter 4,	Quarter 2, 2011															*						
Dautret 1, 2012	Quarter 3, 2011																					
Duarter 2, 2012	Quarter 4, 2011																					
Danter of 2, 2012	Quarter 1, 2012															_						
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2023 Quarter 4, 2024 Quarter 4, 2024 Quarter 4, 2024 Quarter 4, 2025 Quarter 4, 2025 Quarter 4, 2026 Quarter 4, 2026 Quarter 4, 2027 Quarter 4, 2027 Quarter 4, 2027 Quarter 4, 2028 Quarter 4, 2029 Quarter 4,																_						
Daurter 1, 2013																						*
Duarter 2, 2013																						
Section Sect																						*
Duarter 4, 2013					H			H														*
Date					H			H														-
Section Sect																						*
Duarter 4, 2014																						
Duarter 2, 2015																						H
Duarter 1, 2015	Quarter 2, 2015																					
Dauter 2,015 Dauter 2,016 Dauter 2,016 Dauter 2,017 Dauter 2,017 Dauter 2,018 Dauter 2,018 Dauter 2,018 Dauter 2,018 Dauter 2,019 Dauter 2,020 Dauter 2,000 Daut	Quarter 3, 2015															_						
Quarter 1, 2016	Quarter 4, 2015																					
Dainter 2, 2017	Quarter 1, 2016															*						
Duarter 1, 2018	Quarter 2, 2016															*						
Daurter 1, 2018	Quarter 2, 2017																					
Quarter 1, 2019	Quarter 1, 2018																					ш
Dautret 2,019																						
Quarter 1, 2020		*							*													
Duarter 2, 2020																						
Daurter 3, 2020																						
Quarter 1, 2020		*																				
Quarter 1, 2021		*							*													
Quarter 2, 2021																_						
Duarter 3, 2021									*							_						
Quarter 4, 2021																						
Quarter 1, 2022	Quarter 4, 2021															_						
Quarter 3, 2022	Quarter 1, 2022																					
Quarter 4, 2022	Quarter 2, 2022															*						
Carrier 3, 2003	Quarter 3, 2022															*						
Quarter 3, 2003	Quarter 4, 2022															*						
Quarter 2, 2005	CARBON DISULFIDE																					
Puarter 3, 2005	Quarter 3, 2003										*											
Parter 4, 2005								*														
Quarter 1, 2006			 		\vdash			\vdash						<u> </u>							<u> </u>	
Puarter 2, 2006		-	1	-	\vdash			\vdash		-	-	-	-	-	-	-	-	-	-	-	-	\vdash
Quarter 3, 2010			 							-			-	<u> </u>	-				-		<u> </u>	
Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2000 Quarter 4, 2000 Quarter 1, 2001 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2017 Quarter 4, 2016 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2000 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 9, 200			*		\vdash		*	\vdash		-		*	-		-				-			
Quarter 1, 2011			π'		H			H				<u> </u>			*							
CHEMICAL OXYGEN DEMAND	Quarter 1, 2011															*						
Quarter 3, 2002 * * * * * * * * * Quarter 4, 2002 * * * * * Quarter 4, 2003 * * * * * Quarter 3, 2003 * * * * * Quarter 3, 2003 * * * * Quarter 4, 2003 * * * * Quarter 3, 2004 * * * Quarter 3, 2005 * * * Quarter 4, 2005 * * * Quarter 4, 2006 * * Quarter 4, 2016 * * Quarter 2, 2019 * * Quarter 3, 2019 * * Quarter 4, 2019 * * Quarter 2, 2019 * * Quarter 2, 2019 * * Quarter 3, 2019 * * Quarter 2, 2019 * * Quarter 3, 2019 * * Quarter 2, 2019 * * Quarter 3, 2019 * * Quarter 3, 2019 * * Quarter 3, 2003 * * Quarter 3, 2004 * *		ND														Ė						
Quarter 4, 2002	Quarter 3, 2002										*	*	*	*	*	*						
Quarter 2, 2003	Quarter 4, 2002										_	*										
Quarter 3, 2003											*	*										
Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 ** ** ** ** ** ** ** ** Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 ** ** ** ** ** ** ** ** **	Quarter 2, 2003											_	*									
Quarter 3, 2004	Quarter 3, 2003	*															*					
Warter 3, 2005	Quarter 4, 2003						*					*										ш
Puarter 4, 2005			<u> </u>		ш		L	ш						Ь							Ь	
Quarter 1, 2006		-	-	-	—			—		-	*	-	-	-	-	*	*	-	y.		-	\vdash
Quarter 4, 2016		-	-	-			*			-	-	-	-	-	-	-	-	-	*		-	ш
Quarter 1, 2017 * Quarter 2, 2019 * Quarter 3, 2019 * Quarter 4, 2019 * PHLORIDE * Quarter 1, 2006 * Quarter 2, 2014 * OBALT * Quarter 3, 2003 * Quarter 1, 2004 *			1	-						-	-	-	-		-	-		-	*	*		\vdash
Quarter 2, 2019 * * * Quarter 3, 2019 * * * Quarter 4, 2019 * * * CHLORIDE * * * Quarter 1, 2006 * * * Quarter 2, 2014 * * * COBALT * * * * Quarter 3, 2003 * * * * * Quarter 1, 2004 * * * * *												*							*			
Quarter 3, 2019			1							 		-	*		 	*			 			
Quarter 4, 2019					H			H					T.									*
CHLORIDE																						_
Quarter 1, 2006 * Quarter 2, 2014 * COBALT * Quarter 3, 2003 * * * * * * * * * * * * * * * * * * * * * * * * * * * * *																É						
Quarter 2, 2014 * COBALT * Quarter 3, 2003 * Quarter 1, 2004 *	Quarter 1, 2006																				*	
COBALT Quarter 3, 2003 *	Quarter 2, 2014															*						
Quarter 3, 2003 * * * * * * * Quarter 1, 2004 * * * * *	COBALT																					
	Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	
Quarter 2, 2016 **	Quarter 1, 2004														*							
	Quarter 2, 2016														*							Ш

Groundwater Flow System	ī			UCR	c							URG	' A					LRG			
Gradient Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364		370	373
CONDUCTIVITY																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 4, 2003 Quarter 1, 2004										*											
Quarter 1, 2004 Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 1, 2005										Ψ					*						
Quarter 2, 2005															*						
Quarter 3, 2005						*													*		
Quarter 4, 2005															*			*			
Quarter 1, 2006															*						
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 3, 2007															*						
Quarter 4, 2007 Quarter 1, 2008															*						
Quarter 1, 2008 Quarter 2, 2008															*						
Quarter 3, 2008															*						
Quarter 4, 2008										\vdash					*				\vdash		\vdash
Quarter 1, 2009															*						\vdash
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009	L														*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011														*	*						
Quarter 1, 2012 Quarter 2, 2012														不	*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016 Quarter 2, 2016															*						
Quarter 3, 2016															*						
Quarter 2, 2019															*						
Quarter 3, 2019															*						
Quarter 4, 2019															*						\vdash
Quarter 1, 2020															*						
Quarter 2, 2020															*						
Quarter 3, 2020															*						
Quarter 4, 2020															*						
Quarter 1, 2021															*						
Quarter 2, 2021															*						
Quarter 3, 2021															*						
Quarter 1, 2022															*	<u> </u>		<u> </u>			
Quarter 2, 2022	_					Щ				Щ			<u> </u>		*			├	\vdash		ш
Quarter 4, 2022	_	-						_	-			-	<u> </u>	-	*		-	 			\vdash
Quarter 4, 2022 DISSOLVED OXYGEN															不						
Quarter 1, 2003					*	*				*											
Quarter 1, 2003 Quarter 3, 2003	1		_	_	*		_			*	_							1			H
Quarter 4, 2003					*																
Quarter 1, 2004					*				i			i		i			i				
Quarter 2, 2004	L		L	L	L		L	*			L					*		L			
Quarter 1, 2005					*																
Quarter 2, 2005								*													
Quarter 1, 2006					*																
Quarter 2, 2006					*			*													
Quarter 3, 2006					*			*	L												
Quarter 4, 2006					*			L.	*									<u> </u>			ш
Quarter 2, 2007					*			*	*							<u> </u>					
Quarter 3, 2007	-	-	-	-	*	\vdash	-	*	*	\vdash	-	-	-	-		<u> </u>	-	1	*		$\vdash\vdash$
Quarter 1, 2008 Quarter 2, 2008	-		—	—	*	\vdash	—	*	*	\vdash	—		—			 		-	*		\vdash
Quarter 2, 2008 Quarter 3, 2008	_	-				\vdash		*	*	\vdash		-	\vdash	-			-	 	\vdash		$\vdash\vdash$
Quarter 3, 2006	_	_						<u> </u>	_			_		_		_	_				

Cuaundwatau Flaw System	1			UCR	C							URG	٠.٨					LRG			
Groundwater Flow System Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN	200	513	5/0	511	227	302	505	5/1	5/4	500	500	505	١٥٦	209	514	507	501	504	٥٥٥	5/0	513
Quarter 1, 2009							*		-1-	_											
Quarter 2, 2009					*			*	*												
Quarter 3, 2009						*		*	*												
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*		*	*											*	*
Quarter 3, 2010					*	*															
Quarter 4, 2010							*					*								*	
Quarter 1, 2011						*															
Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011						*			*												
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012						-			*												
Quarter 1, 2013						*		-	*												
Quarter 2, 2013						-	*		*												
	*				*		*	*	*												
Quarter 3, 2013	不				不		不	不													
Quarter 4, 2013					-1-				*											*	
Quarter 2, 2014	*				*	*	*	*	*									*			
Quarter 3, 2014	*	-	<u> </u>	-	*	*	*	Ь—	Ь—		-	-	<u> </u>	<u> </u>	ш		<u> </u>		ш	\square	ш
Quarter 4, 2014						*															
Quarter 2, 2015					*	*	*	*													
Quarter 3, 2015	Щ	<u> </u>		<u> </u>	*	*	<u> </u>	*	Ц.		<u> </u>	<u> </u>									
Quarter 4, 2015	*					*	*	匚	ᆫ						آللا				آللا		
Quarter 1, 2016	*				*		*														
Quarter 2, 2016	*	*			*	*	*	*	*											*	*
Quarter 3, 2016					*	*	*	*					*								
Quarter 4, 2016						*			*												
Quarter 1, 2017						Ė	*						*								
Quarter 2, 2017	*				*	*	*	*					-							\vdash	\vdash
Quarter 3, 2017 Quarter 3, 2017	*	*	-	\vdash	*	*	*	*	 		-	-	-	-	\vdash		-	*	\vdash	\vdash	\vdash
Quarter 3, 2017 Quarter 4, 2017	*	*	-	-	*	*	*	ボ	1					-	H			*	H	\vdash	\vdash
																		*			
Quarter 1, 2018					*	*	*	*												*	
Quarter 2, 2018					*	*	*	*													
Quarter 3, 2018	*				*	*	*	*													
Quarter 4, 2018						*															
Quarter 1, 2019					*	*	*	*													
Quarter 2, 2019					*	*		*													
Quarter 3, 2019	*				*	*	*	*													
Quarter 4, 2019					*	*	*														
Quarter 1, 2020							*	*	*												
Quarter 2, 2020					*	*	-	*	-												
Quarter 3, 2020	*				*	*		~													
	*				不	不	*														
Quarter 4, 2020	不						_	-	-												
Quarter 1, 2021					*		*		L											*	
Quarter 2, 2021					*	*	*	*	*												
Quarter 3, 2021	*				*	*	*	*												*	
Quarter 4, 2021					*		*	*												*	
Quarter 1, 2022	*				*	*	*	*					*				*			*	
Quarter 2, 2022	*				*	*	*	*	*												
Quarter 3, 2022	*	*			*	*	*	*					*				*			*	
Quarter 4, 2022		*					*	*												*	
DISSOLVED SOLIDS																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003	\vdash		_			_	\vdash	 	 	*				_	\vdash				\vdash	\vdash	Н
Quarter 3, 2003							*			*	*									\vdash	\vdash
Quarter 4, 2003	\vdash	-	-	\vdash	\vdash	-	T	Η-	 	*	_	-	-	-	\vdash		-	\vdash	\vdash	\vdash	\vdash
	\vdash	-	-	\vdash		*	\vdash	Η-	 	<u> </u>	-	-	-	-	\vdash		-		\vdash	\vdash	\vdash
Quarter 3, 2005 Ouarter 4, 2006	\vdash	<u> </u>	\vdash	 	\vdash	*	\vdash	\vdash	\vdash	 	<u> </u>	<u> </u>	\vdash	\vdash	*	 	\vdash	\vdash	\vdash	\vdash	\vdash
	 	-	<u> </u>	-	1	<u> </u>	-		 		-	-	<u> </u>	<u> </u>	*		<u> </u>	1	\vdash	\vdash	$\vdash\vdash$
Quarter 1, 2007	├	-	-	-	-	-	-	1	1	-	-	-	-	-	*	-	-	-	\vdash	\vdash	\vdash
Quarter 2, 2007	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	*	—	<u> </u>		Ш	\square	ш
Quarter 4, 2008	!	!	Ь—	!	!	Ь—	!	Ь—	!	-	!	!	<u> </u>	Ь—	*	-	<u> </u>	!	ш		ш
Quarter 1, 2009															*				ш		
Quarter 2, 2009	<u> </u>	<u> </u>		<u> </u>	Щ.		<u> </u>		<u> </u>		<u> </u>	<u> </u>			*			Щ.	Ш		
Quarter 3, 2009															*						
Quarter 4, 2009					آللا		آللا								*			آللا			
Quarter 1, 2010	L	L	L	L	L	L	L	L	L		L	L	L	L	*		L	L	LĪ		╚
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011							t								*					$\overline{}$	\vdash
Quarter 2, 2011	\vdash		_			_	\vdash	 	 					_	*				\vdash	\vdash	Н
Quarter 3, 2011				 			\vdash	\vdash	\vdash	1					*	—			\vdash	\vdash	\vdash
	\vdash	-	-	\vdash		-	\vdash	Η-	 		-	-	-	-			-		\vdash	\vdash	\vdash
Quarter 4, 2011	 	-	-	-	 	-	-	 	 		-	-	-	*	*		-	 	H	\vdash	H
Quarter 1, 2012	<u> </u>		<u> </u>			<u> </u>		 	<u> </u>				<u> </u>	*	*		<u> </u>		Ш	ш	L.
Quarter 2, 2012							<u> </u>	Ь	<u> </u>						*				ш	ш	*
Quarter 3, 2012							<u> </u>								*						*
Quarter 4, 2012					لـــــا				Ш						*			لـــــا	آسا		
Quarter 1, 2013							L								*						
Quarter 2, 2013							Ĺ								*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
1		_									_	_									
																					-

Gradient D. S. S. S. D. D. D. U. U. D. D. D. D. U. W. D. D. D. D. U. W. D. D. D. D. U. W. D. D. D. D. D. U. W. D. D. D. D. U. W. D. D. D. D. D. W. S.	Groundwater Flow System				UCR	S							URG	A					LRG	A		
DISSOLIDES OLIDS	Gradient				S	D							D	D					D	D		U
Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2020 Quarter 2, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 4, 2031 Quarter 3, 2031 Quarter 4, 2031 Quarter 4, 2031 Quarter 4, 2031		368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2023 Quarter 4, 2023 Quarter 4, 2020 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 2001 Quarter 6, 2001 Quarter 7, 200																*						
Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2020 Quarter 2, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 2, 2023 Quarter 3, 2022 Quarter 3, 2023 Quarter 3, 2033 Quarter 3, 2033 Quarter 3, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 4, 203																						
Ounter 3, 2015 Ounter 1, 2016 Ounter 1, 2016 Ounter 1, 2019 Ounter 2, 2019 Ounter 2, 2020 Ounter 3, 2021 Ounter 2, 2021 Ounter 3, 2022 Ounter 3, 2023 Ounter 4, 2023 Ounter 4, 2023 Ounter 4, 2033 Ounter 4, 2030 Ounter 2, 2030 Ounter 3, 2030 Ounter 4, 2030 Ounter 4, 2030 Ounter 2, 2030 Ounter 3, 2030 Ounter 3, 2030 Ounter 4, 2030 Ounter 2, 2030 Ounter 2, 2030 Ounter 3, 2030 Ounter 3, 2030 Ounter 3, 2030 Ounter 4, 2030 Ounter 2, 2030 Ounter 3, 2030 Ounter 3, 2030 Ounter 4, 2030 Ounter 3, 2030 Ounter 4, 2030 Ounter 2, 2030 Ounter 2, 2030 Ounter 3, 2030 Ounter 3, 2030 Ounter 4, 2030 Ounter 4, 2030 Ounter 2, 2030 Ounter 2, 2030 Ounter 2, 2030 Ounter 2, 2030 Ounter 3, 2030 Ounter 2, 2030 Ounter 3, 2030 Ounter 3, 2030 Ounter 4, 2031 Ounter 4, 2031 Ounter 4, 2031 Ounter 4, 2031 Ounter 5, 2031 Ounter 6, 2031 Ounter 7, 2031 Ounter 6, 2031 Ounter 7, 2031 Ounter 6, 2031 Ounter 7, 2031 Ounter 8, 2031 Ounter 9, 2031 Ounter	Quarter 4, 2014																					
Quarter 4, 2015 Quarter 3, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 1, 2021 Quarter 3, 2022 Quarter 4, 2023 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 3, 203																						
Quarter 1,2016 Quarter 4,2019 Quarter 4,2020 Quarter 2,2020 Quarter 2,2020 Quarter 2,2020 Quarter 2,2020 Quarter 2,2020 Quarter 4,2021 Quarter 2,2021 Quarter 2,2021 Quarter 2,2021 Quarter 4,2021 Quarter 2,2021 Quarter 4,2021 Quarter 2,2022 Quarter 3,202 Quarter 4,2022 Quarter 3,202 Quarter 4,2022 Quarter 3,203 Quarter 3,203 Quarter 4,2023 Quarter 4,2030 Quarter 2,2004 Quarter 2,2004 Quarter 2,2005 Quarter 2,2006 Quarter 2,2006 Quarter 2,2006 Quarter 2,2006 Quarter 2,2008 Quarter 3,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarter 3,																						
Ounter 3, 2019 Ounter 1, 2020 Ounter 2, 2020 Ounter 3, 2020 Ounter 3, 2021 Ounter 4, 2021 Ounter 4, 2021 Ounter 4, 2021 Ounter 4, 2021 Ounter 2, 2022 Ounter 3, 2020 Ounter 3, 2020 Ounter 3, 2021 Ounter 3, 2021 Ounter 3, 2022 Ounter 4, 2022 Ounter 4, 2022 Ounter 5, 2023 Ounter 6, 2022 Ounter 6, 2020 Ounter																						
Ounter 1, 2020 Ounter 3, 2020 Ounter 3, 2020 Ounter 4, 2020 Ounter 4, 2021 Ounter 6, 2021 Ounter 6, 2021 Ounter 6, 2021 Ounter 2, 2022 Ounter 3, 2022 Ounter 3, 2022 Ounter 4, 2022 Ounter 6, 2023 Ounter																						
Ouarter 2, 2020 Ouarter 4, 2020 Ouarter 4, 2020 Ouarter 2, 2021 Ouarter 2, 2021 Ouarter 3, 2022 Ouarter 3, 2003 ©uarter 4, 2022 Ouarter 3, 2003 ©uarter 4, 2003 ©uarter 3, 2001 Ouarter 4, 2003 ©uarter 3, 2001 Ouarter 4, 2003 ©uarter 4, 2003 ©uarter 4, 2003 ©uarter 4, 2003 ©uarter 4, 2004 Ouarter 4, 2005 Ouarter 4, 2006 Ouarter 4, 2007 Ouarter 4, 2008 ©uarter 3, 2001 Ouarter 4, 2000 Ouarter 3, 2001 Ouarter 3, 2000 Ouarter 4, 2001 Ouarter 3, 2001 Ouarter 3, 2001 Ouarter 4, 2001 Ouart																						
Ouarter 3, 2020 Ouarter 1, 2021 Ouarter 2, 2021 Ouarter 2, 2021 Ouarter 2, 2021 Ouarter 4, 2021 Ouarter 4, 2021 Ouarter 4, 2021 Ouarter 4, 2022 Ouarter 3, 2022 Ouarter 3, 2022 Ouarter 4, 2020 Ouarter 3, 2010 Ouarter 4, 2003 ** Ouarter 4, 2003 ** ** Ouarter 4, 2003 Ouarter 4, 2003 ** ** Ouarter 4, 2004 Ouarter 2, 2004 Ouarter 2, 2004 Ouarter 3, 2006 Ouarter 2, 2004 Ouarter 2, 2006 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 2, 2009 Ouarter 3, 2009 Ouarter 4, 2001 Ouarter 3, 2009 Ouarter 3, 2009 Ouarter 4, 2001 Ouarter 3, 2009 Ouarter 3, 2009 Ouarter 4, 2010 Ouarter 5, 2010 Ouarter 4, 2010 Ouarter 4, 2010 Ouarter 5, 2010 Ouarter 4, 2010 Ouarter 5, 2010 Ouarter 6, 2010 Ouarter 6, 2010 Ouarter 7, 2																						
Quarter 4, 2020 Quarter 3, 2021 Quarter 3, 2022 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 200																						
Quarter 2, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 2, 2022 Quarter 2, 2022 Quarter 3, 2003 Quarter 3, 2000 Quarter 3, 2001 (IDDINE-131 Quarter 3, 2001 (IDDINE-131 Quarter 3, 2001 (IDDINE-131 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2003 Quarter 3, 2001 Quarter 4, 2003 RRON RRON Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 ** Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 ** Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013																						
Quarter 4, 2021 Quarter 1, 2022 Quarter 2, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2020 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2003 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2006 Quarter 3, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2009 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2009 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2009 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2009 Quarter 4, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 2003 Quarter 6, 2003 Quarter 6, 2003 Quarter 7, 2001 Quarter 7, 2001 Quarter 7, 2001 Quarter 8, 2003 Quarter 9, 200	Quarter 1, 2021																					
Quarter 4, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2022																						
Quarter 1, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 ** Quarter 4, 2003 ** Quarter 4, 2003 ** ** ** ** ** ** ** **																						
Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022																						
Quarter 4, 2022																						
Quarter 2, 2003																						
Quarter 2, 2003																*						
Quarter 3, 2003																	4					
Quarter 3, 2010 * * * * * Description of the property of the prop		*	 						<u> </u>	<u> </u>	*		\vdash	<u> </u>	<u> </u>	<u> </u>	*	<u> </u>	<u> </u>			
Quarter 3, 2010		•						*			•											
Quarter 3, 2010	Quarter 3, 2010						*		*					*				*				
IODOMETHANE																						
Quarter 4, 2003	Quarter 3, 2010																		-			
RON							*															
Quarter 4, 2002 Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 W* Quarter 3, 2005 MAGNESIUN Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 W* Quarter 3, 2010 W* Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 W* Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 W* Quarter 3, 2010 W* Quarter 4, 2011 W* Quarter 4, 2012 Quarter 4, 2013 W* Quarter 4, 2013																						
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 ** Quarter 3, 2013	Quarter 4, 2002						*															
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 MAGNESIUM Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 ** Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 ** Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013																						
Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 MAGNESIUM Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 3, 2010 ** Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 3, 2013																						
Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 ** Quarter 4, 2012 Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013																	*					
Quarter 3, 2005 * Quarter 2, 2005 * Quarter 3, 2005 * Quarter 2, 2006 * Quarter 2, 2006 * Quarter 1, 2007 * Quarter 2, 2008 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 1, 2011 * Quarter 2, 2011 * Quarter 4, 2011 * Quarter 2, 2012 * Quarter 2, 2012 * Quarter 3, 2012 * Quarter 2, 2013 * Quarter 2, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 3, 2013 *																						
Quarter 2, 2005	Quarter 3, 2005																*					
Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013																-11						44
Quarter 2, 2006							•									*						*
Quarter 3, 2006							不									*						*
Quarter 2, 2008 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 1, 2010 * Quarter 3, 2010 * Quarter 3, 2010 * Quarter 1, 2011 * Quarter 2, 2011 * Quarter 3, 2011 * Quarter 4, 2011 * Quarter 4, 2011 * Quarter 2, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 4, 2012 * Quarter 4, 2013 *																						
Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 3, 2011 * Quarter 2, 2011 * Quarter 3, 2011 * Quarter 4, 2011 * Quarter 1, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 4, 2012 * Quarter 4, 2012 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 *	Quarter 1, 2007																					
Quarter 3, 2009																						
Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 3, 2011 * Quarter 1, 2011 * Quarter 3, 2011 * Quarter 4, 2011 * Quarter 4, 2011 * Quarter 4, 2012 * Quarter 2, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 4, 2012 * Quarter 4, 2013 * Quarter 3, 2013 * Quarter 4, 2013 *																						
Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 3, 2011 * Quarter 2, 2011 * Quarter 3, 2011 * Quarter 4, 2011 * Quarter 1, 2012 * Quarter 2, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 1, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 *																						
Quarter 3, 2010 * Quarter 1, 2011 * Quarter 2, 2011 * Quarter 3, 2011 * Quarter 4, 2011 * Quarter 4, 2012 * Quarter 2, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 4, 2012 * Quarter 4, 2012 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 *																						
Quarter 1, 2011 * Quarter 2, 2011 * Quarter 3, 2011 * Quarter 4, 2011 * Quarter 1, 2012 * Quarter 2, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 1, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 *																						
Quarter 2, 2011 * Quarter 3, 2011 * Quarter 4, 2011 * Quarter 1, 2012 * Quarter 2, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 4, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 3, 2013 * Quarter 4, 2013 * Quarter 4, 2013 *																						
Quarter 3, 2011 * Quarter 4, 2011 * Quarter 1, 2012 * Quarter 2, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 4, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 * Quarter 4, 2013 *																						
Quarter 4, 2011 * Quarter 1, 2012 * Quarter 2, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 1, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 3, 2013 * Quarter 4, 2013 *																						
Quarter 2, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 1, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 * ** *																						
Quarter 3, 2012 * Quarter 4, 2012 * Quarter 1, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 * Quarter 4, 2013 *																						
Quarter 4, 2012 * Quarter 1, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 *			<u> </u>						<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>			
Quarter 1, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 *			 					_	 	 			_	 	 		 	 	 	_		
Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 *	0 1 2012		 						1	 				 	 	*		 	 			\vdash
Quarter 4, 2013 *																*						
10																						
Quarter 2, 2014			-						-	-				-	-			-	-			
Quarter 2, 2015 *																						
Quarter 3, 2015 *	Quarter 3, 2015															*						
Quarter 4, 2015 * *	Quarter 4, 2015																					
Quarter 1, 2016 **																						
Quarter 2, 2016		*	 					_	<u> </u>	 			_	 	 	*	 	 	 	_		
Quarter 4, 2016 *			 						1	\vdash				 	 	 		 	 			\vdash
Quarter 2, 2017 *		*																				
Quarter 3, 2017 *	Quarter 3, 2017																					
Quarter 1, 2018 *																						
Quarter 3, 2018 * Quarter 3, 2019 *			 						 	 				 	 	 		 	 			
Quarter 3, 2019 * Quarter 4, 2019 *		ボ	 						1	\vdash				\vdash	\vdash	*		\vdash	\vdash			\vdash
Quarter 2, 2020 **																						
Quarter 4, 2020 **	Quarter 4, 2020																					
Quarter 1, 2021 *			<u> </u>					_		<u> </u>			<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	_		
Quarter 2, 2021			 					_	<u> </u>	 			_	 	 		 	 	 	_		
Quarter 4, 2021 *			\vdash						 	\vdash				\vdash	\vdash			\vdash	\vdash			H
Quarter 1, 2022 **																*						
Quarter 2, 2022 **	Quarter 2, 2022																					
Quarter 3, 2022 **	Quarter 3, 2022									L				L	L	*		L	L			

Grounder Pier System 1 S S S P D D D D D D D D D D D D D D D D	C				LICE								HPC						LDC	14		
Monachaman		D	c	c			D	n	II	TI	D	D			п	TI	D	D			11	II
SANCASYSE															_						_	
Querte 4, 2002		300	375	370	311	307	302	303	371	571	300	300	303	551	307	372	307	301	501	350	370	575
Quarter 4, 2003 Quarter 5, 2003 Quarter 5, 2003 Quarter 6, 2004 Quarter 6, 2004 Quarter 6, 2004 Quarter 7, 2004 Quarter 7, 2004 Quarter 6, 2004 Quarter 6, 2004 Quarter 6, 2004 Quarter 6, 2005 Quarter 7, 2004 Quarter 6, 2005 Quarter 7, 2006 Quarter 7, 2007 Quarter 7, 2007 Quarter 7, 2006 Quarter 7, 2007 Quarter 7, 2007 Quarter 7, 2007 Quarter 7, 2006 Quarter 7, 2007 Quarter 7, 200											*		*									
Quanter 2, 2003 Quanter 4, 2003 Quanter 4, 2004 Quanter 3, 2005 Quanter 4, 2005 Quanter 4, 2005 Quanter 4, 2006 Quanter 2, 2006 Quanter 2, 2006 Quanter 2, 2006 Quanter 3, 2006 Quanter 3, 2006 Quanter 2, 2006 Quanter 3, 2006 Quanter 3, 2006 Quanter 4, 2006 Quanter 3, 2006 Quanter 4, 2006 Quanter 3, 2006 Quanter 3, 2006 Quanter 3, 2006 Quanter 4, 2007 Quanter 3, 2008 Quanter 4, 2007 Quanter 3, 2008 Quanter 4, 200			*				*	*							*							
Quanter 3, 2003 Quanter 1, 2004 Quanter 4, 2005 Quanter 1, 2006 Quanter 1, 2007 Quanter 2, 2006 Quanter 2, 200																						
Quanter 1, 2004 Quanter 2, 2005 Quanter 1, 2005 Quanter 1, 2005 Quanter 2, 2005 Quanter 2, 2005 Quanter 3, 2005 Quanter 3, 2005 Quanter 4, 2006 Quanter 4, 2007 Quanter 2, 2007 Quanter 3, 2007 Quanter 3, 2007 Quanter 2, 2006 Quanter 2, 2007 Quanter 2, 200														*			*	*	*	*		
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 200											_	*					Ė	_				
Quanter 2, 2004 Quanter 4, 2005 Quanter 1, 2006 Quanter 1, 2007 Quanter 2, 200											*	*					*		*			
Quanter 3, 2004 Quanter 1, 2005 Quanter 2, 2006 Quanter 3, 2006 Quanter 3, 2006 Quanter 4, 2008 Quanter 4, 200								*											_			
Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 200								*				*					*					
Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 200								<u> </u>														
Quanter 3, 2005 Quanter 4, 2005 Quanter 4, 2005 Quanter 2, 2006 Quanter 2, 2006 Quanter 2, 2006 Quanter 2, 2006 Quanter 2, 2007 Quanter 2, 2007 Quanter 3, 2007 Quanter 4, 2005 Quanter 4, 200																						
Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 2, 200																						
Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2002 Quarter 4, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 200																	*					
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 200													_									
Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2003 Quarter 2, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 200																	_					
Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 200								*					*									
Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2002 Quarter 3, 2003 Quarter 1, 2002 Quarter 4, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 200																	*					
Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2011 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2023 Quarter 4, 2020 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2020 Quarter 4, 202	•																_					
Quarter 2, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2001 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2022 Quarter 4, 2022 Quarter 1, 2022 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2033 Quarter 3, 2033 Quarter 2, 2033 Quarter 2, 2035 Quarter 2, 2035 Quarter 2, 2035 Quarter 2, 2036 Quarter 2, 2037 Quarter 2, 2036 Quarter 2, 2037 Quarter 2, 2036 Quarter 2, 2037 Quarter 2, 203																						
Quarter 3, 2007								*														
Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2001 Quarter 2, 2016 Quarter 1, 2021 Quarter 1, 2022 Quarter 1, 2023 Quarter 2, 2024 Quarter 2, 2025 Quarter 2, 202																						
Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2016 Quarter 4, 2022 NICKEL NUTROLL 1, 2022 NICKEL NUTROLL 1, 2022 NICKEL NUTROLL 1, 2022 Quarter 4, 2023 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4				-																		
Quarter 3, 2001		1	1	 	1	-	-			1	1		-		1		1	-	1	1	\vdash	\vdash
Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2022 Quarter 1, 2022 Quarter 2, 2023 Quarter 1, 2022 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2024 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2025 Quarter 3, 2025 Quarter 2, 2026 Quarter 2, 202		1	1	1	1	-			-	1	1	-	-			-	1	-	1	1	\vdash	\vdash
Ounter 2, 2016 Ounter 1, 2022 Ounter 2, 2003 Ounter 2, 2002 Ounter 4, 2002 Ounter 4, 2002 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2004 Ounter 2, 2005 Ounter 2, 2006 Ounter 2, 2007 Ounter 3, 2007 Ounter		1	1	1	1	-			-	1	\vdash	-				-	1		1	1	\vdash	\vdash
Ounter 1, 2022 Ounter 2, 2022 Ounter 2, 2022 Ounter 2, 2022 Ounter 2, 2022 Ounter 3, 2023 Ounter 2, 2024 Ounter 2, 2025 Ounter 2, 2026 Ounter		1	1	1	1	-		*	-	1	\vdash	-			*	-	1		1	1	\vdash	\vdash
Quarter 2002		 	 	 	 				<u> </u>	*	 	<u> </u>		<u> </u>	不	<u> </u>	 		 	 	$\vdash\vdash$	-
NUMBER		 	 	 	 				<u> </u>	不	 	<u> </u>		<u> </u>		<u> </u>	 		 	*	$\vdash\vdash$	-
Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2001 Quarter 2, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 200	· / ·																			*		
Owarer 4, 2002 ONIDATION STROKEN ONIDATION POLENTIAL OUT											יענ											
Quarter 4, 2022		<u> </u>	<u> </u>	 	<u> </u>				<u> </u>	<u> </u>	木	<u> </u>		<u> </u>		<u> </u>	<u> </u>		<u> </u>	*	ш	-
NITEATE AS NITROGEN																						
Quarter 4, 2021																				*		
ONDATION-REPUCTION POTENTIAL													_									
Ouarter 1, 2003 Ouarter 2, 2003 Ouarter 2, 2003 Ouarter 2, 2003 Ouarter 4, 2005 Ouarter 3, 2004 Ouarter 3, 2004 Ouarter 3, 2004 Ouarter 3, 2004 Ouarter 2, 2005 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 5, 2009 Ouarter 6,													•									
Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 ** ** ** ** ** ** ** ** ** ** ** ** *		TEN	TIAI	L																		
Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 200																						
Quarter 3, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2009 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2001 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2001 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 200																		*				
Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2009 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 200	Quarter 2, 2003																			*		
Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2005 * * * * * * * * * * * * * * * * * * *	Quarter 3, 2003	*																				
Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 ** ** ** ** ** ** ** ** ** ** ** ** **						*																
Quarter 4, 2004 Quarter 12, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 12, 2006 * * * * * * * * * * * * * * * * * * *	Quarter 2, 2004													*								
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 ** ** ** ** ** ** ** ** ** ** ** ** *						*			*					*	*	*		*			*	
Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2006 ** ** ** ** ** ** ** ** **	Quarter 4, 2004												*									
Quarter 3, 2005 #	Quarter 1, 2005																					*
Quarter 1, 2005 Quarter 1, 2006	Quarter 2, 2005								*												*	
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2014 ** ** ** ** ** ** ** ** ** ** ** ** *	Quarter 3, 2005					*	*		*			*	*					*		*	*	*
Quarter 2, 2006 Quarter 3, 2006	Quarter 4, 2005		*						*					*				*			*	
Quarter 4, 2006 Quarter 1, 2007	Quarter 1, 2006					*			*	*								*				*
Quarter 1, 2006 *	Quarter 2, 2006					*		*	*					*				*			*	
Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 ** ** ** Quarter 4, 2007 Quarter 3, 2008 ** Quarter 3, 2008 ** ** ** Quarter 3, 2008 ** ** ** ** Quarter 1, 2009 Quarter 1, 2009 ** Quarter 1, 2009 ** Quarter 2, 2009 ** ** ** ** ** ** ** ** **	Quarter 3, 2006					*			*					*				*			*	
Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 ** ** ** ** ** ** ** ** ** ** ** ** *						*		*			*		*	*				*			*	*
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 ** ** ** ** ** ** ** ** ** ** ** ** *			*			*			*					*				*			*	*
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 * * * * * * * * * * * * * * * * * * *						*								*				*			*	*
Quarter 4, 2007						*			*									*			*	
Quarter 1, 2008 Quarter 2, 2008																		*			*	*
Quarter 2, 2008 Quarter 3, 2008						*			*				*	*						*		
Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2009 ** ** ** ** ** ** ** ** **											*				*				*			*
Quarter 4, 2008 Quarter 1, 2009								*		*			*					*	_	*		
Quarter 1, 2009 * * * * * * * * * * * * * * * * * *		1	1	1	1	Ť		Ë		Ť					Ť		1			Ë		
Quarter 2, 2009 *								*										Ë				É
Quarter 3, 2009 *						*												*				*
Quarter 4, 2009		1	*				*			*					*					*		
Quarter 1, 2010 *						Ė																
Quarter 2, 2010 *						*	Ė			Ť			Ė				*			Ė		É
Quarter 3, 2010 *			<u> </u>				*	Ë				*	*							*		*
Quarter 4, 2010 *			*					*		*			<u> </u>		*	*	<u> </u>					
Quarter 1, 2011 *						T							*			-	*					
Quarter 2, 2011 *			Ť					<u> </u>		Ť												*
Quarter 3, 2011 *		1	*	 	 	*		*		*									_			*
Quarter 4, 2011 *		1		1	1	*		不				*				-						
Quarter 1, 2012 *		1		1	1	1		1				<u> </u>				-				*		
Quarter 2, 2012 *		1		 	 			*												*		
Quarter 3, 2012 *		بدر		 	<u>,u,</u>	بدر										<u> </u>						
Quarter 4, 2012 *		*		 	*	*		*		*		*				_						
Quarter 1, 2013 *		 		 	 					طر		J				<u> </u>						
Quarter 2, 2013 *		 		 	 											<u> </u>				*		木
Quarter 3, 2013 *		—		\vdash	-	-	*	-								<u>.</u>				4.		طد
Quarter 4, 2013 *	Quarter 2, 2013	,		 	<u> </u>	,	,	34.														
Quarter 1, 2014 *	0 . 0 0	*		Ь—	!	*		*														
Quarter 2, 2014 * *	Quarter 3, 2013			Ь—	Ь	-	*	-														
Quarter 3, 2014 * *	Quarter 4, 2013		_							_									_			
Quarter 4, 2014 *	Quarter 4, 2013 Quarter 1, 2014											*				*						
Quarter 1, 2015 * <td>Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td>	Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014					*		*						*						*	*	*
Quarter 2, 2015 * *	Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014		*		_					*												
Quarter 3, 2015	Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014		*																			
	Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014		*									*				*						
	Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015	*	* *			*	*	*	*	*	*		*	*	*	_	*	*	*	*	*	*
	Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015	*	* * *				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 3, 2015	*	* * *				* *		* *	* *	* *	*	*	* *	* *	*	* *	*	*	*	*	*


Groundwater Flow System				UCR	S					I		URG	- A			Г		LRG	A		
Gradient Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
OXIDATION-REDUCTION PO																					
Quarter 1, 2016	*	*			*	*	*	*	-	*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016 Quarter 3, 2016	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*			-	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 4, 2017 Quarter 1, 2018	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*		*	*
Quarter 1, 2018 Quarter 2, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2018		*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2019 Quarter 3, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 2, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 3, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 4, 2020	*	*			4	*	*	*	*	*	*		*	*	*	*	*	*		*	*
Quarter 1, 2021 Quarter 2, 2021	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2021	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2021	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2022	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2022	*	*	<u> </u>	<u> </u>	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2022 Quarter 4, 2022	*	*	_	_	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL		*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006 Quarter 1, 2007							*														
Quarter 1, 2007 Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009 Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004							*					*									
Quarter 2, 2006 Quarter 1, 2007							*					不									
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009 Quarter 1, 2010	1	-	<u> </u>	<u> </u>			*			\vdash	<u> </u>	-	<u> </u>			\vdash	-	-			-
Quarter 1, 2010 Ouarter 2, 2010							*														
Quarter 4, 2010							*		L					L		L					
PCB-1242																					
Quarter 3, 2006		$ldsymbol{oxed}$					*		L	L.		*		L							
Quarter 4, 2006	-	-	<u> </u>	<u> </u>			*		-	*	 	<u> </u>	 	-		-	 	<u> </u>			<u> </u>
Quarter 1, 2008 Quarter 2, 2012							*			\vdash						\vdash					
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260							45														
Quarter 2, 2006 pH							*														
Quarter 3, 2002										*											
Quarter 4, 2002	T	1								*						 					
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*		_	_			*			*	_		_			*	_				
Quarter 4, 2003 Quarter 1, 2004	\vdash	-	 	 			*		-	 	 	 	 	-		*	 	 			
Quarter 3, 2005	T	1				*	Ť			1						Ť		*	*		
Quarter 4, 2005	L					*													*		
Quarter 3, 2006																*					
Quarter 2, 2011	<u> </u>	<u> </u>							<u> </u>					*							
Quarter 3, 2011	-	-	<u> </u>	<u> </u>					-	-	<u> </u>	<u> </u>	<u> </u>	*		-	<u> </u>	<u> </u>			<u> </u>
Quarter 4, 2011 Quarter 1, 2012	1	-	-	-						\vdash	-	-	-	木		*	*	-			-
Quarter 1, 2012 Quarter 2, 2012												*				_	~				
Quarter 1, 2013										*		*				*					
Quarter 3, 2015																	*				
Quarter 2, 2016		_																		*	*
Quarter 3, 2016	\vdash	-	<u> </u>	<u> </u>				<u> </u>	-	_	<u> </u>	<u> </u>	<u> </u>	-		<u> </u>		<u> </u>		*	<u> </u>
Quarter 2, 2017			_	_						_	_	_	_			_	*	_			_

Groundwater Flow System				UCR	S					_		URG	Δ.					LRG	Δ.		-
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
pH										-11		-11					-11	-10	-11		
Quarter 3, 2018					*					*		*				*	*	*	*		
Quarter 4, 2018 Quarter 3, 2019																*		不			
Quarter 1, 2021																*		*		*	
Quarter 3, 2021																					*
Quarter 4, 2021																*					*
POTASSIUM																					
Quarter 1, 2014																*					
RADIUM-228 Quarter 2, 2005																					
Quarter 4, 2005														-							
SELENIUM												_						_			
Quarter 4, 2003																					
SODIUM																					
Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*			*							
Quarter 1, 2003 Quarter 2, 2003										*	*										
Quarter 3, 2003										不	*										
Quarter 1, 2007											*										
Quarter 1, 2012	L	L	L			L			L	L	L		L	*	L		L	L	L	L	
Quarter 1, 2014															*						
Quarter 3, 2014				Ш			Ш				*										ш
Quarter 4, 2014	L									<u> </u>	*	—				<u> </u>					ш
Quarter 4, 2015	-	-	-	\vdash			\vdash	_	-	-	*	 		-		-	-	-	-		—
Quarter 1, 2016 Quarter 2, 2016	\vdash	<u> </u>	<u> </u>					_	<u> </u>	_	*	—		<u> </u>			<u> </u>	<u> </u>	<u> </u>		Н
Quarter 2, 2016 Quarter 3, 2016	1	 	 	H		—	H	\vdash	 	 	*	 	—	 	—	\vdash	 	 	 	—	\vdash
Quarter 4, 2016											*										
Quarter 1, 2017											*										
Quarter 2, 2017											*										
Quarter 3, 2017	Ĺ										*	L									Щ
Quarter 4, 2017											*										
Quarter 1, 2018											*										
Quarter 3, 2018 STRONTIUM-90											*										
Quarter 4, 2008							\blacksquare														
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004 Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*	•		*												
Quarter 2, 2005					*	-	*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														
Quarter 1, 2007 Quarter 2, 2007							*														
Quarter 2, 2007 Quarter 3, 2007							*														\vdash
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008 Quarter 1, 2009	1	*		ш		*	*	_		<u> </u>		-				<u> </u>					H
Quarter 1, 2009 Quarter 2, 2009	1	*	 	\vdash	*	*	*	—	<u> </u>	 	 	 	-	<u> </u>	-	 	<u> </u>	 	<u> </u>	-	\vdash
Quarter 2, 2009 Quarter 3, 2009		*			*	*	*								*						\vdash
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*					L			*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010	L	*		ш		*	*			<u> </u>		—			*	<u> </u>					Ш
Quarter 1, 2011	-	*	-		*	*	*				-	-	_		*			-			
Quarter 2, 2011 Quarter 3, 2011	1	*	 	H	*	*	*	*	 	 	 	 	—	 	*	\vdash	 	 	 	—	\vdash
Quarter 4, 2011		*				*		<u> </u>							*						
Quarter 1, 2012		*				Ė	*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012	oxdot	*				*									*						
Quarter 4, 2012		*	_	Щ			Щ				_	<u> </u>			*:			_			Ш
Quarter 1, 2013	-	*	-			*					-	 			*			_			
Quarter 2, 2013	*	*		*	*	*	*	_	-	-		 		-	*		-		-	<u> </u>	\vdash
Quarter 3, 2013 Quarter 4, 2013	*	*	-	*	不	*	*				-	1	-		*			-			\vdash
Quarter 1, 2014		*	 								 	1	_		*			 			\vdash
Quarter 2, 2014	*	*			*		*	*							*						
Quarter 3, 2014	*	*			*	*	*	*							*						
Quarter 4, 2014		*				*															
Quarter 1, 2015		*	ب							_	ب					_		ب			Щ

Croundwater Flow System	т —			UCR	S							URG	' A			I		LPC	' A		
Groundwater Flow System Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D D	U	U	D	D	LRG D	D D	U	U
Monitoring Well	368	375	376	377	359	362	365	371		366	360	363	357	369	372	367	361	364		370	373
SULFATE				Ė																	
Quarter 2, 2015	*	*			*		*								*						
Quarter 3, 2015	1	*			*	*		*							*						
Quarter 4, 2015	*	*				*	*	*													
Quarter 1, 2016	*	*			*	*	*														
Quarter 2, 2016	*	*			*	*	*														
Quarter 3, 2016	*	*			*	*	*	*													
Quarter 4, 2016	*	*				*	*	*													
Quarter 1, 2017	*	*				*	*														
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017	*	*			*	*	*														
Quarter 4, 2017	1	*				*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
Quarter 3, 2018	*	*			*	*	*	*													
Quarter 4, 2018	+	*			4	*	*	*													
Quarter 1, 2019	*	*			*	*	*														
Quarter 2, 2019		*				_	*	*													
Quarter 3, 2019	*	*			*	*	*	*													
Quarter 4, 2019	*	*																			
Quarter 1, 2020 Quarter 2, 2020	*	*	 	1	*	*	*	*	1		1	1		\vdash		1	-	-	-	\vdash	
Quarter 2, 2020 Quarter 3, 2020	*	*	1	1	*	*	*	*	1		1	1			-	1	-	-	-		-
Quarter 3, 2020 Quarter 4, 2020	*	*	\vdash	\vdash	-	*	*	*	\vdash	—	\vdash	\vdash	\vdash	\vdash	 	\vdash	—	—	—	H	
Quarter 4, 2020 Quarter 1, 2021	*	*	1	 	*	*	*	*	 		 	 		\vdash	*	1	1	1	1		—
Quarter 1, 2021 Ouarter 2, 2021	*	*			*	*	*	*							*						
Quarter 3, 2021	*	*			*	*	*	*							*						
Quarter 4, 2021	*	*			*	*	*	Ť							*		t	t	t		
Quarter 1, 2022	*	*			*	*	*								*						
Quarter 2, 2022	*	*			*	*	*	*	*						*						
Quarter 3, 2022	*	*	L	L	*	*	*	*	*		L	L			*						L
Quarter 4, 2022		*				*	*														
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003																	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004															*						*
Quarter 4, 2004	1														*		*				*
Quarter 3, 2005	4—														_		*				
Quarter 1, 2006	4—	L							L						*						*
Quarter 2, 2006	₩	*							*												*
Quarter 3, 2006	+-	-													4						*
Quarter 4, 2006	+-	-													*						*
Quarter 1, 2007	+-	-													4						*
Quarter 2, 2007	+-	-											*		*		4	4		*	
Quarter 3, 2007	+														*		*	*			
Quarter 4, 2007	+	 	-	 		\vdash	-		 	*	 	 	\vdash	\vdash	*	 	-	-	*	<u></u>	*
Quarter 1, 2008	+	-	\vdash	 	—	—	*	*	 	-	 	 	—	*	*	*			*	*	*
Quarter 2, 2008 Quarter 3, 2008	+	\vdash	\vdash	\vdash	—	—	*	*	\vdash	 	\vdash	\vdash	—	*	*	<u> </u>	 	 	*	\vdash	
Quarter 3, 2008 Quarter 4, 2008	+	\vdash	\vdash	\vdash	 	\vdash	<u> </u>	\vdash	\vdash	*	\vdash	\vdash	\vdash	H	<u> </u>	\vdash	*	<u> </u>	*	H	
Quarter 4, 2008 Quarter 1, 2009	+	\vdash	\vdash	\vdash	 	\vdash	—	\vdash	\vdash	*	\vdash	\vdash	\vdash	\vdash	 	\vdash	*	—	*	H	
Quarter 1, 2009 Quarter 2, 2009	+	1	1	 	\vdash	\vdash	 	\vdash	 	+=	 	 	\vdash	\vdash	\vdash	\vdash	 	*	 	\vdash	\vdash
Quarter 3, 2009	1	 	t	1			 	*	1	*	1	1			*	1	 	-	 		
Ouarter 4, 2009	1	\vdash	\vdash					-		*					*	1		*	*		
Quarter 2, 2010	1									*					Ť	*	*	*	*		
Quarter 3, 2010	1	\vdash	\vdash					 		*					*	Ė	Ë	Ë	Ë		
Quarter 4, 2010	+	1	1	1				<u> </u>	1	Ė	1	1			Ė	1		*			
Quarter 1, 2011	1	*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012																	*	*			
Quarter 4, 2012															*			*			*
Quarter 1, 2013			oxdot															*			*
Quarter 2, 2013																					*
Quarter 3, 2013										*											*
Quarter 4, 2013															*		*	*			*
Quarter 1, 2014	1_														*		*	*			
Quarter 2, 2014	ــــــــــــــــــــــــــــــــــــــ	Ь_	Ь_	<u> </u>					<u> </u>		<u> </u>	<u> </u>						*	<u> </u>		
Quarter 3, 2014	₩	Ь—	Ь—	<u> </u>	<u> </u>	<u> </u>		ļ	<u> </u>		<u> </u>	<u> </u>	<u> </u>	Ш	L_	Ь—	*	*	*	Ш	<u> </u>
Quarter 4, 2014	₩	Ь—	├	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	ш	*	Ь—		<u> </u>		ш	<u> </u>
Quarter 1, 2015	₩	<u> </u>	┞	<u> </u>				<u> </u>		Ш	*			*		Щ	<u> </u>				
Quarter 2, 2015		<u> </u>	<u> </u>								<u> </u>	<u> </u>				*		34.	,	.	
Quarter 3, 2015	₩	-	\vdash	-	—	—	-	<u> </u>	-	 	-	-	—	\vdash	- Ju	—	ملو	*	*	*	—
Quarter 4, 2015	+-	<u> </u>	 	<u> </u>					<u> </u>		<u> </u>	<u> </u>			*	Ψ.	*	4		*	4
Quarter 1, 2016	₩	<u> </u>	<u> </u>	<u> </u>				-	<u> </u>		<u> </u>	<u> </u>		Ш		*	*	*	*	.	*
Quarter 2, 2016	+-	<u> </u>	 													*	*	*	*	*	
Quarter 3, 2016	+	-	\vdash	-	—	—		<u> </u>	 	*	 	 	—	*	—	 	*	JŁ.	*	*	—
Ouguston 4 2016	1		1	1	-	-	-		1	*	1	1	-	不	-	1	*	*	*	*	-
Quarter 4, 2016				1		<u> </u>	<u> </u>	_	-	—	 	 			Ь—	<u> </u>	*	_	*		—
Quarter 1, 2017	╀																				
Quarter 1, 2017 Quarter 2, 2017	╆																	*		*	
Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017	Ė													*	*		*	*		*	
Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017														*	*		*	*		*	
Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017										E				*	*		*			*	

Groundwater Flow System	Ι			UCR	S							URG	A			ı —		LRG	:A		
Gradient Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99																					
Quarter 2, 2018														*		*				*	
Quarter 3, 2018															*		4	4	4	*	
Quarter 4, 2018 Quarter 1, 2019															*	*	*	*	*	*	
Quarter 2, 2019														*		_				*	
Quarter 3, 2019															*			*		*	
Quarter 4, 2019															*		*	*		*	
Quarter 1, 2020															*		*	*		*	
Quarter 2, 2020																*		*	*	*	
Quarter 3, 2020															*		*	*	*	*	
Quarter 4, 2020															*		*	*		*	
Quarter 1, 2021 Quarter 2, 2021										*						*	*	*	*	不	
Quarter 3, 2021										-				*	*			*	-		
Quarter 4, 2021																	*	*			
Quarter 1, 2022										*							*	*			
Quarter 2, 2022										*					*			*			
Quarter 3, 2022															*		*	*			
Quarter 4, 2022															*						
THORIUM-230																					
Quarter 4, 2015		-								*				ш		*					
Quarter 2, 2016 Quarter 4, 2016	*				-		-			*	-	*		\vdash		*			*		
Quarter 4, 2016 Quarter 4, 2017	_	1										*	*			_			*		\vdash
Quarter 4, 2017 Quarter 2, 2018	1				_		_			*	_		*			1					
Quarter 2, 2018 Quarter 2, 2021									*												
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002	_	ļ	-	-					-	*	*	-		*		_	-	-	-	ш	
Quarter 1, 2003	*									*	*					4					
Quarter 3, 2003 Quarter 4, 2003	*									*	*					*					
Quarter 1, 2004										_	*										
Quarter 3, 2005						*				*	-				*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002 Quarter 4, 2002														-	-					=	
Quarter 1, 2003															-					-	
Quarter 2, 2003															_					i	-
Quarter 3, 2003																					
Quarter 4, 2003																					
Quarter 1, 2004																				•	
Quarter 2, 2004																				•	
Quarter 3, 2004														Ш	•					•	•
Quarter 4, 2004	_	-	-	-					-	-		-		\vdash	_	_	-	-	-	-	_
Quarter 1, 2005		-								<u> </u>				ш	•	_				-	-
Quarter 2, 2005	-	-	<u> </u>	<u> </u>	-	-	-		<u> </u>	 	-	<u> </u>	-	\vdash	-	 	<u> </u>	<u> </u>	<u> </u>		
Quarter 3, 2005 Quarter 4, 2005															÷					=	=
Quarter 1, 2006															1					=	=
Quarter 2, 2006															Ī						
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007														Ш	•					•	•
Quarter 2, 2007															•						•
Quarter 3, 2007																					-
Quarter 4, 2007	-	-	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>		<u> </u>	 	<u> </u>	<u> </u>	_	\vdash	•	—	<u> </u>	<u> </u>	<u> </u>		-
Quarter 1, 2008 Quarter 2, 2008	-	-	-	-	-		-		-		-	-			-	1	-	-			
Quarter 2, 2008 Quarter 3, 2008														H	i				-		₹
Quarter 4, 2008															i						i
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009						•	•				•		•	•	•						
Quarter 1, 2010													•		•						•
Quarter 2, 2010													•	Ш						Ш	•
Quarter 3, 2010	_					<u> </u>				—			-	\vdash	-	<u> </u>				Щ	
Quarter 4, 2010	-				_		_				_		•			-					
Quarter 2, 2011 Quarter 3, 2011	\vdash	-	 	 	-	_	-		 	-	-	 	•	\vdash	=	\vdash	\vdash	\vdash	÷	\vdash	=
Quarter 4, 2011	\vdash	1											i		i	\vdash			-		₹
Quarter 1, 2012															ī						▔
Quarter 2, 2012													Ė		Ŧ		Ī				Ŧ
	_	_	_	_	_		_				_	_	_	_		_					

Groundwater Flow System	Т			UCR	S							URG	A					LRG	A		\neg
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2012																					•
Quarter 4, 2012															•						•
Quarter 1, 2013																					
Quarter 2, 2013	\top																				•
Quarter 3, 2013																					
Quarter 3, 2013	\top																				•
Quarter 4, 2013																					
Quarter 1, 2014	1																				
Quarter 2, 2014																					
Quarter 3, 2014	\top																				
Quarter 4, 2014	1																				
Quarter 1, 2015	1																				
Quarter 2, 2015	T																				
Quarter 3, 2015	\top																				
Quarter 4, 2015	\top																				
Quarter 1, 2016	T																			\Box	
Ouarter 2, 2016	T												Ŧ		Ŧ		Ŧ	H			a
Quarter 3, 2016	†												ī		ī						Ŧ
Quarter 4, 2016	+												Ŧ		Ŧ						Ŧ
Quarter 1, 2017	+												Ŧ		Ħ		_	Ħ	_		a
Quarter 2, 2017	+												_		Ħ			ī			a
Quarter 3, 2017	+														=			Ē		\vdash	-
Quarter 4, 2017	+-																Ħ	ī			a
Quarter 1, 2018	+									-			-	-			H	Ħ			=
Quarter 2, 2018	+														-						=
Quarter 3, 2018	+												-			-			-	\vdash	=
Quarter 4, 2018	+																			\vdash	=
Quarter 1, 2019	+												-		i			i	-	\vdash	-
Quarter 2, 2019	+									H					-	H				\vdash	
Quarter 3, 2019	+									_						-		Ŧ		\vdash	-
Quarter 4, 2019	+																-		-	\vdash	=
Quarter 1, 2020	+																			\vdash	-
Quarter 2, 2020	+														-	-	-			\vdash	=
Quarter 3, 2020	+															-				\vdash	-
Quarter 4, 2020	+																-			\vdash	=
Quarter 1, 2021	+																-	i		\vdash	-
Quarter 2, 2021	+																_	Ħ		\vdash	
Quarter 3, 2021	+																	÷		\vdash	-
Quarter 4, 2021	+																			-	
Quarter 4, 2021 Quarter 1, 2022	+	_					_	_			-		_	-	_	-	H	-		\vdash	-
Quarter 1, 2022 Quarter 2, 2022	+																			\vdash	=
Quarter 3, 2022	+	_					_	_			-		_	-	_	-	Ħ	_		\vdash	-
TURBIDITY																	-				
Quarter 1, 2003										*											
URANIUM										*											
Quarter 4, 2002	_	*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2002 Quarter 4, 2006	+	*			不	不	不			不	不	不	*	不	*	不		不	不	不	*
																					不
ZINC	-																		*		
Quarter 3, 2005			L				_				l			l		<u> </u>			木	ш	
* Statistical test results indicate an elevate	ed conce	ntratio	n (1.e., a	statisti	cai exc	eedanc	e).														
■ MCL Exceedance				1.		MOL															-
Previously reported as an MCL exce		nowev	er, resu	II was 6	equal to	MCL															
UCRS Upper Continental Recharge System	m																				
URGA Upper Regional Gravel Aquifer																					
LRGA Lower Regional Gravel Aquifer																					

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

Date:	December 12, 2022	Time:	0845	Monitor:	Robert	Kirby
Weather Co	onditions: Partly Cloudy, 47°	F, slight v	vind, humidity: 65%			
Monitoring	Equipment::Multi RAE – Ser	ial # 1190	5			
	Moni	toring Lo	cation			Reading (% LEL)
C-746-U1	Checked at floor level					0
C-746-U2	Checked at floor level					0
C-746-U-T-14	Checked at floor level					0
C-746-U15	Checked at floor level					0
MG1	Checked 1" from openi	ng				0
MG2	Checked 1" from openi					0
MG3	Checked 1" from openi					0
MG4	Checked 1" from openi	-				0
Suspect or Problem Ar						None
Remarks:	N/A				'	
:						,
Performed	by:		,			
	[Coff]	7/	12/15/	22		
	Signa	ture	· · · · · · · · · · · · · · · · · · ·			Date

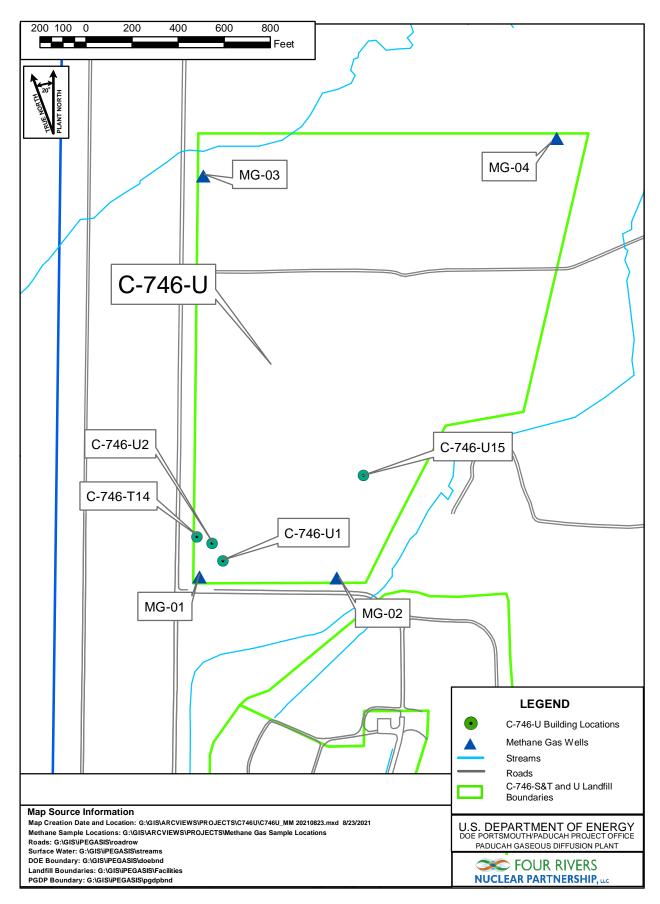


Figure H.1. C-746-U Landfill Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502)564-6716 FINDS/UNIT: KY8-890-008-982

LAB ID: None

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "DO	OWNSTREAM")	L150 INSTRE	EAM	L154 INSTR	EAM	L351 DOWNST	REAM	F. BLANK	<
Sample Sequer	ıce	#				1		1		1		1	
If sample is	a Bl	lank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA		F	
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		10/25/2022 1	5:12	12/8/2022 0	9:07	10/25/2022	14:55	10/25/2022 1	5:13
Duplicate (")	Z" (or "N")1				N		N		N		N	
Split ('Y' or	: "1	7") ²				N		N		N		N	
Facility Sam	ole	ID Number (if applicable)				L150US1-2	23	L154US1-	23	L351US1	-23	FB1US1-2	:3
Laboratory Sa	mpl	Le ID Number (if applicable)				59835800	2	60348300)1	5983580	03	598358004	4
Date of Analy	zsis	(Month/Day/Year)				11/19/202	2	12/20/202	22	11/19/20	22	10/31/202	2
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
A200-00-0	0	Flow	т	MGD	Field		*		*		*		*
16887-00-6	2	Chloride(s)	т	mg/L	300.0	18.6	*	5.45		37.3	*	0.17	*J
14808-79-8	0	Sulfate	т	mg/L	300.0	31.3		6.29		136		<0.4	
7439-89-6	0	Iron	Т	mg/L	200.8	0.476		2		0.713		<0.1	
7440-23-5	0	Sodium	Т	mg/L	200.8	8.5		4.66		58.5		<0.25	
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	15.3	В	29.3		21.5	В		*
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	94.6		108		88.4			*

¹Respond "Y" if the sample was a duplicate of another sample in this report

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: Sw07300014, Sw07300015, Sw07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont)

Monitoring Po	oint	: (KPDES Discharge Number, or	r "T	JPSTREAM" or	"DOWNSTREAM")	L150 INSTR	EAM	L154 INSTE	REAM	L351 DOWNST	REAM	F. BLANK	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G						
s0145	1	Specific Conductance	т	μмно/см	Field	256		109		767			*
s0270	0	Total Suspended Solids	т	MG/L	160.2	29.1		36.3		27.2			*
s0266	0	Total Dissolved Solids	Т	MG/L	160.1	174		126		456			*
s0269	0	Total Solids	т	MG/L	2540B	208		166		530			*
s0296	0	рН	Т	Units	Field	7.94		7.12		7.65			*
7440-61-1		Uranium	Т	MG/L	200.8	0.000538		0.000671		0.0748		<0.0002	
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	3.95	*	0.0249	*	43	*	1.37	*
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	22.2	*	3.6	*	52.3	*	3.02	*
													<u> </u>
													<u>↓</u>
													\vdash
													₩

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "Do	OWNSTREAM")	L150 INSTREA	λM						
Sample Sequer	ıce	#				2							
If sample is	a Bl	lank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA							
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		10/25/2022 15:	12						
Duplicate (")	" (or "N") ¹				Y							
Split ('Y' or	: "1	v") ²				N			\setminus				
Facility Samp	ole	ID Number (if applicable)				L150DUS1-2	3				,		
Laboratory Sa	amp]	Le ID Number (if applicable)				598358001					7		
Date of Analy	zsis	s (Month/Day/Year)				11/19/2022							
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OF PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*						
16887-00-6	2	Chloride(s)	т	mg/L	300.0	18.6	*			′	'		
14808-79-8	0	Sulfate	т	mg/L	300.0	31.4			$\overline{/}$				
7439-89-6	0	Iron	т	mg/L	200.8	0.477		/					
7440-23-5	0	Sodium	т	mg/L	200.8	8.31							
s0268	0	Organic Carbon ⁶	т	mg/L	9060	14.8	В						
s0097	0	BOD ⁶	Т	mg/L	not applicable		*						$\overline{\ }$
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	88.4							

 $^{^{1}}$ Respond "Y" if the sample was a duplicate of another sample in this report

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

1-6

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

		WIII DIC BIHIL				(0011		·					
Monitoring Po	int	(KPDES Discharge Number, or	r "l	JPSTREAM" or	"DOWNSTREAM")	L150 INSTR	EAM						
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE CR PQD ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
s0145	1	Specific Conductance	т	µmho/cm	Field		*						
s0270	0	Total Suspended Solids	Т	mg/L	160.2	25		`					
s0266	0	Total Dissolved Solids	т	mg/L	160.1	176							
s0269	0	Total Solids	т	mg/L	SM-2540 B 17	215							
S0296	0	рн	Т	Units	Field		*						
7440-61-1		Uranium	т	mg/L	200.8	0.000553							
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	-2.34	*				/		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	1.68	*						
									\angle				
													Ш
													Ш
								/					

RESIDENTIAL/CONTAINED – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None

SURFACE WATER WRITTEN COMMENTS

Monitor Point	ing Facility Sample ID	Constituent	Flag	Description
L150	L150US1-23	Flow Rate		Analysis of constituent not required and not performed
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.92. Rad error is 4.87.
		Beta activity		TPU is 8.57. Rad error is 7.7.
L154	L154US1-23	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.77. Rad error is 2.77.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.12. Rad error is 6.09.
L351	L351US1-23	Flow Rate		Analysis of constituent not required and not performed
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity		TPU is 15.2. Rad error is 13.5.
		Beta activity		TPU is 14.5. Rad error is 11.5.
QC	FB1US1-23	Flow Rate		Analysis of constituent not required and not performed
		Chloride	W	Post-digestion spike recovery out of control limits.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed
		Conductivity		Analysis of constituent not required and not performed
		Suspended Solids		Analysis of constituent not required and not performed
		Dissolved Solids		Analysis of constituent not required and not performed
		Total Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.66. Rad error is 4.65.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.49. Rad error is 5.46.
L150	L150DUS1-23	Flow Rate		Analysis of constituent not required and not performed
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Conductivity		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.14. Rad error is 3.13.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.36. Rad error is 6.35.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC

Charleston, SC

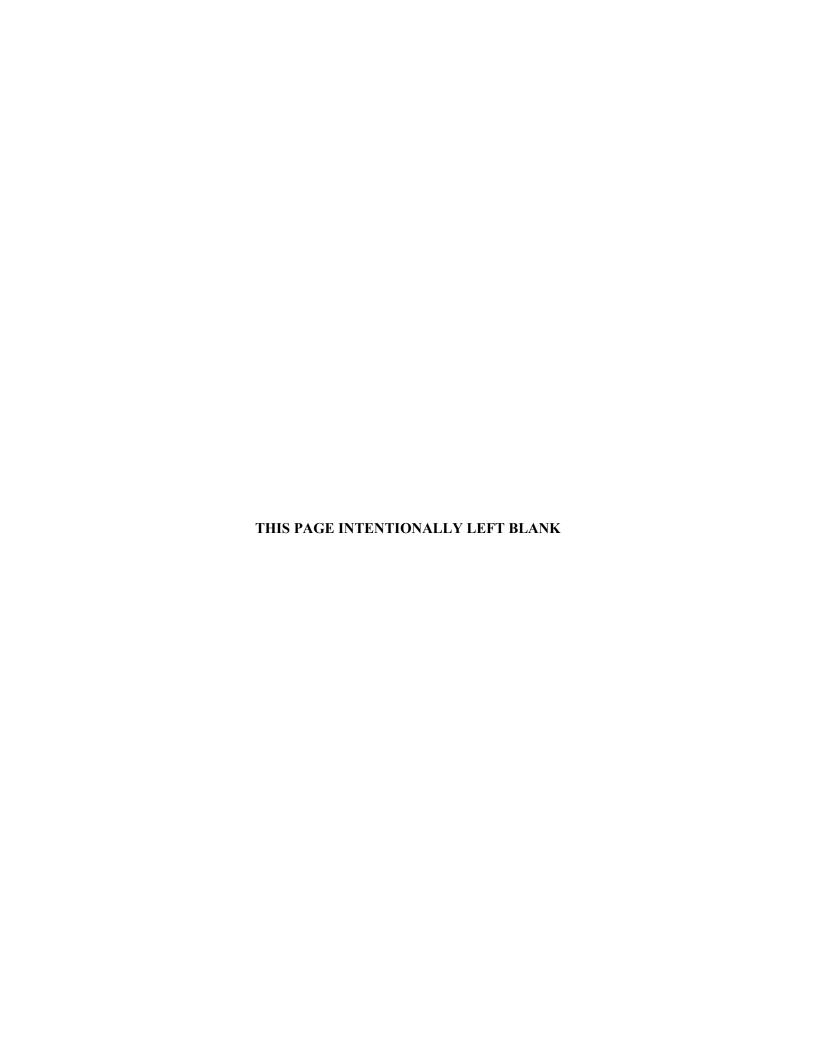
for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 and 2016 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 16th day of June 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2023



APPENDIX K LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260D		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 8082A	SW846 3535A	Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020B	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056A		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0 Modified		904.0Mod, Ra228, Liquid
SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid
SW846 9020B		Total Organic Halogens (TOX)

APPENDIX L MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-U Contained Landfill

			$\overline{}$	/_	/ /	/ 3 / /		/	_	/
		/		CIN /						į
		10	1	ò, \	100			10	THO!	
		Condi-	at a state of the	(i)	Turidit Turidit	Z(2), /	,	Cardin	July British	/
		din /	itain,	JIN /	80° / X			dille /	itili, /	Š
	777		× /.હ	⁸ / §	i / joid		7778	, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ / (ex	,
	150	/ 00'	<u> </u>	\ Dig	<u> </u>	/	<u> </u>	<u> </u>	/ &	in in it is
MW357										
Date Collected: 10-6-22						Date Collected: 10-6-22				
0912	60.3	456	6.09	6.01	0.00	1011	62.0	548	6.25	1.8
0915	60.3	429	5.95	5.04	0.00	1014	62.3	546	6.23	1.9
0918	60.4	428	5.91	5.08	0.00	1017	62.4	544	6.20	1.95
MW360						MW361				
Date Collected: 10-6-22						Date Collected: 10-6-22				
0710	59.9	401	6.02	2.38	1.23	0750	58.8	520	5.77	3.89
0713	59.5	399	5.99	2.36	0.95	0753	58.6	519	5.75	3.97
0716	59.3	396	5.96	2.91	0.90	0756	58.7	519	5.75	4.01
MW362						MW363				
Date Collected: 10-6-22						Date Collected: 10-10-22				
0829	59.0	674	6.64	3.09	1.12	0717	59.2	412	6.35	3.4
0832	59.1	679	6.65	2.37	1.03	0720	59.1	413	6.13	2.40
0835	59.1	680	6.67	2.39	1.00	0723	59.1	414	6.12	2.33
MW364						MW365				
Date Collected: 10-10-22						Date Collected: 10-10-22				
0818	59.5	476	6.11	4.96	0.00	0859	61.0	407	6.27	4.77
0821	59.6	480	6.06	3.70	0.00	0902	61.0	405	6.26	4.30
1824	59.6	485	6.00	3.64	0.00	0905	61.1	405	6.23	4.25
AW366						MW367				
Date Collected: 10-10-22						Date Collected: 10-10-22				
943	61.7	487	6.15	4.29	0.00	1025	63.2	251	6.01	1.60
946	61.6	490	6.08	4.08	0.00	1028	62.5	247	5.95	1.28
949	61.7	491	6.07	4.00	0.00	1031	62.2	246	5.92	1.24
AW369						MW370				
Date Collected: 10-11-22						Date Collected: 10-11-22				
714	59.5	548	6.29	5.30	4.19	0759	60.5	534	6.35	6.09
)717	59.7	490	6.05	3.52	3.96	0802	60.5	550	6.06	4.89
1720	59.8	485	6.05	3.44	3.90	0805	60.6	552	6.07	4.80
MW371						MW372				
Date Collected: 10-11-22						Date Collected: 10-11-22				
0851	61.1	849	6.51	4.28	4.30	0935	63.1	908	5.26	4.33
)854	61.0	868	6.49	2.94	4.02	0938	62.7	910	6.01	2.60
0857	61.0	870	6.48	2.87	3.94	0941	62.7	914	6.04	2.55
MW373						MW374				
Date Collected: 10-11-22						Date Collected: 10-11-22				
1016	63.6	939	6.15	3.15	1.30	1056	66.3	857	6.68	3.99
1019	63.3	940	6.13	2.39	1.36	1059	65.9	859	6.70	1.97
.022	63.0	939	6.12	2.31	1.31	1102	65.5	860	6.71	1.92
MW375						MW361 Resample				
Date Collected: 10-11-22						Date Collected: 11-17-22				
1139	63.4	416	6.50	3.60	1.70	0750	54.7	518	5.97	4.89
1142	63.5	414	6.45	2.98	1.67	0753	55.0	520	6.00	4.05
1145	63.6	415	6.44	2.89	1.58	0756	55.3	523	6.01	3.99

