

### **Department of Energy**

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

May 19, 2022

RECEIVED
By Terri.Drake at 3:37 pm, May 19, 2022

PPPO-02-10021099-22B

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Ms. Jamie Nielsen Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-U CONTAINED LANDFILL FIRST QUARTER CALENDAR YEAR 2022 (JANUARY–MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0245/V1, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the first quarter calendar year (CY) 2022 has been uploaded to the KY eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, surface water analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results. Monitoring well MW357 had a statistically significant exceedance of dissolved oxygen over background levels.

The statistical analyses on the first quarter CY 2022 monitoring well data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). This report also serves as the statistical exceedance notification for the first quarter CY 2022, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Tracey L. Duncan

Digitally signed by Tracey L. Duncan Date: 2022.05.19 12:50:02 -05'00'

Tracey Duncan
Acting Paducah Site Lead
Portsmouth/Paducah Project Office

#### Enclosure:

C-746-U Contained Landfill First Quarter Calendar Year 2022 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0245/V1

#### cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov iennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov stephaniec.brock@ky.gov, KYRHB tracey.duncan@pppo.gov, PPPO

cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

C-746-U Contained Landfill First Quarter Calendar Year 2022 (January-March) **Compliance Monitoring Report,** Paducah Gaseous Diffusion Plant, Paducah, Kentucky



This document is approved for public release per review by:

5-17.2022 Date

#### FRNP-RPT-0245/V1

C-746-U Contained Landfill
First Quarter Calendar Year 2022
(January-March)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—May 2022

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895



# **CONTENTS**

| FI | GURE | ES      |                                                                                         | v   |
|----|------|---------|-----------------------------------------------------------------------------------------|-----|
| ΤA | BLES | S       |                                                                                         | v   |
| A( | CRON | YMS     |                                                                                         | vii |
| 1. |      |         | ION                                                                                     |     |
|    | 1.1  |         | ROUND                                                                                   |     |
|    | 1.2  |         | ORING PERIOD ACTIVITIES                                                                 |     |
|    |      |         | Groundwater Monitoring                                                                  |     |
|    |      |         | Methane Monitoring                                                                      |     |
|    | 1.0  |         | Surface Water Monitoring                                                                |     |
|    | 1.3  | KEY RE  | ESULTS                                                                                  | 4   |
| 2. | DAT  | A EVAL  | UATION/STATISTICAL SYNOPSIS                                                             | 9   |
|    | 2.1  |         | TICAL ANALYSIS OF GROUNDWATER DATA                                                      |     |
|    |      |         | Upper Continental Recharge System                                                       |     |
|    |      |         | Upper Regional Gravel Aquifer                                                           |     |
|    |      |         | Lower Regional Gravel Aquifer                                                           |     |
|    | 2.2  | DATA V  | VERIFICATION AND VALIDATION                                                             | 11  |
| 3. | PRO  | FESSION | IAL GEOLOGIST AUTHORIZATION                                                             | 13  |
| 4. | REF  | ERENCE  | S                                                                                       | 15  |
| ΑF | PENI | OIX A:  | GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM | A-1 |
| ΑF | PENI | OIX B:  | FACILITY INFORMATION SHEET                                                              | B-1 |
| ΑF | PENI | OIX C:  | GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS                                        | C-1 |
| Αŀ | PENI | OIX D:  | STATISTICAL ANALYSES AND QUALIFICATION STATEMENT                                        | D-1 |
| ΑF | PENI | OIX E:  | GROUNDWATER FLOW RATE AND DIRECTION                                                     | E-1 |
| Αŀ | PENI | OIX F:  | NOTIFICATIONS                                                                           | F-1 |
| ΑF | PENI | OIX G:  | CHART OF MCL AND UTL EXCEEDANCES                                                        | G-1 |
| Αŀ | PENI | OIX H:  | METHANE MONITORING DATA                                                                 | H-1 |
| Αŀ | PENI | OIX I:  | SURFACE WATER ANALYSES AND WRITTEN COMMENTS                                             | I-1 |
| ΑF | PENI | OIX J:  | ANALYTICAL LABORATORY CERTIFICATION                                                     | J-1 |

| APPENDIX K: | LABORATORY ANALYTICAL METHODS      | ζ-1 |
|-------------|------------------------------------|-----|
| APPENDIX L: | MICRO-PURGING STABILITY PARAMETERS | L-1 |

# **FIGURES**

| 1. | C-746-U Landfill Groundwater Monitoring Well Network                            | 2 |
|----|---------------------------------------------------------------------------------|---|
|    | C-746-U Landfill Surface Water Monitoring Locations                             |   |
|    | TABLES                                                                          |   |
| 1. | Summary of MCL Exceedances                                                      | 4 |
| 2. | Exceedances of Statistically Derived Historical Background Concentrations       | 4 |
| 3. | Exceedances of Current Background UTL in Downgradient Wells                     | 6 |
|    | C-746-U Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight |   |
|    | Quarters                                                                        | 6 |
| 5. | Exceedances of Current Background UTL in Downgradient UCRS Wells                |   |
|    | Monitoring Wells Included in Statistical Analysis                               |   |



#### **ACRONYMS**

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit



#### 1. INTRODUCTION

This report, C-746-U Contained Landfill First Quarter Calendar Year 2022 (January-March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL and historical background UTL exceedances that have occurred, beginning in the third quarter, calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water analyses and written comments are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

#### 1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5, with Phases 6 and 7 approved for receipt of waste as of September 27, 2019. A minor permit modification that included upgrades to the leachate storage capacity for Phases 6 and 7 was approved by KDWM on May 21, 2021 (FRNP 2021). Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

#### 1.2 MONITORING PERIOD ACTIVITIES

#### 1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

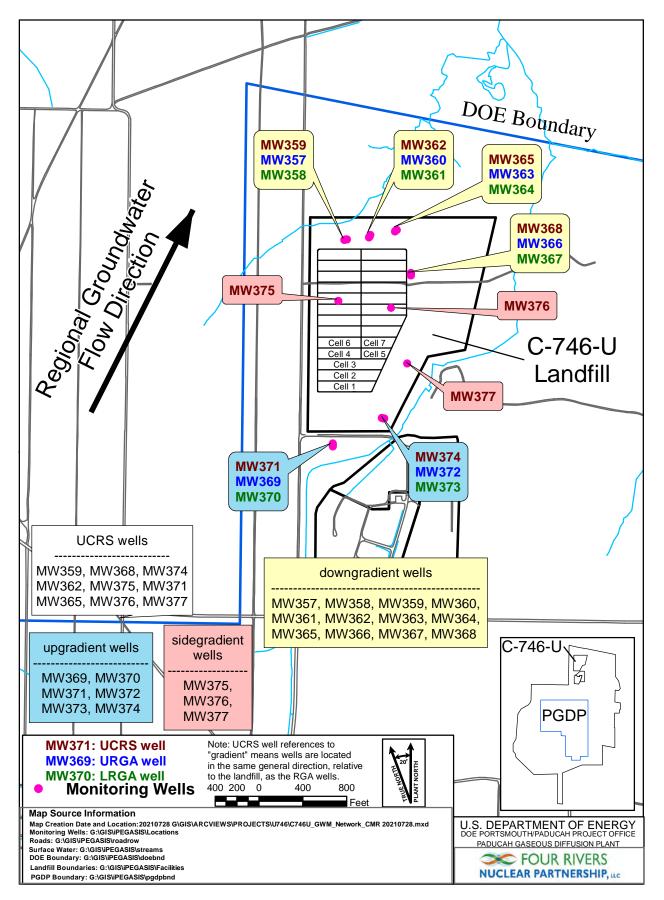



Figure 1. C-746-U Landfill Groundwater Monitoring Well Network

Consistent with the approved *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills* (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2022 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the first quarter 2022 was conducted in January 2022. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 26, 2022, in MWs of the C-746-U Landfill (see Appendix E, Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Appendix E, Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During January, RGA groundwater flow in the area of the landfill was oriented northeast. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in January was  $2.30 \times 10^{-4}$  ft/ft (see Appendix E, Table E.2). The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were  $6.29 \times 10^{-4}$  ft/ft and  $5.44 \times 10^{-4}$  ft/ft, respectively (see Appendix E, Table E.2). Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.070 to 1.825 ft/day for the URGA and 0.924 to 1.576 ft/day for the LRGA (see Appendix E, Table E.3).

#### 1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Industrial Hygiene staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on March 2, 2022. See Appendix H for a map (see Appendix H, Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Monitoring Report provided in Appendix H.

#### 1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059

(FRNP 2021), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill: (1) instream location, L154; (2) downstream location, L351; and (3) instream location L150. Surface water results are provided in Appendix I.

#### 1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the first quarter 2022, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be background. Constituents in downgradient wells that exceeded current background UTL are shown on Table 3.

**Table 1. Summary of MCL Exceedances** 

| UCRS | URGA | LRGA                   |  |
|------|------|------------------------|--|
| None | None | MW361: Trichloroethene |  |
|      |      | MW373: Trichloroethene |  |

**Table 2. Exceedances of Statistically Derived Historical Background Concentrations** 

| UCRS*                          | URGA                           | LRGA                           |
|--------------------------------|--------------------------------|--------------------------------|
| MW359: Dissolved oxygen,       | MW357: Dissolved oxygen,       | MW358: Manganese, nickel,      |
| oxidation-reduction potential, | oxidation-reduction potential  | oxidation-reduction potential  |
| sulfate                        |                                |                                |
| MW362: Dissolved oxygen,       | MW360: Oxidation-reduction     | MW361: Dissolved oxygen,       |
| oxidation-reduction potential, | potential                      | oxidation-reduction potential, |
| sulfate                        |                                | technetium-99                  |
| MW365: Dissolved oxygen,       | MW363: Oxidation-reduction     | MW364: Oxidation-reduction     |
| oxidation-reduction potential, | potential                      | potential, technetium-99       |
| sulfate                        |                                |                                |
| MW368: Dissolved oxygen,       | MW366: Oxidation-reduction     | MW367: Oxidation-reduction     |
| oxidation-reduction potential, | potential, technetium-99       | potential                      |
| sulfate                        |                                |                                |
| MW371: Dissolved oxygen,       | MW369: Oxidation-reduction     | MW370: Dissolved oxygen,       |
| oxidation-reduction potential  | potential                      | oxidation-reduction potential  |
| MW374: Oxidation-reduction     | MW372: Calcium, conductivity,  | MW373: Oxidation-reduction     |
| potential                      | dissolved solids, magnesium,   | potential                      |
|                                | oxidation-reduction potential, |                                |
|                                | sulfate                        |                                |
| MW375: Oxidation-reduction     |                                |                                |
| potential, sulfate             |                                |                                |

<sup>\*</sup>Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Sidegradient wells: MW375, MW376, MW377

<sup>&</sup>lt;sup>1</sup> The UTL comparison for pH uses a two-sided test for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

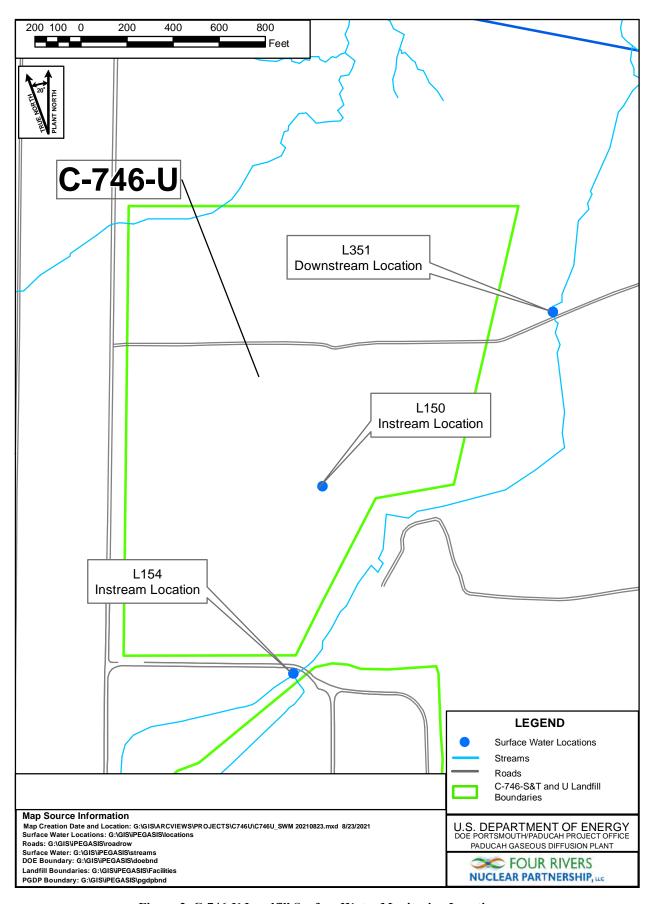



Figure 2. C-746-U Landfill Surface Water Monitoring Locations

Table 3. Exceedances of Current Background UTL in Downgradient Wells

| URGA                    | LRGA                     |
|-------------------------|--------------------------|
| MW357: Dissolved Oxygen | MW358: Manganese, nickel |

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedance for trichloroethene in downgradient well MW361 does not exceed the historical background concentration and is considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report is the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient (compliance) well concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill). Except for dissolved oxygen in MW357, and manganese and nickel in MW358, all MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

Dissolved oxygen in MW357, and manganese and nickel in MW358 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be a Type 2 exceedance. To evaluate the preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results have been summarized in Table 4. Manganese and nickel in MW358 showed no trends. MW357 showed an increasing Mann-Kendall trend for dissolved oxygen and is considered to be a Type 2 exceedance—source unknown.

Table 4. C-746-U Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

| Location            | Well ID  | Parameter        | Sample<br>Size | Alpha <sup>1</sup> | p-Value <sup>2</sup> | $S^3$ | Decision <sup>4</sup> |
|---------------------|----------|------------------|----------------|--------------------|----------------------|-------|-----------------------|
| C 746 II            | MW357    | Dissolved Oxygen | 8              | 0.05               | 0.000                | 28    | Increasing            |
| C-746-U<br>Landfill | MW358    | Manganese        | 8              | 0.05               | 0.360                | 5     | No Trend              |
|                     | WI W 338 | Nickel           | 8              | 0.05               | 0.089                | 12    | No Trend              |

<sup>&</sup>lt;sup>1</sup> An alpha of 0.05 represents a 95% confidence interval.

 $<sup>^2</sup>$ The p-value represents the risk of acceptance the  $H_a$  hypothesis of a trend, in terms of a percentage.

# Table 4. C-746-U Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters (Continued)

Note: Statistics generated using ProUCL.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified dissolved oxygen in MW365 and sulfate in MW368 that exceeded both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U Landfill sources and are considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells\*

| UCRS                                    |
|-----------------------------------------|
| MW365: Dissolved oxygen                 |
| MW368: Sulfate                          |
| T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

<sup>\*</sup>In the same direction (relative to the landfill) as RGA wells.

<sup>&</sup>lt;sup>3</sup> The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $<sup>^4</sup>$ The Mann-Kendall decision operates on two hypotheses; the  $H_0$  and  $H_a$ .  $H_0$  assumes there is no trend in the data, whereas  $H_a$  assumes either a positive or negative trend.



#### 2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2022 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

Parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6 were documented and evaluated further. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as background) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data were divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data showed a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both a UTL and LTL to determine if statistically significant deviations in concentrations existed with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis<sup>a</sup>

| UCRS               | URGA               | LRGA               |
|--------------------|--------------------|--------------------|
| MW359              | MW357              | MW358              |
| MW362              | MW360              | MW361              |
| MW365              | MW363              | MW364              |
| MW368              | MW366              | MW367              |
| MW371 <sup>b</sup> | MW369 (background) | MW370 (background) |
| MW374 <sup>b</sup> | MW372 (background) | MW373 (background) |
| MW375              |                    |                    |
| MW376 <sup>c</sup> |                    |                    |
| MW377 <sup>c</sup> |                    |                    |

<sup>&</sup>lt;sup>a</sup> Map showing the monitoring well locations is shown on Figure 1.

#### 2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

#### 2.1.1 Upper Continental Recharge System

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Dissolved oxygen and sulfate exceeded the current background UTLs in downgradient UCRS wells MW365 and MW368, respectively.

#### 2.1.2 Upper Regional Gravel Aquifer

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, calcium, conductivity, dissolved oxygen, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Dissolved oxygen exceeded the current background UTL in downgradient URGA well MW357.

#### 2.1.3 Lower Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, dissolved oxygen, manganese, nickel, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Manganese and nickel exceeded the current background UTL in downgradient LRGA well MW358.

<sup>&</sup>lt;sup>b</sup> In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

<sup>&</sup>lt;sup>c</sup> Well had insufficient water to permit a water sample for laboratory analysis.

#### 2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.



#### 3. PROFESSIONAL GEOLOGIST AUTHORIZATION

**DOCUMENT IDENTIFICATION:** C-746-U Contained Landfill First Quarter Calendar Year 2022

(January-March) Compliance Monitoring Report, Paducah

Gaseous Diffusion Plant, Paducah, Kentucky

(FRNP-RPT-0245/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Kenneth R. Davis

PG113927



#### 4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky,* PAD- PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.



## **APPENDIX A**

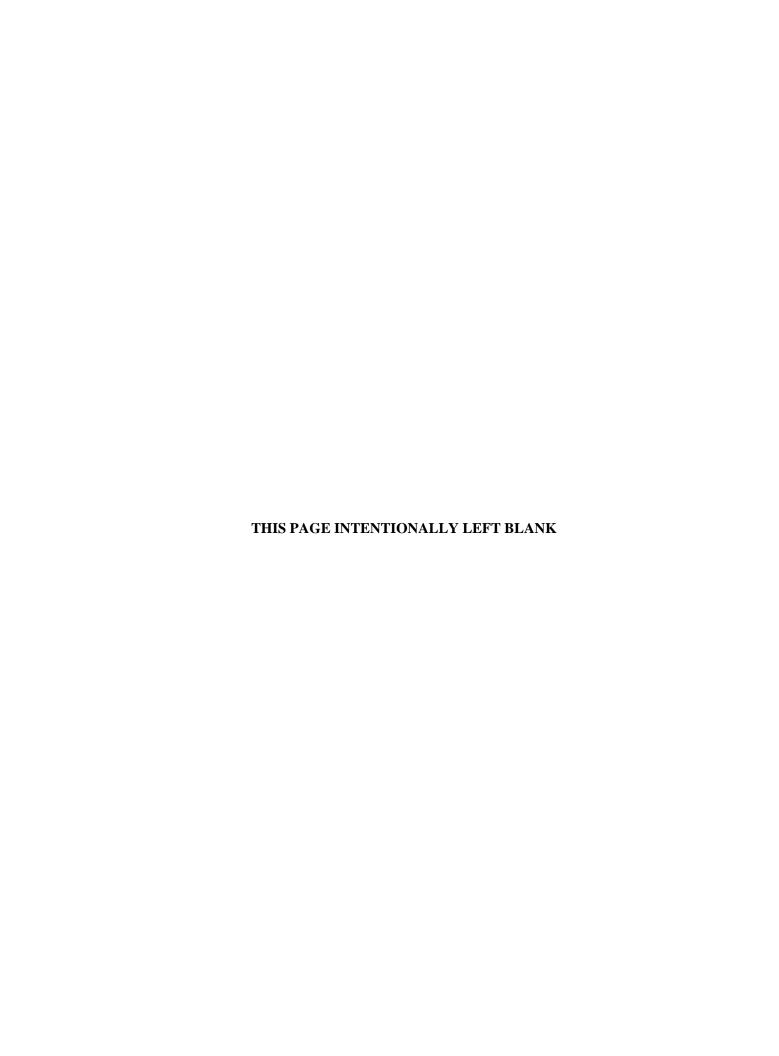
GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM



# GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

# NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

| Facility Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                | Diffusion Plant          | Activity:       | C-746-1          | U Contained Landfill   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------------------|-----------------|------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | officially show | wn on DWM F    | Permit Face)             |                 |                  |                        |
| SW07300014,<br>Permit No: SW07300015,<br>SW07300045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fino            | Finds/Unit No: |                          | & Year<br>_     | 1st Qtr. CY 2022 |                        |
| Please check to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | he following a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıs applicab     | le:            |                          |                 |                  |                        |
| Chara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X Qu            | arterly _      | Semiannual               | Ann             | ual              | Assessment             |
| Please check a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pplicable sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mittal(s):      | X              | Groundwater              | X Surface Water |                  |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                | Leachate                 | X               | Metha            | ne Monitoring          |
| 48) hours of m. Submitting the la nstruction pages.  certify under pen with a system des nquiry of the person when the person with the person with the person when the person when the person with the person | 5:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the dissipation of the Division of Waste Management. You must report any indication of contamination within forty-eight (18) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. ubmitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the astruction pages.  Certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my moveledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.  Digitally signed by Myrna E. Redfield |                 |                |                          |                 |                  |                        |
| Myrna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a E. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kean            | ela            | Date: 202                | -               | •                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Myrna E. Redfield, Program Manager Four Rivers Nuclear Partnership, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |                          |                 |                  |                        |
| Trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y L. [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dunc            | can            | Digitally s<br>Date: 202 |                 | •                | L. Duncan<br>0 -05'00' |
| Tracey Duncan, Acting Paducah Site Lead U.S. Department of Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                | ]                        | Date            |                  |                        |




# APPENDIX B FACILITY INFORMATION SHEET



# **FACILITY INFORMATION SHEET**

| Sampling Date:                                                            | Groundwater: January 2022<br>Surface water: February 2022<br>Methane: March 2022 | County:                                 | McCracken          | Permit<br>Nos.  | SW07300014,<br>SW07300015,<br>SW07300045 |  |  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|--------------------|-----------------|------------------------------------------|--|--|
| Facility Name:                                                            | U.S. DOE—Paducah Gaseous Diffusion Plan                                          | nt                                      |                    |                 |                                          |  |  |
| •                                                                         |                                                                                  | nown on DWM Permit Face)                | )                  |                 |                                          |  |  |
| Site Address:                                                             | 5600 Hobbs Road                                                                  | Kevil, Kentucky                         |                    | 42053           |                                          |  |  |
|                                                                           | Street                                                                           | City/State                              |                    | Zip             |                                          |  |  |
| Phone No: (270) 441-6800 Latitude: N 37° 07' 45" Longitude: W 88° 47' 55" |                                                                                  |                                         |                    |                 |                                          |  |  |
|                                                                           | OV                                                                               | VNER INFORMATION                        |                    |                 |                                          |  |  |
| Facility Owner:                                                           | US DOE: Joel Bradburne, Manager,<br>Portsmouth/Paducah Project Office            | Phone No:                               | (859) 219-40       | 000             |                                          |  |  |
| Contact Person:                                                           | Bruce Ford                                                                       |                                         | Phone No:          | (270) 441       | -5357                                    |  |  |
| Contact Person Title:                                                     | Director, Environmental Services<br>Four Rivers Nuclear Partnership, LLC         |                                         |                    |                 |                                          |  |  |
| Mailing Address:                                                          | 5511 Hobbs Road                                                                  | Kevil, Kentucky                         |                    | 42053           |                                          |  |  |
|                                                                           | Street                                                                           | City/State                              |                    | Zip             |                                          |  |  |
| Company: <u>GE</u>                                                        |                                                                                  | MPLING PERSONNEL<br>AN LANDFILL OR LABO | RATORY)            |                 |                                          |  |  |
| Contact Person:                                                           | Jason Boulton                                                                    |                                         | Phone No:          | (270) 81        | 6-3415                                   |  |  |
| Mailing Address:                                                          | 199 Kentucky Avenue                                                              | Kevil, Kentucky                         |                    | 42053           |                                          |  |  |
|                                                                           | Street                                                                           | City/State                              |                    | Zip             |                                          |  |  |
|                                                                           | LAB                                                                              | ORATORY RECORD #1                       |                    |                 |                                          |  |  |
| Laboratory <u>GE</u>                                                      | L Laboratories, LLC                                                              | Lab l                                   | ID No: <u>KY90</u> | 129             |                                          |  |  |
| Contact Person:                                                           | Valerie Davis                                                                    |                                         | Phone No:          | (843) 769       | -7391                                    |  |  |
| Mailing Address:                                                          | 2040 Savage Road                                                                 | Charleston, South Care                  | olina              | 2940            |                                          |  |  |
|                                                                           | Street                                                                           | City/State                              |                    | Zi <sub>l</sub> | )                                        |  |  |
|                                                                           | LAB                                                                              | ORATORY RECORD #2                       |                    |                 |                                          |  |  |
| Laboratory: N/                                                            | A                                                                                | Lab II                                  | No: N/A            |                 |                                          |  |  |
| Contact Person:                                                           | N/A                                                                              |                                         | Phone No:          | N/A             |                                          |  |  |
| Mailing Address:                                                          | N/A                                                                              |                                         |                    |                 |                                          |  |  |
|                                                                           | Street                                                                           | City/State                              |                    | ,               | Zip                                      |  |  |
|                                                                           | LAB                                                                              | ORATORY RECORD #3                       |                    |                 |                                          |  |  |
| Laboratory: N/                                                            | A                                                                                | Lah II                                  | No: N/A            |                 |                                          |  |  |
| Contact Person:                                                           | N/A                                                                              |                                         | Phone No:          | N/A             |                                          |  |  |
| Mailing Address:                                                          | N/A                                                                              |                                         |                    |                 |                                          |  |  |
|                                                                           | Street                                                                           | City/State                              |                    | ,               | Zip                                      |  |  |



# APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS



Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT:  $\underline{\text{KY8-890-008-982}}/\underline{1}$  LAB ID: None

## GROUNDWATER SAMPLE ANALYSIS(S)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number                                         |             |                       |          | 8004-479                                    | 8                                  | 8004-47                                     | 799                   | 8004-09                                     | 981                   | 8004-480                                    | 00               |
|-----------------------------|---------------------------------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loca             | al Well or Spring Number (e.g., N                                   | 1W−1        | l, MW-2, etc          | :.)      | 357                                         |                                    | 358                                         |                       | 359                                         |                       | 360                                         |                  |
| Sample Sequence             | e #                                                                 |             |                       |          | 1                                           |                                    | 1                                           |                       | 1                                           |                       | 1                                           |                  |
| If sample is a B            | lank, specify Type: (F)ield, (T)rip,                                | (M) ∈       | thod, or (E)          | quipment | NA                                          |                                    | NA                                          |                       | NA                                          |                       | NA                                          |                  |
| Sample Date and             | d Time (Month/Day/Year hour: minu                                   | tes         | )                     |          | 1/11/2022 09                                | 9:30                               | 1/11/2022                                   | 10:30                 | 1/11/2022                                   | 11:10                 | 1/11/2022 (                                 | 07:03            |
| Duplicate ("Y"              | or "N") <sup>2</sup>                                                |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Split ("Y" or               | "N") <sup>3</sup>                                                   |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Facility Sample             | e ID Number (if applicable)                                         |             |                       |          | MW357UG2                                    | 2-22                               | MW358U                                      | G2-22                 | MW359U0                                     | G2-22                 | MW360UG                                     | 2-22             |
| Laboratory Samp             | boratory Sample ID Number (if applicable)                           |             |                       |          |                                             | )1                                 | 567104                                      | 003                   | 567104                                      | 005                   | 5671040                                     | 09               |
| Date of Analys:             | ate of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analy |             |                       |          |                                             | 2                                  | 1/14/20                                     | )22                   | 1/14/20                                     | 22                    | 1/14/202                                    | 22               |
| Gradient with               | radient with respect to Monitored Unit (UP, DOWN, SI                |             |                       |          | DOWN                                        |                                    | DOW                                         | N                     | DOW                                         | N                     | DOWN                                        | 1                |
| CAS RN <sup>4</sup>         | CONSTITUENT                                                         | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                                             | т           | mg/L                  | 9056     | 0.373                                       |                                    | 0.205                                       | J                     | <0.2                                        |                       | <0.2                                        |                  |
| 16887-00-6                  | Chloride(s)                                                         | т           | mg/L                  | 9056     | 30.9                                        | J                                  | 14.9                                        | J                     | 0.874                                       | J                     | 9.98                                        | J                |
| 16984-48-8                  | Fluoride                                                            | т           | mg/L                  | 9056     | 0.0994                                      | J                                  | 0.169                                       | J                     | 0.121                                       | J                     | 0.156                                       | J                |
| s0595                       | Nitrate & Nitrite                                                   | Т           | mg/L                  | 9056     | 1.14                                        | J                                  | <10                                         |                       | 0.544                                       | J                     | 0.64                                        | J                |
| 14808-79-8                  | Sulfate                                                             | Т           | mg/L                  | 9056     | 37.3                                        |                                    | 25.1                                        |                       | 38.6                                        |                       | 14.2                                        |                  |
| NS1894                      | Barometric Pressure Reading                                         | Т           | Inches/Hg             | Field    | 30.6                                        |                                    | 30.6                                        |                       | 30.58                                       |                       | 30.57                                       |                  |
| S0145                       | Specific Conductance                                                | Т           | μ <b>MH0/cm</b>       | Field    | 418                                         |                                    | 551                                         |                       | 210                                         |                       | 389                                         |                  |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $<sup>^{2}</sup>$ Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

<sup>&</sup>lt;sup>4</sup>Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |       |                       |          | 8004-4798                                   | 3                     | 8004-4799                                   | )                     | 8004-0981                                   |                       | 8004-4800                                   | )                     |
|-----------------------------|------------------------------------|-------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., MW | -1, 1 | MW-2, BLANK-          | F, etc.) | 357                                         |                       | 358                                         |                       | 359                                         |                       | 360                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | T D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| s0906                       | Static Water Level Elevation       | T     | Ft. MSL               | Field    | 322.58                                      |                       | 322.58                                      |                       | 337.83                                      |                       | 322.59                                      |                       |
| N238                        | Dissolved Oxygen                   | Т     | mg/L                  | Field    | 5.19                                        |                       | 2.08                                        |                       | 3.8                                         |                       | 3.07                                        |                       |
| s0266                       | Total Dissolved Solids             | т     | mg/L                  | 160.1    | 214                                         |                       | 241                                         |                       | 136                                         |                       | 207                                         |                       |
| s0296                       | Нд                                 | Т     | Units                 | Field    | 6.09                                        |                       | 6.37                                        |                       | 5.94                                        |                       | 6.11                                        |                       |
| NS215                       | Eh                                 | Т     | mV                    | Field    | 348                                         |                       | 160                                         |                       | 308                                         |                       | 384                                         |                       |
| s0907                       | Temperature                        | Т     | °C                    | Field    | 14.5                                        |                       | 14.78                                       |                       | 15.61                                       |                       | 10.89                                       |                       |
| 7429-90-5                   | Aluminum                           | Т     | mg/L                  | 6020     | <0.05                                       |                       | 0.0815                                      |                       | 0.0284                                      | J                     | 0.0515                                      |                       |
| 7440-36-0                   | Antimony                           | T     | mg/L                  | 6020     | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |
| 7440-38-2                   | Arsenic                            | Т     | mg/L                  | 6020     | <0.005                                      |                       | 0.00788                                     |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-39-3                   | Barium                             | Т     | mg/L                  | 6020     | 0.0714                                      |                       | 0.0915                                      |                       | 0.0231                                      |                       | 0.197                                       |                       |
| 7440-41-7                   | Beryllium                          | Т     | mg/L                  | 6020     | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       |
| 7440-42-8                   | Boron                              | Т     | mg/L                  | 6020     | 0.361                                       |                       | 0.113                                       |                       | <0.015                                      |                       | 0.0596                                      |                       |
| 7440-43-9                   | Cadmium                            | T     | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-70-2                   | Calcium                            | т     | mg/L                  | 6020     | 25.2                                        |                       | 35                                          |                       | 5.43                                        |                       | 19.2                                        |                       |
| 7440-47-3                   | Chromium                           | Т     | mg/L                  | 6020     | <0.01                                       | *                     | 0.00441                                     | *J                    | <0.01                                       | *                     | <0.01                                       | *                     |
| 7440-48-4                   | Cobalt                             | Т     | mg/L                  | 6020     | <0.001                                      |                       | 0.0379                                      |                       | <0.001                                      |                       | 0.0017                                      |                       |
| 7440-50-8                   | Copper                             | Т     | mg/L                  | 6020     | 0.000454                                    | J                     | 0.000737                                    | J                     | 0.000498                                    | J                     | 0.00123                                     | J                     |
| 7439-89-6                   | Iron                               | T     | mg/L                  | 6020     | <0.1                                        |                       | 22                                          |                       | 0.0467                                      | J                     | 0.229                                       |                       |
| 7439-92-1                   | Lead                               | Т     | mg/L                  | 6020     | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7439-95-4                   | Magnesium                          | Т     | mg/L                  | 6020     | 10.7                                        |                       | 18.3                                        |                       | 2.97                                        |                       | 8.12                                        |                       |
| 7439-96-5                   | Manganese                          | Т     | mg/L                  | 6020     | 0.0032                                      | J                     | 2.83                                        |                       | 0.00111                                     | J                     | 0.016                                       |                       |
| 7439-97-6                   | Mercury                            | Т     | mg/L                  | 7470     | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

## GROUNDWATER SAMPLE ANALYSIS - (Cont.)

| AKGWA NUMBER | 1, Facility Well/Spring Number    |       |                       |        | 8004-479                                    | 8                     | 8004-479                                    | 9                     | 8004-098                                    | 1                     | 8004-480                                    | 00               |
|--------------|-----------------------------------|-------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's I | ocal Well or Spring Number (e.g., | MW-   | 1, MW-2, e            | tc.)   | 357                                         |                       | 358                                         |                       | 359                                         |                       | 360                                         |                  |
| CAS RN⁴      | CONSTITUENT                       | T D 5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 7439-98-7    | Molybdenum                        | т     | mg/L                  | 6020   | 0.000287                                    | BJ                    | 0.000678                                    | BJ                    | <0.001                                      |                       | <0.001                                      |                  |
| 7440-02-0    | Nickel                            | Т     | mg/L                  | 6020   | <0.002                                      |                       | 0.0918                                      |                       | 0.00107                                     | J                     | 0.00116                                     | J                |
| 7440-09-7    | Potassium                         | Т     | mg/L                  | 6020   | 1.71                                        |                       | 3.34                                        |                       | 0.08                                        | J                     | 0.764                                       |                  |
| 7440-16-6    | Rhodium                           | Т     | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 7782-49-2    | Selenium                          | Т     | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | 0.00175                                     | J                |
| 7440-22-4    | Silver                            | Т     | mg/L                  | 6020   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 7440-23-5    | Sodium                            | Т     | mg/L                  | 6020   | 39.4                                        |                       | 31.9                                        |                       | 32.3                                        |                       | 57.7                                        |                  |
| 7440-25-7    | Tantalum                          | Т     | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 7440-28-0    | Thallium                          | Т     | mg/L                  | 6020   | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                  |
| 7440-61-1    | Uranium                           | Т     | mg/L                  | 6020   | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                  |
| 7440-62-2    | Vanadium                          | Т     | mg/L                  | 6020   | <0.02                                       |                       | 0.00416                                     | 7                     | <0.02                                       |                       | <0.02                                       |                  |
| 7440-66-6    | Zinc                              | Т     | mg/L                  | 6020   | 0.0035                                      | J                     | 0.0143                                      | 7                     | <0.02                                       |                       | 0.00347                                     | J                |
| 108-05-4     | Vinyl acetate                     | Т     | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 67-64-1      | Acetone                           | Т     | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 107-02-8     | Acrolein                          | Т     | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 107-13-1     | Acrylonitrile                     | Т     | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 71-43-2      | Benzene                           | Т     | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 108-90-7     | Chlorobenzene                     | Т     | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 1330-20-7    | Xylenes                           | Т     | mg/L                  | 8260   | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                  |
| 100-42-5     | Styrene                           | т     | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 108-88-3     | Toluene                           | Т     | mg/L                  | 8260   | 0.00098                                     | BJ                    | 0.00071                                     | BJ                    | 0.00057                                     | BJ                    | 0.00075                                     | BJ               |
| 74-97-5      | Chlorobromomethane                | т     | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |

C-5

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number     |             |                       |        | 8004-4798                                   | }                     | 8004-479                                    | 9                     | 8004-09                                     | 81                    | 8004-48                                     | 00                    |
|---------------------------|-----------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Lo             | ocal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | .c.)   | 357                                         |                       | 358                                         |                       | 359                                         |                       | 360                                         |                       |
| CAS RN <sup>4</sup>       | CONSTITUENT                       | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 75-27-4                   | Bromodichloromethane              | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-25-2                   | Tribromomethane                   | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 74-83-9                   | Methyl bromide                    | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 78-93-3                   | Methyl ethyl ketone               | T           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 110-57-6                  | trans-1,4-Dichloro-2-butene       | T           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 75-15-0                   | Carbon disulfide                  | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 75-00-3                   | Chloroethane                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 67-66-3                   | Chloroform                        | Т           | mg/L                  | 8260   | 0.00255                                     | В                     | 0.00191                                     | В                     | 0.00138                                     | В                     | 0.00141                                     | В                     |
| 74-87-3                   | Methyl chloride                   | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 156-59-2                  | cis-1,2-Dichloroethene            | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 74-95-3                   | Methylene bromide                 | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-34-3                   | 1,1-Dichloroethane                | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 107-06-2                  | 1,2-Dichloroethane                | T           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-35-4                   | 1,1-Dichloroethylene              | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 106-93-4                  | Ethane, 1,2-dibromo               | T           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 79-34-5                   | Ethane, 1,1,2,2-Tetrachloro       | T           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 71-55-6                   | Ethane, 1,1,1-Trichloro-          | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 79-00-5                   | Ethane, 1,1,2-Trichloro           | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 630-20-6                  | Ethane, 1,1,1,2-Tetrachloro       | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-01-4                   | Vinyl chloride                    | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 127-18-4                  | Ethene, Tetrachloro-              | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 79-01-6                   | Ethene, Trichloro-                | т           | mg/L                  | 8260   | 0.00321                                     |                       | 0.00086                                     | J                     | 0.00063                                     | J                     | 0.00162                                     |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

# GROUNDWATER SAMPLE ANALYSIS - (Cont.)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |             |                       |        | 8004-4798                                   | 3                | 8004-4799                                   | 9                     | 8004-098                                    | 31                    | 8004-48                                     | 00                    |
|-----------------------------|------------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., N | 1W-:        | 1, MW-2, et           | cc.)   | 357                                         |                  | 358                                         |                       | 359                                         |                       | 360                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 100-41-4                    | Ethylbenzene                       | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 591-78-6                    | 2-Hexanone                         | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 74-88-4                     | Iodomethane                        | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 124-48-1                    | Methane, Dibromochloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 56-23-5                     | Carbon Tetrachloride               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-09-2                     | Dichloromethane                    | Т           | mg/L                  | 8260   | 0.00058                                     | 7                | 0.00055                                     | J                     | 0.00056                                     | J                     | 0.00052                                     | J                     |
| 108-10-1                    | Methyl isobutyl ketone             | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro      | Т           | mg/L                  | 8011   | <0.000192                                   | *                | <0.0000187                                  | *                     | <0.0000186                                  | *                     | <0.0000185                                  | *                     |
| 78-87-5                     | Propane, 1,2-Dichloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene       | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene         | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 156-60-5                    | trans-1,2-Dichloroethene           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-69-4                     | Trichlorofluoromethane             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 96-18-4                     | 1,2,3-Trichloropropane             | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 95-50-1                     | Benzene, 1,2-Dichloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 106-46-7                    | Benzene, 1,4-Dichloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 1336-36-3                   | PCB, Total                         | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.0971                                     |                       | <0.0962                                     |                       | <0.099                                      |                       |
| 12674-11-2                  | PCB-1016                           | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.0971                                     |                       | <0.0962                                     |                       | <0.099                                      |                       |
| 11104-28-2                  | PCB-1221                           | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.0971                                     |                       | <0.0962                                     |                       | <0.099                                      |                       |
| 11141-16-5                  | PCB-1232                           | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.0971                                     |                       | <0.0962                                     |                       | <0.099                                      |                       |
| 53469-21-9                  | PCB-1242                           | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.0971                                     |                       | <0.0962                                     |                       | <0.099                                      |                       |
| 12672-29-6                  | PCB-1248                           | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.0971                                     |                       | <0.0962                                     |                       | <0.099                                      |                       |

C-7

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |              |                       |          | 8004-4798                                   |                  | 8004-4799                                   |                       | 8004-098                                    | 1                     | 8004-480                                    | )0                    |
|---------------------------|----------------------------------|--------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-1         | L, MW-2, et           | .c.)     | 357                                         |                  | 358                                         |                       | 359                                         |                       | 360                                         |                       |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | <b>T</b> D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 11097-69-1                | PCB-1254                         | Т            | ug/L                  | 8082     | <0.1                                        |                  | <0.0971                                     |                       | <0.0962                                     |                       | <0.099                                      |                       |
| 11096-82-5                | PCB-1260                         | Т            | ug/L                  | 8082     | <0.1                                        |                  | <0.0971                                     |                       | <0.0962                                     |                       | <0.099                                      |                       |
| 11100-14-4                | PCB-1268                         | Т            | ug/L                  | 8082     | <0.1                                        |                  | <0.0971                                     |                       | <0.0962                                     |                       | <0.099                                      |                       |
| 12587-46-1                | Gross Alpha                      | Т            | pCi/L                 | 9310     | -0.0873                                     | *                | 0.925                                       | *                     | 1.14                                        | *                     | -1.01                                       | *                     |
| 12587-47-2                | Gross Beta                       | Т            | pCi/L                 | 9310     | 6.89                                        | *                | 6.9                                         | *                     | -2.09                                       | *                     | 1.54                                        | *                     |
| 10043-66-0                | Iodine-131                       | Т            | pCi/L                 |          |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                     |
| 13982-63-3                | Radium-226                       | Т            | pCi/L                 | AN-1418  | 0.419                                       | *                | 0.25                                        | *                     | 0.453                                       | *                     | 0.354                                       | *                     |
| 10098-97-2                | Strontium-90                     | Т            | pCi/L                 | 905.0    | 4.18                                        | *                | 2.81                                        | *                     | 3.37                                        | *                     | 3.85                                        | *                     |
| 14133-76-7                | Technetium-99                    | T            | pCi/L                 | Tc-02-RC | 31                                          | *                | 13.6                                        | *                     | 3.53                                        | *                     | 7.9                                         | *                     |
| 14269-63-7                | Thorium-230                      | Т            | pCi/L                 | Th-01-RC | -0.485                                      | *                | 0.766                                       | *                     | 0.211                                       | *                     | -0.565                                      | *                     |
| 10028-17-8                | Tritium                          | Т            | pCi/L                 | 906.0    | 37.6                                        | *                | 23.6                                        | *                     | 87.8                                        | *                     | -14                                         | *                     |
| s0130                     | Chemical Oxygen Demand           | T            | mg/L                  | 410.4    | 9.07                                        | J                | 19.8                                        | J                     | 19.8                                        | J                     | <20                                         |                       |
| 57-12-5                   | Cyanide                          | Т            | mg/L                  | 9012     | <0.2                                        |                  | <0.2                                        |                       | <0.2                                        |                       | <0.2                                        |                       |
| 20461-54-5                | Iodide                           | т            | mg/L                  | 300.0    | <0.5                                        | *                | <0.5                                        | *                     | <0.5                                        | *                     | <0.5                                        | *                     |
| s0268                     | Total Organic Carbon             | Т            | mg/L                  | 9060     | 0.582                                       | J                | 7.86                                        |                       | 0.472                                       | J                     | 1.11                                        | J                     |
| s0586                     | Total Organic Halides            | Т            | mg/L                  | 9020     | 0.00772                                     | J                | 0.00396                                     | J                     | 0.00358                                     | J                     | 0.00556                                     | J                     |
|                           |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                           |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                           |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                           |                                  |              |                       |          | _                                           |                  |                                             |                       |                                             |                       |                                             |                       |
|                           |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

#### RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number                                                                        |             |                       |          | 8004-479                                    | 5                                  | 8004-09                                     | 986                   | 8004-47                                     | <b>'</b> 96           | 8004-479                                    | 97               |
|-----------------------------|----------------------------------------------------------------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loca             | al Well or Spring Number (e.g., M                                                                  | /W−1        | , MW-2, etc           | :.)      | 361                                         |                                    | 362                                         |                       | 363                                         |                       | 364                                         |                  |
| Sample Sequence             | e #                                                                                                |             |                       |          | 1                                           |                                    | 1                                           |                       | 1                                           |                       | 1                                           |                  |
| If sample is a B            | lank, specify Type: (F)ield, (T)rip,                                                               | (M) e       | thod, or (E)          | quipment | NA                                          |                                    | NA                                          |                       | NA                                          |                       | NA                                          |                  |
| Sample Date and             | d Time (Month/Day/Year hour: minu                                                                  | tes         | )                     |          | 1/11/2022 0                                 | 8:09                               | 1/11/2022                                   | 08:48                 | 1/11/2022                                   | 11:56                 | 1/11/2022 1                                 | 2:39             |
| Duplicate ("Y"              | or "N") <sup>2</sup>                                                                               |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Split ("Y" or               | "N") <sup>3</sup>                                                                                  |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Facility Sample             | e ID Number (if applicable)                                                                        |             |                       |          | MW361UG2                                    | 2-22                               | MW362U                                      | G2-22                 | MW363U0                                     | G2-22                 | MW364UG                                     | 2-22             |
| Laboratory Sam              | oratory Sample ID Number (if applicable)                                                           |             |                       |          |                                             | 1                                  | 567104                                      | 013                   | 567104                                      | 015                   | 5671040                                     | 17               |
| Date of Analys              | e of Analysis (Month/Day/Year) For Volatile Organics Analysi                                       |             |                       |          |                                             | 2                                  | 1/14/20                                     | 22                    | 1/14/20                                     | 22                    | 1/14/202                                    | 2                |
| Gradient with               | e of Analysis (Month/Day/Year) For <u>Volatile</u><br>dient with respect to Monitored Unit (UP, DO |             |                       | IOWN)    | DOWN                                        |                                    | DOW                                         | N                     | DOW                                         | N                     | DOWN                                        | l                |
| CAS RN <sup>4</sup>         | CONSTITUENT                                                                                        | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                                                                            | т           | mg/L                  | 9056     | 0.464                                       |                                    | <0.2                                        |                       | 0.131                                       | J                     | 0.456                                       |                  |
| 16887-00-6                  | Chloride(s)                                                                                        | Т           | mg/L                  | 9056     | 35.8                                        | J                                  | 2.77                                        | J                     | 35.4                                        | J                     | 35.4                                        | J                |
| 16984-48-8                  | Fluoride                                                                                           | Т           | mg/L                  | 9056     | 0.132                                       | J                                  | 0.389                                       | J                     | 0.168                                       | J                     | 0.0975                                      | J                |
| s0595                       | Nitrate & Nitrite                                                                                  | Т           | mg/L                  | 9056     | 1.11                                        | J                                  | 0.387                                       | J                     | 9.34                                        | J                     | 1.14                                        | J                |
| 14808-79-8                  | Sulfate                                                                                            | Т           | mg/L                  | 9056     | 80.2                                        |                                    | 28                                          |                       | 24.7                                        |                       | 69.6                                        |                  |
| NS1894                      | Barometric Pressure Reading                                                                        | Т           | Inches/Hg             | Field    | 30.58                                       |                                    | 30.58                                       |                       | 30.54                                       |                       | 30.54                                       |                  |
| S0145                       | Specific Conductance                                                                               | Т           | μ <b>MH0/cm</b>       | Field    | 510                                         |                                    | 676                                         |                       | 469                                         |                       | 480                                         |                  |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
   of a secondary dilution

<sup>&</sup>lt;sup>2</sup>Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

<sup>&</sup>lt;sup>4</sup>Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

#### Ess

#### RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |             |                       |          | 8004-479                                    | 5                | 8004-0986                                   | 3                     | 8004-4796                                   |                       | 8004-4797                                   | ,                     |
|-----------------------------|------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., MW | -1, 1       | MW-2, BLANK-          | F, etc.) | 361                                         |                  | 362                                         |                       | 363                                         |                       | 364                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| s0906                       | Static Water Level Elevation       | Т           | Ft. MSL               | Field    | 322.61                                      |                  | 337.92                                      |                       | 322.67                                      |                       | 321.86                                      |                       |
| N238                        | Dissolved Oxygen                   | T           | mg/L                  | Field    | 4.44                                        |                  | 3.1                                         |                       | 1.86                                        |                       | 4.2                                         |                       |
| s0266                       | Total Dissolved Solids             | т           | mg/L                  | 160.1    | 250                                         |                  | 531                                         |                       | 251                                         |                       | 251                                         |                       |
| s0296                       | рН                                 | т           | Units                 | Field    | 5.96                                        |                  | 6.9                                         |                       | 6.11                                        |                       | 6                                           |                       |
| NS215                       | Eh                                 | т           | mV                    | Field    | 350                                         |                  | 176                                         |                       | 383                                         |                       | 390                                         |                       |
| s0907                       | Temperature                        | т           | °C                    | Field    | 13.44                                       |                  | 12.22                                       |                       | 14.72                                       |                       | 15.61                                       |                       |
| 7429-90-5                   | Aluminum                           | т           | mg/L                  | 6020     | <0.05                                       |                  | 24.3                                        |                       | <0.05                                       |                       | <0.05                                       |                       |
| 7440-36-0                   | Antimony                           | т           | mg/L                  | 6020     | <0.003                                      |                  | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |
| 7440-38-2                   | Arsenic                            | т           | mg/L                  | 6020     | <0.005                                      |                  | 0.00574                                     |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-39-3                   | Barium                             | т           | mg/L                  | 6020     | 0.0548                                      |                  | 0.204                                       |                       | 0.16                                        |                       | 0.0595                                      |                       |
| 7440-41-7                   | Beryllium                          | т           | mg/L                  | 6020     | <0.0005                                     |                  | 0.000911                                    |                       | <0.0005                                     |                       | <0.0005                                     |                       |
| 7440-42-8                   | Boron                              | т           | mg/L                  | 6020     | 0.132                                       |                  | 0.02                                        |                       | 0.018                                       |                       | 0.0901                                      |                       |
| 7440-43-9                   | Cadmium                            | T           | mg/L                  | 6020     | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-70-2                   | Calcium                            | T           | mg/L                  | 6020     | 33.6                                        |                  | 22.3                                        |                       | 30                                          |                       | 32                                          |                       |
| 7440-47-3                   | Chromium                           | т           | mg/L                  | 6020     | <0.01                                       | *                | 0.045                                       | *                     | <0.01                                       | *                     | <0.01                                       | *                     |
| 7440-48-4                   | Cobalt                             | Т           | mg/L                  | 6020     | <0.001                                      |                  | 0.0136                                      |                       | 0.000949                                    | J                     | <0.001                                      |                       |
| 7440-50-8                   | Copper                             | Т           | mg/L                  | 6020     | 0.000977                                    | J                | 0.0245                                      |                       | 0.000653                                    | J                     | 0.000551                                    | J                     |
| 7439-89-6                   | Iron                               | Т           | mg/L                  | 6020     | 0.102                                       |                  | 18.9                                        |                       | 0.0503                                      | J                     | <0.1                                        |                       |
| 7439-92-1                   | Lead                               | т           | mg/L                  | 6020     | <0.002                                      |                  | 0.0169                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7439-95-4                   | Magnesium                          | T           | mg/L                  | 6020     | 14.7                                        |                  | 10.5                                        |                       | 11.7                                        |                       | 13.7                                        |                       |
| 7439-96-5                   | Manganese                          | Т           | mg/L                  | 6020     | 0.0557                                      |                  | 0.19                                        |                       | 0.123                                       |                       | 0.00192                                     | J                     |
| 7439-97-6                   | Mercury                            | Т           | mg/L                  | 7470     | <0.0002                                     |                  | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBE         | R <sup>1</sup> , Facility Well/Spring Number |             |                       |        | 8004-479                                    | 5                     | 8004-098                                    | 36                    | 8004-479                                    | 6                     | 8004-479                                    | )7                    |
|---------------------|----------------------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's          | Local Well or Spring Number (e.g             | ., MW-      | 1, MW-2, e            | tc.)   | 361                                         |                       | 362                                         |                       | 363                                         |                       | 364                                         |                       |
| CAS RN <sup>4</sup> | CONSTITUENT                                  | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 7439-98-7           | Molybdenum                                   | Т           | mg/L                  | 6020   | <0.001                                      |                       | 0.00302                                     | В                     | <0.001                                      |                       | <0.001                                      |                       |
| 7440-02-0           | Nickel                                       | Т           | mg/L                  | 6020   | <0.002                                      |                       | 0.0185                                      |                       | 0.0225                                      |                       | 0.000642                                    | J                     |
| 7440-09-7           | Potassium                                    | Т           | mg/L                  | 6020   | 2.5                                         |                       | 1.65                                        |                       | 2.18                                        |                       | 2.05                                        |                       |
| 7440-16-6           | Rhodium                                      | Т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7782-49-2           | Selenium                                     | Т           | mg/L                  | 6020   | <0.005                                      |                       | 0.00205                                     | J                     | <0.005                                      |                       | <0.005                                      |                       |
| 7440-22-4           | Silver                                       | Т           | mg/L                  | 6020   | <0.001                                      |                       | 0.00189                                     |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-23-5           | Sodium                                       | Т           | mg/L                  | 6020   | 44.3                                        |                       | 131                                         |                       | 41.6                                        |                       | 42.4                                        |                       |
| 7440-25-7           | Tantalum                                     | Т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-28-0           | Thallium                                     | Т           | mg/L                  | 6020   | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7440-61-1           | Uranium                                      | Т           | mg/L                  | 6020   | <0.0002                                     |                       | 0.00547                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       |
| 7440-62-2           | Vanadium                                     | Т           | mg/L                  | 6020   | <0.02                                       |                       | 0.0365                                      |                       | <0.02                                       |                       | <0.02                                       |                       |
| 7440-66-6           | Zinc                                         | Т           | mg/L                  | 6020   | <0.02                                       |                       | 0.0431                                      |                       | <0.02                                       |                       | 0.0106                                      | J                     |
| 108-05-4            | Vinyl acetate                                | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 67-64-1             | Acetone                                      | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 107-02-8            | Acrolein                                     | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 107-13-1            | Acrylonitrile                                | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 71-43-2             | Benzene                                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 108-90-7            | Chlorobenzene                                | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 1330-20-7           | Xylenes                                      | Т           | mg/L                  | 8260   | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |
| 100-42-5            | Styrene                                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 108-88-3            | Toluene                                      | Т           | mg/L                  | 8260   | 0.00038                                     | BJ                    | 0.00038                                     | BJ                    | <0.001                                      |                       | <0.001                                      |                       |
| 74-97-5             | Chlorobromomethane                           | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |        | 8004-4795                                   | j                | 8004-098                                    | 6                     | 8004-479                                    | 96                    | 8004-479                                    | 97               |
|---------------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | tc.)   | 361                                         |                  | 362                                         |                       | 363                                         |                       | 364                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 75-27-4                   | Bromodichloromethane             | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-25-2                   | Tribromomethane                  | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-83-9                   | Methyl bromide                   | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 78-93-3                   | Methyl ethyl ketone              | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 110-57-6                  | trans-1,4-Dichloro-2-butene      | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 75-15-0                   | Carbon disulfide                 | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 75-00-3                   | Chloroethane                     | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 67-66-3                   | Chloroform                       | т           | mg/L                  | 8260   | 0.00063                                     | BJ               | 0.00055                                     | BJ                    | 0.00056                                     | BJ                    | 0.00052                                     | BJ               |
| 74-87-3                   | Methyl chloride                  | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 156-59-2                  | cis-1,2-Dichloroethene           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-95-3                   | Methylene bromide                | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-34-3                   | 1,1-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 107-06-2                  | 1,2-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-35-4                   | 1,1-Dichloroethylene             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 106-93-4                  | Ethane, 1,2-dibromo              | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-34-5                   | Ethane, 1,1,2,2-Tetrachloro      | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 71-55-6                   | Ethane, 1,1,1-Trichloro-         | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-00-5                   | Ethane, 1,1,2-Trichloro          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 630-20-6                  | Ethane, 1,1,1,2-Tetrachloro      | T           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-01-4                   | Vinyl chloride                   | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 127-18-4                  | Ethene, Tetrachloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-01-6                   | Ethene, Trichloro-               | Т           | mg/L                  | 8260   | 0.00664                                     |                  | 0.00055                                     | J                     | 0.00043                                     | J                     | 0.00453                                     |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

# GROUNDWATER SAMPLE ANALYSIS - (Cont.)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |             |                       |        | 8004-479                                    | 5                | 8004-0986                                   | 6                     | 8004-479                                    | 96                    | 8004-47                                     | 97                    |
|-----------------------------|------------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., N | 1W-:        | 1, MW-2, et           | cc.)   | 361                                         |                  | 362                                         |                       | 363                                         |                       | 364                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 100-41-4                    | Ethylbenzene                       | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 591-78-6                    | 2-Hexanone                         | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 74-88-4                     | Iodomethane                        | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 124-48-1                    | Methane, Dibromochloro-            | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 56-23-5                     | Carbon Tetrachloride               | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-09-2                     | Dichloromethane                    | Т           | mg/L                  | 8260   | 0.00051                                     | 7                | 0.00052                                     | J                     | 0.00054                                     | J                     | 0.00054                                     | J                     |
| 108-10-1                    | Methyl isobutyl ketone             | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro      | Т           | mg/L                  | 8011   | <0.000195                                   | *                | <0.0000185                                  | *                     | <0.0000185                                  | *                     | <0.0000189                                  | *                     |
| 78-87-5                     | Propane, 1,2-Dichloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene       | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene         | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 156-60-5                    | trans-1,2-Dichloroethene           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-69-4                     | Trichlorofluoromethane             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 96-18-4                     | 1,2,3-Trichloropropane             | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 95-50-1                     | Benzene, 1,2-Dichloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 106-46-7                    | Benzene, 1,4-Dichloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 1336-36-3                   | PCB,Total                          | т           | ug/L                  | 8082   | <0.103                                      |                  | <0.103                                      |                       | <0.101                                      |                       | <0.0999                                     |                       |
| 12674-11-2                  | PCB-1016                           | т           | ug/L                  | 8082   | <0.103                                      |                  | <0.103                                      |                       | <0.101                                      |                       | <0.0999                                     |                       |
| 11104-28-2                  | PCB-1221                           | т           | ug/L                  | 8082   | <0.103                                      |                  | <0.103                                      |                       | <0.101                                      |                       | <0.0999                                     |                       |
| 11141-16-5                  | PCB-1232                           | т           | ug/L                  | 8082   | <0.103                                      |                  | <0.103                                      |                       | <0.101                                      |                       | <0.0999                                     |                       |
| 53469-21-9                  | PCB-1242                           | т           | ug/L                  | 8082   | <0.103                                      |                  | <0.103                                      |                       | <0.101                                      |                       | <0.0999                                     |                       |
| 12672-29-6                  | PCB-1248                           | Т           | ug/L                  | 8082   | <0.103                                      |                  | <0.103                                      |                       | <0.101                                      |                       | <0.0999                                     |                       |

C-13

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number   |                    |                       |          | 8004-4795                                   |                       | 8004-0986                                   |                  | 8004-479                                    | 6                     | 8004-479                                    | )7               |
|---------------------------|---------------------------------|--------------------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo             | cal Well or Spring Number (e.g. | , MW-1             | 1, MW-2, et           | tc.)     | 361                                         |                       | 362                                         |                  | 363                                         |                       | 364                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                     | <b>T</b><br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 11097-69-1                | PCB-1254                        | т                  | ug/L                  | 8082     | <0.103                                      |                       | <0.103                                      |                  | <0.101                                      |                       | <0.0999                                     |                  |
| 11096-82-5                | PCB-1260                        | т                  | ug/L                  | 8082     | <0.103                                      |                       | <0.103                                      |                  | <0.101                                      |                       | <0.0999                                     |                  |
| 11100-14-4                | PCB-1268                        | т                  | ug/L                  | 8082     | <0.103                                      |                       | <0.103                                      |                  | <0.101                                      |                       | <0.0999                                     |                  |
| 12587-46-1                | Gross Alpha                     | Т                  | pCi/L                 | 9310     | -1.74                                       | *                     | 5.23                                        | *                | 0.675                                       | *                     | 1.01                                        | *                |
| 12587-47-2                | Gross Beta                      | т                  | pCi/L                 | 9310     | 17.9                                        | *                     | 1.62                                        | *                | 5.12                                        | *                     | 34.1                                        | *                |
| 10043-66-0                | Iodine-131                      | Т                  | pCi/L                 |          |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
| 13982-63-3                | Radium-226                      | Т                  | pCi/L                 | AN-1418  | 0.369                                       | *                     | 0.309                                       | *                | 0.419                                       | *                     | 0.312                                       | *                |
| 10098-97-2                | Strontium-90                    | Т                  | pCi/L                 | 905.0    | 3.46                                        | *                     | 4.57                                        | *                | 4.23                                        | *                     | 2.89                                        | *                |
| 14133-76-7                | Technetium-99                   | Т                  | pCi/L                 | Tc-02-RC | 51.5                                        | *                     | 2.41                                        | *                | 3.38                                        | *                     | 57.3                                        | *                |
| 14269-63-7                | Thorium-230                     | Т                  | pCi/L                 | Th-01-RC | 0.41                                        | *                     | 0.245                                       | *                | 2                                           | *                     | 0.948                                       | *                |
| 10028-17-8                | Tritium                         | т                  | pCi/L                 | 906.0    | 2.54                                        | *                     | 86.4                                        | *                | -14.2                                       | *                     | -132                                        | *                |
| s0130                     | Chemical Oxygen Demand          | Т                  | mg/L                  | 410.4    | 9.07                                        | J                     | 9.07                                        | J                | 12.6                                        | J                     | 9.07                                        | J                |
| 57-12-5                   | Cyanide                         | Т                  | mg/L                  | 9012     | <0.2                                        |                       | <0.2                                        |                  | <0.2                                        |                       | 0.00412                                     | J                |
| 20461-54-5                | Iodide                          | Т                  | mg/L                  | 300.0    | <0.5                                        | *                     | <0.5                                        | *                | <0.5                                        | *                     | <0.5                                        | *                |
| S0268                     | Total Organic Carbon            | Т                  | mg/L                  | 9060     | 0.382                                       | J                     | 2.96                                        |                  | 0.668                                       | J                     | 0.374                                       | J                |
| s0586                     | Total Organic Halides           | Т                  | mg/L                  | 9020     | 0.00768                                     | J                     | 0.0141                                      |                  | 0.0069                                      | J                     | 0.00982                                     | J                |
|                           |                                 |                    |                       |          |                                             |                       |                                             |                  |                                             |                       |                                             |                  |
|                           |                                 |                    |                       |          |                                             |                       |                                             |                  |                                             |                       |                                             |                  |

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

#### RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number                                   |             |                       |          | 8004-09                                     | 984                                | 8004-                                       | 0982                  | 8004-4                                      | 4793                  | 8004-0                                      | 983              |
|-----------------------------|---------------------------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., M                             | /W−1        | , MW-2, etc           | :.)      | 365                                         |                                    | 36                                          | 66                    | 36                                          | 7                     | 368                                         | 3                |
| Sample Sequence             | e #                                                           |             |                       |          | 1                                           |                                    | 1                                           |                       | 1                                           |                       | 1                                           |                  |
| If sample is a B            | lank, specify Type: (F)ield, (T)rip,                          | (M) ∈       | thod, or (E)          | quipment | NA                                          |                                    | NA                                          |                       | NA                                          |                       | NA                                          |                  |
| Sample Date an              | d Time (Month/Day/Year hour: minu                             | tes         | )                     |          | 1/12/2022                                   | 07:03                              | 1/12/202                                    | 22 07:45              | 1/12/202                                    | 2 08:45               | 1/12/2022                                   | 2 09:24          |
| Duplicate ("Y"              | or "N") <sup>2</sup>                                          |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Split ("Y" or               | "N") <sup>3</sup>                                             |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Facility Sampl              | e ID Number (if applicable)                                   |             |                       |          | MW365U0                                     | G2-22                              | MW366                                       | UG2-22                | MW3671                                      | JG2-22                | MW368U                                      | G2-22            |
| Laboratory Sam              | poratory Sample ID Number (if applicable)                     |             |                       |          |                                             |                                    | 56724                                       | 5003                  | 56724                                       | 5005                  | 567245                                      | 5007             |
| Date of Analys              | e of Analysis (Month/Day/Year) For Volatile Organics Analysis |             |                       |          |                                             | 22                                 | 1/14/2                                      | 2022                  | 1/14/2                                      | 2022                  | 1/14/20                                     | )22              |
| Gradient with               | respect to Monitored Unit (UP, DO                             | , NWC       | SIDE, UNKN            | IOWN)    | DOW                                         | N                                  | DO'                                         | WN                    | DOV                                         | ٧N                    | DOW                                         | /N               |
| CAS RN <sup>4</sup>         | CONSTITUENT                                                   | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                                       | т           | mg/L                  | 9056     | <0.2                                        |                                    | 0.425                                       |                       | 0.146                                       | J                     | 0.0673                                      | J                |
| 16887-00-6                  | Chloride(s)                                                   | т           | mg/L                  | 9056     | 1.9                                         | J                                  | 32.3                                        | J                     | 8.62                                        | J                     | 2.19                                        | J                |
| 16984-48-8                  | Fluoride                                                      | Т           | mg/L                  | 9056     | 0.309                                       | J                                  | 0.176                                       | J                     | 0.101                                       | J                     | 0.22                                        | J                |
| s0595                       | Nitrate & Nitrite                                             | т           | mg/L                  | 9056     | 1.03                                        | J                                  | 0.778                                       | J                     | 0.0537                                      | J                     | 0.0552                                      | J                |
| 14808-79-8                  | Sulfate                                                       | т           | mg/L                  | 9056     | 55.9                                        |                                    | 37.6                                        |                       | 21                                          |                       | 95.1                                        |                  |
| NS1894                      | Barometric Pressure Reading                                   | т           | Inches/Hg             | Field    | 30.24                                       |                                    | 30.24                                       |                       | 30.22                                       |                       | 30.23                                       |                  |
| S0145                       | Specific Conductance                                          | Т           | μ <b>MH0/cm</b>       | Field    | 355                                         |                                    | 434                                         |                       | 225                                         | _                     | 550                                         | •                |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $<sup>^{2}</sup>$ Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

<sup>&</sup>lt;sup>4</sup>Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |       |                       |          | 8004-0984                                   | 1                     | 8004-0982                                   | 2                     | 8004-4793                                   |                       | 8004-0983                                   |                       |
|-----------------------------|------------------------------------|-------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., MW | -1, 1 | MW-2, BLANK-          | F, etc.) | 365                                         |                       | 366                                         |                       | 367                                         |                       | 368                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | T D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| s0906                       | Static Water Level Elevation       | Т     | Ft. MSL               | Field    | 330.8                                       |                       | 323.14                                      |                       | 323.11                                      |                       | 351.39                                      |                       |
| N238                        | Dissolved Oxygen                   | T     | mg/L                  | Field    | 8.13                                        |                       | 4.15                                        |                       | 1.6                                         |                       | 3.11                                        |                       |
| s0266                       | Total Dissolved Solids             | т     | mg/L                  | 160.1    | 233                                         |                       | 244                                         |                       | 129                                         |                       | 374                                         |                       |
| s0296                       | Нд                                 | Т     | Units                 | Field    | 6.26                                        |                       | 6.09                                        |                       | 5.89                                        |                       | 6.34                                        |                       |
| NS215                       | Eh                                 | Т     | mV                    | Field    | 395                                         |                       | 421                                         |                       | 277                                         |                       | 259                                         |                       |
| s0907                       | Temperature                        | Т     | °C                    | Field    | 12.94                                       |                       | 14                                          |                       | 14                                          |                       | 15.06                                       |                       |
| 7429-90-5                   | Aluminum                           | Т     | mg/L                  | 6020     | 0.02                                        | J                     | <0.05                                       |                       | <0.05                                       |                       | 0.94                                        |                       |
| 7440-36-0                   | Antimony                           | T     | mg/L                  | 6020     | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |
| 7440-38-2                   | Arsenic                            | Т     | mg/L                  | 6020     | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | 0.00254                                     | J                     |
| 7440-39-3                   | Barium                             | Т     | mg/L                  | 6020     | 0.0829                                      |                       | 0.107                                       |                       | 0.129                                       |                       | 0.046                                       |                       |
| 7440-41-7                   | Beryllium                          | Т     | mg/L                  | 6020     | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       |
| 7440-42-8                   | Boron                              | Т     | mg/L                  | 6020     | 0.0117                                      | J                     | 0.0608                                      |                       | 0.0188                                      |                       | <0.015                                      |                       |
| 7440-43-9                   | Cadmium                            | T     | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-70-2                   | Calcium                            | T     | mg/L                  | 6020     | 18.7                                        |                       | 28.4                                        |                       | 13.4                                        |                       | 49.3                                        |                       |
| 7440-47-3                   | Chromium                           | Т     | mg/L                  | 6020     | <0.01                                       |                       | <0.01                                       |                       | 0.00864                                     | J                     | <0.01                                       |                       |
| 7440-48-4                   | Cobalt                             | Т     | mg/L                  | 6020     | 0.00127                                     |                       | <0.001                                      |                       | 0.00718                                     |                       | <0.001                                      |                       |
| 7440-50-8                   | Copper                             | Т     | mg/L                  | 6020     | 0.00227                                     |                       | 0.000817                                    | J                     | 0.000605                                    | J                     | 0.000724                                    | J                     |
| 7439-89-6                   | Iron                               | Т     | mg/L                  | 6020     | <0.1                                        |                       | <0.1                                        |                       | 5.73                                        |                       | 0.55                                        |                       |
| 7439-92-1                   | Lead                               | Т     | mg/L                  | 6020     | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7439-95-4                   | Magnesium                          | Т     | mg/L                  | 6020     | 8.79                                        |                       | 11.9                                        |                       | 7.17                                        |                       | 10.9                                        |                       |
| 7439-96-5                   | Manganese                          | Т     | mg/L                  | 6020     | 0.0094                                      |                       | <0.005                                      |                       | 1.37                                        |                       | 0.00923                                     |                       |
| 7439-97-6                   | Mercury                            | Т     | mg/L                  | 7470     | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBE         | R <sup>1</sup> , Facility Well/Spring Number |             |                       |        | 8004-098                                    | 4                     | 8004-098                                    | 32                    | 8004-479                                    | 3                     | 8004-098                                    | 3                     |
|---------------------|----------------------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's          | Local Well or Spring Number (e.g             | ., MW-      | 1, MW-2, e            | tc.)   | 365                                         |                       | 366                                         |                       | 367                                         |                       | 368                                         |                       |
| CAS RN <sup>4</sup> | CONSTITUENT                                  | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 7439-98-7           | Molybdenum                                   | Т           | mg/L                  | 6020   | 0.000254                                    | J                     | <0.001                                      |                       | 0.000384                                    | J                     | 0.000742                                    | J                     |
| 7440-02-0           | Nickel                                       | Т           | mg/L                  | 6020   | 0.00554                                     |                       | 0.00144                                     | 7                     | 0.00669                                     |                       | 0.00145                                     | J                     |
| 7440-09-7           | Potassium                                    | T           | mg/L                  | 6020   | 0.362                                       |                       | 2.11                                        |                       | 2.93                                        |                       | 0.516                                       |                       |
| 7440-16-6           | Rhodium                                      | T           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7782-49-2           | Selenium                                     | Т           | mg/L                  | 6020   | <0.005                                      |                       | 0.00277                                     | 7                     | <0.005                                      |                       | <0.005                                      |                       |
| 7440-22-4           | Silver                                       | T           | mg/L                  | 6020   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-23-5           | Sodium                                       | Т           | mg/L                  | 6020   | 47.5                                        |                       | 46.5                                        |                       | 16.8                                        |                       | 65                                          |                       |
| 7440-25-7           | Tantalum                                     | T           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-28-0           | Thallium                                     | Т           | mg/L                  | 6020   | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7440-61-1           | Uranium                                      | T           | mg/L                  | 6020   | 0.000102                                    | J                     | <0.0002                                     |                       | <0.0002                                     |                       | 0.000249                                    |                       |
| 7440-62-2           | Vanadium                                     | Т           | mg/L                  | 6020   | 0.00611                                     | J                     | 0.00483                                     | 7                     | 0.00384                                     | J                     | 0.00867                                     | J                     |
| 7440-66-6           | Zinc                                         | Т           | mg/L                  | 6020   | 0.00433                                     | J                     | <0.02                                       |                       | 0.0117                                      | J                     | 0.00386                                     | J                     |
| 108-05-4            | Vinyl acetate                                | T           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 67-64-1             | Acetone                                      | T           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 107-02-8            | Acrolein                                     | T           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 107-13-1            | Acrylonitrile                                | T           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 71-43-2             | Benzene                                      | T           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 108-90-7            | Chlorobenzene                                | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 1330-20-7           | Xylenes                                      | Т           | mg/L                  | 8260   | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |
| 100-42-5            | Styrene                                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 108-88-3            | Toluene                                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 74-97-5             | Chlorobromomethane                           | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |        | 8004-0984                                   |                       | 8004-098                                    | 2                     | 8004-47                                     | 93                    | 8004-09                                     | 83               |
|---------------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | tc.)   | 365                                         |                       | 366                                         |                       | 367                                         |                       | 368                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 75-27-4                   | Bromodichloromethane             | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-25-2                   | Tribromomethane                  | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-83-9                   | Methyl bromide                   | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 78-93-3                   | Methyl ethyl ketone              | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 110-57-6                  | trans-1,4-Dichloro-2-butene      | T           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 75-15-0                   | Carbon disulfide                 | T           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 75-00-3                   | Chloroethane                     | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 67-66-3                   | Chloroform                       | T           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-87-3                   | Methyl chloride                  | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 156-59-2                  | cis-1,2-Dichloroethene           | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-95-3                   | Methylene bromide                | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-34-3                   | 1,1-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 107-06-2                  | 1,2-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-35-4                   | 1,1-Dichloroethylene             | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 106-93-4                  | Ethane, 1,2-dibromo              | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-34-5                   | Ethane, 1,1,2,2-Tetrachloro      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 71-55-6                   | Ethane, 1,1,1-Trichloro-         | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-00-5                   | Ethane, 1,1,2-Trichloro          | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 630-20-6                  | Ethane, 1,1,1,2-Tetrachloro      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-01-4                   | Vinyl chloride                   | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 127-18-4                  | Ethene, Tetrachloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-01-6                   | Ethene, Trichloro-               | Т           | mg/L                  | 8260   | <0.001                                      |                       | 0.00294                                     |                       | 0.00054                                     | J                     | <0.001                                      |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

# GROUNDWATER SAMPLE ANALYSIS - (Cont.)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |             |                       |        | 8004-0984                                   | 4                | 8004-0982                                   | 2                     | 8004-479                                    | 93                    | 8004-09                                     | 83                    |
|-----------------------------|-----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., N | /W−:        | 1, MW-2, et           | cc.)   | 365                                         |                  | 366                                         |                       | 367                                         |                       | 368                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 100-41-4                    | Ethylbenzene                      | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 591-78-6                    | 2-Hexanone                        | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 74-88-4                     | Iodomethane                       | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 124-48-1                    | Methane, Dibromochloro-           | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 56-23-5                     | Carbon Tetrachloride              | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-09-2                     | Dichloromethane                   | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 108-10-1                    | Methyl isobutyl ketone            | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | Т           | mg/L                  | 8011   | <0.000186                                   |                  | <0.0000189                                  |                       | <0.0000185                                  |                       | <0.0000186                                  |                       |
| 78-87-5                     | Propane, 1,2-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 156-60-5                    | trans-1,2-Dichloroethene          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-69-4                     | Trichlorofluoromethane            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 96-18-4                     | 1,2,3-Trichloropropane            | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 1336-36-3                   | PCB,Total                         | т           | ug/L                  | 8082   | <0.0979                                     |                  | <0.1                                        |                       | <0.1                                        |                       | <0.1                                        |                       |
| 12674-11-2                  | PCB-1016                          | т           | ug/L                  | 8082   | <0.0979                                     |                  | <0.1                                        |                       | <0.1                                        |                       | <0.1                                        |                       |
| 11104-28-2                  | PCB-1221                          | т           | ug/L                  | 8082   | <0.0979                                     |                  | <0.1                                        |                       | <0.1                                        |                       | <0.1                                        |                       |
| 11141-16-5                  | PCB-1232                          | т           | ug/L                  | 8082   | <0.0979                                     |                  | <0.1                                        |                       | <0.1                                        |                       | <0.1                                        |                       |
| 53469-21-9                  | PCB-1242                          | т           | ug/L                  | 8082   | <0.0979                                     |                  | <0.1                                        |                       | <0.1                                        |                       | <0.1                                        |                       |
| 12672-29-6                  | PCB-1248                          | Т           | ug/L                  | 8082   | <0.0979                                     |                  | <0.1                                        |                       | <0.1                                        |                       | <0.1                                        |                       |

C-19

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number      |             |                       |          | 8004-0984                                   |                  | 8004-0982                                   |                       | 8004-479                                    | 3                     | 8004-098                                    | 33                    |
|-----------------------------|----------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., | MW-1        | L, MW-2, et           | .c.)     | 365                                         |                  | 366                                         |                       | 367                                         |                       | 368                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                      | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 11097-69-1                  | PCB-1254                         | Т           | ug/L                  | 8082     | <0.0979                                     |                  | <0.1                                        |                       | <0.1                                        |                       | <0.1                                        |                       |
| 11096-82-5                  | PCB-1260                         | Т           | ug/L                  | 8082     | <0.0979                                     |                  | <0.1                                        |                       | <0.1                                        |                       | <0.1                                        |                       |
| 11100-14-4                  | PCB-1268                         | Т           | ug/L                  | 8082     | <0.0979                                     |                  | <0.1                                        |                       | <0.1                                        |                       | <0.1                                        |                       |
| 12587-46-1                  | Gross Alpha                      | Т           | pCi/L                 | 9310     | 1.47                                        | *                | 4.12                                        | *                     | 2.11                                        | *                     | -0.299                                      | *                     |
| 12587-47-2                  | Gross Beta                       | т           | pCi/L                 | 9310     | -0.477                                      | *                | 44.6                                        | *                     | -2.06                                       | *                     | 6.9                                         | *                     |
| 10043-66-0                  | Iodine-131                       | Т           | pCi/L                 |          |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                     |
| 13982-63-3                  | Radium-226                       | Т           | pCi/L                 | AN-1418  | 0.37                                        | *                | 0.348                                       | *                     | 0.674                                       | *                     | 0.141                                       | *                     |
| 10098-97-2                  | Strontium-90                     | Т           | pCi/L                 | 905.0    | 7.54                                        | *                | 2.9                                         | *                     | 4.65                                        | *                     | 1.79                                        | *                     |
| 14133-76-7                  | Technetium-99                    | Т           | pCi/L                 | Tc-02-RC | 2.18                                        | *                | 67.9                                        | *                     | -1.91                                       | *                     | -6                                          | *                     |
| 14269-63-7                  | Thorium-230                      | Т           | pCi/L                 | Th-01-RC | 0.536                                       | *                | 0.147                                       | *                     | 0.196                                       | *                     | 0.39                                        | *                     |
| 10028-17-8                  | Tritium                          | Т           | pCi/L                 | 906.0    | 155                                         | *                | 38                                          | *                     | 39                                          | *                     | 108                                         | *                     |
| s0130                       | Chemical Oxygen Demand           | Т           | mg/L                  | 410.4    | 9.57                                        | J                | 20.3                                        |                       | 13.1                                        | J                     | 20.3                                        |                       |
| 57-12-5                     | Cyanide                          | Т           | mg/L                  | 9012     | <0.2                                        |                  | <0.2                                        |                       | <0.2                                        |                       | <0.2                                        |                       |
| 20461-54-5                  | Iodide                           | т           | mg/L                  | 300.0    | <0.5                                        | *                | <0.5                                        | *                     | <0.5                                        | *                     | <0.5                                        | *                     |
| s0268                       | Total Organic Carbon             | Т           | mg/L                  | 9060     | 1.27                                        | J                | 0.577                                       | J                     | 0.526                                       | J                     | 1.36                                        | J                     |
| s0586                       | Total Organic Halides            | Т           | mg/L                  | 9020     | 0.00978                                     | J                | 0.00486                                     | J                     | 0.00366                                     | J                     | <0.01                                       |                       |
|                             |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                             |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                             |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                             |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                             |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

#### RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number                                           |       |                       |          | 8004-48                                     | 320              | 8004-                                       | 4818                  | 8004-                                       | 4819                  | 8004-4                                      | 808              |
|-----------------------------|-----------------------------------------------------------------------|-------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., N                                     | /W-1  | L, MW-2, etc          | :.)      | 369                                         |                  | 37                                          | 0                     | 37                                          | '1                    | 372                                         | 2                |
| Sample Sequenc              | e #                                                                   |       |                       |          | 1                                           |                  | 1                                           |                       | 1                                           |                       | 1                                           |                  |
| If sample is a B            | lank, specify Type: (F)ield, (T)rip,                                  | (M) e | ethod, or (E)         | quipment | NA                                          |                  | NA                                          |                       | NA                                          |                       | NA                                          |                  |
| Sample Date an              | d Time (Month/Day/Year hour: minu                                     | tes   | )                     |          | 1/12/2022                                   | 10:11            | 1/12/202                                    | 22 10:53              | 1/12/202                                    | 2 11:34               | 1/13/2022                                   | 2 07:24          |
| Duplicate ("Y"              | or "N") <sup>2</sup>                                                  |       |                       |          | N                                           |                  | N                                           |                       | N                                           |                       | N                                           |                  |
| Split ("Y" or               | "N") <sup>3</sup>                                                     |       |                       |          | N                                           |                  | N                                           |                       | N                                           |                       | N                                           |                  |
| Facility Sampl              | e ID Number (if applicable)                                           |       |                       |          | MW369U0                                     | G2-22            | MW370                                       | UG2-22                | MW371                                       | JG2-22                | MW372U                                      | G2-22            |
| Laboratory Sam              | boratory Sample ID Number (if applicable)                             |       |                       |          |                                             |                  | 56724                                       | 5011                  | 56724                                       | 5013                  | 567568                                      | 3001             |
| Date of Analys              | te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis |       |                       |          |                                             |                  | 1/14/2                                      | 2022                  | 1/14/2                                      | 2022                  | 1/19/20                                     | 022              |
| Gradient with               | respect to Monitored Unit (UP, DO                                     | , NWC | , SIDE, UNKN          | IOWN)    | UP                                          |                  | U                                           | Р                     | U                                           | Р                     | UP                                          | 1                |
| CAS RN <sup>4</sup>         | CONSTITUENT                                                           | T D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                                               | Т     | mg/L                  | 9056     | 0.35                                        |                  | 0.523                                       |                       | 0.101                                       | J                     | 0.491                                       |                  |
| 16887-00-6                  | Chloride(s)                                                           | т     | mg/L                  | 9056     | 28                                          | J                | 36.5                                        | J                     | 4.77                                        | J                     | 38.2                                        | *J               |
| 16984-48-8                  | Fluoride                                                              | Т     | mg/L                  | 9056     | 0.197                                       | J                | 0.164                                       | J                     | 0.205                                       | J                     | 0.166                                       | J                |
| s0595                       | 0595 Nitrate & Nitrite T mg/L S                                       |       |                       |          | 0.804                                       | J                | 0.91                                        | J                     | 0.14                                        | J                     | 1.03                                        | *J               |
| 14808-79-8                  | Sulfate                                                               | т     | mg/L                  | 9056     | 7.8                                         |                  | 20.5                                        |                       | 14.3                                        |                       | 145                                         | *                |
| NS1894                      | Barometric Pressure Reading                                           | т     | Inches/Hg             | Field    | 30.23                                       |                  | 30.19                                       |                       | 30.19                                       |                       | 29.95                                       |                  |
| S0145                       | Specific Conductance                                                  | Т     | μ <b>MH</b> 0/cm      | Field    | 359                                         |                  | 459                                         |                       | 717                                         |                       | 752                                         |                  |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $<sup>^{2}</sup>$ Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

<sup>&</sup>lt;sup>4</sup>Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |       |                       |          | 8004-4820                                   | )                     | 8004-4818                                   | 3                     | 8004-4819                                   |                       | 8004-4808                                   |                       |
|-----------------------------|------------------------------------|-------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., MW | -1, I | MW-2, BLANK-          | F, etc.) | 369                                         |                       | 370                                         |                       | 371                                         |                       | 372                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | T D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| s0906                       | Static Water Level Elevation       | Т     | Ft. MSL               | Field    | 324.06                                      |                       | 324.04                                      |                       | 341.47                                      |                       | 324.45                                      |                       |
| N238                        | Dissolved Oxygen                   | Т     | mg/L                  | Field    | 2.64                                        |                       | 4.36                                        |                       | 3.82                                        |                       | 3.1                                         |                       |
| S0266                       | Total Dissolved Solids             | Т     | mg/L                  | 160.1    | 200                                         |                       | 240                                         |                       | 399                                         |                       | 506                                         |                       |
| s0296                       | рн                                 | Т     | Units                 | Field    | 6.1                                         |                       | 6.06                                        |                       | 6.53                                        |                       | 6.09                                        |                       |
| NS215                       | Eh                                 | Т     | mV                    | Field    | 392                                         |                       | 402                                         |                       | 389                                         |                       | 376                                         |                       |
| s0907                       | Temperature                        | Т     | °C                    | Field    | 15.67                                       |                       | 16.39                                       |                       | 16.83                                       |                       | 14.56                                       |                       |
| 7429-90-5                   | Aluminum                           | Т     | mg/L                  | 6020     | 0.0277                                      | J                     | <0.05                                       |                       | 0.037                                       | J                     | <0.05                                       |                       |
| 7440-36-0                   | Antimony                           | Т     | mg/L                  | 6020     | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |
| 7440-38-2                   | Arsenic                            | Т     | mg/L                  | 6020     | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-39-3                   | Barium                             | Т     | mg/L                  | 6020     | 0.365                                       |                       | 0.238                                       |                       | 0.19                                        |                       | 0.0552                                      |                       |
| 7440-41-7                   | Beryllium                          | Т     | mg/L                  | 6020     | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       |
| 7440-42-8                   | Boron                              | Т     | mg/L                  | 6020     | 0.0161                                      |                       | 0.634                                       |                       | 0.00754                                     | J                     | 1.36                                        |                       |
| 7440-43-9                   | Cadmium                            | T     | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-70-2                   | Calcium                            | т     | mg/L                  | 6020     | 16.3                                        |                       | 30                                          |                       | 52.3                                        |                       | 67                                          |                       |
| 7440-47-3                   | Chromium                           | Т     | mg/L                  | 6020     | <0.01                                       |                       | <0.01                                       |                       | <0.01                                       |                       | <0.01                                       |                       |
| 7440-48-4                   | Cobalt                             | Т     | mg/L                  | 6020     | 0.004                                       |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-50-8                   | Copper                             | т     | mg/L                  | 6020     | 0.00122                                     | J                     | 0.000478                                    | J                     | 0.000753                                    | J                     | 0.00182                                     | J                     |
| 7439-89-6                   | Iron                               | Т     | mg/L                  | 6020     | 0.0692                                      | J                     | <0.1                                        |                       | 0.0778                                      | J                     | <0.1                                        |                       |
| 7439-92-1                   | Lead                               | Т     | mg/L                  | 6020     | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7439-95-4                   | Magnesium                          | Т     | mg/L                  | 6020     | 6.84                                        |                       | 12.9                                        |                       | 17.9                                        |                       | 22.8                                        |                       |
| 7439-96-5                   | Manganese                          | Т     | mg/L                  | 6020     | 0.00494                                     | J                     | 0.00117                                     | J                     | 0.00823                                     |                       | <0.005                                      |                       |
| 7439-97-6                   | Mercury                            | т     | mg/L                  | 7470     | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER | R <sup>1</sup> , Facility Well/Spring Number |             |                       |        | 8004-482                                    | 0                     | 8004-481                                    | 8                     | 8004-481                                    | 9                     | 8004-480                                    | 18                    |
|--------------|----------------------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's I | ocal Well or Spring Number (e.g              | ., MW-      | 1, MW-2, e            | tc.)   | 369                                         |                       | 370                                         |                       | 371                                         |                       | 372                                         |                       |
| CAS RN⁴      | CONSTITUENT                                  | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 7439-98-7    | Molybdenum                                   | т           | mg/L                  | 6020   | <0.001                                      |                       | <0.001                                      |                       | 0.000407                                    | J                     | <0.001                                      |                       |
| 7440-02-0    | Nickel                                       | т           | mg/L                  | 6020   | 0.00331                                     |                       | 0.000792                                    | J                     | 0.00241                                     |                       | 0.00357                                     |                       |
| 7440-09-7    | Potassium                                    | Т           | mg/L                  | 6020   | 0.587                                       |                       | 2.87                                        |                       | 0.445                                       |                       | 2.22                                        |                       |
| 7440-16-6    | Rhodium                                      | т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7782-49-2    | Selenium                                     | т           | mg/L                  | 6020   | 0.0026                                      | J                     | <0.005                                      |                       | <0.005                                      |                       | 0.00187                                     | J                     |
| 7440-22-4    | Silver                                       | Т           | mg/L                  | 6020   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-23-5    | Sodium                                       | т           | mg/L                  | 6020   | 53.5                                        |                       | 48.6                                        |                       | 97.2                                        |                       | 64.3                                        |                       |
| 7440-25-7    | Tantalum                                     | т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-28-0    | Thallium                                     | Т           | mg/L                  | 6020   | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7440-61-1    | Uranium                                      | Т           | mg/L                  | 6020   | <0.0002                                     |                       | <0.0002                                     |                       | 0.00198                                     |                       | <0.0002                                     |                       |
| 7440-62-2    | Vanadium                                     | Т           | mg/L                  | 6020   | 0.00406                                     | J                     | <0.02                                       |                       | 0.00496                                     | J                     | <0.02                                       |                       |
| 7440-66-6    | Zinc                                         | Т           | mg/L                  | 6020   | <0.02                                       |                       | <0.02                                       |                       | 0.00337                                     | J                     | 0.00973                                     | J                     |
| 108-05-4     | Vinyl acetate                                | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 67-64-1      | Acetone                                      | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 107-02-8     | Acrolein                                     | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 107-13-1     | Acrylonitrile                                | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 71-43-2      | Benzene                                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 108-90-7     | Chlorobenzene                                | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 1330-20-7    | Xylenes                                      | Т           | mg/L                  | 8260   | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |
| 100-42-5     | Styrene                                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 108-88-3     | Toluene                                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 74-97-5      | Chlorobromomethane                           | T           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |        | 8004-4820                                   |                       | 8004-481                                    | 8                     | 8004-48                                     | 19                    | 8004-48                                     | 08               |
|---------------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | tc.)   | 369                                         |                       | 370                                         |                       | 371                                         |                       | 372                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 75-27-4                   | Bromodichloromethane             | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-25-2                   | Tribromomethane                  | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-83-9                   | Methyl bromide                   | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 78-93-3                   | Methyl ethyl ketone              | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 110-57-6                  | trans-1,4-Dichloro-2-butene      | T           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 75-15-0                   | Carbon disulfide                 | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 75-00-3                   | Chloroethane                     | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 67-66-3                   | Chloroform                       | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-87-3                   | Methyl chloride                  | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 156-59-2                  | cis-1,2-Dichloroethene           | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-95-3                   | Methylene bromide                | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-34-3                   | 1,1-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 107-06-2                  | 1,2-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-35-4                   | 1,1-Dichloroethylene             | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 106-93-4                  | Ethane, 1,2-dibromo              | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-34-5                   | Ethane, 1,1,2,2-Tetrachloro      | T           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 71-55-6                   | Ethane, 1,1,1-Trichloro-         | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-00-5                   | Ethane, 1,1,2-Trichloro          | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 630-20-6                  | Ethane, 1,1,1,2-Tetrachloro      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-01-4                   | Vinyl chloride                   | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 127-18-4                  | Ethene, Tetrachloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-01-6                   | Ethene, Trichloro-               | т           | mg/L                  | 8260   | 0.0013                                      |                       | 0.00149                                     |                       | <0.001                                      |                       | 0.00425                                     |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |             |                       |        | 8004-4820                                   | )                | 8004-4818                                   | 3                     | 8004-48                                     | 19                    | 8004-48                                     | 08                    |
|-----------------------------|-----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., N | 4W−:        | L, MW-2, et           | cc.)   | 369                                         |                  | 370                                         |                       | 371                                         |                       | 372                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 100-41-4                    | Ethylbenzene                      | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 591-78-6                    | 2-Hexanone                        | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 74-88-4                     | Iodomethane                       | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 124-48-1                    | Methane, Dibromochloro-           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 56-23-5                     | Carbon Tetrachloride              | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-09-2                     | Dichloromethane                   | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | 0.00071                                     | BJ                    |
| 108-10-1                    | Methyl isobutyl ketone            | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | Т           | mg/L                  | 8011   | <0.0000185                                  |                  | <0.0000184                                  |                       | <0.0000188                                  |                       | <0.0000191                                  |                       |
| 78-87-5                     | Propane, 1,2-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 156-60-5                    | trans-1,2-Dichloroethene          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-69-4                     | Trichlorofluoromethane            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 96-18-4                     | 1,2,3-Trichloropropane            | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 1336-36-3                   | PCB,Total                         | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.098                                      |                       | <0.1                                        |                       | <0.1                                        |                       |
| 12674-11-2                  | PCB-1016                          | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.098                                      |                       | <0.1                                        |                       | <0.1                                        |                       |
| 11104-28-2                  | PCB-1221                          | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.098                                      |                       | <0.1                                        |                       | <0.1                                        |                       |
| 11141-16-5                  | PCB-1232                          | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.098                                      |                       | <0.1                                        |                       | <0.1                                        |                       |
| 53469-21-9                  | PCB-1242                          | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.098                                      |                       | <0.1                                        |                       | <0.1                                        |                       |
| 12672-29-6                  | PCB-1248                          | Т           | ug/L                  | 8082   | <0.1                                        |                  | <0.098                                      |                       | <0.1                                        |                       | <0.1                                        |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number   |                    |                       |          | 8004-4820                                   |                       | 8004-4818                                   |                       | 8004-481                                    | 9                     | 8004-480                                    | 18               |
|---------------------------|---------------------------------|--------------------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo             | cal Well or Spring Number (e.g. | , MW-1             | L, MW-2, et           | tc.)     | 369                                         |                       | 370                                         |                       | 371                                         |                       | 372                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                     | <b>T</b><br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 11097-69-1                | PCB-1254                        | Т                  | ug/L                  | 8082     | <0.1                                        |                       | <0.098                                      |                       | <0.1                                        |                       | <0.1                                        |                  |
| 11096-82-5                | PCB-1260                        | т                  | ug/L                  | 8082     | <0.1                                        |                       | <0.098                                      |                       | <0.1                                        |                       | <0.1                                        |                  |
| 11100-14-4                | PCB-1268                        | т                  | ug/L                  | 8082     | <0.1                                        |                       | <0.098                                      |                       | <0.1                                        |                       | <0.1                                        |                  |
| 12587-46-1                | Gross Alpha                     | Т                  | pCi/L                 | 9310     | 0.939                                       | *                     | 0.233                                       | *                     | 1.12                                        | *                     | 0.604                                       | *                |
| 12587-47-2                | Gross Beta                      | Т                  | pCi/L                 | 9310     | 40.6                                        | *                     | 15.5                                        | *                     | -0.571                                      | *                     | 42.2                                        | *                |
| 10043-66-0                | Iodine-131                      | Т                  | pCi/L                 |          |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| 13982-63-3                | Radium-226                      | Т                  | pCi/L                 | AN-1418  | 0.59                                        | *                     | 0.342                                       | *                     | 0.548                                       | *                     | 0.398                                       | *                |
| 10098-97-2                | Strontium-90                    | Т                  | pCi/L                 | 905.0    | 1.97                                        | *                     | 4.97                                        | *                     | 3.04                                        | *                     | 3.41                                        | *                |
| 14133-76-7                | Technetium-99                   | Т                  | pCi/L                 | Tc-02-RC | 52.8                                        | *                     | 25.6                                        | *                     | 8.61                                        | *                     | 47.6                                        | *                |
| 14269-63-7                | Thorium-230                     | Т                  | pCi/L                 | Th-01-RC | 0.823                                       | *                     | -0.303                                      | *                     | 0.36                                        | *                     | 3.09                                        | *                |
| 10028-17-8                | Tritium                         | Т                  | pCi/L                 | 906.0    | 36.7                                        | *                     | 31.8                                        | *                     | -51.4                                       | *                     | 1.28                                        | *                |
| s0130                     | Chemical Oxygen Demand          | Т                  | mg/L                  | 410.4    | 16.7                                        | J                     | 16.7                                        | J                     | 13.1                                        | J                     | 13.1                                        | J                |
| 57-12-5                   | Cyanide                         | Т                  | mg/L                  | 9012     | <0.2                                        |                       | <0.2                                        |                       | <0.2                                        |                       | <0.2                                        |                  |
| 20461-54-5                | Iodide                          | Т                  | mg/L                  | 300.0    | <0.5                                        | *                     | <0.5                                        | *                     | <0.5                                        | *                     | <0.5                                        | *                |
| S0268                     | Total Organic Carbon            | Т                  | mg/L                  | 9060     | 0.953                                       | J                     | 0.952                                       | J                     | 2.02                                        |                       | 0.846                                       | J                |
| s0586                     | Total Organic Halides           | Т                  | mg/L                  | 9020     | 0.0212                                      |                       | 0.00632                                     | J                     | 0.00494                                     | J                     | 0.00598                                     | J                |
|                           |                                 |                    |                       |          |                                             |                       |                                             |                       |                                             |                       |                                             |                  |
|                           |                                 |                    |                       |          |                                             |                       |                                             |                       |                                             |                       |                                             |                  |

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

> FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

Frankfort, KY 40601 (502) 564-6716

#### GROUNDWATER SAMPLE ANALYSIS(S)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number               |             |                       |          | 8004-479                                    | 2                | 8004-09                                     | 990                   | 8004-09                                     | 985                   | 8004-098                                    | 38                    |
|-----------------------------|-------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loca             | al Well or Spring Number (e.g., N         | ∕W-1        | , <b>MW</b> -2, etc   | :.)      | 373                                         |                  | 374                                         |                       | 375                                         |                       | 376                                         |                       |
| Sample Sequence             | e #                                       |             |                       |          | 1                                           |                  | 1                                           |                       | 1                                           |                       | 1                                           |                       |
| If sample is a B            | lank, specify Type: (F)ield, (T)rip,      | (M) e       | thod, or (E)          | quipment | NA                                          |                  | NA                                          |                       | NA                                          |                       | NA                                          |                       |
| Sample Date and             | d Time (Month/Day/Year hour: minu         | tes         | )                     |          | 1/13/2022 08:06                             |                  | 1/13/2022 09:03                             |                       | 1/12/2022 12:16                             |                       | NA                                          |                       |
| Duplicate ("Y"              | or "N") <sup>2</sup>                      |             |                       |          | N                                           | N                |                                             | N                     |                                             |                       | N                                           |                       |
| Split ("Y" or               | Split ("Y" or "N") <sup>3</sup>           |             |                       |          |                                             |                  | N                                           |                       | N                                           |                       | N                                           |                       |
| Facility Sample             | Facility Sample ID Number (if applicable) |             |                       |          |                                             |                  | MW374U                                      | G2-22                 | MW375UG2-22                                 |                       | NA                                          |                       |
| Laboratory Samp             | ple ID Number (if applicable)             |             |                       |          | 56756800                                    | )3               | 567568                                      | 005                   | 567245                                      | 015                   | NA                                          |                       |
| Date of Analys:             | is (Month/Day/Year) For <u>Volatile</u>   | Or          | ganics Anal           | ysis     | 1/19/2022                                   | 2                | 1/19/2022                                   |                       | 1/14/2022                                   |                       | NA                                          |                       |
| Gradient with               | respect to Monitored Unit (UP, DO         | , NWC       | SIDE, UNKN            | IOWN)    | UP                                          |                  | UP                                          |                       | SIDE                                        |                       | SIDE                                        |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                               | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 24959-67-9                  | Bromide                                   | т           | mg/L                  | 9056     | 0.509                                       |                  | 0.558                                       |                       | <0.2                                        |                       |                                             | *                     |
| 16887-00-6                  | Chloride(s)                               | Т           | mg/L                  | 9056     | 37.1                                        | *J               | 51                                          | *J                    | 3.12                                        | J                     |                                             | *                     |
| 16984-48-8                  | 16984-48-8 Fluoride T mg/L 9056           |             |                       |          | 0.171                                       | J                | 0.254                                       | J                     | 0.292                                       | J                     |                                             | *                     |
| s0595                       | D595 Nitrate & Nitrite T mg/L 9050        |             |                       | 9056     | 0.843                                       | *J               | <10                                         | *                     | 0.933                                       | J                     |                                             | *                     |
| 14808-79-8                  | Sulfate                                   | Т           | mg/L                  | 9056     | 155                                         | *                | 12.4                                        | *                     | 23.7                                        |                       |                                             | *                     |
| NS1894                      | Barometric Pressure Reading               | Т           | Inches/Hg             | Field    | 29.95                                       |                  | 29.96                                       |                       | 30.15                                       |                       |                                             | *                     |
| S0145                       | - Specific Conductance T µMH0/cm Field    |             |                       |          | 777                                         |                  | 720                                         |                       | 347                                         |                       |                                             | *                     |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $<sup>^{2}</sup>$ Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

 $<sup>^4</sup>$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved <sup>6</sup>"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |             |                       |          | 8004-4792                                   | 2                | 8004-0990                                   | )                     | 8004-0985                                   |                       | 8004-0988                                   | 3                     |
|-----------------------------|------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., MW | -1, 1       | MW-2, BLANK-          | F, etc.) | 373                                         |                  | 374                                         |                       | 375                                         |                       | 376                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| s0906                       | Static Water Level Elevation       | Т           | Ft. MSL               | Field    | 324.43                                      |                  | 338.54                                      |                       | 340.32                                      |                       |                                             | *                     |
| N238                        | Dissolved Oxygen                   | Т           | mg/L                  | Field    | 2.72                                        |                  | 1.8                                         |                       | 1.84                                        |                       |                                             | *                     |
| s0266                       | Total Dissolved Solids             | т           | mg/L                  | 160.1    | 469                                         |                  | 399                                         |                       | 201                                         |                       |                                             | *                     |
| s0296                       | рН                                 | т           | Units                 | Field    | 6.08                                        |                  | 6.77                                        |                       | 6.42                                        |                       |                                             | *                     |
| NS215                       | Eh                                 | Т           | mV                    | Field    | 376                                         |                  | 192                                         |                       | 390                                         |                       |                                             | *                     |
| s0907                       | Temperature                        | Т           | °C                    | Field    | 15.39                                       |                  | 16.39                                       |                       | 16.5                                        |                       |                                             | *                     |
| 7429-90-5                   | Aluminum                           | Т           | mg/L                  | 6020     | <0.05                                       |                  | 0.0209                                      | J                     | 0.0481                                      | J                     |                                             | *                     |
| 7440-36-0                   | Antimony                           | Т           | mg/L                  | 6020     | <0.003                                      |                  | <0.003                                      |                       | <0.003                                      |                       |                                             | *                     |
| 7440-38-2                   | Arsenic                            | Т           | mg/L                  | 6020     | <0.005                                      |                  | 0.00361                                     | J                     | <0.005                                      |                       |                                             | *                     |
| 7440-39-3                   | Barium                             | Т           | mg/L                  | 6020     | 0.029                                       |                  | 0.169                                       |                       | 0.173                                       |                       |                                             | *                     |
| 7440-41-7                   | Beryllium                          | т           | mg/L                  | 6020     | <0.0005                                     |                  | <0.0005                                     |                       | <0.0005                                     |                       |                                             | *                     |
| 7440-42-8                   | Boron                              | т           | mg/L                  | 6020     | 2.01                                        |                  | 0.0245                                      |                       | 0.00816                                     | J                     |                                             | *                     |
| 7440-43-9                   | Cadmium                            | T           | mg/L                  | 6020     | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 7440-70-2                   | Calcium                            | т           | mg/L                  | 6020     | 67.2                                        |                  | 25.7                                        |                       | 13.7                                        |                       |                                             | *                     |
| 7440-47-3                   | Chromium                           | Т           | mg/L                  | 6020     | <0.01                                       |                  | <0.01                                       |                       | <0.01                                       |                       |                                             | *                     |
| 7440-48-4                   | Cobalt                             | Т           | mg/L                  | 6020     | <0.001                                      |                  | 0.000744                                    | J                     | <0.001                                      |                       |                                             | *                     |
| 7440-50-8                   | Copper                             | T           | mg/L                  | 6020     | 0.00132                                     | J                | <0.002                                      |                       | 0.000607                                    | J                     |                                             | *                     |
| 7439-89-6                   | Iron                               | T           | mg/L                  | 6020     | <0.1                                        |                  | 1.76                                        |                       | 0.0602                                      | J                     |                                             | *                     |
| 7439-92-1                   | Lead                               | Т           | mg/L                  | 6020     | <0.002                                      |                  | <0.002                                      |                       | <0.002                                      |                       |                                             | *                     |
| 7439-95-4                   | Magnesium                          | Т           | mg/L                  | 6020     | 25.4                                        |                  | 5.62                                        |                       | 5.57                                        |                       |                                             | *                     |
| 7439-96-5                   | Manganese                          | Т           | mg/L                  | 6020     | 0.00959                                     |                  | 0.235                                       |                       | 0.00416                                     | J                     |                                             | *                     |
| 7439-97-6                   | Mercury                            | Т           | mg/L                  | 7470     | <0.0002                                     |                  | <0.0002                                     |                       | <0.0002                                     |                       |                                             | *                     |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBE         | ER <sup>1</sup> , Facility Well/Spring Number                   |              |                       |        | 8004-479                                    | 2                     | 8004-099                                    | 90        | 8004-098                                    | 5                     | 8004-098                                    | 88                    |
|---------------------|-----------------------------------------------------------------|--------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's          | Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) |              |                       |        | 373                                         |                       | 374                                         |           | 375                                         |                       | 376                                         |                       |
| CAS RN <sup>4</sup> | CONSTITUENT                                                     | <b>T</b> D 5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F L A G S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 7439-98-7           | Molybdenum                                                      | Т            | mg/L                  | 6020   | <0.001                                      |                       | 0.000385                                    | J         | <0.001                                      |                       |                                             | *                     |
| 7440-02-0           | Nickel                                                          | T            | mg/L                  | 6020   | 0.00248                                     |                       | 0.000656                                    | J         | 0.00107                                     | J                     |                                             | *                     |
| 7440-09-7           | Potassium                                                       | Т            | mg/L                  | 6020   | 2.86                                        |                       | 0.595                                       |           | 0.295                                       | J                     |                                             | *                     |
| 7440-16-6           | Rhodium                                                         | Т            | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |           | <0.005                                      |                       |                                             | *                     |
| 7782-49-2           | Selenium                                                        | Т            | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |           | 0.00233                                     | J                     |                                             | *                     |
| 7440-22-4           | Silver                                                          | Т            | mg/L                  | 6020   | <0.001                                      |                       | <0.001                                      |           | <0.001                                      |                       |                                             | *                     |
| 7440-23-5           | Sodium                                                          | T            | mg/L                  | 6020   | 60.9                                        |                       | 134                                         |           | 56.9                                        |                       |                                             | *                     |
| 7440-25-7           | Tantalum                                                        | T            | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |           | <0.005                                      |                       |                                             | *                     |
| 7440-28-0           | Thallium                                                        | T            | mg/L                  | 6020   | <0.002                                      |                       | <0.002                                      |           | <0.002                                      |                       |                                             | *                     |
| 7440-61-1           | Uranium                                                         | T            | mg/L                  | 6020   | <0.0002                                     |                       | 0.000163                                    | J         | <0.0002                                     |                       |                                             | *                     |
| 7440-62-2           | Vanadium                                                        | T            | mg/L                  | 6020   | <0.02                                       |                       | <0.02                                       |           | 0.00399                                     | J                     |                                             | *                     |
| 7440-66-6           | Zinc                                                            | T            | mg/L                  | 6020   | 0.00408                                     | J                     | <0.02                                       |           | <0.02                                       |                       |                                             | *                     |
| 108-05-4            | Vinyl acetate                                                   | T            | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |           | <0.005                                      |                       |                                             | *                     |
| 67-64-1             | Acetone                                                         | T            | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |           | <0.005                                      |                       |                                             | *                     |
| 107-02-8            | Acrolein                                                        | T            | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |           | <0.005                                      |                       |                                             | *                     |
| 107-13-1            | Acrylonitrile                                                   | T            | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |           | <0.005                                      |                       |                                             | *                     |
| 71-43-2             | Benzene                                                         | T            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |           | <0.001                                      |                       |                                             | *                     |
| 108-90-7            | Chlorobenzene                                                   | T            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |           | <0.001                                      |                       |                                             | *                     |
| 1330-20-7           | Xylenes                                                         | T            | mg/L                  | 8260   | <0.003                                      |                       | <0.003                                      |           | <0.003                                      |                       |                                             | *                     |
| 100-42-5            | Styrene                                                         | T            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |           | <0.001                                      |                       |                                             | *                     |
| 108-88-3            | Toluene                                                         | Т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |           | <0.001                                      |                       |                                             | *                     |
| 74-97-5             | Chlorobromomethane                                              | Т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |           | <0.001                                      |                       |                                             | *                     |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |        | 8004-4792                                   |                       | 8004-099                                    | 0                     | 8004-09                                     | 85                    | 8004-09                                     | 88               |
|---------------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | tc.)   | 373                                         |                       | 374                                         |                       | 375                                         |                       | 376                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 75-27-4                   | Bromodichloromethane             | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 75-25-2                   | Tribromomethane                  | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 74-83-9                   | Methyl bromide                   | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 78-93-3                   | Methyl ethyl ketone              | T           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |                                             | *                |
| 110-57-6                  | trans-1,4-Dichloro-2-butene      | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |                                             | *                |
| 75-15-0                   | Carbon disulfide                 | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |                                             | *                |
| 75-00-3                   | Chloroethane                     | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 67-66-3                   | Chloroform                       | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 74-87-3                   | Methyl chloride                  | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 156-59-2                  | cis-1,2-Dichloroethene           | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 74-95-3                   | Methylene bromide                | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 75-34-3                   | 1,1-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 107-06-2                  | 1,2-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 75-35-4                   | 1,1-Dichloroethylene             | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 106-93-4                  | Ethane, 1,2-dibromo              | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 79-34-5                   | Ethane, 1,1,2,2-Tetrachloro      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 71-55-6                   | Ethane, 1,1,1-Trichloro-         | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 79-00-5                   | Ethane, 1,1,2-Trichloro          | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 630-20-6                  | Ethane, 1,1,1,2-Tetrachloro      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 75-01-4                   | Vinyl chloride                   | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 127-18-4                  | Ethene, Tetrachloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 79-01-6                   | Ethene, Trichloro-               | т           | mg/L                  | 8260   | 0.00537                                     |                       | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |             |                       |        | 8004-479                                    | 2                | 8004-099                                    | 0                     | 8004-098                                    | 35                    | 8004-09                                     | 88                    |
|-----------------------------|-----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., N | /W−:        | 1, MW-2, et           | .c.)   | 373                                         |                  | 374                                         |                       | 375                                         |                       | 376                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 100-41-4                    | Ethylbenzene                      | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 591-78-6                    | 2-Hexanone                        | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       |                                             | *                     |
| 74-88-4                     | Iodomethane                       | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       |                                             | *                     |
| 124-48-1                    | Methane, Dibromochloro-           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 56-23-5                     | Carbon Tetrachloride              | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 75-09-2                     | Dichloromethane                   | т           | mg/L                  | 8260   | 0.00068                                     | BJ               | 0.00072                                     | BJ                    | <0.005                                      |                       |                                             | *                     |
| 108-10-1                    | Methyl isobutyl ketone            | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       |                                             | *                     |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | Т           | mg/L                  | 8011   | <0.0000191                                  |                  | <0.000019                                   |                       | <0.0000186                                  |                       |                                             | *                     |
| 78-87-5                     | Propane, 1,2-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 156-60-5                    | trans-1,2-Dichloroethene          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 75-69-4                     | Trichlorofluoromethane            | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 96-18-4                     | 1,2,3-Trichloropropane            | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 1336-36-3                   | PCB,Total                         | т           | ug/L                  | 8082   | <0.0988                                     |                  | <0.102                                      |                       | <0.101                                      |                       |                                             | *                     |
| 12674-11-2                  | PCB-1016                          | т           | ug/L                  | 8082   | <0.0988                                     |                  | <0.102                                      |                       | <0.101                                      |                       |                                             | *                     |
| 11104-28-2                  | PCB-1221                          | т           | ug/L                  | 8082   | <0.0988                                     |                  | <0.102                                      |                       | <0.101                                      |                       |                                             | *                     |
| 11141-16-5                  | PCB-1232                          | т           | ug/L                  | 8082   | <0.0988                                     |                  | <0.102                                      |                       | <0.101                                      |                       |                                             | *                     |
| 53469-21-9                  | PCB-1242                          | т           | ug/L                  | 8082   | <0.0988                                     |                  | <0.102                                      |                       | <0.101                                      |                       |                                             | *                     |
| 12672-29-6                  | PCB-1248                          | Т           | ug/L                  | 8082   | <0.0988                                     |                  | <0.102                                      |                       | <0.101                                      |                       |                                             | *                     |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | , Facility Well/Spring Number    |              |                       |          | 8004-4792                                   |                  | 8004-0990                                   |                       | 8004-098                                    | 5                     | 8004-098                                    | 38                    |
|-----------------------------|----------------------------------|--------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Lo               | cal Well or Spring Number (e.g., | MW-1         | L, MW-2, et           | tc.)     | 373                                         |                  | 374                                         |                       | 375                                         |                       | 376                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                      | <b>T</b> D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 11097-69-1                  | PCB-1254                         | т            | ug/L                  | 8082     | <0.0988                                     |                  | <0.102                                      |                       | <0.101                                      |                       |                                             | *                     |
| 11096-82-5                  | PCB-1260                         | Т            | ug/L                  | 8082     | <0.0988                                     |                  | <0.102                                      |                       | <0.101                                      |                       |                                             | *                     |
| 11100-14-4                  | PCB-1268                         | T            | ug/L                  | 8082     | <0.0988                                     |                  | <0.102                                      |                       | <0.101                                      |                       |                                             | *                     |
| 12587-46-1                  | Gross Alpha                      | T            | pCi/L                 | 9310     | 6.01                                        | *                | 0.498                                       | *                     | 0.0835                                      | *                     |                                             | *                     |
| 12587-47-2                  | Gross Beta                       | T            | pCi/L                 | 9310     | 10.5                                        | *                | 2.19                                        | *                     | 5.17                                        | *                     |                                             | *                     |
| 10043-66-0                  | Iodine-131                       | T            | pCi/L                 |          |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                     |
| 13982-63-3                  | Radium-226                       | T            | pCi/L                 | AN-1418  | 0.251                                       | *                | 0.536                                       | *                     | 0.657                                       | *                     |                                             | *                     |
| 10098-97-2                  | Strontium-90                     | Т            | pCi/L                 | 905.0    | 3.55                                        | *                | 4.65                                        | *                     | 6.58                                        | *                     |                                             | *                     |
| 14133-76-7                  | Technetium-99                    | Т            | pCi/L                 | Tc-02-RC | 11.2                                        | *                | 0.132                                       | *                     | -3.42                                       | *                     |                                             | *                     |
| 14269-63-7                  | Thorium-230                      | Т            | pCi/L                 | Th-01-RC | 3.4                                         | *                | -2.38                                       | *                     | 0.76                                        | *                     |                                             | *                     |
| 10028-17-8                  | Tritium                          | Т            | pCi/L                 | 906.0    | -101                                        | *                | -40.1                                       | *                     | 36.3                                        | *                     |                                             | *                     |
| s0130                       | Chemical Oxygen Demand           | Т            | mg/L                  | 410.4    | 20.3                                        |                  | 23.9                                        |                       | 9.57                                        | J                     |                                             | *                     |
| 57-12-5                     | Cyanide                          | T            | mg/L                  | 9012     | <0.2                                        |                  | <0.2                                        |                       | <0.2                                        |                       |                                             | *                     |
| 20461-54-5                  | Iodide                           | Т            | mg/L                  | 300.0    | <0.5                                        | *                | <0.5                                        | *                     | <0.5                                        | *                     |                                             | *                     |
| s0268                       | Total Organic Carbon             | Т            | mg/L                  | 9060     | 0.999                                       | J                | 2.57                                        |                       | 0.805                                       | J                     |                                             | *                     |
| s0586                       | Total Organic Halides            | T            | mg/L                  | 9020     | 0.0123                                      |                  | 0.0329                                      |                       | 0.0085                                      | J                     |                                             | *                     |
|                             |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                             |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                             |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                             |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                             |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

## GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , |                                           | 8004-098                    | 9                     | 0000-00         | 00                                          | 0000-000                           | 00                                          | 0000-000              | 00                                          |                       |                                             |                  |
|-----------------------------|-------------------------------------------|-----------------------------|-----------------------|-----------------|---------------------------------------------|------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loca             | al Well or Spring Number (e.g., N         | /W−1                        | L, MW-2, etc          | :.)             | 377                                         |                                    | E. BLAN                                     | IK                    | F. BLAN                                     | K                     | T. BLANK                                    | (1               |
| Sample Sequence             | e #                                       |                             |                       |                 | 1                                           |                                    | 1                                           |                       | 1                                           |                       | 1                                           |                  |
| If sample is a B            | lank, specify Type: (F)ield, (T)rip,      | (M) ∈                       | ethod, or (E)         | quipment        | NA                                          |                                    | Е                                           |                       | F                                           |                       | Т                                           |                  |
| Sample Date and             |                                           | NA                          |                       | 1/11/2022 06:20 |                                             | 1/11/2022 0                        | 7:05                                        | 1/11/2022 0           | 6:15                                        |                       |                                             |                  |
| 06:50Duplicate              |                                           | N                           |                       | N               |                                             | N                                  |                                             | N                     |                                             |                       |                                             |                  |
| Split ("Y" or               |                                           | N                           |                       | N               |                                             | N                                  |                                             | N                     |                                             |                       |                                             |                  |
| Facility Sample             | Facility Sample ID Number (if applicable) |                             |                       |                 |                                             |                                    | RI1UG2-                                     | 22                    | FB1UG2-                                     | 22                    | TB1UG2-                                     | 22               |
| Laboratory Samp             | ple ID Number (if applicable)             |                             |                       |                 | NA                                          |                                    | 5671040                                     | 20                    | 5671040                                     | 19                    | 56710402                                    | 21               |
| Date of Analys:             | is (Month/Day/Year) For <u>Volatile</u>   | e Or                        | rganics Anal          | ysis.           | NA                                          | NA                                 |                                             | 1/14/2022             |                                             | 1/14/2022             |                                             | 2                |
| Gradient with               | respect to Monitored Unit (UP, DO         | , NWC                       | , SIDE, UNKN          | IOWN)           | SIDE                                        |                                    | NA                                          |                       | NA                                          |                       | NA                                          |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                               | <b>T D</b> 5                | Unit<br>OF<br>MEASURE | METHO<br>D      | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                   | т                           | mg/L                  | 9056            |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |
| 16887-00-6                  | Chloride(s)                               | т                           | mg/L                  | 9056            |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |
| 16984-48-8                  | Fluoride                                  | Т                           | mg/L                  | 9056            |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |
| s0595                       | S0595 Nitrate & Nitrite T mg/L 9056       |                             |                       |                 |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |
| 14808-79-8                  | 08-79-8 Sulfate T mg/L 9056               |                             |                       |                 |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |
| NS1894                      | Barometric Pressure Reading               | e Reading T Inches/Hg Field |                       |                 | *                                           |                                    | *                                           |                       | *                                           |                       | *                                           |                  |
| S0145                       | 15 Specific Conductance T μMH0/cm Field   |                             |                       |                 |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $<sup>^{2}</sup>$ Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

<sup>&</sup>lt;sup>4</sup>Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number         |             |                       |          | 8004-0989                                   | )                     | 0000-0000                                   | )                     | 0000-0000                                   | ١                     | 0000-0000                                   | )                     |
|-----------------------------|-------------------------------------|-------------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., MW | -1, 1       | MW-2, BLANK-          | F, etc.) | 377                                         |                       | E. BLANK                                    | (                     | F. BLANK                                    |                       | T. BLANK                                    | 1                     |
| CAS RN <sup>4</sup>         | CONSTITUENT                         | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| s0906                       | Static Water Level Elevation        | T           | Ft. MSL               | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                     |
| N238                        | Dissolved Oxygen                    | T           | mg/L                  | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                     |
| s0266                       | Total Dissolved Solids              | Т           | mg/L                  | 160.1    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                     |
| s0296                       | рН                                  | Т           | Units                 | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                     |
| NS215                       | Eh                                  | Т           | mV                    | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                     |
| s0907                       | Temperature                         | Т           | °C                    | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                     |
| 7429-90-5                   | Aluminum                            | T           | mg/L                  | 6020     |                                             | *                     | <0.05                                       |                       | <0.05                                       |                       |                                             | *                     |
| 7440-36-0                   | Antimony                            | T           | mg/L                  | 6020     |                                             | *                     | <0.003                                      |                       | <0.003                                      |                       |                                             | *                     |
| 7440-38-2                   | Arsenic                             | T           | mg/L                  | 6020     |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       |                                             | *                     |
| 7440-39-3                   | Barium                              | T           | mg/L                  | 6020     |                                             | *                     | <0.004                                      |                       | <0.004                                      |                       |                                             | *                     |
| 7440-41-7                   | Beryllium                           | T           | mg/L                  | 6020     |                                             | *                     | <0.0005                                     |                       | <0.0005                                     |                       |                                             | *                     |
| 7440-42-8                   | Boron                               | Т           | mg/L                  | 6020     |                                             | *                     | <0.015                                      |                       | 0.0135                                      | J                     |                                             | *                     |
| 7440-43-9                   | Cadmium                             | T           | mg/L                  | 6020     |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 7440-70-2                   | Calcium                             | T           | mg/L                  | 6020     |                                             | *                     | <0.2                                        |                       | <0.2                                        |                       |                                             | *                     |
| 7440-47-3                   | Chromium                            | T           | mg/L                  | 6020     |                                             | *                     | <0.01                                       | *                     | <0.01                                       | *                     |                                             | *                     |
| 7440-48-4                   | Cobalt                              | T           | mg/L                  | 6020     |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     |
| 7440-50-8                   | Copper                              | T           | mg/L                  | 6020     |                                             | *                     | 0.00174                                     | J                     | 0.00566                                     |                       |                                             | *                     |
| 7439-89-6                   | Iron                                | Т           | mg/L                  | 6020     |                                             | *                     | <0.1                                        |                       | <0.1                                        |                       |                                             | *                     |
| 7439-92-1                   | Lead                                | T           | mg/L                  | 6020     |                                             | *                     | <0.002                                      |                       | 0.00179                                     | J                     |                                             | *                     |
| 7439-95-4                   | Magnesium                           | Т           | mg/L                  | 6020     |                                             | *                     | <0.03                                       |                       | <0.03                                       |                       |                                             | *                     |
| 7439-96-5                   | Manganese                           | Т           | mg/L                  | 6020     |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       |                                             | *                     |
| 7439-97-6                   | Mercury                             | Т           | mg/L                  | 7470     |                                             | *                     | <0.0002                                     |                       | <0.0002                                     |                       |                                             | *                     |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBEI        | R <sup>1</sup> , Facility Well/Spring Number |              |                       |        | 8004-098                                    | 9                     | 0000-000                                    | 00                    | 0000-000                                    | 0                     | 0000-000                                    | 00               |
|---------------------|----------------------------------------------|--------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's 1        | Local Well or Spring Number (e.g             | J., MW-      | 1, MW-2, e            | tc.)   | 377                                         |                       | E. BLAN                                     | K                     | F. BLAN                                     | K                     | T. BLAN                                     | <b>C</b> 1       |
| CAS RN <sup>4</sup> | CONSTITUENT                                  | <b>T</b> D 5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 7439-98-7           | Molybdenum                                   | т            | mg/L                  | 6020   |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 7440-02-0           | Nickel                                       | Т            | mg/L                  | 6020   |                                             | *                     | <0.002                                      |                       | <0.002                                      |                       |                                             | *                |
| 7440-09-7           | Potassium                                    | Т            | mg/L                  | 6020   |                                             | *                     | <0.3                                        |                       | <0.3                                        |                       |                                             | *                |
| 7440-16-6           | Rhodium                                      | Т            | mg/L                  | 6020   |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       |                                             | *                |
| 7782-49-2           | Selenium                                     | Т            | mg/L                  | 6020   |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       |                                             | *                |
| 7440-22-4           | Silver                                       | T            | mg/L                  | 6020   |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       |                                             | *                |
| 7440-23-5           | Sodium                                       | T            | mg/L                  | 6020   |                                             | *                     | <0.25                                       |                       | <0.25                                       |                       |                                             | *                |
| 7440-25-7           | Tantalum                                     | T            | mg/L                  | 6020   |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       |                                             | *                |
| 7440-28-0           | Thallium                                     | T            | mg/L                  | 6020   |                                             | *                     | <0.002                                      |                       | <0.002                                      |                       |                                             | *                |
| 7440-61-1           | Uranium                                      | T            | mg/L                  | 6020   |                                             | *                     | <0.0002                                     |                       | <0.0002                                     |                       |                                             | *                |
| 7440-62-2           | Vanadium                                     | T            | mg/L                  | 6020   |                                             | *                     | 0.00357                                     | 7                     | 0.00495                                     | J                     |                                             | *                |
| 7440-66-6           | Zinc                                         | T            | mg/L                  | 6020   |                                             | *                     | <0.02                                       |                       | <0.02                                       |                       |                                             | *                |
| 108-05-4            | Vinyl acetate                                | T            | mg/L                  | 8260   |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 67-64-1             | Acetone                                      | T            | mg/L                  | 8260   |                                             | *                     | 0.0246                                      | В                     | 0.0129                                      | В                     | 0.0125                                      | В                |
| 107-02-8            | Acrolein                                     | T            | mg/L                  | 8260   |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 107-13-1            | Acrylonitrile                                | т            | mg/L                  | 8260   |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 71-43-2             | Benzene                                      | T            | mg/L                  | 8260   |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 108-90-7            | Chlorobenzene                                | T            | mg/L                  | 8260   |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 1330-20-7           | Xylenes                                      | Т            | mg/L                  | 8260   |                                             | *                     | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                  |
| 100-42-5            | Styrene                                      | T            | mg/L                  | 8260   |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 108-88-3            | Toluene                                      | T            | mg/L                  | 8260   |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-97-5             | Chlorobromomethane                           | Т            | mg/L                  | 8260   |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number      |             |                       |        | 8004-0989                                   |                  | 0000-000                                    | 0                     | 0000-000                                    | 00                    | 0000-000                                    | 00                    |
|-----------------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | tc.)   | 377                                         |                  | E. BLAN                                     | <                     | F. BLAN                                     | IK                    | T. BLANI                                    | <b>&lt;</b> 1         |
| CAS RN⁴                     | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 75-27-4                     | Bromodichloromethane             | т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-25-2                     | Tribromomethane                  | т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 74-83-9                     | Methyl bromide                   | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 78-93-3                     | Methyl ethyl ketone              | Т           | mg/L                  | 8260   |                                             | *                | 0.0255                                      |                       | 0.00202                                     | J                     | 0.00223                                     | J                     |
| 110-57-6                    | trans-1,4-Dichloro-2-butene      | Т           | mg/L                  | 8260   |                                             | *                | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 75-15-0                     | Carbon disulfide                 | Т           | mg/L                  | 8260   |                                             | *                | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 75-00-3                     | Chloroethane                     | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 67-66-3                     | Chloroform                       | Т           | mg/L                  | 8260   |                                             | *                | 0.00046                                     | BJ                    | 0.00273                                     | В                     | 0.00275                                     | В                     |
| 74-87-3                     | Methyl chloride                  | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 156-59-2                    | cis-1,2-Dichloroethene           | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 74-95-3                     | Methylene bromide                | т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-34-3                     | 1,1-Dichloroethane               | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 107-06-2                    | 1,2-Dichloroethane               | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-35-4                     | 1,1-Dichloroethylene             | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 106-93-4                    | Ethane, 1,2-dibromo              | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 79-34-5                     | Ethane, 1,1,2,2-Tetrachloro      | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 71-55-6                     | Ethane, 1,1,1-Trichloro-         | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 79-00-5                     | Ethane, 1,1,2-Trichloro          | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 630-20-6                    | Ethane, 1,1,1,2-Tetrachloro      | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-01-4                     | Vinyl chloride                   | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 127-18-4                    | Ethene, Tetrachloro-             | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 79-01-6                     | Ethene, Trichloro-               | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |             |                       |        | 8004-098                                    | 9                | 0000-0000                                   |                       | 0000-0000                                   |                       | 0000-00                                     | 00                    |
|-----------------------------|------------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., N | MW-         | 1, MW-2, et           | .c.)   | 377                                         |                  | E. BLAN                                     | <                     | F. BLANK                                    |                       | T. BLANK 1                                  |                       |
| CAS RN⁴                     | CONSTITUENT                        | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 100-41-4                    | Ethylbenzene                       | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 591-78-6                    | 2-Hexanone                         | Т           | mg/L                  | 8260   |                                             | *                | 0.00276                                     | J                     | <0.005                                      |                       | <0.005                                      |                       |
| 74-88-4                     | Iodomethane                        | Т           | mg/L                  | 8260   |                                             | *                | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 124-48-1                    | Methane, Dibromochloro-            | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 56-23-5                     | Carbon Tetrachloride               | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-09-2                     | Dichloromethane                    | Т           | mg/L                  | 8260   |                                             | *                | 0.00055                                     | J                     | 0.00101                                     | J                     | 0.00108                                     | J                     |
| 108-10-1                    | Methyl isobutyl ketone             | т           | mg/L                  | 8260   |                                             | *                | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro      | Т           | mg/L                  | 8011   |                                             | *                | <0.0000186                                  | *                     | <0.0000184                                  | *                     | <0.0000188                                  | *                     |
| 78-87-5                     | Propane, 1,2-Dichloro-             | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene       | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene         | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 156-60-5                    | trans-1,2-Dichloroethene           | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 75-69-4                     | Trichlorofluoromethane             | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 96-18-4                     | 1,2,3-Trichloropropane             | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 95-50-1                     | Benzene, 1,2-Dichloro-             | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 106-46-7                    | Benzene, 1,4-Dichloro-             | Т           | mg/L                  | 8260   |                                             | *                | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 1336-36-3                   | PCB,Total                          | Т           | ug/L                  | 8082   |                                             | *                | <0.0937                                     |                       | <0.0954                                     |                       |                                             | *                     |
| 12674-11-2                  | PCB-1016                           | Т           | ug/L                  | 8082   |                                             | *                | <0.0937                                     |                       | <0.0954                                     |                       |                                             | *                     |
| 11104-28-2                  | PCB-1221                           | Т           | ug/L                  | 8082   |                                             | *                | <0.0937                                     |                       | <0.0954                                     |                       |                                             | *                     |
| 11141-16-5                  | PCB-1232                           | т           | ug/L                  | 8082   |                                             | *                | <0.0937                                     |                       | <0.0954                                     |                       |                                             | *                     |
| 53469-21-9                  | PCB-1242                           | т           | ug/L                  | 8082   |                                             | *                | <0.0937                                     |                       | <0.0954                                     |                       |                                             | *                     |
| 12672-29-6                  | PCB-1248                           | T           | ug/L                  | 8082   |                                             | *                | <0.0937                                     |                       | <0.0954                                     |                       |                                             | *                     |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | AKGWA NUMBER <sup>1</sup> , Facility Well/Spring Number |             |                       |          |                                             |                       | 0000-0000                                   |                  | 0000-0000                                   |                       | 0000-0000                                   |                  |
|-----------------------------|---------------------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo               | cal Well or Spring Number (e.g.,                        | MW-:        | 1, MW-2, et           | .c.)     | 377                                         |                       | E. BLANK                                    |                  | F. BLANK                                    |                       | T. BLANK 1                                  |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                                             | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 11097-69-1                  | PCB-1254                                                | т           | ug/L                  | 8082     |                                             | *                     | <0.0937                                     |                  | <0.0954                                     |                       |                                             | *                |
| 11096-82-5                  | PCB-1260                                                | Т           | ug/L                  | 8082     |                                             | *                     | <0.0937                                     |                  | <0.0954                                     |                       |                                             | *                |
| 11100-14-4                  | PCB-1268                                                | т           | ug/L                  | 8082     |                                             | *                     | <0.0937                                     |                  | <0.0954                                     |                       |                                             | *                |
| 12587-46-1                  | Gross Alpha                                             | Т           | pCi/L                 | 9310     |                                             | *                     | -0.12                                       | *                | -1.65                                       | *                     |                                             | *                |
| 12587-47-2                  | Gross Beta                                              | т           | pCi/L                 | 9310     |                                             | *                     | 1.22                                        | *                | -2.08                                       | *                     |                                             | *                |
| 10043-66-0                  | Iodine-131                                              | Т           | pCi/L                 |          |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
| 13982-63-3                  | Radium-226                                              | Т           | pCi/L                 | AN-1418  |                                             | *                     | 0.204                                       | *                | 0.434                                       | *                     |                                             | *                |
| 10098-97-2                  | Strontium-90                                            | Т           | pCi/L                 | 905.0    |                                             | *                     | 2.37                                        | *                | 1.69                                        | *                     |                                             | *                |
| 14133-76-7                  | Technetium-99                                           | Т           | pCi/L                 | Tc-02-RC |                                             | *                     | -2.41                                       | *                | -0.635                                      | *                     |                                             | *                |
| 14269-63-7                  | Thorium-230                                             | Т           | pCi/L                 | Th-01-RC |                                             | *                     | 0.259                                       | *                | -0.309                                      | *                     |                                             | *                |
| 10028-17-8                  | Tritium                                                 | Т           | pCi/L                 | 906.0    |                                             | *                     | 148                                         | *                | -127                                        | *                     |                                             | *                |
| s0130                       | Chemical Oxygen Demand                                  | Т           | mg/L                  | 410.4    |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
| 57-12-5                     | Cyanide                                                 | Т           | mg/L                  | 9012     |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
| 20461-54-5                  | Iodide                                                  | Т           | mg/L                  | 300.0    |                                             | *                     | <0.5                                        | *                | <0.5                                        | *                     |                                             | *                |
| s0268                       | Total Organic Carbon                                    | Т           | mg/L                  | 9060     |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
| s0586                       | Total Organic Halides                                   | Т           | mg/L                  | 9020     |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
|                             |                                                         |             |                       |          |                                             |                       |                                             |                  |                                             |                       |                                             |                  |
|                             |                                                         |             |                       |          |                                             |                       |                                             |                  |                                             |                       |                                             |                  |
|                             |                                                         |             |                       |          |                                             |                       |                                             |                  |                                             |                       |                                             |                  |
|                             |                                                         |             |                       |          |                                             |                       |                                             |                  |                                             |                       |                                             |                  |
|                             |                                                         |             |                       |          |                                             |                       |                                             |                  |                                             |                       |                                             |                  |

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

#### GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number          |              | 000-000               | 00       | 0000-0000                                   |                                    | 8004-4800                                   |                       | \                                           |                       |                                |                       |
|-----------------------------|--------------------------------------|--------------|-----------------------|----------|---------------------------------------------|------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|--------------------------------|-----------------------|
| Facility's Loca             | al Well or Spring Number (e.g., N    | w−1          | ., MW-2, etc          | :.)      | T. BLANK                                    | 2                                  | T. BLAN                                     | K 3                   | 360                                         |                       |                                |                       |
| Sample Sequence             | e #                                  |              |                       |          | 1                                           | 1                                  |                                             | 1                     |                                             | 2                     |                                |                       |
| If sample is a B            | lank, specify Type: (F)ield, (T)rip, | (M) e        | thod, or (E)          | quipment | T                                           |                                    | Т                                           |                       | NA                                          |                       |                                |                       |
| Sample Date and             | d Time (Month/Day/Year hour: minu    | tes          | )                     |          | 1/12/2022 0                                 | 5:45                               | 1/13/2022                                   | 06:20                 | 1/11/2022 07                                | 7:03                  |                                |                       |
| Duplicate ("Y"              | or "N") <sup>2</sup>                 |              |                       |          | N                                           |                                    | N                                           |                       | Υ                                           |                       |                                |                       |
| Split ("Y" or               | "N") <sup>3</sup>                    |              |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       |                                |                       |
| Facility Sample             | e ID Number (if applicable)          |              |                       |          | TB2UG2-                                     | 22                                 | TB3UG2                                      | -22                   | MW360DUG                                    | 2-22                  |                                | Π                     |
| Laboratory Sam              | ple ID Number (if applicable)        |              |                       |          | 5672450                                     | 17                                 | 5675680                                     | 07                    | 567104007                                   |                       | \ /                            |                       |
| Date of Analys              | is (Month/Day/Year) For Volatile     | Or           | ganics Anal           | ysis.    | 1/14/2022                                   |                                    | 1/19/2022                                   |                       | 1/14/2022                                   |                       | \ /                            |                       |
| Gradient with               | respect to Monitored Unit (UP, DO    | , NW         | SIDE, UNKN            | IOWN)    | NA                                          |                                    | NA                                          |                       | DOWN                                        |                       | У                              |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                          | <b>T</b> D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQI | F<br>L<br>A<br>G<br>S |
| 24959-67-9                  | Bromide                              | Т            | mg/L                  | 9056     |                                             | *                                  |                                             | *                     | <0.2                                        |                       |                                | 1                     |
| 16887-00-6                  | Chloride(s)                          | Т            | mg/L                  | 9056     |                                             | *                                  |                                             | *                     | 10.4                                        | J                     |                                |                       |
| 16984-48-8                  | Fluoride                             | T            | mg/L                  | 9056     |                                             | *                                  |                                             | *                     | 0.142                                       | J                     |                                |                       |
| s0595                       | Nitrate & Nitrite                    | T            | mg/L                  | 9056     |                                             | *                                  |                                             | *                     | 0.641                                       | J                     |                                |                       |
| 14808-79-8                  | Sulfate                              | Т            | mg/L                  | 9056     |                                             | *                                  |                                             | *                     | 14.8                                        |                       |                                |                       |
| NS1894                      | Barometric Pressure Reading          | т            | Inches/Hg             | Field    |                                             | *                                  |                                             | *                     |                                             | *                     |                                |                       |
| S0145                       | Specific Conductance                 | Т            | μ <b>MH0/cm</b>       | Field    |                                             | *                                  |                                             | *                     |                                             | *                     |                                |                       |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

<sup>&</sup>lt;sup>2</sup>Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

<sup>&</sup>lt;sup>4</sup>Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |       |                       |          | 0000-0000                                   | )                     | 0000-0000                                   |                       | 8004-4800                                   |                       | \                                           |                |
|-----------------------------|------------------------------------|-------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|----------------|
| Facility's Loc              | al Well or Spring Number (e.g., MW | -1, 1 | W−2, BLANK-           | F, etc.) | T. BLANK                                    | 2                     | T. BLANK                                    | 3                     | 360                                         |                       | Ì                                           |                |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | T D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A    |
| s0906                       | Static Water Level Elevation       | Т     | Ft. MSL               | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             |                |
| N238                        | Dissolved Oxygen                   | T     | mg/L                  | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             |                |
| s0266                       | Total Dissolved Solids             | T     | mg/L                  | 160.1    |                                             | *                     |                                             | *                     | 214                                         |                       |                                             |                |
| S0296                       | рН                                 | T     | Units                 | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             |                |
| NS215                       | Eh                                 | T     | mV                    | Field    |                                             | *                     |                                             | *                     |                                             | *                     | \ /                                         |                |
| s0907                       | Temperature                        | T     | °C                    | Field    |                                             | *                     |                                             | *                     |                                             | *                     | <u> </u>                                    |                |
| 7429-90-5                   | Aluminum                           | T     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | 0.0436                                      | J                     | \ /                                         |                |
| 7440-36-0                   | Antimony                           | T     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | <0.003                                      |                       | \                                           |                |
| 7440-38-2                   | Arsenic                            | T     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | <0.005                                      |                       | <u> </u>                                    |                |
| 7440-39-3                   | Barium                             | T     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | 0.201                                       |                       | /\                                          |                |
| 7440-41-7                   | Beryllium                          | T     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | <0.0005                                     |                       | / \                                         |                |
| 7440-42-8                   | Boron                              | T     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | 0.066                                       |                       | / \                                         |                |
| 7440-43-9                   | Cadmium                            | T     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | <0.001                                      |                       | / '                                         |                |
| 7440-70-2                   | Calcium                            | т     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | 19.6                                        |                       |                                             | $\setminus$    |
| 7440-47-3                   | Chromium                           | т     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | <0.01                                       | *                     |                                             | $  \setminus $ |
| 7440-48-4                   | Cobalt                             | т     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | 0.00149                                     |                       |                                             |                |
| 7440-50-8                   | Copper                             | T     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | 0.00117                                     | J                     |                                             |                |
| 7439-89-6                   | Iron                               | T     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | 0.2                                         |                       |                                             |                |
| 7439-92-1                   | Lead                               | Т     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | <0.002                                      |                       |                                             |                |
| 7439-95-4                   | Magnesium                          | Т     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | 8.27                                        |                       |                                             |                |
| 7439-96-5                   | Manganese                          | T     | mg/L                  | 6020     |                                             | *                     |                                             | *                     | 0.0142                                      |                       |                                             |                |
| 7439-97-6                   | Mercury                            | Т     | mg/L                  | 7470     |                                             | *                     |                                             | *                     | <0.0002                                     |                       | V                                           |                |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBE         | R <sup>1</sup> , Facility Well/Spring Number |             |                       |        | 0000-0000                                   |                       | 0000-0000                                   |                       | 8004-4800                                   |                       | \                      |             |
|---------------------|----------------------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|------------------------|-------------|
| Facility's          | Local Well or Spring Number (e.g.,           | MW-         | ·1, MW-2, e           | tc.)   | T. BLANK                                    | 2                     | T. BLANK                                    | (3                    | 360                                         |                       |                        |             |
| CAS RN <sup>4</sup> | CONSTITUENT                                  | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED VALUE OR PQL6 | F<br>L<br>A |
| 7439-98-7           | Molybdenum                                   | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | <0.001                                      |                       |                        | T           |
| 7440-02-0           | Nickel                                       | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | 0.0016                                      | J                     |                        | T           |
| 7440-09-7           | Potassium                                    | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | 0.778                                       |                       |                        | T           |
| 7440-16-6           | Rhodium                                      | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | <0.005                                      |                       |                        |             |
| 7782-49-2           | Selenium                                     | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | 0.00184                                     | J                     | \ /                    |             |
| 7440-22-4           | Silver                                       | т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | <0.001                                      |                       | \ /                    |             |
| 7440-23-5           | Sodium                                       | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | 59.6                                        |                       | \ /                    |             |
| 7440-25-7           | Tantalum                                     | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | <0.005                                      |                       | \/                     |             |
| 7440-28-0           | Thallium                                     | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | <0.002                                      |                       | X                      |             |
| 7440-61-1           | Uranium                                      | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | <0.0002                                     |                       | $\square$              |             |
| 7440-62-2           | Vanadium                                     | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | <0.02                                       |                       |                        |             |
| 7440-66-6           | Zinc                                         | Т           | mg/L                  | 6020   |                                             | *                     |                                             | *                     | <0.02                                       |                       |                        |             |
| 108-05-4            | Vinyl acetate                                | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |                        |             |
| 67-64-1             | Acetone                                      | Т           | mg/L                  | 8260   | 0.0286                                      |                       | 0.0242                                      |                       | <0.005                                      |                       |                        | \           |
| 107-02-8            | Acrolein                                     | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |                        | \           |
| 107-13-1            | Acrylonitrile                                | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |                        |             |
| 71-43-2             | Benzene                                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                        |             |
| 108-90-7            | Chlorobenzene                                | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                        |             |
| 1330-20-7           | Xylenes                                      | Т           | mg/L                  | 8260   | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |                        |             |
| 100-42-5            | Styrene                                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |                        |             |
| 108-88-3            | Toluene                                      | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | 0.00053                                     | BJ                    |                        |             |
| 74-97-5             | Chlorobromomethane                           | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | /                      | 7           |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |              |                       |        | 0000-0000                                   |                  | 0000-0000                                   |                       | 8004-4800                                   |                       |                                             |             |
|-----------------------------|-----------------------------------|--------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-------------|
| Facility's Loc              | al Well or Spring Number (e.g., 1 | MW-          | 1, MW-2, et           | cc.)   | T. BLANK 2                                  | 2                | T. BLANK                                    | 3                     | 360                                         |                       |                                             |             |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | <b>T D</b> 5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A |
| 75-27-4                     | Bromodichloromethane              | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 75-25-2                     | Tribromomethane                   | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 74-83-9                     | Methyl bromide                    | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 78-93-3                     | Methyl ethyl ketone               | Т            | mg/L                  | 8260   | 0.0295                                      |                  | 0.0229                                      |                       | <0.005                                      |                       |                                             |             |
| 110-57-6                    | trans-1,4-Dichloro-2-butene       | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       |                                             |             |
| 75-15-0                     | Carbon disulfide                  | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | \ /                                         |             |
| 75-00-3                     | Chloroethane                      | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | \ /                                         |             |
| 67-66-3                     | Chloroform                        | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | 0.00118                                     | В                     | \/                                          |             |
| 74-87-3                     | Methyl chloride                   | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | X                                           |             |
| 156-59-2                    | cis-1,2-Dichloroethene            | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | $\Lambda$                                   |             |
| 74-95-3                     | Methylene bromide                 | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 75-34-3                     | 1,1-Dichloroethane                | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | / /                                         |             |
| 107-06-2                    | 1,2-Dichloroethane                | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 75-35-4                     | 1,1-Dichloroethylene              | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             | $\setminus$ |
| 106-93-4                    | Ethane, 1,2-dibromo               | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 79-34-5                     | Ethane, 1,1,2,2-Tetrachloro       | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 71-55-6                     | Ethane, 1,1,1-Trichloro-          | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 79-00-5                     | Ethane, 1,1,2-Trichloro           | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 630-20-6                    | Ethane, 1,1,1,2-Tetrachloro       | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 75-01-4                     | Vinyl chloride                    | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 127-18-4                    | Ethene, Tetrachloro-              | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       |                                             |             |
| 79-01-6                     | Ethene, Trichloro-                | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | 0.00147                                     |                       | /                                           |             |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

### GROUNDWATER SAMPLE ANALYSIS - (Cont.)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |              | 0000-0000             |        | 0000-0000                                   |                  | 8004-4800                                   |                  |                                             |                       |                                             |             |
|-----------------------------|-----------------------------------|--------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-------------|
| Facility's Loc              | al Well or Spring Number (e.g., N | <b>1W</b> −1 | L, MW-2, et           | cc.)   | T. BLANK                                    | 2                | T. BLANK                                    | 3                | 360                                         |                       |                                             |             |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | <b>T</b> D 5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A |
| 100-41-4                    | Ethylbenzene                      | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |                                             |             |
| 591-78-6                    | 2-Hexanone                        | Т            | mg/L                  | 8260   | 0.0032                                      | J                | 0.0029                                      | J                | <0.005                                      |                       |                                             |             |
| 74-88-4                     | Iodomethane                       | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                       |                                             |             |
| 124-48-1                    | Methane, Dibromochloro-           | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |                                             |             |
| 56-23-5                     | Carbon Tetrachloride              | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |                                             |             |
| 75-09-2                     | Dichloromethane                   | Т            | mg/L                  | 8260   | <0.005                                      |                  | 0.00072                                     | BJ               | 0.00056                                     | J                     | \ /                                         |             |
| 108-10-1                    | Methyl isobutyl ketone            | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                       | \ /                                         |             |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | Т            | mg/L                  | 8011   | <0.0000185                                  |                  | <0.0000191                                  |                  | <0.0000188                                  | *                     | \/                                          |             |
| 78-87-5                     | Propane, 1,2-Dichloro-            | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       | X X                                         |             |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       | $\Lambda$                                   |             |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       | / \                                         |             |
| 156-60-5                    | trans-1,2-Dichloroethene          | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       | / /                                         |             |
| 75-69-4                     | Trichlorofluoromethane            | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |                                             |             |
| 96-18-4                     | 1,2,3-Trichloropropane            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |                                             |             |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |                                             | $\setminus$ |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |                                             |             |
| 1336-36-3                   | PCB,Total                         | т            | ug/L                  | 8082   |                                             | *                |                                             | *                | <0.106                                      |                       |                                             |             |
| 12674-11-2                  | PCB-1016                          | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                | <0.106                                      |                       |                                             |             |
| 11104-28-2                  | PCB-1221                          | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                | <0.106                                      |                       |                                             |             |
| 11141-16-5                  | PCB-1232                          | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                | <0.106                                      |                       |                                             |             |
| 53469-21-9                  | PCB-1242                          | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                | <0.106                                      |                       |                                             |             |
| 12672-29-6                  | PCB-1248                          | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                | <0.106                                      |                       | /                                           |             |

C-43

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number      |             | 0000-0000             |          | 0000-0000                                   |                  | 8004-4800                                   |                       | \                                           |                       |                                             |             |
|-----------------------------|----------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-------------|
| Facility's Loc              | cal Well or Spring Number (e.g., | MW-1        | L, MW-2, et           | .c.)     | T. BLANK 2                                  | 2                | T. BLANK 3                                  |                       | 360                                         |                       |                                             |             |
| CAS RN <sup>4</sup>         | CONSTITUENT                      | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A |
| 11097-69-1                  | PCB-1254                         | т           | ug/L                  | 8082     |                                             | *                |                                             | *                     | <0.106                                      |                       |                                             |             |
| 11096-82-5                  | PCB-1260                         | Т           | ug/L                  | 8082     |                                             | *                |                                             | *                     | <0.106                                      |                       |                                             | 17          |
| 11100-14-4                  | PCB-1268                         | Т           | ug/L                  | 8082     |                                             | *                |                                             | *                     | <0.106                                      |                       |                                             | 7           |
| 12587-46-1                  | Gross Alpha                      | Т           | pCi/L                 | 9310     |                                             | *                |                                             | *                     | 0.552                                       | *                     |                                             |             |
| 12587-47-2                  | Gross Beta                       | Т           | pCi/L                 | 9310     |                                             | *                |                                             | *                     | 1.89                                        | *                     | \ /                                         |             |
| 10043-66-0                  | Iodine-131                       | Т           | pCi/L                 |          |                                             | *                |                                             | *                     |                                             | *                     | \ /                                         |             |
| 13982-63-3                  | Radium-226                       | Т           | pCi/L                 | AN-1418  |                                             | *                |                                             | *                     | 0.197                                       | *                     | \                                           |             |
| 10098-97-2                  | Strontium-90                     | Т           | pCi/L                 | 905.0    |                                             | *                |                                             | *                     | 4.75                                        | *                     | V                                           |             |
| 14133-76-7                  | Technetium-99                    | Т           | pCi/L                 | Tc-02-RC |                                             | *                |                                             | *                     | 12.4                                        | *                     | $\land$                                     |             |
| 14269-63-7                  | Thorium-230                      | Т           | pCi/L                 | Th-01-RC |                                             | *                |                                             | *                     | 0.0935                                      | *                     | /\                                          |             |
| 10028-17-8                  | Tritium                          | Т           | pCi/L                 | 906.0    |                                             | *                |                                             | *                     | -35.7                                       | *                     | / \                                         |             |
| s0130                       | Chemical Oxygen Demand           | Т           | mg/L                  | 410.4    |                                             | *                |                                             | *                     | <20                                         |                       | / /                                         | (           |
| 57-12-5                     | Cyanide                          | Т           | mg/L                  | 9012     |                                             | *                |                                             | *                     | <0.2                                        |                       |                                             |             |
| 20461-54-5                  | Iodide                           | т           | mg/L                  | 300.0    |                                             | *                |                                             | *                     | <0.5                                        | *                     |                                             |             |
| s0268                       | Total Organic Carbon             | Т           | mg/L                  | 9060     |                                             | *                |                                             | *                     | 1.07                                        | J                     |                                             |             |
| s0586                       | Total Organic Halides            | Т           | mg/L                  | 9020     |                                             | *                |                                             | *                     | 0.00428                                     | J                     |                                             |             |
|                             |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |             |
|                             |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |             |
|                             |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |             |
|                             |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |             |
|                             |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |             |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                 | Flag  | Description                                                                                  |
|---------------------|-----------------------|-----------------------------|-------|----------------------------------------------------------------------------------------------|
| 004-4798 MW357      | MW357UG2-22           | Chromium                    | N     | Sample spike (MS/MSD) recovery not within control limits                                     |
|                     |                       | 1,2-Dibromo-3-chloropropane | Y2    | MS/MSD RPD outside acceptance criteria.                                                      |
|                     |                       | Gross alpha                 | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.74. Rad error is 3.74.   |
|                     |                       | Gross beta                  | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 5.47. Rad error is 5.35.   |
|                     |                       | lodine-131                  |       | Analysis of constituent not required and not performed.                                      |
|                     |                       | Radium-226                  | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.429. Rad error is 0.427. |
|                     |                       | Strontium-90                | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.95. Rad error is 2.88.   |
|                     |                       | Technetium-99               |       | TPU is 11.4. Rad error is 10.9.                                                              |
|                     |                       | Thorium-230                 | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.537. Rad error is 0.536. |
|                     |                       | Tritium                     | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 106. Rad error is 106.     |
|                     |                       | lodide                      | W     | Post-digestion spike recovery out of control limits.                                         |
| 004-4799 MW358      | MW358UG2-22           | Chromium                    | N     | Sample spike (MS/MSD) recovery not within control limits                                     |
|                     |                       | 1,2-Dibromo-3-chloropropane | Y2    | MS/MSD RPD outside acceptance criteria.                                                      |
|                     |                       | Gross alpha                 | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.44. Rad error is 4.44.   |
|                     |                       | Gross beta                  | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.02. Rad error is 5.91.   |
|                     |                       | lodine-131                  |       | Analysis of constituent not required and not performed.                                      |
|                     |                       | Radium-226                  | U<br> | Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.354. Rad error is 0.354. |
|                     |                       | Strontium-90                | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 4.46. Rad error is 4.44.   |
|                     |                       | Technetium-99               | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 9.59. Rad error is 9.47.   |
|                     |                       | Thorium-230                 | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.1. Rad error is 1.09.    |
|                     |                       | Tritium                     | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPU 105. Rad error is 104.     |
|                     |                       | lodide                      | W     | Post-digestion spike recovery out of control limits.                                         |
| 004-0981 MW359      | MW359UG2-22           | Chromium                    | N     | Sample spike (MS/MSD) recovery not within control limits                                     |
|                     |                       | 1,2-Dibromo-3-chloropropane | Y2    | MS/MSD RPD outside acceptance criteria.                                                      |
|                     |                       | Gross alpha                 | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.64. Rad error is 3.63.   |
|                     |                       | Gross beta                  | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 4.27. Rad error is 4.26.   |
|                     |                       | lodine-131                  |       | Analysis of constituent not required and not performed.                                      |
|                     |                       | Radium-226                  | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.829. Rad error is 0.828. |
|                     |                       | Strontium-90                | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.4. Rad error is 3.36.    |
|                     |                       | Technetium-99               | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 8.89. Rad error is 8.89.   |
|                     |                       | Thorium-230                 | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.736. Rad error is 0.732. |
|                     |                       | Tritium                     | U     | Indicates analyte/nuclide was analyzed for, but not detected. TPL 113. Rad error is 112.     |
|                     |                       | lodide                      | W     | Post-digestion spike recovery out of control limits.                                         |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                 | Flag | Description                                                                                 |
|---------------------|-----------------------|-----------------------------|------|---------------------------------------------------------------------------------------------|
| 3004-4800 MW360     | MW360UG2-22           | Chromium                    | N    | Sample spike (MS/MSD) recovery not within control limits                                    |
|                     |                       | 1,2-Dibromo-3-chloropropane | Y2   | MS/MSD RPD outside acceptance criteria.                                                     |
|                     |                       | Gross alpha                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.61. Rad error is 4.61.  |
|                     |                       | Gross beta                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 8.57. Rad error is 8.56.   |
|                     |                       | lodine-131                  |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Radium-226                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 0.395. Rad error is 0.394. |
|                     |                       | Strontium-90                | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 2.86. Rad error is 2.79.   |
|                     |                       | Technetium-99               | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 8.72. Rad error is 8.67.   |
|                     |                       | Thorium-230                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 1.25. Rad error is 1.25.   |
|                     |                       | Tritium                     | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPI 103. Rad error is 103.    |
|                     |                       | lodide                      | W    | Post-digestion spike recovery out of control limits.                                        |
| 004-4795 MW361      | MW361UG2-22           | Chromium                    | N    | Sample spike (MS/MSD) recovery not within control limits                                    |
|                     |                       | 1,2-Dibromo-3-chloropropane | Y2   | MS/MSD RPD outside acceptance criteria.                                                     |
|                     |                       | Gross alpha                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 2.7. Rad error is 2.69.    |
|                     |                       | Gross beta                  |      | TPU is 7.85. Rad error is 7.27.                                                             |
|                     |                       | lodine-131                  |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Radium-226                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 0.392. Rad error is 0.39.  |
|                     |                       | Strontium-90                | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 2.75. Rad error is 2.69.   |
|                     |                       | Technetium-99               |      | TPU is 13.5. Rad error is 12.3.                                                             |
|                     |                       | Thorium-230                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 1.62. Rad error is 1.62.   |
|                     |                       | Tritium                     | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 103. Rad error is 103.     |
|                     |                       | lodide                      | W    | Post-digestion spike recovery out of control limits.                                        |
| 004-0986 MW362      | MW362UG2-22           | Chromium                    | N    | Sample spike (MS/MSD) recovery not within control limits                                    |
|                     |                       | 1,2-Dibromo-3-chloropropane | Y2   | MS/MSD RPD outside acceptance criteria.                                                     |
|                     |                       | Gross alpha                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 5.89. Rad error is 5.82.   |
|                     |                       | Gross beta                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 4.9. Rad error is 4.89.    |
|                     |                       | lodine-131                  |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Radium-226                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 0.384. Rad error is 0.383. |
|                     |                       | Strontium-90                | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 3.4. Rad error is 3.32.    |
|                     |                       | Technetium-99               | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 8.96. Rad error is 8.96.   |
|                     |                       | Thorium-230                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF 1.1. Rad error is 1.1.     |
|                     |                       | Tritium                     | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF 116. Rad error is 114.     |
|                     |                       | lodide                      | W    | Post-digestion spike recovery out of control limits.                                        |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                 | Flag | Description                                                                                  |
|---------------------|-----------------------|-----------------------------|------|----------------------------------------------------------------------------------------------|
| 3004-4796 MW363     | MW363UG2-22           | Chromium                    | N    | Sample spike (MS/MSD) recovery not within control limits                                     |
|                     |                       | 1,2-Dibromo-3-chloropropane | Y2   | MS/MSD RPD outside acceptance criteria.                                                      |
|                     |                       | Gross alpha                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 4.96. Rad error is 4.96.   |
|                     |                       | Gross beta                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 5.98. Rad error is 5.92.   |
|                     |                       | lodine-131                  |      | Analysis of constituent not required and not performed.                                      |
|                     |                       | Radium-226                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.49. Rad error is 0.488.  |
|                     |                       | Strontium-90                | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.23. Rad error is 3.16.   |
|                     |                       | Technetium-99               | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 11.2. Rad error is 11.2.   |
|                     |                       | Thorium-230                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.95. Rad error is 1.91.   |
|                     |                       | Tritium                     | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 137. Rad error is 137.     |
|                     |                       | lodide                      | W    | Post-digestion spike recovery out of control limits.                                         |
| 004-4797 MW364      | MW364UG2-22           | Chromium                    | N    | Sample spike (MS/MSD) recovery not within control limits                                     |
|                     |                       | 1,2-Dibromo-3-chloropropane | Y2   | MS/MSD RPD outside acceptance criteria.                                                      |
|                     |                       | Gross alpha                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.74. Rad error is 3.73.   |
|                     |                       | Gross beta                  |      | TPU is 9.84. Rad error is 8.15.                                                              |
|                     |                       | lodine-131                  |      | Analysis of constituent not required and not performed.                                      |
|                     |                       | Radium-226                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.473. Rad error is 0.472. |
|                     |                       | Strontium-90                | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.43. Rad error is 2.39.   |
|                     |                       | Technetium-99               |      | TPU is 14.3. Rad error is 12.8.                                                              |
|                     |                       | Thorium-230                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.5. Rad error is 1.49.    |
|                     |                       | Tritium                     | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 141. Rad error is 141.     |
|                     |                       | lodide                      | W    | Post-digestion spike recovery out of control limits.                                         |
| 004-0984 MW365      | MW365UG2-22           | Gross alpha                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 4.1. Rad error is 4.1.     |
|                     |                       | Gross beta                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.85. Rad error is 6.85.   |
|                     |                       | lodine-131                  |      | Analysis of constituent not required and not performed.                                      |
|                     |                       | Radium-226                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.534. Rad error is 0.533. |
|                     |                       | Strontium-90                | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 5. Rad error is 4.84.      |
|                     |                       | Technetium-99               |      | Indicates analyte/nuclide was analyzed for, but not detected. TPL 11. Rad error is 11.       |
|                     |                       | Thorium-230                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.29. Rad error is 1.28.   |
|                     |                       | Tritium                     | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPL 122. Rad error is 118.     |
|                     |                       | lodide                      | W    | Post-digestion spike recovery out of control limits.                                         |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent   | Flag | Description                                                                                      |
|---------------------|-----------------------|---------------|------|--------------------------------------------------------------------------------------------------|
| 3004-0982 MW366     |                       | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.44. Rad error is 4.39.     |
|                     |                       | Gross beta    |      | TPU is 11.8. Rad error is 9.25.                                                                  |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                          |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.503. Rad error is 0.502.   |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 2.92. Rad error is 2.88.     |
|                     |                       | Technetium-99 |      | TPU is 15.1. Rad error is 13.1.                                                                  |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.29. Rad error is 1.29.    |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 105. Rad error is 105.       |
|                     |                       | lodide        | W    | Post-digestion spike recovery out of control limits.                                             |
| 3004-4793 MW367     | MW367UG2-22           | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.3. Rad error is 4.29.     |
|                     |                       | Gross beta    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.15. Rad error is 4.15.    |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                          |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.979. Rad error is 0.977.   |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.02. Rad error is 3.95.     |
|                     |                       | Technetium-99 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 12.2. Rad error is 12.2.     |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.91. Rad error is 0.907.    |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 105. Rad error is 104.       |
|                     |                       | lodide        | W    | Post-digestion spike recovery out of control limits.                                             |
| 004-0983 MW368      | MW368UG2-22           | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i $3.84.$ Rad error is $3.84.$ |
|                     |                       | Gross beta    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 5.91. Rad error is 5.8.      |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                          |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.379. Rad error is 0.379.   |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 2. Rad error is 1.98.        |
|                     |                       | Technetium-99 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 10.5. Rad error is 10.5.     |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.984. Rad error is 0.979.   |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU i 117. Rad error is 115.       |
|                     |                       | lodide        | W    | Post-digestion spike recovery out of control limits.                                             |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent   | Flag | Description                                                                                     |
|---------------------|-----------------------|---------------|------|-------------------------------------------------------------------------------------------------|
| 8004-4820 MW369     | MW369UG2-22           | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.43. Rad error is 5.43.   |
|                     |                       | Gross beta    |      | TPU is 12.7. Rad error is 10.8.                                                                 |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                         |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.573. Rad error is 0.57.  |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.68. Rad error is 1.65.   |
|                     |                       | Technetium-99 |      | TPU is 13.4. Rad error is 12.                                                                   |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.35. Rad error is 1.34.   |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 107. Rad error is 106.     |
|                     |                       | lodide        | W    | Post-digestion spike recovery out of control limits.                                            |
| 8004-4818 MW370     | MW370UG2-22           | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.7. Rad error is 5.69.    |
|                     |                       | Gross beta    |      | TPU is 9.4. Rad error is 9.03.                                                                  |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                         |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.486. Rad error is 0.485. |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.56. Rad error is $3.47.$ |
|                     |                       | Technetium-99 |      | TPU is 12.4. Rad error is 12.1.                                                                 |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.747. Rad error is 0.747. |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 104. Rad error is 104.     |
|                     |                       | lodide        | W    | Post-digestion spike recovery out of control limits.                                            |
| 8004-4819 MW371     | MW371UG2-22           | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.71. Rad error is 4.71.   |
|                     |                       | Gross beta    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.08. Rad error is 5.08.   |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                         |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.544. Rad error is 0.542. |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.06. Rad error is 2.01.   |
|                     |                       | Technetium-99 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.4.   |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.03. Rad error is 1.02.   |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 95.3. Rad error is 95.3.   |
|                     |                       | lodide        | W    | Post-digestion spike recovery out of control limits.                                            |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent       | Flag | Description                                                                                |
|---------------------|-----------------------|-------------------|------|--------------------------------------------------------------------------------------------|
| 04-4808 MW372       | MW372UG2-22           | Chloride          | W    | Post-digestion spike recovery out of control limits.                                       |
|                     |                       | Nitrate & Nitrite | Н    | Analysis performed outside holding time requirement.                                       |
|                     |                       | Sulfate           | W    | Post-digestion spike recovery out of control limits.                                       |
|                     |                       | Gross alpha       | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 5.2. Rad error is 5.19.    |
|                     |                       | Gross beta        |      | TPU is 13.7. Rad error is 11.8.                                                            |
|                     |                       | lodine-131        |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Radium-226        | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 0.371. Rad error is 0.371. |
|                     |                       | Strontium-90      | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 2.3. Rad error is 2.24.    |
|                     |                       | Technetium-99     |      | TPU is 13.4. Rad error is 12.3.                                                            |
|                     |                       | Thorium-230       | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 6.03. Rad error is 5.98.   |
|                     |                       | Tritium           | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 121. Rad error is 121.     |
|                     |                       | lodide            | W    | Post-digestion spike recovery out of control limits.                                       |
| 004-4792 MW373      | MW373UG2-22           | Chloride          | W    | Post-digestion spike recovery out of control limits.                                       |
|                     |                       | Nitrate & Nitrite | Н    | Analysis performed outside holding time requirement.                                       |
|                     |                       | Sulfate           | W    | Post-digestion spike recovery out of control limits.                                       |
|                     |                       | Gross alpha       | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 5.56. Rad error is 5.47.   |
|                     |                       | Gross beta        |      | TPU is 6.18. Rad error is 5.92.                                                            |
|                     |                       | lodine-131        |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Radium-226        | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 0.463. Rad error is 0.463. |
|                     |                       | Strontium-90      | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 2.42. Rad error is 2.36.   |
|                     |                       | Technetium-99     | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 10.9. Rad error is 10.8.   |
|                     |                       | Thorium-230       | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 5.54. Rad error is 5.49.   |
|                     |                       | Tritium           | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 102. Rad error is 102.     |
|                     |                       | lodide            | W    | Post-digestion spike recovery out of control limits.                                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent       | Flag | Description                                                                                  |
|---------------------|-----------------------|-------------------|------|----------------------------------------------------------------------------------------------|
| 3004-0990 MW374     | MW374UG2-22           | Chloride          | W    | Post-digestion spike recovery out of control limits.                                         |
|                     |                       | Nitrate & Nitrite | Н    | Analysis performed outside holding time requirement.                                         |
|                     |                       | Sulfate           | W    | Post-digestion spike recovery out of control limits.                                         |
|                     |                       | Gross alpha       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.57. Rad error is 4.57.   |
|                     |                       | Gross beta        | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 9.36. Rad error is 9.35.   |
|                     |                       | lodine-131        |      | Analysis of constituent not required and not performed.                                      |
|                     |                       | Radium-226        | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.56. Rad error is 0.557.  |
|                     |                       | Strontium-90      | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.06. Rad error is 2.98.   |
|                     |                       | Technetium-99     | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 10.8. Rad error is 10.8.   |
|                     |                       | Thorium-230       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.61. Rad error is 4.58.   |
|                     |                       | Tritium           | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 111. Rad error is 111.     |
|                     |                       | lodide            | W    | Post-digestion spike recovery out of control limits.                                         |
| 3004-0985 MW375     | MW375UG2-22           | Gross alpha       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.87. Rad error is 3.87.   |
|                     |                       | Gross beta        | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.19. Rad error is 6.13.   |
|                     |                       | lodine-131        |      | Analysis of constituent not required and not performed.                                      |
|                     |                       | Radium-226        | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.568. Rad error is 0.565. |
|                     |                       | Strontium-90      | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.88. Rad error is 4.76.   |
|                     |                       | Technetium-99     | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 10.7. Rad error is 10.7.   |
|                     |                       | Thorium-230       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.57. Rad error is 1.56.   |
|                     |                       | Tritium           | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU 107. Rad error is 107.     |
|                     |                       | lodide            | W    | Post-digestion spike recovery out of control limits.                                         |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                                             |
|---------------------|-----------------------|------------------------------|------|-------------------------------------------------------------------------|
| 004-0988 MW376      |                       | Bromide                      |      | During sampling, the well went dry; therefore, no sample was collected. |
|                     |                       | Chloride                     |      | During sampling, the well went dry; therefore, no sample was collected. |
|                     |                       | Fluoride                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Nitrate & Nitrite            |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Sulfate                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Barometric Pressure Reading  |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Specific Conductance         |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Static Water Level Elevation |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Dissolved Oxygen             |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Total Dissolved Solids       |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | рН                           |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Eh                           |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Temperature                  |      | During sampling, the well went dry; therefore, no sample wa             |
|                     |                       | Aluminum                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Antimony                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Arsenic                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Barium                       |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Beryllium                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Boron                        |      | During sampling, the well went dry; therefore, no sample wa             |
|                     |                       | Cadmium                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Calcium                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Chromium                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Cobalt                       |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Copper                       |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Iron                         |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Lead                         |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Magnesium                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Manganese                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                     |                       | Mercury                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring Point | Facility<br>Sample ID | Constituent                 | Flag | Description                                                             |
|------------------|-----------------------|-----------------------------|------|-------------------------------------------------------------------------|
| 004-0988 MW376   | •                     | Molybdenum                  |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Nickel                      |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Potassium                   |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Rhodium                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Selenium                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Silver                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Sodium                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Tantalum                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Thallium                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Uranium                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Vanadium                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Zinc                        |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Vinyl acetate               |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Acetone                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Acrolein                    |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Acrylonitrile               |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Benzene                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Chlorobenzene               |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Xylenes                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Styrene                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Toluene                     |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Chlorobromomethane          |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Bromodichloromethane        |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Tribromomethane             |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Methyl bromide              |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Methyl Ethyl Ketone         |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | trans-1,4-Dichloro-2-butene |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Carbon disulfide            |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Chloroethane                |      | During sampling, the well went dry; therefore, no sample wa collected.  |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Methyl chloride collected.  cis-1,2-Dichloroethene During sampl collected.  Methylene bromide During sampl collected.  1,1-Dichloroethane During sampl collected.  1,2-Dichloroethane During sampl collected.  1,2-Dibromoethane During sampl collected.  1,2-Dibromoethane During sampl collected.  1,2-Dibromoethane During sampl collected.  1,1,2-Tetrachloroethane During sampl collected.  1,1,2-Trichloroethane During sampl collected.  1,1,2-Trichloroethane During sampl collected.  1,1,2-Trichloroethane During sampl collected.  1,1,2-Tetrachloroethane During sampl collected.  Vinyl chloride During sampl collected.  Vinyl chloride During sampl collected.  Tetrachloroethene During sampl collected.  Trichloroethene During sampl collected.  Ethylbenzene During sampl collected.  2-Hexanone During sampl collected.  Indomethane During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| collected.  During sample collected.  Methylene bromide  1,1-Dichloroethane  1,2-Dichloroethane  1,2-Dichloroethane  1,2-Dichloroethane  1,2-Dibromoethane  1,2-Dibromoethane  1,2-Dibromoethane  1,1-Dichloroethylene  1,1-Dichloroethane  During sample collected.  1,1-Dichloroethane  During sample collected.  1,1-Trichloroethane  During sample collected.  1,1,1-Trichloroethane  During sample collected.  1,1,2-Tetrachloroethane  During sample collected.  1,1,2-Tetrachloroethane  During sample collected.  Vinyl chloride  During sample collected.  Tetrachloroethene  During sample collected.  Trichloroethene  During sample collected.  Trichloroethene  During sample collected.  During sample c | ng, the well went dry; therefore, no sample wa |
| Methylene bromide collected.  1,1-Dichloroethane During sampl collected.  1,2-Dichloroethylene During sampl collected.  1,2-Dibromoethylene During sampl collected.  1,2-Dibromoethane During sampl collected.  1,2-Dibromoethane During sampl collected.  1,1,2-Tetrachloroethane During sampl collected.  1,1,1-Trichloroethane During sampl collected.  1,1,2-Trichloroethane During sampl collected.  1,1,2-Trichloroethane During sampl collected.  Vinyl chloride During sampl collected.  Vinyl chloride During sampl collected.  Tetrachloroethene During sampl collected.  Trichloroethene During sampl collected.  Ethylbenzene During sampl collected.  Ethylbenzene During sampl collected.  2-Hexanone During sampl collected.  Iodomethane During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng, the well went dry; therefore, no sample wa |
| Methylene bromide collected.  1,1-Dichloroethane During sampl collected.  1,2-Dichloroethane During sampl collected.  1,1-Dichloroethylene During sampl collected.  1,1-Dichloroethylene During sampl collected.  1,2-Dibromoethane During sampl collected.  1,1,2-Tetrachloroethane During sampl collected.  1,1,1-Trichloroethane During sampl collected.  1,1,2-Trichloroethane During sampl collected.  1,1,2-Tetrachloroethane During sampl collected.  Vinyl chloride During sampl collected.  Tetrachloroethene During sampl collected.  Trichloroethene During sampl collected.  Trichloroethene During sampl collected.  Ethylbenzene During sampl collected.  2-Hexanone During sampl collected.  Dibromochloromethane During sampl collected.  Dibromochloromethane During sampl collected.  Dibromochloromethane During sampl collected.  Dibromochloromethane During sampl collected.  Dichloromethane During sampl collected.  Dichloromethane During sampl collected.  Dichloromethane During sampl collected.  During sampl collected.  Dichloromethane During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng, the well went dry; therefore, no sample wa |
| 1,1-Dichloroethane During sampl collected. 1,2-Dichloroethylene During sampl collected. 1,1-Dichloroethylene During sampl collected. 1,2-Dibromoethane During sampl collected. 1,2-Tetrachloroethane During sampl collected. 1,1,1-Trichloroethane During sampl collected. 1,1,1-Trichloroethane During sampl collected. 1,1,1,2-Trichloroethane During sampl collected. 1,1,1,2-Tetrachloroethane During sampl collected. Vinyl chloride During sampl collected. Tetrachloroethene During sampl collected. Trichloroethene During sampl collected. Ethylbenzene During sampl collected. 2-Hexanone During sampl collected. Dibromochloromethane During sampl collected. Carbon tetrachloride During sampl collected. Dibromochloromethane During sampl collected. Dichloromethane During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng, the well went dry; therefore, no sample wa |
| 1,2-Dichloroethane During sample collected. 1,1-Dichloroethylene During sample collected. 1,2-Dibromoethane During sample collected. 1,1,2,2-Tetrachloroethane During sample collected. 1,1,1-Trichloroethane During sample collected. 1,1,2-Trichloroethane During sample collected. 1,1,2-Trichloroethane During sample collected. Vinyl chloride During sample collected. Vinyl chloride During sample collected. Tetrachloroethene During sample collected. Trichloroethene During sample collected. Trichloroethene During sample collected. Ethylbenzene During sample collected.                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng, the well went dry; therefore, no sample wa |
| collected.  1,2-Dibromoethane  1,1,2,2-Tetrachloroethane  1,1,1-Trichloroethane  1,1,2-Trichloroethane  1,1,2-Trichloroethane  1,1,2-Trichloroethane  1,1,1,2-Tetrachloroethane  1,1,1,2-Tetrachloroethane  Vinyl chloride  Vinyl chloride  Tetrachloroethene  Trichloroethene  During sampl collected.  Trichloroethene  During sampl collected.  Tetylbenzene  During sampl collected.  Ethylbenzene  During sampl collected.  During sampl collected.  During sampl collected.  Carbon tetrachloride  During sampl collected.  Dibromochloromethane  During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng, the well went dry; therefore, no sample wa |
| collected.  1,1,2,2-Tetrachloroethane  1,1,1-Trichloroethane  1,1,2-Trichloroethane  1,1,2-Trichloroethane  1,1,1,2-Tetrachloroethane  1,1,1,2-Tetrachloroethane  Vinyl chloride  Tetrachloroethene  Trichloroethene  Ethylbenzene  Ethylbenzene  During sampl collected.  2-Hexanone  Iodomethane  During sampl collected.  Carbon tetrachloride  During sampl collected.  Dichloromethane  During sampl collected.  Dichloromethane  During sampl collected.  Dichloromethane  During sampl collected.  1,2-Dibromo-3-chloropropane  During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng, the well went dry; therefore, no sample wa |
| 1,1,2,2-Tetrachloroethane During sampl collected.  1,1,1-Trichloroethane During sampl collected.  1,1,2-Trichloroethane During sampl collected.  1,1,1,2-Tetrachloroethane During sampl collected.  Vinyl chloride During sampl collected.  Tetrachloroethene During sampl collected.  Trichloroethene During sampl collected.  Ethylbenzene During sampl collected.  2-Hexanone During sampl collected.  lodomethane During sampl collected.  Dibromochloromethane During sampl collected.  Dibromochloromethane During sampl collected.  Dichloromethane During sampl collected.  1,2-Dibromo-3-chloropropane During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng, the well went dry; therefore, no sample wa |
| collected.  1,1,2-Trichloroethane  1,1,1,2-Tetrachloroethane  1,1,1,2-Tetrachloroethane  Vinyl chloride  During sampl collected.  During sampl collected.  Tetrachloroethene  During sampl collected.  Trichloroethene  During sampl collected.  Ethylbenzene  During sampl collected.  Ethylbenzene  During sampl collected.  Dibromochloromethane  During sampl collected.  Dichloromethane  During sampl collected.  Dichloromethane  During sampl collected.  Dichloromethane  During sampl collected.  Dichloromethane  During sampl collected.  Methyl Isobutyl Ketone  1,2-Dibromo-3-chloropropane  During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng, the well went dry; therefore, no sample wa |
| 1,1,2-Trichloroethane During sample collected.  1,1,1,2-Tetrachloroethane During sample collected.  Vinyl chloride During sample collected.  Tetrachloroethene During sample collected.  Trichloroethene During sample collected.  Ethylbenzene During sample collected.  Ethylbenzene During sample collected.  2-Hexanone During sample collected.  Iodomethane During sample collected.  Dibromochloromethane During sample collected.  Carbon tetrachloride During sample collected.  Dichloromethane During sample collected.  Dichloromethane During sample collected.  Dichloromethane During sample collected.  Dichloromethane During sample collected.  Methyl Isobutyl Ketone During sample collected.  1,2-Dibromo-3-chloropropane During sample collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng, the well went dry; therefore, no sample wa |
| 1,1,1,2-Tetrachloroethane  Vinyl chloride  During sampl collected.  Tetrachloroethene  During sampl collected.  Trichloroethene  Ethylbenzene  During sampl collected.  Ethylbenzene  During sampl collected.  2-Hexanone  During sampl collected.  1,2-Dibromo-3-chloropropane  During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng, the well went dry; therefore, no sample wa |
| Vinyl chloride During sample collected.  Tetrachloroethene During sample collected.  Trichloroethene During sample collected.  Ethylbenzene During sample collected.  2-Hexanone During sample collected.  Iodomethane During sample collected.  Dibromochloromethane During sample collected.  Dibromochloromethane During sample collected.  Carbon tetrachloride During sample collected.  Dichloromethane During sample collected.  Methyl Isobutyl Ketone During sample collected.  1,2-Dibromo-3-chloropropane During sample collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng, the well went dry; therefore, no sample wa |
| Tetrachloroethene During sample collected.  Trichloroethene During sample collected.  Ethylbenzene During sample collected.  2-Hexanone During sample collected.  lodomethane During sample collected.  Dibromochloromethane During sample collected.  Carbon tetrachloride During sample collected.  Dichloromethane During sample collected.  Dichloromethane During sample collected.  Dichloromethane During sample collected.  Methyl Isobutyl Ketone During sample collected.  1,2-Dibromo-3-chloropropane During sample collected.  1,2-Dichloropropane During sample collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng, the well went dry; therefore, no sample wa |
| Trichloroethene During sample collected.  Ethylbenzene During sample collected.  2-Hexanone During sample collected.  Iodomethane During sample collected.  Dibromochloromethane During sample collected.  Carbon tetrachloride During sample collected.  Dichloromethane During sample collected.  Dichloromethane During sample collected.  Methyl Isobutyl Ketone During sample collected.  1,2-Dibromo-3-chloropropane During sample collected.  1,2-Dichloropropane During sample collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng, the well went dry; therefore, no sample wa |
| Ethylbenzene During sampl collected.  2-Hexanone During sampl collected.  Iodomethane During sampl collected.  Dibromochloromethane During sampl collected.  Carbon tetrachloride During sampl collected.  Dichloromethane During sampl collected.  Dichloromethane During sampl collected.  Methyl Isobutyl Ketone During sampl collected.  1,2-Dibromo-3-chloropropane During sampl collected.  1,2-Dichloropropane During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng, the well went dry; therefore, no sample wa |
| 2-Hexanone During sample collected.  Iodomethane During sample collected.  Dibromochloromethane During sample collected.  Carbon tetrachloride During sample collected.  Dichloromethane During sample collected.  Dichloromethane During sample collected.  Methyl Isobutyl Ketone During sample collected.  1,2-Dibromo-3-chloropropane During sample collected.  1,2-Dichloropropane During sample collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ng, the well went dry; therefore, no sample wa |
| lodomethane  During sampl collected.  Dibromochloromethane  During sampl collected.  Carbon tetrachloride  During sampl collected.  Dichloromethane  During sampl collected.  During sampl collected.  Methyl Isobutyl Ketone  During sampl collected.  1,2-Dibromo-3-chloropropane  During sampl collected.  1,2-Dichloropropane  During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng, the well went dry; therefore, no sample wa |
| Dibromochloromethane During sample collected.  Carbon tetrachloride During sample collected.  Dichloromethane During sample collected.  Methyl Isobutyl Ketone During sample collected.  1,2-Dibromo-3-chloropropane During sample collected.  1,2-Dichloropropane During sample collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng, the well went dry; therefore, no sample wa |
| Carbon tetrachloride  During sample collected.  Dichloromethane  During sample collected.  Methyl Isobutyl Ketone  During sample collected.  1,2-Dibromo-3-chloropropane  During sample collected.  1,2-Dichloropropane  During sample collected.  During sample collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng, the well went dry; therefore, no sample wa |
| Dichloromethane During sample collected.  Methyl Isobutyl Ketone During sample collected.  1,2-Dibromo-3-chloropropane During sample collected.  1,2-Dichloropropane During sample collected.  1,2-Dichloropropane During sample collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng, the well went dry; therefore, no sample wa |
| Methyl Isobutyl Ketone  During sample collected.  1,2-Dibromo-3-chloropropane  During sample collected.  1,2-Dichloropropane  During sample collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng, the well went dry; therefore, no sample wa |
| 1,2-Dibromo-3-chloropropane During sampl collected. 1,2-Dichloropropane During sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng, the well went dry; therefore, no sample wa |
| 1,2-Dichloropropane During sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ng, the well went dry; therefore, no sample wa |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng, the well went dry; therefore, no sample wa |
| trans-1,3-Dichloropropene During sampl collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng, the well went dry; therefore, no sample wa |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng, the well went dry; therefore, no sample wa |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng, the well went dry; therefore, no sample wa |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng, the well went dry; therefore, no sample wa |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng, the well went dry; therefore, no sample wa |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent            | Flag | Description                                                            |
|---------------------|-----------------------|------------------------|------|------------------------------------------------------------------------|
| 004-0988 MW376      | •                     | 1,2-Dichlorobenzene    |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | 1,4-Dichlorobenzene    |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB, Total             |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1016               |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1221               |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1232               |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1242               |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1248               |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1254               |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1260               |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1268               |      | During sampling, the well went dry; therefore, no sample wa            |
|                     |                       | Gross alpha            |      | During sampling, the well went dry; therefore, no sample wa            |
|                     |                       | Gross beta             |      | During sampling, the well went dry; therefore, no sample wa            |
|                     |                       | lodine-131             |      | During sampling, the well went dry; therefore, no sample wa            |
|                     |                       | Radium-226             |      | During sampling, the well went dry; therefore, no sample wa            |
|                     |                       | Strontium-90           |      | During sampling, the well went dry; therefore, no sample wa            |
|                     |                       | Technetium-99          |      | During sampling, the well went dry; therefore, no sample wa            |
|                     |                       | Thorium-230            |      | During sampling, the well went dry; therefore, no sample wa            |
|                     |                       | Tritium                |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Chemical Oxygen Demand |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Cyanide                |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | lodide                 |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Total Organic Carbon   |      | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Total Organic Halides  |      | During sampling, the well went dry; therefore, no sample wa collected. |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

| Monitoring Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                                             |
|------------------|-----------------------|------------------------------|------|-------------------------------------------------------------------------|
| 004-0989 MW377   | •                     | Bromide                      |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Chloride                     |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Fluoride                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Nitrate & Nitrite            |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Sulfate                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Barometric Pressure Reading  |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Specific Conductance         |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Static Water Level Elevation |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Dissolved Oxygen             |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Total Dissolved Solids       |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | рН                           |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Eh                           |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Temperature                  |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Aluminum                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Antimony                     |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Arsenic                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Barium                       |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Beryllium                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Boron                        |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Cadmium                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Calcium                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Chromium                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Cobalt                       |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Copper                       |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Iron                         |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Lead                         |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Magnesium                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Manganese                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Mercury                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring Point | Facility<br>Sample ID | Constituent                 | Flag | Description                                                             |
|------------------|-----------------------|-----------------------------|------|-------------------------------------------------------------------------|
| 004-0989 MW377   |                       | Molybdenum                  |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Nickel                      |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Potassium                   |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Rhodium                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Selenium                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Silver                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Sodium                      |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Tantalum                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Thallium                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Uranium                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Vanadium                    |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Zinc                        |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Vinyl acetate               |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Acetone                     |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Acrolein                    |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Acrylonitrile               |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Benzene                     |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Chlorobenzene               |      | During sampling, the well went dry; therefore, no sample wa             |
|                  |                       | Xylenes                     |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Styrene                     |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Toluene                     |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Chlorobromomethane          |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Bromodichloromethane        |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Tribromomethane             |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Methyl bromide              |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Methyl Ethyl Ketone         |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | trans-1,4-Dichloro-2-butene |      | During sampling, the well went dry; therefore, no sample was collected. |
|                  |                       | Carbon disulfide            |      | During sampling, the well went dry; therefore, no sample wa collected.  |
|                  |                       | Chloroethane                |      | During sampling, the well went dry; therefore, no sample was collected. |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

|                | Sample ID | Constituent                 | Flag | Description                                                               |
|----------------|-----------|-----------------------------|------|---------------------------------------------------------------------------|
| 004-0989 MW377 |           | Chloroform                  |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | Methyl chloride             |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | cis-1,2-Dichloroethene      |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | Methylene bromide           |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | 1,1-Dichloroethane          |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | 1,2-Dichloroethane          |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | 1,1-Dichloroethylene        |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | 1,2-Dibromoethane           |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | 1,1,2,2-Tetrachloroethane   |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | 1,1,1-Trichloroethane       |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | 1,1,2-Trichloroethane       |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | 1,1,1,2-Tetrachloroethane   |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | Vinyl chloride              |      | During sampling, the well went dry; therefore, no sample was collected.   |
|                |           | Tetrachloroethene           |      | During sampling, the well went dry; therefore, no sample was collected.   |
|                |           | Trichloroethene             |      | During sampling, the well went dry; therefore, no sample was collected.   |
|                |           | Ethylbenzene                |      | During sampling, the well went dry; therefore, no sample was collected.   |
|                |           | 2-Hexanone                  |      | During sampling, the well went dry; therefore, no sample was collected.   |
|                |           | lodomethane                 |      | During sampling, the well went dry; therefore, no sample was collected.   |
|                |           | Dibromochloromethane        |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | Carbon tetrachloride        |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | Dichloromethane             |      | During sampling, the well went dry; therefore, no sample was collected.   |
|                |           | Methyl Isobutyl Ketone      |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | 1,2-Dibromo-3-chloropropane |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | 1,2-Dichloropropane         |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | trans-1,3-Dichloropropene   |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | cis-1,3-Dichloropropene     |      | During sampling, the well went dry; therefore, no sample wa collected.    |
|                |           | trans-1,2-Dichloroethene    |      | During sampling, the well went dry; therefore, no sample was collected.   |
|                |           |                             |      |                                                                           |
|                |           | Trichlorofluoromethane      |      | During sampling, the well went dry; therefore, no sample wa<br>collected. |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent            | Flag       | Description                                                            |
|---------------------|-----------------------|------------------------|------------|------------------------------------------------------------------------|
| 004-0989 MW377      | _ 5p.:0 .2            | 1,2-Dichlorobenzene    | <u>.</u> g | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | 1,4-Dichlorobenzene    |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB, Total             |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1016               |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1221               |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1232               |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1242               |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1248               |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1254               |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1260               |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | PCB-1268               |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Gross alpha            |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Gross beta             |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | lodine-131             |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Radium-226             |            | During sampling, the well went dry; therefore, no sample wa            |
|                     |                       | Strontium-90           |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Technetium-99          |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Thorium-230            |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Tritium                |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Chemical Oxygen Demand |            | During sampling, the well went dry; therefore, no sample wa            |
|                     |                       | Cyanide                |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | lodide                 |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Total Organic Carbon   |            | During sampling, the well went dry; therefore, no sample wa collected. |
|                     |                       | Total Organic Halides  |            | During sampling, the well went dry; therefore, no sample wa collected. |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                                                                |
|---------------------|-----------------------|------------------------------|------|--------------------------------------------------------------------------------------------|
| 000-0000 QC         | RI1UG2-22             | Bromide                      |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Chloride                     |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Fluoride                     |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Nitrate & Nitrite            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Sulfate                      |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Specific Conductance         |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Total Dissolved Solids       |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | рН                           |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Eh                           |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Temperature                  |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Chromium                     | N    | Sample spike (MS/MSD) recovery not within control limits                                   |
|                     |                       | 1,2-Dibromo-3-chloropropane  | Y2   | MS/MSD RPD outside acceptance criteria.                                                    |
|                     |                       | Gross alpha                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. To 2.17. Rad error is 2.16.  |
|                     |                       | Gross beta                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 6.13. Rad error is 6.13.   |
|                     |                       | lodine-131                   |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Radium-226                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 0.489. Rad error is 0.489. |
|                     |                       | Strontium-90                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 4.49. Rad error is 4.47.   |
|                     |                       | Technetium-99                | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 8.65. Rad error is 8.65.   |
|                     |                       | Thorium-230                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 0.792. Rad error is 0.789. |
|                     |                       | Tritium                      | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 123. Rad error is 119.     |
|                     |                       | Chemical Oxygen Demand       |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Cyanide                      |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | lodide                       | W    | Post-digestion spike recovery out of control limits.                                       |
|                     |                       | Total Organic Carbon         |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Total Organic Halides        |      | Analysis of constituent not required and not performed.                                    |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                                                                |
|---------------------|-----------------------|------------------------------|------|--------------------------------------------------------------------------------------------|
| 000-0000 QC         | FB1UG2-22             | Bromide                      |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Chloride                     |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Fluoride                     |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Nitrate & Nitrite            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Sulfate                      |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Specific Conductance         |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Total Dissolved Solids       |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | рН                           |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Eh                           |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Temperature                  |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Chromium                     | N    | Sample spike (MS/MSD) recovery not within control limits                                   |
|                     |                       | 1,2-Dibromo-3-chloropropane  | Y2   | MS/MSD RPD outside acceptance criteria.                                                    |
|                     |                       | Gross alpha                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TI 2.44. Rad error is 2.44.  |
|                     |                       | Gross beta                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. To 3.93. Rad error is 3.93.  |
|                     |                       | lodine-131                   |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Radium-226                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 0.527. Rad error is 0.526. |
|                     |                       | Strontium-90                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 3.65. Rad error is 3.64.   |
|                     |                       | Technetium-99                | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 8.78. Rad error is 8.78.   |
|                     |                       | Thorium-230                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 0.585. Rad error is 0.585. |
|                     |                       | Tritium                      | U    | Indicates analyte/nuclide was analyzed for, but not detected. T 140. Rad error is 140.     |
|                     |                       | Chemical Oxygen Demand       |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Cyanide                      |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | lodide                       | W    | Post-digestion spike recovery out of control limits.                                       |
|                     |                       | Total Organic Carbon         |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Total Organic Halides        |      | Analysis of constituent not required and not performed.                                    |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                             |
|---------------------|-----------------------|------------------------------|------|---------------------------------------------------------|
| 0000-0000 QC        | TB1UG2-22             | Bromide                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Chloride                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Fluoride                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Nitrate & Nitrite            |      | Analysis of constituent not required and not performed. |
|                     |                       | Sulfate                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed. |
|                     |                       | Specific Conductance         |      | Analysis of constituent not required and not performed. |
|                     |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed. |
|                     |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Dissolved Solids       |      | Analysis of constituent not required and not performed. |
|                     |                       | рН                           |      | Analysis of constituent not required and not performed. |
|                     |                       | Eh                           |      | Analysis of constituent not required and not performed. |
|                     |                       | Temperature                  |      | Analysis of constituent not required and not performed. |
|                     |                       | Aluminum                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Antimony                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Arsenic                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Barium                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Beryllium                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Boron                        |      | Analysis of constituent not required and not performed. |
|                     |                       | Cadmium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Calcium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Chromium                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Cobalt                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Copper                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Iron                         |      | Analysis of constituent not required and not performed. |
|                     |                       | Lead                         |      | Analysis of constituent not required and not performed. |
|                     |                       | Magnesium                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Manganese                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Mercury                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Molybdenum                   |      | Analysis of constituent not required and not performed. |
|                     |                       | Nickel                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Potassium                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Rhodium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Selenium                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Silver                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Sodium                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Tantalum                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Thallium                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Uranium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Vanadium                     |      | Analysis of constituent not required and not performed. |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                 | Flag | Description                                             |
|---------------------|-----------------------|-----------------------------|------|---------------------------------------------------------|
| 0000-0000 QC        | TB1UG2-22             | Zinc                        | •    | Analysis of constituent not required and not performed. |
|                     |                       | 1,2-Dibromo-3-chloropropane | Y2   | MS/MSD RPD outside acceptance criteria.                 |
|                     |                       | PCB, Total                  |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1016                    |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1221                    |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1232                    |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1242                    |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1248                    |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1254                    |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1260                    |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1268                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Gross alpha                 |      | Analysis of constituent not required and not performed. |
|                     |                       | Gross beta                  |      | Analysis of constituent not required and not performed. |
|                     |                       | lodine-131                  |      | Analysis of constituent not required and not performed. |
|                     |                       | Radium-226                  |      | Analysis of constituent not required and not performed. |
|                     |                       | Strontium-90                |      | Analysis of constituent not required and not performed. |
|                     |                       | Technetium-99               |      | Analysis of constituent not required and not performed. |
|                     |                       | Thorium-230                 |      | Analysis of constituent not required and not performed. |
|                     |                       | Tritium                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Chemical Oxygen Demand      |      | Analysis of constituent not required and not performed. |
|                     |                       | Cyanide                     |      | Analysis of constituent not required and not performed. |
|                     |                       | lodide                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Organic Carbon        |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Organic Halides       |      | Analysis of constituent not required and not performed. |
|                     |                       |                             |      |                                                         |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                             |
|---------------------|-----------------------|------------------------------|------|---------------------------------------------------------|
| 000-0000 QC         | TB2UG2-22             | Bromide                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Chloride                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Fluoride                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Nitrate & Nitrite            |      | Analysis of constituent not required and not performed. |
|                     |                       | Sulfate                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed. |
|                     |                       | Specific Conductance         |      | Analysis of constituent not required and not performed. |
|                     |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed. |
|                     |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Dissolved Solids       |      | Analysis of constituent not required and not performed. |
|                     |                       | рН                           |      | Analysis of constituent not required and not performed. |
|                     |                       | Eh                           |      | Analysis of constituent not required and not performed. |
|                     |                       | Temperature                  |      | Analysis of constituent not required and not performed. |
|                     |                       | Aluminum                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Antimony                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Arsenic                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Barium                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Beryllium                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Boron                        |      | Analysis of constituent not required and not performed. |
|                     |                       | Cadmium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Calcium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Chromium                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Cobalt                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Copper                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Iron                         |      | Analysis of constituent not required and not performed. |
|                     |                       | Lead                         |      | Analysis of constituent not required and not performed. |
|                     |                       | Magnesium                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Manganese                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Mercury                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Molybdenum                   |      | Analysis of constituent not required and not performed. |
|                     |                       | Nickel                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Potassium                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Rhodium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Selenium                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Silver                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Sodium                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Tantalum                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Thallium                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Uranium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Vanadium                     |      | Analysis of constituent not required and not performed. |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent            | Flag | Description                                             |
|---------------------|-----------------------|------------------------|------|---------------------------------------------------------|
| 000-0000 QC         | TB2UG2-22             | Zinc                   |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB, Total             |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1016               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1221               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1232               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1242               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1248               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1254               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1260               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1268               |      | Analysis of constituent not required and not performed. |
|                     |                       | Gross alpha            |      | Analysis of constituent not required and not performed. |
|                     |                       | Gross beta             |      | Analysis of constituent not required and not performed. |
|                     |                       | lodine-131             |      | Analysis of constituent not required and not performed. |
|                     |                       | Radium-226             |      | Analysis of constituent not required and not performed. |
|                     |                       | Strontium-90           |      | Analysis of constituent not required and not performed. |
|                     |                       | Technetium-99          |      | Analysis of constituent not required and not performed. |
|                     |                       | Thorium-230            |      | Analysis of constituent not required and not performed. |
|                     |                       | Tritium                |      | Analysis of constituent not required and not performed. |
|                     |                       | Chemical Oxygen Demand |      | Analysis of constituent not required and not performed. |
|                     |                       | Cyanide                |      | Analysis of constituent not required and not performed. |
|                     |                       | lodide                 |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Organic Carbon   |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Organic Halides  |      | Analysis of constituent not required and not performed. |
|                     |                       |                        |      |                                                         |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                             |
|---------------------|-----------------------|------------------------------|------|---------------------------------------------------------|
| 000-0000 QC         | TB3UG2-22             | Bromide                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Chloride                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Fluoride                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Nitrate & Nitrite            |      | Analysis of constituent not required and not performed. |
|                     |                       | Sulfate                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed. |
|                     |                       | Specific Conductance         |      | Analysis of constituent not required and not performed. |
|                     |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed. |
|                     |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Dissolved Solids       |      | Analysis of constituent not required and not performed. |
|                     |                       | рН                           |      | Analysis of constituent not required and not performed. |
|                     |                       | Eh                           |      | Analysis of constituent not required and not performed. |
|                     |                       | Temperature                  |      | Analysis of constituent not required and not performed. |
|                     |                       | Aluminum                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Antimony                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Arsenic                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Barium                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Beryllium                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Boron                        |      | Analysis of constituent not required and not performed. |
|                     |                       | Cadmium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Calcium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Chromium                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Cobalt                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Copper                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Iron                         |      | Analysis of constituent not required and not performed. |
|                     |                       | Lead                         |      | Analysis of constituent not required and not performed. |
|                     |                       | Magnesium                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Manganese                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Mercury                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Molybdenum                   |      | Analysis of constituent not required and not performed. |
|                     |                       | Nickel                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Potassium                    |      | Analysis of constituent not required and not performed. |
|                     |                       | Rhodium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Selenium                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Silver                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Sodium                       |      | Analysis of constituent not required and not performed. |
|                     |                       | Tantalum                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Thallium                     |      | Analysis of constituent not required and not performed. |
|                     |                       | Uranium                      |      | Analysis of constituent not required and not performed. |
|                     |                       | Vanadium                     |      | Analysis of constituent not required and not performed. |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

| Monitoring<br>Point | Facility<br>Sample ID | Constituent            | Flag | Description                                             |
|---------------------|-----------------------|------------------------|------|---------------------------------------------------------|
| 000-0000 QC         | TB3UG2-22             | Zinc                   |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB, Total             |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1016               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1221               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1232               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1242               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1248               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1254               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1260               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1268               |      | Analysis of constituent not required and not performed. |
|                     |                       | Gross alpha            |      | Analysis of constituent not required and not performed. |
|                     |                       | Gross beta             |      | Analysis of constituent not required and not performed. |
|                     |                       | lodine-131             |      | Analysis of constituent not required and not performed. |
|                     |                       | Radium-226             |      | Analysis of constituent not required and not performed. |
|                     |                       | Strontium-90           |      | Analysis of constituent not required and not performed. |
|                     |                       | Technetium-99          |      | Analysis of constituent not required and not performed. |
|                     |                       | Thorium-230            |      | Analysis of constituent not required and not performed. |
|                     |                       | Tritium                |      | Analysis of constituent not required and not performed. |
|                     |                       | Chemical Oxygen Demand |      | Analysis of constituent not required and not performed. |
|                     |                       | Cyanide                |      | Analysis of constituent not required and not performed. |
|                     |                       | lodide                 |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Organic Carbon   |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Organic Halides  |      | Analysis of constituent not required and not performed. |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

| Monitoring      | Facility     | Constituent                  | Flor | Description                                                                                 |
|-----------------|--------------|------------------------------|------|---------------------------------------------------------------------------------------------|
| Point           | Sample ID    | Constituent                  | Flag | Description                                                                                 |
| 3004-4800 MW360 | MW360DUG2-22 | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed.                                     |
|                 |              | Specific Conductance         |      | Analysis of constituent not required and not performed.                                     |
|                 |              | Static Water Level Elevation |      | Analysis of constituent not required and not performed.                                     |
|                 |              | Dissolved Oxygen             |      | Analysis of constituent not required and not performed.                                     |
|                 |              | рН                           |      | Analysis of constituent not required and not performed.                                     |
|                 |              | Eh                           |      | Analysis of constituent not required and not performed.                                     |
|                 |              | Temperature                  |      | Analysis of constituent not required and not performed.                                     |
|                 |              | Chromium                     | N    | Sample spike (MS/MSD) recovery not within control limits                                    |
|                 |              | 1,2-Dibromo-3-chloropropane  | Y2   | MS/MSD RPD outside acceptance criteria.                                                     |
|                 |              | Gross alpha                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP 3.38. Rad error is 3.38.   |
|                 |              | Gross beta                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF 5.23. Rad error is 5.22.   |
|                 |              | lodine-131                   |      | Analysis of constituent not required and not performed.                                     |
|                 |              | Radium-226                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF 0.352. Rad error is 0.351. |
|                 |              | Strontium-90                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF 4.38. Rad error is 4.32.   |
|                 |              | Technetium-99                | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF 9.66. Rad error is 9.56.   |
|                 |              | Thorium-230                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF 0.744. Rad error is 0.742. |
|                 |              | Tritium                      | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF 95.8. Rad error is 95.8.   |
|                 |              | lodide                       | W    | Post-digestion spike recovery out of control limits.                                        |

# APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT



RESIDENTIAL/CONTAINED—QUARTERLY, 1st CY 2022

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u>

LAB ID: None
For Official Use Only

# GROUNDWATER STATISTICAL COMMENTS

#### Introduction

The statistical analyses conducted on the first quarter 2022 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). A statistician qualification statement has been provided for this analysis.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2022 data used to conduct the statistical analyses were collected in January 2022. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

#### **Statistical Analysis Process**

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

| Station              | Type | Groundwater Unit |
|----------------------|------|------------------|
| MW357                | TW   | URGA             |
| MW358                | TW   | LRGA             |
| MW359 <sup>a</sup>   | TW   | UCRS             |
| MW360                | TW   | URGA             |
| MW361                | TW   | LRGA             |
| MW362 <sup>a</sup>   | TW   | UCRS             |
| MW363                | TW   | URGA             |
| MW364                | TW   | LRGA             |
| MW365 <sup>a</sup>   | TW   | UCRS             |
| MW366                | TW   | URGA<br>LRGA     |
| MW367                | TW   |                  |
| MW368 <sup>a</sup>   | TW   | UCRS             |
| MW369                | BG   | URGA             |
| MW370                | BG   | LRGA             |
| MW371 <sup>a</sup>   | BG   | UCRS             |
| MW372                | BG   | URGA             |
| MW373                | BG   | LRGA             |
| MW374 <sup>a</sup>   | BG   | UCRS             |
| MW375 <sup>a</sup>   | SG   | UCRS             |
| $MW376^{a,b}$        | SG   | UCRS             |
| MW377 <sup>a,b</sup> | SG   | UCRS             |

<sup>&</sup>lt;sup>a</sup> The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

**BG:** upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

<sup>&</sup>lt;sup>b</sup> Well was dry this quarter, and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.<sup>1</sup>

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
  - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
  - The data set is checked for normality using coefficient of variation (CV). If  $CV \le 1.0$ , then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
  - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
  - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

### Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2022. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data.

lower  $TL = X - (K \times S)$ 

<sup>&</sup>lt;sup>1</sup> For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper  $TL = X + (K \times S)$ 

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

| Parameters                    |
|-------------------------------|
| Aluminum                      |
| Beryllium                     |
| Boron                         |
| Bromide                       |
| Calcium                       |
| Chemical Oxygen Demand (COD)  |
| Chloride                      |
| Cobalt                        |
| Conductivity                  |
| Copper                        |
| Cyanide                       |
| Dissolved Oxygen              |
| Dissolved Solids              |
| Iron                          |
| Magnesium                     |
| Manganese                     |
| Methylene Chloride            |
| Nickel                        |
| Oxidation-Reduction Potential |
| pH*                           |
| Potassium                     |
| Sodium                        |
| Sulfate                       |
| Technetium-99                 |
| Total Organic Carbon (TOC)    |
| Total Organic Halides (TOX)   |
| Trichloroethene               |
| Vanadium                      |
| Zinc                          |

<sup>\*</sup>For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

| Parameters                   | Observations | Censored<br>Observation | Uncensored<br>Observation | Statistical<br>Analysis? |
|------------------------------|--------------|-------------------------|---------------------------|--------------------------|
| 1,1,1,2-Tetrachloroethane    | 7            | 7                       | 0                         | No                       |
| 1,1,2,2-Tetrachloroethane    | 7            | 7                       | 0                         | No                       |
| 1,1,2-Trichloroethane        | 7            | 7                       | 0                         | No                       |
| 1,1-Dichloroethane           | 7            | 7                       | 0                         | No                       |
| 1,2,3-Trichloropropane       | 7            | 7                       | 0                         | No                       |
| 1,2-Dibromo-3-chloropropane  | 7            | 7                       | 0                         | No                       |
| 1,2-Dibromoethane            | 7            | 7                       | 0                         | No                       |
| 1,2-Dichlorobenzene          | 7            | 7                       | 0                         | No                       |
| 1,2-Dichloropropane          | 7            | 7                       | 0                         | No                       |
| 2-Butanone                   | 7            | 7                       | 0                         | No                       |
| 2-Hexanone                   | 7            | 7                       | 0                         | No                       |
| 4-Methyl-2-pentanone         | 7            | 7                       | 0                         | No                       |
| Acetone                      | 7            | 7                       | 0                         | No                       |
| Acrolein                     | 7            | 7                       | 0                         | No                       |
| Acrylonitrile                | 7            | 7                       | 0                         | No                       |
| •                            | 7            |                         | 7                         |                          |
| Aluminum                     | 7            | <b>0</b> 7              |                           | Yes<br>No                |
| Antimony                     |              |                         | 0                         |                          |
| Beryllium                    | 7            | 6                       | 1                         | Yes                      |
| Boron                        | 7            | 2                       | 5                         | Yes                      |
| Bromide                      | 7            | 4                       | 3                         | Yes                      |
| Bromochloromethane           | 7            | 7                       | 0                         | No                       |
| Bromodichloromethane         | 7            | 7                       | 0                         | No                       |
| Bromoform                    | 7            | 7                       | 0                         | No                       |
| Bromomethane                 | 7            | 7                       | 0                         | No                       |
| Calcium                      | 7            | 0                       | 7                         | Yes                      |
| Carbon disulfide             | 7            | 7                       | 0                         | No                       |
| Chemical Oxygen Demand (COD) | 7            | 0                       | 7                         | Yes                      |
| Chloride                     | 7            | 0                       | 7                         | Yes                      |
| Chlorobenzene                | 7            | 7                       | 0                         | No                       |
| Chloroethane                 | 7            | 7                       | 0                         | No                       |
| Chloroform                   | 7            | 7                       | 0                         | No                       |
| Chloromethane                | 7            | 7                       | 0                         | No                       |
| cis-1,2-Dichloroethene       | 7            | 7                       | 0                         | No                       |
| cis-1,3-Dichloropropene      | 7            | 7                       | 0                         | No                       |
| Cobalt                       | 7            | 4                       | 3                         | Yes                      |
| Conductivity                 | 7            | 0                       | 7                         | Yes                      |
| Copper                       | 7            | 1                       | 6                         | Yes                      |
| Cyanide                      | 7            | 7                       | 0                         | No                       |
| Dibromochloromethane         | 7            | 7                       | 0                         | No                       |
| Dibromomethane               | 7            | 7                       | 0                         | No                       |
| Dimethylbenzene, Total       | 7            | 7                       | 0                         | No                       |
| Dissolved Oxygen             | 7            | 0                       | 7                         | Yes                      |
| Dissolved Solids             | 7            | 0                       | 7                         | Yes                      |
| Ethylbenzene                 | 7            | 7                       | 0                         | No                       |
| Iodide                       | 7            | 7                       | 0                         | No                       |
| Iodomethane                  | 7            | 7                       | 0                         | No                       |
| Iron                         | 7            | 1                       | 6                         | Yes                      |
| Magnesium                    | 7            | 0                       | 7                         | Yes                      |
| Manganese                    | 7            | 0                       | 7                         | Yes                      |
| Methylene chloride           | 7            | 5                       | 2                         | Yes                      |
| Molybdenum                   | 7            | 7                       | 0                         | No                       |

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

| Parameters                    | Observations | Censored<br>Observation | Uncensored<br>Observation | Statistical<br>Analysis? |
|-------------------------------|--------------|-------------------------|---------------------------|--------------------------|
| Nickel                        | 7            | 0                       | 7                         | Yes                      |
| Oxidation-Reduction Potential | 7            | 0                       | 7                         | Yes                      |
| PCB, Total                    | 7            | 7                       | 0                         | No                       |
| PCB-1016                      | 7            | 7                       | 0                         | No                       |
| PCB-1221                      | 7            | 7                       | 0                         | No                       |
| PCB-1232                      | 7            | 7                       | 0                         | No                       |
| PCB-1242                      | 7            | 7                       | 0                         | No                       |
| PCB-1248                      | 7            | 7                       | 0                         | No                       |
| PCB-1254                      | 7            | 7                       | 0                         | No                       |
| PCB-1260                      | 7            | 7                       | 0                         | No                       |
| PCB-1268                      | 7            | 7                       | 0                         | No                       |
| pH                            | 7            | 0                       | 7                         | Yes                      |
| Potassium                     | 7            | 0                       | 7                         | Yes                      |
| Radium-226                    | 7            | 7                       | 0                         | No                       |
| Rhodium                       | 7            | 7                       | 0                         | No                       |
| Sodium                        | 7            | 0                       | 7                         | Yes                      |
| Styrene                       | 7            | 7                       | 0                         | No                       |
| Sulfate                       | 7            | 0                       | 7                         | Yes                      |
| Tantalum                      | 7            | 7                       | 0                         | No                       |
| Technetium-99                 | 7            | 7                       | 0                         | No                       |
| Tetrachloroethene             | 7            | 7                       | 0                         | No                       |
| Thallium                      | 7            | 7                       | 0                         | No                       |
| Thorium-230                   | 7            | 7                       | 0                         | No                       |
| Toluene                       | 7            | 7                       | 0                         | No                       |
| Total Organic Carbon (TOC)    | 7            | 0                       | 7                         | Yes                      |
| Total Organic Halides (TOX)   | 7            | 1                       | 6                         | Yes                      |
| trans-1,2-Dichloroethene      | 7            | 7                       | 0                         | No                       |
| trans-1,3-Dichloropropene     | 7            | 7                       | 0                         | No                       |
| trans-1,4-Dichloro-2-Butene   | 7            | 7                       | 0                         | No                       |
| Trichlorofluoromethane        | 7            | 7                       | 0                         | No                       |
| Vanadium                      | 7            | 2                       | 5                         | Yes                      |
| Vinyl Acetate                 | 7            | 7                       | 0                         | No                       |
| Zinc                          | 7            | 3                       | 4                         | Yes                      |

**Bold** denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

| Parameters                         | Parameters Observations |   | Uncensored<br>Observation | Statistical Analysis? |
|------------------------------------|-------------------------|---|---------------------------|-----------------------|
| 1,1,1,2-Tetrachloroethane          | 6                       | 6 | 0                         | No                    |
| 1,1,2,2-Tetrachloroethane          | 6                       | 6 | 0                         | No                    |
| 1,1,2-Trichloroethane              | 6                       | 6 | 0                         | No                    |
| 1,1-Dichloroethane                 | 6                       | 6 | 0                         | No                    |
| 1,2,3-Trichloropropane             | 6                       | 6 | 0                         | No                    |
| 1,2-Dibromo-3-chloropropane        | 6                       | 6 | 0                         | No                    |
| 1,2-Dibromoethane                  | 6                       | 6 | 0                         | No                    |
| 1,2-Dichlorobenzene                | 6                       | 6 | 0                         | No                    |
| 1,2-Dichloropropane                | 6                       | 6 | 0                         | No                    |
| 2-Butanone                         | 6                       | 6 | 0                         | No                    |
| 2-Hexanone                         | 6                       | 6 | 0                         | No                    |
| 4-Methyl-2-pentanone               | 6                       | 6 | 0                         | No                    |
| Acetone                            | 6                       | 6 | 0                         | No                    |
| Acrolein                           | 6                       | 6 | 0                         | No                    |
| Acrylonitrile                      | 6                       | 6 | 0                         | No                    |
| Aluminum                           | 6                       | 4 | 2                         | Yes                   |
| Antimony                           | 6                       | 6 | 0                         | No                    |
| Beryllium                          | 6                       | 6 | 0                         | No                    |
| Boron                              | 6                       | 0 | 6                         | Yes                   |
| Bromide                            | 6                       | 1 | 5                         | Yes                   |
| Bromochloromethane                 | 6                       | 6 | 0                         | No                    |
| Bromodichloromethane               | 6                       | 6 | 0                         | No                    |
| Bromoform                          | 6                       | 6 | 0                         | No                    |
| Bromomethane                       | 6                       | 6 | 0                         | No                    |
| Calcium                            | 6                       | 0 | 6                         | Yes                   |
| Carbon disulfide                   | 6                       | 6 | 0                         | No                    |
| Chemical Oxygen Demand (COD)       | 6                       | 1 | 5                         | Yes                   |
| Chloride                           | 6                       | 0 | 6                         | Yes                   |
| Chlorobenzene                      | 6                       | 6 | 0                         | No                    |
| Chloroethane                       | 6                       | 6 | 0                         | No                    |
| Chloroform                         | 6                       | 6 | 0                         | No                    |
| Chloromethane                      | 6                       | 6 | 0                         | No                    |
| cis-1,2-Dichloroethene             | 6                       | 6 | 0                         | No                    |
| cis-1,3-Dichloropropene            | 6                       | 6 | 0                         | No                    |
| Cobalt                             | 6                       | 3 | 3                         | Yes                   |
| Conductivity                       | 6                       | 0 | 6                         | Yes                   |
| Copper                             | 6                       | 0 | 6                         | Yes                   |
| Cyanide                            | 6                       | 6 | 0                         | No                    |
| Dibromochloromethane               | 6                       | 6 | 0                         | No                    |
| Dibromomethane                     | 6                       | 6 | 0                         | No                    |
| Dimethylbenzene, Total             | 6                       | 6 | 0                         | No                    |
| Dissolved Oxygen                   | 6                       | 0 | 6                         | Yes                   |
| Dissolved Oxygen  Dissolved Solids | 6                       | 0 | 6                         | Yes                   |
| Ethylbenzene                       | 6                       | 6 | 0                         | No                    |
| Iodide                             | 6                       | 6 | 0                         | No                    |
| Iodomethane                        | 6                       | 6 | 0                         | No                    |
| Iron                               | 6                       | 3 | 3                         | Yes                   |
| Magnesium                          | 6                       | 0 | 6                         | Yes                   |
| Manganese                          | 6                       | 2 | 4                         | Yes                   |
| Methylene chloride                 | 6                       | 3 | 3                         | Yes                   |
| Methylene chloride                 | ()                      |   |                           |                       |

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

| Parameters                    | Observations | Censored    | Uncensored  | Statistical |
|-------------------------------|--------------|-------------|-------------|-------------|
|                               |              | Observation | Observation | Analysis?   |
| Nickel                        | 6            | 1           | 5           | Yes         |
| Oxidation-Reduction Potential | 6            | 0           | 6           | Yes         |
| PCB, Total                    | 6            | 6           | 0           | No          |
| PCB-1016                      | 6            | 6           | 0           | No          |
| PCB-1221                      | 6            | 6           | 0           | No          |
| PCB-1232                      | 6            | 6           | 0           | No          |
| PCB-1242                      | 6            | 6           | 0           | No          |
| PCB-1248                      | 6            | 6           | 0           | No          |
| PCB-1254                      | 6            | 6           | 0           | No          |
| PCB-1260                      | 6            | 6           | 0           | No          |
| PCB-1268                      | 6            | 6           | 0           | No          |
| рН                            | 6            | 0           | 6           | Yes         |
| Potassium                     | 6            | 0           | 6           | Yes         |
| Radium-226                    | 6            | 6           | 0           | No          |
| Rhodium                       | 6            | 6           | 0           | No          |
| Sodium                        | 6            | 0           | 6           | Yes         |
| Styrene                       | 6            | 6           | 0           | No          |
| Sulfate                       | 6            | 0           | 6           | Yes         |
| Tantalum                      | 6            | 6           | 0           | No          |
| Technetium-99                 | 6            | 2           | 4           | Yes         |
| Tetrachloroethene             | 6            | 6           | 0           | No          |
| Thallium                      | 6            | 6           | 0           | No          |
| Thorium-230                   | 6            | 6           | 0           | No          |
| Toluene                       | 6            | 6           | 0           | No          |
| Total Organic Carbon (TOC)    | 6            | 0           | 6           | Yes         |
| Total Organic Halides (TOX)   | 6            | 0           | 6           | Yes         |
| trans-1,2-Dichloroethene      | 6            | 6           | 0           | No          |
| trans-1,3-Dichloropropene     | 6            | 6           | 0           | No          |
| trans-1,4-Dichloro-2-Butene   | 6            | 6           | 0           | No          |
| Trichlorofluoromethane        | 6            | 6           | 0           | No          |
| Vanadium                      | 6            | 4           | 2           | Yes         |
| Vinyl Acetate                 | 6            | 6           | 0           | No          |
| Zinc                          | 6            | 4           | 2           | Yes         |

**Bold** denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

| Parameters                   | Observations | Censored<br>Observation | Uncensored<br>Observation | Statistical<br>Analysis? |
|------------------------------|--------------|-------------------------|---------------------------|--------------------------|
| 1,1,1,2-Tetrachloroethane    | 6            | 6                       | 0                         | No                       |
| 1,1,2,2-Tetrachloroethane    | 6            | 6                       | 0                         | No                       |
| 1,1,2-Trichloroethane        | 6            | 6                       | 0                         | No                       |
| 1,1-Dichloroethane           | 6            | 6                       | 0                         | No                       |
| 1,2,3-Trichloropropane       | 6            | 6                       | 0                         | No                       |
| 1,2-Dibromo-3-chloropropane  | 6            | 6                       | 0                         | No                       |
| 1,2-Dibromoethane            | 6            | 6                       | 0                         | No                       |
| 1,2-Dichlorobenzene          | 6            | 6                       | 0                         | No                       |
| 1,2-Dichloropropane          | 6            | 6                       | 0                         | No                       |
| 2-Butanone                   | 6            | 6                       | 0                         | No                       |
| 2-Hexanone                   | 6            | 6                       | 0                         | No                       |
| 4-Methyl-2-pentanone         | 6            | 6                       | 0                         | No                       |
| •                            | 6            | 6                       | 0                         | No                       |
| Acetone                      |              |                         |                           |                          |
| Acrolein                     | 6            | 6                       | 0                         | No                       |
| Acrylonitrile                | 6            | 6                       | 0                         | No                       |
| Aluminum                     | 6            | 5                       | 1                         | Yes                      |
| Antimony                     | 6            | 6                       | 0                         | No                       |
| Beryllium                    | 6            | 6                       | 0                         | No                       |
| Boron                        | 6            | 0                       | 6                         | Yes                      |
| Bromide                      | 6            | 0                       | 6                         | Yes                      |
| Bromochloromethane           | 6            | 6                       | 0                         | No                       |
| Bromodichloromethane         | 6            | 6                       | 0                         | No                       |
| Bromoform                    | 6            | 6                       | 0                         | No                       |
| Bromomethane                 | 6            | 6                       | 0                         | No                       |
| Calcium                      | 6            | 0                       | 6                         | Yes                      |
| Carbon disulfide             | 6            | 6                       | 0                         | No                       |
| Chemical Oxygen Demand (COD) | 6            | 0                       | 6                         | Yes                      |
| Chloride                     | 6            | 0                       | 6                         | Yes                      |
| Chlorobenzene                | 6            | 6                       | 0                         | No                       |
| Chloroethane                 | 6            | 6                       | 0                         | No                       |
| Chloroform                   | 6            | 6                       | 0                         | No                       |
| Chloromethane                | 6            | 6                       | 0                         | No                       |
| cis-1,2-Dichloroethene       | 6            | 6                       | 0                         | No                       |
| cis-1,3-Dichloropropene      | 6            | 6                       | 0                         | No                       |
| Cobalt                       | 6            | 4                       | 2                         | Yes                      |
| Conductivity                 | 6            | 0                       | 6                         | Yes                      |
| Copper                       | 6            | 0                       | 6                         | Yes                      |
| Cyanide                      | 6            | 5                       | 1                         | Yes                      |
| Dibromochloromethane         | 6            | 6                       | 0                         | No                       |
| Dibromomethane               | 6            | 6                       | 0                         | No                       |
| Dimethylbenzene, Total       | 6            | 6                       | 0                         | No                       |
| Dissolved Oxygen             | 6            | 0                       | 6                         | Yes                      |
| Dissolved Solids             | 6            | 0                       | 6                         | Yes                      |
| Ethylbenzene                 | 6            | 6                       | 0                         | No                       |
| Iodide                       | 6            | 6                       | 0                         | No                       |
| Iodomethane                  | 6            | 6                       | 0                         | No                       |
| Iron                         | 6            | 3                       | 3                         | Yes                      |
| Magnesium                    | 6            | 0                       | 6                         | Yes                      |
| Manganese                    | 6            | 0                       | 6                         | Yes                      |
| Methylene chloride           | 6            | 3                       | 3                         | Yes                      |
| Molybdenum                   | 6            | 6                       | 0                         | No                       |

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA (Continued)

| Parameters                    | Observations | Censored    | Uncensored  | Statistical |
|-------------------------------|--------------|-------------|-------------|-------------|
|                               |              | Observation | Observation | Analysis?   |
| Nickel                        | 6            | 1           | 5           | Yes         |
| Oxidation-Reduction Potential | 6            | 0           | 6           | Yes         |
| PCB, Total                    | 6            | 6           | 0           | No          |
| PCB-1016                      | 6            | 6           | 0           | No          |
| PCB-1221                      | 6            | 6           | 0           | No          |
| PCB-1232                      | 6            | 6           | 0           | No          |
| PCB-1242                      | 6            | 6           | 0           | No          |
| PCB-1248                      | 6            | 6           | 0           | No          |
| PCB-1254                      | 6            | 6           | 0           | No          |
| PCB-1260                      | 6            | 6           | 0           | No          |
| PCB-1268                      | 6            | 6           | 0           | No          |
| pH                            | 6            | 0           | 6           | Yes         |
| Potassium                     | 6            | 0           | 6           | Yes         |
| Radium-226                    | 6            | 6           | 0           | No          |
| Rhodium                       | 6            | 6           | 0           | No          |
| Sodium                        | 6            | 0           | 6           | Yes         |
| Styrene                       | 6            | 6           | 0           | No          |
| Sulfate                       | 6            | 0           | 6           | Yes         |
| Tantalum                      | 6            | 6           | 0           | No          |
| Technetium-99                 | 6            | 3           | 3           | Yes         |
| Tetrachloroethene             | 6            | 6           | 0           | No          |
| Thallium                      | 6            | 6           | 0           | No          |
| Thorium-230                   | 6            | 6           | 0           | No          |
| Toluene                       | 6            | 6           | 0           | No          |
| Total Organic Carbon (TOC)    | 6            | 0           | 6           | Yes         |
| Total Organic Halides (TOX)   | 6            | 0           | 6           | Yes         |
| trans-1,2-Dichloroethene      | 6            | 6           | 0           | No          |
| trans-1,3-Dichloropropene     | 6            | 6           | 0           | No          |
| trans-1,4-Dichloro-2-Butene   | 6            | 6           | 0           | No          |
| Trichloroethene               | 6            | 0           | 6           | Yes         |
| Trichlorofluoromethane        | 6            | 6           | 0           | No          |
| Vanadium                      | 6            | 4           | 2           | Yes         |
| Vinyl Acetate                 | 6            | 6           | 0           | No          |
| Zinc                          | 6            | 2           | 4           | Yes         |

**Bold** denotes parameters with at least one uncensored observation.

### **Discussion of Results from Historical Background Comparison**

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 26, 26, and 28 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

### **UCRS**

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

### **URGA**

This quarter's results identified historical background exceedances for calcium, conductivity, dissolved oxygen, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

#### **LRGA**

This quarter's results identified historical background exceedances for dissolved oxygen, manganese, nickel, oxidation-reduction potential, and technetium-99.

### **Statistical Summary**

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

**Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations** 

| UCRS                                                                         | URGA                                                                                                       | LRGA                                                                               |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| MW359: Dissolved Oxygen,<br>Oxidation-Reduction Potential,<br>Sulfate        | MW357: Dissolved Oxygen,<br>Oxidation-Reduction Potential                                                  | MW358: Manganese, Nickel, Oxidation-Reduction Potential                            |
| <b>MW362:</b> Dissolved Oxygen,<br>Oxidation-Reduction Potential,<br>Sulfate | <b>MW360:</b> Oxidation-Reduction Potential                                                                | <b>MW361:</b> Dissolved Oxygen,<br>Oxidation-Reduction Potential,<br>Technetium-99 |
| <b>MW365:</b> Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate       | MW363: Oxidation-Reduction Potential                                                                       | <b>MW364:</b> Oxidation-Reduction Potential, Technetium-99                         |
| <b>MW368:</b> Dissolved Oxygen,<br>Oxidation-Reduction Potential,<br>Sulfate | <b>MW366:</b> Oxidation-Reduction Potential, Technetium-99                                                 | MW367: Oxidation-Reduction Potential                                               |
| <b>MW371:</b> Dissolved Oxygen, Oxidation-Reduction Potential                | <b>MW369:</b> Oxidation-Reduction Potential                                                                | <b>MW370:</b> Dissolved Oxygen, Oxidation-Reduction Potential                      |
| MW374: Oxidation-Reduction Potential                                         | MW372: Calcium, Conductivity,<br>Dissolved Solids, Magnesium,<br>Oxidation-Reduction Potential,<br>Sulfate | MW373: Oxidation-Reduction Potential                                               |
| <b>MW375:</b> Oxidation-Reduction Potential, Sulfate                         |                                                                                                            |                                                                                    |

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

| Parameter                       | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                                            |
|---------------------------------|--------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Aluminum                        | Tolerance Interval | 2.08                     | No exceedance of statistically derived historical background concentration.                                                |
| Beryllium                       | Tolerance Interval | 1.12                     | No exceedance of statistically derived historical background concentration.                                                |
| Boron                           | Tolerance Interval | 1.24                     | No exceedance of statistically derived historical background concentration.                                                |
| Bromide                         | Tolerance Interval | 0.34                     | No exceedance of statistically derived historical background concentration.                                                |
| Calcium                         | Tolerance Interval | 0.40                     | No exceedance of statistically derived historical background concentration.                                                |
| Chemical Oxygen<br>Demand (COD) | Tolerance Interval | 0.97                     | No exceedance of statistically derived historical background concentration.                                                |
| Chloride                        | Tolerance Interval | 0.95                     | No exceedance of statistically derived historical background concentration.                                                |
| Cobalt                          | Tolerance Interval | 1.31                     | No exceedance of statistically derived historical background concentration.                                                |
| Conductivity                    | Tolerance Interval | 0.45                     | No exceedance of statistically derived historical background concentration.                                                |
| Copper                          | Tolerance Interval | 1.27                     | No exceedance of statistically derived historical background concentration.                                                |
| Dissolved Oxygen                | Tolerance Interval | 0.55                     | Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, and MW371. |
| Dissolved Solids                | Tolerance Interval | 0.42                     | No exceedance of statistically derived historical background concentration.                                                |
| Iron                            | Tolerance Interval | 0.98                     | No exceedance of statistically derived historical background concentration.                                                |
| Magnesium                       | Tolerance Interval | 0.27                     | No exceedance of statistically derived historical background concentration.                                                |
| Manganese                       | Tolerance Interval | 0.89                     | No exceedance of statistically derived historical background concentration.                                                |
| Methylene Chloride              | Tolerance Interval | 0.29                     | No exceedance of statistically derived historical background concentration.                                                |

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

| Parameter                        | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                                                          |
|----------------------------------|--------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Nickel                           | Tolerance Interval | 0.98                     | No exceedance of statistically derived historical background concentration.                                                              |
| Oxidation-Reduction<br>Potential | Tolerance Interval | 3.54                     | Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375. |
| рН                               | Tolerance Interval | 0.04                     | No exceedance of statistically derived historical background concentration.                                                              |
| Potassium                        | Tolerance Interval | 0.72                     | No exceedance of statistically derived historical background concentration.                                                              |
| Sodium                           | Tolerance Interval | 0.40                     | No exceedance of statistically derived historical background concentration.                                                              |
| Sulfate                          | Tolerance Interval | 0.49                     | Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, and MW375.               |
| Total Organic Carbon (TOC)       | Tolerance Interval | 1.38                     | No exceedance of statistically derived historical background concentration.                                                              |
| Total Organic Halides<br>(TOX)   | Tolerance Interval | 1.08                     | No exceedance of statistically derived historical background concentration.                                                              |
| Vanadium                         | Tolerance Interval | 1.32                     | No exceedance of statistically derived historical background concentration.                                                              |
| Zinc                             | Tolerance Interval | 1.38                     | No exceedance of statistically derived historical background concentration.                                                              |

<sup>\*</sup>If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

| Parameter                       | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                            |
|---------------------------------|--------------------|--------------------------|--------------------------------------------------------------------------------------------|
| Aluminum                        | Tolerance Interval | 1.24                     | No exceedance of statistically derived historical background concentration.                |
| Boron                           | Tolerance Interval | 0.84                     | No exceedance of statistically derived historical background concentration.                |
| Bromide                         | Tolerance Interval | 0.00                     | No exceedance of statistically derived historical background concentration.                |
| Calcium                         | Tolerance Interval | 0.29                     | Current results exceed statistically derived historical background concentration in MW372. |
| Chemical Oxygen<br>Demand (COD) | Tolerance Interval | 0.10                     | No exceedance of statistically derived historical background concentration.                |
| Chloride                        | Tolerance Interval | 0.10                     | No exceedance of statistically derived historical background concentration.                |
| Cobalt                          | Tolerance Interval | 0.84                     | No exceedance of statistically derived historical background concentration.                |
| Conductivity                    | Tolerance Interval | 0.12                     | Current results exceed statistically derived historical background concentration in MW372. |
| Copper                          | Tolerance Interval | 0.40                     | No exceedance of statistically derived historical background concentration.                |
| Dissolved Oxygen                | Tolerance Interval | 0.76                     | Current results exceed statistically derived historical background concentration in MW357. |
| Dissolved Solids                | Tolerance Interval | 0.16                     | Current results exceed statistically derived historical background concentration in MW372. |
| Iron                            | Tolerance Interval | 0.95                     | No exceedance of statistically derived historical background concentration.                |
| Magnesium                       | Tolerance Interval | 0.27                     | Current results exceed statistically derived historical background concentration in MW372. |
| Manganese                       | Tolerance Interval | 0.66                     | No exceedance of statistically derived historical background concentration.                |
| Methylene Chloride              | Tolerance Interval | 0.36                     | No exceedance of statistically derived historical background concentration.                |
| Nickel                          | Tolerance Interval | 0.91                     | No exceedance of statistically derived historical background concentration.                |

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

| Parameter                        | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                                                   |
|----------------------------------|--------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Oxidation-Reduction<br>Potential | Tolerance Interval | 1.26                     | Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372. |
| рН                               | Tolerance Interval | 0.03                     | No exceedance of statistically derived historical background concentration.                                                       |
| Potassium                        | Tolerance Interval | 0.29                     | No exceedance of statistically derived historical background concentration.                                                       |
| Sodium                           | Tolerance Interval | 0.26                     | No exceedance of statistically derived historical background concentration.                                                       |
| Sulfate                          | Tolerance Interval | 0.75                     | Current results exceed statistically derived historical background concentration in MW372.                                        |
| Technetium-99                    | Tolerance Interval | 0.87                     | Current results exceed statistically derived historical background concentration in MW366.                                        |
| Total Organic<br>Carbon (TOC)    | Tolerance Interval | 1.23                     | No exceedance of statistically derived historical background concentration.                                                       |
| Total Organic<br>Halides (TOX)   | Tolerance Interval | 0.95                     | No exceedance of statistically derived historical background concentration.                                                       |
| Vanadium                         | Tolerance Interval | 0.26                     | No exceedance of statistically derived historical background concentration.                                                       |
| Zinc                             | Tolerance Interval | 1.49                     | No exceedance of statistically derived historical background concentration.                                                       |

CV: coefficient of variation \*If CV > 1.0, used log-transformed data.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

| Parameter                       | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                      |
|---------------------------------|--------------------|--------------------------|------------------------------------------------------------------------------------------------------|
| Aluminum                        | Tolerance Interval | 2.78                     | No exceedance of statistically derived historical background concentration.                          |
| Boron                           | Tolerance Interval | 0.68                     | No exceedance of statistically derived historical background concentration.                          |
| Bromide                         | Tolerance Interval | 0.00                     | No exceedance of statistically derived historical background concentration.                          |
| Calcium                         | Tolerance Interval | 0.31                     | No exceedance of statistically derived historical background concentration.                          |
| Chemical Oxygen<br>Demand (COD) | Tolerance Interval | 0.59                     | No exceedance of statistically derived historical background concentration.                          |
| Chloride                        | Tolerance Interval | 0.16                     | No exceedance of statistically derived historical background concentration.                          |
| Cobalt                          | Tolerance Interval | 1.16                     | No exceedance of statistically derived historical background concentration.                          |
| Conductivity                    | Tolerance Interval | 0.26                     | No exceedance of statistically derived historical background concentration.                          |
| Copper                          | Tolerance Interval | 0.40                     | No exceedance of statistically derived historical background concentration.                          |
| Cyanide                         | Tolerance Interval | 0.00                     | No exceedance of statistically derived historical background concentration.                          |
| Dissolved Oxygen                | Tolerance Interval | 0.83                     | Current results exceed statistically derived historical background concentration in MW361 and MW370. |
| Dissolved Solids                | Tolerance Interval | 0.30                     | No exceedance of statistically derived historical background concentration.                          |
| Iron                            | Tolerance Interval | 0.96                     | No exceedance of statistically derived historical background concentration.                          |
| Magnesium                       | Tolerance Interval | 0.34                     | No exceedance of statistically derived historical background concentration.                          |
| Manganese                       | Tolerance Interval | 0.62                     | Current results exceed statistically derived historical background concentration in MW358.           |
| Methylene Chloride              | Tolerance Interval | 0.40                     | No exceedance of statistically derived historical background concentration.                          |
| Nickel                          | Tolerance Interval | 0.90                     | Current results exceed statistically derived historical background concentration in MW358.           |

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

| Parameter                        | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                                                   |
|----------------------------------|--------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Oxidation-Reduction<br>Potential | Tolerance Interval | 1.31                     | Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373. |
| рН                               | Tolerance Interval | 0.03                     | No exceedance of statistically derived historical background concentration.                                                       |
| Potassium                        | Tolerance Interval | 0.18                     | No exceedance of statistically derived historical background concentration.                                                       |
| Sodium                           | Tolerance Interval | 0.30                     | No exceedance of statistically derived historical background concentration.                                                       |
| Sulfate                          | Tolerance Interval | 1.59                     | No exceedance of statistically derived historical background concentration.                                                       |
| Technetium-99                    | Tolerance Interval | 1.73                     | Current results exceed statistically derived historical background concentration MW361 and MW364.                                 |
| Total Organic Carbon (TOC)       | Tolerance Interval | 1.96                     | No exceedance of statistically derived historical background concentration.                                                       |
| Total Organic Halides (TOX)      | Tolerance Interval | 0.98                     | No exceedance of statistically derived historical background concentration.                                                       |
| Trichloroethene <sup>1</sup>     | Tolerance Interval | 0.57                     | No exceedance of statistically derived historical background concentration.                                                       |
| Vanadium                         | Tolerance Interval | 0.32                     | No exceedance of statistically derived historical background concentration.                                                       |
| Zinc                             | Tolerance Interval | 0.67                     | No exceedance of statistically derived historical background concentration.                                                       |

CV: coefficient of variation \*If CV > 1.0, used log-transformed data.

<sup>&</sup>lt;sup>1</sup> A tolerance interval was calculated based on an MCL exceedance.

### **Discussion of Results from Current Background Comparison**

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 8, and 5 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

#### **UCRS**

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that dissolved oxygen in MW365 and sulfate in MW368 exceeded their respective current TLs this quarter.

### **URGA**

This quarter's results showed a statistically significant exceedance of current background TL for dissolved oxygen in downgradient URGA well MW357.

### **LRGA**

This quarter's results showed statistically significant exceedances of current background TL for manganese and nickel in downgradient URGA well MW358.

### **Statistical Summary**

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.10, Exhibit D.11, and Exhibit D.12, respectively.

Exhibit D.10. Test Summaries for Qualified Parameters for Current Background—UCRS

| Parameter                        | Performed Test     | CV<br>Normality<br>Test | Results of Tolerance Interval<br>Test Conducted                                                                                                                                                                                                           |
|----------------------------------|--------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Oxygen                 | Tolerance Interval | 0.77                    | Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW365 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data. |
| Oxidation-Reduction<br>Potential | Tolerance Interval | 0.24                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.                                                         |
| Sulfate                          | Tolerance Interval | 0.93                    | Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data. |

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—URGA

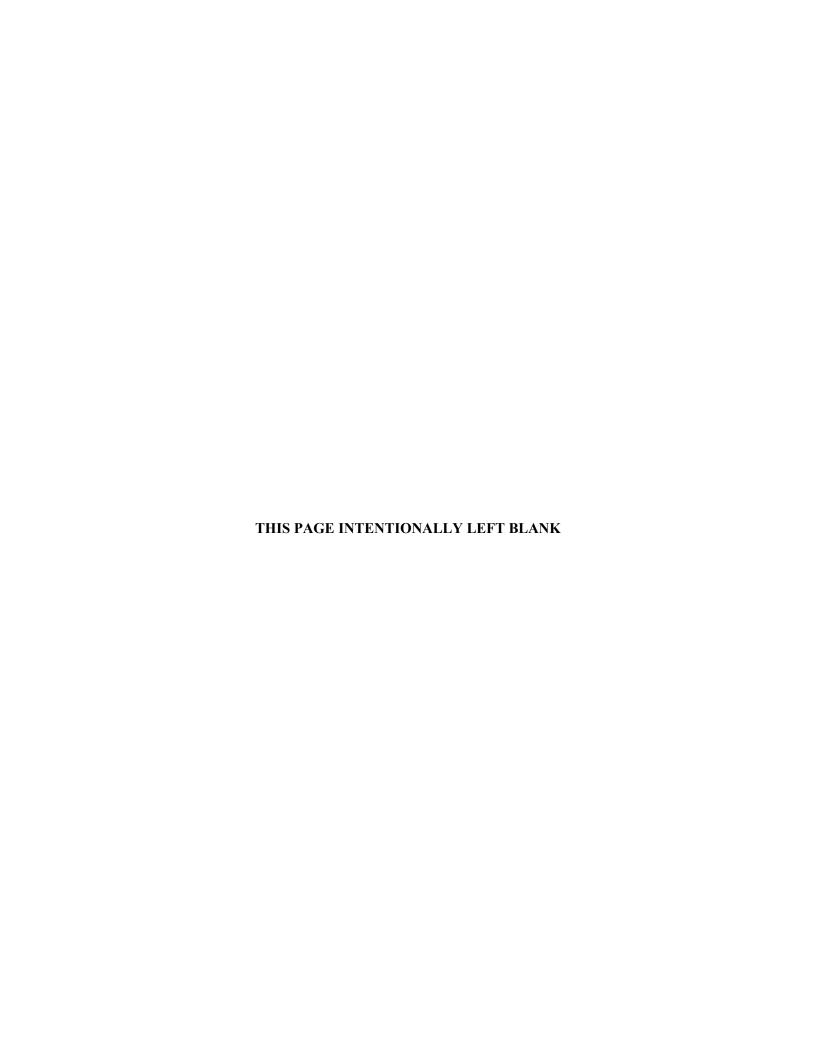

| Parameter                        | Performed Test     | CV<br>Normality<br>Test | Results of Tolerance Interval<br>Test Conducted                                                                                                                                                   |
|----------------------------------|--------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calcium                          | Tolerance Interval | 0.60                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |
| Conductivity                     | Tolerance Interval | 0.35                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |
| Dissolved Oxygen                 | Tolerance Interval | 0.40                    | MW357 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.                                                                    |
| Dissolved Solids                 | Tolerance Interval | 0.40                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |
| Magnesium                        | Tolerance Interval | 0.55                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |
| Oxidation-Reduction<br>Potential | Tolerance Interval | 0.08                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |
| Sulfate                          | Tolerance Interval | 0.95                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |
| Technetium-99                    | Tolerance Interval | 0.46                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—LRGA

| Parameter                         | Performed Test     | CV<br>Normality<br>Test | Results of Tolerance Interval<br>Test Conducted                                                                                                                                                   |
|-----------------------------------|--------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Oxygen                  | Tolerance Interval | 0.43                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |
| Manganese                         | Tolerance Interval | 1.00                    | MW358 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.                                                                    |
| Nickel                            | Tolerance Interval | 0.58                    | MW358 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.                                                                    |
| Oxidation-<br>Reduction Potential | Tolerance Interval | 0.08                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |
| Technetium-99                     | Tolerance Interval | 0.70                    | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |

### **ATTACHMENT D1**

# COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA



#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 3.300

**S**= 6.859

CV(1)=2.078

**K factor\*\*=** 2.523

TL(1)=20.604

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -0.371 S = 1.678

CV(2) = -4.521

**K factor\*\*=** 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                 | MW371                         |                                           |
|------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|
| Date Collected                                                               | Result                        | LN(Result)                                |
| 3/18/2002                                                                    | 2.24                          | 0.806                                     |
| 4/22/2002                                                                    | 0.2                           | -1.609                                    |
| 7/15/2002                                                                    | 0.2                           | -1.609                                    |
| 10/8/2002                                                                    | 0.2                           | -1.609                                    |
| 1/8/2003                                                                     | 0.2                           | -1.609                                    |
| 4/3/2003                                                                     | 0.2                           | -1.609                                    |
| 7/9/2003                                                                     | 0.2                           | -1.609                                    |
| 10/6/2003                                                                    | 0.2                           | -1.609                                    |
|                                                                              |                               |                                           |
| Well Number:                                                                 | MW374                         |                                           |
| Well Number:  Date Collected                                                 | MW374<br>Result               | LN(Result)                                |
|                                                                              |                               | LN(Result)<br>3.059                       |
| Date Collected                                                               | Result                        |                                           |
| Date Collected 10/8/2002                                                     | Result<br>21.3                | 3.059                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 21.3 20                | 3.059<br>2.996                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 21.3 20 4.11           | 3.059<br>2.996<br>1.413                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 21.3 20 4.11 1.41      | 3.059<br>2.996<br>1.413<br>0.344          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 21.3 20 4.11 1.41 1.09 | 3.059<br>2.996<br>1.413<br>0.344<br>0.086 |

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Because CV(1) is greater than 1, the

| Current Quarter Data |
|----------------------|
|----------------------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW359    | Downgradient | Yes       | 0.0284 | N/A            | -3.561     | NO                |
| MW362    | Downgradient | Yes       | 24.3   | N/A            | 3.190      | NO                |
| MW365    | Downgradient | Yes       | 0.02   | N/A            | -3.912     | NO                |
| MW368    | Downgradient | Yes       | 0.94   | N/A            | -0.062     | NO                |
| MW371    | Upgradient   | Yes       | 0.037  | N/A            | -3.297     | NO                |
| MW374    | Upgradient   | Yes       | 0.0209 | N/A            | -3.868     | NO                |
| MW375    | Sidegradient | Yes       | 0.0481 | N/A            | -3.034     | NO                |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-3

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Beryllium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 0.002

S = 0.003

CV(1)=1.125

**K factor\*\*=** 2.523

TL(1) = 0.009

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -6.462 S = 0.812

CV(2) = -0.126

**K factor\*\*=** 2.523

TL(2) = -4.413

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                 | MW371                                              |                                      |
|------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|
| Date Collected                                                               | Result                                             | LN(Result)                           |
| 3/18/2002                                                                    | 0.005                                              | -5.298                               |
| 4/22/2002                                                                    | 0.005                                              | -5.298                               |
| 7/15/2002                                                                    | 0.005                                              | -5.298                               |
| 10/8/2002                                                                    | 0.001                                              | -6.908                               |
| 1/8/2003                                                                     | 0.001                                              | -6.908                               |
| 4/3/2003                                                                     | 0.001                                              | -6.908                               |
| 7/9/2003                                                                     | 0.001                                              | -6.908                               |
| 10/6/2003                                                                    | 0.001                                              | -6.908                               |
|                                                                              |                                                    |                                      |
| Well Number:                                                                 | MW374                                              |                                      |
| Well Number: Date Collected                                                  | MW374<br>Result                                    | LN(Result)                           |
|                                                                              |                                                    | LN(Result)<br>-4.605                 |
| Date Collected                                                               | Result                                             | ` ,                                  |
| Date Collected 10/8/2002                                                     | Result 0.01                                        | -4.605                               |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 0.01 0.001                                  | -4.605<br>-6.908                     |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 0.01 0.001 0.001                            | -4.605<br>-6.908<br>-6.908           |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result<br>0.01<br>0.001<br>0.001<br>0.001          | -4.605<br>-6.908<br>-6.908           |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result<br>0.01<br>0.001<br>0.001<br>0.001<br>0.001 | -4.605<br>-6.908<br>-6.908<br>-6.908 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

|  | Current | <b>Ouarter</b> | Data |
|--|---------|----------------|------|
|--|---------|----------------|------|

| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| MW359    | Downgradient | No        | 0.0005  | N/A            | -7.601     | N/A               |
| MW362    | Downgradient | Yes       | 0.00091 | 1 N/A          | -7.001     | NO                |
| MW365    | Downgradient | No        | 0.0005  | N/A            | -7.601     | N/A               |
| MW368    | Downgradient | No        | 0.0005  | N/A            | -7.601     | N/A               |
| MW371    | Upgradient   | No        | 0.0005  | N/A            | -7.601     | N/A               |
| MW374    | Upgradient   | No        | 0.0005  | N/A            | -7.601     | N/A               |
| MW375    | Sidegradient | No        | 0.0005  | N/A            | -7.601     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-4

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 0.650

S = 0.805

CV(1)=1.238

**K factor\*\*=** 2.523

TL(1)= 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

1.030 **CV(2)=**-0.996

**K** factor\*\*= 2.523

**TL(2)=** 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                        |                                     |
|------------------------------------------------------------------------------|------------------------------|-------------------------------------|
| Date Collected                                                               | Result                       | LN(Result)                          |
| 3/18/2002                                                                    | 2                            | 0.693                               |
| 4/22/2002                                                                    | 2                            | 0.693                               |
| 7/15/2002                                                                    | 2                            | 0.693                               |
| 10/8/2002                                                                    | 0.2                          | -1.609                              |
| 1/8/2003                                                                     | 0.2                          | -1.609                              |
| 4/3/2003                                                                     | 0.2                          | -1.609                              |
| 7/9/2003                                                                     | 0.2                          | -1.609                              |
| 10/6/2003                                                                    | 0.2                          | -1.609                              |
|                                                                              |                              |                                     |
| Well Number:                                                                 | MW374                        |                                     |
| Well Number:  Date Collected                                                 | MW374<br>Result              | LN(Result)                          |
|                                                                              |                              | LN(Result)<br>0.693                 |
| Date Collected                                                               | Result                       | ` ′                                 |
| Date Collected 10/8/2002                                                     | Result 2                     | 0.693                               |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 2 0.2                 | 0.693<br>-1.609                     |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 2 0.2 0.2             | 0.693<br>-1.609<br>-1.609           |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 2 0.2 0.2 0.2         | 0.693<br>-1.609<br>-1.609<br>-1.609 |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 2 0.2 0.2 0.2 0.2 0.2 | 0.693<br>-1.609<br>-1.609<br>-1.609 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

|--|

| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| MW359    | Downgradient | No        | 0.015   | N/A            | -4.200     | N/A               |
| MW362    | Downgradient | Yes       | 0.02    | N/A            | -3.912     | NO                |
| MW365    | Downgradient | Yes       | 0.0117  | N/A            | -4.448     | NO                |
| MW368    | Downgradient | No        | 0.015   | N/A            | -4.200     | N/A               |
| MW371    | Upgradient   | Yes       | 0.00754 | N/A            | -4.888     | NO                |
| MW374    | Upgradient   | Yes       | 0.0245  | N/A            | -3.709     | NO                |
| MW375    | Sidegradient | Yes       | 0.00816 | 6 N/A          | -4.809     | NO                |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-5

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 1.394

CV(1)=0.340

**K factor\*\*=** 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279 S = 0.332

S = 0.474

32 **CV(2)=**1.190

**K** factor\*\*= 2.523

TL(2)=1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                    |                                           |
|------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Date Collected                                                               | Result                   | LN(Result)                                |
| 3/18/2002                                                                    | 1                        | 0.000                                     |
| 4/22/2002                                                                    | 1                        | 0.000                                     |
| 7/15/2002                                                                    | 1                        | 0.000                                     |
| 10/8/2002                                                                    | 1                        | 0.000                                     |
| 1/8/2003                                                                     | 1                        | 0.000                                     |
| 4/3/2003                                                                     | 1                        | 0.000                                     |
| 7/9/2003                                                                     | 1                        | 0.000                                     |
| 10/6/2003                                                                    | 1                        | 0.000                                     |
|                                                                              |                          |                                           |
| Well Number:                                                                 | MW374                    |                                           |
| Well Number:  Date Collected                                                 | MW374<br>Result          | LN(Result)                                |
|                                                                              |                          | LN(Result)<br>0.742                       |
| Date Collected                                                               | Result                   |                                           |
| Date Collected 10/8/2002                                                     | Result 2.1               | 0.742                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 2.1 2.1           | 0.742<br>0.742                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 2.1 2.1 1.9       | 0.742<br>0.742<br>0.642                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 2.1 2.1 1.9 1     | 0.742<br>0.742<br>0.642<br>0.000          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 2.1 2.1 1.9 1 1.9 | 0.742<br>0.742<br>0.642<br>0.000<br>0.642 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

No

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-1.609

N/A

|   | Current  | Quarter Data |           |        |                |            |                   |
|---|----------|--------------|-----------|--------|----------------|------------|-------------------|
|   | Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| , | MW359    | Downgradient | No        | 0.2    | N/A            | -1.609     | N/A               |
|   | MW362    | Downgradient | No        | 0.2    | N/A            | -1.609     | N/A               |
|   | MW365    | Downgradient | No        | 0.2    | N/A            | -1.609     | N/A               |
|   | MW368    | Downgradient | Yes       | 0.0673 | NO             | -2.699     | N/A               |
|   | MW371    | Upgradient   | Yes       | 0.101  | NO             | -2.293     | N/A               |
|   | MW374    | Upgradient   | Yes       | 0.558  | NO             | -0.583     | N/A               |
|   |          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

0.2

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-6

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X=34.100 S= 13.637 CV(1)=0.400

K factor\*\*= 2.523

TL(1)= 68.505 LL(1)=N/A

Statistics-Transformed Background Data

**X**= 3.466 **S**= 0.356

CV(2) = 0.103

**K factor\*\*=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                           |                                           |
|------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|
| Date Collected                                                               | Result                          | LN(Result)                                |
| 3/18/2002                                                                    | 17.2                            | 2.845                                     |
| 4/22/2002                                                                    | 22.4                            | 3.109                                     |
| 7/15/2002                                                                    | 25.5                            | 3.239                                     |
| 10/8/2002                                                                    | 26.4                            | 3.273                                     |
| 1/8/2003                                                                     | 27.2                            | 3.303                                     |
| 4/3/2003                                                                     | 30.3                            | 3.411                                     |
| 7/9/2003                                                                     | 25.9                            | 3.254                                     |
| 10/6/2003                                                                    | 27                              | 3.296                                     |
|                                                                              |                                 |                                           |
| Well Number:                                                                 | MW374                           |                                           |
| Well Number: Date Collected                                                  | MW374<br>Result                 | LN(Result)                                |
|                                                                              |                                 | LN(Result)<br>4.209                       |
| Date Collected                                                               | Result                          | ` ′                                       |
| Date Collected 10/8/2002                                                     | Result 67.3                     | 4.209                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 67.3 60.6                | 4.209<br>4.104                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 67.3 60.6 47.2           | 4.209<br>4.104<br>3.854                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 67.3 60.6 47.2 34.7      | 4.209<br>4.104<br>3.854<br>3.547          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 67.3 60.6 47.2 34.7 37.1 | 4.209<br>4.104<br>3.854<br>3.547<br>3.614 |

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359    | Downgradient | Yes       | 5.43   | NO             | 1.692      | N/A               |
| MW362    | Downgradient | Yes       | 22.3   | NO             | 3.105      | N/A               |
| MW365    | Downgradient | Yes       | 18.7   | NO             | 2.929      | N/A               |
| MW368    | Downgradient | Yes       | 49.3   | NO             | 3.898      | N/A               |
| MW371    | Upgradient   | Yes       | 52.3   | NO             | 3.957      | N/A               |
| MW374    | Upgradient   | Yes       | 25.7   | NO             | 3.246      | N/A               |
| MW375    | Sidegradient | Yes       | 13.7   | NO             | 2.617      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-7

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

**K factor\*\*=** 2.523

TL(1)= 251.437 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.000 S = 0.702

CV(2) = 0.175

**K factor\*\*=** 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                    |                                           |
|------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Date Collected                                                               | Result                   | LN(Result)                                |
| 3/18/2002                                                                    | 35                       | 3.555                                     |
| 4/22/2002                                                                    | 35                       | 3.555                                     |
| 7/15/2002                                                                    | 35                       | 3.555                                     |
| 10/8/2002                                                                    | 35                       | 3.555                                     |
| 1/8/2003                                                                     | 35                       | 3.555                                     |
| 4/3/2003                                                                     | 35                       | 3.555                                     |
| 7/9/2003                                                                     | 35                       | 3.555                                     |
| 10/6/2003                                                                    | 35                       | 3.555                                     |
|                                                                              |                          |                                           |
| Well Number:                                                                 | MW374                    |                                           |
| Well Number:  Date Collected                                                 | MW374<br>Result          | LN(Result)                                |
|                                                                              |                          | LN(Result)<br>5.561                       |
| Date Collected                                                               | Result                   |                                           |
| Date Collected 10/8/2002                                                     | Result<br>260            | 5.561                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 260 214           | 5.561<br>5.366                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 260 214 147       | 5.561<br>5.366<br>4.990                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 260 214 147 72    | 5.561<br>5.366<br>4.990<br>4.277          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 260 214 147 72 56 | 5.561<br>5.366<br>4.990<br>4.277<br>4.025 |

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359    | Downgradient | Yes       | 19.8   | NO             | 2.986      | N/A               |
| MW362    | Downgradient | Yes       | 9.07   | NO             | 2.205      | N/A               |
| MW365    | Downgradient | Yes       | 9.57   | NO             | 2.259      | N/A               |
| MW368    | Downgradient | Yes       | 20.3   | NO             | 3.011      | N/A               |
| MW371    | Upgradient   | Yes       | 13.1   | NO             | 2.573      | N/A               |
| MW374    | Upgradient   | Yes       | 23.9   | NO             | 3.174      | N/A               |
| MW375    | Sidegradient | Yes       | 9.57   | NO             | 2.259      | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-8

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

**K factor\*\*=** 2.523

TL(1)= 310.697 LL(1)=N/A

**Statistics-Transformed Background** Data

**S**= 1.590 X = 3.620

CV(2) = 0.439

**K factor\*\*=** 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                 | MW371                                               |                                           |
|------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|
| Date Collected                                                               | Result                                              | LN(Result)                                |
| 7/15/2002                                                                    | 8.3                                                 | 2.116                                     |
| 10/8/2002                                                                    | 7.6                                                 | 2.028                                     |
| 1/8/2003                                                                     | 7.7                                                 | 2.041                                     |
| 4/3/2003                                                                     | 8.8                                                 | 2.175                                     |
| 7/9/2003                                                                     | 8.1                                                 | 2.092                                     |
| 10/6/2003                                                                    | 8.6                                                 | 2.152                                     |
| 1/7/2004                                                                     | 7.6                                                 | 2.028                                     |
| 4/6/2004                                                                     | 7.6                                                 | 2.028                                     |
|                                                                              |                                                     |                                           |
| Well Number:                                                                 | MW374                                               |                                           |
| Well Number:  Date Collected                                                 | MW374<br>Result                                     | LN(Result)                                |
|                                                                              |                                                     | LN(Result)<br>5.294                       |
| Date Collected                                                               | Result                                              | , ,                                       |
| Date Collected 10/8/2002                                                     | Result<br>199.2                                     | 5.294                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result<br>199.2<br>199.7                            | 5.294<br>5.297                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result<br>199.2<br>199.7<br>171.8                   | 5.294<br>5.297<br>5.146                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result<br>199.2<br>199.7<br>171.8<br>178.7          | 5.294<br>5.297<br>5.146<br>5.186          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result<br>199.2<br>199.7<br>171.8<br>178.7<br>175.6 | 5.294<br>5.297<br>5.146<br>5.186<br>5.168 |

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359    | Downgradient | Yes       | 0.874  | NO             | -0.135     | N/A               |
| MW362    | Downgradient | Yes       | 2.77   | NO             | 1.019      | N/A               |
| MW365    | Downgradient | Yes       | 1.9    | NO             | 0.642      | N/A               |
| MW368    | Downgradient | Yes       | 2.19   | NO             | 0.784      | N/A               |
| MW371    | Upgradient   | Yes       | 4.77   | NO             | 1.562      | N/A               |
| MW374    | Upgradient   | Yes       | 51     | NO             | 3.932      | N/A               |
| MW375    | Sidegradient | Yes       | 3.12   | NO             | 1.138      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 0.007

S = 0.009

CV(1)=1.314

**K factor\*\*=** 2.523

TL(1) = 0.031

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -5.843 S = 1.392

CV(2) = -0.238

**K factor\*\*=** 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                 | MW371                                              |                                                |
|------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|
| Date Collected                                                               | Result                                             | LN(Result)                                     |
| 3/18/2002                                                                    | 0.025                                              | -3.689                                         |
| 4/22/2002                                                                    | 0.025                                              | -3.689                                         |
| 7/15/2002                                                                    | 0.025                                              | -3.689                                         |
| 10/8/2002                                                                    | 0.001                                              | -6.908                                         |
| 1/8/2003                                                                     | 0.001                                              | -6.908                                         |
| 4/3/2003                                                                     | 0.001                                              | -6.908                                         |
| 7/9/2003                                                                     | 0.001                                              | -6.908                                         |
| 10/6/2003                                                                    | 0.001                                              | -6.908                                         |
|                                                                              |                                                    |                                                |
| Well Number:                                                                 | MW374                                              |                                                |
| Well Number:  Date Collected                                                 | MW374<br>Result                                    | LN(Result)                                     |
|                                                                              |                                                    | LN(Result)<br>-4.605                           |
| Date Collected                                                               | Result                                             |                                                |
| Date Collected 10/8/2002                                                     | Result 0.01                                        | -4.605                                         |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 0.01 0.01                                   | -4.605<br>-4.605                               |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 0.01 0.01 0.01                              | -4.605<br>-4.605<br>-4.605                     |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 0.01 0.01 0.01 0.001 0.00161                | -4.605<br>-4.605<br>-4.605<br>-6.432           |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result<br>0.01<br>0.01<br>0.01<br>0.00161<br>0.001 | -4.605<br>-4.605<br>-4.605<br>-6.432<br>-6.908 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

|  |  | Current | Quarter | Data |
|--|--|---------|---------|------|
|--|--|---------|---------|------|

| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| MW359    | Downgradient | No        | 0.001   | N/A            | -6.908     | N/A               |
| MW362    | Downgradient | Yes       | 0.0136  | N/A            | -4.298     | NO                |
| MW365    | Downgradient | Yes       | 0.00127 | N/A            | -6.669     | NO                |
| MW368    | Downgradient | No        | 0.001   | N/A            | -6.908     | N/A               |
| MW371    | Upgradient   | No        | 0.001   | N/A            | -6.908     | N/A               |
| MW374    | Upgradient   | Yes       | 0.00074 | 4 N/A          | -7.203     | NO                |
| MW375    | Sidegradient | No        | 0.001   | N/A            | -6.908     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-10

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### **Historical Background Comparison** C-746-U First Quarter 2022 Statistical Analysis **Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 918.744 S = 417.257 CV(1) = 0.454

**K factor\*\*=** 2.523

TL(1)= 1971.483 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 6.705 S = 0.550 CV(2) = 0.082

**K factor\*\*=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                 | MW371                                           |                                           |
|------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|
| Date Collected                                                               | Result                                          | LN(Result)                                |
| 3/18/2002                                                                    | 541                                             | 6.293                                     |
| 4/22/2002                                                                    | 643                                             | 6.466                                     |
| 7/15/2002                                                                    | 632                                             | 6.449                                     |
| 10/8/2002                                                                    | 631                                             | 6.447                                     |
| 1/8/2003                                                                     | 680                                             | 6.522                                     |
| 4/3/2003                                                                     | 749                                             | 6.619                                     |
| 7/9/2003                                                                     | 734                                             | 6.599                                     |
| 10/6/2003                                                                    | 753                                             | 6.624                                     |
|                                                                              |                                                 |                                           |
| Well Number:                                                                 | MW374                                           |                                           |
| Well Number: Date Collected                                                  | MW374<br>Result                                 | LN(Result)                                |
|                                                                              |                                                 | LN(Result)<br>6.915                       |
| Date Collected                                                               | Result                                          |                                           |
| Date Collected 3/18/2002                                                     | Result<br>1007                                  | 6.915                                     |
| Date Collected 3/18/2002 10/8/2002                                           | Result<br>1007<br>1680                          | 6.915<br>7.427                            |
| Date Collected<br>3/18/2002<br>10/8/2002<br>1/7/2003                         | Result<br>1007<br>1680<br>1715.9                | 6.915<br>7.427<br>7.448                   |
| Date Collected<br>3/18/2002<br>10/8/2002<br>1/7/2003<br>4/2/2003             | Result<br>1007<br>1680<br>1715.9<br>172         | 6.915<br>7.427<br>7.448<br>5.147          |
| Date Collected<br>3/18/2002<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003 | Result<br>1007<br>1680<br>1715.9<br>172<br>1231 | 6.915<br>7.427<br>7.448<br>5.147<br>7.116 |

**Dry/Partially Dry Wells** 

Well No. Gradient Sidegradient MW376 MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359    | Downgradient | Yes       | 210    | NO             | 5.347      | N/A               |
| MW362    | Downgradient | Yes       | 676    | NO             | 6.516      | N/A               |
| MW365    | Downgradient | Yes       | 355    | NO             | 5.872      | N/A               |
| MW368    | Downgradient | Yes       | 550    | NO             | 6.310      | N/A               |
| MW371    | Upgradient   | Yes       | 717    | NO             | 6.575      | N/A               |
| MW374    | Upgradient   | Yes       | 720    | NO             | 6.579      | N/A               |
| MW375    | Sidegradient | Yes       | 347    | NO             | 5.849      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-11

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 0.056

S = 0.072

CV(1)=1.275

**K factor\*\*=** 2.523

TL(1) = 0.237

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -3.395 S = 0.915

CV(2) = -0.270

**K factor\*\*=** 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                 | MW371                        |                                                |
|------------------------------------------------------------------------------|------------------------------|------------------------------------------------|
| Date Collected                                                               | Result                       | LN(Result)                                     |
| 3/18/2002                                                                    | 0.025                        | -3.689                                         |
| 4/22/2002                                                                    | 0.025                        | -3.689                                         |
| 7/15/2002                                                                    | 0.05                         | -2.996                                         |
| 10/8/2002                                                                    | 0.02                         | -3.912                                         |
| 1/8/2003                                                                     | 0.02                         | -3.912                                         |
| 4/3/2003                                                                     | 0.02                         | -3.912                                         |
| 7/9/2003                                                                     | 0.02                         | -3.912                                         |
| 10/6/2003                                                                    | 0.02                         | -3.912                                         |
|                                                                              |                              |                                                |
| Well Number:                                                                 | MW374                        |                                                |
| Well Number: Date Collected                                                  | MW374<br>Result              | LN(Result)                                     |
|                                                                              |                              | LN(Result)<br>-1.609                           |
| Date Collected                                                               | Result                       |                                                |
| Date Collected 10/8/2002                                                     | Result 0.2                   | -1.609                                         |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 0.2 0.2               | -1.609<br>-1.609                               |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 0.2 0.2 0.2           | -1.609<br>-1.609<br>-1.609                     |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 0.2 0.2 0.2 0.2 0.02  | -1.609<br>-1.609<br>-1.609<br>-3.912           |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 0.2 0.2 0.2 0.02 0.02 | -1.609<br>-1.609<br>-1.609<br>-3.912<br>-3.912 |

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current Quarter I | Data |
|-------------------|------|
|-------------------|------|

| Well No. | Gradient     | Detected? | Result   | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|----------|----------------|------------|-------------------|
| MW359    | Downgradient | Yes       | 0.000498 | 8 N/A          | -7.605     | NO                |
| MW362    | Downgradient | Yes       | 0.0245   | N/A            | -3.709     | NO                |
| MW365    | Downgradient | Yes       | 0.00227  | N/A            | -6.088     | NO                |
| MW368    | Downgradient | Yes       | 0.000724 | 4 N/A          | -7.231     | NO                |
| MW371    | Upgradient   | Yes       | 0.000753 | 3 N/A          | -7.191     | NO                |
| MW374    | Upgradient   | No        | 0.002    | N/A            | -6.215     | N/A               |
| MW375    | Sidegradient | Yes       | 0.00060  | 7 N/A          | -7.407     | NO                |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 1.138

**S**= 0.621 **CV(1)**=0.546

**K factor\*\*=** 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

**K factor\*\*=** 2.523

TL(2)=1.441

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                                         |                                                |
|------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| Date Collected                                                               | Result                                        | LN(Result)                                     |
| 3/18/2002                                                                    | 2.26                                          | 0.815                                          |
| 4/22/2002                                                                    | 1.15                                          | 0.140                                          |
| 7/15/2002                                                                    | 0.94                                          | -0.062                                         |
| 10/8/2002                                                                    | 0.74                                          | -0.301                                         |
| 1/8/2003                                                                     | 2.62                                          | 0.963                                          |
| 4/3/2003                                                                     | 1.5                                           | 0.405                                          |
| 7/9/2003                                                                     | 1.66                                          | 0.507                                          |
| 10/6/2003                                                                    | 1.28                                          | 0.247                                          |
|                                                                              |                                               |                                                |
| Well Number:                                                                 | MW374                                         |                                                |
| Well Number: Date Collected                                                  | MW374<br>Result                               | LN(Result)                                     |
|                                                                              |                                               | LN(Result)<br>-0.511                           |
| Date Collected                                                               | Result                                        |                                                |
| Date Collected 3/18/2002                                                     | Result 0.6                                    | -0.511                                         |
| Date Collected 3/18/2002 10/8/2002                                           | Result 0.6 0.67                               | -0.511<br>-0.400                               |
| Date Collected<br>3/18/2002<br>10/8/2002<br>1/7/2003                         | Result 0.6 0.67 0.23                          | -0.511<br>-0.400<br>-1.470                     |
| Date Collected<br>3/18/2002<br>10/8/2002<br>1/7/2003<br>4/2/2003             | Result 0.6 0.67 0.23 0.65                     | -0.511<br>-0.400<br>-1.470<br>-0.431           |
| Date Collected<br>3/18/2002<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003 | Result<br>0.6<br>0.67<br>0.23<br>0.65<br>0.92 | -0.511<br>-0.400<br>-1.470<br>-0.431<br>-0.083 |

### Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

### **Current Quarter Data**

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW359    | Downgradient | Yes       | 3.8    | YES            | 1.335      | N/A               |
| MW362    | Downgradient | Yes       | 3.1    | YES            | 1.131      | N/A               |
| MW365    | Downgradient | Yes       | 8.13   | YES            | 2.096      | N/A               |
| MW368    | Downgradient | Yes       | 3.11   | YES            | 1.135      | N/A               |
| MW371    | Upgradient   | Yes       | 3.82   | YES            | 1.340      | N/A               |
| MW374    | Upgradient   | Yes       | 1.8    | NO             | 0.588      | N/A               |
| MW375    | Sidegradient | Yes       | 1.84   | NO             | 0.610      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW365

MW368

MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

\*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-13

### C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 590.000 S = 248.068 CV(1) = 0.420

**K** factor\*\*= 2.523

TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.308

S = 0.383

CV(2) = 0.061

**K factor\*\*=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                                       |                                           |
|------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|
| Date Collected                                                               | Result                                      | LN(Result)                                |
| 3/18/2002                                                                    | 274                                         | 5.613                                     |
| 4/22/2002                                                                    | 409                                         | 6.014                                     |
| 7/15/2002                                                                    | 418                                         | 6.035                                     |
| 10/8/2002                                                                    | 424                                         | 6.050                                     |
| 1/8/2003                                                                     | 431                                         | 6.066                                     |
| 4/3/2003                                                                     | 444                                         | 6.096                                     |
| 7/9/2003                                                                     | 445                                         | 6.098                                     |
| 10/6/2003                                                                    | 438                                         | 6.082                                     |
|                                                                              |                                             |                                           |
| Well Number:                                                                 | MW374                                       |                                           |
| Well Number: Date Collected                                                  | MW374<br>Result                             | LN(Result)                                |
|                                                                              |                                             | LN(Result)<br>7.035                       |
| Date Collected                                                               | Result                                      |                                           |
| Date Collected 10/8/2002                                                     | Result<br>1136                              | 7.035                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result<br>1136<br>1101                      | 7.035<br>7.004                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result<br>1136<br>1101<br>863               | 7.035<br>7.004<br>6.760                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result<br>1136<br>1101<br>863<br>682        | 7.035<br>7.004<br>6.760<br>6.525          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result<br>1136<br>1101<br>863<br>682<br>589 | 7.035<br>7.004<br>6.760<br>6.525<br>6.378 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359    | Downgradient | Yes       | 136    | NO             | 4.913      | N/A               |
| MW362    | Downgradient | Yes       | 531    | NO             | 6.275      | N/A               |
| MW365    | Downgradient | Yes       | 233    | NO             | 5.451      | N/A               |
| MW368    | Downgradient | Yes       | 374    | NO             | 5.924      | N/A               |
| MW371    | Upgradient   | Yes       | 399    | NO             | 5.989      | N/A               |
| MW374    | Upgradient   | Yes       | 399    | NO             | 5.989      | N/A               |
| MW375    | Sidegradient | Yes       | 201    | NO             | 5.303      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-14

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

**X**= 6.612 **S**= 6.487

CV(1)=0.981

**K** factor\*\*= 2.523

TL(1) = 22.979

LL(1)=N/A

Statistics-Transformed Background Data

**X**= 1.363 **S**= 1.147

CV(2) = 0.841

**K** factor\*\*= 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                       |                                           |
|------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|
| Date Collected                                                               | Result                      | LN(Result)                                |
| 3/18/2002                                                                    | 1.31                        | 0.270                                     |
| 4/22/2002                                                                    | 0.913                       | -0.091                                    |
| 7/15/2002                                                                    | 0.881                       | -0.127                                    |
| 10/8/2002                                                                    | 3.86                        | 1.351                                     |
| 1/8/2003                                                                     | 1.88                        | 0.631                                     |
| 4/3/2003                                                                     | 3.18                        | 1.157                                     |
| 7/9/2003                                                                     | 0.484                       | -0.726                                    |
| 10/6/2003                                                                    | 2.72                        | 1.001                                     |
|                                                                              |                             |                                           |
| Well Number:                                                                 | MW374                       |                                           |
| Well Number:  Date Collected                                                 | MW374<br>Result             | LN(Result)                                |
|                                                                              |                             | LN(Result)<br>3.135                       |
| Date Collected                                                               | Result                      | ,                                         |
| Date Collected 10/8/2002                                                     | Result<br>23                | 3.135                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 23 13.9              | 3.135<br>2.632                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 23 13.9 14           | 3.135<br>2.632<br>2.639                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 23 13.9 14 14.2      | 3.135<br>2.632<br>2.639<br>2.653          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 23 13.9 14 14.2 7.92 | 3.135<br>2.632<br>2.639<br>2.653<br>2.069 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

|--|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW359    | Downgradient | Yes       | 0.0467 | NO             | -3.064     | N/A               |
| MW362    | Downgradient | Yes       | 18.9   | NO             | 2.939      | N/A               |
| MW365    | Downgradient | No        | 0.1    | N/A            | -2.303     | N/A               |
| MW368    | Downgradient | Yes       | 0.55   | NO             | -0.598     | N/A               |
| MW371    | Upgradient   | Yes       | 0.0778 | NO             | -2.554     | N/A               |
| MW374    | Upgradient   | Yes       | 1.76   | NO             | 0.565      | N/A               |
| MW375    | Sidegradient | Yes       | 0.0602 | NO             | -2.810     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-15

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

**X**= 11.347 **S**= 3.019

CV(1)=0.266

K factor\*\*= 2.523

**TL(1)=** 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

**K factor\*\*=** 2.523

TL(2)=2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                         |                                           |  |  |
|------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|--|--|
| Date Collected                                                               | Result                        | LN(Result)                                |  |  |
| 3/18/2002                                                                    | 7.1                           | 1.960                                     |  |  |
| 4/22/2002                                                                    | 9.77                          | 2.279                                     |  |  |
| 7/15/2002                                                                    | 10.4                          | 2.342                                     |  |  |
| 10/8/2002                                                                    | 10.2                          | 2.322                                     |  |  |
| 1/8/2003                                                                     | 10.7                          | 2.370                                     |  |  |
| 4/3/2003                                                                     | 11.9                          | 2.477                                     |  |  |
| 7/9/2003                                                                     | 10.8                          | 2.380                                     |  |  |
| 10/6/2003                                                                    | 10.9                          | 2.389                                     |  |  |
|                                                                              |                               |                                           |  |  |
| Well Number:                                                                 | MW374                         |                                           |  |  |
| Well Number:  Date Collected                                                 | MW374<br>Result               | LN(Result)                                |  |  |
|                                                                              |                               | LN(Result)<br>2.996                       |  |  |
| Date Collected                                                               | Result                        |                                           |  |  |
| Date Collected 10/8/2002                                                     | Result 20                     | 2.996                                     |  |  |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 20 16.1                | 2.996<br>2.779                            |  |  |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 20 16.1 13.1           | 2.996<br>2.779<br>2.573                   |  |  |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 20 16.1 13.1 10.3      | 2.996<br>2.779<br>2.573<br>2.332          |  |  |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 20 16.1 13.1 10.3 11.1 | 2.996<br>2.779<br>2.573<br>2.332<br>2.407 |  |  |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |  |  |  |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|--|--|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |  |  |
| MW359                | Downgradient | Yes       | 2.97   | NO             | 1.089      | N/A               |  |  |  |
| MW362                | Downgradient | Yes       | 10.5   | NO             | 2.351      | N/A               |  |  |  |
| MW365                | Downgradient | Yes       | 8.79   | NO             | 2.174      | N/A               |  |  |  |
| MW368                | Downgradient | Yes       | 10.9   | NO             | 2.389      | N/A               |  |  |  |
| MW371                | Upgradient   | Yes       | 17.9   | NO             | 2.885      | N/A               |  |  |  |
| MW374                | Upgradient   | Yes       | 5.62   | NO             | 1.726      | N/A               |  |  |  |
| MW375                | Sidegradient | Yes       | 5.57   | NO             | 1.717      | N/A               |  |  |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-16

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

## C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248 S = 0.222

CV(1)=0.894

**K factor\*\*=** 2.523

TL(1)= 0.809

LL(1)=N/A

Statistics-Transformed Background Data

**X**=-1.873 **S**= 1.068

= 1.068 **CV(2)=**-0.570

**K factor\*\*=** 2.523

TL(2) = 0.821

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                                               |                                                |
|------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|
| Date Collected                                                               | Result                                              | LN(Result)                                     |
| 3/18/2002                                                                    | 0.063                                               | -2.765                                         |
| 4/22/2002                                                                    | 0.067                                               | -2.703                                         |
| 7/15/2002                                                                    | 0.074                                               | -2.604                                         |
| 10/8/2002                                                                    | 0.0521                                              | -2.955                                         |
| 1/8/2003                                                                     | 0.0385                                              | -3.257                                         |
| 4/3/2003                                                                     | 0.0551                                              | -2.899                                         |
| 7/9/2003                                                                     | 0.0546                                              | -2.908                                         |
| 10/6/2003                                                                    | 0.0543                                              | -2.913                                         |
|                                                                              |                                                     |                                                |
| Well Number:                                                                 | MW374                                               |                                                |
| Well Number: Date Collected                                                  | MW374<br>Result                                     | LN(Result)                                     |
|                                                                              |                                                     | LN(Result)<br>-0.518                           |
| Date Collected                                                               | Result                                              |                                                |
| Date Collected 10/8/2002                                                     | Result<br>0.596                                     | -0.518                                         |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 0.596 0.565                                  | -0.518<br>-0.571                               |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 0.596 0.565 0.675                            | -0.518<br>-0.571<br>-0.393                     |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result<br>0.596<br>0.565<br>0.675<br>0.397          | -0.518<br>-0.571<br>-0.393<br>-0.924           |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result<br>0.596<br>0.565<br>0.675<br>0.397<br>0.312 | -0.518<br>-0.571<br>-0.393<br>-0.924<br>-1.165 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|         |         |      |

| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| MW359    | Downgradient | Yes       | 0.00111 | NO             | -6.803     | N/A               |
| MW362    | Downgradient | Yes       | 0.19    | NO             | -1.661     | N/A               |
| MW365    | Downgradient | Yes       | 0.0094  | NO             | -4.667     | N/A               |
| MW368    | Downgradient | Yes       | 0.00923 | NO             | -4.685     | N/A               |
| MW371    | Upgradient   | Yes       | 0.00823 | NO             | -4.800     | N/A               |
| MW374    | Upgradient   | Yes       | 0.235   | NO             | -1.448     | N/A               |
| MW375    | Sidegradient | Yes       | 0.00416 | NO             | -5.482     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-17

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 5.125

**S**= 1.500 **CV(1)**=0.293

**K factor\*\*=** 2.523

**TL(1)=** 8.910

LL(1)=N/A

Statistics-Transformed Background Data

**X**= 1.595 **S**= 0.296

CV(2) = 0.186

**K factor\*\*=** 2.523

TL(2) = 2.343

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                |                                           |  |
|------------------------------------------------------------------------------|----------------------|-------------------------------------------|--|
| Date Collected                                                               | Result               | LN(Result)                                |  |
| 3/18/2002                                                                    | 2                    | 0.693                                     |  |
| 4/22/2002                                                                    | 5                    | 1.609                                     |  |
| 7/15/2002                                                                    | 10                   | 2.303                                     |  |
| 10/8/2002                                                                    | 5                    | 1.609                                     |  |
| 1/8/2003                                                                     | 5                    | 1.609                                     |  |
| 4/3/2003                                                                     | 5                    | 1.609                                     |  |
| 7/9/2003                                                                     | 5                    | 1.609                                     |  |
| 10/6/2003                                                                    | 5                    | 1.609                                     |  |
|                                                                              |                      |                                           |  |
| Well Number:                                                                 | MW374                |                                           |  |
| Well Number:  Date Collected                                                 | MW374<br>Result      | LN(Result)                                |  |
|                                                                              |                      | LN(Result)                                |  |
| Date Collected                                                               | Result               | •                                         |  |
| Date Collected 10/8/2002                                                     | Result 5             | 1.609                                     |  |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 5             | 1.609<br>1.609                            |  |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 5 5 5 5       | 1.609<br>1.609<br>1.609                   |  |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 5 5 5 5 5     | 1.609<br>1.609<br>1.609<br>1.609          |  |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 5 5 5 5 5 5 5 | 1.609<br>1.609<br>1.609<br>1.609<br>1.609 |  |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359                | Downgradient | Yes       | 0.56   | NO             | -0.580     | N/A               |
| MW362                | Downgradient | Yes       | 0.52   | NO             | -0.654     | N/A               |
| MW365                | Downgradient | No        | 5      | N/A            | 1.609      | N/A               |
| MW368                | Downgradient | No        | 5      | N/A            | 1.609      | N/A               |
| MW371                | Upgradient   | No        | 5      | N/A            | 1.609      | N/A               |
| MW374                | Upgradient   | No        | 0.72   | N/A            | -0.329     | N/A               |
| MW375                | Sidegradient | No        | 5      | N/A            | 1.609      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-18

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S = 0.022

CV(1)=0.980

**K factor\*\*=** 2.523

**TL(1)=** 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S

S = 1.109 CV

CV(2) = -0.255

**K factor\*\*=** 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                                                       |                                                |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|--|
| Date Collected                                                               | Result                                                      | LN(Result)                                     |  |
| 3/18/2002                                                                    | 0.05                                                        | -2.996                                         |  |
| 4/22/2002                                                                    | 0.05                                                        | -2.996                                         |  |
| 7/15/2002                                                                    | 0.05                                                        | -2.996                                         |  |
| 10/8/2002                                                                    | 0.0124                                                      | -4.390                                         |  |
| 1/8/2003                                                                     | 0.005                                                       | -5.298                                         |  |
| 4/3/2003                                                                     | 0.005                                                       | -5.298                                         |  |
| 7/9/2003                                                                     | 0.005                                                       | -5.298                                         |  |
| 10/6/2003                                                                    | 0.005                                                       | -5.298                                         |  |
|                                                                              |                                                             |                                                |  |
| Well Number:                                                                 | MW374                                                       |                                                |  |
| Well Number:  Date Collected                                                 | MW374<br>Result                                             | LN(Result)                                     |  |
|                                                                              |                                                             | LN(Result)<br>-2.996                           |  |
| Date Collected                                                               | Result                                                      |                                                |  |
| Date Collected 10/8/2002                                                     | Result 0.05                                                 | -2.996                                         |  |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 0.05 0.05                                            | -2.996<br>-2.996                               |  |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 0.05 0.05 0.05                                       | -2.996<br>-2.996<br>-2.996                     |  |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result<br>0.05<br>0.05<br>0.05<br>0.00794                   | -2.996<br>-2.996<br>-2.996<br>-4.836           |  |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result<br>0.05<br>0.05<br>0.05<br>0.005<br>0.00794<br>0.005 | -2.996<br>-2.996<br>-2.996<br>-4.836<br>-5.298 |  |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |         |                |            |                   |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359    | Downgradient | Yes       | 0.00107 | NO             | -6.840     | N/A               |
| MW362    | Downgradient | Yes       | 0.0185  | NO             | -3.990     | N/A               |
| MW365    | Downgradient | Yes       | 0.00554 | NO             | -5.196     | N/A               |
| MW368    | Downgradient | Yes       | 0.00145 | NO             | -6.536     | N/A               |
| MW371    | Upgradient   | Yes       | 0.00241 | NO             | -6.028     | N/A               |
| MW374    | Upgradient   | Yes       | 0.00065 | 6 NO           | -7.329     | N/A               |
| MW375    | Sidegradient | Yes       | 0.00107 | NO             | -6.840     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-19

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison UNITS: mV Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.281 S = 78.889 CV(1) = 3.541

**K factor\*\*=** 2.523

TL(1)= 221.319 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.642**S**= 1.729 CV(2) = 0.475

**K factor\*\*=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                 | MW371                                     |                            |  |
|------------------------------------------------------------------------------|-------------------------------------------|----------------------------|--|
| Date Collected                                                               | Result                                    | LN(Result)                 |  |
| 3/18/2002                                                                    | 75                                        | 4.317                      |  |
| 4/22/2002                                                                    | 165                                       | 5.106                      |  |
| 7/15/2002                                                                    | 65                                        | 4.174                      |  |
| 4/3/2003                                                                     | -19                                       | #Func!                     |  |
| 7/9/2003                                                                     | 114                                       | 4.736                      |  |
| 10/6/2003                                                                    | -22                                       | #Func!                     |  |
| 1/7/2004                                                                     | 20.5                                      | 3.020                      |  |
| 4/6/2004                                                                     | 113                                       | 4.727                      |  |
|                                                                              |                                           |                            |  |
| Well Number:                                                                 | MW374                                     |                            |  |
| Well Number:  Date Collected                                                 | MW374<br>Result                           | LN(Result)                 |  |
|                                                                              |                                           | LN(Result)<br>4.905        |  |
| Date Collected                                                               | Result                                    |                            |  |
| Date Collected 3/18/2002                                                     | Result<br>135                             | 4.905                      |  |
| Date Collected 3/18/2002 4/2/2003                                            | Result 135 -56                            | 4.905<br>#Func!            |  |
| Date Collected<br>3/18/2002<br>4/2/2003<br>7/9/2003                          | Result<br>135<br>-56<br>-68               | 4.905<br>#Func!<br>#Func!  |  |
| Date Collected<br>3/18/2002<br>4/2/2003<br>7/9/2003<br>10/7/2003             | Result 135 -56 -68 -50                    | 4.905 #Func! #Func!        |  |
| Date Collected<br>3/18/2002<br>4/2/2003<br>7/9/2003<br>10/7/2003<br>1/6/2004 | Result<br>135<br>-56<br>-68<br>-50<br>-85 | 4.905 #Func! #Func! #Func! |  |

## Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

**#Because the natural log was not** possbile for all background values, the TL was considered equal to the maximum background value.

| Current Quarter Data |          |              |           |        |                |            |                   |
|----------------------|----------|--------------|-----------|--------|----------------|------------|-------------------|
|                      | Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|                      | MW359    | Downgradient | Yes       | 308    | N/A            | 5.730      | YES               |
|                      | MW362    | Downgradient | Yes       | 176    | N/A            | 5.170      | YES               |
|                      | MW365    | Downgradient | Yes       | 395    | N/A            | 5.979      | YES               |
|                      | MW368    | Downgradient | Yes       | 259    | N/A            | 5.557      | YES               |
|                      | MW371    | Upgradient   | Yes       | 389    | N/A            | 5.964      | YES               |
|                      | MW374    | Upgradient   | Yes       | 192    | N/A            | 5.257      | YES               |
|                      | MW375    | Sidegradient | Yes       | 390    | N/A            | 5.966      | YES               |
|                      |          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

| Wells with | Exceedances |
|------------|-------------|
| MW250      |             |

MW362 MW365 MW368

MW371 MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295

CV(1) = 0.045

**K factor\*\*=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X = 1.889

S = 0.046

CV(2) = 0.024

**K factor\*\*=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                  | MW371                         |                                           |  |
|---------------------------------------------------------------|-------------------------------|-------------------------------------------|--|
| Date Collected                                                | Result                        | LN(Result)                                |  |
| 3/18/2002                                                     | 6.3                           | 1.841                                     |  |
| 4/22/2002                                                     | 6.5                           | 1.872                                     |  |
| 7/15/2002                                                     | 6.5                           | 1.872                                     |  |
| 10/8/2002                                                     | 6.6                           | 1.887                                     |  |
| 1/8/2003                                                      | 6.6                           | 1.887                                     |  |
| 4/3/2003                                                      | 6.9                           | 1.932                                     |  |
| 7/9/2003                                                      | 6.7                           | 1.902                                     |  |
| 10/6/2003                                                     | 7                             | 1.946                                     |  |
|                                                               |                               |                                           |  |
| Well Number:                                                  | MW374                         |                                           |  |
| Well Number:  Date Collected                                  | MW374<br>Result               | LN(Result)                                |  |
|                                                               |                               | LN(Result)                                |  |
| Date Collected                                                | Result                        |                                           |  |
| Date Collected 3/18/2002                                      | Result 5.75                   | 1.749                                     |  |
| Date Collected 3/18/2002 10/8/2002                            | Result 5.75 6.6               | 1.749<br>1.887                            |  |
| Date Collected<br>3/18/2002<br>10/8/2002<br>1/7/2003          | Result 5.75 6.6 6.82          | 1.749<br>1.887<br>1.920                   |  |
| Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003          | Result 5.75 6.6 6.82 6.86     | 1.749<br>1.887<br>1.920<br>1.926          |  |
| Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 | Result 5.75 6.6 6.82 6.86 6.7 | 1.749<br>1.887<br>1.920<br>1.926<br>1.902 |  |

## Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

### **Current Quarter Data**

| Well No. | Gradient     | Detected? | Result | Result >TL(1)?<br>Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) &gt;TL(2)?<br/>LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<> | LN(Result) | LN(Result) >TL(2)?<br>LN(Result) <ll(2)?< th=""></ll(2)?<> |
|----------|--------------|-----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------|
| MW359    | Downgradient | t Yes     | 5.94   | NO                                                                                                                                           | 1.782      | N/A                                                        |
| MW362    | Downgradien  | t Yes     | 6.9    | NO                                                                                                                                           | 1.932      | N/A                                                        |
| MW365    | Downgradien  | t Yes     | 6.26   | NO                                                                                                                                           | 1.834      | N/A                                                        |
| MW368    | Downgradien  | t Yes     | 6.34   | NO                                                                                                                                           | 1.847      | N/A                                                        |
| MW371    | Upgradient   | Yes       | 6.53   | NO                                                                                                                                           | 1.876      | N/A                                                        |
| MW374    | Upgradient   | Yes       | 6.77   | NO                                                                                                                                           | 1.913      | N/A                                                        |
| MW375    | Sidegradient | Yes       | 6.42   | NO                                                                                                                                           | 1.859      | N/A                                                        |
|          |              |           |        |                                                                                                                                              |            |                                                            |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-21

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S = 0.907

CV(1)=0.718

**K factor\*\*=** 2.523

TL(1)=3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

CV(2) = -32.218

**K factor\*\*=** 2.523

**TL(2)=** 1.874

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                         |                                            |
|------------------------------------------------------------------------------|-------------------------------|--------------------------------------------|
| Date Collected                                                               | Result                        | LN(Result)                                 |
| 3/18/2002                                                                    | 2                             | 0.693                                      |
| 4/22/2002                                                                    | 2                             | 0.693                                      |
| 7/15/2002                                                                    | 2                             | 0.693                                      |
| 10/8/2002                                                                    | 0.408                         | -0.896                                     |
| 1/8/2003                                                                     | 0.384                         | -0.957                                     |
| 4/3/2003                                                                     | 0.368                         | -1.000                                     |
| 7/9/2003                                                                     | 0.587                         | -0.533                                     |
| 10/6/2003                                                                    | 0.382                         | -0.962                                     |
|                                                                              |                               |                                            |
| Well Number:                                                                 | MW374                         |                                            |
| Well Number:  Date Collected                                                 | MW374<br>Result               | LN(Result)                                 |
|                                                                              |                               | LN(Result) 1.112                           |
| Date Collected                                                               | Result                        |                                            |
| Date Collected 10/8/2002                                                     | Result<br>3.04                | 1.112                                      |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 3.04 2.83              | 1.112<br>1.040                             |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 3.04 2.83 2            | 1.112<br>1.040<br>0.693                    |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 3.04 2.83 2 1.09       | 1.112<br>1.040<br>0.693<br>0.086           |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 3.04 2.83 2 1.09 0.802 | 1.112<br>1.040<br>0.693<br>0.086<br>-0.221 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359    | Downgradient | Yes       | 0.08   | NO             | -2.526     | N/A               |
| MW362    | Downgradient | Yes       | 1.65   | NO             | 0.501      | N/A               |
| MW365    | Downgradient | Yes       | 0.362  | NO             | -1.016     | N/A               |
| MW368    | Downgradient | Yes       | 0.516  | NO             | -0.662     | N/A               |
| MW371    | Upgradient   | Yes       | 0.445  | NO             | -0.810     | N/A               |
| MW374    | Upgradient   | Yes       | 0.595  | NO             | -0.519     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

-1.221

N/A

0.295

Yes

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-22

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

**K factor\*\*=** 2.523

**TL(1)=** 367.800 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356

CV(2) = 0.069

**K factor\*\*=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                      |                                           |
|------------------------------------------------------------------------------|----------------------------|-------------------------------------------|
|                                                                              |                            |                                           |
| Date Collected                                                               | Result                     | LN(Result)                                |
| 3/18/2002                                                                    | 129                        | 4.860                                     |
| 4/22/2002                                                                    | 131                        | 4.875                                     |
| 7/15/2002                                                                    | 127                        | 4.844                                     |
| 10/8/2002                                                                    | 123                        | 4.812                                     |
| 1/8/2003                                                                     | 128                        | 4.852                                     |
| 4/3/2003                                                                     | 144                        | 4.970                                     |
| 7/9/2003                                                                     | 126                        | 4.836                                     |
| 10/6/2003                                                                    | 120                        | 4.787                                     |
|                                                                              |                            |                                           |
| Well Number:                                                                 | MW374                      |                                           |
| Well Number:  Date Collected                                                 | MW374<br>Result            | LN(Result)                                |
|                                                                              |                            | LN(Result)<br>5.817                       |
| Date Collected                                                               | Result                     |                                           |
| Date Collected 10/8/2002                                                     | Result<br>336              | 5.817                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 336 329             | 5.817<br>5.796                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 336 329 287         | 5.817<br>5.796<br>5.659                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 336 329 287 181     | 5.817<br>5.796<br>5.659<br>5.198          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 336 329 287 181 182 | 5.817<br>5.796<br>5.659<br>5.198<br>5.204 |

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

|   | Current Quarter Data |              |           |        |                |            |                   |  |
|---|----------------------|--------------|-----------|--------|----------------|------------|-------------------|--|
|   | Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| , | MW359                | Downgradient | Yes       | 32.3   | NO             | 3.475      | N/A               |  |
|   | MW362                | Downgradient | Yes       | 131    | NO             | 4.875      | N/A               |  |
|   | MW365                | Downgradient | Yes       | 47.5   | NO             | 3.861      | N/A               |  |
|   | MW368                | Downgradient | Yes       | 65     | NO             | 4.174      | N/A               |  |
|   | MW371                | Upgradient   | Yes       | 97.2   | NO             | 4.577      | N/A               |  |
|   | MW374                | Upgradient   | Yes       | 134    | NO             | 4.898      | N/A               |  |
|   | MW375                | Sidegradient | Yes       | 56.9   | NO             | 4.041      | N/A               |  |
|   |                      |              |           |        |                |            |                   |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-23

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

 $S= 3.153 \quad CV(1)=0.487$ 

K factor\*\*= 2.523

**TL(1)=** 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794 S = 0.357

CV(2) = 0.199

K factor\*\*= 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                    |                                           |
|------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Date Collected                                                               | Result                   | LN(Result)                                |
| 3/18/2002                                                                    | 16.3                     | 2.791                                     |
| 4/22/2002                                                                    | 8.6                      | 2.152                                     |
| 7/15/2002                                                                    | 6.7                      | 1.902                                     |
| 10/8/2002                                                                    | 5                        | 1.609                                     |
| 1/8/2003                                                                     | 5                        | 1.609                                     |
| 4/3/2003                                                                     | 5                        | 1.609                                     |
| 7/9/2003                                                                     | 5                        | 1.609                                     |
| 10/6/2003                                                                    | 5                        | 1.609                                     |
|                                                                              |                          |                                           |
| Well Number:                                                                 | MW374                    |                                           |
| Well Number:  Date Collected                                                 | MW374<br>Result          | LN(Result)                                |
|                                                                              |                          | LN(Result) 1.609                          |
| Date Collected                                                               | Result                   | ,                                         |
| Date Collected 10/8/2002                                                     | Result 5                 | 1.609                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 5                 | 1.609<br>1.609                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 5 5 5 5           | 1.609<br>1.609<br>1.609                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 5 5 5 5.6         | 1.609<br>1.609<br>1.609<br>1.723          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 5 5 5 5 5 5 5 5 5 | 1.609<br>1.609<br>1.609<br>1.723<br>1.609 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Yes

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |          |              |           |        |                |            |                   |
|----------------------|----------|--------------|-----------|--------|----------------|------------|-------------------|
|                      | Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|                      | MW359    | Downgradient | Yes       | 38.6   | YES            | 3.653      | N/A               |
|                      | MW362    | Downgradient | Yes       | 28     | YES            | 3.332      | N/A               |
|                      | MW365    | Downgradient | Yes       | 55.9   | YES            | 4.024      | N/A               |
|                      | MW368    | Downgradient | Yes       | 95.1   | YES            | 4.555      | N/A               |
|                      | MW371    | Upgradient   | Yes       | 14.3   | NO             | 2.660      | N/A               |
|                      | MW374    | Upgradient   | Yes       | 12.4   | NO             | 2.518      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

23.7

YES

## **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

MW359 MW362

3.165

MW365

MW368

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

\*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-24

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=17.631 S= 24.314 CV(1)=1.379

**K factor\*\*=** 2.523

TL(1)= 78.977 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979

CV(2) = 0.422

**K factor\*\*=** 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                 |                                           |
|------------------------------------------------------------------------------|-----------------------|-------------------------------------------|
| Date Collected                                                               | Result                | LN(Result)                                |
| 3/18/2002                                                                    | 11.1                  | 2.407                                     |
| 4/22/2002                                                                    | 7                     | 1.946                                     |
| 7/15/2002                                                                    | 4.1                   | 1.411                                     |
| 10/8/2002                                                                    | 6                     | 1.792                                     |
| 1/8/2003                                                                     | 5.3                   | 1.668                                     |
| 4/3/2003                                                                     | 5.3                   | 1.668                                     |
| 7/9/2003                                                                     | 2.9                   | 1.065                                     |
| 10/6/2003                                                                    | 3.2                   | 1.163                                     |
|                                                                              |                       |                                           |
| Well Number:                                                                 | MW374                 |                                           |
| Well Number:  Date Collected                                                 | MW374<br>Result       | LN(Result)                                |
|                                                                              |                       | LN(Result)<br>4.500                       |
| Date Collected                                                               | Result                | ` ′                                       |
| Date Collected 10/8/2002                                                     | Result<br>90          | 4.500                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result<br>90<br>64    | 4.500<br>4.159                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 90 64 25       | 4.500<br>4.159<br>3.219                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 90 64 25 16    | 4.500<br>4.159<br>3.219<br>2.773          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 90 64 25 16 13 | 4.500<br>4.159<br>3.219<br>2.773<br>2.565 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359    | Downgradient | Yes       | 0.472  | N/A            | -0.751     | NO                |
| MW362    | Downgradient | Yes       | 2.96   | N/A            | 1.085      | NO                |
| MW365    | Downgradient | Yes       | 1.27   | N/A            | 0.239      | NO                |
| MW368    | Downgradient | Yes       | 1.36   | N/A            | 0.307      | NO                |
| MW371    | Upgradient   | Yes       | 2.02   | N/A            | 0.703      | NO                |
| MW374    | Upgradient   | Yes       | 2.57   | N/A            | 0.944      | NO                |
| MW375    | Sidegradient | Yes       | 0.805  | N/A            | -0.217     | NO                |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-25

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

**K factor\*\*=** 2.523

**TL(1)=** 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

**X**= 4.867 **S**=

 $S= 1.065 \quad CV(2)=0.219$ 

**K factor\*\*=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                                     |                                           |
|------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| Date Collected                                                               | Result                                    | LN(Result)                                |
| 3/18/2002                                                                    | 50                                        | 3.912                                     |
| 4/22/2002                                                                    | 105                                       | 4.654                                     |
| 7/15/2002                                                                    | 70                                        | 4.248                                     |
| 10/8/2002                                                                    | 52                                        | 3.951                                     |
| 1/8/2003                                                                     | 20.2                                      | 3.006                                     |
| 4/3/2003                                                                     | 104                                       | 4.644                                     |
| 7/9/2003                                                                     | 34.2                                      | 3.532                                     |
| 10/6/2003                                                                    | 46.1                                      | 3.831                                     |
|                                                                              |                                           |                                           |
| Well Number:                                                                 | MW374                                     |                                           |
| Well Number: Date Collected                                                  | MW374<br>Result                           | LN(Result)                                |
|                                                                              |                                           | LN(Result)<br>6.806                       |
| Date Collected                                                               | Result                                    | ,                                         |
| Date Collected 10/8/2002                                                     | Result<br>903                             | 6.806                                     |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 903 539                            | 6.806<br>6.290                            |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 903 539 295                        | 6.806<br>6.290<br>5.687                   |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 903 539 295 272                    | 6.806<br>6.290<br>5.687<br>5.606          |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result<br>903<br>539<br>295<br>272<br>197 | 6.806<br>6.290<br>5.687<br>5.606<br>5.283 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current Quarter Data |              |           |        |                |            |                   |  |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| MW359                | Downgradient | Yes       | 3.58   | N/A            | 1.275      | NO                |  |
| MW362                | Downgradient | Yes       | 14.1   | N/A            | 2.646      | NO                |  |
| MW365                | Downgradient | Yes       | 9.78   | N/A            | 2.280      | NO                |  |
| MW368                | Downgradient | No        | 10     | N/A            | 2.303      | N/A               |  |
| MW371                | Upgradient   | Yes       | 4.94   | N/A            | 1.597      | NO                |  |
| MW374                | Upgradient   | Yes       | 32.9   | N/A            | 3.493      | NO                |  |
| MW375                | Sidegradient | Yes       | 8.5    | N/A            | 2.140      | NO                |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1)=1.319**K factor\*\*=** 2.523

TL(1) = 0.237LL(1)=N/A

N/A

NO

**Statistics-Transformed Background** Data

X = -3.438 S = 0.912

CV(2) = -0.265

**K factor\*\*=** 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                 | MW371                            |                                                |
|------------------------------------------------------------------------------|----------------------------------|------------------------------------------------|
| Date Collected                                                               | Result                           | LN(Result)                                     |
| 3/18/2002                                                                    | 0.025                            | -3.689                                         |
| 4/22/2002                                                                    | 0.025                            | -3.689                                         |
| 7/15/2002                                                                    | 0.025                            | -3.689                                         |
| 10/8/2002                                                                    | 0.02                             | -3.912                                         |
| 1/8/2003                                                                     | 0.02                             | -3.912                                         |
| 4/3/2003                                                                     | 0.02                             | -3.912                                         |
| 7/9/2003                                                                     | 0.02                             | -3.912                                         |
| 10/6/2003                                                                    | 0.02                             | -3.912                                         |
|                                                                              |                                  |                                                |
| Well Number:                                                                 | MW374                            |                                                |
| Well Number:  Date Collected                                                 | MW374<br>Result                  | LN(Result)                                     |
|                                                                              |                                  | LN(Result)<br>-1.609                           |
| Date Collected                                                               | Result                           |                                                |
| Date Collected 10/8/2002                                                     | Result 0.2                       | -1.609                                         |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 0.2 0.2                   | -1.609<br>-1.609                               |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 0.2 0.2 0.2               | -1.609<br>-1.609<br>-1.609                     |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 0.2 0.2 0.2 0.2 0.02      | -1.609<br>-1.609<br>-1.609<br>-3.912           |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result 0.2 0.2 0.2 0.2 0.02 0.02 | -1.609<br>-1.609<br>-1.609<br>-3.912<br>-3.912 |

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Upgradient

Sidegradient

MW374

MW375

No

Yes

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-3.912

-5.524

| Current Quarter Data |              |           |         |                |            |                   |
|----------------------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359                | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW362                | Downgradient | Yes       | 0.0365  | N/A            | -3.310     | NO                |
| MW365                | Downgradient | Yes       | 0.00611 | N/A            | -5.098     | NO                |
| MW368                | Downgradient | Yes       | 0.00867 | N/A            | -4.748     | NO                |
| MW371                | Upgradient   | Yes       | 0.00496 | N/A            | -5.306     | NO                |

0.00399

0.02

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

N/A

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-27

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083

CV(1)=1.380

**K factor\*\*=** 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259

S = 0.840

CV(2) = -0.258

**K factor\*\*=** 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                 | MW371                                            |                                                |
|------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|
| Date Collected                                                               | Result                                           | LN(Result)                                     |
| 3/18/2002                                                                    | 0.1                                              | -2.303                                         |
| 4/22/2002                                                                    | 0.1                                              | -2.303                                         |
| 7/15/2002                                                                    | 0.1                                              | -2.303                                         |
| 10/8/2002                                                                    | 0.025                                            | -3.689                                         |
| 1/8/2003                                                                     | 0.035                                            | -3.352                                         |
| 4/3/2003                                                                     | 0.035                                            | -3.352                                         |
| 7/9/2003                                                                     | 0.0376                                           | -3.281                                         |
| 10/6/2003                                                                    | 0.02                                             | -3.912                                         |
|                                                                              |                                                  |                                                |
| Well Number:                                                                 | MW374                                            |                                                |
| Well Number:  Date Collected                                                 | MW374<br>Result                                  | LN(Result)                                     |
|                                                                              |                                                  | LN(Result)<br>-3.689                           |
| Date Collected                                                               | Result                                           |                                                |
| Date Collected 10/8/2002                                                     | Result<br>0.025                                  | -3.689                                         |
| Date Collected<br>10/8/2002<br>1/7/2003                                      | Result 0.025 0.35                                | -3.689<br>-1.050                               |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003                          | Result 0.025 0.35 0.035                          | -3.689<br>-1.050<br>-3.352                     |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003              | Result 0.025 0.35 0.035 0.02                     | -3.689<br>-1.050<br>-3.352<br>-3.912           |
| Date Collected<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003<br>10/7/2003 | Result<br>0.025<br>0.35<br>0.035<br>0.02<br>0.02 | -3.689<br>-1.050<br>-3.352<br>-3.912<br>-3.912 |

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |         |                |            |                   |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW359    | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW362    | Downgradient | Yes       | 0.0431  | N/A            | -3.144     | NO                |
| MW365    | Downgradient | Yes       | 0.00433 | N/A            | -5.442     | NO                |
| MW368    | Downgradient | Yes       | 0.00386 | N/A            | -5.557     | NO                |
| MW371    | Upgradient   | Yes       | 0.00337 | N/A            | -5.693     | NO                |
| MW374    | Upgradient   | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW375    | Sidegradient | No        | 0.02    | N/A            | -3.912     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-28

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.774CV(1)=1.239**K** factor\*\*= 2.523 TL(1) = 2.578Statistics-Background Data X = 0.625LL(1)=N/A **Statistics-Transformed Background** X = -0.973 S = 0.935 CV(2) = -0.961TL(2) = 1.386

Data

**K factor\*\*=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.255 -1.3664/22/2002 0.2 -1.6097/15/2002 0.322 -1.13310/8/2002 0.2 -1.609 0.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.689 -0.373Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.61 0.959 4/23/2002 0.2 -1.6097/16/2002 1.14 0.131 10/8/2002 0.862 -0.1491/7/2003 2.32 0.8424/2/2003 0.2 -1.6097/9/2003 0.2 -1.6090.2 -1.609 10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357    | Downgradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW360    | Downgradient | Yes       | 0.0515 | N/A            | -2.966     | NO                |
| MW363    | Downgradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW366    | Downgradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW369    | Upgradient   | Yes       | 0.0277 | N/A            | -3.586     | NO                |
| MW372    | Upgradient   | No        | 0.05   | N/A            | -2.996     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.985
 S= 0.825
 CV(1)=0.838
 K factor\*\*= 2.523
 TL(1)= 3.067
 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.430
 S= 0.990
 CV(2)=-2.302
 K factor\*\*= 2.523
 TL(2)= 2.068
 LL(2)=N/A

Data

**Upgradient Wells with Transformed Result** 

Historical Background Data from

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Well Number:                                                       | MW369                    |                                   |
|--------------------------------------------------------------------|--------------------------|-----------------------------------|
| Date Collected                                                     | Result                   | LN(Result)                        |
| 3/18/2002                                                          | 2                        | 0.693                             |
| 4/22/2002                                                          | 2                        | 0.693                             |
| 7/15/2002                                                          | 2                        | 0.693                             |
| 10/8/2002                                                          | 0.2                      | -1.609                            |
| 1/8/2003                                                           | 0.2                      | -1.609                            |
| 4/3/2003                                                           | 0.2                      | -1.609                            |
| 7/8/2003                                                           | 0.2                      | -1.609                            |
| 10/6/2003                                                          | 0.2                      | -1.609                            |
|                                                                    |                          |                                   |
| Well Number:                                                       | MW372                    |                                   |
| Well Number: Date Collected                                        | MW372<br>Result          | LN(Result)                        |
|                                                                    | 1.1                      | LN(Result)<br>0.693               |
| Date Collected                                                     | Result                   |                                   |
| Date Collected 3/19/2002                                           | Result 2                 | 0.693                             |
| Date Collected 3/19/2002 4/23/2002                                 | Result 2                 | 0.693<br>0.693                    |
| Date Collected 3/19/2002 4/23/2002 7/16/2002                       | Result 2 2 2             | 0.693<br>0.693<br>0.693           |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002 | Result 2 2 2 0.492       | 0.693<br>0.693<br>0.693<br>-0.709 |
| Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003    | Result 2 2 2 0.492 0.492 | 0.693<br>0.693<br>0.693<br>-0.709 |

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357    | Downgradient | Yes       | 0.361  | NO             | -1.019     | N/A               |
| MW360    | Downgradient | Yes       | 0.066  | NO             | -2.718     | N/A               |
| MW363    | Downgradient | Yes       | 0.018  | NO             | -4.017     | N/A               |
| MW366    | Downgradient | Yes       | 0.0608 | NO             | -2.800     | N/A               |
| MW369    | Upgradient   | Yes       | 0.0161 | NO             | -4.129     | N/A               |
| MW372    | Upgradient   | Yes       | 1.36   | NO             | 0.307      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison Bromide** UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.000CV(1)=0.000**K factor\*\*=** 2.523 **TL(1)=** 1.000 Statistics-Background Data X = 1.000LL(1)=N/A **Statistics-Transformed Background** X = 0.000**CV(2)=**#Num! S = 0.000

Data

**K factor\*\*=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.0004/22/2002 1 0.000 7/15/2002 0.0001 10/8/2002 1 0.0001/8/2003 1 0.000 4/3/2003 1 0.000 7/8/2003 1 0.00010/6/2003 1 0.000 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.0004/23/2002 1 0.000 0.000 7/16/2002 1 10/8/2002 0.000 1/7/2003 0.0004/2/2003 1 0.000 7/9/2003 1 0.000 0.000 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357    | Downgradient | Yes       | 0.373  | NO             | -0.986     | N/A               |
| MW360    | Downgradient | No        | 0.2    | N/A            | -1.609     | N/A               |
| MW363    | Downgradient | Yes       | 0.131  | NO             | -2.033     | N/A               |
| MW366    | Downgradient | Yes       | 0.425  | NO             | -0.856     | N/A               |
| MW369    | Upgradient   | Yes       | 0.35   | NO             | -1.050     | N/A               |
| MW372    | Upgradient   | Yes       | 0.491  | NO             | -0.711     | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 32.763 **S**= 9.391 **CV(1)**=0.287

**K factor\*\*=** 2.523

TL(1) = 56.456

LL(1)=N/A

Statistics-Transformed Background Data

**X**= 3.449 **S**= 0.299

CV(2) = 0.087

**K factor\*\*=** 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 29.5 3.384 4/22/2002 29.8 3.395 7/15/2002 25.3 3.231 10/8/2002 21.9 3.086 20.9 3.040 1/8/2003 4/3/2003 22.2 3.100 7/8/2003 22.9 3.131 10/6/2003 21.7 3.077 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 41.5 3.726 4/23/2002 43.6 3.775 3.699 7/16/2002 40.4 10/8/2002 38.8 3.658 1/7/2003 41.1 3.716 4/2/2003 42.9 3.759 7/9/2003 35.1 3.558 10/7/2003 46.6 3.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data    |           |        |                   |            |                   |
|----------|-----------------|-----------|--------|-------------------|------------|-------------------|
| Well No. | Gradient        | Detected? | Result | Result $>$ TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357    | Downgradient    | Yes       | 25.2   | NO                | 3.227      | N/A               |
| MW360    | Downgradient    | Yes       | 19.6   | NO                | 2.976      | N/A               |
| MW363    | Downgradient    | Yes       | 30     | NO                | 3.401      | N/A               |
| MW366    | Downgradient    | Yes       | 28.4   | NO                | 3.346      | N/A               |
| MW369    | Upgradient      | Yes       | 16.3   | NO                | 2.791      | N/A               |
| MW372    | Upgradient      | Yes       | 67     | YES               | 4.205      | N/A               |
| 3.7/4 D  | 1, 11, 10, 1, 3 | T D       |        |                   | 1.7        |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-32

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**X**= 35.938 **S**= 3.750 CV(1)=0.104**K factor\*\*=** 2.523 TL(1) = 45.399Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background X**= 3.578 **S**= 0.089

Data

CV(2) = 0.025

**K factor\*\*=** 2.523

TL(2) = 3.803

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35 3.555 4/22/2002 35 3.555 7/15/2002 35 3.555 10/8/2002 50 3.912 1/8/2003 35 3.555 4/3/2003 35 3.555 7/8/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 35 3.555 4/23/2002 35 3.555 7/16/2002 35 3.555 10/8/2002 35 3.555 1/7/2003 35 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357    | Downgradient | Yes       | 9.07   | NO             | 2.205      | N/A               |
| MW360    | Downgradient | No        | 20     | N/A            | 2.996      | N/A               |
| MW363    | Downgradient | Yes       | 12.6   | NO             | 2.534      | N/A               |
| MW366    | Downgradient | Yes       | 20.3   | NO             | 3.011      | N/A               |
| MW369    | Upgradient   | Yes       | 16.7   | NO             | 2.815      | N/A               |
| MW372    | Upgradient   | Yes       | 13.1   | NO             | 2.573      | N/A               |
| 3.7/4 B  | 1 11 10 1    | · -       |        |                | 4 . 4.4    |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison Chloride** UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 44.119 **S**= 4.554

CV(1)=0.103

**K factor\*\*=** 2.523

TL(1) = 55.607

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.782 S = 0.099

CV(2) = 0.026

**K factor\*\*=** 2.523

TL(2) = 4.033

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                 | MW369                         |                                           |
|------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|
| Date Collected                                                               | Result                        | LN(Result)                                |
| 7/15/2002                                                                    | 48.3                          | 3.877                                     |
| 10/8/2002                                                                    | 47.7                          | 3.865                                     |
| 1/8/2003                                                                     | 45.7                          | 3.822                                     |
| 4/3/2003                                                                     | 47.4                          | 3.859                                     |
| 7/8/2003                                                                     | 55.9                          | 4.024                                     |
| 10/6/2003                                                                    | 47.4                          | 3.859                                     |
| 1/7/2004                                                                     | 45.5                          | 3.818                                     |
| 4/7/2004                                                                     | 43.4                          | 3.770                                     |
|                                                                              |                               |                                           |
| Well Number:                                                                 | MW372                         |                                           |
| Well Number: Date Collected                                                  | MW372<br>Result               | LN(Result)                                |
|                                                                              |                               | LN(Result)<br>3.684                       |
| Date Collected                                                               | Result                        |                                           |
| Date Collected 7/16/2002                                                     | Result<br>39.8                | 3.684                                     |
| Date Collected 7/16/2002 10/8/2002                                           | Result 39.8 41                | 3.684<br>3.714                            |
| Date Collected<br>7/16/2002<br>10/8/2002<br>1/7/2003                         | Result 39.8 41 39.4           | 3.684<br>3.714<br>3.674                   |
| Date Collected<br>7/16/2002<br>10/8/2002<br>1/7/2003<br>4/2/2003             | Result 39.8 41 39.4 39.2      | 3.684<br>3.714<br>3.674<br>3.669          |
| Date Collected<br>7/16/2002<br>10/8/2002<br>1/7/2003<br>4/2/2003<br>7/9/2003 | Result 39.8 41 39.4 39.2 39.8 | 3.684<br>3.714<br>3.674<br>3.669<br>3.684 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357    | Downgradient | Yes       | 30.9   | NO             | 3.431      | N/A               |
| MW360    | Downgradient | Yes       | 10.4   | NO             | 2.342      | N/A               |
| MW363    | Downgradient | Yes       | 35.4   | NO             | 3.567      | N/A               |
| MW366    | Downgradient | Yes       | 32.3   | NO             | 3.475      | N/A               |
| MW369    | Upgradient   | Yes       | 28     | NO             | 3.332      | N/A               |
| MW372    | Upgradient   | Yes       | 38.2   | NO             | 3.643      | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 0.025 **S**= 0.021 **CV(1)**= 0.845

**K factor\*\*=** 2.523

**TL(1)=** 0.077 **LL(1)=**N/A

Statistics-Transformed Background Data

**X**= -4.090 **S**= 1.006

CV(2) = -0.246

**K factor\*\*=** 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.00938 -4.6690.00548 -5.2071/8/2003 4/3/2003 0.00587 -5.1387/8/2003 0.0541 -2.91710/6/2003 0.0689 -2.675Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.025 -3.689 4/23/2002 0.025 -3.689 0.025 7/16/2002 -3.68910/8/2002 0.00158 -6.4501/7/2003 0.0147-4.220-4.457 4/2/2003 0.0116 7/9/2003 0.0653 -2.7290.00788 -4.843 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |          |                |            |                   |
|----------|--------------|-----------|----------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result   | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357    | Downgradient | No        | 0.001    | N/A            | -6.908     | N/A               |
| MW360    | Downgradient | Yes       | 0.0017   | NO             | -6.377     | N/A               |
| MW363    | Downgradient | Yes       | 0.000949 | 9 NO           | -6.960     | N/A               |
| MW366    | Downgradient | No        | 0.001    | N/A            | -6.908     | N/A               |
| MW369    | Upgradient   | Yes       | 0.004    | NO             | -5.521     | N/A               |
| MW372    | Upgradient   | No        | 0.001    | N/A            | -6.908     | N/A               |
|          |              |           |          |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-35

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW372 Upgradient

Statistics-Background Data

X = 482.856 S = 57.603 CV(1) = 0.119

**K factor\*\*=** 2.523

TL(1)= 628.189 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 6.173 S = 0.123 CV(2) = 0.020

**K factor\*\*=** 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW369                        |                                           |
|--------------------------------------------------------------------------------|------------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                       | LN(Result)                                |
| 3/18/2002                                                                      | 388                          | 5.961                                     |
| 4/22/2002                                                                      | 404                          | 6.001                                     |
| 7/15/2002                                                                      | 394                          | 5.976                                     |
| 10/8/2002                                                                      | 403                          | 5.999                                     |
| 1/8/2003                                                                       | 520                          | 6.254                                     |
| 4/3/2003                                                                       | 487                          | 6.188                                     |
| 7/8/2003                                                                       | 478                          | 6.170                                     |
| 10/6/2003                                                                      | 476                          | 6.165                                     |
|                                                                                |                              |                                           |
| Well Number:                                                                   | MW372                        |                                           |
| Well Number: Date Collected                                                    | MW372<br>Result              | LN(Result)                                |
|                                                                                |                              | LN(Result)<br>6.230                       |
| Date Collected                                                                 | Result                       |                                           |
| Date Collected 3/19/2002                                                       | Result<br>508                | 6.230                                     |
| Date Collected 3/19/2002 4/23/2002                                             | Result 508 501               | 6.230<br>6.217                            |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002                          | Result 508 501 507           | 6.230<br>6.217<br>6.229                   |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 508 501 507 495       | 6.230<br>6.217<br>6.229<br>6.205          |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 508 501 507 495 508.7 | 6.230<br>6.217<br>6.229<br>6.205<br>6.232 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

6.623

MW372

| Current Quarter Data |          |              |           |        |                |            |                   |
|----------------------|----------|--------------|-----------|--------|----------------|------------|-------------------|
|                      | Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|                      | MW357    | Downgradient | Yes       | 418    | NO             | 6.035      | N/A               |
|                      | MW360    | Downgradient | Yes       | 389    | NO             | 5.964      | N/A               |
|                      | MW363    | Downgradient | Yes       | 469    | NO             | 6.151      | N/A               |
|                      | MW366    | Downgradient | Yes       | 434    | NO             | 6.073      | N/A               |
|                      | MW369    | Upgradient   | Yes       | 359    | NO             | 5.883      | N/A               |
|                      |          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

YES

752

## **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L URGA Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025

S = 0.010

CV(1)=0.400

**K** factor\*\*= 2.523

TL(1) = 0.050

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -3.742 S = 0.307 CV(2) = -0.082

**K factor\*\*=** 2.523

TL(2) = -2.967

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW369                                            |                                                |
|--------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|
| Date Collected                                                                 | Result                                           | LN(Result)                                     |
| 3/18/2002                                                                      | 0.025                                            | -3.689                                         |
| 4/22/2002                                                                      | 0.025                                            | -3.689                                         |
| 7/15/2002                                                                      | 0.05                                             | -2.996                                         |
| 10/8/2002                                                                      | 0.02                                             | -3.912                                         |
| 1/8/2003                                                                       | 0.02                                             | -3.912                                         |
| 4/3/2003                                                                       | 0.02                                             | -3.912                                         |
| 7/8/2003                                                                       | 0.02                                             | -3.912                                         |
| 10/6/2003                                                                      | 0.02                                             | -3.912                                         |
|                                                                                |                                                  |                                                |
| Well Number:                                                                   | MW372                                            |                                                |
| Well Number: Date Collected                                                    | MW372<br>Result                                  | LN(Result)                                     |
|                                                                                |                                                  | LN(Result)                                     |
| Date Collected                                                                 | Result                                           |                                                |
| Date Collected 3/19/2002                                                       | Result<br>0.025                                  | -3.689                                         |
| Date Collected 3/19/2002 4/23/2002                                             | Result 0.025 0.025                               | -3.689<br>-3.689                               |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002                          | Result 0.025 0.025 0.05                          | -3.689<br>-3.689<br>-2.996                     |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 0.025 0.025 0.05 0.02                     | -3.689<br>-3.689<br>-2.996<br>-3.912           |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result<br>0.025<br>0.025<br>0.05<br>0.02<br>0.02 | -3.689<br>-3.689<br>-2.996<br>-3.912<br>-3.912 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |          |                |            |                   |
|----------------------|--------------|-----------|----------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result R | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 0.000454 | NO             | -7.697     | N/A               |
| MW360                | Downgradient | Yes       | 0.00123  | NO             | -6.701     | N/A               |
| MW363                | Downgradient | Yes       | 0.000653 | NO             | -7.334     | N/A               |
| MW366                | Downgradient | Yes       | 0.000817 | NO             | -7.110     | N/A               |
| MW369                | Upgradient   | Yes       | 0.00122  | NO             | -6.709     | N/A               |
| MW372                | Upgradient   | Yes       | 0.00182  | NO             | -6.309     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-37

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.781 S= 1.351 CV(1)=0.759 K factor\*\*= 2.523 TL(1)=5.190 LL(1)=N/A 

 Statistics-Transformed Background Data
 X= 0.228 S= 1.065 CV(2)=4.665 K factor\*\*= 2.523 TL(2)=2.915 LL(2)=N/A

Historical Background Data from

**Upgradient Wells with Transformed Result** 

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Well Number:                                                       | MW369                          |                                             |
|--------------------------------------------------------------------|--------------------------------|---------------------------------------------|
| Date Collected                                                     | Result                         | LN(Result)                                  |
| 3/18/2002                                                          | 5.41                           | 1.688                                       |
| 4/22/2002                                                          | 1.57                           | 0.451                                       |
| 7/15/2002                                                          | 0.8                            | -0.223                                      |
| 10/8/2002                                                          | 1.09                           | 0.086                                       |
| 1/8/2003                                                           | 2.69                           | 0.990                                       |
| 4/3/2003                                                           | 2.04                           | 0.713                                       |
| 7/8/2003                                                           | 1.19                           | 0.174                                       |
| 10/6/2003                                                          | 1.78                           | 0.577                                       |
|                                                                    |                                |                                             |
| Well Number:                                                       | MW372                          |                                             |
| Well Number:  Date Collected                                       | MW372<br>Result                | LN(Result)                                  |
|                                                                    |                                | LN(Result)                                  |
| Date Collected                                                     | Result                         | ,                                           |
| Date Collected 3/19/2002                                           | Result<br>3.89                 | 1.358                                       |
| Date Collected 3/19/2002 4/23/2002                                 | Result 3.89 0.05               | 1.358<br>-2.996                             |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002              | Result 3.89 0.05 1.33          | 1.358<br>-2.996<br>0.285                    |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002 | Result 3.89 0.05 1.33 2.66     | 1.358<br>-2.996<br>0.285<br>0.978           |
| Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003    | Result 3.89 0.05 1.33 2.66 0.4 | 1.358<br>-2.996<br>0.285<br>0.978<br>-0.916 |

landfill.

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 5.19   | YES            | 1.647      | N/A               |
| MW360                | Downgradient | Yes       | 3.07   | NO             | 1.122      | N/A               |
| MW363                | Downgradient | Yes       | 1.86   | NO             | 0.621      | N/A               |
| MW366                | Downgradient | Yes       | 4.15   | NO             | 1.423      | N/A               |
| MW369                | Upgradient   | Yes       | 2.64   | NO             | 0.971      | N/A               |
| MW372                | Upgradient   | Yes       | 3.1    | NO             | 1.131      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

MW357

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-38

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 285.188 **S**= 44.908 **CV(1)**=0.157

**K factor\*\*=** 2.523

TL(1)= 398.489 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

**K factor\*\*=** 2.523

**TL(2)=** 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                   | MW369                      |                                           |
|--------------------------------------------------------------------------------|----------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                     | LN(Result)                                |
| 3/18/2002                                                                      | 173                        | 5.153                                     |
| 4/22/2002                                                                      | 246                        | 5.505                                     |
| 7/15/2002                                                                      | 232                        | 5.447                                     |
| 10/8/2002                                                                      | 275                        | 5.617                                     |
| 1/8/2003                                                                       | 269                        | 5.595                                     |
| 4/3/2003                                                                       | 250                        | 5.521                                     |
| 7/8/2003                                                                       | 295                        | 5.687                                     |
| 10/6/2003                                                                      | 276                        | 5.620                                     |
|                                                                                |                            |                                           |
| Well Number:                                                                   | MW372                      |                                           |
| Well Number:  Date Collected                                                   | MW372<br>Result            | LN(Result)                                |
|                                                                                |                            | LN(Result)<br>5.687                       |
| Date Collected                                                                 | Result                     | ` ′                                       |
| Date Collected 3/19/2002                                                       | Result<br>295              | 5.687                                     |
| Date Collected 3/19/2002 4/23/2002                                             | Result 295 322             | 5.687<br>5.775                            |
| Date Collected 3/19/2002 4/23/2002 7/16/2002                                   | Result 295 322 329         | 5.687<br>5.775<br>5.796                   |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 295 322 329 290     | 5.687<br>5.775<br>5.796<br>5.670          |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 295 322 329 290 316 | 5.687<br>5.775<br>5.796<br>5.670<br>5.756 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 214    | NO             | 5.366      | N/A               |
| MW360                | Downgradient | Yes       | 214    | NO             | 5.366      | N/A               |
| MW363                | Downgradient | Yes       | 251    | NO             | 5.525      | N/A               |
| MW366                | Downgradient | Yes       | 244    | NO             | 5.497      | N/A               |
| MW369                | Upgradient   | Yes       | 200    | NO             | 5.298      | N/A               |
| MW372                | Upgradient   | Yes       | 506    | YES            | 6.227      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-39

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.385
 S= 6.991
 CV(1)=0.947
 K factor\*\*= 2.523
 TL(1)= 25.024
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.358
 S= 1.323
 CV(2)=0.974
 K factor\*\*= 2.523
 TL(2)= 4.697
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.4224/22/2002 0.695 -0.3647/15/2002 1.960 7.1 10/8/2002 21.5 3.068 2.918 1/8/2003 18.5 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 0.733 10/7/2003 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | No        | 0.1    | N/A            | -2.303     | N/A               |
| MW360                | Downgradient | Yes       | 0.229  | NO             | -1.474     | N/A               |
| MW363                | Downgradient | Yes       | 0.0503 | NO             | -2.990     | N/A               |
| MW366                | Downgradient | No        | 0.1    | N/A            | -2.303     | N/A               |
| MW369                | Upgradient   | Yes       | 0.0692 | NO             | -2.671     | N/A               |
| MW372                | Upgradient   | No        | 0.1    | N/A            | -2.303     | N/A               |
|                      |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 12.864 S = 3.505

CV(1)=0.272

**K factor\*\*=** 2.523

TL(1)=21.707

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 2.517 S = 0.290 CV(2) = 0.115

**K factor\*\*=** 2.523

TL(2) = 3.248

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW369                                          |                                           |
|--------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                                         | LN(Result)                                |
| 3/18/2002                                                                      | 11.4                                           | 2.434                                     |
| 4/22/2002                                                                      | 12                                             | 2.485                                     |
| 7/15/2002                                                                      | 10                                             | 2.303                                     |
| 10/8/2002                                                                      | 8.62                                           | 2.154                                     |
| 1/8/2003                                                                       | 7.89                                           | 2.066                                     |
| 4/3/2003                                                                       | 7.97                                           | 2.076                                     |
| 7/8/2003                                                                       | 10.3                                           | 2.332                                     |
| 10/6/2003                                                                      | 9.14                                           | 2.213                                     |
|                                                                                |                                                |                                           |
| Well Number:                                                                   | MW372                                          |                                           |
| Well Number: Date Collected                                                    | MW372<br>Result                                | LN(Result)                                |
|                                                                                |                                                | LN(Result)<br>2.754                       |
| Date Collected                                                                 | Result                                         |                                           |
| Date Collected 3/19/2002                                                       | Result<br>15.7                                 | 2.754                                     |
| Date Collected 3/19/2002 4/23/2002                                             | Result 15.7 16.6                               | 2.754<br>2.809                            |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002                          | Result<br>15.7<br>16.6<br>15.4                 | 2.754<br>2.809<br>2.734                   |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result<br>15.7<br>16.6<br>15.4<br>15.8         | 2.754<br>2.809<br>2.734<br>2.760          |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result<br>15.7<br>16.6<br>15.4<br>15.8<br>15.8 | 2.754<br>2.809<br>2.734<br>2.760<br>2.760 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 10.7   | NO             | 2.370      | N/A               |
| MW360                | Downgradient | Yes       | 8.27   | NO             | 2.113      | N/A               |
| MW363                | Downgradient | Yes       | 11.7   | NO             | 2.460      | N/A               |
| MW366                | Downgradient | Yes       | 11.9   | NO             | 2.477      | N/A               |
| MW369                | Upgradient   | Yes       | 6.84   | NO             | 1.923      | N/A               |
| MW372                | Upgradient   | Yes       | 22.8   | YES            | 3.127      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.664**K factor\*\*=** 2.523 Statistics-Background Data X = 0.413S = 0.274TL(1)=1.105LL(1)=N/A **Statistics-Transformed Background** 

Data

X = -1.226 S = 1.008CV(2) = -0.822 **K factor\*\*=** 2.523

TL(2) = 1.317

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.034 -3.3814/22/2002 0.062 -2.7817/15/2002 0.436 -0.83010/8/2002 0.867-0.143 -0.1891/8/2003 0.828 4/3/2003 0.672 -0.3977/8/2003 0.321 -1.136 10/6/2003 0.714 -0.337Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.205 -1.585 4/23/2002 0.345 -1.0647/16/2002 0.21 -1.56110/8/2002 0.0539 -2.921 1/7/2003 0.537 -0.622-0.879 4/2/2003 0.415 7/9/2003 0.654 -0.425-1.37010/7/2003 0.254

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |         |                |            |                   |
|----------------------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 0.0032  | NO             | -5.745     | N/A               |
| MW360                | Downgradient | Yes       | 0.016   | NO             | -4.135     | N/A               |
| MW363                | Downgradient | Yes       | 0.123   | NO             | -2.096     | N/A               |
| MW366                | Downgradient | No        | 0.005   | N/A            | -5.298     | N/A               |
| MW369                | Upgradient   | Yes       | 0.00494 | NO             | -5.310     | N/A               |
| MW372                | Upgradient   | No        | 0.005   | N/A            | -5.298     | N/A               |
|                      |              |           |         |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 5.438
 S= 1.931
 CV(1)=0.355
 K factor\*\*= 2.523
 TL(1)= 10.310
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.639
 S= 0.345
 CV(2)=0.211
 K factor\*\*= 2.523
 TL(2)= 2.510
 LL(2)=N/A

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Historical Background Data from                 |
|-------------------------------------------------|
| <b>Upgradient Wells with Transformed Result</b> |
|                                                 |

| Well Number:                                                       | MW369               |                                  |
|--------------------------------------------------------------------|---------------------|----------------------------------|
| Date Collected                                                     | Result              | LN(Result)                       |
| 3/18/2002                                                          | 2                   | 0.693                            |
| 4/22/2002                                                          | 5                   | 1.609                            |
| 7/15/2002                                                          | 10                  | 2.303                            |
| 10/8/2002                                                          | 5                   | 1.609                            |
| 1/8/2003                                                           | 5                   | 1.609                            |
| 4/3/2003                                                           | 5                   | 1.609                            |
| 7/8/2003                                                           | 5                   | 1.609                            |
| 10/6/2003                                                          | 5                   | 1.609                            |
|                                                                    |                     |                                  |
| Well Number:                                                       | MW372               |                                  |
| Well Number:  Date Collected                                       | MW372<br>Result     | LN(Result)                       |
|                                                                    |                     | LN(Result)<br>1.609              |
| Date Collected                                                     | Result              |                                  |
| Date Collected 3/19/2002                                           | Result 5            | 1.609                            |
| Date Collected 3/19/2002 4/23/2002                                 | Result 5            | 1.609<br>1.609                   |
| Date Collected 3/19/2002 4/23/2002 7/16/2002                       | Result 5 5 10       | 1.609<br>1.609<br>2.303          |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002 | Result 5 5 10 5     | 1.609<br>1.609<br>2.303<br>1.609 |
| Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003    | Result 5 5 10 5 5 5 | 1.609<br>1.609<br>2.303<br>1.609 |

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 0.58   | NO             | -0.545     | N/A               |
| MW360                | Downgradient | Yes       | 0.56   | NO             | -0.580     | N/A               |
| MW363                | Downgradient | Yes       | 0.54   | NO             | -0.616     | N/A               |
| MW366                | Downgradient | No        | 5      | N/A            | 1.609      | N/A               |
| MW369                | Upgradient   | No        | 5      | N/A            | 1.609      | N/A               |
| MW372                | Upgradient   | No        | 0.71   | N/A            | -0.342     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-43

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

CV(1)=0.910X = 0.024S = 0.021

**K** factor\*\*= 2.523

TL(1) = 0.078LL(1)=N/A

**Statistics-Transformed Background** Data

X = -4.246 S = 1.075 CV(2) = -0.253

**K factor\*\*=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW369  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 3/18/2002      | 0.05   | -2.996     |
| 4/22/2002      | 0.05   | -2.996     |
| 7/15/2002      | 0.05   | -2.996     |
| 10/8/2002      | 0.005  | -5.298     |
| 1/8/2003       | 0.005  | -5.298     |
| 4/3/2003       | 0.005  | -5.298     |
| 7/8/2003       | 0.013  | -4.343     |
| 10/6/2003      | 0.0104 | -4.566     |
| Well Number:   | MW372  |            |
| Date Collected | Result | LN(Result) |
| 3/19/2002      | 0.05   | -2.996     |
| 4/23/2002      | 0.05   | -2.996     |
| 7/16/2002      | 0.05   | -2.996     |
| 10/8/2002      | 0.005  | -5.298     |
| 1/7/2003       | 0.005  | -5.298     |
| 4/2/2003       | 0.005  | -5.298     |
| 7/9/2003       | 0.019  | -3.963     |
| 10/7/2003      | 0.005  | -5.298     |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |         |                |            |                   |
|----------------------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | No        | 0.002   | N/A            | -6.215     | N/A               |
| MW360                | Downgradient | Yes       | 0.0016  | NO             | -6.438     | N/A               |
| MW363                | Downgradient | Yes       | 0.0225  | NO             | -3.794     | N/A               |
| MW366                | Downgradient | Yes       | 0.00144 | NO             | -6.543     | N/A               |
| MW369                | Upgradient   | Yes       | 0.00331 | NO             | -5.711     | N/A               |
| MW372                | Upgradient   | Yes       | 0.00357 | NO             | -5.635     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison UNITS: mV Oxidation-Reduction Potential** URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.563 S = 94.243 CV(1) = 1.264

**K factor\*\*=** 2.523

TL(1)= 312.337 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 4.554 S = 0.784 CV(2) = 0.172

**K factor\*\*=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW369                    |                                           |
|--------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                   | LN(Result)                                |
| 3/18/2002                                                                      | 215                      | 5.371                                     |
| 4/22/2002                                                                      | 110                      | 4.700                                     |
| 7/15/2002                                                                      | 20                       | 2.996                                     |
| 1/8/2003                                                                       | -5                       | #Func!                                    |
| 4/3/2003                                                                       | -18                      | #Func!                                    |
| 7/8/2003                                                                       | -67                      | #Func!                                    |
| 10/6/2003                                                                      | -1                       | #Func!                                    |
| 1/7/2004                                                                       | 55                       | 4.007                                     |
|                                                                                |                          |                                           |
| Well Number:                                                                   | MW372                    |                                           |
| Well Number: Date Collected                                                    | MW372<br>Result          | LN(Result)                                |
|                                                                                |                          | LN(Result)<br>5.347                       |
| Date Collected                                                                 | Result                   |                                           |
| Date Collected 3/19/2002                                                       | Result 210               | 5.347                                     |
| Date Collected 3/19/2002 4/23/2002                                             | Result 210 65            | 5.347<br>4.174                            |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002                          | Result 210 65 215        | 5.347<br>4.174<br>5.371                   |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 210 65 215 185    | 5.347<br>4.174<br>5.371<br>5.220          |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 210 65 215 185 45 | 5.347<br>4.174<br>5.371<br>5.220<br>3.807 |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 348    | N/A            | 5.852      | YES               |
| MW360                | Downgradient | Yes       | 384    | N/A            | 5.951      | YES               |
| MW363                | Downgradient | Yes       | 383    | N/A            | 5.948      | YES               |
| MW366                | Downgradient | Yes       | 421    | N/A            | 6.043      | YES               |
| MW369                | Upgradient   | Yes       | 392    | N/A            | 5.971      | YES               |
| MW372                | Upgradient   | Yes       | 376    | N/A            | 5.930      | YES               |
| 3.7/4 B              |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

| Wells | with | Exceedances |
|-------|------|-------------|
|-------|------|-------------|

MW357 MW360 MW363

MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.274 S = 0.194 CV(1) = 0.031 K factor\*\*= 2.904
 TL(1) = 6.837 LL(1) = 5.7114 

 Statistics-Transformed Background Data
 X = 1.836 X = 0.031 X = 0.031</th

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 1.808 6.1 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |             |           |        |                                                                                                                                              |            |                                                            |  |
|----------------------|-------------|-----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------|--|
| Well No.             | Gradient    | Detected? | Result | Result >TL(1)?<br>Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) &gt;TL(2)?<br/>LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<> | LN(Result) | LN(Result) >TL(2)?<br>LN(Result) <ll(2)?< th=""></ll(2)?<> |  |
| MW357                | Downgradien | t Yes     | 6.09   | NO                                                                                                                                           | 1.807      | N/A                                                        |  |
| MW360                | Downgradien | t Yes     | 6.11   | NO                                                                                                                                           | 1.810      | N/A                                                        |  |
| MW363                | Downgradien | t Yes     | 6.11   | NO                                                                                                                                           | 1.810      | N/A                                                        |  |
| MW366                | Downgradien | t Yes     | 6.09   | NO                                                                                                                                           | 1.807      | N/A                                                        |  |
| MW369                | Upgradient  | Yes       | 6.1    | NO                                                                                                                                           | 1.808      | N/A                                                        |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

1.807

N/A

6.09

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW372 Upgradient

Yes

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-46

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.663 S= 0.488 CV(1)=0.293 K factor\*\*= 2.523 TL(1)=2.895 LL(1)=N/A 

 Statistics-Transformed Background Data
 X= 0.456 S= 0.362 CV(2)=0.794 K factor\*\*= 2.523 TL(2)=1.368 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2.21 0.793 7/15/2002 0.693 2 10/8/2002 0.966 -0.0351/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 0.693 7/16/2002 2 10/8/2002 1.54 0.432 1/7/2003 1.88 0.6314/2/2003 2.09 0.737 7/9/2003 1.78 0.577

1.79

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 1.71   | NO             | 0.536      | N/A               |
| MW360                | Downgradient | Yes       | 0.778  | NO             | -0.251     | N/A               |
| MW363                | Downgradient | Yes       | 2.18   | NO             | 0.779      | N/A               |
| MW366                | Downgradient | Yes       | 2.11   | NO             | 0.747      | N/A               |
| MW369                | Upgradient   | Yes       | 0.587  | NO             | -0.533     | N/A               |
| MW372                | Upgradient   | Yes       | 2.22   | NO             | 0.798      | N/A               |
|                      |              |           |        |                |            | _                 |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

0.582

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-47

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 45.100 S= 11.875 CV(1)=0.263 K factor\*\*= 2.523 TL(1)=75.061 LL(1)=N/A 

 Statistics-Transformed Background
 X= 3.780 S= 0.242 CV(2)=0.064 K factor\*\*= 2.523 TL(2)=4.390 LL(2)=N/A 

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 4.079 10/6/2003 59.1 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 1/7/2003 34.1 3.529 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 39.4   | NO             | 3.674      | N/A               |
| MW360                | Downgradient | Yes       | 59.6   | NO             | 4.088      | N/A               |
| MW363                | Downgradient | Yes       | 41.6   | NO             | 3.728      | N/A               |
| MW366                | Downgradient | Yes       | 46.5   | NO             | 3.839      | N/A               |
| MW369                | Upgradient   | Yes       | 53.5   | NO             | 3.980      | N/A               |
| MW372                | Upgradient   | Yes       | 64.3   | NO             | 4.164      | N/A               |
|                      |              |           |        |                |            | _                 |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-48

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.031 S = 33.919 CV(1) = 0.753

**K** factor\*\*= 2.523

TL(1)= 130.609 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.420 S = 0.981 CV(2) = 0.287

**K factor\*\*=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW369                           |                                           |
|--------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                          | LN(Result)                                |
| 3/18/2002                                                                      | 15.5                            | 2.741                                     |
| 4/22/2002                                                                      | 15.8                            | 2.760                                     |
| 7/15/2002                                                                      | 13.8                            | 2.625                                     |
| 10/8/2002                                                                      | 6.9                             | 1.932                                     |
| 1/8/2003                                                                       | 10.5                            | 2.351                                     |
| 4/3/2003                                                                       | 10.5                            | 2.351                                     |
| 7/8/2003                                                                       | 10.9                            | 2.389                                     |
| 10/6/2003                                                                      | 16.3                            | 2.791                                     |
|                                                                                |                                 |                                           |
| Well Number:                                                                   | MW372                           |                                           |
| Well Number:  Date Collected                                                   | MW372<br>Result                 | LN(Result)                                |
|                                                                                |                                 | LN(Result)<br>4.272                       |
| Date Collected                                                                 | Result                          |                                           |
| Date Collected 3/19/2002                                                       | Result 71.7                     | 4.272                                     |
| Date Collected 3/19/2002 4/23/2002                                             | Result 71.7 74.7                | 4.272<br>4.313                            |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002                          | Result 71.7 74.7 74.1           | 4.272<br>4.313<br>4.305                   |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 71.7 74.7 74.1 70.5      | 4.272<br>4.313<br>4.305<br>4.256          |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 71.7 74.7 74.1 70.5 75.8 | 4.272<br>4.313<br>4.305<br>4.256<br>4.328 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 37.3   | NO             | 3.619      | N/A               |
| MW360                | Downgradient | Yes       | 14.8   | NO             | 2.695      | N/A               |
| MW363                | Downgradient | Yes       | 24.7   | NO             | 3.207      | N/A               |
| MW366                | Downgradient | Yes       | 37.6   | NO             | 3.627      | N/A               |
| MW369                | Upgradient   | Yes       | 7.8    | NO             | 2.054      | N/A               |
| MW372                | Upgradient   | Yes       | 145    | YES            | 4.977      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.821 S = 18.044 CV(1) = 0.867

**K** factor\*\*= 2.523

TL(1)= 66.344

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 2.770 S = 1.150 CV(2) = 0.415

**K factor\*\*=** 2.523

TL(2) = 3.972

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW369                              |                                             |  |
|--------------------------------------------------------------------------------|------------------------------------|---------------------------------------------|--|
| Date Collected                                                                 | Result                             | LN(Result)                                  |  |
| 3/18/2002                                                                      | 41.7                               | 3.731                                       |  |
| 4/22/2002                                                                      | 53.1                               | 3.972                                       |  |
| 7/15/2002                                                                      | 18.1                               | 2.896                                       |  |
| 10/8/2002                                                                      | 16.4                               | 2.797                                       |  |
| 1/8/2003                                                                       | 3.49                               | 1.250                                       |  |
| 4/3/2003                                                                       | 9.34                               | 2.234                                       |  |
| 7/8/2003                                                                       | 17.5                               | 2.862                                       |  |
| 10/6/2003                                                                      | 17                                 | 2.833                                       |  |
|                                                                                |                                    |                                             |  |
| Well Number:                                                                   | MW372                              |                                             |  |
| Well Number: Date Collected                                                    | MW372<br>Result                    | LN(Result)                                  |  |
|                                                                                |                                    | LN(Result)<br>3.802                         |  |
| Date Collected                                                                 | Result                             |                                             |  |
| Date Collected 3/19/2002                                                       | Result<br>44.8                     | 3.802                                       |  |
| Date Collected 3/19/2002 4/23/2002                                             | Result 44.8 0.802                  | 3.802<br>-0.221                             |  |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002                          | Result<br>44.8<br>0.802<br>19.8    | 3.802<br>-0.221<br>2.986                    |  |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 44.8 0.802 19.8 46.1        | 3.802<br>-0.221<br>2.986<br>3.831           |  |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 44.8 0.802 19.8 46.1 -0.973 | 3.802<br>-0.221<br>2.986<br>3.831<br>#Func! |  |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

**#Because the natural log was not** possbile for all background values, the TL was considered equal to the maximum background value.

| Current Quarter Data |                 |           |        |                |            |                   |
|----------------------|-----------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient        | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient    | Yes       | 31     | NO             | 3.434      | N/A               |
| MW360                | Downgradient    | No        | 12.4   | N/A            | 2.518      | N/A               |
| MW363                | Downgradient    | No        | 3.38   | N/A            | 1.218      | N/A               |
| MW366                | Downgradient    | Yes       | 67.9   | YES            | 4.218      | N/A               |
| MW369                | Upgradient      | Yes       | 52.8   | NO             | 3.967      | N/A               |
| MW372                | Upgradient      | Yes       | 47.6   | NO             | 3.863      | N/A               |
| 3.T/A D              | 1, 11, 10, 1, 3 | T         |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

MW366

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.513
 S= 4.307
 CV(1)=1.226 K factor\*\*= 2.523
 TL(1)=14.378 LL(1)=N/A 

 Statistics-Transformed Background
 X= 0.851
 S= 0.828
 CV(2)=0.973 K factor\*\*= 2.523
 TL(2)=2.940 LL(2)=N/A 

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 9 1/8/2003 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.0004/23/2002 1.2 0.182 0.000 7/16/2002 1 10/8/2002 1 0.000 1/7/2003 1.6 0.4704/2/2003 1.5 0.405 7/9/2003 3 1.099 10/7/2003 1.5 0.405

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357                | Downgradient | Yes       | 0.582  | N/A            | -0.541     | NO                |
| MW360                | Downgradient | Yes       | 1.11   | N/A            | 0.104      | NO                |
| MW363                | Downgradient | Yes       | 0.668  | N/A            | -0.403     | NO                |
| MW366                | Downgradient | Yes       | 0.577  | N/A            | -0.550     | NO                |
| MW369                | Upgradient   | Yes       | 0.953  | N/A            | -0.048     | NO                |
| MW372                | Upgradient   | Yes       | 0.846  | N/A            | -0.167     | NO                |
| 3.7/4 B              | 1. 11 1      |           |        |                | 4 . 4.4    |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Total Organic Halides (TOX) UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

**K** factor\*\*= 2.523

TL(1)= 230.231 LL(1)=N/A

**Statistics-Transformed Background** Data

X=3.772 S=1.023 CV(2)=0.271

**K factor\*\*=** 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW369                                 |                                           |
|--------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                                | LN(Result)                                |
| 3/18/2002                                                                      | 50                                    | 3.912                                     |
| 4/22/2002                                                                      | 50                                    | 3.912                                     |
| 7/15/2002                                                                      | 81                                    | 4.394                                     |
| 10/8/2002                                                                      | 202                                   | 5.308                                     |
| 1/8/2003                                                                       | 177                                   | 5.176                                     |
| 4/3/2003                                                                       | 93.1                                  | 4.534                                     |
| 7/8/2003                                                                       | 17.5                                  | 2.862                                     |
| 10/6/2003                                                                      | 37.5                                  | 3.624                                     |
|                                                                                |                                       |                                           |
| Well Number:                                                                   | MW372                                 |                                           |
| Well Number:  Date Collected                                                   | MW372<br>Result                       | LN(Result)                                |
|                                                                                |                                       | LN(Result)<br>5.215                       |
| Date Collected                                                                 | Result                                | , ,                                       |
| Date Collected 3/19/2002                                                       | Result<br>184                         | 5.215                                     |
| Date Collected 3/19/2002 4/23/2002                                             | Result<br>184<br>50                   | 5.215<br>3.912                            |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002                          | Result 184 50 50                      | 5.215<br>3.912<br>3.912                   |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result<br>184<br>50<br>50<br>50       | 5.215<br>3.912<br>3.912<br>3.912          |
| Date Collected<br>3/19/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result<br>184<br>50<br>50<br>50<br>10 | 5.215<br>3.912<br>3.912<br>3.912<br>2.303 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |          |              |           |        |                |            |                   |
|----------------------|----------|--------------|-----------|--------|----------------|------------|-------------------|
|                      | Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| ,                    | MW357    | Downgradient | Yes       | 7.72   | NO             | 2.044      | N/A               |
|                      | MW360    | Downgradient | Yes       | 5.56   | NO             | 1.716      | N/A               |
|                      | MW363    | Downgradient | Yes       | 6.9    | NO             | 1.932      | N/A               |
|                      | MW366    | Downgradient | Yes       | 4.86   | NO             | 1.581      | N/A               |
|                      | MW369    | Upgradient   | Yes       | 21.2   | NO             | 3.054      | N/A               |
|                      | MW372    | Upgradient   | Yes       | 5.98   | NO             | 1.788      | N/A               |
|                      |          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.006CV(1)=0.259**K factor\*\*=** 2.523 TL(1) = 0.039**Statistics-Background Data** X = 0.024LL(1)=N/A **Statistics-Transformed Background** X = -3.771 S = 0.223CV(2) = -0.059**K factor\*\*=** 2.523 TL(2) = -3.208LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.689 4/22/2002 0.027 -3.6127/15/2002 0.025 -3.689 10/8/2002 0.02 -3.912 0.02 -3.9121/8/2003 4/3/2003 0.02 -3.9127/8/2003 0.02 -3.912-3.91210/6/2003 0.02 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.039 -3.2444/23/2002 0.037 -3.2970.025 7/16/2002 -3.68910/8/2002 0.02 -3.912 1/7/2003 0.02-3.912 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912-3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |         |                |            |                   |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357    | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW360    | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW363    | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW366    | Downgradient | Yes       | 0.00483 | 3 NO           | -5.333     | N/A               |
| MW369    | Upgradient   | Yes       | 0.00406 | 5 NO           | -5.507     | N/A               |
| MW372    | Upgradient   | No        | 0.02    | N/A            | -3.912     | N/A               |
|          |              |           |         |                |            | _                 |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

S = 0.173CV(1)=1.490X = 0.116

**K** factor\*\*= 2.523

TL(1) = 0.552

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -2.729 S = 1.014 CV(2) = -0.371

**K factor\*\*=** 2.523

TL(2) = -0.172

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 -2.3030.1 4/22/2002 0.1 -2.3037/15/2002 -2.3030.1 10/8/2002 0.025 -3.689 0.035 -3.3521/8/2003 4/3/2003 0.035 -3.3527/8/2003 0.02 -3.91210/6/2003 0.02 -3.912Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.725 -0.3224/23/2002 0.1 -2.303-2.3037/16/2002 0.1 10/8/2002 0.025 -3.6891/7/2003 0.035-3.352 0.035 4/2/2003 -3.3527/9/2003 0.2 -1.6090.2 -1.609 10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |         |                |            |                   |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW357    | Downgradient | Yes       | 0.0035  | N/A            | -5.655     | NO                |
| MW360    | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW363    | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW366    | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW369    | Upgradient   | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW372    | Upgradient   | Yes       | 0.00973 | 3 N/A          | -4.633     | NO                |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

CV(1)=2.777X = 2.026S = 5.626

**K** factor\*\*= 2.523

TL(1)= 16.219 LL(1)=N/A

**Statistics-Transformed Background** Data

X = -0.803 S = 1.380 CV(2) = -1.718

**K factor\*\*=** 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW370                              |                                                            |
|--------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------|
| Date Collected                                                                 | Result                             | LN(Result)                                                 |
| 3/17/2002                                                                      | 4.66                               | 1.539                                                      |
| 4/23/2002                                                                      | 0.2                                | -1.609                                                     |
| 7/15/2002                                                                      | 0.2                                | -1.609                                                     |
| 10/8/2002                                                                      | 0.2                                | -1.609                                                     |
| 1/8/2003                                                                       | 0.2                                | -1.609                                                     |
| 4/3/2003                                                                       | 0.2                                | -1.609                                                     |
| 7/9/2003                                                                       | 0.2                                | -1.609                                                     |
| 10/6/2003                                                                      | 0.2                                | -1.609                                                     |
|                                                                                |                                    |                                                            |
| Well Number:                                                                   | MW373                              |                                                            |
| Well Number: Date Collected                                                    | MW373<br>Result                    | LN(Result)                                                 |
|                                                                                |                                    |                                                            |
| Date Collected                                                                 | Result                             | LN(Result)                                                 |
| Date Collected 3/18/2002                                                       | Result 22.7                        | LN(Result)<br>3.122                                        |
| Date Collected 3/18/2002 4/23/2002                                             | Result 22.7 1.46                   | LN(Result)<br>3.122<br>0.378                               |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002                          | Result 22.7 1.46 0.253             | LN(Result)<br>3.122<br>0.378<br>-1.374                     |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 22.7 1.46 0.253 0.482       | LN(Result)<br>3.122<br>0.378<br>-1.374<br>-0.730           |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 22.7 1.46 0.253 0.482 0.608 | LN(Result)<br>3.122<br>0.378<br>-1.374<br>-0.730<br>-0.498 |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 0.0815 | N/A            | -2.507     | NO                |
| MW361    | Downgradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW364    | Downgradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW367    | Downgradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW370    | Upgradient   | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW373    | Upgradient   | No        | 0.05   | N/A            | -2.996     | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.140
 S= 0.780
 CV(1)=0.684
 K factor\*\*= 2.523
 TL(1)= 3.108
 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.235
 S= 1.006
 CV(2)=-4.287
 K factor\*\*= 2.523
 TL(2)= 2.303
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 2. 4/23/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 0.693 7/16/2002 2 10/8/2002 0.79 -0.2361/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 1.28 0.247 0.215 10/7/2003 1.24

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 0.113  | NO             | -2.180     | N/A               |
| MW361    | Downgradient | Yes       | 0.132  | NO             | -2.025     | N/A               |
| MW364    | Downgradient | Yes       | 0.0901 | NO             | -2.407     | N/A               |
| MW367    | Downgradient | Yes       | 0.0188 | NO             | -3.974     | N/A               |
| MW370    | Upgradient   | Yes       | 0.634  | NO             | -0.456     | N/A               |
| MW373    | Upgradient   | Yes       | 2.01   | NO             | 0.698      | N/A               |
|          |              |           |        |                |            | _                 |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.000
 S= 0.000
 CV(1)=0.000
 K factor\*\*= 2.523
 TL(1)= 1.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.000
 S= 0.000
 CV(2)=#Num!
 K factor\*\*= 2.523
 TL(2)= 0.000
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.0004/23/2002 1 0.000 7/15/2002 0.0001 10/8/2002 1 0.0001 0.000 1/8/2003 4/3/2003 1 0.000 7/9/2003 1 0.00010/6/2003 1 0.000 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1 0.0004/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.0004/2/2003 1 0.000 7/9/2003 1 0.000 0.000 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data  |           |        |                |            |                   |
|----------|---------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient      | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient  | Yes       | 0.205  | NO             | -1.585     | N/A               |
| MW361    | Downgradient  | Yes       | 0.464  | NO             | -0.768     | N/A               |
| MW364    | Downgradient  | Yes       | 0.456  | NO             | -0.785     | N/A               |
| MW367    | Downgradient  | Yes       | 0.146  | NO             | -1.924     | N/A               |
| MW370    | Upgradient    | Yes       | 0.523  | NO             | -0.648     | N/A               |
| MW373    | Upgradient    | Yes       | 0.509  | NO             | -0.675     | N/A               |
| NT/A D   | 1, 11, 20 1 3 | T D       | 1 . 11 |                | 1 . 1:1 .: |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-57

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 43.413 S = 13.444 CV(1) = 0.310

**K** factor\*\*= 2.523

TL(1) = 77.331

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.723 S = 0.323 CV(2) = 0.087

**K factor\*\*=** 2.523

TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 34.8 3.550 4/23/2002 43.4 3.770 7/15/2002 3.503 33.2 10/8/2002 29.2 3.374 1/8/2003 31.3 3.444 4/3/2003 32.4 3.478 7/9/2003 22.9 3.131 10/6/2003 28 3.332 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 61.9 4.126 4/23/2002 59.2 4.081 7/16/2002 47.6 3.863 10/8/2002 46.1 3.831 1/7/2003 49.2 3.896 4/2/2003 57.8 4.057 7/9/2003 52.7 3.965 10/7/2003 64.9 4.173

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

|   | Current  | Quarter Data |           |        |                |            |                   |
|---|----------|--------------|-----------|--------|----------------|------------|-------------------|
|   | Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| , | MW358    | Downgradient | Yes       | 35     | NO             | 3.555      | N/A               |
|   | MW361    | Downgradient | Yes       | 33.6   | NO             | 3.515      | N/A               |
|   | MW364    | Downgradient | Yes       | 32     | NO             | 3.466      | N/A               |
|   | MW367    | Downgradient | Yes       | 13.4   | NO             | 2.595      | N/A               |
|   | MW370    | Upgradient   | Yes       | 30     | NO             | 3.401      | N/A               |
|   | MW373    | Upgradient   | Yes       | 67.2   | NO             | 4.208      | N/A               |
|   |          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.938 S = 24.732 CV(1) = 0.590

**K** factor\*\*= 2.523

TL(1)= 104.336 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.658 S = 0.339 CV(2) = 0.093

**K factor\*\*=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW370                 |                                           |
|--------------------------------------------------------------------------------|-----------------------|-------------------------------------------|
| Date Collected                                                                 | Result                | LN(Result)                                |
| 3/17/2002                                                                      | 35                    | 3.555                                     |
| 4/23/2002                                                                      | 134                   | 4.898                                     |
| 7/15/2002                                                                      | 35                    | 3.555                                     |
| 10/8/2002                                                                      | 35                    | 3.555                                     |
| 1/8/2003                                                                       | 35                    | 3.555                                     |
| 4/3/2003                                                                       | 35                    | 3.555                                     |
| 7/9/2003                                                                       | 35                    | 3.555                                     |
| 10/6/2003                                                                      | 35                    | 3.555                                     |
|                                                                                |                       |                                           |
| Well Number:                                                                   | MW373                 |                                           |
| Well Number: Date Collected                                                    | MW373<br>Result       | LN(Result)                                |
|                                                                                |                       | LN(Result)<br>3.555                       |
| Date Collected                                                                 | Result                |                                           |
| Date Collected 3/18/2002                                                       | Result<br>35          | 3.555                                     |
| Date Collected 3/18/2002 4/23/2002                                             | Result<br>35<br>47    | 3.555<br>3.850                            |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002                          | Result 35 47 35       | 3.555<br>3.850<br>3.555                   |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 35 47 35 35    | 3.555<br>3.850<br>3.555<br>3.555          |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 35 47 35 35 35 | 3.555<br>3.850<br>3.555<br>3.555<br>3.555 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 19.8   | NO             | 2.986      | N/A               |
| MW361    | Downgradient | Yes       | 9.07   | NO             | 2.205      | N/A               |
| MW364    | Downgradient | Yes       | 9.07   | NO             | 2.205      | N/A               |
| MW367    | Downgradient | Yes       | 13.1   | NO             | 2.573      | N/A               |
| MW370    | Upgradient   | Yes       | 16.7   | NO             | 2.815      | N/A               |
| MW373    | Upgradient   | Yes       | 20.3   | NO             | 3.011      | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison Chloride** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.919 S = 7.524CV(1)=0.164 **K factor\*\*=** 2.523

TL(1)= 64.901

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.814 S = 0.165 CV(2) = 0.043

**K factor\*\*=** 2.523

TL(2) = 4.231

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 4.016 55.5 10/8/2002 53.6 3.982 3.968 1/8/2003 52.9 4/3/2003 53.6 3.982 7/9/2003 51.9 3.949 10/6/2003 53 3.970 1/7/2004 53 3.970 4/7/2004 51.6 3.944 Well Number: MW373 Date Collected Result LN(Result) 7/16/2002 40.6 3.704 10/8/2002 38.8 3.658 1/7/2003 39 3.664 4/2/2003 38.4 3.648 7/9/2003 38.1 3.640 10/7/2003 38 3.638 1/6/2004 37.9 3.635 4/7/2004 38.8 3.658

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 14.9   | NO             | 2.701      | N/A               |
| MW361    | Downgradient | Yes       | 35.8   | NO             | 3.578      | N/A               |
| MW364    | Downgradient | Yes       | 35.4   | NO             | 3.567      | N/A               |
| MW367    | Downgradient | Yes       | 8.62   | NO             | 2.154      | N/A               |
| MW370    | Upgradient   | Yes       | 36.5   | NO             | 3.597      | N/A               |
| MW373    | Upgradient   | Yes       | 37.1   | NO             | 3.614      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.032**CV(1)=**1.165 **K factor\*\*=** 2.523 Statistics-Background Data X = 0.027TL(1) = 0.108LL(1)=N/A **Statistics-Transformed Background** 

Data

X = -4.058 S = 1.011 CV(2) = -0.249

**K factor\*\*=** 2.523 TL(2) = -1.507 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.0174 -4.051 0.0105 1/8/2003 -4.5564/3/2003 0.00931 -4.6777/9/2003 0.137 -1.98810/6/2003 0.0463 -3.073Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.025 -3.689 4/23/2002 0.034 -3.381 0.025 7/16/2002 -3.68910/8/2002 0.00411-5.494 0.00344 -5.672 1/7/2003 -5.605 4/2/2003 0.00368 7/9/2003 0.0405 -3.2060.00843 -4.776 10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |         |                |            |                   |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 0.0379  | N/A            | -3.273     | NO                |
| MW361    | Downgradient | No        | 0.001   | N/A            | -6.908     | N/A               |
| MW364    | Downgradient | No        | 0.001   | N/A            | -6.908     | N/A               |
| MW367    | Downgradient | Yes       | 0.00718 | N/A            | -4.936     | NO                |
| MW370    | Upgradient   | No        | 0.001   | N/A            | -6.908     | N/A               |
| MW373    | Upgradient   | No        | 0.001   | N/A            | -6.908     | N/A               |
| 3.7/4 B  | 1            |           |         |                | 4 . 4.4    |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-61

#### **Historical Background Comparison** C-746-U First Quarter 2022 Statistical Analysis Conductivity UNITS: umho/cm **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

**K** factor\*\*= 2.523

TL(1)= 1002.702 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 6.380 S = 0.260 CV(2) = 0.041

**K factor\*\*=** 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW370                        |                                           |
|--------------------------------------------------------------------------------|------------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                       | LN(Result)                                |
| 3/17/2002                                                                      | 406                          | 6.006                                     |
| 4/23/2002                                                                      | 543                          | 6.297                                     |
| 7/15/2002                                                                      | 476                          | 6.165                                     |
| 10/8/2002                                                                      | 441                          | 6.089                                     |
| 1/8/2003                                                                       | 486                          | 6.186                                     |
| 4/3/2003                                                                       | 466                          | 6.144                                     |
| 7/9/2003                                                                       | 479                          | 6.172                                     |
| 10/6/2003                                                                      | 435                          | 6.075                                     |
|                                                                                |                              |                                           |
| Well Number:                                                                   | MW373                        |                                           |
| Well Number: Date Collected                                                    | MW373<br>Result              | LN(Result)                                |
|                                                                                |                              | LN(Result)<br>6.494                       |
| Date Collected                                                                 | Result                       |                                           |
| Date Collected 3/18/2002                                                       | Result<br>661                | 6.494                                     |
| Date Collected 3/18/2002 4/23/2002                                             | Result 661 801               | 6.494<br>6.686                            |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002                          | Result 661 801 774           | 6.494<br>6.686<br>6.652                   |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 661 801 774 680       | 6.494<br>6.686<br>6.652<br>6.522          |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 661 801 774 680 686.5 | 6.494<br>6.686<br>6.652<br>6.522<br>6.532 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 551    | NO             | 6.312      | N/A               |
| MW361    | Downgradient | Yes       | 510    | NO             | 6.234      | N/A               |
| MW364    | Downgradient | Yes       | 480    | NO             | 6.174      | N/A               |
| MW367    | Downgradient | Yes       | 225    | NO             | 5.416      | N/A               |
| MW370    | Upgradient   | Yes       | 459    | NO             | 6.129      | N/A               |
| MW373    | Upgradient   | Yes       | 777    | NO             | 6.655      | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor\*\*= 2.523
 TL(1) = 0.050 LL(1) = N/A 

 Statistics-Transformed Background Data
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor\*\*= 2.523
 TL(2) = -2.963 LL(2) = N/A

Historical Rackground Data from

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.05 -2.99610/8/2002 0.02 -3.9120.02 -3.9121/8/2003 4/3/2003 0.02 -3.9127/9/2003 0.02 -3.91210/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.6504/23/2002 0.025 -3.689 0.05 -2.9967/16/2002 10/8/2002 0.02 -3.9121/7/2003 0.02-3.912-3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912-3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data    |           |         |                |            |                   |
|----------|-----------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient        | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient    | Yes       | 0.00073 | 7 NO           | -7.213     | N/A               |
| MW361    | Downgradient    | Yes       | 0.00097 | 7 NO           | -6.931     | N/A               |
| MW364    | Downgradient    | Yes       | 0.00055 | 1 NO           | -7.504     | N/A               |
| MW367    | Downgradient    | Yes       | 0.00060 | 5 NO           | -7.410     | N/A               |
| MW370    | Upgradient      | Yes       | 0.00047 | 8 NO           | -7.646     | N/A               |
| MW373    | Upgradient      | Yes       | 0.00132 | NO             | -6.630     | N/A               |
| NI/A D   | 1, 11, 20, 1, 3 | T D       | 1 . 11  |                | 1 / 1:1 /  | 1 .               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Cyanide UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.000CV(1)=0.000**K factor\*\*=** 2.523 TL(1) = 0.020Statistics-Background Data X = 0.020LL(1)=N/A **Statistics-Transformed Background** X = -3.912 S = 0.000CV(2) = 0.000

Data

**K factor\*\*=** 2.523

TL(2) = -3.912

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.02 -3.9124/23/2002 0.02 -3.9127/15/2002 0.02 -3.91210/8/2002 0.02 -3.912 4/3/2003 0.02 -3.912-3.9127/9/2003 0.02 10/6/2003 0.02 -3.912-3.9121/7/2004 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.02 -3.9124/23/2002 0.02 -3.9120.02 -3.9127/16/2002 10/8/2002 0.02 -3.912-3.912 4/2/2003 0.02-3.912 7/9/2003 0.02 10/7/2003 0.02 -3.912-3.912 1/6/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

|   | Current  | Quarter Data |           |         |                |            |                   |
|---|----------|--------------|-----------|---------|----------------|------------|-------------------|
|   | Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| , | MW358    | Downgradient | No        | 0.2     | N/A            | -1.609     | N/A               |
|   | MW361    | Downgradient | No        | 0.2     | N/A            | -1.609     | N/A               |
|   | MW364    | Downgradient | Yes       | 0.00412 | NO             | -5.492     | N/A               |
|   | MW367    | Downgradient | No        | 0.2     | N/A            | -1.609     | N/A               |
|   | MW370    | Upgradient   | No        | 0.2     | N/A            | -1.609     | N/A               |
|   | MW373    | Upgradient   | No        | 0.2     | N/A            | -1.609     | N/A               |
|   |          |              |           |         |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.387S = 1.153 CV(1)=0.831

**K factor\*\*=** 2.523

TL(1) = 4.295

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -0.115 S = 1.207 CV(2) = -10.514

**K factor\*\*=** 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW370                           |                                               |
|--------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|
| Date Collected                                                                 | Result                          | LN(Result)                                    |
| 3/17/2002                                                                      | 4.32                            | 1.463                                         |
| 4/23/2002                                                                      | 1.24                            | 0.215                                         |
| 7/15/2002                                                                      | 0.75                            | -0.288                                        |
| 10/8/2002                                                                      | 0.94                            | -0.062                                        |
| 1/8/2003                                                                       | 3.08                            | 1.125                                         |
| 4/3/2003                                                                       | 1.45                            | 0.372                                         |
| 7/9/2003                                                                       | 1.22                            | 0.199                                         |
| 10/6/2003                                                                      | 1.07                            | 0.068                                         |
|                                                                                |                                 |                                               |
| Well Number:                                                                   | MW373                           |                                               |
| Well Number: Date Collected                                                    | MW373<br>Result                 | LN(Result)                                    |
|                                                                                |                                 | LN(Result) 1.112                              |
| Date Collected                                                                 | Result                          |                                               |
| Date Collected 3/18/2002                                                       | Result<br>3.04                  | 1.112                                         |
| Date Collected 3/18/2002 4/23/2002                                             | Result 3.04 0.03                | 1.112<br>-3.507                               |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002                          | Result 3.04 0.03 0.23           | 1.112<br>-3.507<br>-1.470                     |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 3.04 0.03 0.23 0.86      | 1.112<br>-3.507<br>-1.470<br>-0.151           |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 3.04 0.03 0.23 0.86 0.21 | 1.112<br>-3.507<br>-1.470<br>-0.151<br>-1.561 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 2.08   | NO             | 0.732      | N/A               |
| MW361    | Downgradient | Yes       | 4.44   | YES            | 1.491      | N/A               |
| MW364    | Downgradient | Yes       | 4.2    | NO             | 1.435      | N/A               |
| MW367    | Downgradient | Yes       | 1.6    | NO             | 0.470      | N/A               |
| MW370    | Upgradient   | Yes       | 4.36   | YES            | 1.472      | N/A               |
| MW373    | Upgradient   | Yes       | 2.72   | NO             | 1.001      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW361 MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 356.188 S = 106.752 CV(1) = 0.300

**K** factor\*\*= 2.523

TL(1)= 625.523 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 5.831 S = 0.311 CV(2) = 0.053

**K factor\*\*=** 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW370                                     |                                           |
|--------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                                    | LN(Result)                                |
| 3/17/2002                                                                      | 236                                       | 5.464                                     |
| 4/23/2002                                                                      | 337                                       | 5.820                                     |
| 7/15/2002                                                                      | 266                                       | 5.583                                     |
| 10/8/2002                                                                      | 240                                       | 5.481                                     |
| 1/8/2003                                                                       | 282                                       | 5.642                                     |
| 4/3/2003                                                                       | 238                                       | 5.472                                     |
| 7/9/2003                                                                       | 248                                       | 5.513                                     |
| 10/6/2003                                                                      | 224                                       | 5.412                                     |
|                                                                                |                                           |                                           |
| Well Number:                                                                   | MW373                                     |                                           |
| Well Number: Date Collected                                                    | MW373<br>Result                           | LN(Result)                                |
|                                                                                |                                           | LN(Result)<br>6.057                       |
| Date Collected                                                                 | Result                                    |                                           |
| Date Collected 3/18/2002                                                       | Result<br>427                             | 6.057                                     |
| Date Collected 3/18/2002 4/23/2002                                             | Result 427 507                            | 6.057<br>6.229                            |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002                          | Result 427 507 464                        | 6.057<br>6.229<br>6.140                   |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 427 507 464 408                    | 6.057<br>6.229<br>6.140<br>6.011          |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result<br>427<br>507<br>464<br>408<br>404 | 6.057<br>6.229<br>6.140<br>6.011<br>6.001 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 241    | NO             | 5.485      | N/A               |
| MW361    | Downgradient | Yes       | 250    | NO             | 5.521      | N/A               |
| MW364    | Downgradient | Yes       | 251    | NO             | 5.525      | N/A               |
| MW367    | Downgradient | Yes       | 129    | NO             | 4.860      | N/A               |
| MW370    | Upgradient   | Yes       | 240    | NO             | 5.481      | N/A               |
| MW373    | Upgradient   | Yes       | 469    | NO             | 6.151      | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**S**= 8.841 X = 9.230

CV(1)=0.958

**K factor\*\*=** 2.523

**TL(1)=** 31.535

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 1.942 S = 0.713

CV(2) = 0.367

**K factor\*\*=** 2.523

TL(2) = 3.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 7/15/2002 1.258 3.52 10/8/2002 7.45 2.008 7.04 1.952 1/8/2003 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 2.370 7/16/2002 10.7 10/8/2002 3.75 1.322 1/7/2003 3.87 1.353 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 22     | NO             | 3.091      | N/A               |
| MW361    | Downgradient | Yes       | 0.102  | NO             | -2.283     | N/A               |
| MW364    | Downgradient | No        | 0.1    | N/A            | -2.303     | N/A               |
| MW367    | Downgradient | Yes       | 5.73   | NO             | 1.746      | N/A               |
| MW370    | Upgradient   | No        | 0.1    | N/A            | -2.303     | N/A               |
| MW373    | Upgradient   | No        | 0.1    | N/A            | -2.303     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.544 S = 5.911CV(1)=0.337 **K** factor\*\*= 2.523

TL(1) = 32.458LL(1)=N/A

**Statistics-Transformed Background** Data

X = 2.810 S = 0.343 CV(2) = 0.122

**K factor\*\*=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 2.493 12.1 4/23/2002 15.1 2.715 7/15/2002 2.518 12.4 10/8/2002 12.2 2.501 1/8/2003 11.5 2.442 4/3/2003 12.3 2.510 7/9/2003 10 2.303 10/6/2003 12.1 2.493 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 24.8 3.211 4/23/2002 22.7 3.122 2.934 7/16/2002 18.8 10/8/2002 21.1 3.049 1/7/2003 19.9 2.991 4/2/2003 25.5 3.239 7/9/2003 23.3 3.148 10/7/2003 26.9 3.292

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

|   | Current  | Quarter Data |           |        |                |            |                   |
|---|----------|--------------|-----------|--------|----------------|------------|-------------------|
|   | Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| , | MW358    | Downgradient | Yes       | 18.3   | NO             | 2.907      | N/A               |
|   | MW361    | Downgradient | Yes       | 14.7   | NO             | 2.688      | N/A               |
|   | MW364    | Downgradient | Yes       | 13.7   | NO             | 2.617      | N/A               |
|   | MW367    | Downgradient | Yes       | 7.17   | NO             | 1.970      | N/A               |
|   | MW370    | Upgradient   | Yes       | 12.9   | NO             | 2.557      | N/A               |
|   | MW373    | Upgradient   | Yes       | 25.4   | NO             | 3.235      | N/A               |
|   |          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.674X = 1.080

CV(1)=0.624

**K factor\*\*=** 2.523

TL(1) = 2.780

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -0.114 S = 0.658 CV(2) = -5.762

**K factor\*\*=** 2.523

TL(2) = 1.547

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.4110.599 4/23/2002 1.82 7/15/2002 0.199 1.22 10/8/2002 0.988 -0.012 -0.3161/8/2003 0.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.355 -1.0364/23/2002 2.16 0.770 0.329 7/16/2002 1.39 10/8/2002 0.717 -0.3331/7/2003 0.587 -0.5334/2/2003 0.545 -0.6077/9/2003 1.76 0.565 -0.562 10/7/2003 0.57

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |         |                |            |                   |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 2.83    | YES            | 1.040      | N/A               |
| MW361    | Downgradient | Yes       | 0.0557  | NO             | -2.888     | N/A               |
| MW364    | Downgradient | Yes       | 0.00192 | NO             | -6.255     | N/A               |
| MW367    | Downgradient | Yes       | 1.37    | NO             | 0.315      | N/A               |
| MW370    | Upgradient   | Yes       | 0.00117 | NO             | -6.751     | N/A               |
| MW373    | Upgradient   | Yes       | 0.00959 | NO             | -4.647     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

MW358

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** X = 5.375 **S**= 2.156 **CV(1)**=0.401 **K factor**\*\*= 2.523 **TL(1)**= 10.816

Statistics-Transformed Background X = 1.603 S= 0.428 CV(2) = 0.267 K factor\*\*= 2.523 TL(2) = 2.683 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 4/23/2002 5 1.609 7/15/2002 10 2.303 10/8/2002 5 1.609 5 1/8/2003 1.609 4/3/2003 5 1.609 7/9/2003 5 1.609 5 10/6/2003 1.609 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 7 1.946 7/16/2002 10 2.303 10/8/2002 5 1.609 5 1/7/2003 1.609 4/2/2003 5 1.609 7/9/2003 5 1.609 10/7/2003 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

LL(1)=N/A

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 0.55   | NO             | -0.598     | N/A               |
| MW361    | Downgradient | Yes       | 0.51   | NO             | -0.673     | N/A               |
| MW364    | Downgradient | Yes       | 0.54   | NO             | -0.616     | N/A               |
| MW367    | Downgradient | No        | 5      | N/A            | 1.609      | N/A               |
| MW370    | Upgradient   | No        | 5      | N/A            | 1.609      | N/A               |
| MW373    | Upgradient   | No        | 0.68   | N/A            | -0.386     | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-70

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 0.024

**S**= 0.022 **CV(1)**=0.901

**K factor\*\*=** 2.523

TL(1)= 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.239 S = 1.087

CV(2) = -0.256

**K factor\*\*=** 2.523

TL(2) = -1.497

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                   | MW370                                            |                                                |
|--------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|
| Date Collected                                                                 | Result                                           | LN(Result)                                     |
| 3/17/2002                                                                      | 0.05                                             | -2.996                                         |
| 4/23/2002                                                                      | 0.05                                             | -2.996                                         |
| 7/15/2002                                                                      | 0.05                                             | -2.996                                         |
| 10/8/2002                                                                      | 0.005                                            | -5.298                                         |
| 1/8/2003                                                                       | 0.005                                            | -5.298                                         |
| 4/3/2003                                                                       | 0.005                                            | -5.298                                         |
| 7/9/2003                                                                       | 0.0264                                           | -3.634                                         |
| 10/6/2003                                                                      | 0.00971                                          | -4.635                                         |
|                                                                                |                                                  |                                                |
| Well Number:                                                                   | MW373                                            |                                                |
| Well Number:  Date Collected                                                   | MW373<br>Result                                  | LN(Result)                                     |
|                                                                                |                                                  | LN(Result)<br>-2.996                           |
| Date Collected                                                                 | Result                                           | ,                                              |
| Date Collected 3/18/2002                                                       | Result 0.05                                      | -2.996                                         |
| Date Collected 3/18/2002 4/23/2002                                             | Result 0.05 0.05                                 | -2.996<br>-2.996                               |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002                          | Result 0.05 0.05 0.05                            | -2.996<br>-2.996<br>-2.996                     |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 0.05 0.05 0.05 0.005                      | -2.996<br>-2.996<br>-2.996<br>-5.298           |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result<br>0.05<br>0.05<br>0.05<br>0.005<br>0.005 | -2.996<br>-2.996<br>-2.996<br>-5.298<br>-5.298 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |          |                |            |                   |
|----------|--------------|-----------|----------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result   | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 0.0918   | YES            | -2.388     | N/A               |
| MW361    | Downgradient | No        | 0.002    | N/A            | -6.215     | N/A               |
| MW364    | Downgradient | Yes       | 0.000642 | 2 NO           | -7.351     | N/A               |
| MW367    | Downgradient | Yes       | 0.00669  | NO             | -5.007     | N/A               |
| MW370    | Upgradient   | Yes       | 0.000792 | 2 NO           | -7.141     | N/A               |
| MW373    | Upgradient   | Yes       | 0.00248  | NO             | -5.999     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

MW358

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-71

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 46.688 **S**= 60.986 **CV(1)**=1.306

**K factor\*\*=** 2.523

**TL(1)=** 200.555 **LL(1)=**N/A

Statistics-Transformed Background Data

**X**= 3.829 **S**= 1.1

 $S= 1.151 \quad CV(2)=0.301$ 

**K factor\*\*=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                      | MW370                   |                                            |
|-------------------------------------------------------------------|-------------------------|--------------------------------------------|
| Date Collected                                                    | Result                  | LN(Result)                                 |
| 3/17/2002                                                         | 140                     | 4.942                                      |
| 4/23/2002                                                         | -15                     | #Func!                                     |
| 7/15/2002                                                         | 5                       | 1.609                                      |
| 4/3/2003                                                          | 49                      | 3.892                                      |
| 7/9/2003                                                          | -35                     | #Func!                                     |
| 10/6/2003                                                         | 40                      | 3.689                                      |
| 1/7/2004                                                          | 101                     | 4.615                                      |
| 4/7/2004                                                          | 105                     | 4.654                                      |
|                                                                   |                         |                                            |
| Well Number:                                                      | MW373                   |                                            |
| Well Number: Date Collected                                       |                         | LN(Result)                                 |
|                                                                   |                         | LN(Result)<br>4.942                        |
| Date Collected                                                    | Result                  | , ,                                        |
| Date Collected 3/18/2002                                          | Result<br>140           | 4.942                                      |
| Date Collected 3/18/2002 4/23/2002                                | Result 140 -20          | 4.942<br>#Func!                            |
| Date Collected<br>3/18/2002<br>4/23/2002<br>10/8/2002             | Result 140 -20 10       | 4.942<br>#Func!<br>2.303                   |
| Date Collected<br>3/18/2002<br>4/23/2002<br>10/8/2002<br>1/7/2003 | Result 140 -20 10 10    | 4.942<br>#Func!<br>2.303<br>2.303          |
| Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003    | Result 140 -20 10 10 67 | 4.942<br>#Func!<br>2.303<br>2.303<br>4.205 |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 160    | N/A            | 5.075      | YES               |
| MW361    | Downgradient | Yes       | 350    | N/A            | 5.858      | YES               |
| MW364    | Downgradient | Yes       | 390    | N/A            | 5.966      | YES               |
| MW367    | Downgradient | Yes       | 277    | N/A            | 5.624      | YES               |
| MW370    | Upgradient   | Yes       | 402    | N/A            | 5.996      | YES               |
| MW373    | Upgradient   | Yes       | 376    | N/A            | 5.930      | YES               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

\*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor\*\*= 2.904
 TL(1) = 6.745 LL(1) = 5.8202 

 Statistics-Transformed Background Data
 X = 1.837 X = 0.025 X = 0.025</td

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.841 6.3 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 6.1 1.808 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                                                                                                                                     |       |                                                            |
|----------|--------------|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)?<br>Result <ll(1)?< th=""><th>,</th><th>LN(Result) &gt;TL(2)?<br/>LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<> | ,     | LN(Result) >TL(2)?<br>LN(Result) <ll(2)?< th=""></ll(2)?<> |
| MW358    | Downgradien  | t Yes     | 6.37   | NO                                                                                                                                  | 1.852 | N/A                                                        |
| MW361    | Downgradien  | t Vec     | 5.96   | NO                                                                                                                                  | 1 785 | N/A                                                        |

Downgradient 1.785 N/A MW364 Downgradient Yes 6 NO 1.792 N/A Downgradient Yes 1.773 MW367 5.89 NO N/A MW370 Upgradient 1.802 Yes 6.06 NO N/A 6.08 MW373 Upgradient Yes NO 1.805 N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-73

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 2.823
 S= 0.522
 CV(1)=0.185
 K factor\*\*= 2.523
 TL(1)= 4.139
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.024
 S= 0.167
 CV(2)=0.163
 K factor\*\*= 2.523
 TL(2)= 1.445
 LL(2)=N/A

Data

**Upgradient Wells with Transformed Result** 

Historical Background Data from

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Well Number:                                                                   | MW370                          |                                           |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                         | LN(Result)                                |
| 3/17/2002                                                                      | 3.22                           | 1.169                                     |
| 4/23/2002                                                                      | 3.43                           | 1.233                                     |
| 7/15/2002                                                                      | 2.98                           | 1.092                                     |
| 10/8/2002                                                                      | 2.46                           | 0.900                                     |
| 1/8/2003                                                                       | 2.41                           | 0.880                                     |
| 4/3/2003                                                                       | 2.43                           | 0.888                                     |
| 7/9/2003                                                                       | 2.44                           | 0.892                                     |
| 10/6/2003                                                                      | 2.48                           | 0.908                                     |
|                                                                                |                                |                                           |
| Well Number:                                                                   | MW373                          |                                           |
| Well Number: Date Collected                                                    | MW373<br>Result                | LN(Result)                                |
|                                                                                |                                | LN(Result)                                |
| Date Collected                                                                 | Result                         |                                           |
| Date Collected 3/18/2002                                                       | Result<br>4.34                 | 1.468                                     |
| Date Collected 3/18/2002 4/23/2002                                             | Result 4.34 3.04               | 1.468<br>1.112                            |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002                          | Result 4.34 3.04 2.93          | 1.468<br>1.112<br>1.075                   |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 4.34 3.04 2.93 2.3      | 1.468<br>1.112<br>1.075<br>0.833          |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 4.34 3.04 2.93 2.3 2.45 | 1.468<br>1.112<br>1.075<br>0.833<br>0.896 |

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 3.34   | NO             | 1.206      | N/A               |
| MW361    | Downgradient | Yes       | 2.5    | NO             | 0.916      | N/A               |
| MW364    | Downgradient | Yes       | 2.05   | NO             | 0.718      | N/A               |
| MW367    | Downgradient | Yes       | 2.93   | NO             | 1.075      | N/A               |
| MW370    | Upgradient   | Yes       | 2.87   | NO             | 1.054      | N/A               |
| MW373    | Upgradient   | Yes       | 2.86   | NO             | 1.051      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-74

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.544 S = 15.227 CV(1) = 0.295

**K** factor\*\*= 2.523

TL(1)= 89.962

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.906 S = 0.272 CV(2) = 0.070

**K factor\*\*=** 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW370                           |                                                         |
|--------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------|
| Date Collected                                                                 | Result                          | LN(Result)                                              |
| 3/17/2002                                                                      | 31.8                            | 3.459                                                   |
| 4/23/2002                                                                      | 50                              | 3.912                                                   |
| 7/15/2002                                                                      | 44.7                            | 3.800                                                   |
| 10/8/2002                                                                      | 40                              | 3.689                                                   |
| 1/8/2003                                                                       | 44.6                            | 3.798                                                   |
| 4/3/2003                                                                       | 41.9                            | 3.735                                                   |
| 7/9/2003                                                                       | 40                              | 3.689                                                   |
| 10/6/2003                                                                      | 38.1                            | 3.640                                                   |
|                                                                                |                                 |                                                         |
| Well Number:                                                                   | MW373                           |                                                         |
| Well Number: Date Collected                                                    | MW373<br>Result                 | LN(Result)                                              |
|                                                                                |                                 |                                                         |
| Date Collected                                                                 | Result                          | LN(Result)                                              |
| Date Collected 3/18/2002                                                       | Result<br>43.4                  | LN(Result)<br>3.770                                     |
| Date Collected 3/18/2002 4/23/2002                                             | Result 43.4 79.8                | LN(Result)<br>3.770<br>4.380                            |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002                          | Result 43.4 79.8 87.7           | LN(Result)<br>3.770<br>4.380<br>4.474                   |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 43.4 79.8 87.7 61.6      | LN(Result)<br>3.770<br>4.380<br>4.474<br>4.121          |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 43.4 79.8 87.7 61.6 59.3 | LN(Result)<br>3.770<br>4.380<br>4.474<br>4.121<br>4.083 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 31.9   | NO             | 3.463      | N/A               |
| MW361    | Downgradient | Yes       | 44.3   | NO             | 3.791      | N/A               |
| MW364    | Downgradient | Yes       | 42.4   | NO             | 3.747      | N/A               |
| MW367    | Downgradient | Yes       | 16.8   | NO             | 2.821      | N/A               |
| MW370    | Upgradient   | Yes       | 48.6   | NO             | 3.884      | N/A               |
| MW373    | Upgradient   | Yes       | 60.9   | NO             | 4.109      | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Sulfate UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 122.381 S = 195.095 CV(1) = 1.594

**K** factor\*\*= 2.523

TL(1)= 614.606 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.985 S = 1.323 CV(2) = 0.332

**K factor\*\*=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW370                                               |                                           |
|--------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                                              | LN(Result)                                |
| 3/17/2002                                                                      | 17.4                                                | 2.856                                     |
| 4/23/2002                                                                      | 37.9                                                | 3.635                                     |
| 7/15/2002                                                                      | 15.7                                                | 2.754                                     |
| 10/8/2002                                                                      | 13.4                                                | 2.595                                     |
| 1/8/2003                                                                       | 14.4                                                | 2.667                                     |
| 4/3/2003                                                                       | 18.1                                                | 2.896                                     |
| 7/9/2003                                                                       | 9.6                                                 | 2.262                                     |
| 10/6/2003                                                                      | 16.5                                                | 2.803                                     |
|                                                                                |                                                     |                                           |
| Well Number:                                                                   | MW373                                               |                                           |
| Well Number: Date Collected                                                    | MW373<br>Result                                     | LN(Result)                                |
|                                                                                |                                                     | LN(Result)<br>5.096                       |
| Date Collected                                                                 | Result                                              |                                           |
| Date Collected 3/18/2002                                                       | Result 163.3                                        | 5.096                                     |
| Date Collected 3/18/2002 4/23/2002                                             | Result 163.3 809.6                                  | 5.096<br>6.697                            |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002                          | Result<br>163.3<br>809.6<br>109.4                   | 5.096<br>6.697<br>4.695                   |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result<br>163.3<br>809.6<br>109.4<br>110.6          | 5.096<br>6.697<br>4.695<br>4.706          |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result<br>163.3<br>809.6<br>109.4<br>110.6<br>113.7 | 5.096<br>6.697<br>4.695<br>4.706<br>4.734 |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 25.1   | N/A            | 3.223      | NO                |
| MW361    | Downgradient | Yes       | 80.2   | N/A            | 4.385      | NO                |
| MW364    | Downgradient | Yes       | 69.6   | N/A            | 4.243      | NO                |
| MW367    | Downgradient | Yes       | 21     | N/A            | 3.045      | NO                |
| MW370    | Upgradient   | Yes       | 20.5   | N/A            | 3.020      | NO                |
| MW373    | Upgradient   | Yes       | 155    | N/A            | 5.043      | NO                |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 13.274 CV(1)=1.734**K factor\*\*=** 2.523 **TL(1)=** 41.146 **Statistics-Background Data** X = 7.655LL(1)=N/A **Statistics-Transformed Background** X = 1.946S = 0.939

Data

CV(2) = 0.483

**K factor\*\*=** 2.523

TL(2) = 3.833

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.8 2.380 4/23/2002 8.53 2.144 7/15/2002 1.627 5.09 10/8/2002 4.78 1.564 1/8/2003 -5.12#Func! 4/3/2003 5.11 1.631 7/9/2003 4.25 1.447 10/6/2003 6.54 1.878 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 16.5 2.803 4/23/2002 3.49 1.250 7/16/2002 1.42 0.351 10/8/2002 -6.06#Func! 1/7/2003 -8.41 #Func! 4/2/2003 26.3 3.270 7/9/2003 3.06 1.118 10/7/2003 46.2 3.833

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | No        | 13.6   | N/A            | 2.610      | N/A               |
| MW361    | Downgradient | Yes       | 51.5   | N/A            | 3.942      | YES               |
| MW364    | Downgradient | Yes       | 57.3   | N/A            | 4.048      | YES               |
| MW367    | Downgradient | No        | -1.91  | N/A            | #Error     | N/A               |
| MW370    | Upgradient   | Yes       | 25.6   | N/A            | 3.243      | NO                |
| MW373    | Upgradient   | No        | 11.2   | N/A            | 2.416      | N/A               |
|          |              |           |        |                |            | _                 |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW361 MW364

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

# C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

**X**= 6.169 **S**= 12.072 **CV(1)**=1.957

**K factor\*\*=** 2.523

**TL(1)=** 36.626 **LL(1)=**N/A

Statistics-Transformed Background Data

**X**= 1.069 **S**= 1.014

 $S= 1.014 \quad CV(2)=0.948$ 

**K factor\*\*=** 2.523

TL(2) = 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                   | MW370                      |                                           |
|--------------------------------------------------------------------------------|----------------------------|-------------------------------------------|
| Date Collected                                                                 | Result                     | LN(Result)                                |
| 3/17/2002                                                                      | 1.2                        | 0.182                                     |
| 4/23/2002                                                                      | 4.3                        | 1.459                                     |
| 7/15/2002                                                                      | 2.6                        | 0.956                                     |
| 10/8/2002                                                                      | 2.3                        | 0.833                                     |
| 1/8/2003                                                                       | 3                          | 1.099                                     |
| 4/3/2003                                                                       | 1.2                        | 0.182                                     |
| 7/9/2003                                                                       | 2.6                        | 0.956                                     |
| 10/6/2003                                                                      | 1.7                        | 0.531                                     |
|                                                                                |                            |                                           |
| Well Number:                                                                   | MW373                      |                                           |
| Well Number: Date Collected                                                    | MW373<br>Result            | LN(Result)                                |
|                                                                                |                            | LN(Result)<br>0.095                       |
| Date Collected                                                                 | Result                     |                                           |
| Date Collected 3/18/2002                                                       | Result<br>1.1              | 0.095                                     |
| Date Collected 3/18/2002 4/23/2002                                             | Result 1.1 17.5            | 0.095<br>2.862                            |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002                          | Result 1.1 17.5 49         | 0.095<br>2.862<br>3.892                   |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002             | Result 1.1 17.5 49 2.9     | 0.095<br>2.862<br>3.892<br>1.065          |
| Date Collected<br>3/18/2002<br>4/23/2002<br>7/16/2002<br>10/8/2002<br>1/7/2003 | Result 1.1 17.5 49 2.9 3.9 | 0.095<br>2.862<br>3.892<br>1.065<br>1.361 |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 7.86   | N/A            | 2.062      | NO                |
| MW361    | Downgradient | Yes       | 0.382  | N/A            | -0.962     | NO                |
| MW364    | Downgradient | Yes       | 0.374  | N/A            | -0.983     | NO                |
| MW367    | Downgradient | Yes       | 0.526  | N/A            | -0.642     | NO                |
| MW370    | Upgradient   | Yes       | 0.952  | N/A            | -0.049     | NO                |
| MW373    | Upgradient   | Yes       | 0.999  | N/A            | -0.001     | NO                |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Total Organic Halides (TOX) UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

**K** factor\*\*= 2.523

TL(1)= 277.798 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.971 S = 0.950 CV(2) = 0.239

**K factor\*\*=** 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.912 50 4/23/2002 228 5.429 7/15/2002 88 4.477 10/8/2002 58 4.060 4.282 1/8/2003 72.4 4/3/2003 26.6 3.281 7/9/2003 2.797 16.4 10/6/2003 31.1 3.437 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 50 3.912 4/23/2002 276 5.620 7/16/2002 177 5.176 10/8/2002 76 4.331 1/7/2003 45.9 3.826 4/2/2003 57.8 4.057 7/9/2003 10 2.303 10/7/2003 13.9 2.632

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 3.96   | NO             | 1.376      | N/A               |
| MW361    | Downgradient | Yes       | 7.68   | NO             | 2.039      | N/A               |
| MW364    | Downgradient | Yes       | 9.82   | NO             | 2.284      | N/A               |
| MW367    | Downgradient | Yes       | 3.66   | NO             | 1.297      | N/A               |
| MW370    | Upgradient   | Yes       | 6.32   | NO             | 1.844      | N/A               |
| MW373    | Upgradient   | Yes       | 12.3   | NO             | 2.510      | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

### C-746-U First Quarter 2022 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 12.188
 S= 6.950
 CV(1)=0.570
 K factor\*\*= 2.523
 TL(1)= 29.721
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.305
 S= 0.687
 CV(2)=0.298
 K factor\*\*= 2.523
 TL(2)= 4.039
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 7/15/2002 15 2.708 10/8/2002 18 2.890 17 1/8/2003 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 3 1.099 10/8/2002 4 1.386 1/7/2003 6 1.792 4/2/2003 5 1.609 7/9/2003 1.792 6 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 0.86   | N/A            | -0.151     | N/A               |
| MW361    | Downgradient | Yes       | 6.64   | NO             | 1.893      | N/A               |
| MW364    | Downgradient | Yes       | 4.53   | N/A            | 1.511      | N/A               |
| MW367    | Downgradient | Yes       | 0.54   | N/A            | -0.616     | N/A               |
| MW370    | Upgradient   | Yes       | 1.49   | N/A            | 0.399      | N/A               |
| MW373    | Upgradient   | Yes       | 5.37   | NO             | 1.681      | N/A               |
|          |              |           |        |                |            | _                 |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.008CV(1)=0.324**K factor\*\*=** 2.523 **TL(1)=** 0.044 **Statistics-Background Data** X = 0.024LL(1)=N/A **Statistics-Transformed Background** X = -3.749 S = 0.265CV(2) = -0.071**K factor\*\*=** 2.523 TL(2) = -3.080LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.035 -3.352 4/23/2002 0.033 -3.4117/15/2002 0.025 -3.689 10/8/2002 0.02 -3.912 0.02 -3.9121/8/2003 4/3/2003 0.02 -3.9127/9/2003 0.02 -3.912-3.91210/6/2003 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.048 -3.0374/23/2002 0.025 -3.689 0.025 7/16/2002 -3.68910/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912-3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |         |                |            |                   |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 0.00416 | NO             | -5.482     | N/A               |
| MW361    | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW364    | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW367    | Downgradient | Yes       | 0.00384 | NO             | -5.562     | N/A               |
| MW370    | Upgradient   | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW373    | Upgradient   | No        | 0.02    | N/A            | -3.912     | N/A               |
|          |              |           |         |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### C-746-U First Quarter 2022 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.037CV(1)=0.673**K factor\*\*=** 2.523 **Statistics-Background Data** X = 0.055TL(1) = 0.147LL(1)=N/A **Statistics-Transformed Background** 

Data

X = -3.131 S = 0.691CV(2) = -0.221 **K factor\*\*=** 2.523 TL(2) = -1.388 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 -2.3030.1 4/23/2002 0.1 -2.3037/15/2002 -2.3030.1 10/8/2002 0.025 -3.689 0.035 -3.3521/8/2003 4/3/2003 0.035 -3.3527/9/2003 0.02 -3.91210/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.1 -2.303 4/23/2002 0.1 -2.303-2.3037/16/2002 0.1 10/8/2002 0.025 -3.6891/7/2003 0.035-3.352 -3.352 4/2/2003 0.035 7/9/2003 0.0234 -3.7550.02 -3.912 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |         |                |            |                   |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW358    | Downgradient | Yes       | 0.0143  | NO             | -4.247     | N/A               |
| MW361    | Downgradient | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW364    | Downgradient | Yes       | 0.0106  | NO             | -4.547     | N/A               |
| MW367    | Downgradient | Yes       | 0.0117  | NO             | -4.448     | N/A               |
| MW370    | Upgradient   | No        | 0.02    | N/A            | -3.912     | N/A               |
| MW373    | Upgradient   | Yes       | 0.00408 | NO NO          | -5.502     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

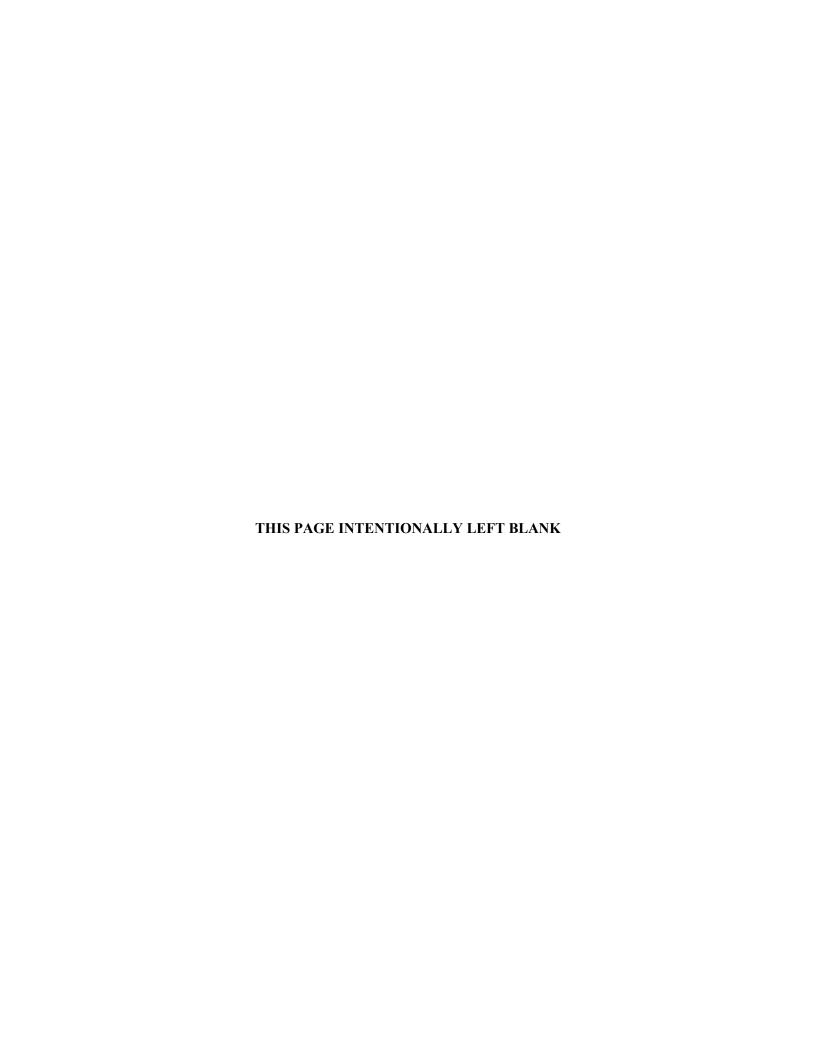
### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5


TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### **ATTACHMENT D2**

# COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA



### **Current Background Comparison**

Dissolved Oxygen

**UCRS** 

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mg/L

| Statistics-Background Data                | <b>X=</b> 2.491  | <b>S</b> = 1.913 | <b>CV(1)=</b> 0.768 | <b>K factor**=</b> 2.523 | <b>TL(1)=</b> 7.317 | <b>LL(1)=</b> N/A |
|-------------------------------------------|------------------|------------------|---------------------|--------------------------|---------------------|-------------------|
| Statistics-Transformed Background<br>Data | <b>X</b> = 0.587 | <b>S</b> = 0.878 | <b>CV(2)=</b> 1.496 | <b>K factor**=</b> 2.523 | <b>TL(2)=</b> 2.803 | <b>LL(2)=</b> N/A |

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected LN(Result) Result 3/17/2020 5.56 1.716 4/6/2020 1.221 3.39 7/23/2020 0.916 2.5 0.293 10/12/2020 1.34 1/20/2021 1.6 0.470 4/13/2021 6.07 1.803 7/20/2021 5.52 1.708 10/12/2021 1.212 3.36 Well Number: MW374 Date Collected Result LN(Result) 3/17/2020 3.36 1.212 4/6/2020 0.8 -0.2237/23/2020 0.7 -0.357 10/12/2020 -0.6930.5 -0.0831/20/2021 0.92 4/13/2021 2.8 1.030 -0.010 7/14/2021 0.99 10/13/2021 0.44 -0.821

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Ouarter  | Data |
|---------|----------|------|
| Cultunt | Vuai tei | Data |

| Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|----------------|------------|-------------------|
| MW359    | Downgradien | t Yes     | 3.8    | NO             | 1.335      | N/A               |
| MW362    | Downgradien | t Yes     | 3.1    | NO             | 1.131      | N/A               |
| MW365    | Downgradien | t Yes     | 8.13   | YES            | 2.096      | N/A               |
| MW368    | Downgradien | t Yes     | 3.11   | NO             | 1.135      | N/A               |
| MW371    | Upgradient  | Yes       | 3.82   | NO             | 1.340      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

Wells with Exceedances

MW365

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

\*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

**UNITS: mV** 

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 325.188 S = 77.787 CV(1) = 0.239

K factor\*\*= 2.523

TL(1)= 521.444

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.749 S = 0.294 CV(2) = 0.051

**K factor\*\*=** 2.523

TL(2) = 6.490

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

**Oxidation-Reduction Potential** 

| Well Number:                                                                    | MW371                      |                                           |
|---------------------------------------------------------------------------------|----------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                     | LN(Result)                                |
| 3/17/2020                                                                       | 335                        | 5.814                                     |
| 4/6/2020                                                                        | 423                        | 6.047                                     |
| 7/23/2020                                                                       | 361                        | 5.889                                     |
| 10/12/2020                                                                      | 344                        | 5.841                                     |
| 1/20/2021                                                                       | 296                        | 5.690                                     |
| 4/13/2021                                                                       | 388                        | 5.961                                     |
| 7/20/2021                                                                       | 401                        | 5.994                                     |
| 10/12/2021                                                                      | 344                        | 5.841                                     |
|                                                                                 |                            |                                           |
| Well Number:                                                                    | MW374                      |                                           |
| Well Number: Date Collected                                                     | MW374<br>Result            | LN(Result)                                |
|                                                                                 |                            | LN(Result)<br>5.881                       |
| Date Collected                                                                  | Result                     |                                           |
| Date Collected 3/17/2020                                                        | Result<br>358              | 5.881                                     |
| Date Collected 3/17/2020 4/6/2020                                               | Result 358 385             | 5.881<br>5.953                            |
| Date Collected<br>3/17/2020<br>4/6/2020<br>7/23/2020                            | Result 358 385 304         | 5.881<br>5.953<br>5.717                   |
| Date Collected<br>3/17/2020<br>4/6/2020<br>7/23/2020<br>10/12/2020              | Result 358 385 304 207     | 5.881<br>5.953<br>5.717<br>5.333          |
| Date Collected<br>3/17/2020<br>4/6/2020<br>7/23/2020<br>10/12/2020<br>1/20/2021 | Result 358 385 304 207 145 | 5.881<br>5.953<br>5.717<br>5.333<br>4.977 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | <b>Ouarter</b> | Data |
|---------|----------------|------|
| Cultunt | Quarter        | Data |

| Well No. | Gradient     | Detected? | Result | Result $>$ TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|-------------------|------------|-------------------|
| MW359    | Downgradient | Yes       | 308    | NO                | 5.730      | N/A               |
| MW362    | Downgradient | Yes       | 176    | NO                | 5.170      | N/A               |
| MW365    | Downgradient | Yes       | 395    | NO                | 5.979      | N/A               |
| MW368    | Downgradient | t Yes     | 259    | NO                | 5.557      | N/A               |
| MW371    | Upgradient   | Yes       | 389    | NO                | 5.964      | N/A               |
| MW374    | Upgradient   | Yes       | 192    | NO                | 5.257      | N/A               |
| MW375    | Sidegradient | Yes       | 390    | NO                | 5.966      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### **Current Background Comparison**

**UCRS** Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 27.281 S = 25.265 CV(1) = 0.926

K factor\*\*= 2.523

TL(1)= 91.023

**LL(1)=**N/A

**Statistics-Transformed Background** Data

X = 2.976

S = 0.804CV(2) = 0.270

Current Quarter Data

MW368 Downgradient Yes

MW375 Sidegradient

K factor\*\*= 2.523

TL(2) = 5.004

LL(2)=N/A

**Current Background Data from Upgradient** Wells with Transformed Result

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4.555

3.165

| Well Number:                                                                    | MW371                          |                                           |
|---------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                         | LN(Result)                                |
| 1/21/2020                                                                       | 27                             | 3.296                                     |
| 4/6/2020                                                                        | 75.3                           | 4.321                                     |
| 7/23/2020                                                                       | 53.6                           | 3.982                                     |
| 10/12/2020                                                                      | 29.9                           | 3.398                                     |
| 1/20/2021                                                                       | 29.2                           | 3.374                                     |
| 4/13/2021                                                                       | 90.7                           | 4.508                                     |
| 7/20/2021                                                                       | 34.1                           | 3.529                                     |
| 10/12/2021                                                                      | 11.9                           | 2.477                                     |
|                                                                                 |                                |                                           |
| Well Number:                                                                    | MW374                          |                                           |
| Well Number: Date Collected                                                     | MW374<br>Result                | LN(Result)                                |
|                                                                                 |                                | LN(Result)<br>2.048                       |
| Date Collected                                                                  | Result                         | ,                                         |
| Date Collected 1/22/2020                                                        | Result 7.75                    | 2.048                                     |
| Date Collected 1/22/2020 4/6/2020                                               | Result 7.75 8.41               | 2.048<br>2.129                            |
| Date Collected<br>1/22/2020<br>4/6/2020<br>7/23/2020                            | Result 7.75 8.41 9.1           | 2.048<br>2.129<br>2.208                   |
| Date Collected<br>1/22/2020<br>4/6/2020<br>7/23/2020<br>10/12/2020              | Result 7.75 8.41 9.1 9.73      | 2.048<br>2.129<br>2.208<br>2.275          |
| Date Collected<br>1/22/2020<br>4/6/2020<br>7/23/2020<br>10/12/2020<br>1/20/2021 | Result 7.75 8.41 9.1 9.73 10.7 | 2.048<br>2.129<br>2.208<br>2.275<br>2.370 |

| Wel | ll No. | Gradient    | Detected? | Result | Result $>$ TL(1)? | LN(Result) | LN(Result) >TL(2) |
|-----|--------|-------------|-----------|--------|-------------------|------------|-------------------|
| MV  | W359   | Downgradien | t Yes     | 38.6   | NO                | 3.653      | N/A               |
| MV  | W362   | Downgradien | t Yes     | 28     | NO                | 3.332      | N/A               |
| MV  | W365   | Downgradien | t Yes     | 55.9   | NO                | 4.024      | N/A               |

YES

NO

95.1

23.7

Yes

### **Conclusion of Statistical Analysis on Current Data**

Wells with Exceedances

MW368

N/A N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

\*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### **Current Background Comparison**

**URGA** Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 39.888 S = 23.998 CV(1) = 0.602

K factor\*\*= 2.523

**TL(1)=** 100.435 **LL(1)=**N/A

**Statistics-Transformed Background** Data

X = 3.478

CV(2) = 0.199**S**= 0.691

K factor\*\*= 2.523

TL(2) = 5.221

LL(2)=N/A

**Current Background Data from Upgradient** Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 1/21/2020 19.1 2.950 4/6/2020 3.016 20.4 7/20/2020 16.5 2.803 10/12/2020 15.7 2.754 1/20/2021 15.4 2.734 4/13/2021 16.7 2.815 7/13/2021 15.3 2.728 10/12/2021 2 715

| 10/12/2021   |                | 13.1   | 2./13      |  |
|--------------|----------------|--------|------------|--|
| Well Number: |                | MW372  |            |  |
|              | Date Collected | Result | LN(Result) |  |
|              | 1/22/2020      | 57     | 4.043      |  |
|              | 4/6/2020       | 62.7   | 4.138      |  |
|              | 7/23/2020      | 62.4   | 4.134      |  |
|              | 10/12/2020     | 62.3   | 4.132      |  |
|              | 1/20/2021      | 67.5   | 4.212      |  |
|              | 4/13/2021      | 62.3   | 4.132      |  |
|              | 7/14/2021      | 65     | 4.174      |  |
|              | 10/13/2021     | 64.8   | 4.171      |  |
|              |                |        |            |  |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Well No. | Gradient   | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|------------|-----------|--------|----------------|------------|-------------------|
| MW372    | Ungradient | Yes       | 67     | NO             | 4 205      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)
- Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# **Current Background Comparison**

Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 553.563 S = 196.334 CV(1) = 0.355

**K factor\*\*=** 2.523

TL(1)= 1048.912 LL(1)=N/A

**URGA** 

Statistics-Transformed Background Data

X = 6.256 S = 0.360

CV(2) = 0.058

K factor\*\*= 2.523

TL(2) = 7.165

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

| Well Number:   | MW369  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 3/17/2020      | 440    | 6.087      |
| 4/6/2020       | 407    | 6.009      |
| 7/23/2020      | 372    | 5.919      |
| 10/12/2020     | 373    | 5.922      |
| 1/20/2021      | 373    | 5.922      |
| 4/13/2021      | 383    | 5.948      |
| 7/13/2021      | 378    | 5.935      |
| 10/12/2021     | 305    | 5.720      |

| 10/12/2021     | 305    | 5.720      |
|----------------|--------|------------|
| Well Number:   | MW372  |            |
| Date Collected | Result | LN(Result) |
| 1/22/2020      | 730    | 6.593      |
| 4/6/2020       | 687    | 6.532      |
| 7/23/2020      | 770    | 6.646      |
| 10/12/2020     | 778    | 6.657      |
| 1/20/2021      | 822    | 6.712      |
| 4/13/2021      | 795    | 6.678      |
| 7/14/2021      | 760    | 6.633      |
| 10/13/2021     | 484    | 6.182      |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Well No. | Gradient   | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|------------|-----------|--------|----------------|------------|-------------------|
| MW372    | Ungradient | Yes       | 752    | NO             | 6.623      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### **Current Background Comparison**

**Dissolved Oxygen** 

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

10/12/2021

X = 1.858

**S**= 0.753

**CV(1)=**0.405

**K** factor\*\*= 2.523

TL(1)=3.757

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.521

S = 0.491 CV(2

CV(2) = 0.943

K factor\*\*= 2.523

TL(2) = 1.761

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

| Well Number:   | MW369  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 3/17/2020      | 0.8    | -0.223     |
| 4/6/2020       | 0.65   | -0.431     |
| 7/23/2020      | 2.66   | 0.978      |
| 10/12/2020     | 1.88   | 0.631      |
| 1/20/2021      | 1.88   | 0.631      |
| 4/13/2021      | 0.86   | -0.151     |
| 7/13/2021      | 3.17   | 1.154      |

| 10/12/2021     | 2.82   | 1.037      |
|----------------|--------|------------|
| Well Number:   | MW372  |            |
| Date Collected | Result | LN(Result) |
| 1/22/2020      | 1.9    | 0.642      |
| 4/6/2020       | 0.83   | -0.186     |
| 7/23/2020      | 1.78   | 0.577      |
| 10/12/2020     | 1.94   | 0.663      |
| 1/20/2021      | 2.13   | 0.756      |
| 4/13/2021      | 1.75   | 0.560      |
| 7/14/2021      | 2.4    | 0.875      |
| 10/13/2021     | 2.28   | 0.824      |
|                |        |            |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| 1 | Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|---|----------|-------------|-----------|--------|----------------|------------|-------------------|
|   | MW357    | Downgradien | nt Yes    | 5 19   | YES            | 1 647      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

1.037

Wells with Exceedances

MW357

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)
- \*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### **Current Background Comparison**

Dissolved Solids UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 326.313 S = 130.387 CV(1) = 0.400

K factor\*\*= 2.523

TL(1) = 655.279

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.707 S = 0.421

CV(2) = 0.074

K factor\*\*= 2.523

TL(2) = 6.769

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

| Well Number:   | MW369  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 1/21/2020      | 224    | 5.412      |
| 4/6/2020       | 214    | 5.366      |
| 7/20/2020      | 186    | 5.226      |
| 10/12/2020     | 220    | 5.394      |
| 1/20/2021      | 191    | 5.252      |
| 4/13/2021      | 209    | 5.342      |
| 7/13/2021      | 194    | 5.268      |
| 10/12/2021     | 179    | 5.187      |
|                |        |            |

| 10/12/2021     | 179    | 5.187      |
|----------------|--------|------------|
| Well Number:   | MW372  |            |
| Date Collected | Result | LN(Result) |
| 1/22/2020      | 423    | 6.047      |
| 4/6/2020       | 399    | 5.989      |
| 7/23/2020      | 436    | 6.078      |
| 10/12/2020     | 474    | 6.161      |
| 1/20/2021      | 447    | 6.103      |
| 4/13/2021      | 483    | 6.180      |
| 7/14/2021      | 481    | 6.176      |
| 10/13/2021     | 461    | 6.133      |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient   | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|------------|-----------|--------|----------------|------------|-------------------|
| MW372    | Ungradient | Vec       | 506    | NO             | 6.227      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
  - Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

# **Current Background Comparison**

Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 14.939 **S**= 8.203

CV(1)=0.549

K factor\*\*= 2.523

TL(1) = 35.634

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.538 S = 0.613

CV(2) = 0.241

K factor\*\*= 2.523

TL(2) = 4.083

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

| Well Number:   | MW369  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 1/21/2020      | 7.14   | 1.966      |
| 4/6/2020       | 8.43   | 2.132      |
| 7/20/2020      | 6.51   | 1.873      |
| 10/12/2020     | 7.24   | 1.980      |
| 1/20/2021      | 6.85   | 1.924      |
| 4/13/2021      | 6.97   | 1.942      |
| 7/13/2021      | 6.41   | 1.858      |
| 10/12/2021     | 6.77   | 1.913      |

| 10/12/2021     | 6.77   | 1.913      |
|----------------|--------|------------|
| Well Number:   | MW372  |            |
| Date Collected | Result | LN(Result) |
| 1/22/2020      | 21.3   | 3.059      |
| 4/6/2020       | 22.4   | 3.109      |
| 7/23/2020      | 21.4   | 3.063      |
| 10/12/2020     | 23.4   | 3.153      |
| 1/20/2021      | 24.1   | 3.182      |
| 4/13/2021      | 23.2   | 3.144      |
| 7/14/2021      | 24.1   | 3.182      |
| 10/13/2021     | 22.8   | 3.127      |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No | o. Gradient  | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|---------|--------------|-----------|--------|----------------|------------|-------------------|
| MW37    | 2 Ungradient | Ves       | 22.8   | NO             | 3 127      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# **Current Background Comparison**

#### Oxidation-Reduction Potential

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**UNITS: mV** 

Statistics-Background Data

X = 371.000 S = 29.602 CV(1) = 0.080

K factor\*\*= 2.523

TL(1) = 445.685

LL(1)=N/A

Statistics-Transformed Background Data

**X**= 5.913 **S**= 0.078

CV(2) = 0.013

K factor\*\*= 2.523

**TL(2)=** 6.110

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

Well Number: MW369 Date Collected Result LN(Result) 3/17/2020 327 5.790 4/6/2020 390 5.966 7/23/2020 353 5.866 10/12/2020 362 5.892 1/20/2021 350 5.858 4/13/2021 444 6.096 7/13/2021 352 5.864 10/12/2021 5.838 343

Well Number: MW372 Date Collected Result LN(Result) 1/22/2020 375 5.927 4/6/2020 393 5.974 7/23/2020 365 5.900 10/12/2020 341 5.832 1/20/2021 362 5.892 4/13/2021 411 6.019 5.935 7/14/2021 378 10/13/2021 390 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient     | Detected? | Result | Result $>$ TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|-------------------|------------|-------------------|
| MW357    | Downgradient | t Yes     | 348    | NO                | 5.852      | N/A               |
| MW360    | Downgradient | t Yes     | 384    | NO                | 5.951      | N/A               |
| MW363    | Downgradient | Yes       | 383    | NO                | 5.948      | N/A               |
| MW366    | Downgradient | t Yes     | 421    | NO                | 6.043      | N/A               |
| MW369    | Upgradient   | Yes       | 392    | NO                | 5.971      | N/A               |
| MW372    | Upgradient   | Yes       | 376    | NO                | 5.930      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

# **Current Background Comparison**

**URGA** Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 70.228 S = 66.912 CV(1) = 0.953

K factor\*\*= 2.523

TL(1)= 239.048

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.406

**S**= 1.537 CV(2) = 0.451 K factor\*\*= 2.523

TL(2) = 7.283

LL(2)=N/A

**Current Background Data from Upgradient** Wells with Transformed Result

Well Number: MW369 Date Collected LN(Result) Result 1/21/2020 5.54 1.712 4/6/2020 9.41 2.242 7/20/2020 1.701 5.48 10/12/2020 5.29 1.666 1/20/2021 5.86 1.768 4/13/2021 7.59 2.027 7/13/2021 8.66 2.159

| 10/12/2021     | 8.82   | 2.177      |
|----------------|--------|------------|
| Well Number:   | MW372  |            |
| Date Collected | Result | LN(Result) |
| 1/22/2020      | 105    | 4.654      |
| 4/6/2020       | 102    | 4.625      |
| 7/23/2020      | 124    | 4.820      |
| 10/12/2020     | 129    | 4.860      |
| 1/20/2021      | 156    | 5.050      |
| 4/13/2021      | 157    | 5.056      |
| 7/14/2021      | 147    | 4.990      |
| 10/13/2021     | 147    | 4.990      |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient   | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|------------|-----------|--------|----------------|------------|-------------------|
| MW372    | Ungradient | Yes       | 145    | NO             | 4.977      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)
- Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# **Current Background Comparison**

Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 55.375 S = 25.210 CV(1) = 0.455

K factor\*\*= 2.523

**TL(1)=** 118.980

**URGA** 

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.905

S = 0.506CV(2) = 0.130 K factor\*\*= 2.523

TL(2) = 5.182

LL(2)=N/A

**Current Background Data from Upgradient** Wells with Transformed Result

| Well Number:   | MW369  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 1/21/2020      | 31.7   | 3.456      |
| 4/6/2020       | 29.8   | 3.395      |
| 7/20/2020      | 20     | 2.996      |
| 10/12/2020     | 18.6   | 2.923      |
| 1/20/2021      | 47.7   | 3.865      |
| 4/13/2021      | 60.3   | 4.099      |
| 7/13/2021      | 67.7   | 4.215      |
| 10/12/2021     | 59.8   | 4.091      |

| 10/12/2021     | 59.8   | 4.091      |
|----------------|--------|------------|
| Well Number:   | MW372  |            |
| Date Collected | Result | LN(Result) |
| 1/22/2020      | 97.2   | 4.577      |
| 4/6/2020       | 46.5   | 3.839      |
| 7/23/2020      | 106    | 4.663      |
| 10/12/2020     | 83.4   | 4.424      |
| 1/20/2021      | 43.5   | 3.773      |
| 4/13/2021      | 51.3   | 3.938      |
| 7/14/2021      | 66.6   | 4.199      |
| 10/13/2021     | 55.9   | 4.024      |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |
|----------------------|
|----------------------|

| 1 | Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|---|----------|-------------|-----------|--------|----------------|------------|-------------------|
|   | MW366    | Downgradien | t Yes     | 67.9   | NO             | 4.218      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)
- Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### **Current Background Comparison**

**Dissolved Oxygen** 

UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

| Statistics-Background Data        | <b>X</b> = 2.651 | <b>S</b> = 1.144 | <b>CV(1)=</b> 0.432 | <b>K factor**=</b> 2.523 | TL(1)= 5.538  | LL(1)=N/A |
|-----------------------------------|------------------|------------------|---------------------|--------------------------|---------------|-----------|
| Statistics-Transformed Background | X = 0.885        | <b>S</b> = 0.443 | CV(2)=0.501         | K factor**= 2.523        | TL(2) = 2.003 | LL(2)=N/A |

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| <b>Current Background Data from Upgradient</b> |
|------------------------------------------------|
| Wells with Transformed Result                  |

| Well Number:                                                                    | MW370                          |                                           |
|---------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                         | LN(Result)                                |
| 1/21/2020                                                                       | 2.86                           | 1.051                                     |
| 4/6/2020                                                                        | 2.72                           | 1.001                                     |
| 7/23/2020                                                                       | 2.86                           | 1.051                                     |
| 10/12/2020                                                                      | 3.45                           | 1.238                                     |
| 1/20/2021                                                                       | 4.3                            | 1.459                                     |
| 4/13/2021                                                                       | 3.57                           | 1.273                                     |
| 7/13/2021                                                                       | 4.47                           | 1.497                                     |
| 10/12/2021                                                                      | 4.6                            | 1.526                                     |
|                                                                                 |                                |                                           |
| Well Number:                                                                    | MW373                          |                                           |
| Well Number: Date Collected                                                     | MW373<br>Result                | LN(Result)                                |
|                                                                                 |                                | LN(Result)<br>0.582                       |
| Date Collected                                                                  | Result                         |                                           |
| Date Collected 1/22/2020                                                        | Result<br>1.79                 | 0.582                                     |
| Date Collected<br>1/22/2020<br>4/6/2020                                         | Result 1.79 1.18               | 0.582<br>0.166                            |
| Date Collected<br>1/22/2020<br>4/6/2020<br>7/23/2020                            | Result 1.79 1.18 1.41          | 0.582<br>0.166<br>0.344                   |
| Date Collected<br>1/22/2020<br>4/6/2020<br>7/23/2020<br>10/12/2020              | Result 1.79 1.18 1.41 1.77     | 0.582<br>0.166<br>0.344<br>0.571          |
| Date Collected<br>1/22/2020<br>4/6/2020<br>7/23/2020<br>10/12/2020<br>1/20/2021 | Result 1.79 1.18 1.41 1.77 1.8 | 0.582<br>0.166<br>0.344<br>0.571<br>0.588 |

| Current Quarter Data |  |
|----------------------|--|
|----------------------|--|

| Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|----------------|------------|-------------------|
| MW361    | Downgradien | t Yes     | 4.44   | NO             | 1.491      | N/A               |
| MW370    | Upgradient  | Yes       | 4.36   | NO             | 1.472      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### **Current Background Comparison**

Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.012

CV(1)=0.998

**K** factor\*\*= 2.523

**TL(1)=** 0.041

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.053 S = 1.230

S = 0.012

CV(2) = -0.243

K factor\*\*= 2.523

TL(2) = -1.950

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW370    |            |
|----------------|----------|------------|
| Date Collected | Result   | LN(Result) |
| 1/21/2020      | 0.00145  | -6.536     |
| 4/6/2020       | 0.0121   | -4.415     |
| 7/23/2020      | 0.0022   | -6.119     |
| 10/12/2020     | 0.00104  | -6.869     |
| 1/20/2021      | 0.00196  | -6.235     |
| 4/13/2021      | 0.005    | -5.298     |
| 7/13/2021      | 0.00519  | -5.261     |
| 10/12/2021     | 0.00119  | -6.734     |
| W/-11 N1       | 1433/272 |            |

| //13/2021      | 0.00519 | -3.201     |
|----------------|---------|------------|
| 10/12/2021     | 0.00119 | -6.734     |
| Well Number:   | MW373   |            |
| Date Collected | Result  | LN(Result) |
| 1/22/2020      | 0.0157  | -4.154     |
| 4/6/2020       | 0.0235  | -3.751     |
| 7/23/2020      | 0.0374  | -3.286     |
| 10/12/2020     | 0.0331  | -3.408     |
| 1/20/2021      | 0.0185  | -3.990     |
| 4/13/2021      | 0.00242 | -6.024     |
| 7/14/2021      | 0.0143  | -4.247     |
| 10/13/2021     | 0.0108  | -4.528     |
|                |         |            |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

| Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|----------------|------------|-------------------|
| MW358    | Downgradien | it Ves    | 2.83   | VES            | 1 040      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

Wells with Exceedances

MW358

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# **Current Background Comparison**

Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.002

CV(1)=0.579

K factor\*\*= 2.523

TL(1) = 0.005

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.316 S = 0.601 CV(2) = -0.095

S = 0.001

K factor\*\*= 2.523

TL(2)= -4.801

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

Well Number: MW370 Date Collected Result LN(Result) 1/21/2020 0.002 -6.2154/6/2020 0.000725-7.229 7/23/2020 0.00383 -5.565 0.00421 -5.47010/12/2020 1/20/2021 0.00254 -5.976 4/13/2021 0.00128 -6.661 7/13/2021 0.000726 -7.22810/12/2021 0.002 -6.215

Well Number: MW373 Date Collected Result LN(Result) 1/22/2020 0.00133 -6.623 4/6/2020 0.00111 -6.8037/23/2020 0.00399 -5.524 10/12/2020 0.00382-5.568 0.0027 -5.915 1/20/2021 4/13/2021 0.00131 -6.638 0.00153 -6.482 7/14/2021 10/13/2021 0.000959 -6.950

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

**Current Quarter Data** 

| Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|----------------|------------|-------------------|
| MW358    | Downgradien | t Yes     | 0.0918 | YES            | -2 388     | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

Wells with Exceedances

MW358

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

\*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# **Current Background Comparison**

#### **Oxidation-Reduction Potential**

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**UNITS: mV** 

Statistics-Background Data

X = 384.938 S = 31.421 CV(1) = 0.082

**K factor\*\*=** 2.523

TL(1)= 464.212 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.950 S = 0.080

CV(2) = 0.013

K factor\*\*= 2.523

TL(2) = 6.152

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

| Well Number:                                                                   | MW370                             |                                                         |
|--------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------|
| Date Collected                                                                 | Result                            | LN(Result)                                              |
| 1/21/2020                                                                      | 425                               | 6.052                                                   |
| 4/6/2020                                                                       | 448                               | 6.105                                                   |
| 7/23/2020                                                                      | 366                               | 5.903                                                   |
| 10/12/2020                                                                     | 350                               | 5.858                                                   |
| 1/20/2021                                                                      | 395                               | 5.979                                                   |
| 4/13/2021                                                                      | 435                               | 6.075                                                   |
| 7/13/2021                                                                      | 364                               | 5.897                                                   |
| 10/12/2021                                                                     | 359                               | 5.883                                                   |
| 10/12/2021                                                                     | 337                               | 5.005                                                   |
| Well Number:                                                                   | MW373                             | 3.003                                                   |
|                                                                                |                                   | LN(Result)                                              |
| Well Number:                                                                   | MW373                             |                                                         |
| Well Number:  Date Collected                                                   | MW373<br>Result                   | LN(Result)                                              |
| Well Number: Date Collected 1/22/2020                                          | MW373 Result 350                  | LN(Result)<br>5.858                                     |
| Well Number: Date Collected 1/22/2020 4/6/2020                                 | MW373  Result 350 409             | LN(Result)<br>5.858<br>6.014                            |
| Well Number:  Date Collected 1/22/2020 4/6/2020 7/23/2020                      | MW373  Result 350 409 377         | LN(Result)<br>5.858<br>6.014<br>5.932                   |
| Well Number:  Date Collected 1/22/2020 4/6/2020 7/23/2020 10/12/2020           | MW373  Result 350 409 377 350     | LN(Result)<br>5.858<br>6.014<br>5.932<br>5.858          |
| Well Number:  Date Collected 1/22/2020 4/6/2020 7/23/2020 10/12/2020 1/20/2021 | MW373  Result 350 409 377 350 372 | LN(Result)<br>5.858<br>6.014<br>5.932<br>5.858<br>5.919 |

372

10/13/2021

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Well No. | Gradient    | Detected? | Result | Result $>$ TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|-------------------|------------|-------------------|
| MW358    | Downgradien | t Yes     | 160    | NO                | 5.075      | N/A               |
| MW361    | Downgradien | t Yes     | 350    | NO                | 5.858      | N/A               |
| MW364    | Downgradien | t Yes     | 390    | NO                | 5.966      | N/A               |
| MW367    | Downgradien | t Yes     | 277    | NO                | 5.624      | N/A               |
| MW370    | Upgradient  | Yes       | 402    | NO                | 5.996      | N/A               |
| MW373    | Upgradient  | Yes       | 376    | NO                | 5.930      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

5.919

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

\*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

# **Current Background Comparison**

Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 36.063 S = 25.264 CV(1) = 0.701

K factor\*\*= 2.523

TL(1)= 99.805

**LRGA** 

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.321

S = 0.779CV(2) = 0.235

K factor\*\*= 2.523

TL(2) = 5.286

LL(2)=N/A

**Current Background Data from Upgradient** Wells with Transformed Result

| Well Number:   | MW370  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 1/21/2020      | 82.8   | 4.416      |
| 4/6/2020       | 60.4   | 4.101      |
| 7/23/2020      | 67.3   | 4.209      |
| 10/12/2020     | 72.3   | 4.281      |
| 1/20/2021      | 58.8   | 4.074      |
| 4/13/2021      | 44.2   | 3.789      |
| 7/13/2021      | 37.9   | 3.635      |
| 10/12/2021     | 39.2   | 3.669      |
| Well Number    | MW373  |            |

| 10/12/2021     | 39.2   | 3.669      |
|----------------|--------|------------|
| Well Number:   | MW373  |            |
| Date Collected | Result | LN(Result) |
| 1/22/2020      | 13     | 2.565      |
| 4/6/2020       | 13.8   | 2.625      |
| 7/23/2020      | 18.4   | 2.912      |
| 10/12/2020     | 19.2   | 2.955      |
| 1/20/2021      | 9.89   | 2.292      |
| 4/13/2021      | 17.5   | 2.862      |
| 7/14/2021      | 14.2   | 2.653      |
| 10/13/2021     | 8.12   | 2.094      |
|                |        |            |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient    | Detected? | Result | Result $>$ TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|-------------------|------------|-------------------|
| MW361    | Downgradien | t Yes     | 51.5   | NO                | 3.942      | N/A               |
| MW364    | Downgradien | t Yes     | 57.3   | NO                | 4.048      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

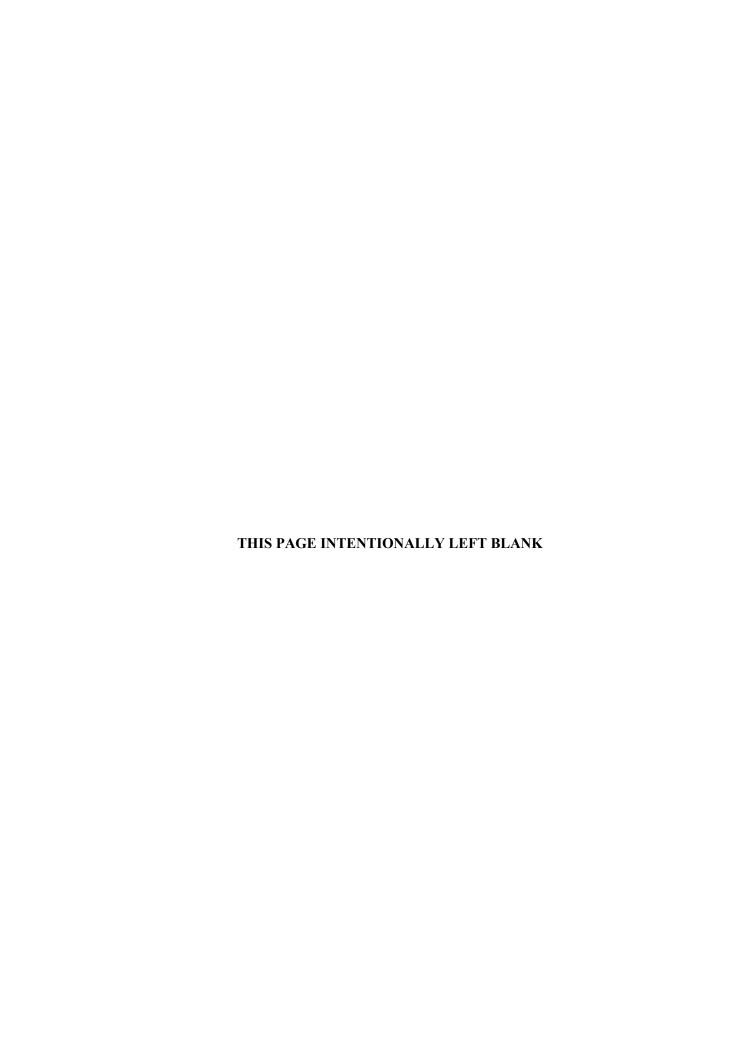




Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

April 7, 2022

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053


Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the first quarter 2022 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith



# APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION



RESIDENTIAL/CONTAINED—QUARTERLY, 1st CY 2022

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

# GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2022 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on January 26, 2022. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement and all wells, except MW376 and MW377, had sufficient water to permit sampling for laboratory analysis during this reporting period.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 6.29 × 10<sup>-4</sup> ft/ft and 5.44 × 10<sup>-4</sup> ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 2.30 × 10<sup>-4</sup> ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n<sub>e</sub>). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for January 2022, the groundwater flow direction in the immediate area of the landfill was to the northeast.

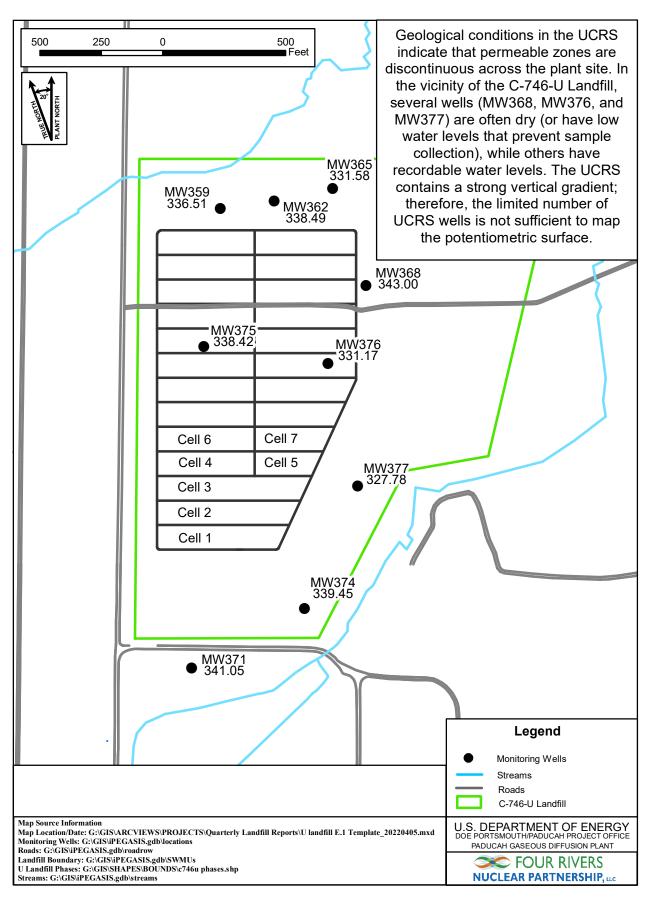



Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-U Landfill, January 26, 2022

Table E.1. C-746-U Landfill First Quarter 2022 (January) Water Levels

|              |           |          | C-746   | -U Landfill (Ja   | nuary 202 | 2) Water Le           | evels |           |        |            |
|--------------|-----------|----------|---------|-------------------|-----------|-----------------------|-------|-----------|--------|------------|
|              |           |          |         |                   |           |                       | Rav   | w Data    | *Corre | ected Data |
| Date         | Time      | Well     | Aquifer | <b>Datum Elev</b> | BP        | Delta BP              | DTW   | Elev      | DTW    | Elev       |
|              |           |          |         | (ft amsl)         | (in Hg)   | (ft H <sub>2</sub> 0) | (ft)  | (ft amsl) | (ft)   | (ft amsl)  |
| 1/26/2022    | 8:20      | MW357    | URGA    | 368.77            | 30.55     | 0.01                  | 45.56 | 323.21    | 45.57  | 323.20     |
| 1/26/2022    | 8:21      | MW358    | LRGA    | 368.92            | 30.55     | 0.01                  | 45.72 | 323.20    | 45.73  | 323.19     |
| 1/26/2022    | 8:22      | MW359    | UCRS    | 368.91            | 30.55     | 0.01                  | 32.39 | 336.52    | 32.40  | 336.51     |
| 1/26/2022    | 8:16      | MW360    | URGA    | 362.07            | 30.55     | 0.01                  | 38.84 | 323.23    | 38.85  | 323.22     |
| 1/26/2022    | 8:17      | MW361    | LRGA    | 361.32            | 30.55     | 0.01                  | 38.10 | 323.22    | 38.11  | 323.21     |
| 1/26/2022    | 8:18      | MW362    | UCRS    | 361.85            | 30.55     | 0.01                  | 23.35 | 338.50    | 23.36  | 338.49     |
| 1/26/2022    | 9:43      | MW363    | URGA    | 368.56            | 30.56     | 0.00                  | 45.39 | 323.17    | 45.39  | 323.17     |
| 1/26/2022    | 9:44      | MW364    | LRGA    | 368.17            | 30.56     | 0.00                  | 45.11 | 323.06    | 45.11  | 323.06     |
| 1/26/2022    | 9:45      | MW365    | UCRS    | 368.14            | 30.56     | 0.00                  | 36.56 | 331.58    | 36.56  | 331.58     |
| 1/26/2022    | 9:47      | MW366    | URGA    | 368.95            | 30.56     | 0.00                  | 45.64 | 323.31    | 45.64  | 323.31     |
| 1/26/2022    | 9:48      | MW367    | LRGA    | 369.37            | 30.56     | 0.00                  | 46.06 | 323.31    | 46.06  | 323.31     |
| 1/26/2022    | 9:49      | MW368    | UCRS    | 368.98            | 30.56     | 0.00                  | 25.98 | 343.00    | 25.98  | 343.00     |
| 1/26/2022    | 8:48      | MW369    | URGA    | 364.23            | 30.55     | 0.01                  | 40.03 | 324.20    | 40.04  | 324.19     |
| 1/26/2022    | 8:49      | MW370    | LRGA    | 365.12            | 30.55     | 0.01                  | 40.92 | 324.20    | 40.93  | 324.19     |
| 1/26/2022    | 8:50      | MW371    | UCRS    | 364.64            | 30.55     | 0.01                  | 23.58 | 341.06    | 23.59  | 341.05     |
| 1/26/2022    | 8:44      | MW372    | URGA    | 359.42            | 30.55     | 0.01                  | 35.18 | 324.24    | 35.19  | 324.23     |
| 1/26/2022    | 8:45      | MW373    | LRGA    | 359.73            | 30.55     | 0.01                  | 35.49 | 324.24    | 35.50  | 324.23     |
| 1/26/2022    | 8:46      | MW374    | UCRS    | 359.44            | 30.55     | 0.01                  | 19.98 | 339.46    | 19.99  | 339.45     |
| 1/26/2022    | 8:37      | MW375    | UCRS    | 370.36            | 30.55     | 0.01                  | 31.93 | 338.43    | 31.94  | 338.42     |
| 1/26/2022    | 8:39      | MW376    | UCRS    | 370.39            | 30.55     | 0.01                  | 39.21 | 331.18    | 39.22  | 331.17     |
| 1/26/2022    | 8:40      | MW377    | UCRS    | 365.74            | 30.55     | 0.01                  | 37.95 | 327.79    | 37.96  | 327.78     |
| Reference Ba | arometric | Pressure |         |                   | 30.56     |                       |       |           |        |            |

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

\*Assumes a barometric efficiency of 1.0

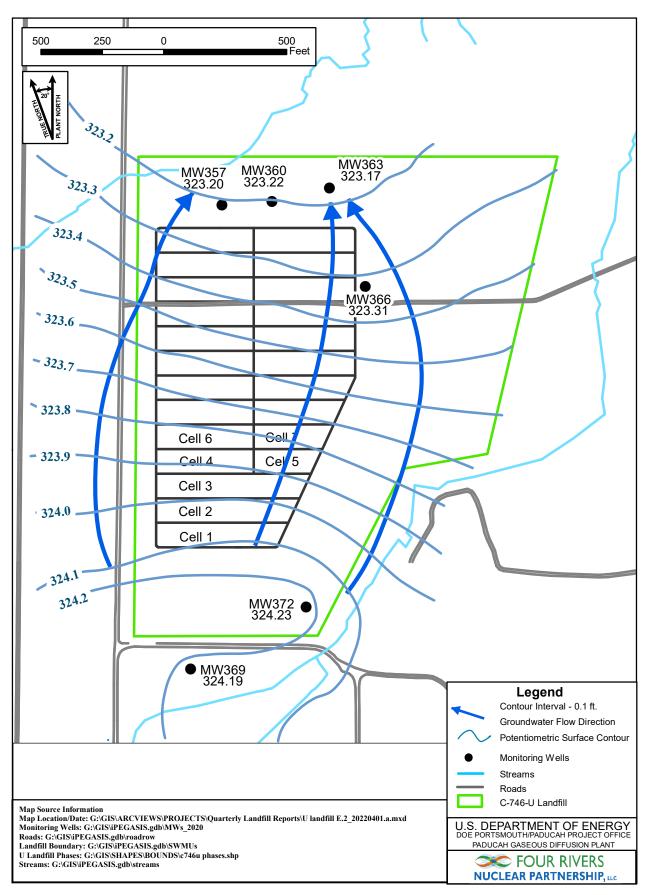



Figure E.2. Potentiometric Surface of the Upper Regional Gravel Aquifer at the C-746-U Landfill, January 26, 2022

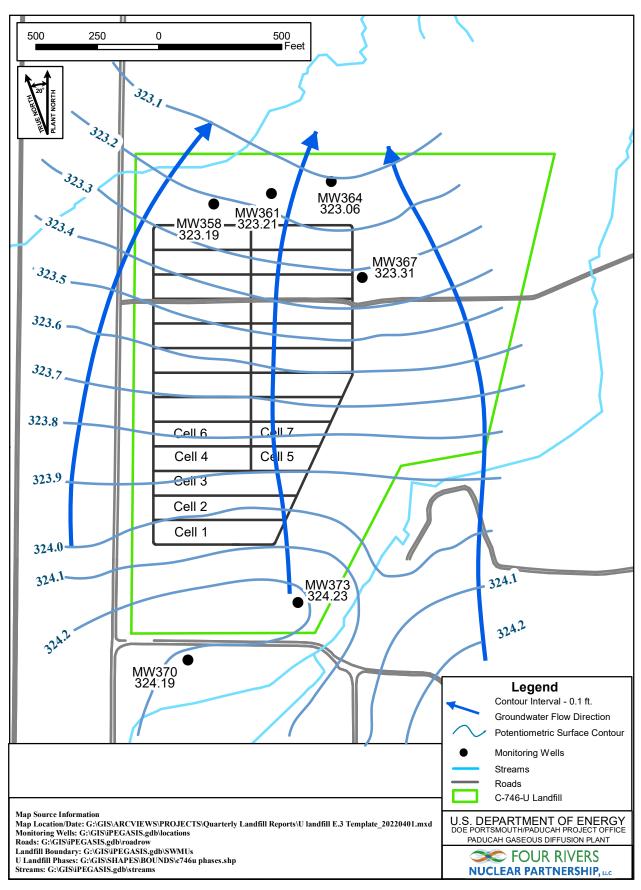
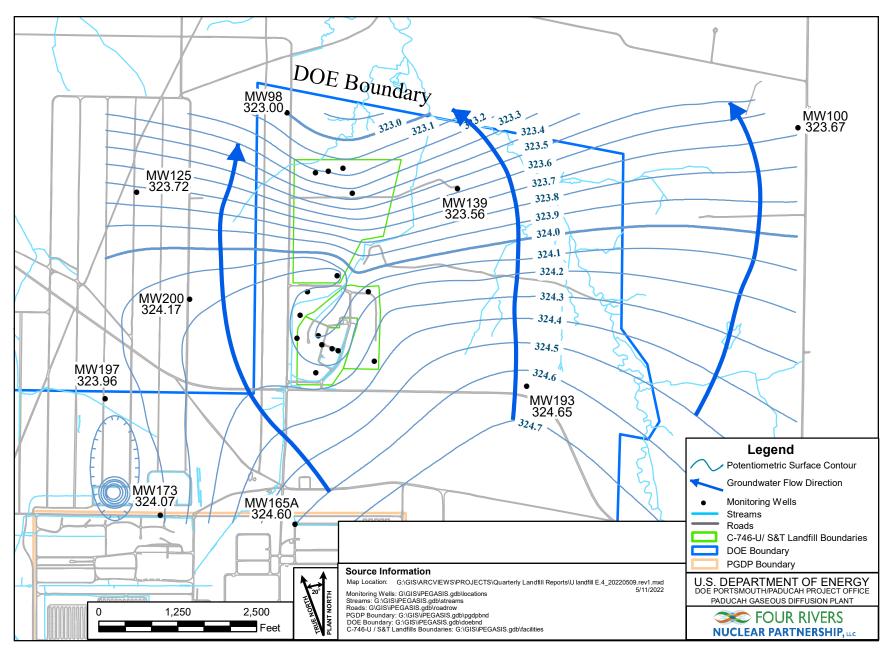



Figure E.3. Potentiometric Surface of the Lower Regional Gravel Aquifer at the C-746-U Landfill, January 26, 2022



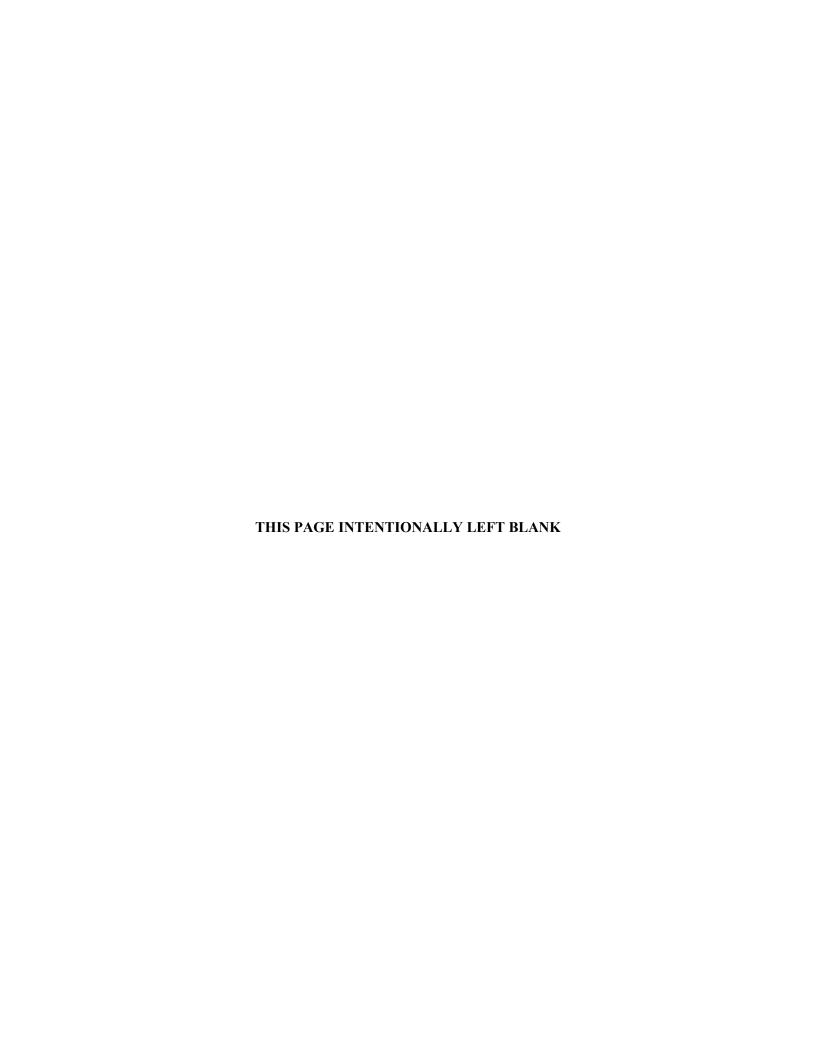


Figure E.4. Vicinity Potentiometric Surface of the Regional Gravel Aquifer, January 26, 2022

Table E.2. C-746-U Landfill Hydraulic Gradients

|                            | ft/ft                   |
|----------------------------|-------------------------|
| Beneath Landfill—Upper RGA | 6.29 × 10 <sup>-4</sup> |
| Beneath Landfill—Lower RGA | 5.44 × 10 <sup>-4</sup> |
| Vicinity                   | $2.30 \times 10^{-4}$   |

Table E.3. C-746-U Landfill Groundwater Flow Rate

| Hydraulic Conductivity (K) |       | Specific | c Discharge (q)         | Average Linear Velocity (v) |                       |  |  |  |
|----------------------------|-------|----------|-------------------------|-----------------------------|-----------------------|--|--|--|
| ft/day                     | cm/s  | ft/day   | cm/s                    | ft/day                      | cm/s                  |  |  |  |
| Upper RGA                  |       |          |                         |                             |                       |  |  |  |
| 725                        | 0.256 | 0.456    | $1.61 \times 10^{-4}$   | 1.825                       | $6.44 \times 10^{-4}$ |  |  |  |
| 425                        | 0.150 | 0.267    | 9.44 × 10 <sup>-5</sup> | 1.070                       | $3.78 \times 10^{-4}$ |  |  |  |
| Lower RGA                  |       |          |                         |                             |                       |  |  |  |
| 725                        | 0.256 | 0.394    | $1.39 \times 10^{-4}$   | 1.576                       | $5.57 \times 10^{-4}$ |  |  |  |
| 425                        | 0.150 | 0.231    | $8.15 \times 10^{-5}$   | 0.924                       | $3.26 \times 10^{-4}$ |  |  |  |



# APPENDIX F NOTIFICATIONS



#### **NOTIFICATIONS**

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

#### **Statistical Analysis of Parameters Notification**

The statistical analyses conducted on the first quarter 2022 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

|                                          | <u>Parameter</u>        | Monitoring Well       |
|------------------------------------------|-------------------------|-----------------------|
| <b>Upper Continental Recharge System</b> | None                    |                       |
| <b>Upper Regional Gravel Aquifer</b>     | Technetium-99           | MW366                 |
| <b>Lower Regional Gravel Aquifer</b>     | Technetium-99<br>Nickel | MW361, MW364<br>MW358 |

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/21/2022

# Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

# SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

| AKGWA     | Station | Analysis        | Method | Results | Units | MCL |
|-----------|---------|-----------------|--------|---------|-------|-----|
| 8004-4795 | MW361   | Trichloroethene | 8260D  | 6.64    | ug/L  | 5   |
| 8004-4792 | MW373   | Trichloroethene | 8260D  | 5.37    | ug/L  | 5   |

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

# APPENDIX G CHART OF MCL AND UTL EXCEEDANCES



# Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

| Groundwater Flow System            | I        |          |     | UCR | S   |     |     |     |                                                  |                                                  |          | URC      | ŝΑ       |          |     | Г          |                                                  | LRG      | A        |          | $\neg$   |
|------------------------------------|----------|----------|-----|-----|-----|-----|-----|-----|--------------------------------------------------|--------------------------------------------------|----------|----------|----------|----------|-----|------------|--------------------------------------------------|----------|----------|----------|----------|
| Gradient                           | D        | S        | S   | S   | D   | D   | D   | U   | U                                                | D                                                | D        | D        | D        | U        | U   | D          | D                                                | D        | D        | U        | U        |
| Monitoring Well                    | 368      | 375      | 376 | 377 | 359 | 362 | 365 | 371 | 374                                              | 366                                              | 360      | 363      | 357      | 369      | 372 | 367        | 361                                              | 364      | 358      | 370      | 373      |
| ACETONE                            |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 3, 2002                    |          |          |     |     |     |     |     |     |                                                  | *                                                | *        | *        |          |          |     |            |                                                  |          |          |          |          |
| Quarter 4, 2002                    |          |          |     |     |     |     |     |     |                                                  | *                                                | *        | *        |          |          |     |            |                                                  |          |          |          |          |
| Quarter 1, 2003                    |          |          |     |     |     |     |     |     |                                                  |                                                  | *        | *        |          |          |     |            |                                                  |          |          |          |          |
| Quarter 2, 2003                    |          |          |     |     |     |     |     |     |                                                  |                                                  | *        | *        |          |          |     | Ь.         |                                                  |          |          |          |          |
| Quarter 3, 2003                    | *        |          |     |     |     |     | *   |     |                                                  | *                                                | *        | *        | _        |          | *   | <u> </u>   |                                                  | *        |          |          |          |
| Quarter 4, 2003                    | -        |          |     |     |     | *   | *   |     |                                                  |                                                  | *        |          |          | *        |     | <u> </u>   |                                                  | _        |          |          |          |
| Quarter 3, 2004                    | -        |          |     |     | _   | *   |     |     |                                                  |                                                  |          |          |          |          |     | *          |                                                  | -        |          |          |          |
| Quarter 3, 2005                    | -        |          |     |     |     | *   |     |     |                                                  |                                                  |          |          |          |          |     | _          |                                                  |          |          |          |          |
| Quarter 4, 2005                    |          |          |     |     |     | *   |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| ALPHA ACTIVITY Quarter 1, 2004     |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 1, 2004<br>Quarter 2, 2004 | -        |          |     |     |     | _   |     |     |                                                  |                                                  |          |          |          |          |     | ⊢          |                                                  |          |          |          | _        |
| Quarter 3, 2009                    | 1        |          |     |     |     |     |     |     |                                                  |                                                  |          | -        |          |          |     | ┢          |                                                  |          |          |          |          |
| ALUMINUM                           |          |          |     |     |     | _   |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Ouarter 3, 2003                    |          |          |     |     |     |     |     |     |                                                  |                                                  | *        |          |          |          |     |            |                                                  |          |          |          |          |
| BETA ACTIVITY                      |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 1, 2004                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     | -          |                                                  |          |          |          |          |
| Quarter 2, 2004                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 3, 2004                    | 1        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 4, 2004                    | i –      |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 4, 2005                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 1, 2006                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 2, 2006                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 3, 2006                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 4, 2006                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 1, 2007                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 2, 2007                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 3, 2007                    |          |          |     |     |     |     |     |     |                                                  | •                                                |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 4, 2007                    |          |          |     |     |     |     |     |     |                                                  | •                                                |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 1, 2008                    |          |          |     |     |     |     |     |     |                                                  | •                                                |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 2, 2008                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 3, 2008                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 4, 2008                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 1, 2009                    |          |          |     |     |     |     |     |     |                                                  | •                                                |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 2, 2009                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     | ▮■         |                                                  |          |          |          |          |
| Quarter 3, 2009                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     | Ь—         |                                                  |          |          |          |          |
| Quarter 4, 2009                    | _        |          |     |     |     |     |     |     |                                                  | •                                                |          |          |          |          |     | Ь—         |                                                  | _        |          |          |          |
| Quarter 1, 2010                    | _        |          |     |     |     |     |     |     |                                                  | _                                                |          |          |          |          |     | <b>⊢</b> _ |                                                  | _        |          |          |          |
| Quarter 2, 2010                    |          |          |     |     |     |     |     |     |                                                  | _                                                |          |          |          |          |     | ▝          |                                                  |          |          |          |          |
| Quarter 3, 2010                    | -        |          |     |     |     |     |     |     |                                                  | •                                                |          |          | _        |          | _   | ├          |                                                  | -        |          |          |          |
| Quarter 4, 2010                    | -        |          |     |     |     |     |     |     |                                                  | _                                                |          |          |          |          |     | ⊢_         |                                                  | -        |          |          |          |
| Quarter 2, 2011                    | -        |          |     |     | _   | _   |     |     |                                                  | •                                                |          |          |          |          | _   | ▝          |                                                  | -        |          |          |          |
| Quarter 4, 2011                    | -        |          |     |     | _   | _   |     |     | _                                                | _                                                |          |          |          |          |     | ⊢          |                                                  | -        |          |          |          |
| Quarter 1, 2012                    | 1        |          |     |     |     |     |     |     |                                                  | -                                                |          |          |          | _        |     | ⊢          |                                                  |          |          |          |          |
| Quarter 2, 2012                    | -        |          |     |     | _   |     |     |     |                                                  | -                                                |          | _        | _        | _        | _   | ├          |                                                  |          |          |          |          |
| Quarter 3, 2012                    | -        |          |     |     |     |     |     |     |                                                  | •                                                |          |          |          |          |     | ⊢          |                                                  | -        |          |          |          |
| Quarter 4, 2012                    | -        |          |     |     |     |     |     |     |                                                  | _                                                |          |          |          |          |     | ├          |                                                  |          |          |          |          |
| Quarter 1, 2013                    | ┢        | -        | -   | -   |     | -   | -   | -   | <del>                                     </del> | <b> </b>                                         | -        | -        | -        | $\vdash$ |     | $\vdash$   | <del>                                     </del> | $\vdash$ | -        | $\vdash$ |          |
| Quarter 3, 2013<br>Quarter 4, 2013 | 1        |          |     |     |     |     |     |     | $\vdash$                                         | <del>                                     </del> |          | $\vdash$ |          | $\vdash$ |     | $\vdash$   | <del>                                     </del> | $\vdash$ |          |          |          |
| Quarter 4, 2013<br>Quarter 1, 2014 | $\vdash$ | $\vdash$ |     |     | -   | _   |     |     | $\vdash$                                         | <del>                                     </del> | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$ |     | $\vdash$   | $\vdash$                                         | $\vdash$ | $\vdash$ |          | $\vdash$ |
| Quarter 1, 2014<br>Quarter 4, 2014 | t        |          |     |     |     |     |     |     | $\vdash$                                         | l                                                | $\vdash$ |          |          | $\vdash$ |     | $\vdash$   |                                                  | $\vdash$ | $\vdash$ |          | $\vdash$ |
| Quarter 1, 2015                    | t        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     | $\vdash$   |                                                  |          |          |          |          |
| Quarter 2, 2015                    | t        |          |     |     |     |     |     |     | $\vdash$                                         | l                                                |          |          |          |          | _   |            | <del>                                     </del> |          |          |          |          |
| Quarter 4, 2015                    | t        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     | ⊢          |                                                  |          |          |          |          |
| Quarter 3, 2016                    | t        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          | _   | $\vdash$   |                                                  | $\vdash$ | _        |          | $\Box$   |
| Quarter 4, 2016                    | t        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     | т          |                                                  |          |          |          |          |
| Quarter 2, 2017                    | t        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     | г          |                                                  |          |          |          |          |
| Quarter 3, 2017                    | t        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 4, 2017                    | t        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     | Г          |                                                  |          |          |          |          |
| Quarter 1, 2018                    | t        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     | Г          |                                                  |          |          |          | $\Box$   |
| Quarter 2, 2018                    | t        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          | T -      |          |          |
| Quarter 3, 2018                    | 1        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 4, 2018                    | T        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 1, 2019                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 2, 2019                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 3, 2019                    | 1        |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     | Г          |                                                  |          |          |          |          |
| Quarter 4, 2019                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 1, 2020                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 2, 2020                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 3, 2020                    | <u>L</u> |          | Ĺ_  | L_  |     |     | L_  | L_  | L                                                | Ĺ_                                               |          | L        |          |          |     |            | L                                                |          |          |          |          |
| Quarter 4, 2020                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| BROMIDE                            |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |
| Quarter 2, 2004                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          | *        |          |     |            |                                                  |          |          |          |          |
|                                    |          |          |     |     |     |     |     |     |                                                  |                                                  |          |          |          |          |     |            |                                                  |          |          |          |          |

# Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

| Groundwater Flow System            |          |          |          | UCR      | S        |          |     |     |          |                                                  |          | URG      | Δ.  |     |      | _                                            |                                                  | LRG                                              | - Δ      |          |     |
|------------------------------------|----------|----------|----------|----------|----------|----------|-----|-----|----------|--------------------------------------------------|----------|----------|-----|-----|------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|----------|-----|
| Gradient                           | D        | S        | S        | S        | D        | D        | D   | U   | U        | D                                                | D        | D        | D   | U   | U    | D                                            | D                                                | D                                                | D        | U        | U   |
| Monitoring Well                    | 368      | 375      | 376      | 377      | 359      | 362      | 365 | 371 | 374      | 366                                              | 360      | 363      | 357 | 369 | 372  | 367                                          | 361                                              | 364                                              | 358      | 370      | 373 |
| CALCIUM                            |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 3, 2003                    |          |          |          |          |          |          |     |     |          | *                                                |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 2, 2005                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          | *   |
| Quarter 3, 2006                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | _                                            |                                                  |                                                  |          |          |     |
| Quarter 2, 2008                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | <u> </u>                                     |                                                  |                                                  |          |          |     |
| Quarter 3, 2009                    |          |          |          |          |          |          |     |     | _        |                                                  |          |          |     |     | *    | <u> </u>                                     |                                                  | _                                                |          |          |     |
| Quarter 4, 2009                    | _        |          |          |          |          |          |     |     |          | -                                                |          |          |     |     | *    | ⊢                                            |                                                  | -                                                |          |          |     |
| Quarter 1, 2010                    | _        | _        |          |          | _        |          |     |     |          |                                                  |          |          | _   |     | *    | <u> </u>                                     |                                                  | -                                                |          |          |     |
| Quarter 2, 2010<br>Quarter 3, 2010 |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | <u> </u>                                     |                                                  |                                                  |          |          |     |
| Quarter 1, 2011                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | ⊢                                            |                                                  |                                                  |          |          |     |
| Quarter 2, 2011                    |          |          |          |          |          |          |     |     | $\vdash$ |                                                  |          |          |     |     | *    | $\vdash$                                     |                                                  | $\vdash$                                         |          |          |     |
| Quarter 3, 2011                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | -    | $\vdash$                                     |                                                  |                                                  |          |          | *   |
| Quarter 4, 2011                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          | *   |
| Quarter 1, 2012                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | $\vdash$                                     |                                                  |                                                  |          |          | *   |
| Quarter 2, 2012                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          | *   |
| Quarter 3, 2012                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | Г                                            |                                                  |                                                  |          |          | *   |
| Quarter 4, 2012                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          |     |
| Quarter 1, 2013                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          | *   |
| Quarter 2, 2013                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          |     |
| Quarter 3, 2013                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          | *   |
| Quarter 4, 2013                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          |     |
| Quarter 2, 2014                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | $\Box$                                       |                                                  |                                                  |          |          | *   |
| Quarter 3, 2014                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | $ldsymbol{oxed}$                             |                                                  |                                                  |          |          | *   |
| Quarter 4, 2014                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | $\Box$                                       |                                                  |                                                  |          |          |     |
| Quarter 2, 2015                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | oxdot                                        |                                                  |                                                  |          |          |     |
| Quarter 3, 2015                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          |     |
| Quarter 4, 2015                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | <u> </u>                                     |                                                  | _                                                |          |          |     |
| Quarter 1, 2016                    |          |          |          | Ш        |          |          |     |     |          |                                                  |          | Ш        |     |     | *    | <u> </u>                                     |                                                  |                                                  |          | Ш        |     |
| Quarter 2, 2016                    | L.       |          |          |          |          |          |     |     | _        | L                                                |          |          |     |     | *    | <u> </u>                                     |                                                  | _                                                |          |          |     |
| Quarter 2, 2017                    | *        |          | $\vdash$ | $\vdash$ | $\vdash$ |          |     |     | <u> </u> |                                                  |          | $\vdash$ |     |     |      | <u> </u>                                     |                                                  | <u> </u>                                         | <u> </u> | $\vdash$ |     |
| Quarter 1, 2018                    | *        |          | $\vdash$ | $\vdash$ |          |          |     |     | _        | ļ                                                |          | $\vdash$ |     |     | _    | Ь—                                           |                                                  | _                                                | <u> </u> |          |     |
| Quarter 3, 2018                    | *        |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 3, 2019                    | *        |          |          |          |          |          |     | *   |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 4, 2019                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | <u> </u>                                     |                                                  |                                                  |          |          |     |
| Quarter 1, 2020                    |          |          |          |          |          |          |     | *   | _        |                                                  |          |          |     |     | *    | Ь—                                           |                                                  | _                                                |          |          |     |
| Quarter 2, 2020                    | 44       |          |          |          |          |          |     | *   |          |                                                  |          |          |     |     | *    | _                                            |                                                  | -                                                |          |          |     |
| Quarter 3, 2020                    | *        |          |          |          |          |          |     | *   |          |                                                  |          |          |     |     | *    | _                                            |                                                  |                                                  |          |          |     |
| Quarter 4, 2020                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | -                                            |                                                  |                                                  |          |          |     |
| Quarter 1, 2021<br>Quarter 2, 2021 | -        | _        |          |          | _        |          |     | *   |          | _                                                |          |          | _   | _   | *    | ⊢                                            |                                                  | -                                                |          |          |     |
| Quarter 3, 2021                    |          |          |          |          |          |          |     | - * | $\vdash$ |                                                  |          |          |     |     | *    | $\vdash$                                     |                                                  | $\vdash$                                         |          |          |     |
| Quarter 4, 2021                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | $\vdash$                                     |                                                  |                                                  |          |          |     |
| Quarter 1, 2022                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          |     |
| CARBON DISULFIDE                   |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 3, 2003                    |          |          |          |          |          |          |     |     |          | *                                                |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 2, 2005                    |          |          |          |          |          |          | *   |     |          |                                                  |          |          |     |     |      | Г                                            |                                                  |                                                  |          |          |     |
| Quarter 3, 2005                    |          |          |          |          |          | *        |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 4, 2005                    |          |          |          |          |          | *        |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 1, 2006                    |          |          |          |          |          | *        |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 2, 2006                    |          |          |          |          |          | *        |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 3, 2010                    |          | *        |          |          |          |          |     |     |          |                                                  | *        |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 4, 2010                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     | *   |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 1, 2011                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          |     |
| CHEMICAL OXYGEN DEMA               | ND       |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 3, 2002                    |          |          | <u> </u> | Ш        |          | <u> </u> |     |     | <u> </u> | *                                                | *        | *        | *   | *   | *    | <u> </u>                                     |                                                  |                                                  | <u> </u> | Ш        |     |
| Quarter 4, 2002                    |          | _        | $\vdash$ | $\vdash$ |          |          |     |     | _        | *                                                | *        | $\vdash$ |     |     | _    | Ь—                                           |                                                  | _                                                | <u> </u> |          |     |
| Quarter 1, 2003                    | _        |          | $\vdash$ | $\vdash$ |          |          |     |     | _        | *                                                | *        |          |     |     |      | ⊢                                            | <u> </u>                                         | <u> </u>                                         | <u> </u> | $\vdash$ |     |
| Quarter 2, 2003                    | Ļ.       | _        |          | Н        |          |          |     |     | -        | *                                                | *        | *        |     |     | _    | <u>.                                    </u> | ļ                                                | -                                                | -        |          |     |
| Quarter 3, 2003                    | *        | <u> </u> |          | $\vdash$ |          | <u>.</u> |     |     | -        | *                                                | *        | $\vdash$ |     | _   |      | *                                            | <u> </u>                                         | -                                                | -        | $\vdash$ |     |
| Quarter 4, 2003                    | -        | <u> </u> | $\vdash$ | $\vdash$ |          | *        |     |     | <u> </u> | *                                                | *        | $\vdash$ |     | -   | _    | <del> </del>                                 | <u> </u>                                         | <del></del>                                      | <u> </u> | $\vdash$ |     |
| Quarter 3, 2004                    | <b>—</b> | _        | $\vdash$ | $\vdash$ | <b>—</b> | - VE     |     |     | <u> </u> | *                                                | _        | $\vdash$ | -   | _   | JE . | *                                            | <del>                                     </del> | <del>                                     </del> | 34c      | $\vdash$ |     |
| Quarter 3, 2005<br>Quarter 4, 2005 | -        | <b>-</b> | $\vdash$ | $\vdash$ |          | *        |     |     | $\vdash$ | *                                                | <b>-</b> | $\vdash$ |     | -   | *    | ╇                                            | <del>                                     </del> | *                                                | *        |          |     |
| Quarter 4, 2005<br>Quarter 1, 2006 |          |          |          | $\vdash$ |          | T        |     |     |          | <b>-</b>                                         |          |          |     |     |      | $\vdash$                                     | <u> </u>                                         | T                                                | *        |          |     |
| Quarter 4, 2016                    |          |          |          |          |          |          |     |     |          | <b>-</b>                                         |          |          |     |     |      | $\vdash$                                     | <b>-</b>                                         | *                                                | T.       |          |     |
| Quarter 4, 2016<br>Quarter 1, 2017 |          |          | $\vdash$ |          |          |          |     |     | $\vdash$ | <del>                                     </del> | *        |          |     |     |      | $\vdash$                                     |                                                  | <del>  ~</del>                                   | $\vdash$ |          |     |
| Quarter 2, 2019                    |          |          | $\vdash$ |          |          |          |     |     |          | <del></del>                                      | -        | *        |     |     | *    | $\vdash$                                     |                                                  |                                                  |          |          |     |
| Quarter 3, 2019                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | l                                            |                                                  |                                                  |          |          | *   |
| Quarter 4, 2019                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    | <u> </u>                                     |                                                  |                                                  |          |          |     |
| CHLORIDE                           |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 1, 2006                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          | *        |     |
| Quarter 2, 2014                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     | *    |                                              |                                                  |                                                  |          |          |     |
| COBALT                             |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 3, 2003                    | *        |          |          |          |          |          | *   |     |          | *                                                | *        |          | *   | *   | *    | *                                            | *                                                | *                                                |          | *        |     |
| Quarter 1, 2004                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     | *   |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 2, 2016                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     | *   |      |                                              |                                                  |                                                  |          |          |     |
| CONDUCTIVITY                       |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 4, 2002                    |          |          |          |          |          |          |     |     |          | *                                                |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 1, 2003                    |          |          |          |          |          |          |     |     |          | *                                                |          |          |     |     |      | oxdot                                        |                                                  |                                                  |          |          |     |
| Quarter 2, 2003                    |          |          |          |          |          |          |     |     |          | *                                                | *        |          |     |     |      | $\Box$                                       |                                                  |                                                  |          |          |     |
| Quarter 4, 2003                    |          |          |          |          |          |          |     |     |          | *                                                |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 1, 2004                    |          |          |          |          |          |          |     |     |          | *                                                |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
| Quarter 2, 2004                    |          |          |          |          |          |          |     |     |          | *                                                |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
|                                    |          |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |
|                                    | _        |          |          |          |          |          |     |     |          |                                                  |          |          |     |     |      |                                              |                                                  |                                                  |          |          |     |

# Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

| Groundwater Flow System            | 1        |          |     | UCR      | s   |          |          |          |                                                  |             |          | URG      | A   |          |          | Ι                                                |          | LRG      | A        |     | $\neg$    |
|------------------------------------|----------|----------|-----|----------|-----|----------|----------|----------|--------------------------------------------------|-------------|----------|----------|-----|----------|----------|--------------------------------------------------|----------|----------|----------|-----|-----------|
| Gradient                           | D        | S        | S   | S        | D   | D        | D        | U        | U                                                | D           | D        | D        | D   | U        | U        | D                                                | D        | D        | D        | U   | U         |
| Monitoring Well                    | 368      | 375      | 376 | 377      | 359 | 362      | 365      | 371      | 374                                              | 366         | 360      | 363      | 357 | 369      | 372      | 367                                              | 361      | 364      | 358      | 370 | 373       |
| CONDUCTIVITY Quarter 3, 2004       |          |          |     |          |     |          |          |          |                                                  | *           |          |          |     |          |          |                                                  |          |          |          |     |           |
| Quarter 1, 2005                    |          |          |     |          |     |          |          |          |                                                  | 不           |          |          |     |          | *        | <u> </u>                                         |          |          |          |     |           |
| Quarter 2, 2005                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | $\vdash$                                         |          |          |          |     |           |
| Quarter 3, 2005                    |          |          |     |          |     | *        |          |          |                                                  |             |          |          |     |          |          |                                                  |          |          | *        |     |           |
| Quarter 4, 2005                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          | *        |          |     |           |
| Quarter 1, 2006                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 2, 2006                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | <u> </u>                                         |          |          |          |     |           |
| Quarter 3, 2006                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | <u> </u>                                         |          |          |          |     |           |
| Quarter 1, 2007<br>Quarter 2, 2007 |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | <del> </del>                                     |          |          |          |     |           |
| Quarter 3, 2007<br>Quarter 3, 2007 |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | $\vdash$                                         |          |          |          |     |           |
| Quarter 4, 2007                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | $\vdash$                                         |          |          |          |     |           |
| Quarter 1, 2008                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | $\vdash$                                         |          |          |          |     |           |
| Quarter 2, 2008                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 3, 2008                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 4, 2008                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 1, 2009                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 2, 2009                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | <u> </u>                                         |          |          |          |     |           |
| Quarter 3, 2009                    | -        |          |     |          |     |          |          |          |                                                  | -           |          |          |     |          | *        | ├                                                |          |          |          |     | -         |
| Quarter 4, 2009                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     | -        | *        | ├                                                |          |          |          |     | $\vdash$  |
| Quarter 1, 2010<br>Quarter 2, 2010 | 1        | $\vdash$ |     | $\vdash$ |     |          | $\vdash$ | $\vdash$ | $\vdash$                                         | <del></del> | $\vdash$ | $\vdash$ |     | $\vdash$ | *        | $\vdash$                                         | $\vdash$ | $\vdash$ |          |     | -         |
| Quarter 3, 2010                    |          | $\vdash$ |     |          |     |          |          |          |                                                  | _           |          |          |     | $\vdash$ | *        | $\vdash$                                         |          | $\vdash$ |          |     |           |
| Quarter 4, 2010                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | <del>                                     </del> |          |          |          |     |           |
| Quarter 1, 2011                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | <u> </u>                                         |          |          |          |     | $\neg$    |
| Quarter 2, 2011                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 3, 2011                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 4, 2011                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 1, 2012                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     | *        | *        |                                                  |          |          |          |     |           |
| Quarter 2, 2012                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 3, 2012                    |          |          |     |          |     |          |          |          | _                                                |             |          |          |     | _        | *        | <u> </u>                                         | _        | <u> </u> |          |     |           |
| Quarter 4, 2012                    |          |          |     |          | _   |          |          |          | -                                                |             |          |          |     | -        | *        | ├                                                | _        | -        |          |     | _         |
| Quarter 1, 2013<br>Quarter 2, 2013 |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | <u> </u>                                         |          |          |          |     | $\vdash$  |
| Quarter 3, 2013                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | _                                                |          |          |          |     |           |
| Quarter 4, 2013                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | $\vdash$                                         |          |          |          |     |           |
| Quarter 1, 2014                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 2, 2014                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | $\vdash$                                         |          |          |          |     |           |
| Quarter 3, 2014                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 4, 2014                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 1, 2015                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 2, 2015                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 3, 2015                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | <u> </u>                                         |          |          |          |     |           |
| Quarter 4, 2015                    | -        |          |     |          |     |          |          |          |                                                  | -           |          |          |     |          | *        | ├                                                |          |          |          |     | -         |
| Quarter 1, 2016<br>Quarter 2, 2016 | -        |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | ┢                                                |          | -        |          |     | $\vdash$  |
| Quarter 3, 2016<br>Quarter 3, 2016 |          |          |     |          |     |          |          |          |                                                  | _           |          |          |     |          | *        | $\vdash$                                         |          | -        |          |     | $\vdash$  |
| Quarter 2, 2019                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | $\vdash$                                         |          |          |          |     |           |
| Quarter 3, 2019                    |          |          |     |          |     |          |          |          | $\vdash$                                         |             |          |          |     | $\vdash$ | *        | $\vdash$                                         |          | $\vdash$ |          |     |           |
| Quarter 4, 2019                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 1, 2020                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 2, 2020                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 3, 2020                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        | $ldsymbol{ldsymbol{ldsymbol{eta}}}$              |          |          |          |     |           |
| Quarter 4, 2020                    | _        | <u> </u> |     | ш        |     |          | ш        | _        | _                                                | _           | ш        | ш        |     | _        | *        | <u> </u>                                         |          | _        | Ш        |     | $\square$ |
| Quarter 1, 2021                    | -        | <u> </u> |     | $\vdash$ |     | <u> </u> | $\vdash$ | _        | <u> </u>                                         |             | $\vdash$ | $\vdash$ |     | <u> </u> | *        | Ь—                                               | <u> </u> | <u> </u> | <u> </u> |     |           |
| Quarter 2, 2021                    | -        | $\vdash$ |     | $\vdash$ |     | <u> </u> | $\vdash$ |          | $\vdash$                                         |             | $\vdash$ | $\vdash$ |     | $\vdash$ | *        | $\vdash$                                         | $\vdash$ | $\vdash$ | $\vdash$ |     |           |
| Quarter 3, 2021<br>Quarter 1, 2022 |          |          |     |          |     |          |          |          | -                                                |             |          |          |     | -        | *        | <u> </u>                                         |          | -        |          |     |           |
| DISSOLVED OXYGEN                   |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          | *        |                                                  |          |          |          |     |           |
| Quarter 1, 2003                    |          |          |     |          | *   | *        |          |          |                                                  | *           |          |          |     |          |          |                                                  |          |          |          |     |           |
| Quarter 3, 2003                    |          |          |     |          | *   |          |          |          |                                                  | *           |          |          |     |          |          |                                                  |          |          |          |     |           |
| Quarter 4, 2003                    |          |          |     |          | *   |          |          |          |                                                  |             |          |          |     |          |          |                                                  |          |          |          |     |           |
| Quarter 1, 2004                    |          |          |     |          | *   |          |          |          |                                                  |             |          |          |     |          |          |                                                  |          |          |          |     |           |
| Quarter 2, 2004                    |          |          |     |          |     |          |          | *        |                                                  |             |          |          |     |          |          | *                                                |          |          |          |     |           |
| Quarter 1, 2005                    |          |          |     |          | *   |          |          |          |                                                  |             |          |          |     |          |          |                                                  |          |          |          |     |           |
| Quarter 2, 2005                    |          |          |     |          |     |          |          | *        | _                                                |             |          |          |     | _        | Ш        | <u> </u>                                         |          | _        |          |     |           |
| Quarter 1, 2006                    | <b>—</b> | <u> </u> |     | $\vdash$ | *   |          | $\vdash$ |          | _                                                | <u> </u>    | <u> </u> | $\vdash$ |     | _        | $\vdash$ | ⊢                                                |          |          | <u> </u> |     |           |
| Quarter 2, 2006                    | 1        | <u> </u> | -   | $\vdash$ | *   |          |          | *        | -                                                | <b> </b>    | $\vdash$ | $\vdash$ |     | -        | $\vdash$ | ⊢                                                | -        | -        | <b>—</b> |     | $\vdash$  |
| Quarter 3, 2006<br>Quarter 4, 2006 | 1        | -        |     | $\vdash$ | *   |          |          | *        | *                                                | -           |          | $\vdash$ |     | -        | $\vdash$ | $\vdash$                                         |          | -        |          |     |           |
| Quarter 4, 2006<br>Quarter 2, 2007 | H        | <b>—</b> |     | H        | *   |          |          | *        | <del>  *</del>                                   | <b>-</b>    |          | H        |     | <u> </u> | $\vdash$ | $\vdash$                                         | <u> </u> | <u> </u> | H        |     |           |
| Quarter 3, 2007<br>Quarter 3, 2007 |          | $\vdash$ |     |          | *   |          |          | *        | *                                                |             |          |          |     | $\vdash$ | Н        | $\vdash$                                         |          | $\vdash$ |          |     |           |
| Quarter 1, 2008                    | t        |          |     |          | *   |          |          | <u> </u> | <del>                                     </del> |             |          |          |     |          |          | <del>                                     </del> |          |          | *        |     | $\neg$    |
| Quarter 2, 2008                    |          |          |     |          | _   |          |          | *        | *                                                |             |          |          |     | $\vdash$ | М        | $\vdash$                                         |          | $\vdash$ |          |     |           |
| Quarter 3, 2008                    |          |          |     |          |     |          |          | *        |                                                  |             |          |          |     |          | П        |                                                  |          |          |          |     |           |
| Quarter 1, 2009                    |          |          |     |          |     |          | *        |          |                                                  |             |          |          |     |          |          |                                                  |          |          |          |     |           |
| Quarter 2, 2009                    |          |          |     |          | *   |          |          | *        | *                                                |             |          |          |     |          |          |                                                  |          |          |          |     |           |
| Quarter 3, 2009                    |          |          |     |          |     | *        |          | *        | *                                                |             |          |          |     |          |          | 匚                                                |          |          |          |     |           |
| Quarter 1, 2010                    | _        | <u> </u> |     | ш        | *   | لبا      | *        | L.       | <u> </u>                                         | _           | ш        | ш        |     | _        | لطا      | <u> </u>                                         |          | _        | Ш        |     | لب        |
| Quarter 2, 2010                    | -        | <u> </u> |     | $\vdash$ | *   | *        | <u> </u> | *        | *                                                | L           | <u> </u> | $\vdash$ |     | _        | ш        | ⊢                                                |          | <u> </u> | <u> </u> | *   | *         |
| Quarter 3, 2010                    |          |          |     |          | *   | *        |          |          |                                                  |             |          |          |     |          |          |                                                  |          |          |          |     |           |
|                                    |          |          |     |          |     |          |          |          |                                                  |             |          |          |     |          |          |                                                  |          |          |          |     |           |

# Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

| Groundwater Flow System                                                                                                                                                                                                                                                                                                                                                                                         |              |     |          | UCF      | RS           |          |          |          |                                                  |          |          | URC                                              | iΑ       |                                                  |                                         | Ι             |          | LRG      | A        |          |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|----------|----------|--------------|----------|----------|----------|--------------------------------------------------|----------|----------|--------------------------------------------------|----------|--------------------------------------------------|-----------------------------------------|---------------|----------|----------|----------|----------|----------|
| Gradient                                                                                                                                                                                                                                                                                                                                                                                                        | D            | S   | S        | S        | D            | D        | D        | U        | U                                                | D        | D        | D                                                | D        | U                                                | U                                       | D             | D        | D        | D        | U        | U        |
| Monitoring Well                                                                                                                                                                                                                                                                                                                                                                                                 | 368          | 375 | 376      | 377      | 359          | 362      | 365      | 371      | 374                                              | 366      | 360      | 363                                              | 357      | 369                                              | 372                                     | 367           | 361      | 364      | 358      | 370      | 373      |
| DISSOLVED OXYGEN                                                                                                                                                                                                                                                                                                                                                                                                |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 4, 2010<br>Quarter 1, 2011                                                                                                                                                                                                                                                                                                                                                                              | ├            |     |          |          |              | *        | *        |          |                                                  |          |          | *                                                |          |                                                  |                                         | <u> </u>      |          |          |          | *        |          |
| Quarter 1, 2011<br>Quarter 2, 2011                                                                                                                                                                                                                                                                                                                                                                              | <b>†</b>     |     |          |          | *            | *        | *        | *        | *                                                |          |          |                                                  |          | *                                                |                                         | <u> </u>      |          |          |          |          |          |
| Quarter 3, 2011                                                                                                                                                                                                                                                                                                                                                                                                 | t            |     |          |          |              | *        |          | -        | *                                                |          |          |                                                  |          | -                                                |                                         |               |          |          |          |          |          |
| Quarter 1, 2012                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          |              |          | *        |          | *                                                |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 2, 2012                                                                                                                                                                                                                                                                                                                                                                                                 | *            |     |          | *        | *            | *        |          | *        | *                                                |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 3, 2012                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>     |     |          |          |              | *        |          |          |                                                  |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 4, 2012                                                                                                                                                                                                                                                                                                                                                                                                 | -            |     |          |          |              |          |          |          | *                                                |          |          |                                                  |          |                                                  |                                         | _             |          |          |          |          |          |
| Quarter 1, 2013<br>Quarter 2, 2013                                                                                                                                                                                                                                                                                                                                                                              | <del> </del> |     |          |          |              | *        | *        |          | *                                                |          |          |                                                  |          |                                                  |                                         | -             |          |          |          |          |          |
| Quarter 3, 2013                                                                                                                                                                                                                                                                                                                                                                                                 | *            |     |          |          | *            |          | *        | *        | *                                                |          |          |                                                  | -        |                                                  | $\vdash$                                | $\vdash$      | $\vdash$ |          |          |          |          |
| Ouarter 4, 2013                                                                                                                                                                                                                                                                                                                                                                                                 | +**          |     |          |          | <del>-</del> |          | -        |          | *                                                |          |          |                                                  |          |                                                  |                                         |               |          |          |          | *        |          |
| Quarter 2, 2014                                                                                                                                                                                                                                                                                                                                                                                                 | *            |     |          |          | *            | *        | *        | *        | *                                                |          |          |                                                  |          |                                                  |                                         |               |          | *        |          |          |          |
| Quarter 3, 2014                                                                                                                                                                                                                                                                                                                                                                                                 | *            |     |          |          | *            | *        | *        |          |                                                  |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 4, 2014                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          |              | *        |          |          |                                                  |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 2, 2015                                                                                                                                                                                                                                                                                                                                                                                                 | ┡            |     |          |          | *            | *        | *        | *        |                                                  |          |          |                                                  |          |                                                  |                                         | <u> </u>      |          |          |          |          |          |
| Quarter 3, 2015                                                                                                                                                                                                                                                                                                                                                                                                 | _            |     |          |          | *            | *        | *        | *        |                                                  | -        |          |                                                  |          |                                                  |                                         | ⊢             |          |          |          |          |          |
| Quarter 4, 2015<br>Quarter 1, 2016                                                                                                                                                                                                                                                                                                                                                                              | *            |     |          |          | *            | 不        | *        |          |                                                  |          |          |                                                  |          |                                                  |                                         | -             |          |          |          |          |          |
| Quarter 2, 2016                                                                                                                                                                                                                                                                                                                                                                                                 | *            | *   |          |          | *            | *        | *        | *        | *                                                |          |          |                                                  |          |                                                  |                                         | $\vdash$      |          |          |          | *        | *        |
| Quarter 3, 2016                                                                                                                                                                                                                                                                                                                                                                                                 | †            |     |          |          | *            | *        | *        | *        | 1                                                |          |          |                                                  | *        |                                                  |                                         | $\vdash$      |          |          |          |          |          |
| Quarter 4, 2016                                                                                                                                                                                                                                                                                                                                                                                                 | L            |     |          |          |              | *        |          |          | *                                                |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 1, 2017                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          |              |          | *        |          |                                                  |          |          |                                                  | *        |                                                  |                                         |               |          |          |          |          |          |
| Quarter 2, 2017                                                                                                                                                                                                                                                                                                                                                                                                 | *            |     |          |          | *            | *        | *        | *        | $\Box$                                           |          |          |                                                  |          |                                                  |                                         | $\sqsubseteq$ |          | $\perp$  |          |          |          |
| Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                 | *            | *   |          |          | *            | *        | *        | *        | _                                                | _        |          |                                                  |          |                                                  | $\Box$                                  | <u> </u>      |          | *        |          |          |          |
| Quarter 4, 2017                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | -   | <u> </u> | $\vdash$ | <u>.</u>     | *        | *        | -        | _                                                | <u> </u> | <u> </u> | -                                                | _        | <u> </u>                                         | $\vdash$                                | <del> </del>  | <u> </u> | *        | _        |          | _        |
| Quarter 1, 2018<br>Quarter 2, 2018                                                                                                                                                                                                                                                                                                                                                                              | ├            |     | -        | $\vdash$ | *            | *        | *        | *        | <del>                                     </del> |          | -        | $\vdash$                                         |          |                                                  | $\vdash$                                | $\vdash$      | $\vdash$ | -        |          | *        |          |
| Quarter 2, 2018<br>Quarter 3, 2018                                                                                                                                                                                                                                                                                                                                                                              | *            |     |          | $\vdash$ | *            | *        | *        | *        |                                                  | -        |          |                                                  |          | -                                                |                                         | $\vdash$      | -        | <b>—</b> |          |          | -        |
| Quarter 3, 2018<br>Quarter 4, 2018                                                                                                                                                                                                                                                                                                                                                                              | +~           |     | $\vdash$ | $\vdash$ | *            | *        | *        | *        |                                                  | <b>—</b> | $\vdash$ |                                                  |          | $\vdash$                                         | $\vdash$                                | $\vdash$      | $\vdash$ | 1        | $\vdash$ |          |          |
| Quarter 1, 2019                                                                                                                                                                                                                                                                                                                                                                                                 | t            |     |          |          | *            | *        | *        | *        |                                                  |          |          |                                                  |          |                                                  | $\vdash$                                | $\vdash$      |          |          |          |          |          |
| Quarter 2, 2019                                                                                                                                                                                                                                                                                                                                                                                                 | t            |     |          |          | *            | *        |          | *        |                                                  |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 3, 2019                                                                                                                                                                                                                                                                                                                                                                                                 | *            |     |          |          | *            | *        | *        | *        |                                                  |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 4, 2019                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          | *            | *        | *        |          |                                                  |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 1, 2020                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          |              |          | *        | *        | *                                                |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 2, 2020                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>     |     |          |          | *            | *        |          | *        | <u> </u>                                         |          |          |                                                  |          |                                                  |                                         | <u> </u>      |          |          |          |          |          |
| Quarter 3, 2020                                                                                                                                                                                                                                                                                                                                                                                                 | *            |     |          |          | *            | *        |          |          |                                                  |          |          |                                                  |          |                                                  |                                         | <u> </u>      |          |          |          |          |          |
| Quarter 4, 2020<br>Quarter 1, 2021                                                                                                                                                                                                                                                                                                                                                                              | *            |     |          |          | *            |          | *        |          |                                                  |          |          |                                                  |          |                                                  |                                         | <u> </u>      |          |          |          | *        |          |
| Quarter 2, 2021                                                                                                                                                                                                                                                                                                                                                                                                 | t            |     |          |          | *            | *        | *        | *        | *                                                |          |          |                                                  |          |                                                  |                                         | <u> </u>      |          |          |          | · T      |          |
| Quarter 3, 2021                                                                                                                                                                                                                                                                                                                                                                                                 | *            |     |          |          | *            | *        | *        | *        | -                                                |          |          |                                                  |          |                                                  |                                         | $\vdash$      |          |          |          | *        |          |
| Quarter 4, 2021                                                                                                                                                                                                                                                                                                                                                                                                 | Ħ            |     |          |          | *            |          | *        | *        |                                                  |          |          |                                                  |          |                                                  |                                         |               |          |          |          | *        |          |
| Quarter 1, 2022                                                                                                                                                                                                                                                                                                                                                                                                 | *            |     |          |          | *            | *        | *        | *        |                                                  |          |          |                                                  | *        |                                                  |                                         |               | *        |          |          | *        |          |
| DISSOLVED SOLIDS                                                                                                                                                                                                                                                                                                                                                                                                |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 4, 2002                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>     |     |          |          | _            |          |          |          |                                                  | *        |          |                                                  | _        |                                                  | <u> </u>                                | <u> </u>      | _        |          |          |          |          |
| Quarter 1, 2003<br>Quarter 2, 2003                                                                                                                                                                                                                                                                                                                                                                              | 1            |     |          |          |              |          |          |          |                                                  | *        |          |                                                  |          |                                                  |                                         | ├             |          | -        |          |          |          |
| Quarter 3, 2003                                                                                                                                                                                                                                                                                                                                                                                                 | ╁            |     |          |          |              |          | *        |          |                                                  | *        | *        |                                                  |          |                                                  |                                         | <u> </u>      |          |          |          |          |          |
| Quarter 4, 2003                                                                                                                                                                                                                                                                                                                                                                                                 | t            |     |          |          |              |          |          |          |                                                  | *        | -        |                                                  |          |                                                  |                                         | _             |          |          |          |          |          |
| Quarter 3, 2005                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          |              | *        |          |          |                                                  |          |          |                                                  |          |                                                  |                                         |               |          |          |          |          |          |
| Quarter 4, 2006                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | *                                       |               |          |          |          |          |          |
| Quarter 1, 2007                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>     |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | *                                       |               |          |          |          |          |          |
| Quarter 2, 2007                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | -   | _        | <u> </u> |              |          |          | <u> </u> | _                                                |          | _        | <u> </u>                                         |          |                                                  | *                                       | <u> </u>      | _        | <u> </u> |          |          |          |
| Quarter 4, 2008                                                                                                                                                                                                                                                                                                                                                                                                 | 1            |     | -        | -        |              |          |          |          | -                                                |          |          | -                                                |          |                                                  | *                                       | $\vdash$      |          | -        |          |          |          |
| Quarter 1, 2009<br>Quarter 2, 2009                                                                                                                                                                                                                                                                                                                                                                              | $\vdash$     |     | $\vdash$ | $\vdash$ | $\vdash$     |          | $\vdash$ | $\vdash$ | $\vdash$                                         | _        | $\vdash$ | $\vdash$                                         | $\vdash$ | $\vdash$                                         | *                                       | $\vdash$      | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$ |          |
| Quarter 3, 2009                                                                                                                                                                                                                                                                                                                                                                                                 | t            |     |          |          |              |          |          |          | $\vdash$                                         |          |          |                                                  |          |                                                  | *                                       | $\vdash$      |          |          |          |          |          |
| Quarter 4, 2009                                                                                                                                                                                                                                                                                                                                                                                                 | t            |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | *                                       |               |          |          |          |          |          |
| Quarter 1, 2010                                                                                                                                                                                                                                                                                                                                                                                                 | L            |     |          |          |              |          |          |          | L                                                |          |          |                                                  |          |                                                  | *                                       |               |          |          |          |          |          |
| Quarter 2, 2010                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | *                                       |               |          |          |          |          |          |
| Quarter 3, 2010                                                                                                                                                                                                                                                                                                                                                                                                 | _            | _   |          |          | _            |          |          |          | _                                                | <u> </u> |          | _                                                | _        | _                                                | *                                       |               |          |          |          | ш        |          |
| Quarter 4, 2010                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | -   | <u> </u> | <u> </u> | -            | _        | <u> </u> | <u> </u> | _                                                | <u> </u> | <u> </u> | <u> </u>                                         | -        | _                                                | *                                       | <u> </u>      | <u> </u> | -        | <u> </u> | $\vdash$ | <u> </u> |
| Quarter 1, 2011<br>Quarter 2, 2011                                                                                                                                                                                                                                                                                                                                                                              | 1            | -   | -        | -        | _            | $\vdash$ | $\vdash$ | -        | _                                                | <b>—</b> |          | <del>                                     </del> | -        | <del>                                     </del> | *                                       | $\vdash$      | -        | <u> </u> | -        | $\vdash$ | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                 |              | -   |          |          | $\vdash$     | $\vdash$ | $\vdash$ |          | $\vdash$                                         | <b>—</b> |          | 1                                                | $\vdash$ | $\vdash$                                         | *                                       | $\vdash$      |          | $\vdash$ | $\vdash$ |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          | $\vdash$     |          |          |          | $\vdash$                                         | $\vdash$ |          |                                                  | $\vdash$ | $\vdash$                                         | *                                       | $\vdash$      |          |          | $\vdash$ |          |          |
| Quarter 3, 2011                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          |              | $\vdash$ |          | $\vdash$ | $\vdash$                                         |          |          |                                                  |          | *                                                | *                                       | -             | -        | $\vdash$ |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | T .                                     | ı             | l        | 1        |          |          |          |
| Quarter 3, 2011<br>Quarter 4, 2011                                                                                                                                                                                                                                                                                                                                                                              |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  | L        |                                                  | *                                       |               |          |          |          |          | *        |
| Quarter 3, 2011<br>Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012<br>Quarter 3, 2012                                                                                                                                                                                                                                                                                                                     |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | *                                       |               |          |          |          |          | *        |
| Quarter 3, 2011<br>Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012<br>Quarter 3, 2012<br>Quarter 4, 2012                                                                                                                                                                                                                                                                                                  |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * *                                     |               |          |          |          |          |          |
| Quarter 3, 2011<br>Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012<br>Quarter 3, 2012<br>Quarter 4, 2012<br>Quarter 1, 2013                                                                                                                                                                                                                                                                               |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * *                                 |               |          |          |          |          |          |
| Quarter 3, 2011<br>Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012<br>Quarter 3, 2012<br>Quarter 4, 2012<br>Quarter 1, 2013<br>Quarter 2, 2013                                                                                                                                                                                                                                                            |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * *                                 |               |          |          |          |          |          |
| Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013                                                                                                                                                                                                                                                                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * * *                               |               |          |          |          |          |          |
| Quarter 3, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013                                                                                                                                                                                                                                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * * * *                             |               |          |          |          |          |          |
| Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014                                                                                                                                                                                                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * * * * *                           |               |          |          |          |          |          |
| Quarter 3, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013                                                                                                                                                                                                                                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * * * *                             |               |          |          |          |          |          |
| Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014                                                                                                                                                                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * * * * * * *                       |               |          |          |          |          |          |
| Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015                                                                                                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * * * * * * * * * * * * * * * * * * |               |          |          |          |          |          |
| Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015                                                                                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * * * * * * * * * * * * * * * * * * |               |          |          |          |          |          |
| Quarter 3, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * * * * * * * * * * * * * * * * * * |               |          |          |          |          |          |
| Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 3, 2019 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * * * * * * * * * * * * * * * * * * |               |          |          |          |          |          |
| Quarter 3, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016                 |              |     |          |          |              |          |          |          |                                                  |          |          |                                                  |          |                                                  | * * * * * * * * * * * * * * * * * * * * |               |          |          |          |          |          |

| Groundwater Flow System            | 1    |                                                  |          | UCR      | RS                                               |          |          |                                                  |          | l .                                              |                                                  | URG                                              | iΑ       |          |                                                  | ı –        |          | LRC                                              | ξA                                               |           | _        |
|------------------------------------|------|--------------------------------------------------|----------|----------|--------------------------------------------------|----------|----------|--------------------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|----------|--------------------------------------------------|------------|----------|--------------------------------------------------|--------------------------------------------------|-----------|----------|
| Gradient                           | D    | S                                                | S        | S        | D                                                | D        | D        | U                                                | U        | D                                                | D                                                | D                                                | D        | U        | U                                                | D          | D        | D                                                | D                                                | U         | U        |
| Monitoring Well                    | 368  | 375                                              | 376      | 377      | 359                                              | 362      | 365      | 371                                              | 374      | 366                                              | 360                                              | 363                                              | 357      | 369      | 372                                              | 367        | 361      | 364                                              | 358                                              | 370       | 373      |
| DISSOLVED SOLIDS                   |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | -14                                              |            |          |                                                  |                                                  |           |          |
| Quarter 1, 2020<br>Quarter 2, 2020 | +    | -                                                |          |          |                                                  |          |          |                                                  |          | -                                                |                                                  |                                                  |          |          | *                                                | ⊢          |          |                                                  |                                                  |           | _        |
| Quarter 3, 2020                    | +    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                | ⊢          |          |                                                  |                                                  |           |          |
| Quarter 4, 2020                    | t    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                | $\vdash$   |          |                                                  |                                                  |           |          |
| Quarter 1, 2021                    | †    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                | $\vdash$   |          |                                                  |                                                  |           |          |
| Quarter 2, 2021                    | 1    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                | т          |          |                                                  |                                                  |           |          |
| Quarter 3, 2021                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                | Г          |          |                                                  |                                                  |           |          |
| Quarter 4, 2021                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 1, 2022                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| IODIDE                             |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  |            |          |                                                  |                                                  |           |          |
| Quarter 2, 2003                    | 1    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  | *          |          |                                                  |                                                  |           |          |
| Quarter 3, 2003                    | *    | <u> </u>                                         |          |          |                                                  |          |          |                                                  |          | *                                                |                                                  |                                                  |          |          |                                                  | Ь          | <u> </u> |                                                  |                                                  |           | _        |
| Quarter 4, 2003                    | ╂    | <u> </u>                                         |          |          |                                                  |          | *        |                                                  |          | _                                                |                                                  |                                                  | -        |          |                                                  | ⊢          |          |                                                  |                                                  |           |          |
| Quarter 3, 2010<br>IODINE-131      |      |                                                  |          |          |                                                  | *        |          | *                                                |          |                                                  |                                                  |                                                  | *        |          |                                                  |            | *        |                                                  |                                                  |           |          |
| Quarter 3, 2010                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  |            |          |                                                  |                                                  |           |          |
| IODOMETHANE                        |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  |            |          |                                                  |                                                  |           |          |
| Quarter 4, 2003                    |      |                                                  |          |          |                                                  | *        |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  | Т          |          |                                                  |                                                  |           |          |
| IRON                               |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  |            |          |                                                  |                                                  |           |          |
| Quarter 4, 2002                    |      |                                                  |          |          |                                                  | *        |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  |            |          |                                                  |                                                  |           |          |
| Quarter 3, 2003                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  | *          |          |                                                  |                                                  |           |          |
| Quarter 4, 2003                    |      |                                                  |          |          |                                                  |          |          |                                                  |          | *                                                |                                                  |                                                  |          |          |                                                  | *          |          |                                                  |                                                  |           |          |
| Quarter 1, 2004                    |      |                                                  |          |          |                                                  | _        |          |                                                  |          | *                                                |                                                  |                                                  |          | _        |                                                  | *          |          |                                                  | _                                                | $\Box$    | _        |
| Quarter 2, 2004                    | 1    | <u> </u>                                         |          |          | <u> </u>                                         |          |          | <u> </u>                                         | _        | *                                                | <u> </u>                                         |                                                  |          | _        | <u> </u>                                         | <u> </u>   | <u> </u> |                                                  | L                                                | Ш         |          |
| Quarter 3, 2004                    | 1    | -                                                | <u> </u> | <u> </u> | _                                                | <u> </u> | <u> </u> | _                                                | <u> </u> | *                                                | _                                                | -                                                | <u> </u> | <b>—</b> | _                                                | ـــا       | -        | <u> </u>                                         | -                                                | ш         | _        |
| Quarter 3, 2005                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  | *          |          |                                                  |                                                  |           |          |
| MAGNESIUM                          | +    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  |            |          |                                                  |                                                  |           | -        |
| Quarter 2, 2005                    | 1    | <b>-</b>                                         |          |          | <del>                                     </del> | *        |          | -                                                | -        | <del> </del>                                     | <del>                                     </del> | 1                                                |          | -        | *                                                | $\vdash$   | -        | -                                                | -                                                | $\vdash$  | *        |
| Quarter 3, 2005<br>Quarter 2, 2006 | +    | 1                                                |          |          | -                                                | *        |          |                                                  |          | <del> </del>                                     |                                                  | 1                                                |          |          | *                                                | $\vdash$   |          | 1                                                |                                                  | H         | *        |
| Quarter 2, 2006<br>Quarter 3, 2006 | +    | $\vdash$                                         |          |          |                                                  | $\vdash$ |          |                                                  | $\vdash$ | $\vdash$                                         |                                                  | <del>                                     </del> |          | $\vdash$ | *                                                | $\vdash$   |          | $\vdash$                                         |                                                  | $\vdash$  | <u> </u> |
| Quarter 1, 2007                    | 1    | t                                                |          |          |                                                  |          |          |                                                  |          | t                                                |                                                  |                                                  |          |          | *                                                | $\vdash$   |          | 1                                                |                                                  |           |          |
| Quarter 2, 2008                    | 1    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                | $\vdash$   |          |                                                  |                                                  |           |          |
| Quarter 2, 2009                    | 1    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 3, 2009                    | T T  |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 4, 2009                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 1, 2010                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 2, 2010                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 3, 2010                    | 4    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                | _          |          |                                                  |                                                  |           |          |
| Quarter 1, 2011                    | 4—   |                                                  |          |          |                                                  |          |          |                                                  |          | _                                                |                                                  |                                                  |          | _        | *                                                | Ь          |          |                                                  |                                                  |           |          |
| Quarter 2, 2011                    | +    | _                                                |          |          |                                                  |          |          |                                                  |          | _                                                |                                                  |                                                  |          |          | *                                                | Ь—         |          | _                                                |                                                  |           | —        |
| Quarter 3, 2011                    | +    | -                                                |          |          | _                                                |          |          |                                                  | -        | -                                                |                                                  |                                                  |          |          | *                                                | ⊢          | -        | -                                                |                                                  |           | _        |
| Quarter 4, 2011                    | +    | -                                                |          |          |                                                  |          |          |                                                  |          | _                                                |                                                  |                                                  |          |          | *                                                | ⊢          |          |                                                  |                                                  |           | _        |
| Quarter 1, 2012<br>Quarter 2, 2012 | +    |                                                  |          |          |                                                  |          |          |                                                  |          | -                                                |                                                  |                                                  |          |          | *                                                | ⊢          |          |                                                  |                                                  |           |          |
| Quarter 3, 2012                    | +    | <del>                                     </del> |          |          |                                                  |          |          |                                                  |          | _                                                |                                                  |                                                  |          |          | *                                                | ⊢          |          |                                                  |                                                  |           |          |
| Quarter 4, 2012                    | +    |                                                  |          |          |                                                  |          |          |                                                  |          | $\vdash$                                         |                                                  |                                                  |          | $\vdash$ | *                                                | ⊢          |          | $\vdash$                                         |                                                  |           |          |
| Quarter 1, 2013                    | 1    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                | $\vdash$   |          |                                                  |                                                  |           |          |
| Quarter 2, 2013                    | 1    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 3, 2013                    | T T  |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 4, 2013                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 2, 2014                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 4, 2014                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 2, 2015                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                | <u></u>    |          |                                                  |                                                  |           |          |
| Quarter 3, 2015                    | 1    | <u> </u>                                         |          |          | <u> </u>                                         | <u> </u> |          | <u> </u>                                         | <u> </u> | <u> </u>                                         |                                                  | <u> </u>                                         |          |          | *                                                | Ь—         | L        | <u> </u>                                         | 1                                                | Ш         | _        |
| Quarter 4, 2015                    | -    | -                                                | <u> </u> | <u> </u> | <u> </u>                                         | <u> </u> | <u> </u> |                                                  | <u> </u> | <b>—</b>                                         | <u> </u>                                         | $\vdash$                                         | <u> </u> | <b>—</b> | *                                                | ⊢          | -        | -                                                | -                                                | $\vdash$  | _        |
| Quarter 1, 2016                    | ₩    | <b>├</b>                                         | <u> </u> | -        | _                                                | <u> </u> | <u> </u> | _                                                | <u> </u> | <u> </u>                                         |                                                  | <del>                                     </del> | <u> </u> | <u> </u> | *                                                | ⊢          | _        | <u> </u>                                         | -                                                | ш         | _        |
| Quarter 2, 2016                    | JIE. | 1                                                | -        | -        | _                                                | <u> </u> | -        | $\vdash$                                         | _        | <del>                                     </del> |                                                  | <del>                                     </del> | -        | -        | *                                                | $\vdash$   | $\vdash$ | <del>                                     </del> | -                                                | Н         | _        |
| Quarter 3, 2016<br>Ouarter 4, 2016 | *    | <del>                                     </del> | -        |          | $\vdash$                                         | $\vdash$ | -        |                                                  | $\vdash$ | $\vdash$                                         |                                                  | $\vdash$                                         |          | $\vdash$ | $\vdash$                                         | $\vdash$   | $\vdash$ | $\vdash$                                         | 1                                                | $\vdash$  | _        |
| Quarter 4, 2016<br>Quarter 2, 2017 | *    | $\vdash$                                         | $\vdash$ | $\vdash$ | $\vdash$                                         | $\vdash$ | $\vdash$ |                                                  | $\vdash$ | $\vdash$                                         |                                                  | $\vdash$                                         | $\vdash$ | $\vdash$ | $\vdash$                                         | $\vdash$   |          | $\vdash$                                         |                                                  | $\vdash$  |          |
| Quarter 3, 2017                    | *    | $\vdash$                                         | $\vdash$ | $\vdash$ | $\vdash$                                         | $\vdash$ | $\vdash$ |                                                  | $\vdash$ | $\vdash$                                         | $\vdash$                                         | $\vdash$                                         | $\vdash$ | $\vdash$ | $\vdash$                                         | $\vdash$   |          | $\vdash$                                         |                                                  | $\vdash$  |          |
| Quarter 1, 2018                    | *    |                                                  |          |          | $\vdash$                                         |          |          |                                                  |          | $\vdash$                                         |                                                  | $\vdash$                                         |          |          |                                                  | $\vdash$   | $\vdash$ |                                                  | <del>                                     </del> | Н         |          |
| Quarter 3, 2018                    | *    |                                                  |          |          |                                                  |          |          |                                                  |          | 1                                                |                                                  |                                                  |          |          |                                                  |            |          |                                                  |                                                  |           |          |
| Quarter 3, 2019                    | *    |                                                  |          |          |                                                  |          |          |                                                  |          | 1                                                |                                                  |                                                  |          |          |                                                  |            |          |                                                  |                                                  |           |          |
| Quarter 4, 2019                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 2, 2020                    | L    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            | L        |                                                  |                                                  |           |          |
| Quarter 4, 2020                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 1, 2021                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| Quarter 2, 2021                    | 1    | <u> </u>                                         |          |          |                                                  |          |          |                                                  |          | <u> </u>                                         |                                                  | _                                                |          |          | *                                                | <u> </u>   |          | _                                                |                                                  |           | _        |
| Quarter 3, 2021                    | 1    | <u> </u>                                         |          |          | <u> </u>                                         | <u> </u> |          |                                                  | _        | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | _        | _        | *                                                | <u> — </u> | _        | _                                                | L                                                | $\square$ |          |
| Quarter 4, 2021                    | ₩    | <b>├</b>                                         | <u> </u> | -        | _                                                | <u> </u> | <u> </u> | _                                                | <u> </u> | <u> </u>                                         |                                                  | <del>                                     </del> | <u> </u> | <u> </u> | *                                                | ⊢          | _        | <u> </u>                                         | -                                                | ш         | _        |
| Quarter 1, 2022                    |      |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          | *                                                |            |          |                                                  |                                                  |           |          |
| MANGANESE<br>Ouarter 3, 2002       |      |                                                  |          |          |                                                  |          |          |                                                  |          | *                                                |                                                  | 3k                                               |          |          |                                                  |            |          |                                                  |                                                  |           |          |
| Quarter 3, 2002<br>Quarter 4, 2002 | +    | *                                                | $\vdash$ | $\vdash$ | $\vdash$                                         | *        | *        | <del>                                     </del> | $\vdash$ | *                                                | $\vdash$                                         | *                                                | $\vdash$ | *        | $\vdash$                                         | $\vdash$   | $\vdash$ | <b>—</b>                                         | $\vdash$                                         | $\vdash$  |          |
| Quarter 4, 2002<br>Quarter 2, 2003 | +    | <b> </b> ★                                       | $\vdash$ | $\vdash$ | $\vdash$                                         | T        | · *      |                                                  | $\vdash$ | *                                                | $\vdash$                                         | *                                                | $\vdash$ | T        | $\vdash$                                         | $\vdash$   | $\vdash$ | $\vdash$                                         | 1                                                | Н         |          |
| Quarter 2, 2003<br>Quarter 3, 2003 | 1    | <b>†</b>                                         |          | <u> </u> | <del>                                     </del> |          |          |                                                  |          | *                                                | <del>                                     </del> | *                                                | *        | <b>—</b> | <del>                                     </del> | *          | *        | *                                                | *                                                | H         |          |
| Quarter 4, 2003                    | 1    |                                                  |          |          |                                                  |          |          |                                                  |          | *                                                | *                                                | *                                                | *        |          |                                                  | Ë          | *        | *                                                | Ë                                                |           |          |
| Quarter 1, 2004                    | 1    |                                                  |          |          | $\vdash$                                         |          |          |                                                  |          | *                                                | *                                                | *                                                | Ė        |          |                                                  | *          | *        | *                                                |                                                  |           |          |
| Quarter 2, 2004                    | 1    | l                                                |          |          |                                                  |          | *        |                                                  |          | *                                                | *                                                | *                                                |          |          |                                                  | Г          |          | *                                                |                                                  |           |          |
| Quarter 3, 2004                    | 1    |                                                  |          |          |                                                  |          | *        |                                                  |          | *                                                | *                                                | *                                                |          |          |                                                  | *          |          |                                                  |                                                  |           |          |
| Quarter 4, 2004                    | L    |                                                  |          |          |                                                  |          |          | L                                                |          | *                                                |                                                  | *                                                |          |          |                                                  | *          | L        |                                                  |                                                  |           |          |
| Quarter 1, 2005                    |      |                                                  |          |          |                                                  |          |          |                                                  |          | *                                                |                                                  | *                                                |          |          |                                                  |            |          |                                                  |                                                  |           |          |
|                                    | _    |                                                  |          |          |                                                  |          |          |                                                  |          |                                                  |                                                  |                                                  |          |          |                                                  |            |          |                                                  |                                                  |           |          |

| CrossHort Flow System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                                  |              |                                                  | TION                                             |     |          |          |     |     | _   |          | TIDO     |     |          |          | _           |     | IDC    | 1.4 |     | _    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|-----|----------|----------|-----|-----|-----|----------|----------|-----|----------|----------|-------------|-----|--------|-----|-----|------|
| Montany Well MANGANES    March   March | Groundwater Flow System | D                                                | l e          | l e                                              |                                                  |     | Гъ       | Б        | l m | l m | D   | D        |          |     | l m      | TT       | D           | Гъ  |        |     | TT  | TT   |
| NAMCANNEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quanter 2, 2005 Quanter 4, 2005 Quanter 4, 2005 Quanter 4, 2005 Quanter 4, 2006 Quanter 4, 2007 Quanter 5, 2007 Quanter 6, 2007 Quanter 7, 2007 Quanter 7, 2007 Quanter 7, 2007 Quanter 8, 2007 Quanter 9, 200 |                         | 500                                              | 313          | 370                                              | 311                                              | 337 | 302      | 303      | 3/1 | 3/4 | 300 | 300      | 303      | 331 | 307      | 312      | 307         | 301 | 304    | 336 | 370 | 313  |
| Quarter 2, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 200 |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     | *   |          | *        |     |          |          |             |     |        |     |     |      |
| Quanter 1, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -                                                |              |                                                  |                                                  |     |          |          | -   |     |     |          | _        |     | -        |          | <u>.</u>    |     |        |     |     |      |
| Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 200 |                         |                                                  |              |                                                  |                                                  |     |          |          | -   |     | _   |          | *        |     |          |          | _           |     |        |     |     |      |
| Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 200 | 7                       | -                                                |              |                                                  |                                                  |     | -        |          | -   |     |     |          |          |     | -        |          | *           | -   |        |     |     |      |
| Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2001 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 200 |                         | -                                                |              |                                                  |                                                  |     |          | ļ.,      | _   | _   |     |          | ļ.,      |     | _        |          | _           | _   |        |     |     |      |
| Quarter 1, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              |                                                  |                                                  |     |          | *        |     |     | _   |          | *        |     |          |          |             |     |        |     |     |      |
| Quarter 1, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          | *           |     |        |     |     |      |
| Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 1, 2002 NICKEL Quarter 3, 2003 Quarter 1, 2002 Quarter 1, 2003 Quarter 1, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 3, 2003 Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 200 | Quarter 1, 2007         |                                                  |              |                                                  |                                                  |     |          |          |     |     | _   |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2003 Quarter 3, 2009 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 200 | Quarter 2, 2007         |                                                  |              |                                                  |                                                  |     |          | *        |     |     | *   |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 2, 2009 Quarter 3, 2019 Quarter 3, 2016 Quarter 3, 2010 Quarter 3, 2001 Quarter 3, 2002 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 2, 2007 Quarter 3, 2008 Quarter 2, 2007 Quarter 3, 200 | Quarter 3, 2007         |                                                  |              |                                                  |                                                  |     |          | *        |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 3, 2001 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2010 Quarter 2, 2016 Quarter 1, 2022 MINCREAT, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 | Quarter 3, 2008         |                                                  |              |                                                  |                                                  |     |          | *        |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 2, 2016 Quarter 3, 2017 Quarter 1, 2022 NIKARL QUARTER 3, 2017 QUARTER 4, 2017 QUARTER 3, 2017 QUARTER 4, 2017 QUARTER | Quarter 4, 2008         |                                                  |              |                                                  |                                                  |     |          | *        |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 2, 2016 Quarter 3, 2017 Quarter 1, 2022 NIKARL QUARTER 3, 2017 QUARTER 4, 2017 QUARTER 3, 2017 QUARTER 4, 2017 QUARTER |                         |                                                  |              |                                                  |                                                  |     |          | *        |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Ounter 1, 2016 Ounter 2, 2017 Ounter |                         |                                                  |              |                                                  |                                                  |     |          | *        |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter   2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                  |              |                                                  |                                                  |     |          | Ė        |     |     |     |          |          |     | *        |          |             |     |        |     |     |      |
| Quarter   2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                  |              |                                                  |                                                  |     | $\vdash$ |          |     | *   |     |          |          |     | H        |          | $\vdash$    |     |        |     |     |      |
| NECKEL   Quarter 1, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | <b>†</b>                                         |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          | _           |     |        | *   |     |      |
| Quarter 2, 2003 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 200 |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        | -   |     |      |
| Quarter   2,002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     | *   |          |          |     |          |          |             |     |        |     |     |      |
| NITEATE AS NITEOGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                  | -            |                                                  |                                                  |     |          |          | -   |     | *   |          |          |     | -        |          | _           | -   |        | -   |     |      |
| Ounter 4, 2002 Ounter 9, 2003 Ounter 9, 2004 Ounter 9, 2005 Ounter 9, 2006 Ounter 9, 2007 Ounter |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        | *   |     |      |
| ONIDATION-REDUCTION POTENTIAL  Outsider 1,0003  Outsider 2,0003  Outsider 2,0003  Outsider 2,0004  Outsider 2,0005  Outsider 2,0006  Outsider 2,0007  Outsider 2,0008  Outsider 2,0009  Outsider  |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Ounter 4, 2002 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 3, 2004 Ounter 1, 2005 Ounter 1, 2005 Ounter 2, 2005 Ounter 2, 2005 Ounter 2, 2005 Ounter 3, 2005 Ounter 2, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 2, 2006 Ounter 2, 2007 Ounter 2, 2008 Ounter 2, 2008 Ounter 2, 2008 Ounter 2, 2009 Ounter 2, 2001 Ounter |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Ounter 1,0003 Ounter 3,0003 Ounter 3,0003 Ounter 3,0003 Ounter 3,0004 Ounter 4,0004 Ounter 4,0004 Ounter 4,0005 Ounter 4,0005 Ounter 4,0005 Ounter 2,0005 Ounter 2,0006 Ounter 2,0007 Ounter 2,0007 Ounter 2,0007 Ounter 2,0007 Ounter 2,0007 Ounter 2,0008 Ounter 2,0009 Ounter 2,0008 Ounter 2,0009 Ounter 2,0008 Ounter 2,0009 Ou |                         | OTE                                              | NTIA         | L                                                |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quanter 2,2003 Quanter 4,2003 Quanter 4,2003 Quanter 4,2004 Quanter 3,2004 Quanter 3,2004 Quanter 3,2004 Quanter 1,2005 Quanter 1,2006 Quanter 1,2007 Quanter 2,2008 Quanter 3,2008 Quanter 3,2008 Quanter 3,2008 Quanter 3,2008 Quanter 3,2009 Quanter 3,2001 Quante |                         | <u> </u>                                         | <u> </u>     | <u> </u>                                         |                                                  |     | <u> </u> |          |     |     |     |          |          |     |          |          | <u> </u>    |     |        |     |     |      |
| Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 200 |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          | $\Box$      | *   |        |     |     |      |
| Quarter 4.2003 Quarter 3.2004 Quarter 3.2004 Quarter 3.2004 Quarter 1.2005 Quarter 2.2005 Quarter 4.2005 Quarter 4.2005 Quarter 4.2005 Quarter 2.2005 Quarter 4.2006 Quarter 2.2006 Quarter 3.2006 Quarter 3.2007 Quarter 4.2007 Quarter 3.2007 Quarter 4.2007 Quarter 3.2008 Quarter 3.2009 Quarter 3.2009 Quarter 3.2009 Quarter 3.2009 Quarter 3.2009 Quarter 4.2009 Quarter 4.2009 Quarter 4.2009 Quarter 4.2009 Quarter 4.2009 Quarter 3.2009 Quarter 4.2009 Quarter 3.2009 Quarter 4.2009 Quarter 4.2009 Quarter 4.2009 Quarter 3.2009 Quarter 3.2009 Quarter 4.2009 Quarter 3.2009 Quarte |                         |                                                  |              |                                                  |                                                  |     |          |          |     | L   | L   |          |          |     |          |          | L           |     | $\Box$ | *   |     |      |
| Quarter 4,2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quarter 3, 2003         | *                                                |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          | $\Box$      |     |        |     |     |      |
| Ounter 2,2004  Ounter 4,2004  Ounter 4,2004  Ounter 2,2005  Ounter 2,2005  Ounter 2,2005  Ounter 2,2005  Ounter 2,2005  Ounter 2,2005  Ounter 2,2006  Ounter 2,2007  Ounter 2,2006  Ounter 2,2007  Ounter 2,2007  Ounter 2,2007  Ounter 2,2007  Ounter 2,2007  Ounter 2,2008  Ounter 2,2008  Ounter 2,2008  Ounter 2,2008  Ounter 2,2009  Ounter 3,2009  Ounter 3,2009  Ounter 3,2009  Ounter 3,2009  Ounter 3,2009  Ounter 3,2009  Ounter |                         |                                                  |              |                                                  |                                                  | *   |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Outlier 1, 2004  Outlier 1, 2005  Outlier 2, 2005  Outlier 3, 2004  Outlier 3, 2005  Outlier 4, 2005  Outlier 4, 2006  Outlier 4, 2007  **  **  **  **  **  **  Outlier 1, 2007  **  **  **  **  **  Outlier 4, 2007  Outlier 4, 2008  **  **  **  **  **  **  **  **  **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 1                                                |              |                                                  |                                                  |     |          |          |     |     |     |          |          | *   |          |          |             | *   |        |     |     | *    |
| Quarter 4, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 5, 2001 Quarter 5, 2001 Quarter 6, 200 |                         | t                                                | i –          |                                                  |                                                  | *   | i –      | i        | *   | T   |     |          |          |     | *        | *        |             | _   | i –    | i – | *   |      |
| Ouarter 1, 2005 Ouarter 2, 2005 Ouarter 3, 2005 Ouarter 3, 2005 Ouarter 3, 2005 Ouarter 4, 2006 Ouarter 2, 2006  ** * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | t                                                |              |                                                  |                                                  |     |          |          | É   |     |     |          | *        |     | Ė        | Ė        | <u> </u>    | Ė   |        |     | Н   |      |
| Ounter 2, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 1, 2006 Ounter 1, 2007  Ounter 2, 2007  Ounter 2, 2007  Ounter 2, 2007  Ounter 1, 2008  ** ** ** ** ** ** ** ** ** ** ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 1                                                |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     | $\vdash$ |          | -           | *   |        |     | *   |      |
| Cuanter 2, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -                                                | -            |                                                  |                                                  |     | -        | -        | *   | _   | _   |          |          | *   | -        |          | <del></del> |     | _      | -   |     | -т-  |
| Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2007  * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | -                                                |              |                                                  |                                                  | -   | -        |          |     |     | -   | -        | -        |     | _        |          | _           |     |        | -   |     | -    |
| Quarter 1, 2006    *   *   *   *   *   *   *   *   *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                  | - 114        |                                                  |                                                  | 木   | 木        |          |     |     |     | 木        | 木        |     |          |          |             | _   |        | 木   |     | 木    |
| Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 200 |                         |                                                  | *            |                                                  |                                                  |     |          |          |     |     |     |          |          | *   |          |          |             |     |        |     | *   |      |
| Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007  **  **  **  **  **  **  **  **  **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                  |              |                                                  |                                                  |     |          |          |     | *   |     |          |          |     |          |          |             | _   |        |     |     | *    |
| Quarter 1, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              |                                                  |                                                  |     |          | *        | *   |     |     |          |          |     |          |          |             | _   |        |     |     |      |
| Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2008  ** ** ** ** ** ** ** ** ** ** ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quarter 3, 2006         |                                                  |              |                                                  |                                                  |     |          |          | *   |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008  **  **  **  **  **  **  **  **  **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quarter 4, 2006         |                                                  |              |                                                  |                                                  | *   |          | *        |     |     | *   |          | *        | *   |          |          |             | *   |        |     | *   | *    |
| Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 5, 2008  ** ** ** ** ** ** ** ** ** ** ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quarter 1, 2007         |                                                  | *            |                                                  |                                                  | *   |          |          | *   |     |     |          |          | *   |          |          |             | *   |        |     | *   | *    |
| Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008  ** ** ** ** ** ** ** ** ** ** ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                  |              |                                                  |                                                  | *   |          |          |     |     |     |          |          | *   |          |          |             | *   |        |     | *   | *    |
| Quarter 4, 2007 Quarter 1, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              |                                                  |                                                  | *   |          |          | *   |     |     |          |          |     |          |          |             | *   |        |     | *   |      |
| Quarter 1, 2008 Quarter 2, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1                                                |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     | *    |
| Quarter 2, 2008 Quarter 3, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | <del>                                     </del> |              |                                                  |                                                  | *   |          |          | *   | _   |     |          | *        | *   | _        |          |             |     |        | *   |     |      |
| Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009  ** ** ** ** ** ** ** ** ** ** ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | -                                                | -            |                                                  |                                                  |     | -        |          |     | -   | *   |          | <u> </u> |     | *        | _        | _           | -   | 342    | -   |     | - NE |
| Quarter 4, 2008 Quarter 1, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -                                                | -            |                                                  |                                                  |     | -        | -        |     | -   |     |          | <u>.</u> |     |          |          | _           | -   | _      | -   |     |      |
| Quarter 1, 2009 Quarter 2, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -                                                |              |                                                  |                                                  | *   |          | *        |     | *   |     |          | _        |     | *        |          | _           |     |        | *   |     |      |
| Quarter 2, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              |                                                  |                                                  |     |          | L.       |     |     |     |          | _        |     |          |          |             | *   |        |     |     | *    |
| Quarter 3, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              |                                                  |                                                  |     |          | _        |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 4, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 2, 2009         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 1, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2009         |                                                  |              |                                                  |                                                  | *   |          |          |     |     |     |          |          |     | *        |          |             |     |        |     |     |      |
| Quarter 2, 2010         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quarter 4, 2009         |                                                  | *            |                                                  |                                                  |     | *        | *        | *   | *   | *   |          | *        | *   |          |          |             | *   | *      | *   | *   | *    |
| Quarter 2, 2010           * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 1, 2010         |                                                  | *            |                                                  |                                                  | *   |          | *        | *   |     | *   |          |          | *   |          |          | *           | *   | *      |     | *   |      |
| Quarter 4, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              |                                                  |                                                  | *   | *        |          | *   |     | *   | *        | *        | *   |          |          | *           | *   | *      | *   | *   | *    |
| Quarter 4, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Ī                                                | *            |                                                  |                                                  |     | _        | *        |     | *   |     |          |          |     | *        | *        |             |     |        |     |     |      |
| Quarter 1, 2011 Quarter 2, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | t                                                |              |                                                  |                                                  | Ė   | _        | _        |     | _   |     | _        | *        |     |          | Ė        | *           |     | _      | _   |     |      |
| Quarter 2, 2011         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | t                                                | <del>-</del> | $\vdash$                                         |                                                  |     | _        | -        | _   | +   |     | _        | _        |     |          |          | _           |     | _      | _   |     | _    |
| Quarter 3, 2011  * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | t                                                | *            | <del>                                     </del> |                                                  | *   |          | *        |     | *   |     |          |          |     |          |          |             |     |        |     |     | *    |
| Warter 4, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | $\vdash$                                         |              | $\vdash$                                         | $\vdash$                                         | -   |          | <u> </u> |     |     |     | <u> </u> |          |     |          | _        |             |     |        |     |     |      |
| Quarter 1, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1                                                |              | -                                                | -                                                |     |          |          |     |     |     | <u> </u> |          |     |          | _        |             |     |        | *   |     |      |
| Quarter 2, 2012         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quarter 4, 2011         | <b>!</b>                                         |              | <b>—</b>                                         | <u> </u>                                         |     |          | طو       |     |     |     |          |          |     |          | -        |             |     |        | طو  |     |      |
| Quarter 3, 2012         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | <b>L</b>                                         |              | <b>—</b>                                         | L.                                               |     |          |          |     |     |     |          |          |     |          | _        |             |     |        |     |     |      |
| Quarter 4, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | *                                                |              | _                                                | *                                                | *   |          | *        |     | *   |     | *        |          |     | _        |          |             |     |        | _   |     |      |
| Quarter I, 2013         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | <u> </u>                                         | _            |                                                  |                                                  |     | _        |          |     |     | _   |          | _        |     | _        |          |             | _   | _      | _   |     |      |
| Quarter 1, 2013         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quarter 4, 2012         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        | *   |     | *    |
| Quarter 3, 2013         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                  | *            |                                                  |                                                  |     | *        |          | *   | *   | *   | *        | *        | *   | *        |          | *           | *   | *      |     | *   |      |
| Quarter 3, 2013         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quarter 2, 2013         |                                                  | *            |                                                  |                                                  |     |          |          | *   | *   | *   | *        | *        | *   | *        | *        | *           | *   | *      | *   | *   | *    |
| Quarter 4, 2013         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | *                                                |              |                                                  |                                                  | *   | *        | *        |     | _   |     |          | _        |     |          |          |             |     |        |     |     |      |
| Quarter 1, 2014         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | Ė                                                |              |                                                  |                                                  |     |          | Ė        |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 2, 2014         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | t                                                |              |                                                  |                                                  |     | ۳        |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 3, 2014         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | <u>, w</u>                                       |              | $\vdash$                                         | $\vdash$                                         | 344 | 342      | 344      |     |     |     |          |          |     |          | _        |             |     |        |     |     |      |
| Quarter 4, 2014         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                  |              | <u> </u>                                         | -                                                |     | _        | _        |     | _   |     | *        | _        |     | _        | *        |             | _   |        | _   |     |      |
| Quarter 1, 2015         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 木                                                |              | -                                                | <del>                                     </del> | 木   | _        | 木        | _   | _   |     | -        | _        |     |          | -        |             |     | _      | _   |     |      |
| Quarter 2, 2015         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | ₩                                                |              | -                                                | <u> </u>                                         |     |          | <u> </u> |     |     |     | <b>.</b> |          |     |          | <b>.</b> |             |     |        |     |     |      |
| Quarter 3, 2015         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | <u> </u>                                         |              | <u> </u>                                         | <u> </u>                                         |     | _        | _        |     | _   |     |          |          |     | _        |          |             |     |        | _   |     |      |
| Quarter 4, 2015         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | *                                                |              |                                                  |                                                  |     |          | *        |     | _   |     |          | _        |     |          | _        |             |     | _      |     |     |      |
| Quarter 4, 2015         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quarter 3, 2015         |                                                  | *            |                                                  |                                                  | *   | *        |          | *   | *   | *   | *        | *        | *   | *        | *        | *           | *   | *      | *   | *   | *    |
| Quarter 1, 2016         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | *                                                | *            |                                                  |                                                  |     | *        | *        |     | *   |     | *        | *        | *   | *        | *        |             | *   | *      | *   | *   | *    |
| Quarter 2, 2016         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                  |              |                                                  |                                                  | *   |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
| Quarter 3, 2016         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                  |              |                                                  |                                                  |     | *        |          |     | *   | _   |          | _        |     |          | _        |             |     | _      |     |     |      |
| Quarter 4, 2016     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     | *        | _        |     |          |          |             |     |        |     |     |      |
| Quarter 1, 2017     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *     * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              | -                                                | -                                                | *   |          |          |     |     |     |          |          |     |          |          |             |     |        | _   |     |      |
| Quarter 2, 2017 * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                                  |              | -                                                | -                                                |     |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | _                                                | _            | -                                                | <u> </u>                                         |     |          | _        |     | _   | _   | _        | _        |     | _        | _        |             | _   | _      |     |     |      |
| Quarter 3, 2017   *   *   *   *   *   *   *   *   *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                  |              | <u> </u>                                         |                                                  |     |          |          |     |     |     | *        |          |     |          |          |             |     |        |     |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2017         | *                                                | *            |                                                  |                                                  | *   | *        | *        | *   | *   | *   |          | *        | *   | *        | *        | *           | *   | *      | *   | *   | *    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |              |                                                  |                                                  |     |          |          |     |     |     |          |          |     |          |          |             |     |        |     |     |      |

| Groundwater Flow System            | 1   |          |     | UCR      | S   |     |          |          |          | ı —          |          | URG      | A   |                                                  |     | _              |     | LRG      | A        |          | _        |
|------------------------------------|-----|----------|-----|----------|-----|-----|----------|----------|----------|--------------|----------|----------|-----|--------------------------------------------------|-----|----------------|-----|----------|----------|----------|----------|
| Gradient                           | D   | S        | S   | S        | D   | D   | D        | U        | U        | D            | D        | D        | D   | U                                                | U   | D              | D   | D        | D        | U        | U        |
| Monitoring Well                    | 368 | 375      | 376 | 377      | 359 | 362 | 365      | 371      | 374      | 366          | 360      | 363      | 357 | 369                                              | 372 | 367            | 361 | 364      | 358      | 370      | 373      |
| OXIDATION-REDUCTION F              | OTE | NTIA     | L   |          |     |     |          |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 4, 2017                    | 1   | *        |     |          |     | *   | *        | *        | *        | *            |          | *        | *   | *                                                | *   |                | *   | *        |          | *        | *        |
| Quarter 1, 2018                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            |          | *        | *   | *                                                | *   | *              | *   | *        |          | *        | *        |
| Quarter 2, 2018                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        | *        | *        | *        |
| Quarter 3, 2018<br>Quarter 4, 2018 | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        | *        | *        | *        |
| Quarter 4, 2018<br>Quarter 1, 2019 | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        | *        | *        | *        |
| Quarter 2, 2019                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        | *        | *        | *        |
| Quarter 3, 2019                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        |          | *        | *        |
| Quarter 4, 2019                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        | *        | *        | *        |
| Quarter 1, 2020                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        |          | *        | *        |
| Quarter 2, 2020                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        |          | *        | *        |
| Quarter 3, 2020                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        |          | *        | *        |
| Quarter 4, 2020                    | *   | *        |     |          |     | *   | *        | *        | *        | *            | *        |          | *   | *                                                | *   | *              | *   | *        |          | *        | *        |
| Quarter 1, 2021                    | *   | *        |     |          | *   | *   | *        | *        | ļ.,      | *            | *        | *        | *   | *                                                | *   | *              | *   | *        |          | *        | *        |
| Quarter 2, 2021                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        | *        | *        | *        |
| Quarter 3, 2021                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        | *        | *        | *        |
| Quarter 4, 2021                    | *   | *        |     |          | *   | *   | *        | *        | *        | *            | *        | *        | *   | *                                                | *   | *              | *   | *        | *        | *        | *        |
| Quarter 1, 2022                    | 本   | 不        |     |          | 本   | 不   | 不        | 不        | 本        | 本            | 不        | 本        | 不   | 不                                                | 不   | *              | 不   | 本        | 不        | 不        | *        |
| PCB, TOTAL                         |     |          |     |          |     |     |          |          |          |              |          |          |     |                                                  |     |                | *   |          |          |          |          |
| Quarter 4, 2003<br>Quarter 3, 2004 | 1   | $\vdash$ |     | $\vdash$ |     |     |          |          | $\vdash$ | $\vdash$     |          | *        |     | $\vdash$                                         |     | $\vdash$       | ┢┸  | $\vdash$ | $\vdash$ |          | $\vdash$ |
| Quarter 3, 2004<br>Quarter 3, 2005 | 1   | $\vdash$ |     |          |     |     | *        |          | $\vdash$ | $\vdash$     |          | ┢┸       |     | $\vdash$                                         |     | $\vdash$       |     | $\vdash$ |          |          | $\vdash$ |
| Quarter 2, 2006                    | 1   |          |     |          |     |     | *        |          | $\vdash$ | H            |          |          |     |                                                  |     | $\vdash$       |     | $\vdash$ |          |          | $\vdash$ |
| Quarter 3, 2006                    | 1   |          |     |          |     |     | *        |          | T        | t            |          |          |     |                                                  |     |                |     |          |          |          | М        |
| Quarter 1, 2007                    | † – |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 2, 2007                    |     |          |     |          |     |     | *        | L        | $L^-$    |              | L        |          |     |                                                  |     |                | L   |          |          |          |          |
| Quarter 3, 2007                    |     |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 1, 2008                    |     |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     | 匚              |     |          |          |          | Ш        |
| Quarter 2, 2008                    | 1   |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 4, 2008                    | _   |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     | <u> </u>       |     |          |          |          |          |
| Quarter 3, 2009                    | _   |          |     |          |     |     | *        |          | ┞        |              |          |          |     |                                                  |     | <u> </u>       |     |          |          |          |          |
| Quarter 1, 2010                    | 1   |          |     |          |     |     | *        |          | _        |              |          |          |     |                                                  |     | _              |     |          |          |          |          |
| Quarter 2, 2010                    | 1   |          |     |          |     |     | *        |          | -        | _            |          |          |     |                                                  |     | _              |     |          |          |          |          |
| Quarter 4, 2010                    |     |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| PCB-1016<br>Quarter 3, 2004        |     |          |     |          |     |     |          |          |          |              |          | *        |     |                                                  |     |                |     |          |          |          |          |
| Quarter 3, 2004<br>Quarter 2, 2006 | +   |          |     |          |     |     | *        |          | $\vdash$ | <u> </u>     |          | *        |     |                                                  |     | ⊢              |     |          |          |          |          |
| Quarter 1, 2007                    | +   |          |     |          |     |     | *        |          | <u> </u> | $\vdash$     |          | -        |     |                                                  |     | ⊢              |     |          |          |          |          |
| Quarter 2, 2007                    | †   |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     | $\vdash$       |     |          |          |          |          |
| Quarter 3, 2007                    | † – |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     | $\vdash$       |     |          |          |          |          |
| Quarter 2, 2008                    | 1   |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     | т              |     |          |          |          |          |
| Quarter 4, 2008                    |     |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     | Т              |     |          |          |          |          |
| Quarter 3, 2009                    |     |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 1, 2010                    |     |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 2, 2010                    |     |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 4, 2010                    |     |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| PCB-1242                           |     |          |     |          |     |     |          |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 3, 2006                    | 1   |          |     |          |     |     | *        |          | -        |              |          | *        |     |                                                  |     | _              |     |          |          |          |          |
| Quarter 4, 2006                    | -   |          |     |          |     |     | *        |          | -        | *            |          |          |     |                                                  |     | ⊢              |     | -        |          |          | $\vdash$ |
| Quarter 1, 2008                    | +   |          |     |          |     |     | *        |          | -        | -            |          |          |     | _                                                |     | ⊢              |     | -        |          |          | $\vdash$ |
| Quarter 2, 2012<br>PCB-1248        |     |          |     |          |     |     | ボ        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 2, 2008                    | 1   |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| PCB-1260                           |     |          |     |          |     |     |          |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 2, 2006                    |     |          |     |          |     |     | *        |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| pH                                 |     |          |     |          |     |     |          |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 3, 2002                    |     |          |     |          |     |     |          |          |          | *            |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 4, 2002                    |     |          |     |          |     |     |          |          |          | *            |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 1, 2003                    |     |          |     |          |     |     |          |          |          | *            |          |          |     |                                                  |     |                |     |          |          |          |          |
| Quarter 2, 2003                    |     |          |     |          |     |     |          |          |          | *            |          |          |     |                                                  |     |                |     |          |          |          | ш        |
| Quarter 3, 2003                    | *   | <u> </u> |     |          |     |     | *        |          | $\vdash$ | *            |          |          |     | _                                                |     | <u> </u>       |     | _        |          |          | ш        |
| Quarter 4, 2003                    | 1   | _        | _   |          |     |     | *        | _        | _        | <u> </u>     |          |          |     |                                                  |     | *              |     | _        |          |          | ш        |
| Quarter 1, 2004                    | 1   | -        |     | $\vdash$ |     | طو  | *        |          | -        | <b>—</b>     | -        | -        |     | -                                                | _   | *              | -   | *        | طو       |          | $\vdash$ |
| Quarter 3, 2005                    | 1   | <u> </u> | -   | $\vdash$ |     | *   | -        | -        | -        | <u> </u>     |          | -        |     | <del>                                     </del> | -   | ⊢              | _   | *        | *        | Н        | $\vdash$ |
| Quarter 4, 2005                    | 1   | <u> </u> |     | $\vdash$ |     | *   | -        | -        | +-       | <del> </del> | -        | -        |     | <del>                                     </del> | _   | *              |     | -        | *        | $\vdash$ | $\vdash$ |
| Quarter 3, 2006<br>Quarter 2, 2011 | +   | $\vdash$ |     | $\vdash$ |     |     | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$     | $\vdash$ | $\vdash$ |     | *                                                |     | <del>  *</del> |     | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$ |
| Quarter 3, 2011<br>Quarter 3, 2011 | t-  | $\vdash$ |     |          |     |     | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$     |          | <b>—</b> |     | *                                                |     | $\vdash$       |     | $\vdash$ | $\vdash$ |          | $\vdash$ |
| Quarter 4, 2011                    | t   |          |     |          |     |     |          |          |          | t            |          |          |     | *                                                |     |                |     |          |          |          |          |
| Quarter 1, 2012                    | 1   |          |     |          |     |     |          |          | t        | 1            |          |          |     | Ė                                                |     | *              | *   |          |          |          | $\Box$   |
| Quarter 2, 2012                    | 1   |          |     |          |     |     |          |          |          |              |          | *        |     |                                                  |     | Г              |     |          |          |          | $\Box$   |
| Quarter 1, 2013                    | 1   |          |     |          |     |     |          |          | T        | *            |          | *        |     |                                                  |     | *              |     |          |          |          | $\Box$   |
| Quarter 3, 2015                    | L   |          |     |          |     |     |          |          |          |              |          |          |     |                                                  |     |                | *   |          |          |          |          |
| Quarter 2, 2016                    |     |          |     |          |     |     |          |          |          |              |          |          |     |                                                  |     |                |     |          |          | *        | *        |
| Quarter 3, 2016                    |     |          |     |          |     |     |          |          |          |              |          |          |     |                                                  |     |                |     |          |          | *        |          |
| Quarter 2, 2017                    |     |          |     |          |     |     |          |          |          |              |          |          |     |                                                  |     |                | *   |          |          |          | Ш        |
| Quarter 3, 2018                    | _   | <u> </u> |     | oxdot    | *   |     |          |          | <u> </u> | *            |          | *        |     | <u> </u>                                         |     | _              | *   | *        | *        | $\Box$   | ш        |
| Quarter 4, 2018                    | ₩   | <u> </u> |     | $\vdash$ |     |     | <u> </u> | -        | ₩        | <u> </u>     |          | _        |     | <u> </u>                                         |     | *              |     | *        | <u> </u> |          | $\vdash$ |
| Quarter 3, 2019                    | _   |          |     |          |     |     |          |          |          |              |          |          |     |                                                  |     | *              |     |          |          |          | $\Box$   |
|                                    |     |          |     |          |     |     |          |          |          |              |          |          |     |                                                  |     |                |     |          |          |          |          |

| Groundwater Flow System                                                                                                                                                                                                                                         | 1                                                  |                   |                                                  | UCR                                              | c        |     |          |                                                  |          | _        |          | URG      | ¹ A      |          |          | _                                                |                                                  | LRC                                              | ¹ A                                              |          |                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|--------------------------------------------------|--------------------------------------------------|----------|-----|----------|--------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|
| Gradient                                                                                                                                                                                                                                                        | D                                                  | S                 | S                                                | S                                                | D        | D   | D        | U                                                | U        | D        | D        | D        | D        | U        | U        | D                                                | D                                                | D                                                | D                                                | U        | U                                                |
| Monitoring Well                                                                                                                                                                                                                                                 | 368                                                | 375               | 376                                              | 377                                              | 359      | 362 | 365      | 371                                              | 374      | 366      | 360      | 363      | 357      | 369      | 372      | 367                                              | 361                                              | 364                                              |                                                  | 370      | 373                                              |
| pH                                                                                                                                                                                                                                                              |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2021                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          | *                                                |                                                  | *                                                |                                                  | *        |                                                  |
| Quarter 3, 2021                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          | *                                                |
| Quarter 4, 2021                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          | *                                                |                                                  |                                                  |                                                  |          | *                                                |
| POTASSIUM                                                                                                                                                                                                                                                       |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2014                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          | *                                                |                                                  |                                                  |                                                  |          |                                                  |
| RADIUM-228                                                                                                                                                                                                                                                      |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 2, 2005                                                                                                                                                                                                                                                 | _                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2005                                                                                                                                                                                                                                                 | +-                                                 |                   |                                                  |                                                  |          |     | -        |                                                  | _        | _        | -        |          |          | -        |          | ⊢                                                | $\vdash$                                         |                                                  |                                                  |          | $\vdash$                                         |
| SELENIUM                                                                                                                                                                                                                                                        |                                                    |                   |                                                  |                                                  |          | _   |          |                                                  |          |          |          | _        |          |          |          |                                                  |                                                  | _                                                |                                                  |          |                                                  |
|                                                                                                                                                                                                                                                                 | _                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2003                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          |     |          |                                                  | _        |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| SODIUM                                                                                                                                                                                                                                                          |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          | - 114    | - 114    |          | -14      |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 3, 2002                                                                                                                                                                                                                                                 | ╀—                                                 |                   |                                                  |                                                  |          |     |          |                                                  |          | *        | *        |          | *        |          |          | _                                                |                                                  | _                                                |                                                  |          | _                                                |
| Quarter 4, 2002                                                                                                                                                                                                                                                 | ₩                                                  |                   |                                                  |                                                  |          |     |          |                                                  | _        | *        | *        | _        |          | *        |          | <u> </u>                                         |                                                  | -                                                |                                                  |          | _                                                |
| Quarter 1, 2003                                                                                                                                                                                                                                                 | _                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          | *        |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 2, 2003                                                                                                                                                                                                                                                 | _                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          | *        | *        |          | $\vdash$ |          |          |                                                  |                                                  | ┞                                                |                                                  |          |                                                  |
| Quarter 3, 2003                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2007                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2012                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          | *        |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2014                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 3, 2014                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2014                                                                                                                                                                                                                                                 | İ                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2015                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2016                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 2, 2016                                                                                                                                                                                                                                                 | 1                                                  |                   | -                                                |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          | -                                                |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 3, 2016                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          | <del>                                     </del> |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2016                                                                                                                                                                                                                                                 | 1                                                  |                   | <del>                                     </del> |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          | $\vdash$                                         |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2017                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          | $\vdash$                                         |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2017<br>Quarter 2, 2017                                                                                                                                                                                                                              | 1                                                  |                   |                                                  | -                                                |          |     |          | -                                                |          | <b>—</b> | *        |          | H        | <b>—</b> | <b>-</b> | $\vdash$                                         | <b>—</b>                                         | 1                                                |                                                  |          | $\vdash$                                         |
|                                                                                                                                                                                                                                                                 | +                                                  | $\vdash$          | $\vdash$                                         | <del>                                     </del> |          |     |          | <del>                                     </del> |          | <b>—</b> | *        |          | $\vdash$ | $\vdash$ | -        | $\vdash$                                         | $\vdash$                                         | <b>—</b>                                         | <del></del>                                      |          | $\vdash$                                         |
| Quarter 3, 2017<br>Quarter 4, 2017                                                                                                                                                                                                                              | 1                                                  | -                 | 1                                                | -                                                |          | -   | -        | -                                                | -        | -        | *        |          |          | -        | -        | $\vdash$                                         | -                                                | -                                                | -                                                |          | <del>                                     </del> |
|                                                                                                                                                                                                                                                                 | +                                                  |                   |                                                  |                                                  | _        |     |          |                                                  | _        | _        | _        | -        | $\vdash$ | _        |          | <u> </u>                                         | -                                                | $\vdash$                                         |                                                  |          | -                                                |
| Quarter 1, 2018                                                                                                                                                                                                                                                 | -                                                  |                   |                                                  |                                                  |          |     | _        | _                                                | _        | <u> </u> | *        | -        | _        |          |          | <u> </u>                                         | _                                                | ├                                                |                                                  |          | -                                                |
| Quarter 3, 2018                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          | *        |          |          |          |          | _                                                |                                                  |                                                  |                                                  |          |                                                  |
| STRONTIUM-90                                                                                                                                                                                                                                                    |                                                    |                   |                                                  |                                                  |          |     | _        |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2008                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          |     | •        |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| SULFATE                                                                                                                                                                                                                                                         |                                                    |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2003                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          |     | *        |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 2, 2003                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  |          | *   | *        |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 3, 2003                                                                                                                                                                                                                                                 | *                                                  |                   |                                                  |                                                  |          | *   |          |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2003                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  | *        |     | *        |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2004                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  | *        | *   | *        |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 2, 2004                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  | *        | *   | *        |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 3, 2004                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  | *        | *   | *        |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2005                                                                                                                                                                                                                                                 |                                                    |                   |                                                  |                                                  | *        | *   |          |                                                  | *        |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 2, 2005                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  | *        |     | *        |                                                  | *        |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 3, 2005                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  | *        | *   | *        |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2005                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2006                                                                                                                                                                                                                                                 | <del>†                                      </del> |                   |                                                  |                                                  | *        |     |          |                                                  | *        |          |          |          |          |          |          |                                                  |                                                  | <u> </u>                                         |                                                  |          |                                                  |
| Quarter 2, 2006                                                                                                                                                                                                                                                 | 1                                                  |                   |                                                  |                                                  | _        | *   | *        |                                                  | *        |          |          |          |          | $\vdash$ | *        | $\vdash$                                         |                                                  | $\vdash$                                         |                                                  |          | $\vdash$                                         |
| Quarter 3, 2006                                                                                                                                                                                                                                                 | +                                                  |                   |                                                  |                                                  |          |     | *        |                                                  |          | -        |          |          |          | $\vdash$ |          | $\vdash$                                         | $\vdash$                                         | $\vdash$                                         |                                                  |          | $\vdash$                                         |
| Quarter 1, 2007                                                                                                                                                                                                                                                 | +                                                  |                   |                                                  |                                                  | _        |     | *        |                                                  |          | _        |          |          |          | $\vdash$ |          | $\vdash$                                         |                                                  | $\vdash$                                         |                                                  |          | -                                                |
|                                                                                                                                                                                                                                                                 | +                                                  |                   |                                                  |                                                  |          |     | *        |                                                  |          | _        | -        | -        |          | <u> </u> |          | <del></del>                                      | _                                                | <del>                                     </del> |                                                  |          | <u> </u>                                         |
| Quarter 2, 2007                                                                                                                                                                                                                                                 | +                                                  |                   |                                                  |                                                  |          |     |          |                                                  |          | _        |          |          |          |          |          | _                                                |                                                  | -                                                |                                                  |          |                                                  |
| Quarter 3, 2007                                                                                                                                                                                                                                                 | 1                                                  | ,uz.              | -                                                | -                                                |          | _   | *        | -                                                |          | <b>—</b> |          |          | $\vdash$ | <u> </u> | <b>—</b> | ⊢                                                | -                                                | <u> </u>                                         |                                                  | <b>—</b> | <u> </u>                                         |
| Quarter 4, 2007                                                                                                                                                                                                                                                 | 1-                                                 | *                 | <u> </u>                                         | <u> </u>                                         | 384      | _   | ,1.      | <u> </u>                                         | -14      | <b>—</b> | _        | _        | $\vdash$ | <u> </u> | <u> </u> | ⊢                                                | _                                                | <u> </u>                                         | -                                                | <u> </u> | _                                                |
| Quarter 1, 2008                                                                                                                                                                                                                                                 | 1                                                  | *                 | <b>—</b>                                         | <u> </u>                                         | *        | L.  | *        | <u> </u>                                         | *        | <u> </u> | <u> </u> | _        | $\vdash$ | <u> </u> | _        | ⊢                                                | <u> </u>                                         | <b>—</b>                                         | -                                                | _        | <u> </u>                                         |
| Quarter 2, 2008                                                                                                                                                                                                                                                 | 1_                                                 | *                 | L-                                               |                                                  | *        | *   | *        |                                                  | _        | L        |          |          |          | <u> </u> |          | <u> </u>                                         | _                                                | <u> </u>                                         | <u> </u>                                         |          | <u> </u>                                         |
| Quarter 3, 2008                                                                                                                                                                                                                                                 | 1                                                  | *                 | <u> </u>                                         |                                                  | *        | *   | *        |                                                  | _        | <u> </u> |          |          |          | <u> </u> |          | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | -                                                |          | <u> </u>                                         |
| Quarter 4, 2008                                                                                                                                                                                                                                                 | 1                                                  | *                 | _                                                |                                                  | $\vdash$ | *   | *        |                                                  |          | <u> </u> | <u> </u> |          | $\vdash$ | <u> </u> |          | Ь—                                               |                                                  | _                                                |                                                  |          |                                                  |
| Quarter 1, 2009                                                                                                                                                                                                                                                 | 1                                                  | *                 | _                                                |                                                  | ــِــا   | L.  | *        | L                                                | _        |          | _        |          | $\vdash$ |          |          | <u> </u>                                         | _                                                | <u> </u>                                         |                                                  |          |                                                  |
| Quarter 2, 2009                                                                                                                                                                                                                                                 | ــــــ                                             | *                 | L                                                |                                                  | *        | *   | *        |                                                  |          |          |          |          |          |          |          | Ь_                                               |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 3, 2009                                                                                                                                                                                                                                                 | ــــــ                                             | *                 | Ь.                                               |                                                  | *        | *   | *        |                                                  |          |          |          |          |          |          | *        | Ь_                                               |                                                  | <u> </u>                                         |                                                  |          |                                                  |
| Quarter 4, 2009                                                                                                                                                                                                                                                 | 1                                                  | *                 |                                                  |                                                  | *        | *   |          |                                                  |          |          |          |          |          |          | *        | <u> </u>                                         |                                                  | <u> </u>                                         |                                                  |          |                                                  |
| Quarter 1, 2010                                                                                                                                                                                                                                                 |                                                    | *                 |                                                  |                                                  | *        | *   | *        |                                                  |          |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 2, 2010                                                                                                                                                                                                                                                 |                                                    | *                 |                                                  |                                                  | *        | *   | *        |                                                  |          |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 3, 2010                                                                                                                                                                                                                                                 |                                                    | *                 |                                                  |                                                  | *        | *   | *        |                                                  |          |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2010                                                                                                                                                                                                                                                 | i –                                                | *                 |                                                  |                                                  |          | *   | *        |                                                  |          |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 1, 2011                                                                                                                                                                                                                                                 | 1                                                  | *                 |                                                  |                                                  |          |     |          |                                                  |          |          |          |          |          |          |          |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 2, 2011                                                                                                                                                                                                                                                 | 1                                                  | *                 |                                                  |                                                  | *        | *   | *        |                                                  |          |          |          |          |          |          | *        | l                                                |                                                  | 1                                                |                                                  |          |                                                  |
| Quarter 3, 2011                                                                                                                                                                                                                                                 | 1                                                  | *                 |                                                  |                                                  |          | *   | *        | *                                                |          |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
|                                                                                                                                                                                                                                                                 | t                                                  | *                 |                                                  |                                                  |          | *   | Ė        | Ė                                                |          |          |          |          |          |          | *        | <u> </u>                                         |                                                  |                                                  |                                                  |          |                                                  |
|                                                                                                                                                                                                                                                                 |                                                    | *                 |                                                  |                                                  |          | Ė   | *        | *                                                |          |          |          |          |          |          | *        | $\vdash$                                         |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2011                                                                                                                                                                                                                                                 |                                                    |                   | <del></del>                                      | *                                                | *        | *   | *        | *                                                | *        |          | <u> </u> | <b>—</b> |          |          | *        | $\vdash$                                         | <del>                                     </del> | t                                                | <del>                                     </del> |          |                                                  |
| Quarter 4, 2011<br>Quarter 1, 2012                                                                                                                                                                                                                              | *                                                  |                   | 1                                                | <del>-</del>                                     | -1"      | *   | -        | +                                                | +        |          |          |          |          |          | *        | $\vdash$                                         |                                                  |                                                  | <del>                                     </del> |          | $\vdash$                                         |
| Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012                                                                                                                                                                                                           | *                                                  | *                 |                                                  |                                                  |          | -   | $\vdash$ | $\vdash$                                         | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$ | *        | $\vdash$                                         | $\vdash$                                         | $\vdash$                                         | <del></del>                                      |          | $\vdash$                                         |
| Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012<br>Quarter 3, 2012                                                                                                                                                                                        | *                                                  | *                 |                                                  |                                                  |          |     | 1        |                                                  |          | ⊢—       | ⊢        | -        | $\vdash$ |          |          |                                                  |                                                  | i                                                | ı                                                |          |                                                  |
| Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012<br>Quarter 3, 2012<br>Quarter 4, 2012                                                                                                                                                                     | *                                                  | * *               |                                                  |                                                  |          | 34c |          |                                                  | ı        |          |          |          |          | ı        | ¥        |                                                  |                                                  |                                                  |                                                  |          | l                                                |
| Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012<br>Quarter 3, 2012<br>Quarter 4, 2012<br>Quarter 1, 2013                                                                                                                                                  | *                                                  | * * *             |                                                  |                                                  |          | *   |          |                                                  |          |          |          |          |          |          | *        | _                                                |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012<br>Quarter 3, 2012<br>Quarter 4, 2012<br>Quarter 1, 2013<br>Quarter 2, 2013                                                                                                                               |                                                    | * * *             |                                                  | ىئو                                              | ىد       |     | ىد       |                                                  |          |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012<br>Quarter 3, 2012<br>Quarter 4, 2012<br>Quarter 1, 2013<br>Quarter 2, 2013<br>Quarter 2, 2013<br>Quarter 3, 2013                                                                                         | *                                                  | * * * *           |                                                  | *                                                | *        | *   | *        |                                                  |          |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2011<br>Quarter 1, 2012<br>Quarter 2, 2012<br>Quarter 3, 2012<br>Quarter 4, 2012<br>Quarter 1, 2013<br>Quarter 2, 2013<br>Quarter 3, 2013<br>Quarter 4, 2013                                                                                         |                                                    | * * * * *         |                                                  | *                                                | *        |     | *        |                                                  |          |          |          |          |          |          | *        |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014                                                 | *                                                  | * * * * * *       |                                                  | *                                                |          |     |          |                                                  |          |          |          |          |          |          | * *      |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014                                                 | *                                                  | * * * * * * *     |                                                  | *                                                | *        | *   | *        | *                                                |          |          |          |          |          |          | * * *    |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014                                 | *                                                  | * * * * * * * *   |                                                  | *                                                |          | *   |          | *                                                |          |          |          |          |          |          | * *      |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 | *                                                  | * * * * * * * * * |                                                  | *                                                | *        | *   | *        |                                                  |          |          |          |          |          |          | * * *    |                                                  |                                                  |                                                  |                                                  |          |                                                  |
| Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014                                 | *                                                  | * * * * * * * *   |                                                  | *                                                | *        | *   | *        |                                                  |          |          |          |          |          |          | * * *    |                                                  |                                                  |                                                  |                                                  |          |                                                  |

| Coordon Flori Souton                                                     |          |                                                  |                                                  | UCR      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | _                                                |                                                  | LIDA                                             | ٠.                                               |          |     | _           |                                                  | I DC     |          |          |                                                  |
|--------------------------------------------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|-----|-------------|--------------------------------------------------|----------|----------|----------|--------------------------------------------------|
| Groundwater Flow System<br>Gradient                                      | D        | S                                                | S                                                | S        | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D        | D                                      | U        | U                                                | D                                                | D                                                | URC<br>D                                         | D                                                | U        | U   | D           | D                                                | LRG<br>D | D        | U        | U                                                |
| Monitoring Well                                                          | 368      | 375                                              | 376                                              | 377      | 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 362      | 365                                    | 371      | 374                                              | 366                                              | 360                                              | 363                                              | 357                                              | 369      | 372 | 367         | 361                                              | 364      | 358      | 370      | 373                                              |
| SULFATE                                                                  | 508      | 313                                              | 370                                              | 311      | 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 302      | 303                                    | 3/1      | 3/4                                              | 300                                              | 300                                              | 303                                              | 331                                              | 307      | 312 | 307         | 301                                              | 304      | 336      | 370      | 3/3                                              |
| Quarter 2, 2015                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | *                                      |          |                                                  |                                                  |                                                  |                                                  |                                                  |          | *   |             |                                                  |          |          |          |                                                  |
| Quarter 3, 2015                                                          | +**      | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | -                                      | *        |                                                  |                                                  |                                                  |                                                  |                                                  |          | *   | $\vdash$    |                                                  |          |          |          |                                                  |
| Quarter 4, 2015                                                          | *        | *                                                |                                                  | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        | <del>                                     </del> | <b>—</b>                                         |                                                  | -                                                | -                                                |          |     | ┢           |                                                  |          |          |          |                                                  |
| Quarter 1, 2016                                                          | *        | *                                                |                                                  | -        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | -        | $\vdash$                                         | $\vdash$                                         |                                                  | -                                                | _                                                |          |     | ⊢           |                                                  |          |          |          |                                                  |
|                                                                          | *        | *                                                |                                                  | -        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | -        | <del>                                     </del> | ┢                                                |                                                  | -                                                | -                                                |          |     | ⊢           | -                                                |          |          |          |                                                  |
| Quarter 2, 2016                                                          | *        | *                                                |                                                  | -        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        | $\vdash$                                         | ┢                                                |                                                  | -                                                | $\vdash$                                         |          |     | ⊢           | $\vdash$                                         |          |          |          |                                                  |
| Quarter 3, 2016                                                          | *        | *                                                |                                                  | -        | 不                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        | -                                                | <del>                                     </del> |                                                  | _                                                | _                                                |          |     | ├           | _                                                | _        |          |          |                                                  |
| Quarter 4, 2016                                                          | *        |                                                  |                                                  | _        | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *        | *                                      | 不        | -                                                | _                                                |                                                  | _                                                | _                                                |          |     | ⊢           | _                                                | _        |          |          |                                                  |
| Quarter 1, 2017                                                          |          | *                                                |                                                  |          | - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _        |                                        |          | _                                                | _                                                |                                                  |                                                  |                                                  |          |     | ├           |                                                  |          |          |          |                                                  |
| Quarter 2, 2017                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     | _           |                                                  |          |          |          |                                                  |
| Quarter 3, 2017                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      |          | _                                                | _                                                |                                                  |                                                  |                                                  |          |     | <u> </u>    |                                                  |          |          |          |                                                  |
| Quarter 4, 2017                                                          |          | *                                                |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *        | *                                      |          | _                                                | _                                                |                                                  |                                                  |                                                  |          |     | Ь—          |                                                  |          |          |          |                                                  |
| Quarter 1, 2018                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | L.       | _                                                |                                                  |                                                  |                                                  |                                                  |          |     | Ь           |                                                  |          |          |          |                                                  |
| Quarter 2, 2018                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        |                                                  |                                                  |                                                  |                                                  |                                                  |          |     | Ц_          |                                                  |          |          |          |                                                  |
| Quarter 3, 2018                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        |                                                  |                                                  |                                                  |                                                  |                                                  |          |     |             |                                                  |          |          |          |                                                  |
| Quarter 4, 2018                                                          |          | *                                                |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *        | *                                      | *        |                                                  |                                                  |                                                  |                                                  |                                                  |          |     |             |                                                  |          |          |          |                                                  |
| Quarter 1, 2019                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     |             |                                                  |          |          |          |                                                  |
| Quarter 2, 2019                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        |                                                  |                                                  |                                                  |                                                  |                                                  |          |     | П           |                                                  |          |          |          |                                                  |
| Quarter 3, 2019                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        |                                                  |                                                  |                                                  |                                                  |                                                  |          |     | Г           |                                                  |          |          |          |                                                  |
| Quarter 4, 2019                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        |                                                  |                                                  |                                                  |                                                  |                                                  |          |     |             |                                                  |          |          |          |                                                  |
| Quarter 1, 2020                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        |                                                  |                                                  |                                                  |                                                  |                                                  |          |     | -           |                                                  |          |          |          |                                                  |
| Quarter 2, 2020                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        |                                                  | T                                                |                                                  |                                                  |                                                  |          |     | т           |                                                  |          |          |          |                                                  |
| Quarter 3, 2020                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        |                                                  | I                                                |                                                  |                                                  |                                                  |          |     | $\vdash$    |                                                  |          |          |          |                                                  |
| Quarter 4, 2020<br>Quarter 4, 2020                                       | *        | *                                                | $\vdash$                                         |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        | $\vdash$                                         | $\vdash$                                         | 1                                                |                                                  | <u> </u>                                         |          |     | $\vdash$    | <u> </u>                                         | $\vdash$ | <b>—</b> |          | <u> </u>                                         |
|                                                                          | *        | *                                                | $\vdash$                                         | $\vdash$ | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        | $\vdash$                                         | $\vdash$                                         | $\vdash$                                         | $\vdash$                                         | $\vdash$                                         |          | *   | $\vdash$    | $\vdash$                                         | $\vdash$ | _        | $\vdash$ | $\vdash$                                         |
| Quarter 1, 2021                                                          | *        | *                                                | $\vdash$                                         | <b>—</b> | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        | $\vdash$                                         | $\vdash$                                         | 1                                                | <del>                                     </del> | $\vdash$                                         |          | *   | $\vdash$    | <del>                                     </del> | $\vdash$ | -        | $\vdash$ | <del>                                     </del> |
| Quarter 2, 2021                                                          | *        | *                                                | -                                                |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | *        | _                                                | <u> </u>                                         | -                                                |                                                  | <u> </u>                                         |          | *   | $\vdash$    | -                                                | _        | _        | $\vdash$ | -                                                |
| Quarter 3, 2021                                                          |          | _                                                | <b>—</b>                                         | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _        |                                        | 木        | -                                                | <b>—</b>                                         | -                                                | -                                                | <u> </u>                                         |          |     | $\vdash$    | <b> </b>                                         | -        | -        |          | <b> </b>                                         |
| Quarter 4, 2021                                                          | *        | *                                                | <u> </u>                                         |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      | -        | <u> </u>                                         | <u> </u>                                         | -                                                |                                                  | <u> </u>                                         |          | *   | ⊢           | <u> </u>                                         | _        | _        | Ш        | <u> </u>                                         |
| Quarter 1, 2022                                                          | *        | *                                                |                                                  |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *        | *                                      |          |                                                  |                                                  |                                                  |                                                  |                                                  |          | *   |             |                                                  |          |          |          |                                                  |
| TECHNETIUM-99                                                            |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     |             |                                                  |          |          |          |                                                  |
| Quarter 4, 2002                                                          | 1        | <u> </u>                                         |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     | <u> </u>    | *                                                | *        | *        |          |                                                  |
| Quarter 2, 2003                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | *                                      |          |                                                  |                                                  |                                                  |                                                  | *                                                |          |     | *           | *                                                | *        | *        |          | *                                                |
| Quarter 3, 2003                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     | Г           | *                                                |          |          |          |                                                  |
| Quarter 4, 2003                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     | Г           | *                                                |          |          |          | *                                                |
| Quarter 1, 2004                                                          | 1        | 1                                                |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          | 1                                                |                                                  |                                                  |                                                  |                                                  |          | *   |             | *                                                |          |          |          | *                                                |
| Quarter 2, 2004                                                          |          | <b>†</b>                                         |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          | *   | -           |                                                  |          |          |          | *                                                |
| Quarter 3, 2004                                                          | 1        | <b>†</b>                                         |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          | *   | $\vdash$    |                                                  |          |          |          | *                                                |
| Quarter 4, 2004                                                          | +        | <b>†</b>                                         |                                                  | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        | -        |                                                  | <b>-</b>                                         |                                                  | -                                                | <u> </u>                                         |          | *   | ┢           | *                                                |          |          |          | *                                                |
|                                                                          | +        | -                                                |                                                  | -        | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                        | _        | $\vdash$                                         | $\vdash$                                         |                                                  | -                                                |                                                  |          | т.  | ⊢           | *                                                |          |          |          | -                                                |
| Quarter 3, 2005                                                          | +-       | <del>                                     </del> | -                                                | <u> </u> | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u> | -                                      | -        | $\vdash$                                         | $\vdash$                                         | -                                                | <u> </u>                                         | -                                                |          | *   | $\vdash$    | *                                                | $\vdash$ | <u> </u> | $\vdash$ | *                                                |
| Quarter 1, 2006                                                          | +        |                                                  | $\vdash$                                         | $\vdash$ | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _        | $\vdash$                               | $\vdash$ | -                                                | $\vdash$                                         | $\vdash$                                         | $\vdash$                                         | $\vdash$                                         | -        | 木   | $\vdash$    | $\vdash$                                         | $\vdash$ | <b>—</b> | $\vdash$ |                                                  |
| Quarter 2, 2006                                                          | +-       | *                                                | -                                                | <u> </u> | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u> | <u> </u>                               | <u> </u> | *                                                | <del> </del>                                     | -                                                | <u> </u>                                         |                                                  | <u> </u> |     | ⊢           |                                                  | <u> </u> | <u> </u> | $\vdash$ | *                                                |
| Quarter 3, 2006                                                          | ₩        | <b>—</b>                                         | <u> </u>                                         | <u> </u> | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u> | <u> </u>                               | <u> </u> | <u> </u>                                         | ⊢                                                | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         |          |     | ⊢           | <u> </u>                                         | <u> </u> | <u> </u> | $\vdash$ | *                                                |
| Quarter 4, 2006                                                          | 1        | <u> </u>                                         | <u> </u>                                         | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | _                                      | -        | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | _                                                | <u> </u>                                         |          | *   | ⊢           | <u> </u>                                         | <u> </u> |          | $\vdash$ | *                                                |
| Quarter 1, 2007                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     |             |                                                  |          |          |          | *                                                |
| Quarter 2, 2007                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  | *                                                |          | *   |             |                                                  |          |          | *        |                                                  |
| Quarter 3, 2007                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          | *   |             | *                                                | *        |          |          |                                                  |
| Quarter 4, 2007                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | *                                                |                                                  |                                                  |                                                  |          | *   |             |                                                  |          | *        |          | *                                                |
| Quarter 1, 2008                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          | *   |             |                                                  |          |          | *        | *                                                |
| Quarter 2, 2008                                                          | 1        |                                                  |                                                  |          | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | *                                      | *        |                                                  |                                                  |                                                  |                                                  |                                                  | *        |     | *           |                                                  |          | *        |          |                                                  |
| Quarter 3, 2008                                                          | t        |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | Т                                                |                                                  |                                                  |                                                  |          | *   | Г           |                                                  |          |          |          | İ                                                |
| Quarter 4, 2008                                                          | 1        |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | *                                                | <u> </u>                                         |                                                  |                                                  |          |     | г           | *                                                |          | *        |          |                                                  |
| Quarter 1, 2009                                                          | t        | t                                                |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | *                                                |                                                  |                                                  |                                                  |          |     | Г           | Ė                                                |          | Ė        |          |                                                  |
| Quarter 2, 2009                                                          | 1        | $\vdash$                                         | $\vdash$                                         |          | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _        |                                        | $\vdash$ | $\vdash$                                         | Ë                                                |                                                  |                                                  | $\vdash$                                         |          |     | -           | $\vdash$                                         | *        |          |          | $\vdash$                                         |
|                                                                          | 1        | <del>                                     </del> | <del>                                     </del> |          | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                        | *        |                                                  | *                                                |                                                  |                                                  | <u> </u>                                         |          | *   | $\vdash$    | <u> </u>                                         | ┿        |          |          | <u> </u>                                         |
| Quarter 3, 2009                                                          | +-       | 1                                                | 1                                                | <b>—</b> | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>—</b> | <b>-</b>                               | *        | -                                                | *                                                | -                                                | <b>—</b>                                         | <b>-</b>                                         |          | *   | $\vdash$    | <b>-</b>                                         | *        | *        | $\vdash$ | <b>-</b>                                         |
| Quarter 4, 2009                                                          | ╁        | <del>                                     </del> | <del>                                     </del> | <u> </u> | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _        | <u> </u>                               | -        | $\vdash$                                         | *                                                | <b>!</b>                                         | <u> </u>                                         | -                                                |          | *   | *           | *                                                | _        | *        | $\vdash$ | -                                                |
| Quarter 2, 2010                                                          | +-       | -                                                | ⊢                                                | <u> </u> | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u> | <u> </u>                               | <u> </u> | <b>—</b>                                         |                                                  | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | <b>—</b> | 184 | -*-         | *                                                | *        | *        | $\vdash$ | <u> </u>                                         |
| Quarter 3, 2010                                                          | ₩        | $\vdash$                                         | -                                                | <u> </u> | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | <u> </u>                               | <u> </u> | <b>—</b>                                         | *                                                | -                                                | <u> </u>                                         | <u> </u>                                         | <u> </u> | *   | —           | <u> </u>                                         | -14      | _        | $\vdash$ | <u> </u>                                         |
| Quarter 4, 2010                                                          | ₩        | <b>L</b>                                         | ₩                                                | <u> </u> | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u> | <u> </u>                               | <u> </u> | <u> </u>                                         | <u>.</u>                                         | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | Щ.       |     | ⊢           | <b>.</b>                                         | *        | <u> </u> | $\vdash$ | <u> </u>                                         |
| Quarter 1, 2011                                                          | 1        | *                                                | <b>—</b>                                         |          | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                        | <u> </u> | <u> </u>                                         | *                                                | <b>—</b>                                         |                                                  | <u> </u>                                         |          |     | <u> </u>    | *                                                | <b>.</b> | <u> </u> | ш        | <u> </u>                                         |
| Quarter 2, 2011                                                          | 1_       | <u> </u>                                         | _                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          | <u> </u>                                         | L_                                               |                                                  |                                                  |                                                  |          |     | *           | *                                                | *        | *        |          | <u> </u>                                         |
| Quarter 1, 2012                                                          | <u> </u> | <u> </u>                                         | Ь                                                | <u> </u> | $ldsymbol{ldsymbol{eta}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | <u> </u>                               |          | <u> </u>                                         | <u> </u>                                         | L                                                | <u> </u>                                         | <u> </u>                                         |          |     | Щ           | *                                                | *        |          | Ш        | <u> </u>                                         |
| Quarter 2, 2012                                                          | <u> </u> | <u> </u>                                         | Ь.                                               |          | $ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{le}}}}}}}}$ |          | <u> </u>                               | *        |                                                  | Ш                                                | Ь.                                               |                                                  | L                                                |          |     | <u> </u>    | L                                                | *        |          | ш        | L                                                |
| Quarter 3, 2012                                                          | 匸        | L                                                | レー                                               | L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | ــــــــــــــــــــــــــــــــــــــ | L        | 乚                                                |                                                  |                                                  | L                                                | L                                                | آليا     |     | 匸           | *                                                | *        |          |          |                                                  |
| Quarter 4, 2012                                                          | L        |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        | L        |                                                  | L                                                | L                                                |                                                  | L                                                |          | *   | L           | L                                                | *        |          |          | *                                                |
| Quarter 1, 2013                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     |             |                                                  | *        |          |          | *                                                |
| Quarter 2, 2013                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     |             |                                                  |          |          |          | *                                                |
| Quarter 3, 2013                                                          | 1        |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | *                                                |                                                  |                                                  |                                                  |          |     | Г           |                                                  |          |          |          | *                                                |
| Quarter 4, 2013                                                          | t        | 1                                                |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          | *   |             | *                                                | *        |          |          | *                                                |
| Quarter 1, 2014                                                          | t        | t                                                |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          | *   |             | *                                                | *        |          |          | Ė                                                |
| Quarter 2, 2014                                                          | 1        |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | <del>                                     </del> |                                                  |                                                  |                                                  |          | r.  | $\vdash$    | Ë                                                | *        |          |          |                                                  |
| Quarter 3, 2014                                                          | t        |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | H                                                |                                                  |                                                  |                                                  |          |     | $\vdash$    | *                                                | *        | *        |          |                                                  |
|                                                                          | $\vdash$ | <del>                                     </del> | $\vdash$                                         |          | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | $\vdash$                               | $\vdash$ | $\vdash$                                         | $\vdash$                                         | <del>                                     </del> |                                                  | <del>                                     </del> |          | *   | $\vdash$    |                                                  | T        | _        |          | <del>                                     </del> |
| Quarter 4, 2014                                                          | +-       | <del>                                     </del> | <del>                                     </del> | <u> </u> | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u> | -                                      | -        | $\vdash$                                         | $\vdash$                                         | -                                                | <u> </u>                                         | -                                                |          | *   | $\vdash$    | -                                                | 344      | <u> </u> | $\vdash$ | -                                                |
| Quarter 1, 2015                                                          | 1        | -                                                | -                                                | -        | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _        | _                                      | <u> </u> | -                                                | <b>—</b>                                         | -                                                | _                                                | <u> </u>                                         | <b>.</b> | *   | -           | -                                                | *        | <u> </u> | Н        | -                                                |
| Quarter 2, 2015                                                          | ـــــ    | <u> </u>                                         | -                                                | _        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                        | <u> </u> | <u> </u>                                         | <u> </u>                                         | -                                                |                                                  |                                                  |          |     | *           |                                                  | ļ.,.     | L.       | L        |                                                  |
| Quarter 3, 2015                                                          | 1        | <u> </u>                                         | _                                                |          | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                        |          | _                                                |                                                  | _                                                |                                                  |                                                  |          |     | Щ           | L.                                               | *        | *        | *        | L                                                |
| Quarter 4, 2015                                                          |          | oxdot                                            | oxdot                                            |          | $ldsymbol{ldsymbol{ldsymbol{eta}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                        |          | $\Box$                                           |                                                  |                                                  |                                                  |                                                  |          | *   | _           | *                                                |          |          | *        |                                                  |
| Quarter 1, 2016                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     | *           | *                                                | *        | *        |          | *                                                |
| Quarter 2, 2016                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     | *           | *                                                | *        | *        | *        |                                                  |
| Quarter 3, 2016                                                          |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     |             | *                                                |          | *        | *        |                                                  |
|                                                                          | 1        |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | *                                                |                                                  |                                                  |                                                  | *        |     |             | *                                                | *        |          |          |                                                  |
| Ouarter 4, 2016                                                          | +        | <b>†</b>                                         |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | Ė                                                |                                                  |                                                  |                                                  | Ė        |     | т           | *                                                | Ė        | *        | *        |                                                  |
| Quarter 4, 2016<br>Quarter 1, 2017                                       |          |                                                  |                                                  | _        | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _        | $\vdash$                               | _        | _                                                | Η-                                               | <del>                                     </del> | <del>                                     </del> | $\vdash$                                         |          | _   | <del></del> | <del></del>                                      | -        |          |          | <b>—</b>                                         |
| Quarter 1, 2017                                                          | $\vdash$ |                                                  |                                                  | l        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  |          |     |             |                                                  | 1        |          | *        | l                                                |
| Quarter 1, 2017<br>Quarter 2, 2017                                       | <u> </u> |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  | _                                                |                                                  |                                                  |                                                  |          |     | ⊢           |                                                  | *        |          | *        |                                                  |
| Quarter 1, 2017<br>Quarter 2, 2017<br>Quarter 3, 2017                    |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  | *        | *   |             | 3k                                               | *        |          | *        |                                                  |
| Quarter 1, 2017<br>Quarter 2, 2017<br>Quarter 3, 2017<br>Quarter 4, 2017 |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  | *        | *   |             | *                                                | *        |          | *        |                                                  |
| Quarter 1, 2017<br>Quarter 2, 2017<br>Quarter 3, 2017                    |          |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                        |          |                                                  |                                                  |                                                  |                                                  |                                                  | *        | *   |             | *                                                |          |          | *        |                                                  |

| Groundwater Flow System                                                                                                                                         | I        |          |                                                  | UCR          | S        |          |          |     |          | 1              |          | URG      | Ā        |     |     | ı —            |          | LRG                                              | A        |           |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------------------------------------------|--------------|----------|----------|----------|-----|----------|----------------|----------|----------|----------|-----|-----|----------------|----------|--------------------------------------------------|----------|-----------|-----|
| Gradient                                                                                                                                                        | D        | S        | S                                                | S            | D        | D        | D        | U   | U        | D              | D        | D        | D        | U   | U   | D              | D        | D                                                | D        | U         | U   |
| Monitoring Well                                                                                                                                                 | 368      | 375      | 376                                              | 377          | 359      | 362      | 365      | 371 | 374      | 366            | 360      | 363      | 357      | 369 | 372 | 367            | 361      | 364                                              | 358      | 370       | 373 |
| TECHNETIUM-99                                                                                                                                                   |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 2, 2018                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          | *   |     | *              |          |                                                  |          | *         |     |
| Quarter 3, 2018                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     | *   |                |          |                                                  |          | *         |     |
| Quarter 4, 2018                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     | *   | L_             | *        | *                                                | *        | *         |     |
| Quarter 1, 2019                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     | *              |          |                                                  |          | *         |     |
| Quarter 2, 2019                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          | *   |     | <u> </u>       |          |                                                  |          | *         |     |
| Quarter 3, 2019                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     | *   |                |          | *                                                |          | *         |     |
| Quarter 4, 2019                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     | *   |                | *        | *                                                |          | *         |     |
| Quarter 1, 2020                                                                                                                                                 | _        |          |                                                  |              |          |          |          |     |          |                |          |          |          |     | *   | L.,            | *        | *                                                |          | *         |     |
| Quarter 2, 2020                                                                                                                                                 |          |          |                                                  |              |          |          |          |     | _        |                |          |          |          |     |     | *              |          | *                                                | *        | *         |     |
| Quarter 3, 2020                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     | *   | <u> </u>       | *        | *                                                | *        | *         |     |
| Quarter 4, 2020                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     | *   | _              | *        | *                                                |          | *         |     |
| Quarter 1, 2021                                                                                                                                                 |          |          |                                                  |              |          |          |          |     | -        | *              |          |          |          |     |     | *              | *        | *                                                | -        | *         |     |
| Quarter 2, 2021                                                                                                                                                 | _        | -        |                                                  |              | _        |          |          |     | _        | *              |          |          |          | *   | *   | *              | *        | *                                                | *        |           |     |
| Quarter 3, 2021                                                                                                                                                 |          |          |                                                  |              |          | _        |          |     |          |                |          |          |          | 不   | 不   | ├              | *        | *                                                |          |           |     |
| Quarter 4, 2021                                                                                                                                                 | _        |          |                                                  |              |          | _        | _        |     | _        | *              | _        |          |          |     | _   | _              | *        | *                                                |          |           |     |
| Quarter 1, 2022                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          | *              |          |          |          |     |     |                | 不        | 不                                                |          |           |     |
| THORIUM-230                                                                                                                                                     |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     | *              |          |                                                  |          |           |     |
| Quarter 4, 2015                                                                                                                                                 | -        | -        |                                                  |              |          | _        |          |     | _        | *              |          |          |          |     | _   | <u> </u>       |          | _                                                |          |           |     |
| Quarter 2, 2016                                                                                                                                                 | *        | -        |                                                  |              | _        |          |          |     |          | *              |          | *        |          |     | _   | *              |          |                                                  | *        |           |     |
| Quarter 4, 2016<br>Quarter 4, 2017                                                                                                                              | -        |          | 1                                                | $\vdash$     |          |          |          |     | <u> </u> |                |          | _        | *        |     |     | ⊢ᆃ             | <u> </u> |                                                  | *        | Н         |     |
| Quarter 4, 2017<br>Quarter 2, 2018                                                                                                                              | 1        |          | 1                                                | $\vdash$     |          |          |          |     | $\vdash$ | *              |          |          | *        |     |     | $\vdash$       | <u> </u> | $\vdash$                                         |          | Н         |     |
| Quarter 2, 2018<br>Quarter 2, 2021                                                                                                                              |          |          |                                                  |              |          |          |          |     | *        | <del>-</del> ا |          |          | -        |     |     | $\vdash$       |          | <del>                                     </del> |          | H         |     |
| TOLUENE                                                                                                                                                         |          |          |                                                  |              |          |          |          |     | Ť        |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 2, 2014                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          | *              |          |          |          | *   |     |                |          |                                                  |          |           |     |
| TOTAL ORGANIC CARBON                                                                                                                                            |          |          |                                                  |              |          |          |          |     |          | Ë              |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2002                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          | *              | *        | *        |          | *   |     |                |          |                                                  |          |           | *   |
| Quarter 4, 2002                                                                                                                                                 | 1        | <u> </u> | <del>                                     </del> |              |          |          |          |     |          | *              | *        | Ë        |          | *   |     | $\vdash$       |          |                                                  |          | Н         |     |
| Quarter 1, 2003                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          | Ë              | *        |          |          |     |     | H              |          |                                                  |          |           |     |
| Quarter 3, 2003                                                                                                                                                 | *        |          |                                                  |              |          |          |          |     |          | *              | *        |          |          |     |     | *              |          |                                                  |          |           |     |
| Quarter 4, 2003                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          | *              | *        |          |          |     |     | Ė              |          |                                                  |          |           |     |
| Quarter 1, 2004                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          | Ė              | *        |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2005                                                                                                                                                 |          |          |                                                  |              |          | *        |          |     |          | *              |          |          |          |     | *   | *              |          |                                                  | *        |           |     |
| Quarter 4, 2005                                                                                                                                                 |          |          |                                                  |              |          | *        |          |     |          |                |          |          |          |     |     |                |          | *                                                | *        |           |     |
| Quarter 1, 2006                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     | $\vdash$       |          |                                                  | *        |           |     |
| TOTAL ORGANIC HALIDES                                                                                                                                           |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 4, 2002                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          | *              |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 1, 2003                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          | *              |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 2, 2003                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          | *              |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 1, 2004                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     | *              |          |                                                  |          |           |     |
| TRICHLOROETHENE                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2002                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 4, 2002                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 1, 2003                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 2, 2003                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2003                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           | •   |
| Quarter 4, 2003                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          | •         |     |
| Quarter 1, 2004                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          | •         |     |
| Quarter 2, 2004                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2004                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     | ■   |                |          |                                                  |          |           |     |
| Quarter 4, 2004                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     | ■   |                |          |                                                  |          |           |     |
| Quarter 1, 2005                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 2, 2005                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2005                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 4, 2005                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          | •         | •   |
| Quarter 1, 2006                                                                                                                                                 | <u> </u> | _        | _                                                | $oxed{\Box}$ |          |          |          |     |          |                |          |          |          |     | ▝   | <u> </u>       |          |                                                  |          |           | •   |
| Quarter 2, 2006                                                                                                                                                 |          | _        | _                                                |              |          | _        |          |     |          |                |          |          | $\vdash$ |     | ▝   | Ь_             |          |                                                  |          |           | •   |
| Quarter 3, 2006                                                                                                                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           | •   |
| Quarter 4, 2006                                                                                                                                                 | Ь.       | _        | <u> </u>                                         | $\vdash$     | $\perp$  | <u> </u> |          |     |          |                | <u> </u> |          | $\vdash$ |     | ▝   | Ь—             |          | <u> </u>                                         | <u> </u> | لبا       | •   |
| Quarter 1, 2007                                                                                                                                                 | ⊢        | _        | -                                                | $\vdash$     | _        | <u> </u> | <u> </u> |     | <u> </u> | <u> </u>       | <u> </u> |          | $\vdash$ |     | ▝   | Ь—             | <u> </u> | <u> </u>                                         | <u> </u> | •         |     |
| Quarter 2, 2007                                                                                                                                                 | <b>—</b> | <u> </u> | _                                                |              |          | <u> </u> | <u> </u> |     | <u> </u> | <u> </u>       | <u> </u> | <u> </u> | <u> </u> |     | _   | Ь—             | <u> </u> |                                                  | <u> </u> | $\square$ |     |
| Quarter 3, 2007                                                                                                                                                 | <u> </u> | <u> </u> | <u> </u>                                         |              |          |          |          |     |          |                |          |          |          |     | ▝   | Ь—             |          |                                                  |          | ш         | _   |
| Quarter 4, 2007                                                                                                                                                 | <u> </u> |          | <u> </u>                                         |              |          | <u> </u> |          |     | <u> </u> | <u> </u>       |          | <u> </u> | $\vdash$ |     | _   | ⊢              | <u> </u> | <u> </u>                                         |          | ш         | _   |
| Quarter 1, 2008                                                                                                                                                 | ⊢        | -        | -                                                | $\vdash$     | $\vdash$ | <u> </u> | <u> </u> |     | <u> </u> |                | <u> </u> | <u> </u> | $\vdash$ |     | _   | ⊢              | <u> </u> | <u> </u>                                         | -        | ш         | -   |
| Quarter 2, 2008                                                                                                                                                 | <u> </u> | _        | -                                                | $\vdash$     | $\vdash$ | <u> </u> | <u> </u> |     | <u> </u> | <u> </u>       | <u> </u> | _        | $\vdash$ |     | ▝   | Ь—             | <u> </u> | <u> </u>                                         |          | ш         | _   |
| Quarter 3, 2008                                                                                                                                                 | <u> </u> | _        | <u> </u>                                         | $\vdash$     |          | <u> </u> |          |     | <u> </u> | -              |          | <u> </u> | $\vdash$ |     | _   | <u> — </u>     | <u> </u> | <u> </u>                                         | <u> </u> | $\vdash$  | -   |
| Quarter 4, 2008                                                                                                                                                 | <u> </u> | -        | -                                                | $\vdash$     |          | -        | -        |     | -        | <b>-</b>       | -        | -        | $\vdash$ |     | -   | Ь—             | -        | -                                                | -        | ш         | -   |
| Quarter 1, 2009                                                                                                                                                 | <u> </u> | -        | -                                                |              |          | -        |          |     | -        | -              |          |          |          |     | ₽   | Ь—             | -        | -                                                | -        | ш         | _   |
| Quarter 2, 2009                                                                                                                                                 |          | -        | -                                                |              |          | <u> </u> |          |     | <u> </u> | -              |          | -        | $\vdash$ |     | _   | <del> </del> — | -        | <u> </u>                                         | <u> </u> | $\vdash$  | -   |
|                                                                                                                                                                 | _        |          |                                                  | $\perp$      |          | _        | _        |     | <u> </u> | <u> </u>       | _        | <u> </u> | <b>-</b> | _   | ▝   | <del></del>    | _        | <u> </u>                                         | <u> </u> | $\vdash$  | _   |
| Quarter 3, 2009                                                                                                                                                 |          |          | <del>                                     </del> |              |          |          |          |     | <u> </u> |                | •        | _        |          | •   |     | Ь—             |          | <u> </u>                                         |          |           | -   |
| Quarter 3, 2009<br>Quarter 4, 2009                                                                                                                              |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2009<br>Quarter 4, 2009<br>Quarter 1, 2010                                                                                                           |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     | _   | <u> </u>       |          |                                                  |          |           | -   |
| Quarter 3, 2009<br>Quarter 4, 2009<br>Quarter 1, 2010<br>Quarter 2, 2010                                                                                        |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2009<br>Quarter 4, 2009<br>Quarter 1, 2010<br>Quarter 2, 2010<br>Quarter 3, 2010                                                                     |          |          |                                                  |              |          |          |          |     |          |                |          |          | -        |     |     |                |          |                                                  |          |           | I   |
| Quarter 3, 2009<br>Quarter 4, 2009<br>Quarter 1, 2010<br>Quarter 2, 2010<br>Quarter 3, 2010<br>Quarter 4, 2010                                                  |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010                                                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  |          |           |     |
| Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  | •        |           |     |
| Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011                 |          |          |                                                  |              |          |          |          |     |          |                |          |          |          |     |     |                |          |                                                  | _        |           |     |

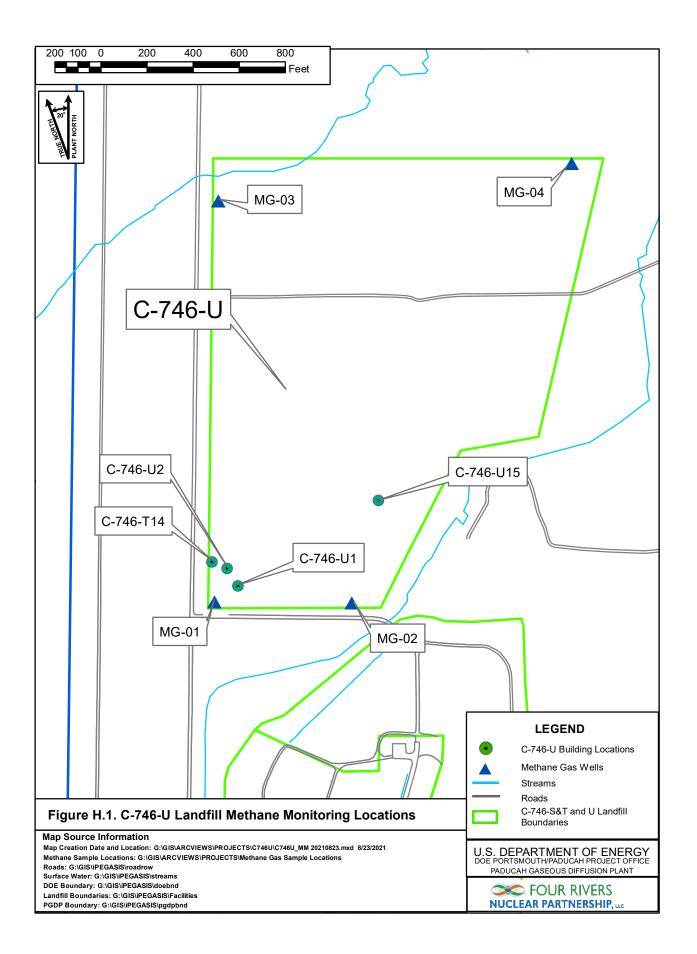
| Groundwater Flow System                     |           |          |           | UCR       | RS       |          |          |          |     |     |     | URG      | A   |          |     |          |     | LRC | iΑ   |          |               |
|---------------------------------------------|-----------|----------|-----------|-----------|----------|----------|----------|----------|-----|-----|-----|----------|-----|----------|-----|----------|-----|-----|------|----------|---------------|
| Gradient                                    | D         | S        | S         | S         | D        | D        | D        | U        | U   | D   | D   | D        | D   | U        | U   | D        | D   | D   | D    | U        | U             |
| Monitoring Well                             | 368       | 375      | 376       | 377       | 359      | 362      | 365      | 371      | 374 | 366 | 360 | 363      | 357 | 369      | 372 | 367      | 361 | 364 | 358  | 370      | 373           |
| TRICHLOROETHENE                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          |     |     |      |          |               |
| Quarter 3, 2012                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     | -        |     |     |      | $\neg$   |               |
| Quarter 4, 2012                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          |     |     |      | $\Box$   |               |
| Quarter 1, 2013                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          |     |     |      | $\Box$   |               |
| Quarter 2, 2013                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     | -        |     |     |      |          |               |
| Quarter 3, 2013                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     | -        |     |     |      | $\Box$   | $\overline{}$ |
| Quarter 3, 2013                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     | $\vdash$ |     |     |      |          |               |
| Quarter 4, 2013                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     | $\vdash$ |     |     |      |          |               |
| Quarter 1, 2014                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          |     |     |      | $\Box$   |               |
| Quarter 2, 2014                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          |     |     |      |          |               |
| Quarter 3, 2014                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     | -        |     |     |      | $\Box$   |               |
| Quarter 4, 2014                             | -         |          |           |           |          |          |          |          |     |     |     |          | Ī   | $\vdash$ |     | -        |     |     |      | -        |               |
| Quarter 1, 2015                             | 1         |          |           |           |          |          |          |          |     |     |     |          | Ŧ   |          |     | -        |     |     |      |          | Ħ             |
| Quarter 2, 2015                             | 1         |          |           |           |          |          |          |          |     |     |     |          | _   |          | ī   | -        |     |     |      |          | ī             |
| Quarter 3, 2015                             |           |          |           |           | _        |          |          |          |     |     |     |          |     |          |     | -        |     |     |      |          | Ħ             |
| Quarter 4, 2015                             | 1         |          |           |           |          |          |          |          |     |     |     |          | Ŧ   |          |     | ╌        | ┢═  |     |      | $\vdash$ | F             |
| Quarter 1, 2016                             | +         |          |           |           | $\vdash$ | $\vdash$ |          |          |     | _   |     |          | =   | $\vdash$ | =   | ╌        |     |     |      | $\vdash$ | H             |
| Quarter 2, 2016                             | +         |          |           |           |          |          |          |          |     |     |     |          | Ŧ   |          |     | ┢        | Ħ   | Η-  |      | $\vdash$ |               |
| Quarter 3, 2016                             | 1         |          |           |           |          |          |          |          |     |     |     | -        | Ŧ   |          |     | ┢        | Ħ   |     | -    | $\vdash$ |               |
| Quarter 4, 2016                             | 1         |          |           |           |          |          |          |          |     |     |     |          | Ŧ   |          |     | ┢        | Ħ   | H   |      |          | H             |
| Quarter 1, 2017                             | 1         |          |           |           | _        |          |          |          |     |     |     |          | i   | _        |     | ⊢        | ι-  | Ħ   | -    | $\vdash$ |               |
| Quarter 1, 2017<br>Quarter 2, 2017          | +         | $\vdash$ | -         |           | $\vdash$ | $\vdash$ | -        |          | _   | _   |     |          | -   | $\vdash$ |     | ⊢        |     | Ħ   |      | $\vdash$ |               |
| Quarter 3, 2017<br>Quarter 3, 2017          | +         |          |           |           |          | _        |          |          |     | _   |     |          |     | _        |     | ┢        | H   |     |      | $\vdash$ |               |
| Quarter 4, 2017                             | +         |          |           |           |          |          |          |          |     |     |     |          |     |          | -   | ⊢        | Ħ   |     |      | H        |               |
| Quarter 4, 2017<br>Quarter 1, 2018          | +-        |          |           |           | _        | -        |          |          | -   | -   |     |          | -   | -        |     | ⊢        | H   | H   |      | $\vdash$ |               |
|                                             | +         |          |           |           | _        | _        |          |          |     | _   |     |          | _   | _        |     |          |     | i   |      | $\vdash$ |               |
| Quarter 2, 2018                             | -         | _        | _         |           | _        | _        | _        |          | _   |     |     |          | _   | _        |     | ┍        |     | H   | -    | $\vdash$ |               |
| Quarter 3, 2018                             |           |          |           |           |          |          |          |          |     | H   |     |          | _   |          |     | ⊢        |     |     |      | $\vdash$ |               |
| Quarter 4, 2018                             | -         |          |           |           |          |          |          |          |     | H   |     |          | -   | _        |     | -        | H   | H   | -    | $\vdash$ | -             |
| Quarter 1, 2019                             | -         |          |           |           |          |          |          |          |     | H   |     |          |     |          | -   | H        |     | Ħ   |      | $\vdash$ |               |
| Quarter 2, 2019                             | -         |          |           |           | _        | _        |          |          |     | -   |     |          |     | _        |     | ┍        | Ħ   | ÷   |      | $\vdash$ | -             |
| Quarter 3, 2019                             | -         | _        | _         |           | _        | _        | _        |          | _   | _   |     |          |     | _        | _   | ├        | -   | _   | -    | $\vdash$ | $\vdash$      |
| Quarter 4, 2019                             | 1         | -        | -         |           | -        | -        | -        |          | -   | -   |     |          |     | -        |     | ⊢        | H   |     |      | $\vdash$ | <b>—</b>      |
| Quarter 1, 2020                             | -         |          |           |           | -        | -        |          |          |     | -   |     |          |     | -        | -   |          | -   |     |      | $\vdash$ | ├             |
| Quarter 2, 2020                             | -         |          |           |           |          |          |          |          |     |     |     |          |     |          |     | -        |     | Ħ   |      | $\vdash$ | <u> </u>      |
| Quarter 3, 2020                             | -         |          |           |           | _        | _        |          |          |     |     |     |          |     | _        |     | ├        | -   | _   |      | $\vdash$ | $\vdash$      |
| Quarter 4, 2020                             | $\vdash$  | _        | _         |           | ├        | ├        | _        |          | _   | _   | _   |          |     | ├        | _   | ⊢        |     |     |      | $\vdash$ | $\vdash$      |
| Quarter 1, 2021                             | 1         | -        | -         |           | -        | -        | -        |          | -   | -   |     |          |     | -        | -   | ⊢        | -   |     |      | $\vdash$ | -             |
| Quarter 2, 2021                             | ₩         | -        |           | <u> </u>  | <u> </u> | -        |          | -        | -   | -   | -   | $\vdash$ |     | -        |     | ⊢        | -   |     | -    | $\vdash$ | •             |
| Quarter 3, 2021                             | ₩         | -        |           | <u> </u>  | <u> </u> | -        |          | <u> </u> | -   |     |     | H        |     | -        |     | ⊢        |     |     | -    | $\vdash$ | -             |
| Quarter 4, 2021                             | 1         | <u> </u> | -         | -         | <u> </u> | <u> </u> | -        | -        | -   | -   | -   | $\vdash$ |     | <u> </u> |     | ⊢        |     | •   | -    | $\vdash$ | -             |
| Quarter 1, 2022                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          | •   |     |      |          | •             |
| TURBIDITY                                   |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          |     |     |      |          |               |
| Quarter 1, 2003                             |           |          |           |           |          |          |          |          |     | *   |     |          |     |          |     | _        |     |     |      | $\vdash$ | <b>—</b>      |
| URANIUM                                     |           |          |           |           |          |          |          |          |     |     |     | 4        | 4   |          |     | L        |     |     |      |          | -             |
| Quarter 4, 2002                             | 1         | *        | _         |           | *        | *        | *        |          | _   | *   | *   | *        | *   | *        | *   | *        | _   | *   | *    | *        | *             |
| Quarter 4, 2006                             |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          |     |     |      |          | *             |
| ZINC                                        |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          |     |     | - 14 |          |               |
| Quarter 3, 2005                             |           |          | <u> </u>  |           | <u> </u> | <u> </u> | <u> </u> |          |     |     |     |          |     |          |     |          |     |     | *    | ш        | ш             |
| * Statistical test results indicate an elev | vated cor | ncentra  | ition (i. | e., a sta | atistica | l excee  | dance).  |          |     |     |     |          |     |          |     |          |     |     |      |          |               |
| MCL Exceedance                              |           |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          |     |     |      |          |               |
| Previously reported as an MCL ex            |           | e; how   | ever, r   | esult w   | as equa  | al to M  | CL       |          |     |     |     |          |     |          |     |          |     |     |      |          |               |
| JCRS Upper Continental Recharge Syst        | tem       |          |           |           |          |          |          |          |     |     |     |          |     |          |     |          |     |     |      |          |               |

UCRS Upper Continental Recharge System
URGA Upper Regional Gravel Aquifer
LRGA Lower Regional Gravel Aquifer



# APPENDIX H METHANE MONITORING DATA




#### CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

| Date:                    | March 2, 2022         | Robert Kirby      |              |  |                    |
|--------------------------|-----------------------|-------------------|--------------|--|--------------------|
| Weather Co               | onditions: Sunny, 60° | F, slight wind, h | umidity: 37% |  |                    |
| Monitoring               | Equipment::Multi RAI  | E – Serial # 4494 |              |  |                    |
|                          |                       | Monitoring Lo     | cation       |  | Reading<br>(% LEL) |
| C-746-U1                 | Checked at floo       | or level          |              |  | 0                  |
| C-746-U2                 | Checked at floo       | or level          |              |  | 0                  |
| C-746-U-T-14             | Checked at floo       | or level          |              |  | 0                  |
| C-746-U15                | Checked at floo       | or level          |              |  | 0                  |
| MG1                      | Checked 1" fro        | m opening         |              |  | 0                  |
| MG2                      | Checked 1" fro        | m opening         |              |  | 0                  |
| MG3                      | Checked 1" fro        | m opening         |              |  | 0                  |
| MG4                      | Checked 1" fro        | m opening         |              |  | 0                  |
| Suspect or<br>Problem Ar |                       |                   |              |  | None               |
| Remarks:                 | N/A                   | 0.00              |              |  | TAGILO             |
|                          |                       |                   |              |  |                    |
|                          |                       |                   |              |  |                    |
|                          |                       |                   |              |  |                    |
|                          |                       |                   |              |  |                    |
|                          |                       |                   |              |  |                    |
|                          |                       |                   |              |  |                    |
|                          |                       |                   |              |  |                    |
| Performed                | by:                   | -/4_              |              |  | 03/10/22           |
|                          | 1/21/                 | Signature         |              |  | Date               |



# APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS



Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

Solid Waste Branch

14 Reilly Road

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

### SURFACE WATER SAMPLE ANALYSIS (S)

| Monitoring Po       | int   | (KPDES Discharge Number, or "U | JPST        | REAM", or "Do         | OWNSTREAM")      | L150 INSTREA                                | AM               | L154 INSTRE                                 | AM               | L351 DOWNSTF                                | REAM             |                                |                  |
|---------------------|-------|--------------------------------|-------------|-----------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|--------------------------------|------------------|
| Sample Sequer       | ice   | #                              |             |                       |                  | 1                                           |                  | 1                                           |                  | 1                                           |                  |                                |                  |
| If sample is a      | a Bl  | lank, specify Type: (F)ield, ( | T) ri       | ip, (M)ethod          | , or (E)quipment | NA                                          |                  | NA                                          |                  | NA                                          |                  |                                |                  |
| Sample Date a       | and   | Time (Month/Day/Year hour: m   | inu         | tes)                  |                  | 2/2/2022 10:4                               | 15               | 2/2/2022 10:5                               | 53               | 2/2/2022 09:                                | 28               |                                |                  |
| Duplicate (")       | Z'' ( | or "N") <sup>1</sup>           |             |                       |                  | N                                           |                  | N                                           |                  | N                                           |                  |                                |                  |
| Split ('Y' or       | : "I  | I") <sup>2</sup>               |             |                       |                  | N                                           |                  | N                                           |                  | N                                           |                  |                                | T                |
| Facility Samp       | ole   | ID Number (if applicable)      |             |                       |                  | L150US2-22                                  | 2                | L154US2-22                                  | 2                | L351US2-2                                   | 2                |                                |                  |
| Laboratory Sa       | amp]  | e ID Number (if applicable)    |             |                       |                  | 569288001                                   |                  | 569288002                                   | !                | 569288003                                   | 3                | \ /                            |                  |
| Date of Analy       | /sis  | (Month/Day/Year)               |             |                       |                  | 2/16/2022                                   |                  | 2/16/2022                                   |                  | 2/16/2022                                   |                  | \ /                            |                  |
| CAS RN <sup>3</sup> |       | CONSTITUENT                    | T<br>D<br>4 | Unit<br>OF<br>MEASURE | METHOD           | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQI | F<br>L<br>A<br>G |
| A200-00-0           | 0     | Flow                           | Т           | MGD                   | Field            |                                             | *                |                                             | *                |                                             | *                | / \                            |                  |
| 16887-00-6          | 2     | Chloride(s)                    | Т           | mg/L                  | 300.0            | 15.3                                        |                  | 28.9                                        |                  | 37.2                                        |                  |                                |                  |
| 14808-79-8          | 0     | Sulfate                        | Т           | mg/L                  | 300.0            | 39.9                                        |                  | 12.5                                        |                  | 18.9                                        |                  |                                |                  |
| 7439-89-6           | 0     | Iron                           | Т           | mg/L                  | 200.8            | 3.89                                        |                  | 1.71                                        |                  | 2.41                                        |                  |                                | \                |
| 7440-23-5           | 0     | Sodium                         | Т           | mg/L                  | 200.8            | 7.25                                        |                  | 12.4                                        |                  | 25.4                                        |                  |                                |                  |
| S0268               | 0     | Organic Carbon <sup>6</sup>    | Т           | mg/L                  | 9060             | 17.5                                        |                  | 14.9                                        |                  | 14.4                                        |                  |                                |                  |
| s0097               | 0     | BOD <sup>6</sup>               | т           | mg/L                  | not applicable   |                                             | *                |                                             | *                |                                             | *                |                                | \                |
| s0130               | 0     | Chemical Oxygen Demand         | Т           | mg/L                  | 410.4            | 64.1                                        |                  | 67.3                                        |                  | 73.5                                        |                  | /                              |                  |

<sup>&</sup>lt;sup>1</sup>Respond "Y" if the sample was a duplicate of another sample in this report

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

<sup>&</sup>lt;sup>2</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

<sup>&</sup>lt;sup>3</sup>Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>&</sup>lt;sup>4</sup>"T" = Total; "D" = Dissolved

<sup>5&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

<sup>&</sup>lt;sup>6</sup>Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required <sup>7</sup>Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments" page.

Facility: US DOE - Paducah Gaseous Diffusion Plant

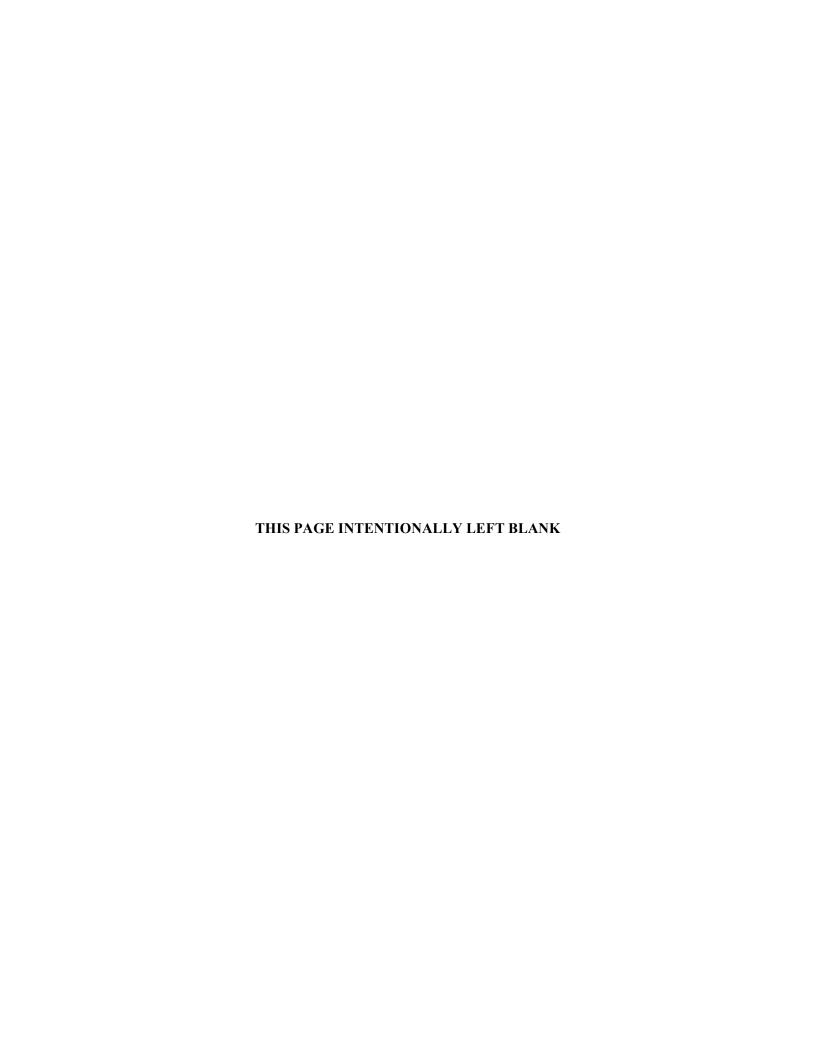
Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

### SURFACE WATER SAMPLE ANALYSIS - (Cont.)

|                     |     |                               |             |                       |               | (00::                                       |                  |                                             |                  |                                             |                                    |                                    |
|---------------------|-----|-------------------------------|-------------|-----------------------|---------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------------------------|------------------------------------|
| Monitoring Po       | int | : (KPDES Discharge Number, or | ס" ב        | JPSTREAM" or          | "DOWNSTREAM") | L150 INSTR                                  | EAM              | L154 INSTR                                  | EAM              | L351 DOWNSI                                 | 'REAM                              | \                                  |
| CAS RN <sup>3</sup> |     | CONSTITUENT                   | T<br>D<br>4 | Unit<br>OF<br>MEASURE | METHOD        | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED VALUE OR PQL <sup>5</sup> |
| S0145               | 1   | Specific Conductance          | т           | µmho/cm               | Field         | 291                                         |                  | 266                                         |                  | 356                                         |                                    |                                    |
| S0270               | 0   | Total Suspended Solids        | т           | mg/L                  | 160.2         | 39.6                                        | *                | 22.8                                        | *                | 59.6                                        | *                                  |                                    |
| s0266               | 0   | Total Dissolved Solids        | Т           | mg/L                  | 160.1         | 219                                         | *                | 203                                         | *                | 269                                         | *                                  | \ /                                |
| s0269               | 0   | Total Solids                  | Т           | mg/L                  | SM-2540 B 17  | 288                                         |                  | 250                                         |                  | 359                                         |                                    | \ /                                |
| s0296               | 0   | рН                            | Т           | Units                 | Field         | 7.87                                        |                  | 7.53                                        |                  | 7.55                                        |                                    | \ /                                |
| 7440-61-1           |     | Uranium                       | т           | mg/L                  | 200.8         | 0.000711                                    |                  | 0.00549                                     |                  | 0.0189                                      |                                    | \                                  |
| 12587-46-1          |     | Gross Alpha $(\alpha)$        | Т           | pCi/L                 | 9310          | 1.79                                        | *                | 3.66                                        | *                | 2.12                                        | *                                  | \ /                                |
| 12587-47-2          |     | Gross Beta $(\beta)$          | Т           | pCi/L                 | 9310          | 10.8                                        | *                | 10.7                                        | *                | 7.14                                        | *                                  | V                                  |
|                     |     |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                                    | $\wedge$                           |
|                     |     |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                                    | / \                                |
|                     |     |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                                    |                                    |
|                     |     |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                                    | / \                                |
|                     |     |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                                    | / \                                |
|                     |     |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                                    | / \                                |
|                     |     |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                                    | /\                                 |
|                     |     |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                                    |                                    |
|                     |     |                               | $\vdash$    |                       |               |                                             |                  |                                             |                  |                                             |                                    |                                    |
|                     |     |                               | $\vdash$    |                       |               |                                             |                  |                                             |                  |                                             |                                    |                                    |
|                     |     |                               | $\vdash$    |                       |               |                                             |                  |                                             |                  |                                             |                                    |                                    |
|                     |     |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                                    | <u>/</u>                           |


### RESIDENTIAL/CONTAINED - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

| Finds/Unit: | KY8-890-008-982 / 1 |
|-------------|---------------------|
| LAB ID:     | None                |

# SURFACE WATER WRITTEN COMMENTS

| Monitor<br>Point | ing Facility<br>Sample ID | Constituent                     | Flag | Description                                                                                   |
|------------------|---------------------------|---------------------------------|------|-----------------------------------------------------------------------------------------------|
| L150             | L150US2-22                | Flow Rate                       |      | Analysis of constituent not required and not performed                                        |
|                  |                           | Biochemical Oxygen Demand (BOD) |      | Analysis of constituent not required and not performed                                        |
|                  |                           | Suspended Solids                | *    | Duplicate analysis not within control limits.                                                 |
|                  |                           | Dissolved Solids                | *    | Duplicate analysis not within control limits.                                                 |
|                  |                           | Alpha activity                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.94. Rad error is 3.93. |
|                  |                           | Beta activity                   |      | TPU is 6.18. Rad error is 5.92.                                                               |
| L154             | L154US2-22                | Flow Rate                       |      | Analysis of constituent not required and not performed                                        |
|                  |                           | Biochemical Oxygen Demand (BOD) |      | Analysis of constituent not required and not performed                                        |
|                  |                           | Suspended Solids                | *    | Duplicate analysis not within control limits.                                                 |
|                  |                           | Dissolved Solids                | *    | Duplicate analysis not within control limits.                                                 |
|                  |                           | Alpha activity                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.08. Rad error is 4.03. |
|                  |                           | Beta activity                   |      | TPU is 6.32. Rad error is 6.07.                                                               |
| L351             | L351US2-22                | Flow Rate                       |      | Analysis of constituent not required and not performed                                        |
|                  |                           | Biochemical Oxygen Demand (BOD) |      | Analysis of constituent not required and not performed                                        |
|                  |                           | Suspended Solids                | *    | Duplicate analysis not within control limits.                                                 |
|                  |                           | Dissolved Solids                | *    | Duplicate analysis not within control limits.                                                 |
|                  |                           | Alpha activity                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.69. Rad error is 5.68. |
|                  |                           | Beta activity                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.1. Rad error is 5.98.  |



# APPENDIX J ANALYTICAL LABORATORY CERTIFICATION





# **Accredited Laboratory**

A2LA has accredited

### GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

### **Environmental Testing**

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 and 2016 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 16th day of June 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2023



# APPENDIX K LABORATORY ANALYTICAL METHODS



#### LABORATORY ANALYTICAL METHODS

| Analytical Method                            | Preparation Method       | Product                                                                     |
|----------------------------------------------|--------------------------|-----------------------------------------------------------------------------|
| SW846 8260B                                  |                          | Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer     |
| SW846 8011                                   | SW846 8011 PREP          | Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and |
|                                              |                          | 1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011       |
| SW846 3535A/8082                             | SW846 3535A              | Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD      |
| SW846 6020                                   | SW846 3005A              | Determination of Metals by ICP-MS                                           |
| SW846 7470A                                  | SW846 7470A Prep         | Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer          |
| SW846 9060A                                  |                          | Carbon, Total Organic                                                       |
| SW846 9012B                                  | SW846 9010C Distillation | Cyanide, Total                                                              |
| EPA 300.0                                    |                          | Ion Chromatography Iodide                                                   |
| SW846 9056                                   |                          | Ion Chromatography                                                          |
| EPA 160.1                                    |                          | Solids, Total Dissolved                                                     |
| EPA 410.4                                    |                          | COD                                                                         |
| Eichrom Industries, AN-1418                  |                          | AlphaSpec Ra226, Liquid                                                     |
| DOE EML HASL-300, Th-01-RC Modified          |                          | Th-01-RC M, Th Isotopes, Liquid                                             |
| EPA 904.0/SW846 9320 Modified                |                          | 904.0Mod, Ra228, Liquid                                                     |
| EPA 900.0/SW846 9310                         |                          | 9310, Alpha/Beta Activity, liquid                                           |
| EPA 905.0 Modified/DOE RP501 Rev. 1 Modified |                          | 905.0Mod, Sr90, liquid                                                      |
| DOE EML HASL-300, Tc-02-RC Modified          |                          | Tc-02-RC-MOD, Tc99, Liquid                                                  |
| EPA 906.0 Modified                           |                          | 906.0M, Tritium Dist, Liquid                                                |



# APPENDIX L MICRO-PURGING STABILITY PARAMETERS



# Micro-Purge Stability Parameters for the C-746-U Contained Landfill

|                           | (String)      | Caridi     | S. Siles | Disso<br>Disso | Turio Turio |
|---------------------------|---------------|------------|----------|----------------|-------------|
| MW357                     | <u> </u>      | <u>/ G</u> | <u> </u> | <u> </u>       | <u> </u>    |
| Date Collected: 1/11/2022 | _             |            | П        | T T            |             |
| 0923                      | 58.0          | 419        | 6.16     | 5.29           | 35.10       |
| 0926                      | 58.1          | 420        | 6.09     | 5.16           | 34.11       |
| 0929                      | 58.1          | 418        | 6.09     | 5.19           | 34.06       |
| MW359                     | 30.1          | 410        | 0.09     | 3.19           | 34.00       |
| Date Collected: 1/11/2022 |               | I          | T        | I              | T           |
| 1103                      | 59.5          | 217        | 5.96     | 4.01           | 18.10       |
| 1106                      | 59.7          | 215        | 5.95     | 3.89           | 18.02       |
| 1109                      | 60.1          | 210        | 5.94     | 3.80           | 18.11       |
| MW361                     | 1 00.1        | 210        | 3.74     | 3.00           | 10.11       |
| Date Collected: 1/11/2022 | $\overline{}$ | Π          | T        | Ι              | T           |
| 0802                      | 56.6          | 509        | 6.00     | 4.50           | 3.98        |
| 0805                      | 56.3          | 509        | 5.97     | 4.40           | 4.05        |
| 0808                      | 56.2          | 510        | 5.96     | 4.44           | 4.00        |
| MW363                     | 1 20.2        | 210        | 2.70     | 1.77           | 1.00        |
| Date Collected: 1/11/2022 | _             |            | T        | I              |             |
| 1149                      | 59.5          | 466        | 6.07     | 2.07           | 7.59        |
| 1152                      | 58.9          | 467        | 6.10     | 1.89           | 3.23        |
| 1155                      | 58.5          | 469        | 6.11     | 1.86           | 3.36        |
| MW365                     | 1 30.3        | 107        | 0.11     | 1.00           | 3.50        |
| Date Collected: 1/12/2022 | $\overline{}$ |            | П        |                | П           |
| 0656                      | 55.5          | 355        | 6.31     | 8.48           | 4.24        |
| 0659                      | 55.3          | 354        | 6.26     | 8.16           | 3.18        |
| 0702                      | 55.3          | 355        | 6.26     | 8.13           | 3.02        |
| MW367                     | 1 22.3        | 300        | 0.20     | 0.15           | 3102        |
| Date Collected: 1/12/2022 | $\overline{}$ | Π          | Π        | l              | Т           |
| 0838                      | 57.7          | 226        | 5.91     | 1.80           | 5.25        |
| 0841                      | 57.5          | 226        | 5.88     | 1.67           | 5.07        |
| 0844                      | 57.2          | 225        | 5.89     | 1.60           | 5.00        |
| MW369                     | 37.2          | 223        | 2.07     | 1.00           | 2.00        |
| Date Collected: 1/12/2022 | $\overline{}$ |            |          |                |             |
| 1004                      | 60.3          | 363        | 6.16     | 3.26           | 6.39        |
| 1007                      | 60.3          | 359        | 6.11     | 2.70           | 6.44        |
| 1010                      | 60.2          | 359        | 6.10     | 2.64           | 6.40        |
| MW371                     |               |            |          |                |             |
| Date Collected: 1/12/2022 |               |            |          |                |             |
| 1127                      | 61.9          | 713        | 6.55     | 4.60           | 10.97       |
| 1130                      | 62.0          | 717        | 6.53     | 3.90           | 15.22       |
| 1133                      | 62.3          | 717        | 6.53     | 3.82           | 15.01       |
| MW373                     |               |            |          |                |             |
| Date Collected: 1/13/2022 |               |            |          |                |             |
| 0759                      | 59.8          | 779        | 6.11     | 2.97           | 1.93        |
| 0802                      | 59.6          | 779        | 6.08     | 2.78           | 1.11        |
| 0805                      | 59.7          | 777        | 6.08     | 2.72           | 0.97        |
| MW375                     |               |            |          |                |             |
| Date Collected: 1/12/2022 |               |            |          |                |             |
| 1209                      | 62.5          | 354        | 6.60     | 2.52           | 6.92        |
| 1212                      | 62.0          | 348        | 6.44     | 1.92           | 6.72        |
| 1215                      | 61.7          | 347        | 6.42     | 1.84           | 6.30        |

|                           | Zetill. | Cours | 1916 | Qig5 | / Till |
|---------------------------|---------|-------|------|------|--------|
| MW358                     |         |       |      |      |        |
| Date Collected: 1/11/2022 |         |       |      |      |        |
| 1023                      | 60.1    | 550   | 6.35 | 2.17 | 20.39  |
| 1026                      | 58.5    | 550   | 6.36 | 2.03 | 17.15  |
| 1029                      | 58.6    | 551   | 6.37 | 2.08 | 17.06  |
| MW360                     |         |       |      |      |        |
| Date Collected: 1/11/2022 | I       |       |      |      |        |
| 0656                      | 50.6    | 391   | 6.11 | 3.56 | 0.00   |
| 0659                      | 51.7    | 390   | 6.11 | 3.05 | 0.00   |
| 0702                      | 51.6    | 389   | 6.11 | 3.07 | 0.00   |
| MW362                     |         |       | •    |      |        |
| Date Collected: 1/11/2022 |         |       |      |      |        |
| 0841                      | 55.6    | 677   | 6.94 | 3.36 | 112.21 |
| 0844                      | 54.3    | 675   | 6.91 | 3.13 | 122.01 |
| 0847                      | 54.0    | 676   | 6.90 | 3.10 | 123.00 |
| MW364                     |         |       |      |      |        |
| Date Collected: 1/11/2022 |         |       |      |      |        |
| 1232                      | 59.9    | 480   | 6.10 | 4.32 | 2.96   |
| 1235                      | 60.0    | 479   | 6.00 | 4.16 | 2.90   |
| 1238                      | 60.1    | 480   | 6.00 | 4.20 | 2.99   |
| MW366                     |         |       |      |      |        |
| Date Collected: 1/12/2022 |         |       |      |      |        |
| 0738                      | 57.5    | 433   | 6.15 | 4.44 | 2.30   |
| 0741                      | 57.4    | 435   | 6.10 | 4.23 | 2.19   |
| 0744                      | 57.2    | 434   | 6.09 | 4.15 | 2.00   |
| MW368                     | •       |       |      |      |        |
| Date Collected: 1/12/2022 |         |       |      |      |        |
| 0917                      | 59.0    | 543   | 6.33 | 4.02 | 18.48  |
| 0920                      | 59.1    | 551   | 6.33 | 3.19 | 17.01  |
| 0923                      | 59.1    | 550   | 6.34 | 3.11 | 16.84  |
| MW370                     |         |       |      |      |        |
| Date Collected: 1/12/2022 |         |       |      |      |        |
| 1046                      | 61.2    | 455   | 6.07 | 5.21 | 4.51   |
| 1049                      | 61.4    | 458   | 6.06 | 4.40 | 4.41   |
| 1052                      | 61.5    | 459   | 6.06 | 4.36 | 4.48   |
| MW372                     |         |       |      |      |        |
| Date Collected: 1/13/2022 |         |       |      |      |        |
| 0717                      | 58.4    | 752   | 6.10 | 3.36 | 0.00   |
| 0720                      | 58.3    | 752   | 6.10 | 3.14 | 0.00   |
| 0723                      | 58.2    | 752   | 6.09 | 3.10 | 0.00   |
| MW374                     |         |       |      |      |        |
| Date Collected: 1/13/2022 |         |       |      |      |        |
| 0856                      | 61.3    | 720   | 6.84 | 2.22 | 2.29   |
| 0859                      | 61.5    | 722   | 6.78 | 1.87 | 3.18   |
| 0902                      | 61.5    | 720   | 6.77 | 1.80 | 3.05   |
|                           |         |       |      |      |        |

