

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

November 21, 2022

PPPO-02-10022874-23B

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-U CONTAINED LANDFILL THIRD QUARTER CALENDAR YEAR 2022 (JULY–SEPTEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0245/V3, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the third quarter calendar year (CY) 2022 has been uploaded to the KY eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the third quarter CY 2022 monitoring well data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the third quarter CY 2022, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

April Lado Digitally signed by April Ladd Date: 2022.11.21 16:01:50 -06'00'

April Ladd Acting Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill Third Quarter Calendar Year 2022 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0245/V3

cc w/enclosure: abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov stephaniec.brock@ky.gov, KYRHB tracey.duncan@pppo.gov, PPPO

e-copy via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Gaseous Diffusion Plant		Activity:	C-746-	U Contained Landfill	
	(As officially	shown on DWM Per	rmit Face)			
Permit No:	SW07300014, SW07300015, SW07300045	Finds	/Unit No:	Quarter of	& Year	3rd Qtr. CY 2022
Please check th	he following as applic	cable:				
Chara	acterization X	Quarterly	Semiannual	Ann	ual	Assessment
Please check a	pplicable submittal(s): <u>X</u>	Groundwater		Surfac	ce Water
			Leachate	Х	Metha	ne Monitoring

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E. Digitally signed by Myrna E. Redfield Date: 2022.11.17 16:03:31 -06'00'

Myrna E. Redfield, Program Manager

Four Rivers Nuclear Partnership, LLC

Digitally signed by April Ladd Date: 2022.11.22 08:57:15 -06'00'

April Ladd, Acting Paducah Site Lead U.S. Department of Energy Date

Date

FRNP-RPT-0245/V3

C-746-U Contained Landfill Third Quarter Calendar Year 2022 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

11-17-2022 Date

FRNP-RPT-0245/V3

C-746-U Contained Landfill Third Quarter Calendar Year 2022 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—November 2022

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FIC	GURE			v
TA	BLES			v
AC	CRON	YMS		vii
1.	INTF 1.1 1.2	BACK MONI ['] 1.2.1 1.2.2 1.2.3	TION GROUND TORING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring ESULTS	1 1 3 3
2.		A EVAI STATI 2.1.1 2.1.2 2.1.3	LUATION/STATISTICAL SYNOPSIS STICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer VERIFICATION AND VALIDATION	7 8 8 8
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	11
4.	REF	ERENC	ES	13
		DIX A: DIX B:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM FACILITY INFORMATION SHEET	
		DIX C: DIX D:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	
AF	PEND	DIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AF	PEND	DIX F:	NOTIFICATIONS	F-1
AF	PENE	DIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AF	PEND	OIX H:	METHANE MONITORING DATA	H-1
AF	PEND	DIX I:	ANALYTICAL LABORATORY CERTIFICATION	I-1
AF	PPEND	DIX J:	LABORATORY ANALYTICAL METHODS	J-1
AF	PENE	DIX K:	MICRO-PURGING STABILITY PARAMETERS	K-1

CONTENTS

FIGURE

1. C-746-U Landfill Groundwater Monitoring Well Network	2
---	---

TABLES

1.	Summary of MCL Exceedances	4
2.	Exceedances of Statistically Derived Historical Background Concentrations	4
3.	Exceedances of Current Background UTL in Downgradient RGA Wells	5
4.	C-746-U Landfills Downgradient Wells Trend Summary Utilizing the Previous	
	Eight Quarters	5
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	6
6.	Monitoring Wells Included in Statistical Analysis	8

ACRONYMS

CFR CY	Code of Federal Regulations
01	calendar year
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
LTL	lower tolerance limit
MCL	maximum contaminant level
MW	monitoring well
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Third Quarter Calendar Year 2022 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL and historical background UTL exceedances that have occurred, beginning in the third quarter, calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Analytical laboratory certification is provided in Appendix I. Laboratory analytical methods used to analyze the included data set are provided in Appendix J. Micropurging stability parameter results are provided in Appendix K.

1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5, with Phases 6 and 7 approved for receipt of waste as of September 27, 2019. A minor permit modification that included upgrades to the leachate storage capacity for Phases 6 and 7 was approved by KDWM on May 21, 2021 (FRNP 2021). Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

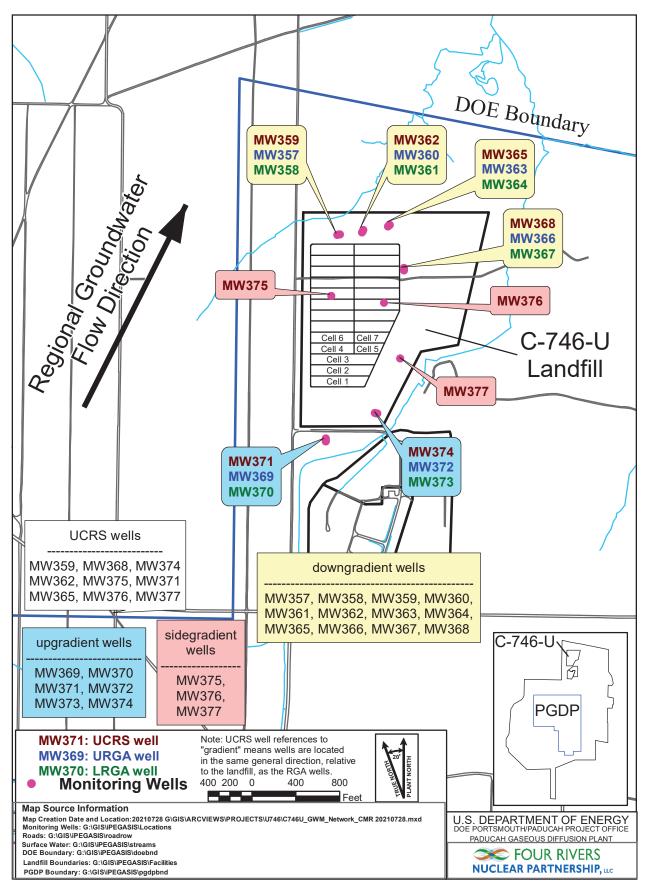


Figure 1. C-746-U Landfill Groundwater Monitoring Well Network

Consistent with the approved *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills* (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the third quarter 2022 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the third quarter 2022 was conducted in July 2022. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on July 27, 2022, in MWs of the C-746-U Landfill (see Appendix E, Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Appendix E, Figure E.4). Water level measurements in 38 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During July, RGA groundwater flow in the area of the landfill was oriented northeast. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in July was 4.92×10^{-4} ft/ft (see Appendix E, Table E.2). The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 8.58×10^{-4} ft/ft and 9.09×10^{-4} ft/ft, respectively (see Appendix E, Table E.2). Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.459 to 2.489 ft/day for the URGA and 1.545 to 2.635 ft/day for the LRGA (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Industrial Hygiene staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on September 15, 2022. See Appendix H for a map (see Appendix H, Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Monitoring Report provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was intended to be monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059

(FRNP 2021), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water sampling was not performed because of insufficient rainfall during the third quarter of 2022.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the third quarter 2022, as well as parameters that exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be background. Constituents in downgradient wells that exceeded current background UTL are shown on Table 3.

UCRS	URGA	LRGA	
None	None	MW361: Trichloroethene	

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Dissolved oxygen,	MW358: Oxidation-reduction
oxidation-reduction potential, sulfate	oxidation-reduction potential	potential
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Dissolved oxygen,
oxidation-reduction potential, sulfate	potential	oxidation-reduction potential,
		technetium-99
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW364: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential, technetium-99
MW368: Dissolved oxygen,	MW366: Oxidation-reduction	MW367: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW371: Dissolved oxygen,	MW369: Oxidation-reduction	MW370: Dissolved oxygen,
oxidation-reduction potential, sulfate	potential	oxidation-reduction potential
MW374: Oxidation-reduction	MW372: Calcium, conductivity,	MW373: Oxidation-reduction
potential, sulfate	dissolved solids, magnesium,	potential
	oxidation-reduction potential,	
	sulfate, technetium-99	
MW375: Dissolved oxygen,		
oxidation-reduction potential, sulfate		

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

¹ The UTL comparison for pH uses a two-sided test for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 3. Exceedances of Current Background UTL in Downgradient RGA Wells

URGA	LRGA		
MW357: Dissolved oxygen	None		

The notification of the parameter that exceeded its MCL was submitted electronically to the KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituent that exceeded the MCL in downgradient wells was subjected to a comparison against the UTL concentration calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedance for trichloroethene in downgradient well MW361 does not exceed the historical background concentration and is considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report is the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient (compliance) well concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill). Except for dissolved oxygen in MW357, all MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

Dissolved oxygen in downgradient URGA well MW357 exceeds both the historical background UTL and the current background UTL; therefore, preliminarily considered to be a Type 2 exceedance. To evaluate the preliminary Type 2 exceedance further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Dissolved oxygen in MW357 showed an increasing trend and is considered to be a Type 2 exceedance—source unknown.

 Table 4. C-746-U Landfills Downgradient Wells Trend Summary

 Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Decision ⁴
C-746-U Landfill	MW357	Dissolved oxygen	8	0.05	0.001	24	Increasing

¹An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

Note: Statistics generated using ProUCL.

⁴ The Mann-Kendall decision operates on two hypotheses; the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified sulfate in MW368 that exceeded both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U Landfill sources and are considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW368: Sulfate
*In the same direction (relative to the landfill) as RGA wells.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2022 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

Parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6 were documented and evaluated further. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as background) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data were divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data showed a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both a UTL and LTL to determine if statistically significant deviations in concentrations existed with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371 ^b	MW369 (background)	MW370 (background)
MW374 ^b	MW372 (background)	MW373 (background)
MW375		
MW376 ^c		
MW377 ^c		

Table 6. Monitoring Wells Included in Statistical Analysis^a

^a Map showing the monitoring well locations is shown on Figure 1.
 ^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^c Well had insufficient water to permit a water sample for laboratory analysis.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the third quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Sulfate exceeded the current background UTL in UCRS well MW368.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the URGA. During the third quarter, calcium, conductivity, dissolved oxygen, dissolved solids, magnesium, oxidationreduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Dissolved oxygen exceeded the current background UTL in downgradient URGA well MW357.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the third quarter, dissolved oxygen, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient LGRA wells.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill Third Quarter Calendar Year 2022 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0245/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

PG113927 R. Davis 11-16-2022

R. Davis

Kenneth R. Davi

PG113927

Morember 16, 2022

4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD- PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	Name: U.S. DOE–Paducah Gaseous Diffusion Plant		Activity: <u>C-746</u>	ty: <u>C-746-U Contained Landfill</u>					
(As officially shown on DWM Permit Face)									
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	3rd Qtr. CY 2022					
Please check the following as applicable:									
Chara	acterization <u>X</u> Qu	arterly Semiannu	al Annual	Assessment					
Please check a	pplicable submittal(s):	X Groundwater	Surf	Surface Water					
		Leachate	X Met	nane Monitoring					

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E. Redfield Digitally signed by Myrna E. Redfield Date: 2022.11.17 16:03:31 -06'00'

Myrna E. Redfield, Program Manager Four Rivers Nuclear Partnership, LLC

Digitally signed by April Ladd Date: 2022.11.22 08:57:15 -06'00'

April Ladd, Acting Paducah Site Lead U.S. Department of Energy Date

Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: July 2022 Surface water: N/A Methane: September 2022	County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045				
Facility Name: U.S. DOE—Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face)									
Site Address:	5600 Hobbs Road Street	Kevil, Kentucky City/State		42053 Zip					
Phone No: (27	0) 441-6800 Latitude:	•	Long	Longitude: <u>W 88° 47' 55"</u>					
OWNER INFORMATION									
Facility Owner:	U.S. DOE, Joel Bradburne, Manager Portsmouth/Paducah Project Office		Phone No: (859) 219-4000						
Contact Person:	Contact Person: Bruce Ford				Phone No: (270) 441-5357				
Contact Person Title: Four Rivers Nuclear Partnership, LLC									
Contact Person Ti Mailing Address:		42053							
Mannig Address.	5511 Hobbs Road Street	Kevil, Kentucky City/State							
Company: <u>GE</u> Contact Person: Mailing Address:	O Consultants Corporation Jason Boulton 199 Kentucky Avenue Street	Kevil, Kentucky City/State	Phone No:	(270) 8 42053 Zip					
LABORATORY RECORD #1									
Laboratory <u>GE</u>	L Laboratories, LLC	Lab	DID No: <u>KY90</u>	129					
Contact Person:	Valerie Davis		Phone No:	(843) 76	9-7391				
Mailing Address:	2040 Savage Road	Charleston, South Ca	rolina	294					
	Street	City/State		Zi	p				
LABORATORY RECORD #2									
Laboratory: N/A Lab ID No: N/									
Contact Person:	Phone No: <u>N/A</u>								
Mailing Address:	N/A								
	Street	City/State			Zip				
LABORATORY RECORD #3									
Laboratory: N/	A	Lab ID No: N/A							
Contact Person:	N/A		Phone No: N/A						
Mailing Address:	N/A								
	Street	City/State			Zip				

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982 / 1</u> LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-47	799	8004-09	981	8004-480	00
Facility's Loc	al Well or Spring Number (e.g., M	W-1	, MW-2, etc	:.)	357		358		359		360	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/13/2022 08	8:00	7/13/2022	10:15	7/13/2022	09:10	7/13/2022 1	11:46
Duplicate ("Y"	or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW357UG4	1-22	MW358U	G4-22	MW359U0	G4-22	MW360UG	j 4-2 2
Laboratory Sam	ple ID Number (if applicable)		58600500)1	586005	005	586005	007	5860050	09		
Date of Analys	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analys					2	7/15/20	22	7/15/20	22	7/15/202	22
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.355		0.494		<0.2		0.152	J
16887-00-6	Chloride(s)	т	mg/L	9056	30.4	J	31.1	J	1.12	J	7.95	J
16984-48-8	Fluoride	т	mg/L	9056	0.201	J	0.219	J	0.192	J	0.244	J
s0595	Nitrate & Nitrite	т	mg/L	9056	1.12	J	0.829	J	0.415	J	0.599	J
14808-79-8	Sulfate	т	mg/L	9056	39.4		55.9		39.6		12.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.04		30.05		30.05		30.05	
S0145	Specific Conductance	т	µMH0/cm	Field	399		486		209		379	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number		8004-4798	В	8004-479	9	8004-0981		8004-4800			
Facility's Lo	ocal Well or Spring Number (e.g., MW	i-1 , 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	325.55		325.55		334.37		325.54	
N238	Dissolved Oxygen	т	mg/L	Field	6		1.66		5.95		2.54	
S0266	Total Dissolved Solids	т	mg/L	160.1	210		260		129		206	
S0296	рн	т	Units	Field	6.11		6.21		6		6.19	
NS215	Eh	т	mV	Field	434		159		361		355	
S0907	Temperature	т	°c	Field	19.33		19.06		19.44		18.89	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0316	J	0.0367	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0741		0.0587		0.0241		0.2	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.374		0.398		0.008	J	0.0401	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	24.6		29.8		5.53		18.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00885		<0.001		0.000806	J
7440-50-8	Copper	т	mg/L	6020	0.00421		0.00143	J	0.00326		0.00115	J
7439-89-6	Iron	т	mg/L	6020	0.137		3.49		<0.1		0.0573	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.7		14.4		3.06		8.05	
7439-96-5	Manganese	т	mg/L	6020	0.00445	J	0.632		<0.005		0.0106	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBE	R ¹ , Facility Well/Spring Number		8004-479	8	8004-479	99	8004-098	1	8004-480	0		
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000248	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.00067	J	0.0189		0.00096	J	0.000768	J
7440-09-7	Potassium	т	mg/L	6020	1.57		2.38		0.0903	J	0.671	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	41.4		37.5		34.4		56.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	0.00504	J	0.00377	J	<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER1	Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-480	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00302		0.00082	J	<0.001		0.00042	J

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-4798	8	8004-479	9	8004-09	81	8004-48	00	
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	., MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.000019		<0.0000191		<0.000019	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.101		<0.109		<0.106		<0.107	
12674-11-2	PCB-1016	т	ug/L	8082	<0.101		<0.109		<0.106		<0.107	
11104-28-2	PCB-1221	т	ug/L	8082	<0.101		<0.109		<0.106		<0.107	
11141-16-5	PCB-1232	т	ug/L	8082	<0.101		<0.109		<0.106		<0.107	
53469-21-9	PCB-1242	т	ug/L	8082	<0.101		<0.109		<0.106		<0.107	
12672-29-6	PCB-1248	т	ug/L	8082	<0.101		<0.109		<0.106		<0.107	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480)0
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.101		<0.109		<0.106		<0.107	
11096-82-5	PCB-1260	т	ug/L	8082	<0.101		<0.109		<0.106		<0.107	
11100-14-4	PCB-1268	т	ug/L	8082	<0.101		<0.109		<0.106		<0.107	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.478	*	1.99	*	2.72	*	3.25	*
12587-47-2	Gross Beta	т	pCi/L	9310	11.7	*	39.3	*	2.07	*	1.32	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.0821	*	0.293	*	0.305	*	0.356	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.49	*	2.91	*	-6.49	*	-5.07	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	32	*	28	*	0.593	*	3.05	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.468	*	-0.0939	*	1.29	*	1.23	*
10028-17-8	Tritium	т	pCi/L	906.0	16.2	*	13.6	*	40.7	*	-5.47	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	12.8	J	<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.918	J	4.73		1.12	J	1.56	J
S0586	Total Organic Halides	т	mg/L	9020	0.00664	J	0.0039	J	<0.01		0.00348	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	796	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	361		362		363		364	
Sample Sequen	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/13/2022 12	2:34	7/13/2022	13:32	7/12/2022	07:35	7/12/2022 ()8:37
Duplicate ("Y	" or "N") ²				N		Ν		N		N	
Split ("Y" or	"N") ³				N		Ν		N		N	
Facility Samp	le ID Number (if applicable)				MW361UG4	1-22	MW362U	G4-22	MW363U0	G4-22	MW364UG	4-22
Laboratory Sa	mple ID Number (if applicable)		58600501	1	586005	013	5858090	001	5858090	03		
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	ysis	7/15/2022	2	7/15/20	22	7/14/20	22	7/14/202	2		
Gradient with	respect to Monitored Unit (UP, DC	WN ,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	l
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.495		0.0704	J	<0.2	*	0.484	*
16887-00-6	Chloride (s)	т	mg/L	9056	35.6	J	2.58	J	23.9	*J	38.7	*J
16984-48-8	Fluoride	т	mg/L	9056	0.181	J	0.429	J	0.208	J	0.178	J
s0595	Nitrate & Nitrite	т	mg/L	9056	1.09	J	0.385	J	5.93	J	1.24	J
14808-79-8	Sulfate	т	mg/L	9056	81		31.5		30.9		73.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.06		30.05		29.88		29.9	
S0145	Specific Conductance	т	µMH0/cm	Field	478		630		406		478	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8004-479	5	8004-098	6	8004-4796		8004-4797	
Facility's Lo	ocal Well or Spring Number (e.g., MW	i-1 , 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	325.53		339.24		325.66		324.89	
N238	Dissolved Oxygen	т	mg/L	Field	4.33		5.12		2.22		3.8	
S0266	Total Dissolved Solids	т	mg/L	160.1	277		380		229		273	
S0296	рН	т	Units	Field	6		6.99		6.12		5.93	
NS215	Eh	т	mV	Field	366		334		403		395	
S0907	Temperature	т	°c	Field	18.11		17.44		18.06		17.94	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0526		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0549		0.0969		0.135		0.0579	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.142		0.0191		0.0234		0.12	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	32.5		19.1		24.9		30.8	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.000809	J	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000838	J	0.00104	J	<0.002		<0.002	
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0468	J	0.158		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	14.1		8.54		10.2		15	
7439-96-5	Manganese	т	mg/L	6020	0.00445	J	<0.005		0.131		0.0025	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBE	D D OF 7 Molybdenum T mg/L 0 Nickel T mg/L 7 Potassium T mg/L 6 Rhodium T mg/L 2 Selenium T mg/L 2 Selenium T mg/L 4 Silver T mg/L 5 Sodium T mg/L 6 Tantalum T mg/L 7 Uranium T mg/L 6 Sodium T mg/L 7 Sodium T mg/L 6 Sodium T mg/L 7 Image: Sodium T mg/L 7 Sodium T mg/L 7 Image: Sodium T mg/L 1 Image: Sodium T mg/L 2 Vanadium T mg/L					8004-479	5	8004-098	36	8004-479	6	8004-479	7
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT		OF	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	т	mg/L	6020	<0.001		0.000549	J	0.00021	J	<0.001	
7440-02-0		Nickel	т	mg/L	6020	<0.002		0.000741	J	0.00998		0.000732	J
7440-09-7		Potassium	т	mg/L	6020	2.2		0.273	J	1.89		1.94	
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	43.1		136		40		48.5	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	<0.0002		0.00324		<0.0002		<0.0002	
7440-62-2		Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6		Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		0.00816	J
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-098	6	8004-47	96	8004-47	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00559		<0.001		<0.001		0.00399	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-479	5	8004-098	6	8004-47	96	8004-47	97		
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	., MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.0000191		<0.0000191		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.11		<0.11		<0.1		<0.202	
12674-11-2	PCB-1016	т	ug/L	8082	<0.11		<0.11		<0.1		<0.202	
11104-28-2	PCB-1221	т	ug/L	8082	<0.11		<0.11		<0.1		<0.202	
11141-16-5	PCB-1232	т	ug/L	8082	<0.11		<0.11		<0.1		<0.202	
53469-21-9	PCB-1242	т	ug/L	8082	<0.11		<0.11		<0.1		<0.202	
12672-29-6	PCB-1248	т	ug/L	8082	<0.11		<0.11		<0.1		<0.202	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et		361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.11		<0.11		<0.1		<0.202	
11096-82-5	PCB-1260	т	ug/L	8082	<0.11		<0.11		<0.1		<0.202	
11100-14-4	PCB-1268	т	ug/L	8082	<0.11		<0.11		<0.1		<0.202	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.26	*	1.73	*	-0.448	*	2.94	*
12587-47-2	Gross Beta	т	pCi/L	9310	20.7	*	-1.41	*	8.39	*	25.5	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.139	*	0.21	*	-0.0518	*	0.00612	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-6.52	*	1.54	*	5.05	*	2	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	51.6	*	-4.18	*	3.43	*	61.5	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.579	*	1.06	*	0.671	*	0.00259	*
10028-17-8	Tritium	т	pCi/L	906.0	26.8	*	-59.5	*	42.5	*	103	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		10.2	J	15.2	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5	*	<0.5	*
S0268	Total Organic Carbon	т	mg/L	9060	1.01	J	2.38		1.18	J	0.793	J
S0586	Total Organic Halides	т	mg/L	9020	0.013		0.0161		0.019		0.00646	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	84	8004-	0982	8004-	4793	8004-0	983
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	.)	365		36	6	36	7	368	3
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)q	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/12/2022	09:18	7/12/202	2 10:01	7/12/202	2 10:43	7/12/2022	2 11:24
Duplicate ("Y	' or "N") ²				Ν		Ν		Ν		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW365U0	G 4- 22	MW366	JG4-22	MW3670	JG4-22	MW368U	G4-22
Laboratory Sar	mple ID Number (if applicable)		5858090	005	58580	9007	58580	9009	585809	0011		
Date of Analys	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					22	7/14/2	2022	7/14/2	2022	7/14/20	022
Gradient with	respect to Monitored Unit (UP, DC) wn	SIDE, UNKN	OWN)	DOWI	N	DO	WN	DO	WN	DOW	/N
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	<0.2	*	0.513	*	0.161	*J	<0.2	*
16887-00-6	Chloride (s)	т	mg/L	9056	2.66	*J	41.2	*J	10.9	*J	3.17	*J
16984-48-8	Fluoride	т	mg/L	9056	0.32	J	0.197	J	0.13	J	0.265	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.697	J	1.04	J	<10		<10	
14808-79-8	Sulfate	т	mg/L	9056	56.6		45.6		24.7		98.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.91		29.92		29.92		29.94	
S0145	Specific Conductance	т	μ MH0/cm	Field	410		474		251		555	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $\frac{4}{2}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8004-0984	4	8004-098	2	8004-4793		8004-0983	
Facility's Lo	ocal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	330.83		325.79		325.77		332.71	
N238	Dissolved Oxygen	т	mg/L	Field	4.31		4.19		1.91		4.5	
S0266	Total Dissolved Solids	т	mg/L	160.1	246		253		121		350	
s0296	рН	т	Units	Field	6.18		6		5.82		6.42	
NS215	Eh	т	mV	Field	395		399		253		263	
S0907	Temperature	т	°c	Field	16.5		17.39		17.06		16.67	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		0.0231	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00233	J
7440-39-3	Barium	т	mg/L	6020	0.0991		0.116		0.14		0.0574	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00715	J	0.0623		0.02		0.00584	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	19.8		29.7		13.8		58.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00147		<0.001		0.00697		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.005		<0.002		<0.002		0.000423	J
7439-89-6	Iron	т	mg/L	6020	<0.1		<0.1		5.13		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	9.93		13.4		7.78		13.7	
7439-96-5	Manganese	т	mg/L	6020	0.00438	J	0.00395	J	1.43		0.00259	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	33
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		0.000637	J
7440-02-0		Nickel	т	mg/L	6020	0.00505		0.000947	J	0.0036		0.00107	J
7440-09-7		Potassium	т	mg/L	6020	0.219	J	1.85		2.67		0.377	
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		0.00257	J	<0.005		<0.005	
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	52.1		45.6		19.1		43.3	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	0.000229		<0.0002		<0.0002		0.000307	
7440-62-2		Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		0.00375	J
7440-66-6		Zinc	т	mg/L	6020	<0.02		<0.02		0.00859	J	<0.02	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-098	2	8004-47	93	8004-09	83
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00199		0.00066	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	4	8004-098	2	8004-47	93	8004-09	83
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.000019		<0.000019		<0.0000187	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	0.155	J	<0.222		<0.226		<0.195	
12674-11-2	PCB-1016	т	ug/L	8082	<0.188		<0.222		<0.226		<0.195	
11104-28-2	PCB-1221	т	ug/L	8082	<0.188		<0.222		<0.226		<0.195	
11141-16-5	PCB-1232	т	ug/L	8082	<0.188		<0.222		<0.226		<0.195	
53469-21-9	PCB-1242	т	ug/L	8082	0.155	J	<0.222		<0.226		<0.195	
12672-29-6	PCB-1248	т	ug/L	8082	<0.188		<0.222		<0.226		<0.195	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.188		<0.222		<0.226		<0.195	
11096-82-5	PCB-1260	т	ug/L	8082	<0.188		<0.222		<0.226		<0.195	
11100-14-4	PCB-1268	т	ug/L	8082	<0.188		<0.222		<0.226		<0.195	
12587-46-1	Gross Alpha	т	pCi/L	9310	-4.92	*	-1.93	*	-0.616	*	-4.8	*
12587-47-2	Gross Beta	т	pCi/L	9310	1.06	*	40	*	1.94	*	1.3	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	-0.00618	*	-0.0939	*	1.51	*	1.17	*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.48	*	0.307	*	0.608	*	3	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	2.6	*	62.1	*	13.4	*	-0.197	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.79	*	1.3	*	0.263	*	0.655	*
10028-17-8	Tritium	т	pCi/L	906.0	-0.0488	*	-11	*	-29.5	*	29.8	*
S0130	Chemical Oxygen Demand	т	mg/L	410.4	15.2	J	20.2		15.2	J	10.2	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
S0268	Total Organic Carbon	т	mg/L	9060	1.62	J	0.983	J	0.706	J	1.64	J
S0586	Total Organic Halides	т	mg/L	9020	0.0225		0.00848	J	<0.01		0.0101	
												<u> </u>

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	Facility Well/Spring Number				8004-48	320	8004-	4818	8004-4	4819	8004-4	808
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	369		37	0	37	1	372	2
Sample Sequen	ce #				1		1		1		1	
If sample is a 3	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/14/2022	08:07	7/14/202	2 09:08	7/14/202	2 09:51	7/14/2022	10:35
Duplicate ("Y	" or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				N		N		Ν		Ν	
Facility Samp	le ID Number (if applicable)				MW369U0	G 4- 22	MW370	JG4-22	MW3710	JG4-22	MW372U	G4-22
Laboratory Sa	mple ID Number (if applicable)		5862420	001	58624	2003	58624	2005	586242	2007		
Date of Analy:	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					22	7/18/2	2022	7/18/2	2022	7/18/20)22
Gradient with	respect to Monitored Unit (UP, DC	SIDE, UNKN	IOWN)	UP		U	Р	UI	D	UP		
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.453		0.547		<0.2		0.51	
16887-00-6	Chloride(s)	т	mg/L	9056	29	*J	39.6	*J	4.34	*J	38.6	*J
16984-48-8	Fluoride	т	mg/L	9056	0.189	J	0.152	J	0.138	J	0.138	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.89	J	0.996	J	0.145	J	1.01	J
14808-79-8	Sulfate	т	mg/L	9056	8.16		20.4		28.7		145	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.11		30.12		30.12		30.12	
S0145	Specific Conductance	т	µMH0/cm	Field	371		435		561		715	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $\frac{4}{2}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-482	D	8004-4818	3	8004-4819		8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1 , 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	326.92		326.91		342.63		326.97	
N238	Dissolved Oxygen	т	mg/L	Field	4.15		4.73		4.25		3.1	
S0266	Total Dissolved Solids	т	mg/L	160.1	196		230		366		461	
S0296	рн	т	Units	Field	5.96		5.91		6.35		6.09	
NS215	Eh	т	mV	Field	420		415		378		402	
S0907	Temperature	т	°c	Field	17.17		17.11		16.5		17.44	
7429-90-5	Aluminum	т	mg/L	6020	0.0341	J	<0.05		0.0342	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.357		0.23		0.124		0.0551	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0233		0.473		0.0136	J	1.22	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	15.7		29.2		59.8		62.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00423		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00117	J	0.000467	J	0.000638	J	<0.002	
7439-89-6	Iron	т	mg/L	6020	0.0641	J	<0.1		0.0564	J	0.0364	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	6.84	*	12.9	*	14.5	*	22.7	*
7439-96-5	Manganese	т	mg/L	6020	0.00372	J	0.00176	J	0.0029	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-482	0	8004-481	8	8004-481	9	8004-480)8
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000264	J	<0.001		0.000346	J	<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.00288		0.000909	J	0.00185	J	0.0011	J
7440-09-7	Potassium	т	mg/L	6020	0.57		2.67		0.418		2.12	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00249	J	<0.005		<0.005		0.00231	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	49.2		47.5		64.6		62.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00153		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		0.00491	J	<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-4820		8004-481	8	8004-48	19	8004-48	08	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00105		0.00148		<0.001		0.00255	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482)	8004-481	8	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	., MW-2, et		369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00267	J	0.00232	J	0.00238	J	0.0024	J
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194		<0.0000191		<0.0000189		<0.000019	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.125		<0.112		<0.108		<0.107	
12674-11-2	PCB-1016	т	ug/L	8082	<0.125		<0.112		<0.108		<0.107	
11104-28-2	PCB-1221	т	ug/L	8082	<0.125		<0.112		<0.108		<0.107	
11141-16-5	PCB-1232	т	ug/L	8082	<0.125		<0.112		<0.108		<0.107	
53469-21-9	PCB-1242	т	ug/L	8082	<0.125		<0.112		<0.108		<0.107	
12672-29-6	PCB-1248	т	ug/L	8082	<0.125		<0.112		<0.108		<0.107	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., M	MW-1	., MW-2, et)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.125		<0.112		<0.108		<0.107	
11096-82-5	PCB-1260	т	ug/L	8082	<0.125		<0.112		<0.108		<0.107	
11100-14-4	PCB-1268	т	ug/L	8082	<0.125		<0.112		<0.108		<0.107	
12587-46-1	Gross Alpha	т	pCi/L	9310	3.68	*	-0.693	*	-0.301	*	4.64	*
12587-47-2	Gross Beta	т	pCi/L	9310	29.6	*	8.86	*	1.95	*	48.8	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.31	*	-0.0507	*	0.16	*	0.42	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.11	*	0.716	*	-1.87	*	2.87	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	50.8	*	24	*	-10.8	*	74.2	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.87	*	0.367	*	0.437	*	-0.602	*
10028-17-8	Tritium	т	pCi/L	906.0	-74.7	*	-91.8	*	-39.1	*	-17.5	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.12	J	1.33	J	2.27		1.31	J
s0586	Total Organic Halides	т	mg/L	9020	0.0171		0.0092	J	0.00434	J	0.00626	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982 / 1</u> LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-09	90	8004-09	985	8004-098	8
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/14/2022 1	1:19	7/14/2022	12:01	7/14/2022 07:20		NA	
Duplicate ("Y'	' or "N") ²				N		Ν		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	Cacility Sample ID Number (if applicable)				MW373UG4	1-22	MW374U0	G 4- 22	MW375U0	G4-22	NA	
Laboratory Sam	mple ID Number (if applicable)				58624200)9	586242	011	5862420	013	NA	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Organics Analysis			7/18/2022	2	7/18/2022		7/18/2022		NA	
Gradient with	respect to Monitored Unit (UP, DC) WN ,	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.516		0.578		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	36.9	*J	50.2	*J	3.3	*J		*
16984-48-8	Fluoride	т	mg/L	9056	0.136	J	0.188	J	0.29	J		*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.746	J	0.456	J	0.997	J		*
14808-79-8	Sulfate	т	mg/L	9056	153		16.7		23.7			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.12		30.13		30.1			*
S0145	Specific Conductance	т	µMH0/cm	Field	733		646		315			*

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	}
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	326.95		339.87		334.04			*
N238	Dissolved Oxygen	т	mg/L	Field	2.42		1.74		3.23			*
S0266	Total Dissolved Solids	т	mg/L	160.1	500		394		193			*
S0296	pH	т	Units	Field	6.06		6.7		6.27			*
NS215	Eh	т	mV	Field	382		345		429			*
S0907	Temperature	т	°c	Field	17.67		17.28		18			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0248	J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0281		0.128		0.163			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.82		0.0479		0.0178			*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	62.8		22.1		12.8			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.000318	J	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020	<0.002		0.000557	J	0.000989	J		*
7439-89-6	Iron	т	mg/L	6020	<0.1		0.246		0.0375	J		*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	25.2	*	5.96	*	5.51	*		*
7439-96-5	Manganese	т	mg/L	6020	0.00736		0.085		0.00259	J		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	38
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000316	J	<0.001			*
7440-02-0	Nickel	т	mg/L	6020	0.00266		0.000746	J	0.00103	J		*
7440-09-7	Potassium	т	mg/L	6020	2.68		0.402		0.281	J		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00608		0.00252	J		*
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5	Sodium	т	mg/L	6020	56.1		119		51.3			*
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.000367		<0.0002			*
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02			*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

RESIDENTIAL/CONTAINED-QUARTERLYFacility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00484		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*		*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	0.0025	J	0.00264	J	0.00247	J		*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000193		<0.000019			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.102		<0.0992		<0.104			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.102		<0.0992		<0.104			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.102		<0.0992		<0.104			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.102		<0.0992		<0.104			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.102		<0.0992		<0.104			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.102		<0.0992		<0.104			*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Lo							374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.102		<0.0992		<0.104			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.102		<0.0992		<0.104			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.102		<0.0992		<0.104			*
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.564	*	3.83	*	-1.45	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	3.93	*	-0.237	*	6.37	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.307	*	0.217	*	0.184	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.343	*	3.49	*	5.79	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	9.69	*	10	*	1.62	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.12	*	0.758	*	0.558	*		*
10028-17-8	Tritium	т	pCi/L	906.0	178	*	-66.5	*	-82.8	*		*
S0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
S0268	Total Organic Carbon	т	mg/L	9060	1.38	J	2.4		0.839	J		*
S0586	Total Organic Halides	т	mg/L	9020	0.0131		0.0211		0.00684	J		*
												<u> </u>
-												──
												
												+

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982 / 1</u> LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

8004-0989 AKGWA NUMBER¹, Facility Well/Spring Number 0000-0000 0000-0000 0000-0000 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 377 E. BLANK F. BLANK T. BLANK 1 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment F NA Е Т Sample Date and Time (Month/Day/Year hour: minutes) NA 7/13/2022 06:25 7/13/2022 10.17 7/12/2022 06:15 Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ Ν Ν Ν Ν NA RI1UG4-22 FB1UG4-22 TB1UG4-22 Facility Sample ID Number (if applicable) 586005016 586005015 585809013 Laboratory Sample ID Number (if applicable) NA Date of Analysis (Month/Day/Year) For Volatile Organics Analysis NA 7/15/2022 7/15/2022 7/14/2022 Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) SIDE NA NA NA CAS RN⁴ CONSTITUENT т Unit METHO DETECTED F DETECTED F DETECTED F DETECTED F D OF D VALUE L VALUE L VALUE L VALUE L 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ G POL⁶ G G G S^7 s s s ÷ * * 24959-67-9 Bromide т 9056 ma/L * т * * 16887-00-6 Chloride(s) mq/L 9056 т * * * 16984-48-8 9056 * Fluoride mg/L * * * * S0595- -Nitrate & Nitrite т ma/L 9056 * * * 14808-79-8 т * Sulfate 9056 mq/L * * NS1894 Barometric Pressure Reading T Inches/Hg Field * * * * т * S0145- -Specific Conductance uMH0/cm Field

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	<0.002		<0.002			*
7439-89-6	Iron	т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002	*	0.000077	BJ*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	9	000-000	00	0000-000	0	000-000	0
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	К	F. BLANI	<	T. BLANK	(1
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7		Molybdenum	т	mg/L	6020		*	<0.001		<0.001			*
7440-02-0		Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0		Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	т	mg/L	6020		*	<0.02		<0.02			*
7440-66-6		Zinc	т	mg/L	6020		*	<0.02		<0.02			*
108-05-4		Vinyl acetate	т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260		*	<0.005		<0.005		0.00232	J
107-02-8		Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989)	0000-0000	0	0000-000	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et)	377		E. BLAN	<	F. BLAN	IK	T. BLANI	K 1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	000-000	0	0000-000	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	377		E. BLAN	<	F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005	*	<0.005	*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000192		<0.0000193		<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0954	*	<0.0963	*		*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0954	*	<0.0963	*		*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0954	*	<0.0963	*		*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0954	*	<0.0963	*		*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0954	*	<0.0963	*		*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0954	*	<0.0963	*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-0000)
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	., M₩-2, et		377		E. BLANK		F. BLAN	к	T. BLANK	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0954	*	<0.0963	*		*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0954	*	<0.0963	*		*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0954	*	<0.0963	*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-1.4	*	-1.19	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	-1.92	*	7.28	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*	0.0476	*	0.0329	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*	2.18	*	-0.175	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	-1.38	*	1.9	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	1	*	0.667	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	79.4	*	88.7	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort KY 40601 (502)564.

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982 / 1</u> LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

0000-0000 AKGWA NUMBER¹, Facility Well/Spring Number 0000-0000 8004-4799 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) T. BLANK 2 T. BLANK 3 358 2 Sample Sequence # 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment Т Т NA 7/13/2022 10:15 Sample Date and Time (Month/Day/Year hour: minutes) 7/13/2022 06.20 7/14/2022 06:30 Duplicate ("Y" or "N")² Υ Ν Ν Split ("Y" or "N")³ Ν Ν Ν MW358DUG4-22 TB2UG4-22 TB3UG4-22 Facility Sample ID Number (if applicable) 586005017 586242015 586005003 Laboratory Sample ID Number (if applicable) 7/18/2022 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis 7/15/2022 7/15/2022 DOWN Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) NA NA CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED F DETECTED F DETECT F D OF VALUE L VALUE L VALUE L VALU L 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ G POL⁶ G G POI G S7 s s s ÷ 24959-67-9 Bromide т 9056 0.46 ma/L т 34 4 J 16887-00-6 Chloride(s) mq/L 9056 * 16984-48-8 т 9056 0 184 J Fluoride mg/L * J s0595- -Nitrate & Nitrite т mg/L 9056 1.04 * 14808-79-8 т Sulfate 60.9 mg/L 9056 * * NS1894 Barometric Pressure Reading T Inches/Ha Field * * S0145- т Specific Conductance uMH0/cm Field

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	8004-4799		Ν	
Facility's Loc	cal Well or Spring Number (e.g., MW-	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK 3		358			[
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*	240			
S0296	рн	т	Units	Field		*		*		*		
NS215	Eh	т	mV	Field		*		*		*		
s0907	Temperature	т	°C	Field		*		*		*		
7429-90-5	Aluminum	Т	mg/L	6020		*		*	<0.05			
7440-36-0	Antimony	т	mg/L	6020		*		*	<0.003			
7440-38-2	Arsenic	т	mg/L	6020		*		*	<0.005		l X	
7440-39-3	Barium	т	mg/L	6020		*		*	0.0515			
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005			
7440-42-8	Boron	т	mg/L	6020		*		*	0.5			
7440-43-9	Cadmium	Т	mg/L	6020		*		*	<0.001			
7440-70-2	Calcium	т	mg/L	6020		*		*	29.4			\backslash
7440-47-3	Chromium	т	mg/L	6020		*		*	<0.01			$\left \right\rangle$
7440-48-4	Cobalt	т	mg/L	6020		*		*	0.0018			$ \rangle$
7440-50-8	Copper	Т	mg/L	6020		*		*	0.00145	J		
7439-89-6	Iron	Т	mg/L	6020		*		*	0.66			
7439-92-1	Lead	Т	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	т	mg/L	6020		*		*	13.9			
7439-96-5	Manganese	т	mg/L	6020		*		*	0.139			
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	00	8004-479	9		
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLANK	(3	358			
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	т	mg/L	6020		*		*	<0.001			\square
7440-02-0		Nickel	т	mg/L	6020		*		*	0.00508			\square
7440-09-7		Potassium	т	mg/L	6020		*		*	2.08			7
7440-16-6		Rhodium	т	mg/L	6020		*		*	<0.005			
7782-49-2		Selenium	т	mg/L	6020		*		*	<0.005			
7440-22-4		Silver	т	mg/L	6020		*		*	<0.001		\setminus /	
7440-23-5		Sodium	т	mg/L	6020		*		*	41		\setminus	
7440-25-7		Tantalum	т	mg/L	6020		*		*	<0.005			
7440-28-0		Thallium	т	mg/L	6020		*		*	<0.002		Χ	
7440-61-1		Uranium	т	mg/L	6020		*		*	<0.0002		/	
7440-62-2		Vanadium	т	mg/L	6020		*		*	<0.02		/ \	
7440-66-6		Zinc	т	mg/L	6020		*		*	<0.02		/ \	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			N I
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			Ι
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			$\left \right\rangle$
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		8004-4799		Ν
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	T. BLANK 2	2	T. BLANK 3		358		
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED F VALUE L OR A PQL ⁶ G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		$ \rangle $
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		$ $ $ $
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		X
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		0.0004	J	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		/ N
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		0.00097	J	/

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	C	0000-000	0	8004-47	99		
Facility's Loc	al Well or Spring Number (e.g., M	W-1	, MW-2, et	.c.)	T. BLANK 2		T. BLANK 3		358		\backslash	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR FQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*		
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			/
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		0.00259	J	<0.005			
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		/	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000189		<0.000019		<0.0000191			
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	$ / \rangle$	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			\backslash
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			Λ
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.1			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.1			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.1			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.1			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.1			
12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.1			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		8004-4799		\backslash	/
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	T. BLANK 2		T. BLANK 3		358			/
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*	<0.1			
11096-82-5	PCB-1260	т	ug/L	8082		*		*	<0.1			/
11100-14-4	PCB-1268	т	ug/L	8082		*		*	<0.1			/
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*	1.87	*		
12587-47-2	Gross Beta	т	pCi/L	9310		*		*	16.3	*		
10043-66-0	Iodine-131	т	pCi/L			*		*		*		
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*	0.351	*	$ \setminus $	
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*	2.5	*	V	
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*	39.6	*	Λ	
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*	0.518	*		
10028-17-8	Tritium	т	pCi/L	906.0		*		*	8.02	*		
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*	<20			
57-12-5	Cyanide	т	mg/L	9012		*		*	<0.2			
20461-54-5	Iodide	т	mg/L	300.0		*		*	<0.5			\setminus
s0268	Total Organic Carbon	т	mg/L	9060		*		*	1.28	J		$\left \right\rangle$
s0586	Total Organic Halides	т	mg/L	9020		*		*	0.0084	J		

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG4-22	Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.69. Rad error is 2.68.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.56. Rad error is 8.34.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.317. Rad error is 0.317.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.08. Rad error is 4.07.
		Technetium-99		TPU is 12.8. Rad error is 12.3.
		Thorium-230	TU	Indicates analyte/nuclide was analyzed for, but not detected. Trac recovery is < or equal to 30% or > or equal to 105%. TPU is 5.27. Rad error is 5.23.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 131. Rad error is 131.
004-4799 MW358	MW358UG4-22	Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.3. Rad error is 4.28.
		Gross beta		TPU is 11.7. Rad error is 9.87.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.439. Rad error is 0.439.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.4. Rad error is 4.38.
		Technetium-99		TPU is 12.2. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.82. Rad error is 0.819.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 132. Rad error is 132.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	MW359UG4-22	Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.18. Rad error is 4.15.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.12. Rad error is 6.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.402. Rad error is 0.402.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.49. Rad error is 3.49.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.08. Rad error is 1.06.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 133. Rad error is 132.
004-4800 MW360	MW360UG4-22	Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.35. Rad error is 5.32.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.43. Rad error is 6.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.384. Rad error is 0.384.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.78. Rad error is 3.78.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.03. Rad error is 1.01.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 131.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4795 MW361	MW361UG4-22	Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.85. Rad error is 2.84.
		Gross beta		TPU is 8.55. Rad error is 7.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.585. Rad error is 0.585.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.61. Rad error is 3.61.
		Technetium-99		TPU is 13.8. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.68. Rad error is 1.67.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 131. Rad error is 130.
004-0986 MW362	MW362UG4-22	Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.77. Rad error is 5.76.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.3. Rad error is 6.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.517. Rad error is 0.517.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.27. Rad error is 4.26.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.03. Rad error is 1.02.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 122. Rad error is 122.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4796 MW363	MW363UG4-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.28. Rad error is 4.27.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.89. Rad error is 6.75.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.468. Rad error is 0.468.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 4.71. Rad error is 4.64.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.92. Rad error is 0.912.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 130. Rad error is 130.
		lodide	W	Post-digestion spike recovery out of control limits.
004-4797 MW364	MW364UG4-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 5.64. Rad error is 5.62.
		Gross beta		TPU is 9.67. Rad error is 8.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.438. Rad error is 0.438.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.31. Rad error is 4.3.
		Technetium-99		TPU is 15.1. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.75. Rad error is 0.749.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 130. Rad error is 129.
		lodide	W	Post-digestion spike recovery out of control limits.
04-0984 MW365	MW365UG4-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 3.2. Rad error is 3.19.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 7.49. Rad error is 7.49.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.546. Rad error is 0.546.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.57. Rad error is 4.54.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.971. Rad error is 0.961.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 130. Rad error is 130.
		lodide	W	Post-digestion spike recovery out of control limits.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0982 MW366	MW366UG4-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.3. Rad error is 3.3.
		Gross beta		TPU is 11.3. Rad error is 9.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.32. Rad error is 0.32.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 4.11. Rad error is 4.11.
		Technetium-99		TPU is 15.6. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.09. Rad error is 1.07.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 131. Rad error is 131.
		lodide	W	Post-digestion spike recovery out of control limits.
004-4793 MW367	MW367UG4-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 4.6. Rad error is 4.6.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.41. Rad error is 4.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 1.07. Rad error is 1.07.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.33. Rad error is 4.33.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 12.4. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.02. Rad error is 1.02.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 128. Rad error is 128.
		lodide	W	Post-digestion spike recovery out of control limits.
004-0983 MW368	MW368UG4-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.26. Rad error is 2.26.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 5.65. Rad error is 5.65.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.936. Rad error is 0.935.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.51. Rad error is 4.49.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 12. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.872. Rad error is 0.864.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 132. Rad error is 132.
		lodide	W	Post-digestion spike recovery out of control limits.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4820 MW369	MW369UG4-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPE outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.1. Rad error is 6.02.
		Gross beta		TPU is 11. Rad error is 9.93.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.606. Rad error is 0.605.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.57. Rad error is 3.56.
		Technetium-99		TPU is 14. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.15. Rad error is 1.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 148. Rad error is 148.
004-4818 MW370	MW370UG4-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPI outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.91. Rad error is 4.91.
		Gross beta		TPU is 5.56. Rad error is 5.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.458. Rad error is 0.458.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.16. Rad error is 2.16.
		Technetium-99		TPU is 12.1. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.13. Rad error is 1.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 147. Rad error is 147.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4819 MW371	MW371UG4-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPE outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 5.09. Rad error is 5.09.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.8. Rad error is 6.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.354. Rad error is 0.354.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.14. Rad error is 3.14.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 9.99. Rad error is 9.99.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.62. Rad error is 1.62.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 152. Rad error is 152.
004-4808 MW372	MW372UG4-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPE outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.66. Rad error is 4.59.
		Gross beta		TPU is 12.4. Rad error is 9.51.
	lodine-131		Analysis of constituent not required and not performed.	
	Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.364. Rad error is 0.364.	
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 3.8. Rad error is 3.77.
		Technetium-99		TPU is 15.8. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.8. Rad error is 0.8.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 152. Rad error is 152.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4792 MW373	MW373UG4-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.15. Rad error is 3.15.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.85. Rad error is 5.81.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.386. Rad error is 0.386.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.39. Rad error is 3.39.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 11.1. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.51. Rad error is 1.5.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 164. Rad error is 160.
004-0990 MW374	MW374UG4-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPE outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 5.83. Rad error is 5.8.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.09. Rad error is 6.09.
		lodine-131		Analysis of constituent not required and not performed.
	Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.323. Rad error is 0.323.	
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 3.95. Rad error is 3.91.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.16. Rad error is 1.15.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 149. Rad error is 149.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0985 MW375	MW375UG4-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.91. Rad error is 2.91.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.78. Rad error is 7.71.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.277. Rad error is 0.277.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.12. Rad error is 4.02.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.01. Rad error is 1.01.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 149. Rad error is 149.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description							
8004-0988 MW376		Molybdenum		During sampling, the well went dry; therefore, no sample was							
		Nickel		collected. During sampling, the well went dry; therefore, no sample was collected.							
		Potassium		During sampling, the well went dry; therefore, no sample was collected.							
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.							
		Selenium		During sampling, the well went dry; therefore, no sample was collected.							
		Silver		During sampling, the well went dry; therefore, no sample was collected.							
		Sodium		During sampling, the well went dry; therefore, no sample was collected.							
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.							
		Thallium		During sampling, the well went dry; therefore, no sample was collected.							
		Uranium		During sampling, the well went dry; therefore, no sample was collected.							
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.							
		Zinc		During sampling, the well went dry; therefore, no sample was collected.							
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.							
		Acetone		During sampling, the well went dry; therefore, no sample was collected.							
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.							
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.							
		Benzene		During sampling, the well went dry; therefore, no sample was collected.							
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.							
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.							
		Styrene		During sampling, the well went dry; therefore, no sample was collected.							
									Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.							
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.							
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.							
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.							
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.							
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.							
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.							
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.							

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	·	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description				
8004-0989 MW377		Molybdenum		During sampling, the well went dry; therefore, no sample was				
		Nickel		collected. During sampling, the well went dry; therefore, no sample was collected.				
		Potassium		During sampling, the well went dry; therefore, no sample was collected.				
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.				
		Selenium		During sampling, the well went dry; therefore, no sample was collected.				
		Silver		During sampling, the well went dry; therefore, no sample was collected.				
		Sodium		During sampling, the well went dry; therefore, no sample was collected.				
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.				
		Thallium		During sampling, the well went dry; therefore, no sample was collected.				
		Uranium		During sampling, the well went dry; therefore, no sample was collected.				
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.				
		Zinc		During sampling, the well went dry; therefore, no sample was collected.				
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.				
		Acetone		During sampling, the well went dry; therefore, no sample was collected.				
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.				
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.				
		Benzene		During sampling, the well went dry; therefore, no sample was collected.				
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.				
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.				
		Styrene		During sampling, the well went dry; therefore, no sample was collected.				
						Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.				
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.				
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.				
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.				
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.				
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.				
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.				
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.				

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG4-22	Bromide	. 199	Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Mercury	ΗХ	Analysis performed outside holding time requirement. Other sp flags and footnotes may be required to properly define the resul
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1016	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1221	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1232	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1242	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1248	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1254	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1260	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1268	S	Sample surrogate recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. Th 2.86. Rad error is 2.86.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.59. Rad error is 4.59.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U 	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.279. Rad error is 0.279.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.3. Rad error is 4.29.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. The 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.955. Rad error is 0.942.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 119. Rad error is 118. Analysis of constituent not required and not performed.
		Chemical Oxygen Demand Cyanide		Analysis of constituent not required and not performed.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1UG4-22	Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG4-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Mercury	HX	Analysis performed outside holding time requirement. Other sp flags and footnotes may be required to properly define the resul
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1016	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1221	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1232	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1242	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1248	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1254	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1260	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1268	S	Sample surrogate recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.8. Rad error is 2.8.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 7.45. Rad error is 7.35.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U 	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.252. Rad error is 0.252.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.94. Rad error is 2.94.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 11. Rad error is 11. Indicates analyte/nuclide was analyzed for, but not detected. TF
		Thorium-230 Tritium	U U	1.03. Rad error is 1.03. Indicates analyte/nuclide was analyzed for, but not detected. TF
			0	108. Rad error is 107.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG4-22	Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-22	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG4-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG4-22	Zinc	- Tag	Analysis of constituent not required and not performed.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG4-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG4-22	Zinc		Analysis of constituent not required and not performed.
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPI outside acceptance criteria.
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4799 MW358	MW358DUG4-22	Barometric Pressure Reading	гіаў	Analysis of constituent not required and not performed.
0004-4799 1000300	WW0000004-22	Specific Conductance		Analysis of constituent not required and not performed.
		•		
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria.
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.01. Rad error is 3.99.
		Gross beta		TPU is 7.87. Rad error is 7.41.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.466. Rad error is 0.466.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.55. Rad error is 4.53.
		Technetium-99		TPU is 12.6. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.905. Rad error is 0.899.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 130. Rad error is 130.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED—QUARTERLY, 3rd CY 2022 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-980-008-982/1</u> LAB ID: <u>None</u>

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2022 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). A statistician qualification statement has been provided for this analysis.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The third quarter 2022 data used to conduct the statistical analyses were collected in July 2022. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^{a,b}	SG	UCRS
MW377 ^{a,b}	SG	UCRS

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

^b Well was dry this quarter, and a groundwater sample could not be collected.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

.

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, third quarter 2022. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Parameters	
Aluminum	
Boron	
Bromide	
Calcium	
Chemical Oxygen Demand (COD)	
Chloride	
cis-1,2-Dichloroethene	
Cobalt	
Conductivity	
Copper	
Dissolved Oxygen	
Dissolved Solids	
Iron	
Magnesium	
Manganese	
Methylene Chloride	
Molybdenum	
Nickel	
Oxidation-Reduction Potential	
PCB, Total	
PCB-1242	
pH*	
Potassium	
Radium-226	
Sodium	
Sulfate	
Technetium-99	
Total Organic Carbon (TOC)	
Total Organic Halides (TOX)	
Trichloroethene	
Vanadium	
Zinc	

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrolem	7	7	0	No
Antimony	7 7	2 7	5 0	Yes
Antimony				No
Beryllium	7	7	0	No
Boron	7	0	7	Yes
Bromide	7	5	2	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	5	2	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	6	1	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	3	4	Yes
Magnesium		0	7	Yes
Magnesium Manganese	7	0 2	7	Yes Yes
Magnesium Manganese Methylene chloride		0 2 4	7 5 3	Yes Yes Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	6	1	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	6	1	Yes
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	6	1	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	7	0	No

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
	6	0	6	Yes
Boron Bromide		, , , , , , , , , , , , , , , , , , ,	5	
	<u>6</u>	1	0 0	Yes
Bromochloromethane		6		No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	3	3	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	3	3	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	1	5	Yes
Methylene chloride	6	4	2	Yes
Molybdenum	6	4	2	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	5	1	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	6	0	No
Antimony	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	4	2	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	5	1	Yes
<i>cis</i> -1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	3	3	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	4	2	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	4	2	Yes
v	6	5	1	Yes

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
X74 1 1		Observation	Observation	Analysis?
Nickel	6	1	5	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	5	1	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 26, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for calcium, conductivity, dissolved oxygen, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

LRGA

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Dissolved Oxygen, Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW361: Dissolved Oxygen, Oxidation-Reduction Potential, Technetium-99
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW368: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential
MW371: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW369: Oxidation-Reduction Potential	MW370: Dissolved Oxygen, Oxidation-Reduction Potential
MW374: Oxidation-Reduction Potential, Sulfate	MW372: Calcium, Conductivity, Dissolved Solids, Magnesium, Oxidation-Reduction Potential, Sulfate, Technetium-99	MW373: Oxidation-Reduction Potential
MW375: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	Sanado, recimendani yy	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
pH	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	3.79	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	Current results exceed statistically derived historical background concentration in MW357.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.36	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	Current results exceed statistically derived historical background concentration in MW372.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.80	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	Current results exceed statistically derived historical background concentration in MW361 and MW370.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.
pH	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	2.66	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration MW361 and MW364.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 8, and 4 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that sulfate in MW368 exceeded the current TL this quarter.

<u>URGA</u>

This quarter's results showed a statistically significant exceedance of current background TL for dissolved oxygen in downgradient URGA well MW357.

<u>LRGA</u>

This quarter's results did not indicate any statistically significant exceedances of current background TL in downgradient LRGA wells.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.10, Exhibit D.11, and Exhibit D.12, respectively.

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.80	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.26	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.92	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data

Exhibit D.10. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.62	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.37	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Oxygen	Tolerance Interval	0.27	MW357 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.42	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.56	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.07	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.94	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.38	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.38	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation- Reduction Potential	Tolerance Interval	0.06	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
рН	Tolerance Interval	0.02	None of the test wells exceeded the upper or lower TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.69	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,		0			
Statistics-Background Data	X= 3.300	S= 6.859	CV(1)= 2.078	K factor**= 2.523	TL(1)= 20.604	LL(1)=N/A
Statistics-Transformed Background	X= -0.371	S= 1.678	CV(2)=-4.521	K factor**= 2.523	TL(2)= 3.863	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	21.3	3.059
1/7/2003	20	2.996
4/2/2003	4.11	1.413
7/9/2003	1.41	0.344
10/7/2003	1.09	0.086
1/6/2004	0.854	-0.158
4/7/2004	0.2	-1.609
7/14/2004	0.2	-1.609

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.0316	N/A	-3.455	NO	
MW362	Downgradient	Yes	0.0526	N/A	-2.945	NO	
MW365	Downgradient	No	0.05	N/A	-2.996	N/A	
MW368	Downgradient	Yes	0.0231	N/A	-3.768	NO	
MW371	Upgradient	Yes	0.0342	N/A	-3.376	NO	
MW374	Upgradient	No	0.05	N/A	-2.996	N/A	
MW375	Sidegradient	Yes	0.0248	N/A	-3.697	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)=N/A
Statistics-Transformed Background	X =-1.034	S= 1.030	CV(2)= -0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Bac Ungradient W		ta from ansformed Resi
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	2	0.693
1/7/2003	0.2	-1.609
4/2/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/7/2003	0.2	-1.609
1/6/2004	0.2	-1.609
4/7/2004	0.2	-1.609
7/14/2004	0.2	-1.609

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.008	N/A	-4.828	NO
MW362	Downgradient	Yes	0.0191	N/A	-3.958	NO
MW365	Downgradient	Yes	0.00715	N/A	-4.941	NO
MW368	Downgradient	Yes	0.00584	N/A	-5.143	NO
MW371	Upgradient	Yes	0.0136	N/A	-4.298	NO
MW374	Upgradient	Yes	0.0479	N/A	-3.039	NO
MW375	Sidegradient	Yes	0.0178	N/A	-4.029	NO
N/A Dage	Its identified as N	Jan Dataata	ما معامل	anatam analysia a	, data validatio	and want and

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data				K factor**= 2.523	TL(1)= 2.590	LL(1)=N/A
Statistics-Transformed Background	X = 0.279	S = 0.332	CV(2) =1.190	K factor**= 2.523	TL(2)= 1.118	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	1	0.000				
4/22/2002	1	0.000				
7/15/2002	1	0.000				
10/8/2002	1	0.000				
1/8/2003	1	0.000				
4/3/2003	1	0.000				
7/9/2003	1	0.000				
10/6/2003	1	0.000				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	2.1	0.742				
1/7/2003	2.1	0.742				
4/2/2003	1.9	0.642				
7/9/2003	1	0.000				
10/7/2003	1.9	0.642				
1/6/2004	1.9	0.642				
4/7/2004	1.8	0.588				

1.6

Data

7/14/2004

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	Yes	0.0704	NO	-2.654	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.578	NO	-0.548	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.470

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 34.100
 S= 13.637
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 68.505
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.466
 S= 0.356
 CV(2)=0.103
 K factor**= 2.523
 TL(2)= 4.364
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	17.2	2.845				
4/22/2002	22.4	3.109				
7/15/2002	25.5	3.239				
10/8/2002	26.4	3.273				
1/8/2003	27.2	3.303				
4/3/2003	30.3	3.411				
7/9/2003	25.9	3.254				
10/6/2003	27	3.296				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	67.3	4.209				
1/7/2003	60.6	4.104				
4/2/2003	47.2	3.854				
7/9/2003	34.7	3.547				
10/7/2003	37.1	3.614				
1/6/2004	37.7	3.630				
4/7/2004	32.2	3.472				

26.9

Data

7/14/2004

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	5.53	NO	1.710	N/A
MW362	Downgradient	Yes	19.1	NO	2.950	N/A
MW365	Downgradient	Yes	19.8	NO	2.986	N/A
MW368	Downgradient	Yes	58.4	NO	4.067	N/A
MW371	Upgradient	Yes	59.8	NO	4.091	N/A
MW374	Upgradient	Yes	22.1	NO	3.096	N/A
MW375	Sidegradient	Yes	12.8	NO	2.549	N/A
N/A Dog	Its identified as I	Non Dotoota	during lal	horotory analyzic of	, data validatio	n and wars not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.292

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 72.938
 S= 70.749
 CV(1)=0.970
 K factor**= 2.523
 TL(1)= 251.437
 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.000
 S= 0.702
 CV(2)=0.175
 K factor**= 2.523
 TL(2)= 5.770
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	35	3.555				
4/22/2002	35	3.555				
7/15/2002	35	3.555				
10/8/2002	35	3.555				
1/8/2003	35	3.555				
4/3/2003	35	3.555				
7/9/2003	35	3.555				
10/6/2003	35	3.555				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	260	5.561				
1/7/2003	214	5.366				
4/2/2003	147	4.990				
7/9/2003	72	4.277				
10/7/2003	56	4.025				
1/6/2004	68	4.220				
4/7/2004	35	3.555				
7/14/2004	35	3.555				

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	20	N/A	2.996	N/A
MW362	Downgradient	No	20	N/A	2.996	N/A
MW365	Downgradient	Yes	15.2	NO	2.721	N/A
MW368	Downgradient	Yes	10.2	NO	2.322	N/A
MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	No	20	N/A	2.996	N/A
MW375	Sidegradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=91.300 S= 86.959 CV(1)=0.952 **K factor**=** 2.523 TL(1)= 310.697 LL(1)=N/A **Statistics-Background Data Statistics-Transformed Background X=** 3.620 S= 1.590 CV(2)=0.439 **K factor**=** 2.523 TL(2)= 7.631 LL(2)=N/A

Historical Bac Upgradient W		a from insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	199.2	5.294
1/7/2003	199.7	5.297
4/2/2003	171.8	5.146
7/9/2003	178.7	5.186
10/7/2003	175.6	5.168
1/6/2004	170.4	5.138
4/7/2004	156.4	5.052
7/14/2004	144.7	4.975

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	1.12	NO	0.113	N/A
MW362	Downgradient	Yes	2.58	NO	0.948	N/A
MW365	Downgradient	Yes	2.66	NO	0.978	N/A
MW368	Downgradient	Yes	3.17	NO	1.154	N/A
MW371	Upgradient	Yes	4.34	NO	1.468	N/A
MW374	Upgradient	Yes	50.2	NO	3.916	N/A
MW375	Sidegradient	Yes	3.3	NO	1.194	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.007	S = 0.009	CV(1)= 1.314	K factor**= 2.523	TL(1)= 0.031	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.843	S = 1.392	CV(2) =-0.238	K factor**= 2.523	TL(2)= -2.331	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.01	-4.605
1/7/2003	0.01	-4.605
4/2/2003	0.01	-4.605
7/9/2003	0.00161	-6.432
10/7/2003	0.001	-6.908
1/6/2004	0.001	-6.908
4/7/2004	0.001	-6.908
7/14/2004	0.001	-6.908

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	No	0.001	N/A	-6.908	N/A
MW365	Downgradient	Yes	0.00147	/ N/A	-6.522	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	No	0.001	N/A	-6.908	N/A
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A
NI/A D	1. 1	T D ()	1 . 11	, <u>1</u> ·	1 / 1.1 /	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 918.744 S= 417.257 CV(1)=0.454
 K factor**= 2.523
 TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background X=6.705 S= 0.550 CV(2)=0.082 Data

Historical Bac Upgradient W		ta from ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	1007	6.915
10/8/2002	1680	7.427
1/7/2003	1715.9	7.448
4/2/2003	172	5.147
7/9/2003	1231	7.116
10/7/2003	1214	7.102
1/6/2004	1172	7.066
4/7/2004	1145	7.043

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

K factor**= 2.523 TL(2)= 8.092 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	209	NO	5.342	N/A
MW362	Downgradient	Yes	630	NO	6.446	N/A
MW365	Downgradient	Yes	410	NO	6.016	N/A
MW368	Downgradient	Yes	555	NO	6.319	N/A
MW371	Upgradient	Yes	561	NO	6.330	N/A
MW374	Upgradient	Yes	646	NO	6.471	N/A
MW375	Sidegradient	Yes	315	NO	5.753	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.056	S = 0.072	CV(1)= 1.275	K factor**= 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.395	S= 0.915	CV(2) =-0.270	K factor**= 2.523	TL(2)= -1.086	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.2	-1.609
1/7/2003	0.2	-1.609
4/2/2003	0.2	-1.609
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.02	-3.912
7/14/2004	0.02	-3.912

Dry/Partially Dry Wells			
Well No.	Gradient		
MW376	Sidegradient		
MW377	Sidegradient		

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00326	N/A	-5.726	NO
MW362	Downgradient	Yes	0.00104	N/A	-6.869	NO
MW365	Downgradient	Yes	0.005	N/A	-5.298	NO
MW368	Downgradient	Yes	0.00042	3 N/A	-7.768	NO
MW371	Upgradient	Yes	0.00063	8 N/A	-7.357	NO
MW374	Upgradient	Yes	0.00055	7 N/A	-7.493	NO
MW375	Sidegradient	Yes	0.00098	9 N/A	-6.919	NO
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.138 S= 0.621 CV(1)=0.546 K factor**= 2.523 TL(1)= 2.704 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.013 S= 0.577 CV(2)=-43.069 K factor**= 2.523 TL(2)= 1.441 LL(2)=N/A

 Data
 Data
 CV(2)=-43.069 K factor**= 2.523 TL(2)= 1.441 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Res					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2.26	0.815			
4/22/2002	1.15	0.140			
7/15/2002	0.94	-0.062			
10/8/2002	0.74	-0.301			
1/8/2003	2.62	0.963			
4/3/2003	1.5	0.405			
7/9/2003	1.66	0.507			
10/6/2003	1.28	0.247			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
3/18/2002	0.6	-0.511			
10/8/2002	0.67	-0.400			
1/7/2003	0.23	-1.470			
4/2/2003	0.65	-0.431			
7/9/2003	0.92	-0.083			
10/7/2003	0.99	-0.010			
1/6/2004	1.11	0.104			
4/7/2004	0.88	-0.128			

Dry/Partially Dry Wells			
Well No.	Gradient	-	
MW376	Sidegradient		
MW377	Sidegradient		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	5.95	YES	1.783	N/A
MW362	Downgradient	Yes	5.12	YES	1.633	N/A
MW365	Downgradient	Yes	4.31	YES	1.461	N/A
MW368	Downgradient	Yes	4.5	YES	1.504	N/A
MW371	Upgradient	Yes	4.25	YES	1.447	N/A
MW374	Upgradient	Yes	1.74	NO	0.554	N/A
MW375	Sidegradient	Yes	3.23	YES	1.172	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW359
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW362
concentration with respect to historical background data.	MW365
	MW368
	MW371
	MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 590.000 S= 248.068 CV(1)=0.420 K factor**= 2.523 TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background X=6.308 S= 0.383 CV(2)=0.061 Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	274	5.613			
4/22/2002	409	6.014			
7/15/2002	418	6.035			
10/8/2002	424	6.050			
1/8/2003	431	6.066			
4/3/2003	444	6.096			
7/9/2003	445	6.098			
10/6/2003	438	6.082			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	1136	7.035			
1/7/2003	1101	7.004			
4/2/2003	863	6.760			
7/9/2003	682	6.525			
10/7/2003	589	6.378			
1/6/2004	603	6.402			
4/7/2004	601	6.399			
7/14/2004	582	6.366			

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

K factor**= 2.523 TL(2)= 7.274 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	129	NO	4.860	N/A
MW362	Downgradient	t Yes	380	NO	5.940	N/A
MW365	Downgradient	t Yes	246	NO	5.505	N/A
MW368	Downgradient	t Yes	350	NO	5.858	N/A
MW371	Upgradient	Yes	366	NO	5.903	N/A
MW374	Upgradient	Yes	394	NO	5.976	N/A
MW375	Sidegradient	Yes	193	NO	5.263	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.612	S= 6.487	CV(1)= 0.981	K factor**= 2.523	TL(1)= 22.979	LL(1)= N/A
Statistics-Transformed Background	X= 1.363	S= 1.147	CV(2)= 0.841	K factor**= 2.523	TL(2)= 4.256	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	1.31	0.270				
4/22/2002	0.913	-0.091				
7/15/2002	0.881	-0.127				
10/8/2002	3.86	1.351				
1/8/2003	1.88	0.631				
4/3/2003	3.18	1.157				
7/9/2003	0.484	-0.726				
10/6/2003	2.72	1.001				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	23	3.135				
1/7/2003	13.9	2.632				
4/2/2003	14	2.639				
7/9/2003	14.2	2.653				
10/7/2003	7.92	2.069				
1/6/2004	7.86	2.062				
4/7/2004	4.82	1.573				
7/14/2004	4.87	1.583				

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.1	N/A	-2.303	N/A
MW362	Downgradient	t Yes	0.0468	NO	-3.062	N/A
MW365	Downgradient	t No	0.1	N/A	-2.303	N/A
MW368	Downgradient	t No	0.1	N/A	-2.303	N/A
MW371	Upgradient	Yes	0.0564	NO	-2.875	N/A
MW374	Upgradient	Yes	0.246	NO	-1.402	N/A
MW375	Sidegradient	Yes	0.0375	NO	-3.283	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 11.347
 S= 3.019
 CV(1)=0.266
 K factor**= 2.523
 TL(1)= 18.963
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.401
 S= 0.237
 CV(2)=0.099
 K factor**= 2.523
 TL(2)= 2.999
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	7.1	1.960					
4/22/2002	9.77	2.279					
7/15/2002	10.4	2.342					
10/8/2002	10.2	2.322					
1/8/2003	10.7	2.370					
4/3/2003	11.9	2.477					
7/9/2003	10.8	2.380					
10/6/2003	10.9	2.389					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	20	2.996					
1/7/2003	16.1	2.779					
4/2/2003	13.1	2.573					
7/9/2003	10.3	2.332					
10/7/2003	11.1	2.407					
1/6/2004	11	2.398					
4/7/2004	9.69	2.271					
7/14/2004	8.49	2.139					

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.06	NO	1.118	N/A
MW362	Downgradient	Yes	8.54	NO	2.145	N/A
MW365	Downgradient	Yes	9.93	NO	2.296	N/A
MW368	Downgradient	Yes	13.7	NO	2.617	N/A
MW371	Upgradient	Yes	14.5	NO	2.674	N/A
MW374	Upgradient	Yes	5.96	NO	1.785	N/A
MW375	Sidegradient	Yes	5.51	NO	1.707	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	,	5	CV(1)= 0.894	K factor**= 2.523		LL(1)= N/A
Statistics-Transformed Background Data	X= -1.873	S= 1.068	CV(2) =-0.570	K factor**= 2.523	TL(2)= 0.821	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.063	-2.765				
4/22/2002	0.067	-2.703				
7/15/2002	0.074	-2.604				
10/8/2002	0.0521	-2.955				
1/8/2003	0.0385	-3.257				
4/3/2003	0.0551	-2.899				
7/9/2003	0.0546	-2.908				
10/6/2003	0.0543	-2.913				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.596	-0.518				
1/7/2003	0.565	-0.571				
4/2/2003	0.675	-0.393				
7/9/2003	0.397	-0.924				
10/7/2003	0.312	-1.165				
1/6/2004	0.299	-1.207				
4/7/2004	0.329	-1.112				
7/14/2004	0.342	-1.073				

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.005	N/A	-5.298	N/A
MW362	Downgradient	No	0.005	N/A	-5.298	N/A
MW365	Downgradient	Yes	0.00438	NO	-5.431	N/A
MW368	Downgradient	Yes	0.00259	NO	-5.956	N/A
MW371	Upgradient	Yes	0.0029	NO	-5.843	N/A
MW374	Upgradient	Yes	0.085	NO	-2.465	N/A
MW375	Sidegradient	Yes	0.00259	NO	-5.956	N/A
N/A - Rest	ults identified as N	Non-Detects	during lab	oratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,	5	0			
Statistics-Background Data	X= 5.125	S= 1.500	CV(1)= 0.293	K factor**= 2.523	TL(1)= 8.910	LL(1)= N/A
Statistics-Transformed Background	X= 1.595	S= 0.296	CV(2)= 0.186	K factor**= 2.523	TL(2)= 2.343	LL(2)= N/A

Historical Bac Upgradient W		
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	5	1.609
7/15/2002	10	2.303
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	5	1.609
1/7/2003	5	1.609
4/2/2003	5	1.609
7/9/2003	5	1.609
10/7/2003	5	1.609
1/6/2004	5	1.609
4/7/2004	5	1.609
7/14/2004	5	1.609

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	5	N/A	1.609	N/A
MW362	Downgradient	No	5	N/A	1.609	N/A
MW365	Downgradient	No	5	N/A	1.609	N/A
MW368	Downgradient	No	5	N/A	1.609	N/A
MW371	Upgradient	Yes	2.38	NO	0.867	N/A
MW374	Upgradient	Yes	2.64	NO	0.971	N/A
MW375	Sidegradient	Yes	2.47	NO	0.904	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.006	S = 0.010	CV(1)= 1.650	K factor**= 2.523	TL(1)= 0.030	LL(1)=N/A
Statistics-Transformed Background Data	X= -6.108	S = 1.239	CV(2) =-0.203	K factor**= 2.523	TL(2)= -2.983	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.00222	-6.110
1/7/2003	0.00201	-6.210
4/2/2003	0.00159	-6.444
7/9/2003	0.00242	-6.024
10/7/2003	0.001	-6.908
1/6/2004	0.001	-6.908
4/7/2004	0.001	-6.908
7/14/2004	0.001	-6.908

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	Yes	0.00054	9 N/A	-7.507	NO
MW365	Downgradient	No	0.001	N/A	-6.908	N/A
MW368	Downgradient	Yes	0.00063	7 N/A	-7.359	NO
MW371	Upgradient	Yes	0.00034	6 N/A	-7.969	NO
MW374	Upgradient	Yes	0.00031	6 N/A	-8.060	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A
N/A Dam	1. 1	T D ()	1 . 11		1 / 1.1 /	1 (

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

<u> </u>	V 0.022	5 0.000	CV(1) 0.000	V. 6	TI(1) = 0.070	TT(1) NT/A
Statistics-Background Data	X = 0.023	S = 0.022	CV(1)=0.980	K factor**= 2.523	1L(1) = 0.078	LL(1)=N/A
Statistics-Transformed Background	X = -4.349	S = 1.109	CV(2) =-0.255	K factor**= 2.523	TL(2)= -1.552	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.05	-2.996
1/7/2003	0.05	-2.996
4/2/2003	0.05	-2.996
7/9/2003	0.00794	-4.836
10/7/2003	0.005	-5.298
1/6/2004	0.005	-5.298
4/7/2004	0.005	-5.298
7/14/2004	0.005	-5.298

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00096	NO	-6.949	N/A
MW362	Downgradient	Yes	0.00074	1 NO	-7.208	N/A
MW365	Downgradient	Yes	0.00505	NO	-5.288	N/A
MW368	Downgradient	Yes	0.00107	NO	-6.840	N/A
MW371	Upgradient	Yes	0.00185	NO	-6.293	N/A
MW374	Upgradient	Yes	0.00074	6 NO	-7.201	N/A
MW375	Sidegradient	Yes	0.00103	NO	-6.878	N/A
N/A - Resu	lts identified as l	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 22.281
 S=
 78.889
 CV(1)=3.541
 K factor**= 2.523
 TL(1)= 221.319
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.642
 S=
 1.729
 CV(2)=0.475
 K factor**= 2.523
 TL(2)= 5.106
 LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	135	4.905
4/2/2003	-56	#Func!
7/9/2003	-68	#Func!
10/7/2003	-50	#Func!
1/6/2004	-85	#Func!
4/7/2004	6	1.792
7/14/2004	-38	#Func!
10/7/2004	1	0.000

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	361	N/A	5.889	YES
MW362	Downgradient	Yes	334	N/A	5.811	YES
MW365	Downgradient	Yes	395	N/A	5.979	YES
MW368	Downgradient	Yes	263	N/A	5.572	YES
MW371	Upgradient	Yes	378	N/A	5.935	YES
MW374	Upgradient	Yes	345	N/A	5.844	YES
MW375	Sidegradient	Yes	429	N/A	6.061	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW359
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW362
concentration with respect to historical background data.	MW365
	MW368
	MW371
	MW374
	MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison PCB, Total UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.224
 S= 0.207
 CV(1)=0.922
 K factor**= 2.523
 TL(1)= 0.746
 LL(1)=N/A

 Statistics-Transformed Background
 X= -1.647
 S= 0.440
 CV(2)=-0.267
 K factor**= 2.523
 TL(2)= -0.537
 LL(2)=N/A

 Data
 Data
 CV(2)=-0.267
 K factor**= 2.523
 TL(2)= -0.537
 LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.17	-1.772
10/6/2003	0.17	-1.772
7/13/2004	0.18	-1.715
7/25/2005	0.17	-1.772
4/5/2006	0.18	-1.715
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/9/2003	0.17	-1.772
10/7/2003	0.17	-1.772
7/14/2004	0.18	-1.715
7/26/2005	0.17	-1.772
4/6/2006	0.18	-1.715
7/10/2006	0.17	-1.772
10/12/2006	0.17	-1.772
1/8/2007	0.17	-1.772

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.106	N/A	-2.244	N/A
MW362	Downgradient	No	0.11	N/A	-2.207	N/A
MW365	Downgradient	Yes	0.155	NO	-1.864	N/A
MW368	Downgradient	No	0.195	N/A	-1.635	N/A
MW371	Upgradient	No	0.108	N/A	-2.226	N/A
MW374	Upgradient	No	0.0992	N/A	-2.311	N/A
MW375	Sidegradient	No	0.104	N/A	-2.263	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.159	S = 0.224	CV(1)= 1.409	K factor**= 2.523	TL(1)= 0.726	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.134	S = 0.579	CV(2) =-0.272	K factor**= 2.523	TL(2)= -0.672	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/9/2003	0.13	-2.040
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/25/2005	0.09	-2.408
4/5/2006	0.1	-2.303
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/9/2003	0.13	-2.040
10/7/2003	0.09	-2.408
7/14/2004	0.1	-2.303
7/26/2005	0.1	-2.303
4/6/2006	0.1	-2.303
7/10/2006	0.1	-2.303
10/12/2006	0.1	-2.303
1/8/2007	0.1	-2.303

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.106	N/A	-2.244	N/A
MW362	Downgradient	No	0.11	N/A	-2.207	N/A
MW365	Downgradient	Yes	0.155	N/A	-1.864	NO
MW368	Downgradient	No	0.195	N/A	-1.635	N/A
MW371	Upgradient	No	0.108	N/A	-2.226	N/A
MW374	Upgradient	No	0.0992	N/A	-2.311	N/A
MW375	Sidegradient	No	0.104	N/A	-2.263	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.619	S= 0.295	CV(1)= 0.045	K factor**= 2.904	TL(1)= 7.48	LL(1)=5.76
Statistics-Transformed Background Data	X= 1.889	S= 0.046	CV(2)= 0.024	K factor**= 2.904	TL(2)= 2.02	LL(2)=1.75

Historical Bac Upgradient W		
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	5.75	1.749
10/8/2002	6.6	1.887
1/7/2003	6.82	1.920
4/2/2003	6.86	1.926
7/9/2003	6.7	1.902
10/7/2003	6.6	1.887
1/6/2004	6.9	1.932
4/7/2004	6.58	1.884

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW359	Downgradient	Yes	6	NO	1.792	N/A
MW362	Downgradient	Yes	6.99	NO	1.944	N/A
MW365	Downgradient	Yes	6.18	NO	1.821	N/A
MW368	Downgradient	Yes	6.42	NO	1.859	N/A
MW371	Upgradient	Yes	6.35	NO	1.848	N/A
MW374	Upgradient	Yes	6.7	NO	1.902	N/A
MW375	Sidegradient	Yes	6.27	NO	1.836	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.262	S = 0.907	CV(1)= 0.718	K factor**= 2.523	TL(1)= 3.549	LL(1)=N/A
Statistics-Transformed Background	X = -0.023	S = 0.752	CV(2) =-32.218	K factor**= 2.523	TL(2) = 1.874	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	2	0.693					
4/22/2002	2	0.693					
7/15/2002	2	0.693					
10/8/2002	0.408	-0.896					
1/8/2003	0.384	-0.957					
4/3/2003	0.368	-1.000					
7/9/2003	0.587	-0.533					
10/6/2003	0.382	-0.962					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	3.04	1.112					
1/7/2003	2.83	1.040					
4/2/2003	2	0.693					
7/9/2003	1.09	0.086					
10/7/2003	0.802	-0.221					
1/6/2004	0.897	-0.109					
4/7/2004	0.689	-0.373					
7/14/2004	0.716	-0.334					

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.0903	NO	-2.405	N/A	
MW362	Downgradient	Yes	0.273	NO	-1.298	N/A	
MW365	Downgradient	Yes	0.219	NO	-1.519	N/A	
MW368	Downgradient	Yes	0.377	NO	-0.976	N/A	
MW371	Upgradient	Yes	0.418	NO	-0.872	N/A	
MW374	Upgradient	Yes	0.402	NO	-0.911	N/A	
MW375	Sidegradient	Yes	0.281	NO	-1.269	N/A	
NI/A D	1. 11	T D			1. 1.1.	1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.560
 S= 13.483
 CV(1)=3.787
 K factor**= 2.523
 TL(1)= 37.577
 LL(1)=N/A

 Statistics-Transformed Background
 X= -1.189
 S= 1.742
 CV(2)= -1.465
 K factor**= 2.523
 TL(2)= 3.991
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 7/15/2002 3.991 54.1 10/8/2002 0.0937 -2.368-0.973 1/8/2003 0.378 10/6/2003 0.179 -1.7201/7/2004 0.898 -0.1084/6/2004 0.108 -2.2267/13/2004 -0.149 #Func! 0.154 -1.871 10/7/2004 Well Number: MW374 Date Collected Result LN(Result) 10/8/2002 0.298 -1.211 1/7/2003 -0.844 #Func! 0.806 -0.216 10/7/2003 1/6/2004 0.0306 -3.487 4/7/2004 0.35 -1.050 -1.298 7/14/2004 0.273 10/7/2004 0.205 -1.585 0.0799 -2.527 1/11/2005

Data

Dry/Par	tially Dry Wells
Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.305	N/A	-1.187	N/A
MW362	Downgradient	No	0.21	N/A	-1.561	N/A
MW365	Downgradient	No	-0.00618	8 N/A	#Error	N/A
MW368	Downgradient	Yes	1.17	N/A	0.157	NO
MW371	Upgradient	No	0.16	N/A	-1.833	N/A
MW374	Upgradient	No	0.217	N/A	-1.528	N/A
MW375	Sidegradient	No	0.184	N/A	-1.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 183.063 S= 73.222
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 367.800
 LL(1)=N/A

 Statistics-Transformed Background
 X= 5.146
 S= 0.356
 CV(2)=0.069
 K factor**= 2.523
 TL(2)= 6.044
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW371							
Date Collected	Result	LN(Result)						
3/18/2002	129	4.860						
4/22/2002	131	4.875						
7/15/2002	127	4.844						
10/8/2002	123	4.812						
1/8/2003	128	4.852						
4/3/2003	144	4.970						
7/9/2003	126	4.836						
10/6/2003	120	4.787						
Well Number:	MW374							
Date Collected	Result	LN(Result)						
10/8/2002	336	5.817						
1/7/2003	329	5.796						
4/2/2003	287	5.659						
7/9/2003	181	5.198						
10/7/2003	182	5.204						
1/6/2004	206	5.328						
4/7/2004	182	5.204						
7/14/2004	198	5.288						

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	34.4	NO	3.538	N/A
MW362	Downgradient	t Yes	136	NO	4.913	N/A
MW365	Downgradient	t Yes	52.1	NO	3.953	N/A
MW368	Downgradient	t Yes	43.3	NO	3.768	N/A
MW371	Upgradient	Yes	64.6	NO	4.168	N/A
MW374	Upgradient	Yes	119	NO	4.779	N/A
MW375	Sidegradient	Yes	51.3	NO	3.938	N/A
NI/A D	1. 1		1 . 11	1 .	1 . 1.1	1 (

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.469	S = 3.153	CV(1)= 0.487	K factor**= 2.523	TL(1)= 14.423	LL(1)=N/A
Statistics-Transformed Background	X= 1.794	S = 0.357	CV(2)= 0.199	K factor**= 2.523	TL(2)= 2.694	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	16.3	2.791		
4/22/2002	8.6	2.152		
7/15/2002	6.7	1.902		
10/8/2002	5	1.609		
1/8/2003	5	1.609		
4/3/2003	5	1.609		
7/9/2003	5	1.609		
10/6/2003	5	1.609		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	5	1.609		
1/7/2003	5	1.609		
4/2/2003	5	1.609		
7/9/2003	5.6	1.723		
10/7/2003	5	1.609		
1/6/2004	5	1.609		
4/7/2004	11.3	2.425		
7/14/2004	5	1.609		

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	39.6	YES	3.679	N/A
MW362	Downgradient	Yes	31.5	YES	3.450	N/A
MW365	Downgradient	Yes	56.6	YES	4.036	N/A
MW368	Downgradient	Yes	98.6	YES	4.591	N/A
MW371	Upgradient	Yes	28.7	YES	3.357	N/A
MW374	Upgradient	Yes	16.7	YES	2.815	N/A
MW375	Sidegradient	Yes	23.7	YES	3.165	N/A
N/A - Rest	ults identified as l	Non-Detects	during lal	horatory analysis or	· data validatio	on and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.	MW359 MW362 MW365
	MW368 MW371 MW374 MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 17.631
 S= 24.314
 CV(1)=1.379
 K factor**= 2.523
 TL(1)= 78.977
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.318
 S= 0.979
 CV(2)=0.422
 K factor**= 2.523
 TL(2)= 4.788
 LL(2)=N/A

·						
Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	11.1	2.407				
4/22/2002	7	1.946				
7/15/2002	4.1	1.411				
10/8/2002	6	1.792				
1/8/2003	5.3	1.668				
4/3/2003	5.3	1.668				
7/9/2003	2.9	1.065				
10/6/2003	3.2	1.163				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	90	4.500				
1/7/2003	64	4.159				
4/2/2003	25	3.219				
7/9/2003	16	2.773				
10/7/2003	13	2.565				
1/6/2004	10	2.303				
4/7/2004	7.2	1.974				
7/14/2004	12	2.485				

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	1.12	N/A	0.113	NO
MW362	Downgradient	t Yes	2.38	N/A	0.867	NO
MW365	Downgradient	t Yes	1.62	N/A	0.482	NO
MW368	Downgradient	t Yes	1.64	N/A	0.495	NO
MW371	Upgradient	Yes	2.27	N/A	0.820	NO
MW374	Upgradient	Yes	2.4	N/A	0.875	NO
MW375	Sidegradient	Yes	0.839	N/A	-0.176	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 214.094 S= 231.089 CV(1)=1.079
 K factor**= 2.523
 TL(1)= 797.131
 LL(1)=N/A

Statistics-Transformed Background X=4.867 S= 1.065 CV(2)=0.219 Data

Historical Background Data from Upgradient Wells with Transformed Res			
Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	50	3.912	
4/22/2002	105	4.654	
7/15/2002	70	4.248	
10/8/2002	52	3.951	
1/8/2003	20.2	3.006	
4/3/2003	104	4.644	
7/9/2003	34.2	3.532	
10/6/2003	46.1	3.831	
Well Number:	MW374		
Date Collected	Result	LN(Result)	
10/8/2002	903	6.806	
1/7/2003	539	6.290	
4/2/2003	295	5.687	
7/9/2003	272	5.606	
10/7/2003	197	5.283	
1/6/2004	330	5.799	
4/7/2004	183	5.209	
7/14/2004	225	5.416	

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and

test well results were calculated utilizing TL(2) for comparison.

TL(2)= 7.554

LL(2)=N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	10	N/A	2.303	N/A
MW362	Downgradient	Yes	16.1	N/A	2.779	NO
MW365	Downgradient	Yes	22.5	N/A	3.114	NO
MW368	Downgradient	Yes	10.1	N/A	2.313	NO
MW371	Upgradient	Yes	4.34	N/A	1.468	NO
MW374	Upgradient	Yes	21.1	N/A	3.049	NO
MW375	Sidegradient	Yes	6.84	N/A	1.923	NO

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.055	S = 0.072	CV(1)= 1.319	K factor**= 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.438	S = 0.912	CV(2) =-0.265	K factor**= 2.523	TL(2)= -1.138	LL(2)= N/A

kground Da ells with Tra	ta from ansformed Resul
MW371	
Result	LN(Result)
0.025	-3.689
0.025	-3.689
0.025	-3.689
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
MW374	
Result	LN(Result)
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
	MW371 Result 0.025 0.025 0.025 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.2 0.2 0.2 0.2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Dry/Par	tially Dry Wells	
Well No.	Gradient	
MW376	Sidegradient	
MW377	Sidegradient	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.02	N/A	-3.912	N/A
MW362	Downgradient	No	0.02	N/A	-3.912	N/A
MW365	Downgradient	No	0.02	N/A	-3.912	N/A
MW368	Downgradient	Yes	0.00375	N/A	-5.586	NO
MW371	Upgradient	Yes	0.00491	N/A	-5.316	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A
NI/A D	1. 1		1 . 11		1 . 1.1	1 (

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.625	S= 0.774	CV(1)= 1.239	K factor**= 2.523	TL(1)= 2.578	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.973	S = 0.935	CV(2) =-0.961	K factor**= 2.523	TL(2)= 1.386	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tra	ta from ansformed Result
Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133

0.2

0.2

0.2

0.2

0.689

MW372

Result

2.61

0.2

1.14

0.862

2.32

0.2

0.2

0.2

10/8/2002

1/8/2003 4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.05	N/A	-2.996	N/A
MW360	Downgradient	Yes	0.0367	N/A	-3.305	NO
MW363	Downgradient	No	0.05	N/A	-2.996	N/A
MW366	Downgradient	No	0.05	N/A	-2.996	N/A
MW369	Upgradient	Yes	0.0341	N/A	-3.378	NO
MW372	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-1.609

-1.609

-1.609

-0.373

0.959

-1.609

0.131

-0.149

0.842

-1.609

-1.609

-1.609

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.985	S = 0.825	CV(1)= 0.838	K factor**= 2.523	TL(1)= 3.067	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.430	S = 0.990	CV(2) =-2.302	K factor**= 2.523	TL(2)= 2.068	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.2	-1.609

Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	2	0.693
4/23/2002	2	0.693
7/16/2002	2	0.693
10/8/2002	0.492	-0.709
1/7/2003	0.492	-0.709
4/2/2003	0.6	-0.511
7/9/2003	0.57	-0.562
10/7/2003	0.604	-0.504

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.374	NO	-0.983	N/A
MW360	Downgradient	Yes	0.0401	NO	-3.216	N/A
MW363	Downgradient	Yes	0.0234	NO	-3.755	N/A
MW366	Downgradient	Yes	0.0623	NO	-2.776	N/A
MW369	Upgradient	Yes	0.0233	NO	-3.759	N/A
MW372	Upgradient	Yes	1.22	NO	0.199	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)=N/A

	kground Data from fells with Transformed Result
Well Number	MW369

wen number.	101 00 303	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/8/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.000
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.355	NO	-1.036	N/A
MW360	Downgradient	Yes	0.152	NO	-1.884	N/A
MW363	Downgradient	No	0.2	N/A	-1.609	N/A
MW366	Downgradient	Yes	0.513	NO	-0.667	N/A
MW369	Upgradient	Yes	0.453	NO	-0.792	N/A
MW372	Upgradient	Yes	0.51	NO	-0.673	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 32.763	S= 9.391	CV(1)= 0.287	K factor**= 2.523	TL(1)= 56.456	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.449	S = 0.299	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.202	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			
Date Collected	Result	LN(Result)		
3/18/2002	29.5	3.384		
4/22/2002	29.8	3.395		
7/15/2002	25.3	3.231		
10/8/2002	21.9	3.086		
1/8/2003	20.9	3.040		
4/3/2003	22.2	3.100		
7/8/2003	22.9	3.131		
10/6/2003	21.7	3.077		
Well Number:	MW372			
Date Collected	Result	LN(Result)		
3/19/2002	41.5	3.726		
4/23/2002	43.6	3.775		
7/16/2002	40.4	3.699		
10/8/2002	38.8	3.658		
1/7/2003	41.1	3.716		

42.9

35.1

46.6

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	24.6	NO	3.203	N/A
MW360	Downgradient	Yes	18.5	NO	2.918	N/A
MW363	Downgradient	Yes	24.9	NO	3.215	N/A
MW366	Downgradient	Yes	29.7	NO	3.391	N/A
MW369	Upgradient	Yes	15.7	NO	2.754	N/A
MW372	Upgradient	Yes	62.6	YES	4.137	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.759

3.558

3.842

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.938 S = 3.750	CV(1)= 0.104	K factor**= 2.523	TL(1)= 45.399	LL(1)=N/A
Statistics-Transformed Background Data	X =3.578 S = 0.089	CV(2)= 0.025	K factor**= 2.523	TL(2)= 3.803	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	35	3.555			
4/22/2002	35	3.555			
7/15/2002	35	3.555			
10/8/2002	50	3.912			
1/8/2003	35	3.555			
4/3/2003	35	3.555			
7/8/2003	35	3.555			
10/6/2003	35	3.555			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
3/19/2002	35	3.555			
4/23/2002	35	3.555			
7/16/2002	35	3.555			
10/8/2002	35	3.555			
1/7/2003	35	3.555			

35

35

35

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	12.8	NO	2.549	N/A
MW360	Downgradient	No	20	N/A	2.996	N/A
MW363	Downgradient	Yes	10.2	NO	2.322	N/A
MW366	Downgradient	Yes	20.2	NO	3.006	N/A
MW369	Upgradient	No	20	N/A	2.996	N/A
MW372	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

3.555

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =44.119 S = 4.554	CV(1)= 0.103	K factor**= 2.523	TL(1)= 55.607	LL(1)=N/A
Statistics-Transformed Background Data	X = 3.782 S = 0.099	CV(2)= 0.026	K factor**= 2.523	TL(2)= 4.033	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
7/15/2002	48.3	3.877			
10/8/2002	47.7	3.865			
1/8/2003	45.7	3.822			
4/3/2003	47.4	3.859			
7/8/2003	55.9	4.024			
10/6/2003	47.4	3.859			
1/7/2004	45.5	3.818			
4/7/2004	43.4	3.770			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
7/16/2002	39.8	3.684			
10/8/2002	41	3.714			
1/7/2003	39.4	3.674			
4/2/2003	39.2	3.669			
7/9/2003	39.8	3.684			

40

42

43.4

10/7/2003

1/5/2004

4/5/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	30.4	NO	3.414	N/A
MW360	Downgradient	Yes	7.95	NO	2.073	N/A
MW363	Downgradient	Yes	23.9	NO	3.174	N/A
MW366	Downgradient	Yes	41.2	NO	3.718	N/A
MW369	Upgradient	Yes	29	NO	3.367	N/A
MW372	Upgradient	Yes	38.6	NO	3.653	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.689

3.770

3.738

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.021	CV(1)= 0.845	K factor**= 2.523	TL(1)= 0.077	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.090	S = 1.006	CV(2) =-0.246	K factor**= 2.523	TL(2)= -1.553	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.025	-3.689				
7/15/2002	0.025	-3.689				
10/8/2002	0.00938	-4.669				

0.00548

0.00587

0.0541

0.0689

MW372

Result

0.025

0.025

0.025

0.00158

0.0147

0.0116

0.0653

0.00788

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.001	N/A	-6.908	N/A	
MW360	Downgradient	Yes	0.00080	6 NO	-7.123	N/A	
MW363	Downgradient	Yes	0.000809	9 NO	-7.120	N/A	
MW366	Downgradient	No	0.001	N/A	-6.908	N/A	
MW369	Upgradient	Yes	0.00423	NO	-5.466	N/A	
MW372	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-5.207

-5.138

-2.917

-2.675

-3.689

-3.689

-3.689

-6.450

-4.220

-4.457

-2.729

-4.843

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =482.856 S = 57.603	CV(1)= 0.119	K factor**= 2.523	TL(1)= 628.189 LL(1)=N/A	1
Statistics-Transformed Background Data	X = 6.173 S = 0.123	CV(2) =0.020	K factor**= 2.523	TL(2)= 6.484 LL(2)=N/A	1

	kground Data from fells with Transformed Result
Well Number	MW369

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 508 501 507 495 508.7 515	6.230 6.217 6.229 6.205 6.232 6.244

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	399	NO	5.989	N/A	
MW360	Downgradient	Yes	379	NO	5.938	N/A	
MW363	Downgradient	Yes	406	NO	6.006	N/A	
MW366	Downgradient	Yes	474	NO	6.161	N/A	
MW369	Upgradient	Yes	371	NO	5.916	N/A	
MW372	Upgradient	Yes	715	YES	6.572	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.010	CV(1)= 0.400	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.742	S = 0.307	CV(2) =-0.082	K factor**= 2.523	TL(2)= -2.967	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.025	-3.689				
7/15/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				
1/8/2003	0.02	-3.912				
4/3/2003	0.02	-3.912				
7/8/2003	0.02	-3.912				
10/6/2003	0.02	-3.912				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	0.025	-3.689				
4/23/2002	0.025	-3.689				
7/16/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				

0.02

0.02

0.02

0.02

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.00421	NO	-5.470	N/A	
MW360	Downgradient	Yes	0.00115	NO	-6.768	N/A	
MW363	Downgradient	No	0.002	N/A	-6.215	N/A	
MW366	Downgradient	No	0.002	N/A	-6.215	N/A	
MW369	Upgradient	Yes	0.00117	NO	-6.751	N/A	
MW372	Upgradient	No	0.002	N/A	-6.215	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912 -3.912

-3.912 -3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.781	S= 1.351	CV(1)= 0.759	K factor**= 2.523	TL(1)= 5.190	LL(1)= N/A
Statistics-Transformed Background	X= 0.228	S= 1.065	CV(2) =4.665	K factor**= 2.523	TL(2)= 2.915	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
MW369							
Result	LN(Result)						
5.41	1.688						
1.57	0.451						
0.8	-0.223						
1.09	0.086						
2.69	0.990						
2.04	0.713						
1.19	0.174						
1.78	0.577						
MW372							
Result	LN(Result)						
3.89	1.358						
0.05	-2.996						
	MW369 Result 5.41 1.57 0.8 1.09 2.69 2.04 1.19 1.78 MW372 Result 3.89						

1.33

2.66

0.4

0.91

1.42

1.26

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	6	YES	1.792	N/A	
MW360	Downgradient	Yes	2.54	NO	0.932	N/A	
MW363	Downgradient	Yes	2.22	NO	0.798	N/A	
MW366	Downgradient	Yes	4.19	NO	1.433	N/A	
MW369	Upgradient	Yes	4.15	NO	1.423	N/A	
MW372	Upgradient	Yes	3.1	NO	1.131	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.285

0.978

-0.916

-0.094

0.351

0.231

Wells with Exceedances MW357

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =285.188 S = 44.908	CV(1)= 0.157	K factor**= 2.523	TL(1)= 398.489	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.640 S = 0.175	CV(2)= 0.031	K factor**= 2.523	TL(2)= 6.080	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	173	5.153			
4/22/2002	246	5.505			
7/15/2002	232	5.447			
10/8/2002	275	5.617			
1/8/2003	269	5.595			
4/3/2003	250	5.521			
7/8/2003	295	5.687			
10/6/2003	276	5.620			
Well Number:	MW372				

wen Number:	IVI W 5 / 2	
Date Collected	Result	LN(Result)
3/19/2002	295	5.687
4/23/2002	322	5.775
7/16/2002	329	5.796
10/8/2002	290	5.670
1/7/2003	316	5.756
4/2/2003	311	5.740
7/9/2003	347	5.849
10/7/2003	337	5.820

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	210	NO	5.347	N/A	
MW360	Downgradient	Yes	206	NO	5.328	N/A	
MW363	Downgradient	Yes	229	NO	5.434	N/A	
MW366	Downgradient	Yes	253	NO	5.533	N/A	
MW369	Upgradient	Yes	196	NO	5.278	N/A	
MW372	Upgradient	Yes	461	YES	6.133	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.385	S= 6.991	CV(1)= 0.947	K factor**= 2.523	TL(1)= 25.024	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.358	S = 1.323	CV(2)= 0.974	K factor**= 2.523	TL(2)= 4.697	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected 3/18/2002	Result 0.656	LN(Result) -0.422			

-0.364

1.960

3.068

2.918

2.701

2.425

2.701

1.783

-0.233

0.577

-0.254

1.267

1.613

2.303

-0.311

LN(Result)

0.695

7.1

21.5

18.5

14.9

11.3

14.9

MW372

Result

5.95

0.792

1.78

0.776

3.55

5.02

0.733

10

4/22/2002

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.137	NO	-1.988	N/A
MW360	Downgradient	Yes	0.0573	NO	-2.859	N/A
MW363	Downgradient	Yes	0.158	NO	-1.845	N/A
MW366	Downgradient	No	0.1	N/A	-2.303	N/A
MW369	Upgradient	Yes	0.0641	NO	-2.747	N/A
MW372	Upgradient	Yes	0.0364	NO	-3.313	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.864 S = 3.505	CV(1)= 0.272	K factor**= 2.523	TL(1)= 21.707	LL(1)=N/A
Statistics-Transformed Background	X =2.517 S = 0.290	CV(2)= 0.115	K factor**= 2.523	TL(2)= 3.248	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	11.4	2.434				
4/22/2002	12	2.485				
7/15/2002	10	2.303				
10/8/2002	8.62	2.154				
1/8/2003	7.89	2.066				
4/3/2003	7.97	2.076				
7/8/2003	10.3	2.332				
10/6/2003	9.14	2.213				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	15.7	2.754				
4/23/2002	16.6	2.809				
7/16/2002	15.4	2.734				
10/8/2002	15.8	2.760				
1/7/2003	15.8	2.760				

16.4

15.2

17.6

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	10.7	NO	2.370	N/A	
MW360	Downgradient	Yes	8.05	NO	2.086	N/A	
MW363	Downgradient	Yes	10.2	NO	2.322	N/A	
MW366	Downgradient	Yes	13.4	NO	2.595	N/A	
MW369	Upgradient	Yes	6.84	NO	1.923	N/A	
MW372	Upgradient	Yes	22.7	YES	3.122	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.797

2.721

2.868

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.413	S= 0.274	CV(1)= 0.664	K factor**= 2.523	TL(1)= 1.105	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.226	S= 1.008	CV(2) =-0.822	K factor**= 2.523	TL(2)= 1.317	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	0.034	-3.381				
4/22/2002	0.062	-2.781				
7/15/2002	0.436	-0.830				
10/8/2002	0.867	-0.143				
1/8/2003	0.828	-0.189				
4/3/2003	0.672	-0.397				
7/8/2003	0.321	-1.136				
10/6/2003	0.714	-0.337				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	0.205	-1.585				
4/23/2002	0.345	-1.064				
7/16/2002	0.21	-1.561				

0.0539

0.537

0.415

0.654

0.254

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.00445	NO	-5.415	N/A	
MW360	Downgradient	Yes	0.0106	NO	-4.547	N/A	
MW363	Downgradient	Yes	0.131	NO	-2.033	N/A	
MW366	Downgradient	Yes	0.00395	NO	-5.534	N/A	
MW369	Upgradient	Yes	0.00372	NO	-5.594	N/A	
MW372	Upgradient	No	0.005	N/A	-5.298	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.921

-0.622

-0.879

-0.425 -1.370

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.438	S= 1.931	CV(1)= 0.355	K factor**= 2.523	TL(1)= 10.310	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.639	S= 0.345	CV(2)= 0.211	K factor**= 2.523	TL(2)= 2.510	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
W-11 March	MW2(0

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	5	1.609
7/15/2002	10	2.303
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/8/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 3/19/2002	Result 5	1.609
Date Collected 3/19/2002 4/23/2002	Result 5 5	1.609 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5 5 10	1.609 1.609 2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 5 10 5	1.609 1.609 2.303 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 5 10 5 5	1.609 1.609 2.303 1.609 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5 5 10 5 5 5	1.609 1.609 2.303 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	5	N/A	1.609	N/A
MW360	Downgradient	No	5	N/A	1.609	N/A
MW363	Downgradient	No	5	N/A	1.609	N/A
MW366	Downgradient	No	5	N/A	1.609	N/A
MW369	Upgradient	Yes	2.67	NO	0.982	N/A
MW372	Upgradient	Yes	2.4	NO	0.875	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.010	S= 0.012	CV(1)= 1.199	K factor**= 2.523	TL(1)= 0.040	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.698	S= 1.607	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.643	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

wen rumber.	11110307	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) -3.689
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	No	0.001	N/A	-6.908	N/A
MW363	Downgradient	Yes	0.00021	N/A	-8.468	NO
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.00026	4 N/A	-8.240	NO
MW372	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.021	CV(1)= 0.910	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.246	S = 1.075	CV(2) =-0.253	K factor**= 2.523	TL(2)= -1.535	LL(2)= N/A

Historical Background Data	from
Upgradient Wells with Tran	sformed Result
*0	

1 1112 10

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00067	NO	-7.308	N/A
MW360	Downgradient	Yes	0.00076	8 NO	-7.172	N/A
MW363	Downgradient	Yes	0.00998	NO	-4.607	N/A
MW366	Downgradient	Yes	0.00094	7 NO	-6.962	N/A
MW369	Upgradient	Yes	0.00288	NO	-5.850	N/A
MW372	Upgradient	Yes	0.0011	NO	-6.812	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 74.563	S= 94.243	CV(1)= 1.264	K factor**= 2.523	TL(1)= 312.337	LL(1)=N/A
Statistics-Transformed Background Data	X= 4.554	S = 0.784	CV(2)= 0.172	K factor**= 2.523	TL(2)= 5.371	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number	MW369			

wen number:	WI W 509	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.347
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 210 65 215 185 45 65	5.347 4.174 5.371 5.220 3.807 4.174

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	434	N/A	6.073	YES
MW360	Downgradient	Yes	355	N/A	5.872	YES
MW363	Downgradient	Yes	403	N/A	5.999	YES
MW366	Downgradient	Yes	399	N/A	5.989	YES
MW369	Upgradient	Yes	420	N/A	6.040	YES
MW372	Upgradient	Yes	402	N/A	5.996	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW357
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW360
concentration with respect to historical background data.	MW363
	MW366
	MW369
	MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.274	S= 0.194	CV(1)= 0.031	K factor**= 2.904	TL(1)= 6.84	LL(1)= 5.71
Statistics-Transformed Background Data	X= 1.836	S= 0.031	CV(2)= 0.017	K factor**= 2.904	TL(2)= 1.93	LL(2)=1.75

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

Date Collected	Result	LN(Result)
3/18/2002	6.1	1.808
4/22/2002	6.1	1.808
7/15/2002	6.1	1.808
10/8/2002	6.5	1.872
1/8/2003	6.5	1.872
4/3/2003	6.6	1.887
7/8/2003	6.5	1.872
10/6/2003	6.5	1.872
X7 11 X7 1	1011270	
Well Number:	MW372	
Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.808
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 6.1	1.808
Date Collected 3/19/2002 4/23/2002	Result 6.1 6.12	1.808 1.812
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.1 6.12 6.1	1.808 1.812 1.808
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.1 6.12 6.1 6.06	1.808 1.812 1.808 1.802
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.1 6.12 6.1 6.06 6.26	1.808 1.812 1.808 1.802 1.834
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6.1 6.12 6.1 6.06 6.26 6.15	1.808 1.812 1.808 1.802 1.834 1.816

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	6.11	NO	1.810	N/A
MW360	Downgradien	t Yes	6.19	NO	1.823	N/A
MW363	Downgradien	t Yes	6.12	NO	1.812	N/A
MW366	Downgradien	t Yes	6	NO	1.792	N/A
MW369	Upgradient	Yes	5.96	NO	1.785	N/A
MW372	Upgradient	Yes	6.09	NO	1.807	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.663	S= 0.488	CV(1)= 0.293	K factor**= 2.523	TL(1)= 2.895	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.456	S = 0.362	CV(2)= 0.794	K factor**= 2.523	TL(2)= 1.368	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	2	0.693						
4/22/2002	2.21	0.793						
7/15/2002	2	0.693						
10/8/2002	0.966	-0.035						
1/8/2003	0.727	-0.319						
4/3/2003	0.8	-0.223						
7/8/2003	1.62	0.482						
10/6/2003	1.14	0.131						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	2.04	0.713						
4/23/2002	2.03	0.708						
7/16/2002	2	0.693						
10/8/2002	1.54	0.432						
1/7/2003	1.88	0.631						
4/2/2003	2.09	0.737						
7/9/2003	1.78	0.577						

1.79

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	1.57	NO	0.451	N/A		
MW360	Downgradient	Yes	0.671	NO	-0.399	N/A		
MW363	Downgradient	Yes	1.89	NO	0.637	N/A		
MW366	Downgradient	Yes	1.85	NO	0.615	N/A		
MW369	Upgradient	Yes	0.57	NO	-0.562	N/A		
MW372	Upgradient	Yes	2.12	NO	0.751	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.582

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 45.100	S= 11.875	CV(1)= 0.263	K factor**= 2.523	TL(1)= 75.061	LL(1)=N/A
Statistics-Transformed Background	X= 3.780	S= 0.242	CV(2)= 0.064	K factor**= 2.523	TL(2)= 4.390	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	35.7	3.575						
4/22/2002	37.6	3.627						
7/15/2002	42.4	3.747						
10/8/2002	66.9	4.203						
1/8/2003	67.9	4.218						
4/3/2003	61.8	4.124						
7/8/2003	45.6	3.820						
10/6/2003	59.1	4.079						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	37.2	3.616						
4/23/2002	38.6	3.653						
7/16/2002	35.6	3.572						
10/8/2002	37.5	3.624						
1/7/2003	34.1	3.529						
4/2/2003	34.4	3.538						
7/9/2003	44.1	3.786						
10/7/2003	43.1	3.764						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	41.4	NO	3.723	N/A	
MW360	Downgradient	Yes	56.7	NO	4.038	N/A	
MW363	Downgradient	Yes	40	NO	3.689	N/A	
MW366	Downgradient	Yes	45.6	NO	3.820	N/A	
MW369	Upgradient	Yes	49.2	NO	3.896	N/A	
MW372	Upgradient	Yes	62.4	NO	4.134	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 45.031	S= 33.919	CV(1)= 0.753	K factor**= 2.523	TL(1)= 130.609	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.420	S = 0.981	CV(2)= 0.287	K factor**= 2.523	TL(2)= 5.894	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	15.5	2.741					
4/22/2002	15.8	2.760					
7/15/2002	13.8	2.625					
10/8/2002	6.9	1.932					
1/8/2003	10.5	2.351					
4/3/2003	10.5	2.351					
7/8/2003	10.9	2.389					
10/6/2003	16.3	2.791					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	71.7	4.272					
4/23/2002	74.7	4.313					
7/16/2002	74.1	4.305					
10/8/2002	70.5	4.256					
1/7/2003	75.8	4.328					

81.8

83.6

88.1

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	39.4	NO	3.674	N/A
MW360	Downgradient	Yes	12.2	NO	2.501	N/A
MW363	Downgradient	Yes	30.9	NO	3.431	N/A
MW366	Downgradient	Yes	45.6	NO	3.820	N/A
MW369	Upgradient	Yes	8.16	NO	2.099	N/A
MW372	Upgradient	Yes	145	YES	4.977	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.404

4.426

4.478

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 20.821	S= 18.044	CV(1)= 0.867	K factor**= 2.523	TL(1)= 66.344	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.770	S= 1.150	CV(2) =0.415	K factor**= 2.523	TL(2)= 3.972	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	41.7	3.731						
4/22/2002	53.1	3.972						
7/15/2002	18.1	2.896						
10/8/2002	16.4	2.797						
1/8/2003	3.49	1.250						
4/3/2003	9.34	2.234						
7/8/2003	17.5	2.862						
10/6/2003	17	2.833						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	44.8	3.802						
4/23/2002	0.802	-0.221						
7/16/2002	19.8	2.986						
10/8/2002	46.1	3.831						
1/7/2003	-0.973	#Func!						
4/2/2003	9.07	2.205						
7/9/2003	0	#Func!						
10/7/2003	36.9	3.608						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	32	NO	3.466	N/A
MW360	Downgradient	No	3.05	N/A	1.115	N/A
MW363	Downgradient	No	3.43	N/A	1.233	N/A
MW366	Downgradient	Yes	62.1	NO	4.129	N/A
MW369	Upgradient	Yes	50.8	NO	3.928	N/A
MW372	Upgradient	Yes	74.2	YES	4.307	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

1			0			
Statistics-Background Data	X= 3.513	S= 4.307	CV(1)= 1.226	K factor**= 2.523	TL(1)= 14.378	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.851	S = 0.828	CV(2)= 0.973	K factor**= 2.523	TL(2)= 2.940	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	1.7	0.531				
4/22/2002	1.6	0.470				
7/15/2002	3.1	1.131				
10/8/2002	17.7	2.874				
1/8/2003	9	2.197				
4/3/2003	4	1.386				
7/8/2003	4.9	1.589				
10/6/2003	2.4	0.875				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	1	0.000				
4/23/2002	1.2	0.182				
7/16/2002	1	0.000				
10/8/2002	1	0.000				
1/7/2003	1.6	0.470				
4/2/2003	1.5	0.405				
7/9/2003	3	1.099				

1.5

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.918	N/A	-0.086	NO
MW360	Downgradient	Yes	1.56	N/A	0.445	NO
MW363	Downgradient	Yes	1.18	N/A	0.166	NO
MW366	Downgradient	Yes	0.983	N/A	-0.017	NO
MW369	Upgradient	Yes	1.12	N/A	0.113	NO
MW372	Upgradient	Yes	1.31	N/A	0.270	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.405

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 67.963	S= 64.316	CV(1)= 0.946	K factor**= 2.523	TL(1)= 230.231	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.772	S = 1.023	CV(2)= 0.271	K factor**= 2.523	TL(2)= 6.353	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	50	3.912				
4/22/2002	50	3.912				
7/15/2002	81	4.394				
10/8/2002	202	5.308				
1/8/2003	177	5.176				

93.1

17.5

37.5

MW372

Result

184

50

50

50

10

10

12.6

12.7

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	6.64	NO	1.893	N/A
MW360	Downgradient	Yes	3.48	NO	1.247	N/A
MW363	Downgradient	Yes	19	NO	2.944	N/A
MW366	Downgradient	Yes	8.48	NO	2.138	N/A
MW369	Upgradient	Yes	17.1	NO	2.839	N/A
MW372	Upgradient	Yes	6.26	NO	1.834	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.534

2.862

3.624

5.215

3.912

3.912

3.912

2.303

2.542

2.303

2.534

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.116	S= 0.173	CV(1)= 1.490	K factor**= 2.523	TL(1)= 0.552	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.729	S= 1.014	CV(2) =-0.371	K factor**= 2.523	TL(2)= -0.172	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	M	W369				
D <i>a</i> 11 <i>b</i> 1	-	1	T 3 T/D	1.5		

Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -0.322
Date Collected	Result	
Date Collected 3/19/2002	Result 0.725	-0.322
Date Collected 3/19/2002 4/23/2002	Result 0.725 0.1	-0.322 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.725 0.1 0.1	-0.322 -2.303 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.725 0.1 0.1 0.025	-0.322 -2.303 -2.303 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.725 0.1 0.1 0.025 0.035	-0.322 -2.303 -2.303 -3.689 -3.352

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00504	N/A	-5.290	NO
MW360	Downgradient	No	0.02	N/A	-3.912	N/A
MW363	Downgradient	No	0.02	N/A	-3.912	N/A
MW366	Downgradient	No	0.02	N/A	-3.912	N/A
MW369	Upgradient	No	0.02	N/A	-3.912	N/A
MW372	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.140	S= 0.780	CV(1)= 0.684	K factor**= 2.523	TL(1)= 3.108	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.235	S = 1.006	CV(2) =-4.287	K factor**= 2.523	TL(2)= 2.303	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	2	0.693				
4/23/2002	2	0.693				
7/15/2002	2	0.693				
10/8/2002	0.2	-1.609				

0.2

0.2

0.2

0.2

MW373

Result

2

2

2

0.79

0.807

1.13

1.28

1.24

1/8/2003 4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.5	NO	-0.693	N/A
MW361	Downgradient	Yes	0.142	NO	-1.952	N/A
MW364	Downgradient	Yes	0.12	NO	-2.120	N/A
MW367	Downgradient	Yes	0.02	NO	-3.912	N/A
MW370	Upgradient	Yes	0.473	NO	-0.749	N/A
MW373	Upgradient	Yes	1.82	NO	0.599	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-1.609

-1.609

-1.609

0.693

0.693

0.693

-0.236

-0.214

0.122

0.247

0.215

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				

wen number.	101 00 570	
Date Collected	Result	LN(Result)
3/17/2002	1	0.000
4/23/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.000
Date Collected	Result	()
Date Collected 3/18/2002	Result 1	0.000
Date Collected 3/18/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.494	NO	-0.705	N/A
MW361	Downgradient	Yes	0.495	NO	-0.703	N/A
MW364	Downgradient	Yes	0.484	NO	-0.726	N/A
MW367	Downgradient	Yes	0.161	NO	-1.826	N/A
MW370	Upgradient	Yes	0.547	NO	-0.603	N/A
MW373	Upgradient	Yes	0.516	NO	-0.662	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 43.413	S= 13.444	CV(1)= 0.310	K factor**= 2.523	TL(1)= 77.331	LL(1)=N/A
Statistics-Transformed Background Data	X = 3.723	S = 0.323	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.539	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	34.8	3.550			
4/23/2002	43.4	3.770			
7/15/2002	33.2	3.503			
10/8/2002	29.2	3.374			
1/8/2003	31.3	3.444			
4/3/2003	32.4	3.478			
7/9/2003	22.9	3.131			
10/6/2003	28	3.332			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	61.9	4.126			
4/23/2002	59.2	4.081			
7/16/2002	47.6	3.863			
10/8/2002	46.1	3.831			
1/7/2003	49.2	3.896			
4/2/2003	57.8	4.057			
7/9/2003	52.7	3.965			
10/7/2003	64.9	4.173			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	29.8	NO	3.395	N/A
MW361	Downgradient	Yes	32.5	NO	3.481	N/A
MW364	Downgradient	Yes	30.8	NO	3.428	N/A
MW367	Downgradient	Yes	13.8	NO	2.625	N/A
MW370	Upgradient	Yes	29.2	NO	3.374	N/A
MW373	Upgradient	Yes	62.8	NO	4.140	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 41.938	S= 24.732	CV(1)= 0.590	K factor**= 2.523	TL(1)= 104.336	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.658	S = 0.339	CV(2) =0.093	K factor**= 2.523	TL(2)= 4.512	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	35	3.555			
4/23/2002	134	4.898			
7/15/2002	35	3.555			
10/8/2002	35	3.555			
1/8/2003	35	3.555			
4/3/2003	35	3.555			
7/9/2003	35	3.555			
10/6/2003	35	3.555			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	35	3.555			

Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/23/2002	47	3.850
7/16/2002	35	3.555
10/8/2002	35	3.555
1/7/2003	35	3.555
4/2/2003	35	3.555
7/9/2003	35	3.555
10/7/2003	35	3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	20	N/A	2.996	N/A	
MW361	Downgradient	No	20	N/A	2.996	N/A	
MW364	Downgradient	Yes	15.2	NO	2.721	N/A	
MW367	Downgradient	Yes	15.2	NO	2.721	N/A	
MW370	Upgradient	No	20	N/A	2.996	N/A	
MW373	Upgradient	No	20	N/A	2.996	N/A	

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.919 S = 7.524	CV(1)= 0.164	K factor**= 2.523	TL(1)= 64.901	LL(1)=N/A
Statistics-Transformed Background Data	X =3.814 S = 0.165	CV(2)= 0.043	K factor**= 2.523	TL(2)= 4.231	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
7/15/2002	55.5	4.016			
10/8/2002	53.6	3.982			
1/8/2003	52.9	3.968			
4/3/2003	53.6	3.982			
7/9/2003	51.9	3.949			
10/6/2003	53	3.970			
1/7/2004	53	3.970			
4/7/2004	51.6	3.944			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
7/16/2002	40.6	3.704			
10/8/2002	38.8	3.658			
1/7/2003	39	3.664			
4/2/2003	38.4	3.648			

38.1

38

37.9

38.8

7/9/2003

10/7/2003

1/6/2004

4/7/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	34.4	NO	3.538	N/A
MW361	Downgradient	Yes	35.6	NO	3.572	N/A
MW364	Downgradient	Yes	38.7	NO	3.656	N/A
MW367	Downgradient	Yes	10.9	NO	2.389	N/A
MW370	Upgradient	Yes	39.6	NO	3.679	N/A
MW373	Upgradient	Yes	36.9	NO	3.608	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.640

3.638

3.635

3.658

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.250	S = 5.000	CV(1)= 0.800	K factor**= 2.523	TL(1)= 18.865	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.710	S = 0.402	CV(2) =0.235	K factor**= 2.523	TL(2)= 2.725	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1112270

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	5	1.609
4/23/2002	5	1.609
7/15/2002	5	1.609
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 5	1.609
Date Collected 3/18/2002 4/23/2002	Result 5 25	1.609 3.219
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 5 25 5	1.609 3.219 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 25 5 5	1.609 3.219 1.609 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 25 5 5 5 5	1.609 3.219 1.609 1.609 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5 25 5 5 5 5 5	1.609 3.219 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.4	NO	-0.916	N/A
MW361	Downgradient	No	1	N/A	0.000	N/A
MW364	Downgradient	No	1	N/A	0.000	N/A
MW367	Downgradient	No	1	N/A	0.000	N/A
MW370	Upgradient	No	1	N/A	0.000	N/A
MW373	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.027	S= 0.032	CV(1)= 1.165	K factor**= 2.523	TL(1)= 0.108	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.058	S = 1.011	CV(2) =-0.249	K factor**= 2.523	TL(2)= -1.507	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	0.025	-3.689				
4/23/2002	0.025	-3.689				
7/15/2002	0.025	-3.689				
10/8/2002	0.0174	-4.051				
1/8/2003	0.0105	-4.556				
4/3/2003	0.00931	-4.677				
7/9/2003	0.137	-1.988				
10/6/2003	0.0463	-3.073				
Well Number: MW373						
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/23/2002	0.034	-3.381				

0.025

0.00411

0.00344

0.00368

0.0405

0.00843

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00885	N/A	-4.727	NO
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	No	0.001	N/A	-6.908	N/A
MW367	Downgradient	Yes	0.00697	N/A	-4.966	NO
MW370	Upgradient	No	0.001	N/A	-6.908	N/A
MW373	Upgradient	Yes	0.00031	8 N/A	-8.053	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.689

-5.494

-5.672

-5.605

-3.206

-4.776

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 608.719 S= 156.157 CV(1)=0.257
 K factor**= 2.523
 TL(1)= 1002.702 LL(1)=N/A

 Statistics-Transformed Background
 X= 6.380
 S= 0.260
 CV(2)=0.041
 K factor**= 2.523
 TL(2)= 7.036
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number: MW370						
Date Collected	Result	LN(Result)				
3/17/2002	406	6.006				
4/23/2002	543	6.297				

476

441

486

466

479

435

MW373

Result

661

801

774

680

763

828

814

686.5

Data

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	486	NO	6.186	N/A
MW361	Downgradient	Yes	478	NO	6.170	N/A
MW364	Downgradient	Yes	478	NO	6.170	N/A
MW367	Downgradient	Yes	251	NO	5.525	N/A
MW370	Upgradient	Yes	435	NO	6.075	N/A
MW373	Upgradient	Yes	733	NO	6.597	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

6.165

6.089

6.186

6.144

6.172

6.075

6.494

6.686

6.652

6.522

6.532

6.637

6.719

6.702

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.010	CV(1)= 0.399	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.739	S = 0.308	CV(2) =-0.082	K factor**= 2.523	TL(2)= -2.963	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	0.025	-3.689				
4/23/2002	0.025	-3.689				
7/15/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				
1/8/2003	0.02	-3.912				
4/3/2003	0.02	-3.912				
7/9/2003	0.02	-3.912				
10/6/2003	0.02	-3.912				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	0.026	-3.650				
4/23/2002	0.025	-3.689				
7/16/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				
1/7/2003	0.02	-3.912				
4/2/2003	0.02	-3.912				
	0.00					

0.02

0.02

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.00145	NO	-6.536	N/A	
MW361	Downgradient	Yes	0.00083	8 NO	-7.084	N/A	
MW364	Downgradient	No	0.002	N/A	-6.215	N/A	
MW367	Downgradient	No	0.002	N/A	-6.215	N/A	
MW370	Upgradient	Yes	0.00046	7 NO	-7.669	N/A	
MW373	Upgradient	No	0.002	N/A	-6.215	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912 -3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.387	S= 1.153	CV(1)= 0.831	K factor**= 2.523	TL(1)= 4.295	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.115	S= 1.207	CV(2) =-10.514	K factor**= 2.523	TL(2)= 2.930	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	4.32	1.463				
4/23/2002	1.24	0.215				
7/15/2002	0.75	-0.288				
10/8/2002	0.94	-0.062				
1/8/2003	3.08	1.125				
4/3/2003	1.45	0.372				
7/9/2003	1.22	0.199				
10/6/2003	1.07	0.068				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	3.04	1.112				
4/23/2002	0.03	-3.507				
7/16/2002	0.23	-1.470				
10/8/2002	0.86	-0.151				
1/7/2003	0.21	-1.561				
4/2/2003	1.19	0.174				

1.1

1.46

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.66	NO	0.507	N/A
MW361	Downgradient	Yes	4.33	YES	1.466	N/A
MW364	Downgradient	Yes	3.8	NO	1.335	N/A
MW367	Downgradient	Yes	1.91	NO	0.647	N/A
MW370	Upgradient	Yes	4.73	YES	1.554	N/A
MW373	Upgradient	Yes	2.42	NO	0.884	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.095

0.378

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW361 MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 356.188
 S= 106.752
 CV(1)=0.300
 K factor**= 2.523
 TL(1)= 625.523
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 5.831
 S= 0.311
 CV(2)=0.053
 K factor**= 2.523
 TL(2)= 6.616
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	236	5.464				
4/23/2002	337	5.820				
7/15/2002	266	5.583				
10/8/2002	240	5.481				
1/8/2003	282	5.642				
4/3/2003	238	5.472				
7/9/2003	248	5.513				
10/6/2003	224	5.412				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	427	6.057				

Date Conceted	Result	Liv(icesuit)
3/18/2002	427	6.057
4/23/2002	507	6.229
7/16/2002	464	6.140
10/8/2002	408	6.011
1/7/2003	404	6.001
4/2/2003	450	6.109
7/9/2003	487	6.188
10/7/2003	481	6.176

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	260	NO	5.561	N/A
MW361	Downgradient	Yes	277	NO	5.624	N/A
MW364	Downgradient	Yes	273	NO	5.609	N/A
MW367	Downgradient	Yes	121	NO	4.796	N/A
MW370	Upgradient	Yes	230	NO	5.438	N/A
MW373	Upgradient	Yes	500	NO	6.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.230	S= 8.841	CV(1)= 0.958	K factor**= 2.523	TL(1)= 31.535	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.942	S = 0.713	CV(2)= 0.367	K factor**= 2.523	TL(2)= 3.740	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	9.34	2.234				
4/23/2002	4.33	1.466				
7/15/2002	3.52	1.258				
10/8/2002	7.45	2.008				
1/8/2003	7.04	1.952				
4/3/2003	4.64	1.535				
7/9/2003	15.8	2.760				
10/6/2003	6.49	1.870				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	37.6	3.627				
4/23/2002	19	2.944				

10.7

3.75

3.87

3.5

7.72

2.93

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	3.49	NO	1.250	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	No	0.1	N/A	-2.303	N/A
MW367	Downgradient	Yes	5.13	NO	1.635	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.370

1.322

1.353

1.253

2.044

1.075

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =17.544 S = 5.911	CV(1)= 0.337	K factor**= 2.523	TL(1)= 32.458	LL(1)=N/A
Statistics-Transformed Background	X =2.810 S = 0.343	CV(2)= 0.122	K factor**= 2.523	TL(2)= 3.676	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	12.1	2.493			
4/23/2002	15.1	2.715			
7/15/2002	12.4	2.518			
10/8/2002	12.2	2.501			
1/8/2003	11.5	2.442			
4/3/2003	12.3	2.510			
7/9/2003	10	2.303			
10/6/2003	12.1	2.493			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	24.8	3.211			
4/23/2002	22.7	3.122			
7/16/2002	18.8	2.934			
10/8/2002	21.1	3.049			
1/7/2003	19.9	2.991			
4/2/2003	25.5	3.239			
7/9/2003	23.3	3.148			

26.9

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	14.4	NO	2.667	N/A
MW361	Downgradient	Yes	14.1	NO	2.646	N/A
MW364	Downgradient	Yes	15	NO	2.708	N/A
MW367	Downgradient	Yes	7.78	NO	2.052	N/A
MW370	Upgradient	Yes	12.9	NO	2.557	N/A
MW373	Upgradient	Yes	25.2	NO	3.227	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.292

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.080	S= 0.674	CV(1)= 0.624	K factor**= 2.523	TL(1)= 2.780	LL(1)= N/A
Statistics-Transformed Background	X= -0.114	S= 0.658	CV(2)=- 5.762	K factor**= 2.523	TL(2)= 1.547	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	0.244	-1.411			
4/23/2002	1.82	0.599			
7/15/2002	1.22	0.199			
10/8/2002	0.988	-0.012			
1/8/2003	0.729	-0.316			
4/3/2003	0.637	-0.451			
7/9/2003	2.51	0.920			
10/6/2003	1.05	0.049			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	0.355	-1.036			
4/23/2002	2.16	0.770			
7/16/2002	1.39	0.329			
10/8/2002	0.717	-0.333			
1/7/2003	0.587	-0.533			
4/2/2003	0.545	-0.607			
7/9/2003	1.76	0.565			

0.57

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.632	NO	-0.459	N/A
MW361	Downgradient	Yes	0.00445	NO	-5.415	N/A
MW364	Downgradient	Yes	0.0025	NO	-5.991	N/A
MW367	Downgradient	Yes	1.43	NO	0.358	N/A
MW370	Upgradient	Yes	0.00176	NO	-6.342	N/A
MW373	Upgradient	Yes	0.00736	NO	-4.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.562

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.375	S= 2.156	CV(1)= 0.401	K factor**= 2.523	TL(1)= 10.816	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.603	S= 0.428	CV(2)= 0.267	K factor**= 2.523	TL(2)= 2.683	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW370

Date Collected	Result	LN(Result)
3/17/2002	2	0.693
4/23/2002	5	1.609
7/15/2002	10	2.303
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
TTT 11 NT 1		
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 2	0.693
Date Collected 3/18/2002 4/23/2002	Result 2 7	0.693 1.946
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 2 7 10	0.693 1.946 2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 7 10 5	0.693 1.946 2.303 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 7 10 5 5	0.693 1.946 2.303 1.609 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2 7 10 5 5 5	0.693 1.946 2.303 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	5	N/A	1.609	N/A
MW361	Downgradient	No	5	N/A	1.609	N/A
MW364	Downgradient	No	5	N/A	1.609	N/A
MW367	Downgradient	No	5	N/A	1.609	N/A
MW370	Upgradient	Yes	2.32	NO	0.842	N/A
MW373	Upgradient	Yes	2.5	NO	0.916	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.010	S= 0.012	CV(1)= 1.198	K factor**= 2.523	TL(1)= 0.040	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.693	S= 1.604	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.647	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			

Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00113	-6.786
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
XX7 11 X 7 1		
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
	111 110 70	LN(Result) -3.689
Date Collected	Result	· · · · ·
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.00024	8 N/A	-8.302	NO	
MW361	Downgradient	No	0.001	N/A	-6.908	N/A	
MW364	Downgradient	No	0.001	N/A	-6.908	N/A	
MW367	Downgradient	No	0.001	N/A	-6.908	N/A	
MW370	Upgradient	No	0.001	N/A	-6.908	N/A	
MW373	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.022	CV(1)= 0.901	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.239	S= 1.087	CV(2) =-0.256	K factor**= 2.523	TL(2)= -1.497	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW370

Well Number

Well Number:	MW3/0	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0189	NO	-3.969	N/A
MW361	Downgradient	No	0.002	N/A	-6.215	N/A
MW364	Downgradient	Yes	0.00073	2 NO	-7.220	N/A
MW367	Downgradient	Yes	0.0036	NO	-5.627	N/A
MW370	Upgradient	Yes	0.00090	9 NO	-7.003	N/A
MW373	Upgradient	Yes	0.00266	NO	-5.929	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics Declarge and Date	V-16600	S - 60.096	CV(1) = 1.206	V footow** - 2522	TI(1) = 200.555	
Statistics-Background Data	A- 40.000	5- 00.980	CV(1)= 1.306	K factor**= 2.523	TL(T)- 200.555	LL(1)-N/A
Statistics-Transformed Background Data	X= 3.829	S = 1.151	CV(2)= 0.301	K factor**= 2.523	TL(2)= 4.942	LL(2)=N/A

Historical Background Data from	
Upgradient Wells with Transformed	Result

1 1112770

11 3 1

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.942
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 140 -20 10 10 67 -29	4.942 #Func! 2.303 2.303 4.205 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	159	N/A	5.069	YES	
MW361	Downgradient	Yes	366	N/A	5.903	YES	
MW364	Downgradient	Yes	395	N/A	5.979	YES	
MW367	Downgradient	Yes	253	N/A	5.533	YES	
MW370	Upgradient	Yes	415	N/A	6.028	YES	
MW373	Upgradient	Yes	382	N/A	5.945	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW358
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW361
oncentration with respect to historical background data.	MW364
	MW367
	MW370
	MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis **Historical Background Comparison** pН **UNITS: Std Unit LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.283	S= 0.159	CV(1)=0.025	K factor**= 2.904	TL(1)= 6.74	LL(1)=5.82
Statistics-Transformed Background Data	X= 1.837	S = 0.025	CV(2)= 0.014	K factor**= 2.904	TL(2)= 1.91	LL(2)=1.76

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	6.3	1.841					
4/23/2002	6.4	1.856					
7/15/2002	6.3	1.841					
10/8/2002	6.3	1.841					
1/8/2003	6.4	1.856					
4/3/2003	6.5	1.872					
7/9/2003	6.3	1.841					
10/6/2003	6.5	1.872					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	6	1.792					
4/23/2002	6.3	1.841					
7/16/2002	6.45	1.864					
10/8/2002	6.18	1.821					
1/7/2003	6.35	1.848					
4/2/2003	6.14	1.815					
7/9/2003	6.1	1.808					
10/7/2003	6	1.792					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>· · · ·</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	· · · ·	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW358	Downgradien	t Yes	6.21	NO	1.826	N/A	
MW361	Downgradien	t Yes	6	NO	1.792	N/A	
MW364	Downgradien	t Yes	5.93	NO	1.780	N/A	
MW367	Downgradien	t Yes	5.82	NO	1.761	N/A	
MW370	Upgradient	Yes	5.91	NO	1.777	N/A	
MW373	Upgradient	Yes	6.06	NO	1.802	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.823	S= 0.522	CV(1)= 0.185	K factor**= 2.523	TL(1)= 4.139	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.024	S = 0.167	CV(2)= 0.163	K factor**= 2.523	TL(2)= 1.445	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	3.22	1.169					
4/23/2002	3.43	1.233					
7/15/2002	2.98	1.092					
10/8/2002	2.46	0.900					
1/8/2003	2.41	0.880					
4/3/2003	2.43	0.888					
7/9/2003	2.44	0.892					
10/6/2003	2.48	0.908					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	4.34	1.468					
4/23/2002	3.04	1.112					
7/16/2002	2.93	1.075					
10/8/2002	2.3	0.833					
1/7/2003	2.45	0.896					
4/2/2003	2.7	0.993					
7/9/2003	2.68	0.986					

2.88

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	2.38	NO	0.867	N/A	
MW361	Downgradient	Yes	2.2	NO	0.788	N/A	
MW364	Downgradient	Yes	1.94	NO	0.663	N/A	
MW367	Downgradient	Yes	2.67	NO	0.982	N/A	
MW370	Upgradient	Yes	2.67	NO	0.982	N/A	
MW373	Upgradient	Yes	2.68	NO	0.986	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.058

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.158	S = 5.739	CV(1)= 2.660	K factor**= 2.523	TL(1)= 16.637	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.670	S= 1.833	CV(2) =-2.736	K factor**= 2.523	TL(2)= 3.068	LL(2)=N/A

	Historical Background Data from Upgradient Wells with Transformed Result								
opgradient w		insioi neu resuit							
Well Number:	MW370								
Date Collected	Result	LN(Result)							
7/15/2002	10.1	2.313							
10/8/2002	-0.825	#Func!							
1/8/2003	0.415	-0.879							
10/6/2003	0.52	-0.654							
1/7/2004	1.03	0.030							
4/7/2004	0.434	-0.835							
7/13/2004	0.532	-0.631							
10/7/2004	0.299	-1.207							
Well Number:	MW373								
Date Collected	Result	LN(Result)							
7/16/2002	21.5	3.068							
10/8/2002	0.0327	-3.420							
1/7/2003	-0.844	#Func!							
10/7/2003	0	#Func!							
1/6/2004	0.177	-1.732							
4/7/2004	0.792	-0.233							
7/14/2004	0.327	-1.118							
10/7/2004	0.033	-3.411							

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	0.351	N/A	-1.047	N/A	
MW361	Downgradient	No	0.139	N/A	-1.973	N/A	
MW364	Downgradient	No	0.00612	N/A	-5.096	N/A	
MW367	Downgradient	Yes	1.51	N/A	0.412	NO	
MW370	Upgradient	No	-0.0507	N/A	#Error	N/A	
MW373	Upgradient	No	0.307	N/A	-1.181	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.544	S= 15.227	CV(1)= 0.295	K factor**= 2.523	TL(1)= 89.962	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.906	S= 0.272	CV(2)= 0.070	K factor**= 2.523	TL(2)= 4.592	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	31.8	3.459					
4/23/2002	50	3.912					
7/15/2002	44.7	3.800					
10/8/2002	40	3.689					
1/8/2003	44.6	3.798					
4/3/2003	41.9	3.735					
7/9/2003	40	3.689					
10/6/2003	38.1	3.640					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	43.4	3.770					
4/23/2002	79.8	4.380					
7/16/2002	87.7	4.474					
10/8/2002	61.6	4.121					

59.3

62.1

50.1

49.6

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	41	NO	3.714	N/A	
MW361	Downgradient	Yes	43.1	NO	3.764	N/A	
MW364	Downgradient	Yes	48.5	NO	3.882	N/A	
MW367	Downgradient	Yes	19.1	NO	2.950	N/A	
MW370	Upgradient	Yes	47.5	NO	3.861	N/A	
MW373	Upgradient	Yes	56.1	NO	4.027	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.083

4.129

3.914

3.904

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =122.381 S = 195.095	CV(1)= 1.594	K factor**= 2.523	TL(1)= 614.606	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.985 S= 1.323	CV(2) =0.332	K factor**= 2.523	TL(2)= 7.322	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	17.4	2.856						
4/23/2002	37.9	3.635						
7/15/2002	15.7	2.754						
10/8/2002	13.4	2.595						
1/8/2003	14.4	2.667						

18.1

9.6

16.5

MW373

Result

163.3

809.6

109.4

110.6

113.7

133

182.1

193.4

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	60.9	N/A	4.109	NO	
MW361	Downgradient	Yes	81	N/A	4.394	NO	
MW364	Downgradient	Yes	73.6	N/A	4.299	NO	
MW367	Downgradient	Yes	24.7	N/A	3.207	NO	
MW370	Upgradient	Yes	20.4	N/A	3.016	NO	
MW373	Upgradient	Yes	153	N/A	5.030	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.896

2.262

2.803

5.096

6.697

4.695

4.706

4.734

4.890

5.205

5.265

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.655	S= 13.274	CV(1)= 1.734	K factor**= 2.523	TL(1)= 41.146	LL(1)=N/A
Statistics-Transformed Background	X= 1.946	S= 0.939	CV(2)= 0.483	K factor**= 2.523	TL(2)= 3.833	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	10.8	2.380					
4/23/2002	8.53	2.144					
7/15/2002	5.09	1.627					
10/8/2002	4.78	1.564					
1/8/2003	-5.12	#Func!					
4/3/2003	5.11	1.631					
7/9/2003	4.25	1.447					
10/6/2003	6.54	1.878					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	16.5	2.803					
4/23/2002	3.49	1.250					
7/16/2002	1.42	0.351					
10/8/2002	-6.06	#Func!					
1/7/2003	-8.41	#Func!					
4/2/2003	26.3	3.270					
7/9/2003	3.06	1.118					
10/7/2003	46.2	3.833					

Data

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	39.6	N/A	3.679	NO	
MW361	Downgradient	Yes	51.6	N/A	3.944	YES	
MW364	Downgradient	Yes	61.5	N/A	4.119	YES	
MW367	Downgradient	No	13.4	N/A	2.595	N/A	
MW370	Upgradient	Yes	24	N/A	3.178	NO	
MW373	Upgradient	No	9.69	N/A	2.271	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW361 MW364

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.169	S = 12.072	CV(1)= 1.957	K factor**= 2.523	TL(1)= 36.626	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.069	S= 1.014	CV(2)= 0.948	K factor**= 2.523	TL(2)= 3.626	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	1.2	0.182						
4/23/2002	4.3	1.459						
7/15/2002	2.6	0.956						
10/8/2002	2.3	0.833						

3

1.2

2.6

1.7

MW373

Result

1.1

49

2.9

3.9

2.5

1.7

1.2

17.5

1/8/2003 4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	4.73	N/A	1.554	NO	
MW361	Downgradient	Yes	1.01	N/A	0.010	NO	
MW364	Downgradient	Yes	0.793	N/A	-0.232	NO	
MW367	Downgradient	Yes	0.706	N/A	-0.348	NO	
MW370	Upgradient	Yes	1.33	N/A	0.285	NO	
MW373	Upgradient	Yes	1.38	N/A	0.322	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.099

0.182

0.956

0.531

0.095

2.862

3.892

1.065

1.361

0.916

0.531

0.182

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 79.819	S= 78.470	CV(1)= 0.983	K factor**= 2.523	TL(1)= 277.798	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.971	S = 0.950	CV(2) =0.239	K factor**= 2.523	TL(2)= 6.368	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	50	3.912					
4/23/2002	228	5.429					
7/15/2002	88	4.477					
10/8/2002	58	4.060					
1/8/2003	72.4	4.282					
4/3/2003	26.6	3.281					
7/9/2003	16.4	2.797					
10/6/2003	31.1	3.437					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	50	3.912					
4/23/2002	276	5.620					

177

76

45.9

57.8

10

13.9

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	8.4	NO	2.128	N/A	
MW361	Downgradient	Yes	13	NO	2.565	N/A	
MW364	Downgradient	Yes	6.46	NO	1.866	N/A	
MW367	Downgradient	No	10	N/A	2.303	N/A	
MW370	Upgradient	Yes	9.2	NO	2.219	N/A	
MW373	Upgradient	Yes	13.1	NO	2.573	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

5.176

4.331

3.826

4.057

2.303

2.632

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.188 S = 6.950	CV(1)= 0.570	K factor**= 2.523	TL(1)= 29.721	LL(1)=N/A
Statistics-Transformed Background Data	X = 2.305 S = 0.687	CV(2)= 0.298	K factor**= 2.523	TL(2)= 4.039	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	19	2.944			
4/23/2002	17	2.833			
7/15/2002	15	2.708			
10/8/2002	18	2.890			
1/8/2003	17	2.833			
4/3/2003	18	2.890			
7/9/2003	15	2.708			
10/6/2003	16	2.773			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	5	1.609			
4/23/2002	25	3.219			
7/16/2002	3	1.099			
10/8/2002	4	1.386			
1/7/2003	6	1.792			
4/2/2003	5	1.609			
	-				

7/9/2003

10/7/2003

6

6

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.97	N/A	-0.030	N/A
MW361	Downgradient	Yes	5.59	NO	1.721	N/A
MW364	Downgradient	Yes	3.99	N/A	1.384	N/A
MW367	Downgradient	Yes	0.66	N/A	-0.416	N/A
MW370	Upgradient	Yes	1.48	N/A	0.392	N/A
MW373	Upgradient	Yes	4.84	N/A	1.577	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.792

1.792

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.055	S= 0.037	CV(1)= 0.673	K factor**= 2.523	TL(1)= 0.147	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.131	S = 0.691	CV(2)=- 0.221	K factor**= 2.523	TL(2)= -1.388	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	0.1	-2.303			
4/23/2002	0.1	-2.303			
7/15/2002	0.1	-2.303			
10/8/2002	0.025	-3.689			
1/8/2003	0.035	-3.352			
4/3/2003	0.035	-3.352			

0.02

0.02

MW373

Result

0.1

0.1

0.1

0.025

0.035

0.035

0.0234

0.02

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00377	NO	-5.581	N/A
MW361	Downgradient	No	0.02	N/A	-3.912	N/A
MW364	Downgradient	Yes	0.00816	NO	-4.809	N/A
MW367	Downgradient	Yes	0.00859	NO	-4.757	N/A
MW370	Upgradient	No	0.02	N/A	-3.912	N/A
MW373	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-2.303

-2.303

-2.303

-3.689

-3.352

-3.352

-3.755 -3.912

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-U Third Quarter 2022 Statistical Analysis **Current Background Comparison Dissolved Oxygen** UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.669	S= 2.128	CV(1)= 0.797	K factor**= 2.523	TL(1)= 8.038	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.654	S = 0.879	CV(2)= 1.345	K factor**= 2.523	TL(2)= 2.872	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 7/23/2020 2.5 0.916 10/12/2020 0.293 1.34 1/20/2021 0.470 1.6 6.07 1.803 4/13/2021 7/20/2021 5.52 1.708 10/12/2021 3.36 1.212 1/12/2022 3.82 1.340 4/12/2022 7.49 2.014 MW374 Well Number: Date Collected Result LN(Result) 7/23/2020 0.7 -0.357 10/12/2020 0.5 -0.6931/20/2021 0.92 -0.083 4/13/2021 1.030 2.8 -0.010 7/14/2021 0.99 10/13/2021 0.44 -0.821 1/13/2022 1.8 0.588 4/12/2022 2.86 1.051

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	5.95	NO	1.783	N/A
MW362	Downgradien	t Yes	5.12	NO	1.633	N/A
MW365	Downgradien	t Yes	4.31	NO	1.461	N/A
MW368	Downgradien	t Yes	4.5	NO	1.504	N/A
MW371	Upgradient	Yes	4.25	NO	1.447	N/A
MW375	Sidegradient	Yes	3.23	NO	1.172	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U Third Quarter 2022 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =313.188 S = 81.325	CV(1)= 0.260	K factor**= 2.523	TL(1)= 518.371	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.707 S = 0.310	CV(2)= 0.054	K factor**= 2.523	TL(2)= 6.490	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 7/23/2020 361 5.889 10/12/2020 344 5.841 1/20/2021 296 5.690 5.961 4/13/2021 388 7/20/2021 401 5.994 10/12/2021 344 5.841 1/12/2022 389 5.964 4/12/2022 5.927 375 MW374 Well Number: Date Collected Result LN(Result) 7/23/2020 304 5.717 10/12/2020 207 5.333 1/20/2021 145 4.977 5.889 4/13/2021 361 7/14/2021 349 5.855 10/13/2021 202 5.308 1/13/2022 192 5.257 4/12/2022 353 5.866

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	361	NO	5.889	N/A
MW362	Downgradient	Yes	334	NO	5.811	N/A
MW365	Downgradient	Yes	395	NO	5.979	N/A
MW368	Downgradient	Yes	263	NO	5.572	N/A
MW371	Upgradient	Yes	378	NO	5.935	N/A
MW374	Upgradient	Yes	345	NO	5.844	N/A
MW375	Sidegradient	Yes	429	NO	6.061	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical AnalysisCurrent Background ComparisonSulfateUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 27.283	S= 24.973	CV(1)= 0.915	K factor**= 2.523	TL(1)= 90.290	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.008	S = 0.746	CV(2)= 0.248	K factor**= 2.523	TL(2)= 4.889	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected LN(Result) Result 7/23/2020 53.6 3.982 10/12/2020 29.9 3.398 1/20/2021 29.2 3.374 4/13/2021 90.7 4.508 7/20/2021 34.1 3.529 10/12/2021 11.9 2.477 1/12/2022 14.3 2.660 4/12/2022 4.323 75.4 MW374 Well Number: Date Collected Result LN(Result) 7/23/2020 9.1 2.208 10/12/2020 9.73 2.275 1/20/2021 10.7 2.370 4/13/2021 13 2.565 7/14/2021 13.4 2.595 10/13/2021 12.7 2.542 1/13/2022 12.4 2.518 4/12/2022 16.4 2.797

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	39.6	NO	3.679	N/A
MW362	Downgradient	Yes	31.5	NO	3.450	N/A
MW365	Downgradient	Yes	56.6	NO	4.036	N/A
MW368	Downgradient	Yes	98.6	YES	4.591	N/A
MW371	Upgradient	Yes	28.7	NO	3.357	N/A
MW374	Upgradient	Yes	16.7	NO	2.815	N/A
MW375	Sidegradient	Yes	23.7	NO	3.165	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical AnalysisCurrent Background ComparisonCalciumUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 39.994	S= 24.902	CV(1)= 0.623	K factor**= 2.523	TL(1)= 102.822	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.464	S= 0.719	CV(2)= 0.208	K factor**= 2.523	TL(2)= 5.278	LL(2)=N/A

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/20/2020	16.5	2.803
10/12/2020	15.7	2.754
1/20/2021	15.4	2.734
4/13/2021	16.7	2.815
7/13/2021	15.3	2.728
10/12/2021	15.1	2.715
1/12/2022	16.3	2.791
4/12/2022	16.5	2.803
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.134
Date Collected	Result	
Date Collected 7/23/2020	Result 62.4	4.134
Date Collected 7/23/2020 10/12/2020	Result 62.4 62.3	4.134 4.132
Date Collected 7/23/2020 10/12/2020 1/20/2021	Result 62.4 62.3 67.5	4.134 4.132 4.212
Date Collected 7/23/2020 10/12/2020 1/20/2021 4/13/2021	Result 62.4 62.3 67.5 62.3	4.134 4.132 4.212 4.132
Date Collected 7/23/2020 10/12/2020 1/20/2021 4/13/2021 7/14/2021	Result 62.4 62.3 67.5 62.3 65	4.134 4.132 4.212 4.132 4.174

Current Background Data from Upgradient

Wells with Transformed Result

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	62.6	NO	4.137	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical AnalysisCurrent Background ComparisonConductivityUNITS: umho/cmURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 551.250 S = 206.05	5 CV(1)=0.374	K factor**= 2.523	TL(1)= 1071.120	6 LL(1)= N/A
Statistics-Transformed Background	X = 6.245 S = 0.380	CV(2)= 0.061	K factor**= 2.523	TL(2)= 7.203	LL(2)=N/A

Data

Current Background Data from Upgradie Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
7/23/2020	372	5.919				
10/12/2020	373	5.922				
1/20/2021	373	5.922				
4/13/2021	383	5.948				
7/13/2021	378	5.935				
10/12/2021	305	5.720				
1/12/2022	359	5.883				
4/12/2022	378	5.935				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
7/23/2020	770	6.646				
10/12/2020	778	6.657				
1/20/2021	822	6.712				
4/13/2021	795	6.678				
7/14/2021	760	6.633				
10/13/2021	484	6.182				
1/13/2022	752	6.623				
4/12/2022	738	6.604				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	715	NO	6.572	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis **Current Background Comparison URGA Dissolved Oxygen** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.245	S= 0.606	CV(1)= 0.270	K factor**= 2.523	TL(1)= 3.773	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.767	S= 0.318	CV(2)= 0.415	K factor**= 2.523	TL(2)= 1.570	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/23/2020	2.66	0.978
10/12/2020	1.88	0.631
1/20/2021	1.88	0.631
4/13/2021	0.86	-0.151
7/13/2021	3.17	1.154
10/12/2021	2.82	1.037
1/12/2022	2.64	0.971
4/12/2022	1.83	0.604
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.577
Date Collected	Result	. ,
Date Collected 7/23/2020	Result 1.78	0.577
Date Collected 7/23/2020 10/12/2020	Result 1.78 1.94	0.577 0.663
Date Collected 7/23/2020 10/12/2020 1/20/2021	Result 1.78 1.94 2.13	0.577 0.663 0.756
Date Collected 7/23/2020 10/12/2020 1/20/2021 4/13/2021	Result 1.78 1.94 2.13 1.75	0.577 0.663 0.756 0.560
Date Collected 7/23/2020 10/12/2020 1/20/2021 4/13/2021 7/14/2021	Result 1.78 1.94 2.13 1.75 2.4	0.577 0.663 0.756 0.560 0.875

Current Background Data from Upgradient

Wells with Transformed Result

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradie	nt Yes	6	YES	1.792	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW357

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U Third Quarter 2022 Statistical AnalysisCurrent Background ComparisonDissolved SolidsUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 334.87	5 S = 139.037	7 CV(1)=0.415	K factor**= 2.523	TL(1)= 685.664	LL(1)= N/A
Statistics-Transformed Background	X= 5.725	S= 0.442	CV(2)= 0.077	K factor**= 2.523	TL(2)= 6.840	LL(2)=N/A

Data	
Data	

Current Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
7/20/2020	186	5.226				
10/12/2020	220	5.394				
1/20/2021	191	5.252				
4/13/2021	209	5.342				
7/13/2021	194	5.268				
10/12/2021	179	5.187				
1/12/2022	200	5.298				
4/12/2022	234	5.455				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
7/23/2020	436	6.078				
10/12/2020	474	6.161				
1/20/2021	447	6.103				
4/13/2021	483	6.180				
7/14/2021	481	6.176				
10/13/2021	461	6.133				
1/13/2022	506	6.227				
4/12/2022	457	6.125				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	461	NO	6.133	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical AnalysisCurrent Background ComparisonMagnesiumUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 14.893	S= 8.374	CV(1)= 0.562	K factor**= 2.523	TL(1)= 36.021	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.526	S= 0.629	CV(2)= 0.249	K factor**= 2.523	TL(2)= 4.113	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/20/2020	6.51	1.873
10/12/2020	7.24	1.980
1/20/2021	6.85	1.924
4/13/2021	6.97	1.942
7/13/2021	6.41	1.858
10/12/2021	6.77	1.913
1/12/2022	6.84	1.923
4/12/2022	6.89	1.930
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
	1111072	LN(Result) 3.063
Date Collected	Result	()
Date Collected 7/23/2020	Result 21.4	3.063
Date Collected 7/23/2020 10/12/2020	Result 21.4 23.4	3.063 3.153
Date Collected 7/23/2020 10/12/2020 1/20/2021	Result 21.4 23.4 24.1	3.063 3.153 3.182
Date Collected 7/23/2020 10/12/2020 1/20/2021 4/13/2021	Result 21.4 23.4 24.1 23.2	3.063 3.153 3.182 3.144
Date Collected 7/23/2020 10/12/2020 1/20/2021 4/13/2021 7/14/2021	Result 21.4 23.4 24.1 23.2 24.1	3.063 3.153 3.182 3.144 3.182

Current Background Data from Upgradient

Wells with Transformed Result

Current Quarter Data			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	22.7	NO	3.122	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 375.188 S= 27.826	CV(1)= 0.074	K factor**= 2.523	TL(1)= 445.393	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.925 S= 0.072	CV(2)= 0.012	K factor**= 2.523	TL(2)= 6.107	LL(2)=N/A

Current Background Data from Upgradien Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
7/23/2020	353	5.866					
10/12/2020	362	5.892					
1/20/2021	350	5.858					
4/13/2021	444	6.096					
7/13/2021	352	5.864					
10/12/2021	343	5.838					
1/12/2022	392	5.971					
4/12/2022	382	5.945					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
7/23/2020	365	5.900					
10/12/2020	341	5.832					
1/20/2021	362	5.892					
4/13/2021	411	6.019					
7/14/2021	378	5.935					
10/13/2021	390	5.966					
1/13/2022	376	5.930					
4/12/2022	402	5.996					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradien	t Yes	434	NO	6.073	N/A	
MW360	Downgradien	t Yes	355	NO	5.872	N/A	
MW363	Downgradien	t Yes	403	NO	5.999	N/A	
MW366	Downgradien	t Yes	399	NO	5.989	N/A	
MW369	Upgradient	Yes	420	NO	6.040	N/A	
MW372	Upgradient	Yes	402	NO	5.996	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis **Current Background Comparison URGA** Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 75.464	S = 70.855	CV(1)= 0.939	K factor**= 2.523	TL(1)= 254.231	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.466	S= 1.556	CV(2)= 0.449	K factor**= 2.523	TL(2)= 7.391	LL(2)=N/A

Because CV(1) is less than or equal to

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/20/2020	5.48	1.701
10/12/2020	5.29	1.666
1/20/2021	5.86	1.768
4/13/2021	7.59	2.027
7/13/2021	8.66	2.159
10/12/2021	8.82	2.177
1/12/2022	7.8	2.054
4/12/2022	8.93	2.189
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.820
Date Collected	Result	. ,
Date Collected 7/23/2020	Result 124	4.820
Date Collected 7/23/2020 10/12/2020	Result 124 129	4.820 4.860
Date Collected 7/23/2020 10/12/2020 1/20/2021	Result 124 129 156	4.820 4.860 5.050
Date Collected 7/23/2020 10/12/2020 1/20/2021 4/13/2021	Result 124 129 156 157	4.820 4.860 5.050 5.056
Date Collected 7/23/2020 10/12/2020 1/20/2021 4/13/2021 7/14/2021	Result 124 129 156 157 147	4.820 4.860 5.050 5.056 4.990

Current Background Data from Upgradient

Wells with Transformed Result

· · ·	mal distribution and
· · ·	statistical analysis
utilizing TL(1	·

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Upgradient	Yes	145	NO	4.977	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U Third Quarter 2022 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 57.363	S= 21.718	CV(1)= 0.379	K factor**= 2.523	TL(1)= 112.157	LL(1)= N/A
Statistics-Transformed Background	X = 3.966	S = 0.455	CV(2) =0.115	K factor**= 2.523	TL(2)= 5.115	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/20/2020	20	2.996
10/12/2020	18.6	2.923
1/20/2021	47.7	3.865
4/13/2021	60.3	4.099
7/13/2021	67.7	4.215
10/12/2021	59.8	4.091
1/12/2022	52.8	3.967
4/12/2022	57.2	4.047
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.663
Date Collected	Result	
Date Collected 7/23/2020	Result 106	4.663
Date Collected 7/23/2020 10/12/2020	Result 106 83.4	4.663 4.424
Date Collected 7/23/2020 10/12/2020 1/20/2021	Result 106 83.4 43.5	4.663 4.424 3.773
Date Collected 7/23/2020 10/12/2020 1/20/2021 4/13/2021	Result 106 83.4 43.5 51.3	4.663 4.424 3.773 3.938
Date Collected 7/23/2020 10/12/2020 1/20/2021 4/13/2021 7/14/2021	Result 106 83.4 43.5 51.3 66.6	4.663 4.424 3.773 3.938 4.199

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	74.2	NO	4.307	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical Analysis **Current Background Comparison Dissolved Oxygen LRGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.949	S= 1.121	CV(1)= 0.380	K factor**= 2.523	TL(1)= 5.777	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.006	S = 0.414	CV(2)= 0.411	K factor**= 2.523	TL(2)= 2.049	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW361	Downgradien	t Yes	4.33	NO	1.466	N/A	
MW370	Upgradient	Yes	4.73	NO	1.554	N/A	

Well Number: MW370 Date Collected Result LN(Result) 7/23/2020 2.86 1.051 10/12/2020 3.45 1.238 1/20/2021 4.3 1.459 4/13/2021 3.57 1.273 7/13/2021 4.47 1.497 10/12/2021 4.6 1.526 1/12/2022 4.36 1.472 4/12/2022 1.238 3.45 MW373 Well Number: Date Collected Result LN(Result) 7/23/2020 1.41 0.344 10/12/2020 1.77 0.571 1/20/2021 1.8 0.588 4/13/2021 1.33 0.285 7/14/2021 2.3 0.833 10/13/2021 2 0.693 1/13/2022 2.72 1.001 4/12/2022 2.79 1.026

Current Background Data from Upgradient

Wells with Transformed Result

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U Third Quarter 2022 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 380.875 S = 22.742	CV(1)= 0.060	K factor**= 2.523	TL(1)= 438.252	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.941 S = 0.059	CV(2)= 0.010	K factor**= 2.523	TL(2)= 6.089	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW370 Date Collected Result LN(Result) 7/23/2020 366 5.903 10/12/2020 350 5.858 1/20/2021 395 5.979 4/13/2021 435 6.075 7/13/2021 364 5.897 10/12/2021 359 5.883 1/12/2022 402 5.996 4/12/2022 390 5.966 MW373 Well Number: Date Collected Result LN(Result) 7/23/2020 377 5.932 10/12/2020 350 5.858 1/20/2021 372 5.919 4/13/2021 6.009 407 7/14/2021 380 5.940 10/13/2021 372 5.919 5.930 1/13/2022 376 4/12/2022 399 5.989

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW358	Downgradient	t Yes	159	NO	5.069	N/A				
MW361	Downgradient	t Yes	366	NO	5.903	N/A				
MW364	Downgradient	t Yes	395	NO	5.979	N/A				
MW367	Downgradient	t Yes	253	NO	5.533	N/A				
MW370	Upgradient	Yes	415	NO	6.028	N/A				
MW373	Upgradient	Yes	382	NO	5.945	N/A				

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2022 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 30.126	S= 20.890	CV(1)= 0.693	K factor**= 2.523	TL(1)= 82.832	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.183	S= 0.692	CV(2)= 0.217	K factor**= 2.523	TL(2)= 4.929	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW361	Downgradien	t Yes	51.6	NO	3.944	N/A
MW364	Downgradien	t Yes	61.5	NO	4.119	N/A

Well Number: MW370 Date Collected Result LN(Result) 7/23/2020 67.3 4.209 10/12/2020 72.3 4.281 1/20/2021 4.074 58.8 44.2 4/13/2021 3.789 7/13/2021 37.9 3.635 10/12/2021 39.2 3.669 1/12/2022 25.6 3.243 4/12/2022 23.4 3.153 MW373 Well Number: Date Collected Result LN(Result) 7/23/2020 18.4 2.912 10/12/2020 19.2 2.955 1/20/2021 9.89 2.292 4/13/2021 17.5 2.862 7/14/2021 14.2 2.653 10/13/2021 8.12 2.094 1/13/2022 11.2 2.416

14.8

4/12/2022

Current Background Data from Upgradient

Wells with Transformed Result

Conclusion of Statistical Analysis on Current Data

2.695

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

October 19, 2022

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the third quarter 2022 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Ś

Bryan Smith

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 3rd CY 2022 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 *KAR* 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2022 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on July 27, 2022. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement and sampling for laboratory analysis during this reporting period.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 8.58×10^{-4} ft/ft and 9.09×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 4.92×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for July 2022, the groundwater flow direction in the immediate area of the landfill was to the northeast.

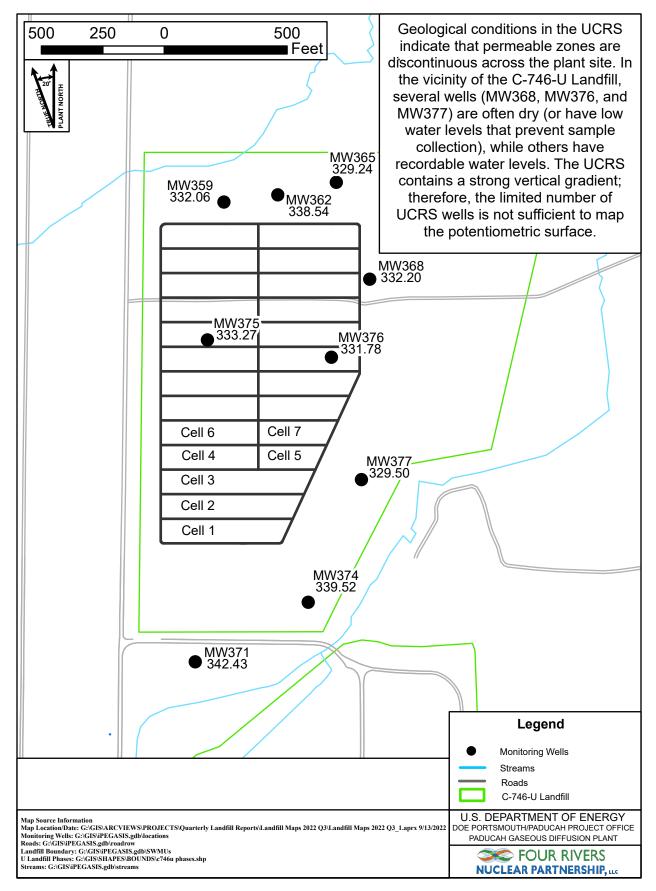


Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-U Landfill, July 27, 2022

							Ra	w Data	*Corre	ected Data	
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev	
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)	
7/27/2022	10:21	MW357	URGA	368.77	30.01	-0.02	43.86	324.91	43.84	324.93	
7/27/2022	10:22	MW358	LRGA	368.92	30.01	-0.02	44.02	324.90	44.00	324.92	
7/27/2022	10:23	MW359	UCRS	368.91	30.01	-0.02	36.87	332.04	36.85	332.06	
7/27/2022	10:16	MW360	URGA	362.07	30.01	-0.02	37.17	324.90	37.15	324.92	
7/27/2022	10:16	MW361	LRGA	361.32	30.01	-0.02	36.43	324.89	36.41	324.91	
7/27/2022	10:16	MW362	UCRS	361.85	30.01	-0.02	23.33	338.52	23.31	338.54	
7/27/2022	10:03	MW363	URGA	368.56	30.01	-0.02	43.74	324.82	43.72	324.84	
7/27/2022	10:04	MW364	LRGA	368.17	30.01	-0.02	43.46	324.71	43.44	324.73	
7/27/2022	10:05	MW365	UCRS	368.14	30.01	-0.02	38.92	329.22	38.90	329.24	
7/27/2022	10:10	MW366	URGA	368.95	30.01	-0.02	43.95	325.00	43.93	325.02	
7/27/2022	10:11	MW367	LRGA	369.37	30.01	-0.02	44.36	325.01	44.34	325.03	
7/27/2022	10:12	MW368	UCRS	368.98	30.01	-0.02	36.80	332.18	36.78	332.20	
7/27/2022	8:12	MW369	URGA	364.23	29.99	0.00	37.75	326.48	37.75	326.48	
7/27/2022	8:13	MW370	LRGA	365.12	29.99	0.00	38.64	326.48	38.64	326.48	
7/27/2022	8:14	MW371	UCRS	364.64	29.99	0.00	22.21	342.43	22.21	342.43	
7/27/2022	8:06	MW372	URGA	359.42	29.99	0.00	32.89	326.53	32.89	326.53	
7/27/2022	8:07	MW373	LRGA	359.73	29.99	0.00	33.21	326.52	33.21	326.52	
7/27/2022	8:08	MW374	UCRS	359.44	29.99	0.00	19.92	339.52	19.92	339.52	
7/27/2022	8:02	MW375	UCRS	370.36	29.99	0.00	37.09	333.27	37.09	333.27	
7/27/2022	7:59	MW376	UCRS	370.39	29.99	0.00	38.61	331.78	38.61	331.78	
7/27/2022	10:35	MW377	UCRS	365.74	29.99	0.00	36.24	329.50	36.24	329.50	
7/27/2022	8:19	MW391	URGA	366.67	29.99	0.00	40.22	326.45	40.22	326.45	
7/27/2022	8:20	MW392	LRGA	365.85	29.99	0.00	39.42	326.43	39.42	326.43	
Reference Ba	rometric l	Pressure			29.99						
Elev = elevati	on										
amsl = above	mean sea	level									
BP = baromet	ric pressu	ire									
DTW = depth	to water	in feet belo	w datum								
URGA = Upp	er Regior	nal Gravel A	Aquifer								
LRGA = Low	er Region	nal Gravel A	Aquifer								
UCRS = Upp	er Contin	ental Recha	rge System	L							
*Assumes a b	arometric	efficiency	of 1.0								

Table E.1. C-746-U Landfill Third Quarter 2022 (July) Water Levels

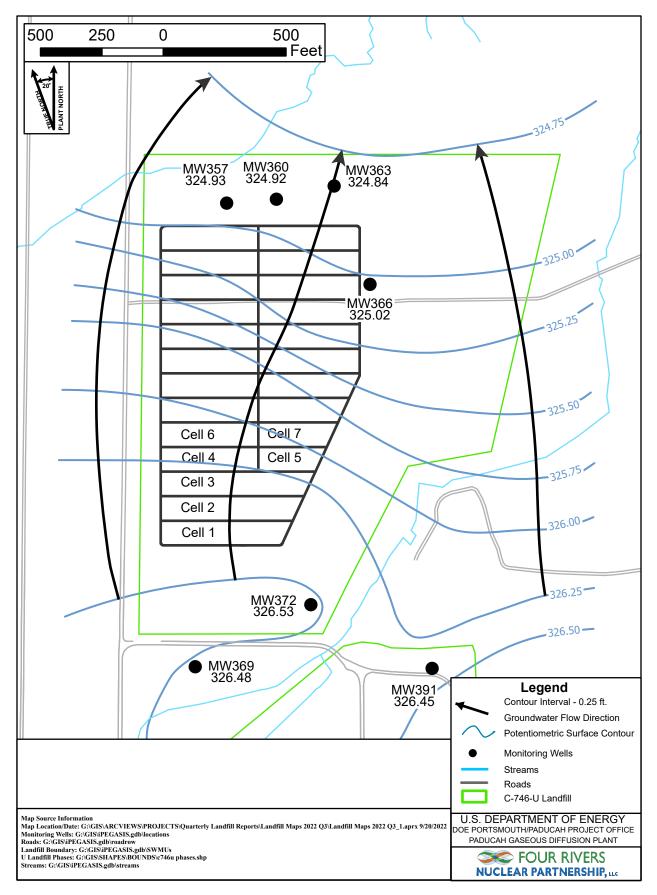


Figure E.2. Potentiometric Surface of the Upper Regional Gravel Aquifer at the C-746-U Landfill, July 27, 2022

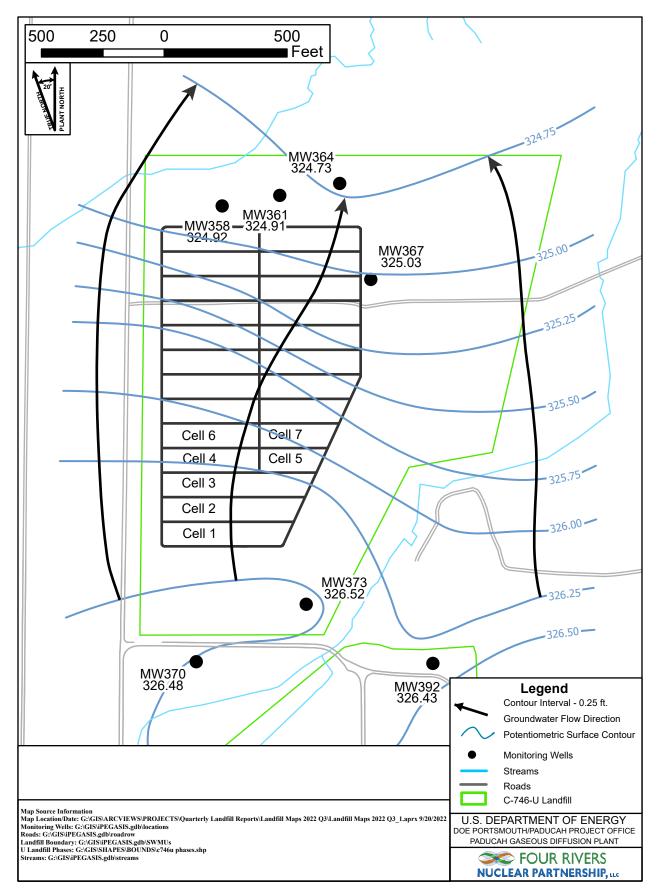


Figure E.3. Potentiometric Surface of the Lower Regional Gravel Aquifer at the C-746-U Landfill, July 27, 2022

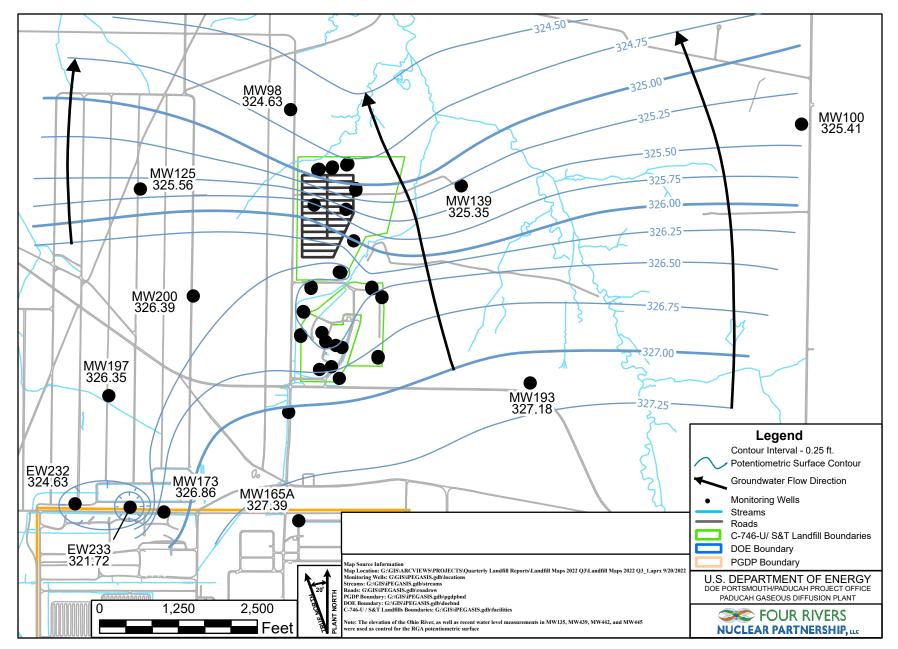


Figure E.4. Vicinity Potentiometric Surface of the Regional Gravel Aquifer, July 27, 2022

	ft/ft
Beneath Landfill—Upper RGA	$8.58 imes 10^{-4}$
Beneath Landfill—Lower RGA	$9.09 imes 10^{-4}$
Vicinity	4.92×10^{-4}

Table E.2. C-746-U Landfill Hydraulic Gradients

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	c Discharge (q)	Average Linear Velocity (v)				
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s			
Upper RGA								
725	0.256	0.622	2.20×10^{-4}	2.489	8.79×10^{-4}			
425	0.150	0.365	1.29×10^{-4}	1.459	5.15×10^{-4}			
Lower RGA								
725	0.256	0.659	2.33×10^{-4}	2.635	9.30×10^{-4}			
425	0.150	0.386	1.36×10^{-5}	1.545	5.45×10^{-4}			

APPENDIX F

NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the third quarter 2022 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW372
Lower Regional Gravel Aquifer	Technetium-99	MW361, MW364

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

8/29/2022

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4795	MW361	Trichloroethene	8260D	5.59	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

Groundwater Flow System	T			UCR	s							URG	ΞA					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003	_					*	*				*			*							
Quarter 3, 2004	_					*										*					
Quarter 3, 2005	_					*															
Quarter 4, 2005						*														_	_
ALPHA ACTIVITY	_															_					
Quarter 1, 2004 Quarter 2, 2004	_																				_
Quarter 3, 2004 Quarter 3, 2009	_					-															
ALUMINUM						-															
Quarter 3, 2003											*									_	
BETA ACTIVITY											*										
Quarter 1, 2004																				_	
Quarter 2, 2004	_																				
Quarter 3, 2004	_																				_
Quarter 4, 2004	1		-													-				-	
Quarter 4, 2004 Quarter 4, 2005	1		-													-				-	
Quarter 1, 2005	1		-													-				-	
Quarter 2, 2006	1		-												-	-				-	
Quarter 3, 2006	1		-													-				-	
Quarter 4, 2006	1		-													-				-	-
Quarter 1, 2007	1		-													-				-	
Quarter 2, 2007 Quarter 2, 2007	1		-													-				-	
Quarter 3, 2007	_																				_
Quarter 4, 2007																					
Quarter 1, 2008																					_
Quarter 2, 2008	-														-						
Quarter 3, 2008	_													-		-					
Quarter 4, 2008	-																				
Quarter 1, 2009	-																		-		
Quarter 2, 2009	-																				
Quarter 3, 2009	_															-					
Quarter 4, 2009	-																				
Quarter 1, 2009	-									-											
Quarter 2, 2010															-						
Quarter 3, 2010																					
Quarter 4, 2010										-											_
Quarter 2, 2011															-						_
Quarter 4, 2011										_											
Quarter 1, 2012															-						_
Quarter 2, 2012																					_
Quarter 3, 2012																		(()))))))			_
Quarter 4, 2012										-											
Quarter 1, 2012																					
Quarter 3, 2013	1	-	-									-	-	-	Ē	1		-			
Quarter 4, 2013	1																			-	-
Quarter 1, 2013	1	-	-									-	-	-	Ē	1		-			
Quarter 4, 2014	1																			-	_
Quarter 1, 2015	1																				
Quarter 2, 2015	1																			-	_
Quarter 4, 2015	1		1													<u> </u>					_
Quarter 3, 2016	1		1												1	1					_
Quarter 4, 2016	1		1												1	1					
Quarter 2, 2017	1	1	1									1	1		1	1		1			_
Quarter 3, 2017	1															1					
Quarter 4, 2017	1															1					
Quarter 1, 2018	1														<u> </u>	1					
Quarter 2, 2018	1		1												1	1				_	_
Quarter 3, 2018	1		1												1	1					_
Quarter 4, 2018	1	1	1									1	1	1		1		1			
Quarter 1, 2019	1		1												<u> </u>	1					_
Quarter 2, 2019	1															1					
Quarter 3, 2019	1	1	1									1	1			1		1			_
Quarter 4, 2019	1													<u> </u>							_
Quarter 1, 2020	1	-	-									-	-	-		1		-			
Quarter 2, 2020	1								_						<u> </u>						
Quarter 3, 2020	1															l –				-	
Quarter 4, 2020	1		-												-	-					
BROMIDE																					
Quarter 2, 2004													*								
	-				_		-	-								-			_		
																					-

Groundwater Flow System				UCR	s							URG	A					LRG	GA		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 3, 2003										*											
Quarter 2, 2005																					*
Quarter 3, 2006															*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						ц.
Quarter 3, 2011															÷						*
Quarter 4, 2011															*						
Quarter 1, 2012															*						*
Quarter 2, 2012 Quarter 3, 2012															*						*
Quarter 3, 2012 Quarter 4, 2012															*						Ŧ
Quarter 1, 2012															*						*
Quarter 1, 2013 Quarter 2, 2013															*						Ŧ
															*						*
Quarter 3, 2013 Quarter 4, 2013															*	I		 	<u> </u>		Ŧ
Quarter 4, 2013 Quarter 2, 2014	-														*			 	 		*
Quarter 3, 2014 Quarter 3, 2014															*	<u> </u>		<u> </u>	<u> </u>		*
Quarter 3, 2014 Quarter 4, 2014	-														*			 	 		Ŧ
															*						
Quarter 2, 2015 Quarter 3, 2015	-														*		-	 	 		-
	-	-					-		-		-	-			* *		-	 	 		-
Quarter 4, 2015 Quarter 1, 2016	-	-					-		-		-				*	-		 	 		-
Quarter 1, 2016 Quarter 2, 2016															*						
	*														Ŧ						
Quarter 2, 2017	_																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*							J.													
Quarter 3, 2019	*							*							JL.						
Quarter 4, 2019								*							*						
Quarter 1, 2020																					
Quarter 2, 2020	<u>ч</u>							*							*						
Quarter 3, 2020	*							*							*						
Quarter 4, 2020															*						
Quarter 1, 2021															*						
Quarter 2, 2021								*							*						
Quarter 3, 2021															*						
Quarter 4, 2021															*						
Quarter 1, 2022															*						
Quarter 2, 2022															*						
Quarter 3, 2022															*						_
CARBON DISULFIDE										*											
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006	<u> </u>	*	<u> </u>		<u> </u>	*	L	<u> </u>	L	L	J.	L	L		<u> </u>	I	L	<u> </u>	<u> </u>		
Quarter 3, 2010	<u> </u>	*	<u> </u>		<u> </u>	L	L	<u> </u>	L	L	*	L	L	.	<u> </u>	I	L	<u> </u>	<u> </u>		
Quarter 4, 2010														*	*			 	 		-
Quarter 1, 2011	NIP														*						
CHEMICAL OXYGEN DEMA	ND									*	*	*	÷	*	*						
Quarter 3, 2002	I									*	*	*	*	*	*	I		<u> </u>	<u> </u>		
Quarter 4, 2002										*	*										
Quarter 1, 2003 Ouarter 2, 2003										*	*	*						 	 		-
Q	*									¥	Ŧ	*				*		<u> </u>	<u> </u>		
Quarter 3, 2003	*					*				*	*					*		 	 		-
Quarter 4, 2003						*				*	*					I		I			<u> </u>
Quarter 3, 2004	I					J.				*					<u>ч</u>	*		<u> </u>	*		_
Quarter 3, 2005						*				*					*	*		*	*		-
Quarter 4, 2005						*												*	*		
Quarter 1, 2006	I															I		*	*		
Quarter 4, 2016 Quarter 1, 2017											*							*			
Quarter 1, 2017	I										*	*			*	I		<u> </u>	<u> </u>		
Quarter 2, 2019	I											*			*	I		<u> </u>	<u> </u>		<u>ч</u>
Quarter 3, 2019															*						*
Quarter 4, 2019															*						
CHLORIDE																				*	
Quarter 1, 2006															*					*	<u> </u>
Quarter 2, 2014															*						
COBALT	*						*			*	*		*	*	*	*	*	*		*	
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*	 	*	-
Quarter 1, 2004														*				 	 		-
Quarter 2, 2016	L	L	L		L		L	L	L		L	L		*	L	L	L	L	L		

Gradient D S S D D U U D D U U D D D U D D D U D<		1			UCD	C							UDC						LDC			
Number of Wall Stall 353 379 379 374 376 386 577 387	Groundwater Flow System	D	c	c			D	D	П	T	D	D			T	Ш	D	D			II	U
CONNECTMINY Control																						373
Quarter 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Quarter 2, 2004 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Quarter 2, 2004 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Quarter 1, 2005 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Quarter 1, 2005 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Quarter 1, 2005 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Quarter 1, 2005 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Quarter 1, 2007 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Image: Section 1, 2003 Quarter 1, 2007 Image: Section 1, 2003 Image: Section		308	3/3	370	3//	339	302	303	3/1	5/4	300	300	303	337	309	372	307	301	304	338	370	3/3
Quarter 1.2003 Image: Section 2.2003 Im											-1-											
Quarter 2.2003																						
Quarter 1, 2003 Image: Solution 1, 2004 Image: Solution 1, 2004 Image: Solution 1, 2004 Quarter 2, 2004 Image: Solution 1, 2005 Image: Solu																						
Quarter 2.004 Image: Solution 1, 2004 Image: Solution 1, 2005 Image: Solution 1, 2007 Image: Solution 1, 2007<												*										
Quarter 3. 2004 Image: Section 2. 2005 Image: Section 2. 2007	Quarter 4, 2003										*											
Quarter 2.2004 Image: Source 3.2004 Image: Source 3.2004 Image: Source 3.2005 Quarter 1.2005 Image: Source 3.2005 Image: Source 3.2005 Image: Source 3.2005 Quarter 3.2005 Image: Source 3.2005 Image: Source 3.2005 Image: Source 3.2005 Quarter 3.2006 Image: Source 3.2005 Image: Source 3.2005 Image: Source 3.2005 Quarter 3.2006 Image: Source 3.2007 Image: Source 3.2007 Image: Source 3.2007 Quarter 3.2007 Image: Source 3.2007 Image: Source 3.2007 Image: Source 3.2007 Quarter 3.2007 Image: Source 3.2007 Image: Source 3.2007 Image: Source 3.2007 Quarter 3.2007 Image: Source 3.2007 Image: Source 3.2007 Image: Source 3.2007 Quarter 3.2008 Image: Source 3.2007 Image: Source 3.2007 Image: Source 3.2007 Quarter 3.2008 Image: Source 3.2007 Image: Source 3.2007 Image: Source 3.2007 Quarter 3.2009 Image: Source 3.2007 Image: Source 3.2007 Image: Source 3.2007 Quarter 3.2007 Image: Source 3.2007 Image: Source 3.2007 Image: Source 3.2007 Quarter 3.2007 Image: Sour											*											
Quarter 1. 2005 Image: Constraint of the second secon											*											
Quarter 1. 2005 Image: Source 2. 2007 I																						
Quarter 2, 2005																*						
Quarter 2, 2005 Image: Application of the second of the seco																						
Quarter 4, 2005 Image: Source 4, 2005 Image: Source 4, 2005 Image: Source 4, 2005 Quarter 2, 2006 Image: Source 4, 2007 Image: Source 4, 2007 Image: Source 4, 2007 Quarter 1, 2007 Image: Source 4, 2007 Image: Source 4, 2007 Image: Source 4, 2007 Quarter 4, 2007 Image: Source 4, 2007 Image: Source 4, 2007 Image: Source 4, 2007 Quarter 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Quarter 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Quarter 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Quarter 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Quarter 4, 2009 Image: Source 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Quarter 4, 2009 Image: Source 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Quarter 4, 2009 Image: Source 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008 Quarter 4, 2010 Image: Source 4, 2008 Image: Source 4, 2008 Image: Source 4, 2008																*				-1-		
Quarter 1, 2006 Image: Particle Constraint of the second sec							*													*		
Ountry 2, 2006 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 1, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 3, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 4, 2008 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 4, 2009 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 4, 2009 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 4, 2009 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 4, 2010 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 4, 2010 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 4, 2010 Image: Solution 2, 2007 Image: Solution 2, 2007 Image: Solution 2, 2007 Quarter 4, 2012 Image: Solution 2, 2007 Image: Solution 2, 2007 </td <td></td> <td>*</td> <td></td> <td></td> <td></td>																			*			
Quarter 1, 2007 Image: August 1, 2007 Image: August 1, 2007 Image: August 1, 2007 Quarter 3, 2007 Image: August 1, 2007 Image: August 1, 2007 Image: August 1, 2007 Quarter 3, 2007 Image: August 1, 2007 Image: August 1, 2007 Image: August 1, 2007 Quarter 3, 2007 Image: August 1, 2008 Image: August 1, 2008 Image: August 1, 2008 Quarter 3, 2008 Image: August 1, 2008 Image: August 1, 2008 Image: August 1, 2009 Quarter 3, 2009 Image: August 1, 2009 Image: August 1, 2009 Image: August 1, 2009 Quarter 3, 2009 Image: August 1, 2009 Image: August 1, 2009 Image: August 1, 2009 Image: August 1, 2009 Quarter 1, 2010 Image: August 1, 2010 Image: August 1, 2010 Image: August 1, 2010 Image: August 1, 2010 Quarter 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Quarter 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Quarter 2, 2013 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011	Quarter 1, 2006															*						
Quarter 1, 2007 Image: August 1, 2007 Image: August 1, 2007 Image: August 1, 2007 Quarter 3, 2007 Image: August 1, 2007 Image: August 1, 2007 Image: August 1, 2007 Quarter 3, 2007 Image: August 1, 2007 Image: August 1, 2007 Image: August 1, 2007 Quarter 3, 2007 Image: August 1, 2008 Image: August 1, 2008 Image: August 1, 2008 Quarter 3, 2008 Image: August 1, 2008 Image: August 1, 2008 Image: August 1, 2009 Quarter 3, 2009 Image: August 1, 2009 Image: August 1, 2009 Image: August 1, 2009 Quarter 3, 2009 Image: August 1, 2009 Image: August 1, 2009 Image: August 1, 2009 Image: August 1, 2009 Quarter 1, 2010 Image: August 1, 2010 Image: August 1, 2010 Image: August 1, 2010 Image: August 1, 2010 Quarter 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Quarter 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Quarter 2, 2013 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011 Image: August 1, 2011	Ouarter 2, 2006															*						
Quarter 1, 2007																						
Quarter 2, 2007 Image: A 2007 Image:																_						
Quarter A. 2007											-						-					
Quarter 1, 2007 Quarter 2, 2008 * * Quarter 2, 2008 * * * Quarter 2, 2008 * * * Quarter 2, 2008 * * * Quarter 4, 2008 * * * Quarter 4, 2009 * * * Quarter 4, 2009 * * * Quarter 4, 2010 * * * Quarter 4, 2011 * * * Quarter 4, 2011 * * * Quarter 4, 2011 * * * Quarter 4, 2012 * * * <td></td>																						
Quarter 1, 2008 Image 1, 2008 Image 1, 2008 Image 1, 2009 Quarter 3, 2008 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2009 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2009 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2009 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2010 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2010 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2010 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2010 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2010 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2011 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2011 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2011 Image 1, 2009 Image 1, 2009 Image 1, 2009 Quarter 1, 2010 Image 1, 2009 Image 1, 2009 Image 1, 2009																						
Quarter 3, 2008 Image	Quarter 4, 2007																					
Quarter 4, 2008 Image 4, 2009 Image	Quarter 1, 2008															*						
Quarter 4, 2008 Image 4, 2009 Image		1	1	1					1	1					1			1	1			
Quarder 1,2008 Image 1,2009 Image 1,200		1	1	1					1	1					1			1	1			
Oundrof 1, 2009 Image 2, 2009 Image		1									-										-	
Ountrol 2,2009 Image: Section of the sect																					<u> </u>	
Quarter 3, 2009 Image 3, 2009 Image 3, 2009 Image 3, 2009 Quarter 1, 2010 Image 3, 2010 Image 3, 2010 Image 3, 2010 Quarter 3, 2010 Image 3, 2010 Image 3, 2010 Image 3, 2010 Quarter 3, 2010 Image 3, 2010 Image 3, 2010 Image 3, 2010 Quarter 3, 2011 Image 3, 2011 Image 3, 2010 Image 3, 2010 Quarter 3, 2011 Image 3, 2011 Image 3, 2010 Image 3, 2010 Quarter 3, 2012 Image 3, 2012 Image 3, 2012 Image 3, 2012 Quarter 3, 2012 Image 3, 2012 Image 3, 2012 Image 3, 2012 Quarter 3, 2012 Image 3, 2012 Image 3, 2012 Image 3, 2012 Quarter 3, 2012 Image 3, 2012 Image 3, 2012 Image 3, 2012 Quarter 3, 2012 Image 3, 2012 Image 3, 2012 Image 3, 2012 Quarter 1, 2013 Image 3, 2013 Image 3, 2013 Image 3, 2013 Quarter 1, 2013 Image 3, 2014 Image 3, 2014 Image 3, 2014 Quarter 1, 2014 Image 3, 2014 Image 3, 2014 Image 3, 2014																					<u> </u>	
Quarter 1, 2009		1	L	L	L	L	L	L	L	L	L	L	L	L	L		L	L	L	<u> </u>		L
Quarter 1, 2010 Image 2, 2010 Image	Quarter 3, 2009																					
Ounder 1, 2010 Image 2, 2010 Image 2	Quarter 4, 2009															*						
Ounter 2, 2010 Image 2, 2010 Image 2, 2010 Image 2, 2011 Ounter 4, 2010 Image 2, 2011 Image 2, 2011 Image 2, 2011 Image 2, 2011 Ounter 2, 2011 Image 2, 2012 Image 2, 2013 Image 2, 2013 Image 2, 2013 Image 2, 2013 Image 2, 2014 Image 2, 2014 <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		1																				
Ounder 3, 2010 Image 4, 2010 Image 4		1	1	1											1		-	1	1		-	
Quarter 4, 2010 Image 1		1	<u> </u>	<u> </u>											<u> </u>			<u> </u>	<u> </u>		-	
Quarter 1, 2011 * * * Quarter 3, 2011 * * * * Quarter 4, 2011 * * * * * Quarter 3, 2011 * * * * * * Quarter 1, 2012 *																	l					
Quarter 2, 2011 * * * * Quarter 4, 2011 * * * * Quarter 4, 2011 * * * * Quarter 4, 2012 * * * * Quarter 3, 2012 * * * * Quarter 4, 2012 * * * * Quarter 4, 2012 * * * * Quarter 2, 2013 * * * * Quarter 3, 2013 * * * * * Quarter 3, 2013 * * * * * * Quarter 4, 2014 * * * * * * * Quarter 4, 2015 *		<u> </u>							I	I						_	I					
Quarter 3, 2011 Image: Constraint of the second secon																						
Quarter 4, 2011 Image: Constraint of the second secon	Quarter 2, 2011															*						
Quarter 1, 2012 Image: Constraint of the second secon	Quarter 3, 2011															*						
Quarter 1, 2012 Image: Constraint of the second secon	Quarter 4, 2011															*						
Quarter 2, 2012															*							
Quarter 3. 2012															Ŧ							
Quarter 4, 2012 Image: Construction of the second sec																						
Quarter 1, 2013 * * * Quarter 2, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2015 * * Quarter 2, 2015 * * Quarter 2, 2015 * * Quarter 2, 2016 * * Quarter 2, 2019 * * Quarter 4, 2019 * * <																						
Quarter 2, 2013																						
Quarter 3, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 2, 2014 * * Quarter 3, 2014 * * Quarter 4, 2014 * * Quarter 4, 2014 * * Quarter 4, 2015 * * Quarter 3, 2015 * * Quarter 2, 2015 * * Quarter 2, 2016 * * Quarter 2, 2019 * * Quarter 3, 2020 * * Quarter 3, 2020 * * Quarter 3, 2021 * * Quarter 1, 2022 * *	Quarter 1, 2013															*						
Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 3, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 3, 2016 * * Quarter 3, 2019 * * Quarter 3, 2019 * * Quarter 4, 2020	Quarter 2, 2013															*						
Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 3, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 3, 2016 * * Quarter 3, 2019 * * Quarter 3, 2019 * * Quarter 4, 2020																*						
Quarter 1, 2014 * * * Quarter 3, 2014 * * * Quarter 4, 2014 * * * Quarter 4, 2014 * * * Quarter 3, 2014 * * * Quarter 4, 2015 * * * Quarter 3, 2015 * * * Quarter 2, 2015 * * * Quarter 3, 2015 * * * Quarter 2, 2016 * * * Quarter 2, 2019 * * * Quarter 2, 2020 * * * Quarter 4, 2020 * * * Quarter 2, 2021 * * * Quarter 2, 2021 * * * Quarter 2, 2021 * * * * <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																_						
Quarter 2, 2014 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																						
Quarter 3, 2014 * * Quarter 4, 2015 * Quarter 2, 2015 * Quarter 3, 2015 *																						
Quarter 4, 2014 Quarter 1, 2015 <																						
Quarter 1, 2015 Quarter 2, 2015 <	Quarter 3, 2014																					
Quarter 1, 2015	Quarter 4, 2014															*						
Quarter 2, 2015	Quarter 1, 2015															*						
Quarter 3, 2015 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																*						
Quarter 4, 2015																						
Quarter 1, 2016											-											
Quarter 2, 2016																						
Quarter 3, 2016																						
Quarter 2, 2019 * <td< td=""><td>Quarter 2, 2016</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 2, 2016																					
Quarter 2, 2019																	L					
Quarter 3, 2019 * * <t< td=""><td></td><td></td><td>ſ</td><td>ſ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ſ</td><td>*</td><td></td><td>ſ</td><td>ſ</td><td></td><td></td><td></td></t<>			ſ	ſ											ſ	*		ſ	ſ			
Quarter 4, 2019 * <td< td=""><td></td><td>1</td><td>l I</td><td>l I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>l I</td><td></td><td></td><td>l I</td><td>l I</td><td></td><td></td><td></td></td<>		1	l I	l I											l I			l I	l I			
Quarter 1, 2020 * * <t< td=""><td></td><td>1</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td>_</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td></t<>		1	-	-							-				-	_		-	-		-	-
Quarter 2, 2020 *		1	-	-					-	-					-		-	-	-		-	
Quarter 3, 2020 Image: Constraint of the second		1																		-	<u> </u>	
Quarter 4, 2020 * <td< td=""><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		<u> </u>																				
Quarter 1, 2021 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																						
Quarter 1, 2021 * <td< td=""><td>Quarter 4, 2020</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 4, 2020																L					
Quarter 2, 2021 * Quarter 3, 2021 * Quarter 3, 2022 * Quarter 3, 2022 * Quarter 3, 2022 * Quarter 3, 2022 * Quarter 3, 2003 * Quarter 1, 2003 * Quarter 1, 2003 * Quarter 1, 2004 * Quarter 1, 2005 * Quarter 2, 2004 * Quarter 1, 2005 * Quarter 2, 2005 * Quarter 3, 2006 * Quarter 4, 2006 * Quarter 4, 2006 * Quarter 4, 2006 <td></td> <td></td> <td>ſ</td> <td>ſ</td> <td></td> <td>ſ</td> <td>*</td> <td></td> <td>ſ</td> <td>ſ</td> <td></td> <td></td> <td></td>			ſ	ſ											ſ	*		ſ	ſ			
Quarter 3, 2021 * * * * Quarter 1, 2022 * * * * Quarter 3, 2022 * * * * DISSOLVED OXYGEN * * * * Quarter 3, 2023 * * * * Quarter 3, 2003 * * * * Quarter 3, 2003 * * * * Quarter 4, 2003 * * * * Quarter 2, 2004 * * * * Quarter 1, 2005 * * * * * Quarter 1, 2006 * * * * * * Quarter 1, 2006 * * * * * * * Quarter 2, 2006 *		1	1	1											1	_		1	1			
Quarter 1, 2022 * * * * Quarter 2, 2022 * * * * DISSOLVED OXYGEN * * * * Quarter 1, 2003 * * * * Quarter 2, 2003 * * * * Quarter 1, 2003 * * * * Quarter 2, 2003 * * * * Quarter 1, 2004 * * * * Quarter 2, 2004 * * * * Quarter 2, 2005 * * * * Quarter 1, 2006 * * * * Quarter 2, 2005 * * * * Quarter 3, 2006 * * * * Quarter 4, 2006 * * * * Quarter 2, 2007 * * *		1	l I	l I											l I			l I	l I			
Quarter 2, 2022 * * * * * Quarter 3, 2022 * * * * * DISSOLVED OXYGEN * * * * * Quarter 1, 2003 * * * * * Quarter 3, 2003 * * * * * Quarter 4, 2003 * * * * * Quarter 1, 2004 * * * * * Quarter 2, 2004 * * * * * Quarter 2, 2005 * * * * * Quarter 1, 2006 * * * * * Quarter 2, 2005 * * * * * Quarter 1, 2006 * * * * * Quarter 1, 2006 * * * * * Quarter 2, 2006 * * * * * Quarter 4, 2006 * * * * * Quarter 2, 2007 * * * * *																	-					
Quarter 3, 2022 * * * * DISSOLVED OXYGEN * * * * Quarter 1, 2003 * * * * Quarter 3, 2003 * * * * Quarter 4, 2003 * * * * Quarter 4, 2003 * * * * Quarter 2, 2004 * * * Quarter 2, 2004 * * * Quarter 2, 2005 * * * Quarter 1, 2006 * * * Quarter 2, 2006 * * * Quarter 4, 2006 * * * Quarter 4, 2006 * * * Quarter 3, 2007 * * *																					<u> </u>	
DISSOLVED OXYGEN *		I	L	L				L			L				L		L	L	L			
Quarter 1, 2003 * * * * Quarter 3, 2003 * * * Quarter 3, 2003 * * * Quarter 3, 2003 * * Quarter 1, 2004 * Quarter 2, 2004 * * Quarter 2, 2005 * * Quarter 1, 2006 * * Quarter 3, 2006 * * Quarter 4, 2006 * * Quarter 2, 2007 * * Quarter 3, 2007 * *																*						
Quarter 3, 2003 * * * Quarter 1, 2004 * Quarter 2, 2004 * Quarter 2, 2004 * Quarter 2, 2004 * Quarter 2, 2005 * Quarter 1, 2006 * Quarter 2, 2006 * Quarter 3, 2006 * Quarter 4, 2006 * * Quarter 3, 2007 * *																						
Quarter 3, 2003 * * * Quarter 1, 2004 * Quarter 2, 2004 * Quarter 2, 2004 * Quarter 2, 2004 * Quarter 2, 2005 * Quarter 1, 2006 * Quarter 2, 2006 * Quarter 3, 2006 * Quarter 4, 2006 * * Quarter 3, 2007 * *	Quarter 1, 2003					*	*				*											
Quarter 4, 2003 * Quarter 1, 2004 * Quarter 1, 2004 * Quarter 1, 2005 * Quarter 2, 2005 * Quarter 2, 2005 * * Quarter 1, 2006 * * Quarter 3, 2006 * * Quarter 4, 2006 * * Quarter 2, 2007 * * Quarter 2, 2007 * *		1																				
Quarter 1, 2004 * * * Quarter 2, 2004 * * * Quarter 2, 2005 * Quarter 1, 2005 * Quarter 2, 2005 * Quarter 2, 2006 * Quarter 3, 2006 * * Quarter 4, 2006 * * Quarter 2, 2007 * * Quarter 2, 2007 * *		1	l I	l I											l I	l I		l I	l I			
Quarter 2, 2004 * * * Quarter 1, 2005 * Quarter 2, 2005 * Quarter 1, 2006 * Quarter 2, 2006 * Quarter 3, 2006 * * Quarter 4, 2006 * * Quarter 2, 2007 * *		1	1	1											1	1	-	1	1		-	
Quarter 1, 2005 * Quarter 2, 2005 * * Quarter 2, 2006 * * Quarter 3, 2006 * * Quarter 4, 2006 * * * Quarter 3, 2007 * *						-			*								*					
Quarter 2, 2005 * * Quarter 1, 2006 * * Quarter 2, 2006 * * Quarter 3, 2006 * * Quarter 4, 2006 * * Quarter 4, 2006 * * Quarter 3, 2007 * *						*			*								*					
Quarter 1, 2006 * * Quarter 2, 2006 * * * Quarter 3, 2006 * * Quarter 3, 2006 * * Quarter 3, 2007 * * Quarter 3, 2007 * *		1	L	L	L	*	L	L	<u> </u>	L	L	L	L	L	L	L	L	L	L	<u> </u>		
Quarter 2, 2006 * * Quarter 3, 2006 * * Quarter 4, 2006 * * Quarter 3, 2007 * * Quarter 3, 2007 * *		1			L	L		L	*	L	L	L	L	L			L					
Quarter 2, 2006 * * Quarter 3, 2006 * * Quarter 4, 2006 * * Quarter 3, 2007 * * Quarter 3, 2007 * *		L	L	L	L	*	L	L	L	L	L	L	L	L	L	L	L	L	L			
Quarter 3, 2006 * * *		1				*			*													
Quarter 4, 2006 * * *		1	l I	l I											l I	l I		l I	l I			
Quarter 2, 2007 * *		1	-	-						*	-				-	-		-	-		-	-
Quarter 3, 2007 * * * *									*	Ť							-					
		I	I	I			I	l							I	I		I	I			
Quarter 1, 2008									*	*												1
						*														*		
Quarter 2, 2008 * *			ſ	ſ					*	*					ſ	ſ		ſ	ſ			
Quarter 3, 2008 * * • • • • • • • • • • • • • • • • •		1	1	1											1	1		1	1			
																					_	

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN																					
Quarter 1, 2009							*														
Quarter 2, 2009	-				*	÷		*	*												
Quarter 3, 2009	_				ж.	*	÷	*	*												
Quarter 1, 2010	-				*	*	*	*	*											*	*
Quarter 2, 2010 Quarter 3, 2010	-				*	* *		*	*											不	*
Quarter 4, 2010	-				*	*	*					*								*	
Quarter 1, 2010	-					*	*					*								*	
Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011						*			*												
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012									*												
Quarter 1, 2013						*			*												
Quarter 2, 2013							*		*												
Quarter 3, 2013	*				*		*	*	*												
Quarter 4, 2013									*											*	
Quarter 2, 2014	*				*	*	*	*	*									*			
Quarter 3, 2014	*	I			*	*	*	I	L	L								L			
Quarter 4, 2014	1	I				*	I	I	L	L								L			
Quarter 2, 2015	1	I			*	*	*	*	I	I								I			
Quarter 3, 2015	4.	I			*	*	*	*	<u> </u>	I		L	L	L	L			<u> </u>			
Quarter 4, 2015	*	I			*	*	*	<u> </u>	<u> </u>	I								<u> </u>			
Quarter 1, 2016	*	ير			*	*	*	يور	يور									I		*	*
Quarter 2, 2016	*	*			*	*	*	*	*	I			*					<u> </u>	-	*	*
Quarter 3, 2016 Quarter 4, 2016	1	<u> </u>			*	*	*	*	*	I			*					<u> </u>	-		<u> </u>
Quarter 4, 2016 Quarter 1, 2017	1					*	*		*				*								
Quarter 1, 2017 Quarter 2, 2017	*	 			*	*	*	*	 	<u> </u>			*					 			
Quarter 3, 2017	*	*			*	*	*	*										*			
Quarter 4, 2017	-	-			-	*	*	Ŧ										*			
Quarter 1, 2018					*	*	*	*										Ŧ		*	
Quarter 2, 2018					*	*	*	*													
Quarter 3, 2018	*				*	*	*	*													
Quarter 4, 2018					-	*															
Quarter 1, 2019					*	*	*	*													
Quarter 2, 2019					*	*		*													
Quarter 3, 2019	*				*	*	*	*													
Quarter 4, 2019					*	*	*														
Quarter 1, 2020							*	*	*												
Quarter 2, 2020					*	*		*													
Quarter 3, 2020	*				*	*															
Quarter 4, 2020	*						*														
Quarter 1, 2021					*		*													*	
Quarter 2, 2021					*	*	*	*	*												
Quarter 3, 2021	*				*	*	*	*												*	
Quarter 4, 2021					*		*	*												*	
Quarter 1, 2022	*				*	*	*	*					*				*			*	
Quarter 2, 2022	*	*			*	*	*	*	*				÷				*			÷	
Quarter 3, 2022	*	*			*	*	*	*					*				*			*	
DISSOLVED SOLIDS										*						_					
Quarter 4, 2002 Quarter 1, 2003	-									*											
Quarter 1, 2003 Quarter 2, 2003	1-	<u> </u>					-	-	 	*								 			
Quarter 2, 2003 Quarter 3, 2003	1-	 					*	-	 	*	*							 			
Quarter 4, 2003	1	1	-	-			Ŧ	1	1	*	T						-	1			
Quarter 3, 2005	1	1				*	<u> </u>	<u> </u>	1	Ť						-		1			
Quarter 4, 2005	1	1				É	1	1	1	1					*			1			
Quarter 1, 2000 Ouarter 1, 2007	1	1					1	1	1	1					*			1			
Quarter 2, 2007	1	1					1	1	1	1					*			1			
Quarter 4, 2008	1									1					*						
Quarter 1, 2009	1	1	1	1	1		1	1	1		1	1	1	1	*		1	1			
Quarter 2, 2009															*						
Quarter 3, 2009	L	L								L					*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010	1	I					I	I	I	I					*			I			
Quarter 1, 2011	1	I							<u> </u>	L					*			<u> </u>			
Quarter 2, 2011	1	I					I	I	L	L					*			L			
Quarter 3, 2011	1	I					I	I	L	L					*			L			
Quarter 4, 2011	1	L			ļ		<u> </u>	<u> </u>	L	I		ļ	ļ	<u> </u>	*			L			
Quarter 1, 2012	1	I					I	I	L	L				*	*			L			
Quarter 2, 2012	1	I							I	I					*			I			*
Quarter 3, 2012	1	I			L		<u> </u>	<u> </u>	<u> </u>	I		L	L	L	*			<u> </u>			*
Quarter 4, 2012	1	I			L		<u> </u>	<u> </u>	<u> </u>	I		L	L	L	*			<u> </u>			
	1	1	L						I						*			I			
Quarter 1, 2013																					
Quarter 2, 2013																					
Quarter 2, 2013 Quarter 3, 2013															*						
Quarter 2, 2013	E																				

CrankerDD </th <th></th> <th></th> <th></th> <th></th> <th>UCD</th> <th>6</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>UDC</th> <th>1.4</th> <th></th> <th></th> <th></th> <th></th> <th>LDC</th> <th></th> <th></th> <th></th>					UCD	6							UDC	1.4					LDC			
Namine (Weil) X68 X78 X78 X78 <thx78< th=""> <th< th=""><th>Groundwater Flow System</th><th>D</th><th>0</th><th></th><th></th><th></th><th>D</th><th>D</th><th></th><th></th><th>D</th><th></th><th></th><th></th><th></th><th></th><th>D</th><th>D</th><th></th><th></th><th></th><th></th></th<></thx78<>	Groundwater Flow System	D	0				D	D			D						D	D				
Dissol Curve Southese																						
		368	375	376	377	359	362	365	571	574	366	360	363	357	369	572	367	361	364	358	370	373
Quarte 2, 2013 Image: A 2014 Image:	Quarter 1, 2014																					
Counter 3, 2015 Counter 4, 2017 Counter 4,	Quarter 2, 2014															*						
Counter 3, 2015 Counter 4, 2017 Counter 4,	Quarter 4, 2014															*						
Quarter 3, 2015 Image: A grant																*						
Quarter 2, 2016 Image: 2, 2017 Image:																						
Quarter 1, 2016 Image: A gamma 1, 2019 Image: A gamma 1, 2019 Image: A gamma 1, 2019 Quarter 4, 2019 Image: A gamma 1, 2019 Image: A gamma 1, 2019 Image: A gamma 1, 2019 Quarter 1, 2020 Image: A gamma 1, 2019 Image: A gamma 1, 2019 Image: A gamma 1, 2019 Quarter 1, 2021 Image: A gamma 1, 2019 Image: A gamma 1, 2019 Image: A gamma 1, 2019 Quarter 1, 2021 Image: A gamma 1, 2019 Image: A gamma 1, 2019 Image: A gamma 1, 2019 Quarter 1, 2021 Image: A gamma 1, 2019 Quarter 1, 2023 Image: A gamma 1, 2019 Quarter 2, 2003 Image: A gamma 1, 2019 Image: A gamma 1, 2019 <td></td>																						
Quarter 3, 2019		_									-						-					
Quarter 2.000 Image: Constraint of the second																						
Quarter 1, 2000 Image: Constraint of the second secon																						
Quertar 3, 200 Quertar 4, 200 Quertar																						
Quarter A. 2000 Image: A 2000 Image:	Quarter 1, 2020															*						
Quarter A. 2000 Image: A 2000 Image:	Quarter 2, 2020															*						
Quarter J. 2020 Image: A 2020 Image:																						
Quarter 1, 2021 Image: Solution of the		_									-						-					
Quarter 2, 2021																						
Quarter 4, 2021 •																						
Ounce 1, 2021 Image: Application of the second	Quarter 2, 2021																					
Quarter 4, 2021 Image: Control of the second s	Quarter 3, 2021															*						
Quarter 1, 2022																*						
Quarter 2, 2022 Image: Control of the con																						
Outror 2, 2022 Outror 2, 2003 Outror 2, 2004 Outror		_									-						-					
IODDE Image: Solution of the solution																						
Quarter 2, 2003																*						
Quarter 3, 2003 •	IODIDE																					
Quarter 3, 2003 •	Quarter 2, 2003		1	1					Γ	1							*					
Quarter 4, 2003 Quarter 3, 2010 Image: Constraint of the second of the		*	1	1						1	*											
Quarter 3, 2010 Commentation Commentati		-	-	-				*	1	-	<i>.</i>			-			-	-				
IODEN.131 IODEN.131 <thioden.131< th=""> <thioden.131< th=""> <thi< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>*</td><td>*</td><td>*</td><td>-</td><td></td><td>-</td><td></td><td>*</td><td>-</td><td>-</td><td></td><td>*</td><td>-</td><td>-</td><td>-</td><td>-</td></thi<></thioden.131<></thioden.131<>		-	-	-	-	-	*	*	*	-		-		*	-	-		*	-	-	-	-
Quarter 3, 2010 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2009 Quarter 4,							*		*		_			*			_	*				
IODOMETHANE Image: state in the state in th																						
IODOMETHANE Image: state in the state in th	Quarter 3, 2010	LĪ	L	L				L	L	L	L		L	L			L	L				
Quarter 4, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 4,																						
IBON Imon Imon <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							*															
Quarter 4, 2002 *							Ŧ															
Quarter 3, 2003 Image: Constraint of the second secon							-															
Quarter 4, 2003 Image: Constraint of the second secon							*		L													
Ounter 1. 2004 Image: Constraint of the cons	Quarter 3, 2003																*					
Ounter 1. 2004 Image: Constraint of the second	Ouarter 4, 2003										*						*					
Quarter 2, 2004 Construct 3, 2005 Construct 3, 2006 Construct 3, 2006 Construct 3, 2006 Construct 3, 2006 Construct 3, 2000											_											
Quarter 3, 2004 Image: Constraint of the second of the secon		_															Ŧ					
Quarter 3, 2005 Constraints Constraints <thconstraints< th=""></thconstraints<>																						
MACRESHIM Aug A											*											
Quarter 2, 2005 Image: Constraint of the con	Quarter 3, 2005																*					
Quarter 2, 2005 Image: Constraint of the con	MAGNESIUM																					
Quarter 3, 2005 Parter 3, 2006 Parter 3, 2006 Parter 3, 2006 Parter 3, 2006 Parter 3, 2007 Parter 3, 2007 Parter 3, 2008 Parter 3, 2008 Parter 3, 2008 Parter 3, 2009 Parter																*						*
Quarter 2, 2006 Market 3, 2006 Market 3, 2006 Market 3, 2007 Market							*									*						
Quarter 3, 2006 Image: Construct 1, 2007 Image: Construct 1, 2009 Image: Construct							*															
Quarter 1, 2007 Market 2, 2008 Market 2, 2009 Market 2, 2000 Market 2, 2000 Market 2, 2010 Market 2, 2010 Market 2, 2010 Market 2, 2011 Market 2, 2012 Market 2, 2013 Market 2, 2014 Market	Quarter 2, 2006																					*
Quarter 2, 2009 * * Quarter 3, 2009 * * Quarter 4, 2009 * * Quarter 1, 2010 * * Quarter 2, 2010 * * Quarter 2, 2010 * * * * Quarter 2, 2010 * * Quarter 2, 2011 * Quarter 3, 2011 * Quarter 4, 2011 * Quarter 4, 2012 *	Quarter 3, 2006															*						
Quarter 2, 2008 M																*						
Quarter 2, 2009 Image: Constraint of the con																*						
Quarter 3, 2009 Market A, 2009 Market A, 2009 Market A, 2009 Market A, 2010 Market A, 2011 Market A, 2012 Market																						-
Quarter 4, 2009 Market Markt <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
Quarter 1, 2010 * * * Quarter 3, 2010 * * * Quarter 3, 2010 * * * Quarter 1, 2011 * * * * *																						
Quarter 2, 2010 Marter 3, 2010 Marter 3, 2010 Marter 3, 2011 Marter 3, 2012 Marter 3, 2013 Marter	Quarter 4, 2009															*						
Quarter 2, 2010 Marter 3, 2010 Marter 3, 2010 Marter 3, 2011 Marter 3, 2012 Marter 3, 2013 Marter	Ouarter 1, 2010															*						
Quarter 3, 2010 * * * Quarter 1, 2011 * * * Quarter 3, 2011 * * * Quarter 3, 2011 * * * Quarter 4, 2011 * * * Quarter 2, 2012 * * * Quarter 3, 2012 * * * Quarter 4, 2012 * * * Quarter 1, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * * Quarter 4, 2013 * * * Quarter 4, 2014 * * * Quarter 4, 2015 * * * Quarter 4, 2016 * * * Quarter 4, 2016 * * * Quarter 4, 2016 * * *																*						
Quarter 1, 2011 ** ** ** Quarter 2, 2011 ** ** ** Quarter 2, 2011 ** ** ** Quarter 4, 2011 ** ** ** Quarter 1, 2012 ** ** ** Quarter 2, 2012 ** ** ** Quarter 3, 2012 ** ** ** Quarter 4, 2012 ** ** ** Quarter 2, 2012 ** ** ** Quarter 4, 2013 ** ** ** Quarter 2, 2013 ** ** ** Quarter 2, 2014 ** ** ** Quarter 2, 2015 ** ** ** Quarter 2, 2015 ** ** ** Quarter 2, 2015 ** ** ** Quarter 2, 2016 **																						
Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 3, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2013 * * Quarter 3, 2013 * * Quarter 3, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 2, 2013 * * Quarter 4, 2013 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 4, 2015 * * Quarter 2, 2016																	_					
Quarter 3, 2011 * * * Quarter 4, 2012 * * * Quarter 2, 2012 * * * Quarter 2, 2012 * * * * <																						
Quarter 4, 2011 * * * <	Quarter 2, 2011																					
Quarter 1, 2012	Quarter 3, 2011															*						
Quarter 1, 2012			1	1					1	1												
Quarter 3, 2012 ** ** ** Quarter 3, 2012 ** ** ** Quarter 4, 2012 ** ** ** Quarter 2, 2013 ** ** ** Quarter 2, 2014 ** ** ** Quarter 4, 2013 ** ** ** Quarter 2, 2014 ** ** ** Quarter 2, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 2, 2015 ** ** ** Quarter 4, 2015 ** ** ** Quarter 2, 2016 ** ** ** Quarter 2, 2016 ** ** ** Quarter 3, 2017 * * * * Quarter 4, 2016 ** * * * Quarter 3,			1	1		-		-	-	1			-							-		
Quarter 3, 2012 ** ** ** Quarter 4, 2012 ** ** ** Quarter 2, 2013 ** ** ** Quarter 3, 2013 ** ** ** Quarter 3, 2013 ** ** ** Quarter 4, 2013 ** ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 2, 2015 ** ** ** Quarter 4, 2015 ** ** ** Quarter 1, 2016 ** ** ** Quarter 2, 2016 ** ** ** Quarter 3, 2016 ** ** ** Quarter 4, 2016 ** ** ** Quarter 4, 2016 ** ** ** Quarter 4, 2018 * * * Quarter 1, 2018 * * * Quarter 4, 2019 * * * * Quarter 4, 2019		-	-	-		-			-	-										-	-	-
Quarter 4, 2012 * * <t< td=""><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td>—</td><td></td><td><u> </u></td><td><u> </u></td><td></td><td></td><td>—</td><td><u> </u></td><td></td><td></td><td>L</td><td></td></t<>		<u> </u>						<u> </u>			—		<u> </u>	<u> </u>			—	<u> </u>			L	
Quarter 1, 2013 Image: Constraint of the constraint of t							L		L													
Quarter 1, 2013 Image: Constraint of the constraint of t	Quarter 4, 2012															*						_1
Quarter 2, 2013 ** ** ** Quarter 3, 2013 ** ** ** Quarter 3, 2013 ** ** ** Quarter 2, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2015 ** ** ** Quarter 4, 2015 ** ** ** Quarter 4, 2015 ** ** ** Quarter 2, 2016 ** ** ** Quarter 3, 2016 ** ** ** Quarter 3, 2016 ** ** ** Quarter 3, 2016 ** ** ** Quarter 4, 2016 ** ** ** Quarter 3, 2017 * * * Quarter 4, 2018 * * * Quarter 1, 2018 * * * * Quarter 4, 2019 * * * * Quarter 4, 2019 * * * * Quarter 4, 2020 * * * * *																*						
Quarter 3, 2013 Image: Constraint of the constraint of t			1	1						1												
Quarter 4, 2013 ** ** ** Quarter 2, 2014 ** ** ** Quarter 2, 2014 ** ** ** Quarter 2, 2015 ** ** ** Quarter 3, 2015 ** ** ** Quarter 4, 2015 ** ** ** Quarter 3, 2015 ** ** ** Quarter 4, 2016 ** ** ** Quarter 2, 2016 ** ** ** Quarter 3, 2016 * ** ** Quarter 2, 2016 ** ** ** Quarter 3, 2016 * * ** Quarter 4, 2016 * * * Quarter 2, 2017 * * * * Quarter 3, 2017 * * * * Quarter 3, 2017 * * * * Quarter 3, 2018 * * * * Quarter 4, 2019 * * * * Quarter 4, 2020 * * * <			1	1		-				1						*				-		-
Quarter 2, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2015 ** ** ** Quarter 2, 2016 ** ** ** Quarter 3, 2016 ** ** ** Quarter 3, 2016 ** ** ** Quarter 4, 2016 * ** ** Quarter 4, 2016 * ** ** Quarter 2, 2017 * * * * Quarter 2, 2017 * * * * * Quarter 3, 2017 * * * * * * Quarter 1, 2018 * * * * * * * Quarter 4, 2019 * * * * * * * * * Quarter 4, 2020 * * * * <		-	-	-	-	-			-	-		-			-				-	-	-	-
Quarter 4, 2014 * <td< td=""><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td>—</td><td></td><td><u> </u></td><td><u> </u></td><td></td><td></td><td>—</td><td><u> </u></td><td></td><td></td><td>L</td><td></td></td<>		<u> </u>						<u> </u>			—		<u> </u>	<u> </u>			—	<u> </u>			L	
Quarter 2, 2015 ** ** ** Quarter 3, 2015 ** ** ** Quarter 4, 2015 ** ** ** Quarter 2, 2016 ** ** ** Quarter 2, 2016 ** ** ** Quarter 2, 2016 ** ** ** Quarter 3, 2016 * ** ** Quarter 3, 2016 * * * Quarter 2, 2017 * * * * Quarter 3, 2017 * * * * * Quarter 3, 2017 * * * * * * Quarter 3, 2017 * </td <td></td> <td></td> <td>L</td> <td>L</td> <td></td> <td></td> <td></td> <td>L</td> <td>L</td> <td>L</td> <td>L</td> <td></td> <td>L</td> <td>L</td> <td></td> <td></td> <td>L</td> <td>L</td> <td></td> <td></td> <td></td> <td></td>			L	L				L	L	L	L		L	L			L	L				
Quarter 2, 2015 * * * *																						
Quarter 3, 2015 * * * Quarter 4, 2015 * * * Quarter 1, 2016 * * * Quarter 2, 2016 * * * <t< td=""><td></td><td></td><td>L</td><td>L</td><td></td><td></td><td></td><td>L</td><td>L</td><td>L</td><td>L</td><td></td><td>L</td><td>L</td><td></td><td>*</td><td>L</td><td>L</td><td></td><td></td><td></td><td></td></t<>			L	L				L	L	L	L		L	L		*	L	L				
Quarter 4, 2015 * * * <																						
Quarter 1, 2016 * * * Quarter 2, 2016 * * * Quarter 3, 2016 * * Quarter 2, 2016 * <			-	-		-				-	-									-		-
Quarter 2, 2016 * * * <		-				-														-	-	
Quarter 3, 2016 * <td< td=""><td></td><td></td><td>I</td><td>I</td><td>L</td><td></td><td></td><td></td><td>I</td><td>I</td><td></td><td>L</td><td></td><td>I</td><td>L</td><td></td><td></td><td>I</td><td>L</td><td></td><td></td><td></td></td<>			I	I	L				I	I		L		I	L			I	L			
Quarter 4, 2016 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							1									*						
Quarter 4, 2016 * <td< td=""><td>Quarter 3, 2016</td><td>*</td><td></td><td></td><td></td><td></td><td></td><td>L</td><td>L</td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 3, 2016	*						L	L				L				L					
Quarter 2, 2017 * <td< td=""><td></td><td>*</td><td>ſ</td><td>ſ</td><td></td><td></td><td></td><td></td><td></td><td>ſ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		*	ſ	ſ						ſ												
Quarter 3, 2017 * <td< td=""><td></td><td></td><td>1</td><td>1</td><td></td><td>-</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td></td<>			1	1		-				1						-				-		-
Quarter 1, 2018 * <td< td=""><td></td><td></td><td><u> </u></td><td><u> </u></td><td>-</td><td>-</td><td></td><td></td><td></td><td><u> </u></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></td<>			<u> </u>	<u> </u>	-	-				<u> </u>		-			-	-			-	-	-	-
Quarter 3, 2018 * <						-										-				-		-
Quarter 3, 2019 * <			L	L					L	L												
Quarter 3, 2019 * <	Quarter 3, 2018	*						L	L				L				L					
Quarter 4, 2019 * * Quarter 2, 2020 * * Quarter 4, 2020 * * Quarter 1, 2021 * * Quarter 2, 2021 * * Quarter 3, 2021 * * Quarter 4, 2021 * * Quarter 2, 2021 * * Quarter 4, 2021 * * Quarter 4, 2021 * * Quarter 2, 2022 * *		*	1	1		_				1						_		1		_		
Quarter 2, 2020 * * Quarter 4, 2020 * * Quarter 1, 2021 * * Quarter 3, 2021 * * Quarter 4, 2021 * * Quarter 4, 2021 * * Quarter 4, 2021 * * Quarter 2, 2022 * *																*						
Quarter 4, 2020 # # Quarter 1, 2021 # Quarter 2, 2021 # Quarter 3, 2021 # Quarter 4, 2021 # Quarter 1, 2022 # Quarter 2, 2022 #			<u> </u>	<u> </u>		-				<u> </u>										-	-	-
Quarter 1, 2021 ** ** Quarter 2, 2021 ** ** Quarter 3, 2021 ** ** Quarter 4, 2021 ** Quarter 2, 2022 **		<u> </u>				-														-		<u> </u>
Quarter 2, 2021 * * Quarter 3, 2021 * * Quarter 4, 2021 * * Quarter 1, 2022 * * Quarter 2, 2022 * *			L	L					L	L												
Quarter 2, 2021 * * Quarter 3, 2021 * * Quarter 4, 2021 * * Quarter 2, 2022 * *	Quarter 1, 2021								L								L					
Quarter 3, 2021 # # Quarter 4, 2021 # Quarter 1, 2022 # Quarter 2, 2022 #																*						
Quarter 4, 2021 #			1	1						1												
Quarter 1, 2022 # # Quarter 2, 2022 # #			<u> </u>	<u> </u>	-	-				<u> </u>		-			-				-	-	-	-
Quarter 2, 2022								<u> </u>			—		<u> </u>	<u> </u>				<u> </u>				
									L													
	Quarter 2, 2022															*						1
Quarter 3, 2022	Quarter 3, 2022		1	1						1						*	l –					
		-																			_	

Groundwater Flow System UCRS URGA Gradient D S S D D D U U D	LRG D 364	A D 358	U 370	U 373
Monitoring Well 368 375 376 377 359 362 365 371 374 366 360 363 357 369 372 367 361 MANGANESE Quarter 3, 2002 * % %				
MANGANESE Image: Constraint of the second seco	304	338	370	3/3
Quarter 3, 2002 * * *				_
Quarter 4, 2002 * * * * * *				_
	-			
	-			
Quarter 3, 2003 * * * * *	*	*		
Quarter 4, 2003 * * * * * *	*			
Quarter 1, 2004 * * * * *	*			
Quarter 2, 2004 * * * *	*			
Quarter 3, 2004 * * * * *				
Quarter 4, 2004 * * *				
Quarter 1, 2005 * * *				
Quarter 2, 2005 * * *				
Quarter 3, 2005 * * * *				
Quarter 4, 2005 * * *				
Quarter 1, 2006 *				
Quarter 2, 2006 * * * *				
Quarter 3, 2006 * * *				
Quarter 4, 2006 *				
Quarter 1, 2007	1			
Quarter 2, 2007	-			
Quarter 3, 2007	-		-	
	+			
Quarter 3, 2008	+			
Quarter 4, 2008 *	+			
Quarter 3, 2009 *	-			
Quarter 3, 2011 *	\square			
Quarter 2, 2016 *				
Quarter 3, 2016 *				
Quarter 1, 2022		*		
NICKEL				
Quarter 3, 2003 * •				
Quarter 1, 2022		*		
NITRATE AS NITROGEN				
Quarter 4, 2021				
OXIDATION-REDUCTION POTENTIAL				
Quarter 4, 2002		*		
Quarter 1, 2003		*		_
Quarter 2, 2003	1	*		
Quarter 2, 2003	+	-		
Quarter 4, 2003	-			
	-			*
	-		÷	*
Quarter 3, 2004 * * * * * *	-		*	*
Quarter 4, 2004 *	_		-1-	*
Quarter 1, 2005 *	_		*	*
Quarter 2, 2005 * * * *			*	
Quarter 3, 2005 * * * * * * *		*	*	*
Quarter 4, 2005 * * * *			*	
Quarter 1, 2006 * * * *				*
Quarter 2, 2006 * * * * *			*	
Quarter 3, 2006 * * * *			*	
Quarter 4, 2006 * * * * * *			*	*
Quarter 1, 2007 * * * * *			*	*
Quarter 2, 2007	-		*	*
Quarter 3, 2007	-		*	-
	+		*	*
		*		*
Quarter 1, 2008 * * * *	*	*	*	<u>ч</u>
Quarter 2, 2008 * * * * *	*		*	*
Quarter 3, 2008 * * * * * * * * *	*	*	*	*
Quarter 4, 2008 * * * * *	*		*	*
Quarter 1, 2009 * * * * *	*		*	
Quarter 2, 2009 * * * * * * * *	*		*	*
Quarter 3, 2009 * * * * * * * * * * * *	*	*	*	*
Quarter 4, 2009 * * * * * * * * * * * *	*	*	*	*
Quarter 1, 2010 * * * * * * * *	*		*	-
Quarter 2, 2010 * * * * * * * * *	*	*	*	*
Quarter 3, 2010 * * * * * * * * * * * * *	*	*	*	*
Quarter 4, 2010 * * * * * * * * * * * * *	*	*	*	*
Quarter 1, 2011	*	*	*	<u> </u>
Quarter 2, 2011 * * * * * * * * * * * * *	*	*	*	*
Quarter 3, 2011 * * * * * * * * * * * *	*	*	*	*
Quarter 4, 2011 * * * * * * * * * * * * *	*	-	*	*
	*	*	*	*
	*	*	*	*
Quarter 3, 2012 * * * * * * * * *	*	*	*	*
Quarter 4, 2012 * * * * * * * * * * *	*	*	*	*
Quarter 1, 2013 * * * * * * * * * * *	*	L.,	*	
Quarter 2, 2013 * * * * * * * * * * *	*	*	*	*
Quarter 3, 2013 * * * * * * * * * * * * * * * *	*	*	*	*
Quarter 4, 2013 * * * * * * * * * * * *	*	*	*	*
Quarter 1, 2014 * * * * * * * * * * * *	*	*	*	*
Quarter 2, 2014 * * * * * * * * * * * * * * * *	*	*	*	*
Quarter 3, 2014 * * * * * * * * * * * * * * *	*	*	*	*
Quarter 4, 2014 *	*	*	*	*
Quarter 4, 2014 * * * * * * * * * * * * * * * * * * *	*	*	*	*
Quarter 1, 2015 * <td>*</td> <td>*</td> <td>*</td> <td>*</td>	*	*	*	*
	-		*	
	*	*	· ·	*
Quarter 4, 2015 * * * * * * * * * * * * * * * *	*	*	*	*
Quarter 1, 2016 * * * * * * * * * * * * * *	*	*	*	*
				*
Quarter 2, 2016 * * * * * * * * * * * * * * * * *	*	*	*	
Quarter 2, 2016 * <td>*</td> <td>*</td> <td>*</td> <td>*</td>	*	*	*	*
Quarter 2, 2016 * * * * * * * * * * * * * * * *	_	_		

Groundwater Flow System	1			UCR	S					1		URG	A			1		LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
OXIDATION-REDUCTION P	OTEN	TIAI	_																		
Quarter 1, 2017	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 4, 2017		*				*	*	*	*	*		*	*	*	*		*	*		*	*
Quarter 1, 2018	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*		*	*
Quarter 2, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2018	*	*			*	*	* *	*	*	*	*	*	*	*	*	* *	*	* *	*	*	*
Quarter 1, 2019 Ouarter 2, 2019	*	*			*	* *	*	*	*	* *	*	*	* *	*	*	* *	* *	*	*	* *	* *
Quarter 2, 2019 Quarter 3, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 2, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 3, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 4, 2020	*	*				*	*	*	*	*	*		*	*	*	*	*	*		*	*
Quarter 1, 2021	*	*			*	*	*	*		*	*	*	*	*	*	*	*	*		*	*
Quarter 2, 2021	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2021	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2021	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2022	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2022	*	*			* *	* 3	* *	* *	* *	* *	* 3	* *	* 3	* 3	* *	* *	* *	* *	* *	* *	* *
Quarter 3, 2022	*	*		_	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL																	*				
Quarter 4, 2003	+	 					-	-				*				-	*	-			-
Quarter 3, 2004 Quarter 3, 2005	1	<u> </u>					*					*				-					-
Quarter 3, 2005 Quarter 2, 2006	+	<u> </u>				<u> </u>	* *	-		-	<u> </u>		<u> </u>	<u> </u>		-	<u> </u>	-		-	-
Quarter 3, 2006	1						*														
Quarter 1, 2007	1						*														
Quarter 2, 2007	1	1					*	1													
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016												*									
Quarter 3, 2004							*					*									
Quarter 2, 2006 Quarter 1, 2007		-					*					*									
Quarter 1, 2007 Quarter 2, 2007		-					*														
Quarter 3, 2007		1					*														
Quarter 2, 2008							*									-					
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006	1	I					4			*						L					
Quarter 1, 2008	1	I					*			L						L					
Quarter 2, 2012							*														
PCB-1248 Quarter 2, 2008							*														
PCB-1260	1						-														
Quarter 2, 2006							*														
pH	1						Ë														
Quarter 3, 2002										*											
Quarter 4, 2002	1	1						1		*											
Quarter 1, 2003	1									*											
Quarter 2, 2003	L									*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*		L	Ļ		
Quarter 3, 2005	-	I				*	L	<u> </u>			L		L	L		L	L	*	*		L
Quarter 4, 2005	1	I				*				<u> </u>						*			*		
Quarter 3, 2006	1	I												*		*					
Quarter 2, 2011	1													* *							
Quarter 3, 2011 Quarter 4, 2011	1													*							
Quarter 1, 2012	+							-						*		*	*				
Quarter 1, 2012 Quarter 2, 2012	+	-								-		*				*	-14				-
Quarter 1, 2012 Quarter 1, 2013	1	1				<u> </u>		-		*	<u> </u>	*	<u> </u>	<u> </u>		*	<u> </u>				-
Quarter 3, 2015	1									-		- ·					*				
	1																			*	*
Quarter 2, 2016		·	1	1																*	
Quarter 2, 2016 Quarter 3, 2016																					
	L																*				
Quarter 3, 2016					*					*		*					* *	*	*		
Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2018					*					*		*				*		* *	*		
Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018					*					*		*				* *			*		

Groundwater Flow System	1			UCR	S					1		URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
pH																					
Quarter 1, 2021																*		*		*	
Quarter 3, 2021																*					*
Quarter 4, 2021 POTASSIUM										_						*					*
Quarter 1, 2014	_						_									*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005																					
SELENIUM																					
Quarter 4, 2003																					
SODIUM										*	*		*								
Quarter 3, 2002 Quarter 4, 2002										* *	*		Ŧ	*							
Quarter 1, 2002										*	Ť			~							
Quarter 2, 2003										*	*										
Quarter 3, 2003											*										
Quarter 1, 2007											*										
Quarter 1, 2012														*							
Quarter 1, 2014															*						
Quarter 3, 2014	<u> </u>										*					L					
Quarter 4, 2014											*										
Quarter 4, 2015 Quarter 1, 2016							-				*					-					
Quarter 1, 2016											*										
Quarter 2, 2016 Quarter 3, 2016	-										* *					-					
Quarter 3, 2016 Quarter 4, 2016	1										*										
Quarter 1, 2017											*					-					
Quarter 2, 2017											*										
Quarter 3, 2017											*										
Quarter 4, 2017											*										
Quarter 1, 2018											*										
Quarter 3, 2018											*					_					
STRONTIUM-90																					
Quarter 4, 2008 SULFATE							_														
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*		÷												
Quarter 1, 2005	-				*	*	*		*						*						
Quarter 2, 2005 Quarter 3, 2005					*	*	*		*						Ŧ						
Quarter 4, 2005					Ŧ	Ŧ	*								*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007	<u> </u>	*					*									<u> </u>					
Quarter 4, 2007	<u> </u>	*			بىر		يىر		يور												
Quarter 1, 2008 Quarter 2, 2008		*			*	*	*		*			-				-					
Quarter 3, 2008	-	*			*	*	*									-					
Quarter 4, 2008		*				*	*		1			1									
Quarter 1, 2009	L	*	L				*	L	L		L	L		L	L			L	L		
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*			_					*						
Quarter 4, 2009	<u> </u>	*			*	*									*						
Quarter 1, 2010	I	*			*	*	*								*		ļ				
Quarter 2, 2010	-	*			*	* *	*								*						
Quarter 3, 2010 Quarter 4, 2010		*			*	*	*								*						
Quarter 1, 2010	1	*				Ť	- -								-	-					
Quarter 2, 2011	1	*			*	*	*								*						
Quarter 3, 2011	1	*				*	*	*							*						
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012	I	*				*									*		ļ				<u> </u>
Quarter 4, 2012	<u> </u>	*				*									*						
Quarter 1, 2013 Quarter 2, 2013	I	*				*									* *						
Quarter 2, 2013 Quarter 3, 2013	*	*	<u> </u>	*	*	*	*	<u> </u>			<u> </u>		<u> </u>	<u> </u>	*	-		<u> </u>	<u> </u>	<u> </u>	
Quarter 3, 2013 Ouarter 4, 2013		*		-	-	<u> </u>									*						
Quarter 1, 2014		*							L			L			*						
Quarter 2, 2014	*	*			*		*	*							*						
Quarter 3, 2014	*	*			*	*	*	*							*						
Quarter 4, 2014	I	*				*															
Quarter 1, 2015	L	*							L	L		L					L				

Groundwater Flow System	1			UCR	s					1		URC	A			1		LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE																					
Quarter 2, 2015	*	*			*		*								*						
Quarter 3, 2015		*			*	*		*							*						
Quarter 4, 2015	*	*				*	*	*													
Quarter 1, 2016	*	*			*	*	*														
Quarter 2, 2016	*	*			*	*	*														
Quarter 3, 2016	*	*			*	*	*	*													
Quarter 4, 2016	*	*				*	*	*													
Quarter 1, 2017	*	*				*	*														
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017	*	*			*	*	*														
Quarter 4, 2017		*				*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
Quarter 3, 2018	*	*			*	*	*	*	1												
Quarter 4, 2018		*				*	*	*	1												
Quarter 1, 2019	*	*			*	*	*		1												
Quarter 2, 2019	*	*	1		*	*	*	*	1		1	1									
Quarter 2, 2019 Quarter 3, 2019	*	*	 		*	*	*	*	1	<u> </u>	 	 									
Quarter 3, 2019 Quarter 4, 2019	*	*	 	-	*	*	*	*	-	-	 	 						-	-		
Quarter 4, 2019 Quarter 1, 2020	*	*	 		*	*	*	*	1	<u> </u>	 	 				I					
	*	*			*	*	*	*	-												
Quarter 2, 2020		_	<u> </u>							<u> </u>	<u> </u>	<u> </u>				I					
Quarter 3, 2020	*	*	I		*	*	*	*		I	I	I	<u> </u>				<u> </u>				<u> </u>
Quarter 4, 2020	*	*	I		-L-	*	*	*			I	I			-	I					<u> </u>
Quarter 1, 2021	*	*	I		*	*	*	*			I	I			*	I					<u> </u>
Quarter 2, 2021	*	*	I		*	*	*	*	 	I	I	I	I		*	I	I				L
Quarter 3, 2021	*	*	<u> </u>	L	*	*	*	*	<u> </u>	L	<u> </u>	<u> </u>		L	*	<u> </u>		L	L		
Quarter 4, 2021	*	*			*	*	*								*						
Quarter 1, 2022	*	*	I	L	*	*	*	I		I	I	I			*			L	L		
Quarter 2, 2022	*	*			*	*	*	*	*						*	L					
Quarter 3, 2022	*	*			*	*	*	*	*						*						
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003																	*				*
Quarter 1, 2003		1	1				-		1		1	1			*		*				*
Quarter 2, 2004	-														*		-				*
		-	-				-	-			-	-			*						*
Quarter 3, 2004	-														*		*				*
Quarter 4, 2004	-						-								*		*				ѫ
Quarter 3, 2005	-														ч.		Ŧ				4
Quarter 1, 2006	_														*						*
Quarter 2, 2006	_	*							*												*
Quarter 3, 2006	_																				*
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008															*					*	*
Quarter 2, 2008							*	*						*		*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009	1	1	1	1	1	1	1	t –	1	*	1	1		1	*	1		*	*		
Quarter 2, 2009	+	1	1				1	1	1	*	1	1				*	*	*	*		
Quarter 3, 2010	+						1	1	-	*					*	Ť	Ť	*	-		
Quarter 3, 2010 Quarter 4, 2010	+	 	 				 	 	-	- T	 	 			-			*			
Quarter 1, 2010	+	*	 				 	-	1	*	 	 				I	*	*			
Quarter 1, 2011 Ouarter 2, 2011	+	-	 				 		1	-	 	 				*	* *	*	*		
	+							-	-							*	* *	* *	*		
Quarter 1, 2012	+							*								<u> </u>	*	* *			
Quarter 2, 2012	+	<u> </u>	<u> </u>				<u> </u>	*		<u> </u>	<u> </u>	<u> </u>				I	÷				
Quarter 3, 2012	+	<u> </u>	<u> </u>				<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>			بىر	I	*	*			يلار
Quarter 4, 2012		<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	I	<u> </u>	<u> </u>	L		*	<u> </u>	L	*			*
Quarter 1, 2013		<u> </u>	<u> </u>	L	L	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	<u> </u>	<u> </u>	*	L		*
Quarter 2, 2013	1	<u> </u>	<u> </u>	L	L	L	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	L	L	L	<u> </u>	L	L	L		*
Quarter 3, 2013	1	<u> </u>	<u> </u>	L	L	L	<u> </u>	<u> </u>	<u> </u>	*	<u> </u>	<u> </u>		L	L	<u> </u>	L	L.	L		*
		1	I	L	L	L	I	I		I	I	I			*	I	*	*	L		*
Quarter 4, 2013				1	L	L	I	I		I	I	I			*		*	*	L		
Quarter 1, 2014						1										I		*			
Quarter 1, 2014 Quarter 2, 2014																				_	
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014																	*	*	*		
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014															*		*		*		
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014															* *		*	*	*		_
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015																*	*		*		
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015																*	*		*	*	
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015																*	*	*		**	
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015															*	* *		*			*
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016															*	*	*	* *	*	*	*
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016															*		* * *	*	* *	*	*
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016															*	*	* * * *	* * *	*	*	*
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 4, 2016										*				*	*	*	* * * * *	* *	* * *	* * *	*
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016										*				*	*	*	* * * *	* * *	* *	* * * *	*
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 1, 2017 Quarter 1, 2017										*				*	*	*	* * * * *	* * * *	* * *	* * * * *	*
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017										*					*	*	* * * * *	* * *	* * *	* * * * *	*
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017										*				*	*	*	* * * * *	* * * *	* * *	* * * * * *	*
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017										*					*	*	* * * * *	* * *	* * *	* * * * *	*

Groundwater Flow System	1			UCR	S					-		URG	•			r		LRG			
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99																					
Quarter 2, 2018														*		*				*	
Quarter 3, 2018															*					*	
Quarter 4, 2018															*	÷	*	*	*	*	
Quarter 1, 2019 Ouarter 2, 2019														*		*				*	
Quarter 3, 2019	-													*	*			*		*	
Quarter 4, 2019															*		*	*		*	
Quarter 1, 2020															*		*	*		*	
Quarter 2, 2020																*		*	*	*	
Quarter 3, 2020															*		*	*	*	*	
Quarter 4, 2020															*		*	*		*	
Quarter 1, 2021																				*	
Quarter 2, 2021										*						*	*	*	*		
Quarter 3, 2021														*	*			*			
Quarter 4, 2021										J.							*	*			
Quarter 1, 2022										*					*		*	*			
Quarter 2, 2022 Quarter 3, 2022	-									*					*		*	*			
THORIUM-230	_														*		*	*			_
Quarter 4, 2015	_															*					
Quarter 2, 2015	1		1							*						<u> </u>					
Quarter 4, 2016	*	1	1	1		1			1	L.		*		1	1	*	1		*		
Quarter 4, 2017		L	L						L				*								
Quarter 2, 2018										*			*								
Quarter 2, 2021									*												
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002		<u> </u>	<u> </u>					<u> </u>	<u> </u>	*	*	*		*		I					*
Quarter 4, 2002	I	I	I					<u> </u>	I	*	*			*		I					
Quarter 1, 2003	*									<u>ч</u>	*					<u>ч</u>					
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003	-									*	* *										
Quarter 1, 2004 Quarter 3, 2005	-					*				*	*				*	*			*		
Quarter 4, 2005						*				Ť					Ť	Ť		*	*		
Quarter 1, 2005						-													*		
TOTAL ORGANIC HALIDES		1																	Ŧ		
Quarter 4, 2002	I T	1								*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002																					
Quarter 4, 2002																					
Quarter 1, 2003															_						
Quarter 2, 2003							_													-	_
Quarter 3, 2003 Quarter 4, 2003																				-	
Quarter 1, 2003																				-	
Quarter 2, 2004	-														Ē						
Quarter 3, 2004															Ē						
Quarter 4, 2004																					
Quarter 1, 2005	1									1											
Quarter 2, 2005		L						L	L	L											
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006	I	L	L					<u> </u>	L	I						L					
Quarter 3, 2006	<u> </u>	L	L					<u> </u>	L	I						L					
Quarter 4, 2006	I	I	<u> </u>					<u> </u>	I	I						I				-	
Quarter 1, 2007	-	I	I						I												
Quarter 2, 2007 Quarter 3, 2007																-					
																-					
Quarter 4, 2007 Quarter 1, 2008	I	<u> </u>	 					-	<u> </u>							-					
Quarter 1, 2008 Quarter 2, 2008	t	-	-					1	-	-						-					
Quarter 3, 2008	1	1	1					1	1	1					ī	1					
Quarter 4, 2008	Î	1	1					1	1	1						1					
Quarter 1, 2009	1									1											
Quarter 2, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009	-	1																			
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010								1	1									1			
Quarter 3, 2009 Quarter 4, 2009										_	_				_						
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010																					
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010																					
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011																					
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011																					
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2011																	_				
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011																					

D S S S D D D D D U U U D D D D D D D D D D D D D D U U U U U U D D D D D D D D D D U	Groundwater Flow System	1			UCR	s							URG	A					LRG	A		
Moniform Vertex Vertex Vertex Vertex Vertex	Gradient	D	S	S	_		D	D	U	U	D	D			U	U	D	D			U	U
CHRCHLONGOT HENE Image: Chr Market Stress of the stres	Monitoring Well															-						-
Junter 4. 2012 Image: A marked of the second of the se																						
Junter 4. 2012 Junter 4. 2013 Junter 4. 2014 Junter 4. 2015 Junter 4. 201	Quarter 3, 2012																					
Darter J. 2013 Darter J. 2014 Darter J. 2015 Darter J. 2016 Darter J. 2017 Darter J. 2017 Darter J. 2017 Darter J. 2017 Darter	Quarter 4, 2012																					
Junter 2, 2013 Junter 3, 2013 Junter 4, 2014 Junter 4, 201	Quarter 1, 2013																					
parter 4, 2013 Image: Solid Soli	Quarter 2, 2013																					
Burter 4, 2013 Borner 4, 2014 Borner 4, 2017 Borne 4, 2014 Borner 4, 2017 Borner 4	Quarter 3, 2013																					
Durter 1, 2014 Image: Constraint of the second	Quarter 3, 2013																					
Durter 2, 2014 Description Description <thdescription< th=""></thdescription<>	Quarter 4, 2013																					
Durter 4, 2014 Image: Second	Quarter 1, 2014																					
Quarter 4, 2014	Quarter 2, 2014																					
Durter 1. 2015 Description	Quarter 3, 2014																					
gunter 2, 2015 Image: Constraint of the cons	Quarter 4, 2014																					
Junter 3, 2015 Image: Second	Quarter 1, 2015																					
Durter 4, 2015 Durter 1, 2016 Durter 1, 2017 Durter 1, 2018 Durter 1, 2019 Durter 1, 2020 Durter 1, 2021 Durter	Quarter 2, 2015																					
Duarter 1, 2016 Image: Solution of the second of the sec	Quarter 3, 2015																					
Durter 2, 2016 Image: 2, 2016 Image: 2, 2016 Image: 2, 2017 Image: 2, 2018 Image: 2, 2019 Image: 2, 2020 Image: 2, 202	Quarter 4, 2015																					
Durter 3, 2016 Image: Second Sec	Quarter 1, 2016													I								
Quarter 1, 2016 Image: Section of the section of th	Quarter 2, 2016																					
Duarter 1, 2017 Image: Control of the second se	Quarter 3, 2016																					
Quarter 2, 2017	Quarter 4, 2016															I						
Control 1	Quarter 1, 2017																					
Quarter 4, 2017 Image: Constraint of the second of the	Quarter 2, 2017																					
Quarter 1, 2018 Image: Control of the second control of the seco	Quarter 3, 2017																					
Quarter 2, 2018 Image: Constraint of the second of the s	Quarter 4, 2017																					
Duarter 3, 2018 Image: Constraint of the second constraint of the	Quarter 1, 2018																					
Quarter 1, 2018 Image: Control of the second control of the seco	Quarter 2, 2018																					
Variter 1, 2019 Quarter 2, 2019 Image: Constraint of the second of	Quarter 3, 2018																					
Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2020	Quarter 4, 2018																					
Duarter 3, 2019 Image: Constraint of the second constraint of the	Quarter 1, 2019																					
Control 1, 2019 Image: C	Quarter 2, 2019																					
Quarter 1, 2020 Image: Constraint of the second constraint of the	Quarter 3, 2019																					
Variter 2, 2020 Quarter 3, 2020 Image: Constraint of the second consecond constraint of the second constraint of the second co	Quarter 4, 2019																					
Quarter 3, 2020 Image: Constraint of the second constraint of the	Quarter 1, 2020																					
Quarter 4, 2020	Quarter 2, 2020																		-			
Variter 1, 2021	Quarter 3, 2020																					
Varter 2, 2021	Quarter 4, 2020																					
Quarter 3, 2021 Image: Constraint of the second constraint of the	Quarter 1, 2021																					
Quarter 4, 2021 Image: Constraint of the constraint of t	Quarter 2, 2021																		-			
Quarter 1, 2022 Image: Constraint of the constraint of	Quarter 3, 2021																	_	_			
Quarter 2, 2022	Quarter 4, 2021																	_				
Duarter 3, 2022	Quarter 1, 2022																					_
And the set leader of the set of	Quarter 2, 2022																	_				
Quarter 1, 2003	Quarter 3, 2022																					
RANIUM RANIUM Resolution <	TURBIDITY																					
Quarter 4, 2002 * <td></td> <td>*</td> <td></td>											*											
Quarter 4, 2006 Quarter 4, 2006 INC Quarter 3, 2005 Statistical test results indicate an elevated concentration (i.e., a statistical exceedance). MCL Exceedance Previously reported as an ACL exceedance; however, result was equal to MCL CRS Upper Continental Recharge System IRGA Upper Regional Gravel Aquifer	URANIUM																					
MINC Matrix Quarter 3, 2005 Image: Concentration (i.e., a statistical exceedance). MCL Exceedance MCL Exceedance; Image: Concentration (i.e., a statistical exceedance). MCL Exceedance; Image: Concentration (i.e., a statistical exceedance).	Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	
Quarter 3, 2005 * * * * * * * * * * * * * * * * * *																						*
Statistical test results indicate an elevated concentration (i.e., a statistical exceedance). MCL Exceedance Previously reported as an MCL exceedance; however, result was equal to MCL (CRS Upper Continental Recharge System IRGA Upper Regional Gravel Aquifer	ZINC																					
MCL Exceedance Treviously reported as an MCL exceedance; however, result was equal to MCL (2RS Upper Continental Recharge System //RGA Upper Regional Gravel Aquifer	Quarter 3, 2005																			*		
Previously reported as an MCL exceedance; however, result was equal to MCL ICRS Upper Continental Recharge System IRGA Upper Regional Gravel Aquifer		ed conce	ntration	1 (i.e., a	ı statisti	cal exc	eedanc	e).														
ICRS Upper Continental Recharge System JRGA Upper Regional Gravel Aquifer	 MCL Exceedance 																					
JRGA Upper Regional Gravel Aquifer			howev	er, resu	lt was e	equal to	MCL															
		m																				
RGA Lower Regional Gravel Aquifer	URGA Upper Regional Gravel Aquifer																					
	LRGA Lower Regional Gravel Aquifer																					

APPENDIX H

METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

Date:	September 15, 2022	Time:	0845	Monitor:	Robert Kirby							
Weather Co	nditions: Sunny, 70º F, sligh	nt wind, hu	umidity: 78%	1								
Monitoring	Equipment::Multi RAE – Ser	ial # 1300										
	Mon	itoring Lo	cation		Reading (% LEL)							
C-746-U1	Checked at floor level				0							
C-746-U2	Checked at floor level				0							
C-746-U-T-14	Checked at floor level	1			0							
C-746-U15	Checked at floor level											
MG1	Checked 1" from open	ing			0							
MG2	Checked 1" from open	ing			0							
MG3	Checked 1" from open	ing			0							
MG4	Checked 1" from open	ing			0							
Suspect or Problem Ar	eas No problems noted				None							
Remarks:	N/A											
	1											
Performed	by: Jal		'	09/26	22							
	Signa	ture			Date							

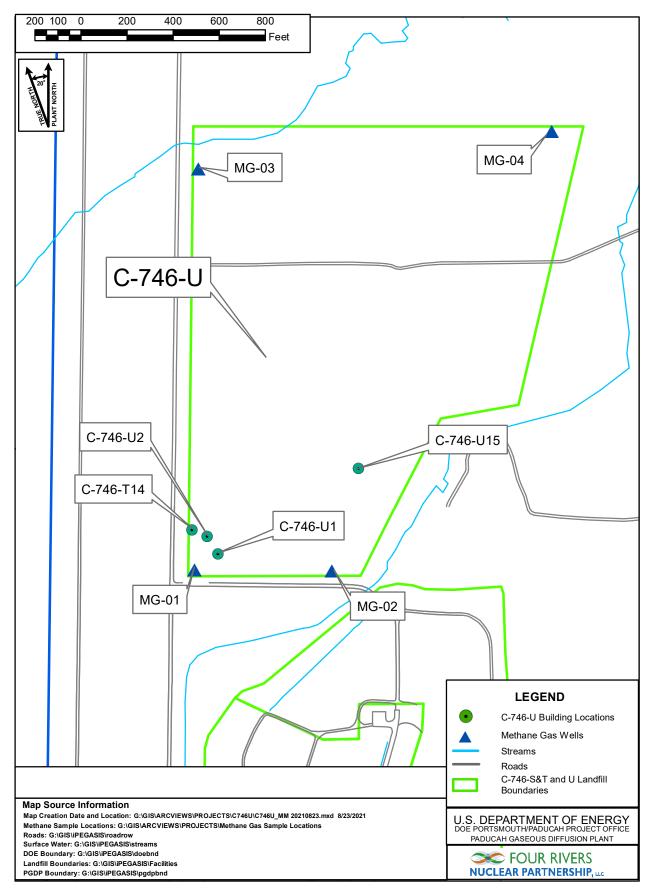


Figure H.1. C-746-U Landfill Methane Monitoring Locations

APPENDIX I

ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 and 2016 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 16th day of June 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2023

APPENDIX J

LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of Polychlorinated Biphenyls by GC/ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX K

MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-U Contained Landfill

					/ /	\otimes / /
				olor.		¹⁰⁶
		10		· /	507	15/
		J.S.	13	in	(07.7°	1 ~ 1
		59 ⁵⁰	jan /	S' /.	3 ⁰ / 3	and the
	ETTR		12		130	. /
MW357	<u> / ~-</u>	Condition of the second	otivity length	<u> </u>	ved oxygen	ere International International Internationa
Date Collected: 7/13/22						Date Collected
0753	71.6	400	6.76	6.35	4.09	1008
0756	67.1	398	6.19	6.07	3.73	1011
0759	66.8	399	6.11	6.00	3.28	1011
MW359	0010	577	0.111	0.00	5120	MW360
Date Collected: 7/13/22						Date Collected
0903	69.5	212	6.22	6.44	3.12	1139
0906	67.3	211	6.06	6.00	2.88	1142
0909	67.0	209	6.00	5.95	2.69	1145
MW361	0710	207	0.00	0170	2.07	MW362
Date Collected: 7/13/22						Date Collected
1227	65.5	475	6.04	4.92	3.03	1325
1230	64.9	479	6.01	4.40	3.13	1328
1233	64.6	478	6.00	4.33	3.04	1331
MW363	0 110		0.00	1100	5101	MW364
Date Collected: 7/12/22						Date Collected
0728	61.8	407	6.44	1.88	0.00	0830
0731	63.7	406	6.13	2.20	0.00	0833
0734	64.5	406	6.12	2.22	0.00	0836
MW365	0 110	100	0.112	2.22	0.00	MW366
Date Collected:7/12/22						Date Collected
0911	64.0	409	6.21	4.56	0.00	0954
0914	62.1	409	6.18	4.36	0.00	0957
0917	61.7	410	6.18	4.31	0.00	1000
MW367		-				MW368
Date Collected: 7/12/22						Date Collected
1036	62.1	255	5.93	2.22	4.86	1117
1039	62.4	252	5.84	1.83	4.49	1120
1042	62.7	251	5.82	1.91	4.30	1123
MW369						MW370
Date Collected: 7/14/22						Date Collected
0800	63.1	373	6.02	4.52	5.06	0901
0803	62.8	370	5.98	4.18	5.23	0904
0806	62.9	371	5.96	4.15	5.14	0907
MW371						MW372
Date Collected: 7/14/22						Date Collected
0944	62.3	561	6.33	4.89	9.60	1028
0947	62.0	560	6.35	4.30	9.70	1031
0950	61.7	561	6.35	4.25	9.63	1034
MW373						MW374
Date Collected: 7/14/22						Date Collected
1112	63.9	730	6.33	3.91	3.15	1154
1115	63.7	734	6.07	2.48	3.03	1157
1118	63.8	733	6.06	2.42	3.00	1200
MW375						1
Date Collected: 7/14/22						1
0713	64.2	316	6.26	3.94	3.95	1
0716	64.3	315	6.27	3.29	3.87	1
0719	64.4	315	6.27	3.23	3.61	1

6-U Contained Landfill								
					tubit			
				a /	. /			
			- Lole	× /	/ <			
<i>ي</i>		<u>_</u> ~	UITIL	1	1. Ser			
. /		NIC /	in /	mit /	20th			
	5			~ / *	v /.j			
	1 only	Cono	avity united	0150	110			
MW358	(`	Conduct Conduct	out of the set		od on year to			
Date Collected: 7/13/22								
1008	69.1	475	6.21	2.81	2.90			
1011	66.7	484	6.22	1.70	2.59			
1014	66.3	486	6.21	1.66	2.50			
MW360			-					
Date Collected: 7/13/22								
1139	66.4	373	6.24	2.93	4.96			
1142	66.2	377	6.20	2.60	5.00			
1145	66.0	379	6.19	2.54	4.94			
MW362								
Date Collected: 7/13/22								
1325	65.9	623	7.02	6.22	5.86			
1328	64.0	629	7.01	5.20	5.82			
1331	63.4	630	6.99	5.12	5.70			
MW364								
Date Collected: 7/12/22								
0830	63.5	476	6.02	3.66	0.00			
0833	63.7	478	5.92	3.73	0.00			
0836	64.3	478	5.93	3.80	0.00			
MW366								
Date Collected: 7/12/22								
0954	62.7	472	6.07	4.11	0.00			
0957	63.0	473	6.02	4.16	0.00			
1000	63.3	474	6.00	4.19	0.00			
MW368								
Date Collected: 7/12/22	(0.5		6.00					
1117	62.7	544	6.39	5.39	1.36			
1120	62.3	553	6.40	4.57	1.02			
1123	62.0	555	6.42	4.50	1.00			
MW370								
Date Collected: 7/14/22	(2)(433	6.21	5.09	5.16			
0901 0904	63.6 63.0	433	6.21 6.00	5.08 4.80	5.16 3.26			
0904	62.8	434	5.91	4.80	3.32			
MW372	02.8	433	5.91	4.73	5.52			
Date Collected: 7/14/22								
1028	63.5	710	6.20	4.10	3.22			
1031	63.3	716	6.09	3.18	3.46			
1034	63.4	715	6.09	3.10	3.43			
MW374		/15	0.07	5.10	55			
Date Collected: 7/14/22								
1154	63.1	643	6.81	3.02	7.96			
	00.1	0.0	0.01					
1157	63.2	645	6.72	1.80	6.61			