

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

February 23, 2022

RECEIVED
By Terri.Drake at 3:29 pm, Feb 23, 2022

PPPO-02-10020320-22B

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-U CONTAINED LANDFILL FOURTH QUARTER CALENDAR YEAR 2021 (OCTOBER-DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0192/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the fourth quarter calendar year (CY) 2021 has been uploaded to the KY eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, surface water analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results. Monitoring well MW363 had a statistically significant exceedance of nitrate as nitrogen over background levels as well as an exceedance of the Kentucky maximum contaminant level for nitrate as nitrogen.

The statistical analyses on the fourth quarter CY 2021 monitoring well data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). This report also serves as the statistical exceedance notification for the fourth quarter CY 2021, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Tracey L. Duncan
Date: 2022.02.23
14:39:23 -06'00'

Tracey Duncan Acting Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill Fourth Quarter Calendar Year 2021 (October—December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0192/V4

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.webb@ky.gov, KDEP april.ladd@pppo.gov, PPPO brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pppo.gov stephaniec.brock@ky.gov, KYRHB tracey.duncan@pppo.gov, PPPO

cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

C-746-U Contained Landfill Fourth Quarter Calendar Year 2021 (October-December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

David Hayden
FRNP Classification Support

02-17-2022

Date

FRNP-RPT-0192/V4

C-746-U Contained Landfill
Fourth Quarter Calendar Year 2021
(October-December)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2022

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURES		v
ΤÆ	ABLES		v
A(CRONYMS		vii
1.	1.1 BACKO	TIONGROUNDGROUND ACTIVITIES	1
	1.2.1 1.2.2	Groundwater Monitoring	1
		ESULTS	
2.	2.1 STATIS	UATION/STATISTICAL SYNOPSISSTICAL ANALYSIS OF GROUNDWATER DATA	10
	2.1.2 2.1.3	Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer	10 10
		VERIFICATION AND VALIDATION	
3.		NAL GEOLOGIST AUTHORIZATION	
4.	REFERENCE	S	15
ΑI	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑI	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
ΑI	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑI	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑI	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑI	PPENDIX F:	NOTIFICATIONS	F-1
ΑI	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑI	PPENDIX H:	METHANE MONITORING DATA	H-1
ΑI	PPENDIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
ΑI	PPENDIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

APPENDIX K:	LABORATORY ANALYTICAL METHODS	K-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS	L-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
	C-746-U Landfill Surface Water Monitoring Locations	
	TABLES	
	Summary of MCL Exceedances	
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
	C-746-U Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	6
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	7
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Fourth Quarter Calendar Year 2021 (October-December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL and historical background UTL exceedances that have occurred, beginning in the third quarter, calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water analyses and written comments are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5, with Phases 6 and 7 approved for receipt of waste as of September 27, 2019. A minor permit modification that included upgrades to the leachate storage capacity for Phases 6 and 7 was approved by KDWM on May 21, 2021 (FRNP 2021). Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

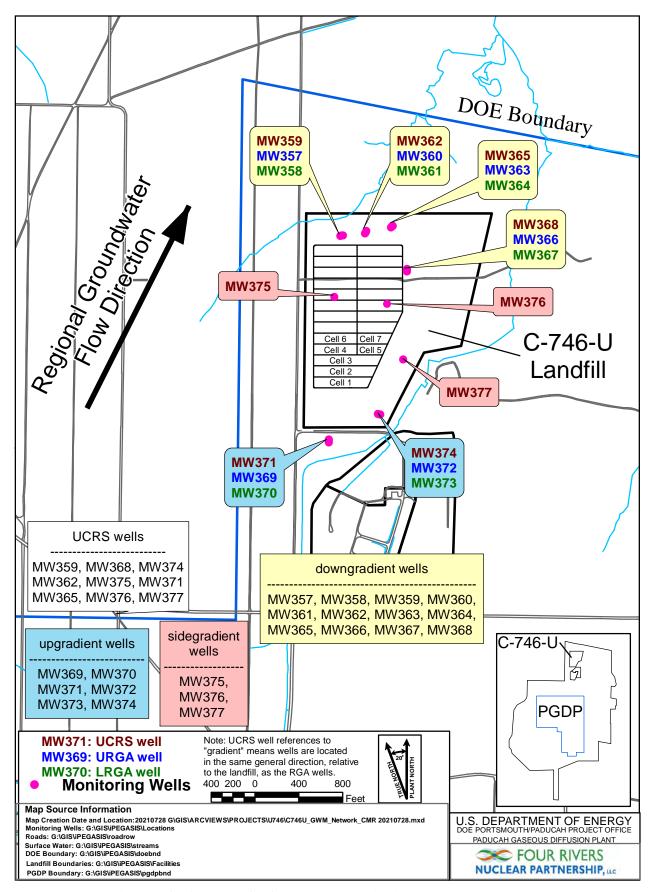


Figure 1. C-746-U Landfill Groundwater Monitoring Well Network

Consistent with the approved *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills* (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2021 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the fourth quarter 2021 was conducted in October and December 2021. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 26, 2021, in MWs of the C-746-U Landfill (see Appendix E, Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Appendix E, Figure E.4). Water level measurements in 38 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During October, RGA groundwater flow in the area of the landfill was oriented northeast. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in October was 5.21×10^{-4} ft/ft (see Appendix E, Table E.2). The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 1.08×10^{-3} ft/ft and 1.12×10^{-3} ft/ft, respectively (see Appendix E, Table E.2). Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.84 to 3.14 ft/day for the URGA and 1.91 to 3.26 ft/day for the LRGA (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Industrial Hygiene staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on December 2, 2021. See Appendix H for a map (see Appendix H, Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015,

SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059 (FRNP 2021), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill: (1) instream location, L154; (2) downstream location, L351; and (3) instream location L150. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the fourth quarter 2021, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be background. Constituents in downgradient wells that exceeded current background UTL are shown on Table 3.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW363: Nitrate as Nitrogen	MW361: Trichloroethene
		MW364: Trichloroethene
		MW373: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Oxidation-reduction
oxidation-reduction potential,	potential	potential
sulfate		
MW362: Oxidation-reduction	MW360: Oxidation-reduction	MW361: Oxidation-reduction
potential, sulfate	potential	potential, technetium-99
MW365: Dissolved oxygen,	MW363: Nitrate as nitrogen,	MW364: Oxidation-reduction
oxidation-reduction potential,	Oxidation-reduction potential	potential, technetium-99
sulfate		
MW368: Oxidation-reduction	MW366: Oxidation-reduction	MW367: pH, oxidation-reduction
potential, sulfate	potential	potential
MW371: Dissolved oxygen,	MW369: Oxidation-reduction	MW370: Dissolved oxygen,
oxidation-reduction potential	potential	oxidation-reduction potential
MW374: Oxidation-reduction	MW372: Calcium, dissolved	MW373: pH, oxidation-reduction
potential	solids, magnesium,	potential
	oxidation-reduction potential,	
	sulfate	
MW375: Oxidation-reduction		
potential, sulfate		

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Sidegradient wells: MW375, MW376, MW377

¹ The UTL comparison for pH uses a two-sided test for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

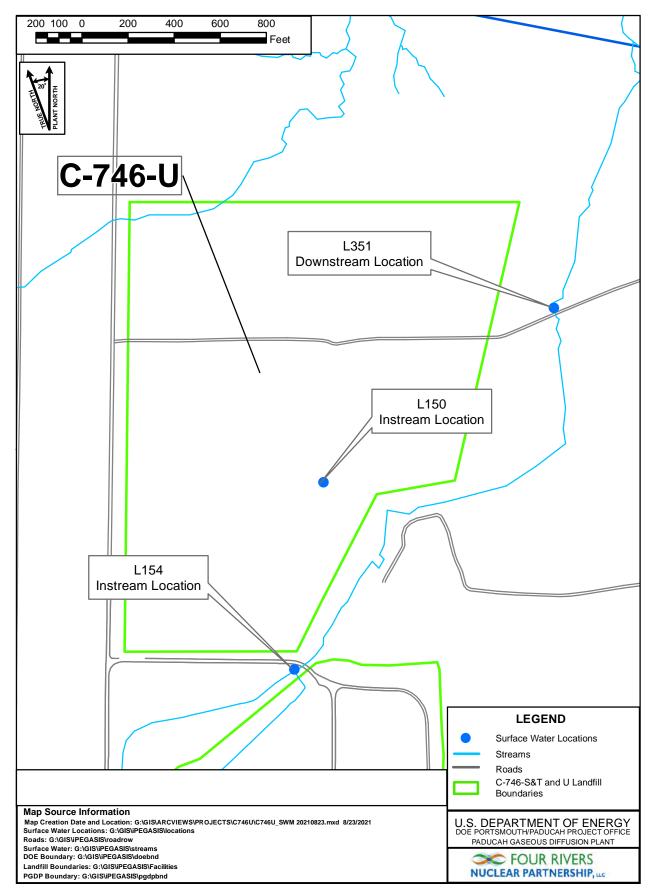


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW363: Nitrate as nitrogen	None

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW361 and MW364 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report is the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient (compliance) well concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill). Except for nitrate as nitrogen in MW363, all MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

Nitrate as nitrogen in MW363 (downgradient well) was shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily it was considered to be a Type 2 exceedance. To evaluate the preliminary Type 2 exceedance further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results have been summarized in Table 4. MW363 showed an increasing Mann-Kendall trend for nitrate as nitrogen and is considered to be a Type 2 exceedance—source unknown. Further assessment will be necessary to determine the source of the current nitrate as nitrogen trend.

Table 4. C-746-U Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
C-746-U Landfill	MW363	Nitrate as nitrogen	8	0.05	0.001	24	Increasing

¹ An alpha of 0.05 represents a 95% confidence interval.

Note: Statistics generated using ProUCL.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses; the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified a sulfate value in UCRS well MW368 that exceeded both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-U Landfill, this exceedance is not attributable to C-746-U Landfill sources and is considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS	
MW368: sulfate	

^{*}In the same direction (relative to the landfill) as RGA wells.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2021 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

Parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6 were documented and evaluated further. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as background) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data were divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data showed a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both a UTL and LTL to determine if statistically significant deviations in concentrations existed with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 5.

Table 6. Monitoring Wells Included in Statistical Analysis^a

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371 ^b	MW369 (background)	MW370 (background)
MW374 ^b	MW372 (background)	MW373 (background)
MW375		
MW376 ^c		
MW377 ^c		

^a Map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 24 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Sulfate exceeded the current background UTL in downgradient UCRS well MW368.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, calcium, dissolved solids, magnesium, nitrate as nitrogen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Nitrate as nitrogen exceeded the current background UTL in downgradient URGA well MW363.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, dissolved oxygen, oxidation-reduction potential, pH, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient LRGA wells.

^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^c Well had insufficient water to permit a water sample for laboratory analysis.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data, except for *cis*-1,3-dichloropropene in MW357 were considered usable. Monitoring well MW357 was resampled on December 16, 2021, for *cis*-1,3-dichloropropene only. Results of the resample were validated and considered acceptable. The resample results were used in the statistical analysis.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION: C-746-U Contained Landfill Fourth Quarter Calendar

Year 2021 (October-December) Compliance Monitoring Report,

Paducah Gaseous Diffusion Plant, Paducah, Kentucky

(FRNP-RPT-0192/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

PO 113927

ROSSONE PO 113927

2-17-2422

Kenneth R. Davis

PG113927

4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

	OOE-Paducah Gase	eous Diffusion Plant	Activity: <u>C-746-</u>	U Contained Landfill
SW073000 SW073000 SW073000	014, 015,	Finds/Unit No:	Quarter & Year	4th Qtr. CY 2021
Please check the following	g as applicable:			
Characterization	X Quarterl	y Semiannual	Annual	Assessment
Please check applicable s	ubmittal(s):	X Groundwater	X Surface	ce Water
		Leachate	X Metha	ane Monitoring
This form is to be utilized by the 45:160) or by statute (Kentuck urisdiction of the Division of 48) hours of making the distribution pages. It certify under penalty of law the certify under penalty of law the status of the s	cy Revised Statues Cl f Waste Management letermination using NOT considered noting at this document and a	hapter 224) to conduct ground t. You must report any ind statistical analyses, direct fication. Instructions for comp all attachments were prepared u	dwater and surface water lication of contaminate comparison, or other pleting the form are atta	er monitoring under the tion within forty-eight er similar techniques. ched. Do not submit the apervision in accordance
with a system designed to assunding of the person or person crowledge and belief, true, accorduling the possibility of fine	s directly responsible urate, and complete. I	for gathering the information, am aware that there are signifi	the information submit	tted is, to the best of my
Bo J Land	Dela	,	2/9:	66/2
Myrna È Redfield, Prog Four Rivers Nuclear Par			Date	
Jan Q			2/:	23/22
Tracey Duncan, Acting U.S. Department of Ene		i	Date	

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: October and December 2021 Surface water: October and December 2021 Methane: December 2021	County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045		
Facility Name:	U.S. DOE—Paducah Gaseous Diffusion Plant						
ruenity runie.		wn on DWM Permit Face))				
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053			
	Street	City/State		Zip			
Phone No: (270) 441-6800 Latitude: N 37° 07' 45" Longitude: W 88° 47' 55"							
	OW	NER INFORMATION					
Facility Owner:	US DOE: Joel Bradburne, Manager, Portsmouth/Paducah Project Office	Phone No:	: _(859) 219-40	000			
Contact Person:	Bruce Ford		Phone No:	(270) 441	-5357		
Contact Person Title:	Director, Environmental Services Four Rivers Nuclear Partnership, LLC						
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053			
	Street	City/State		Zip			
	SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: GEO Consultants Corporation						
Contact Person:	Jason Boulton		Phone No:		6-3415		
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053			
	Street	City/State		Zip			
	LABO	PRATORY RECORD #1					
Laboratory <u>GE</u>	L Laboratories, LLC	Lab l	ID No: KY90	129			
Contact Person:	Valerie Davis		Phone No:	(843) 769	9-7391		
Mailing Address:	2040 Savage Road	Charleston, South Care	olina	294			
	Street	City/State		Zij	<u>, </u>		
	LABO	PRATORY RECORD #2					
Laboratory: N/	A	Lab II	No: N/A				
Contact Person:	N/A		Phone No:	N/A			
Mailing Address:	N/A						
	Street	City/State			Zip		
	LABO	PRATORY RECORD #3					
Laboratory: N/	A	Lab II	No: N/A				
Contact Person:	N/A	2.10	Phone No:	N/A			
Mailing Address:	N/A		22 2 101				
6	Street	City/State		,	Zip		

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	8	8004-47	799	8004-09	81	8004-480	00
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	.)	357		358		359		360	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/11/2021 1	0:00	10/11/2021	11:11	10/11/2021	11:57	10/11/2021 (07:42
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW357UG1	1-22	MW358U	G1-22	MW359U0	G1-22	MW360UG	1-22
Laboratory Sa	oratory Sample ID Number (if applicable)				55854500)1	558545	003	5585450	005	55854500	07
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/16/202	1	10/16/2	021	10/16/20)21	10/16/202	21
Gradient with	e of Analysis (Month/Day/Year) For Volati			OWN)	DOWN		DOW	N	DOW	7	DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.363		0.417		<0.2		0.192	J
16887-00-6	Chloride(s)	Т	mg/L	9056	30	J	27.3	J	1.1	J	9.12	J
16984-48-8	Fluoride	т	mg/L	9056	0.159	J	0.184	J	0.135	J	0.211	J
s0595	Nitrate & Nitrite	т	mg/L	9056	1.04	J	0.593	J	0.381	J	0.675	J
14808-79-8	Sulfate	т	mg/L	9056	38.6		53		38.5		12.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.76		29.75		29.75		29.8	
S0145	Specific Conductance	Т	μ M H0/cm	Field	283		353		180		272	_

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-4799	9	8004-0981		8004-4800	1
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	T	Ft. MSL	Field	323.8		323.82		330.43		323.78	
N238	Dissolved Oxygen	т	mg/L	Field	5.16		1.13		6.05		2.8	
s0266	Total Dissolved Solids	т	mg/L	160.1	217	*	267	*	149	*	221	*
s0296	рн	т	Units	Field	6.22		6.1		6.2		6.14	
NS215	Eh	т	mV	Field	376.8		158.7		264.2		379.5	
s0907	Temperature	т	°C	Field	16.67		16.61		18.61		15.94	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0194	J	0.101		0.023	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00298	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0748		0.0639		0.0276		0.207	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.392		0.339		0.00956	J	0.0416	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	25.4		31.6		5.82		18.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.0157		0.000407	J	0.00265	
7440-50-8	Copper	T	mg/L	6020	0.00287	*	0.00108	J*	0.00199	J*	0.00354	*
7439-89-6	Iron	Т	mg/L	6020	0.039	J	4.82		0.206		0.453	
7439-92-1	Lead	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	T	mg/L	6020	11.4		15		3.34		8.26	
7439-96-5	Manganese	T	mg/L	6020	0.00222	J	0.786		0.00494	J	0.0337	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	8	8004-479	9	8004-098	1	8004-480)0
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000303	J	<0.001		<0.001	
7440-02-0	Nickel	Т	mg/L	6020	0.000928	J	0.0271		0.00193	J	0.00443	
7440-09-7	Potassium	Т	mg/L	6020	1.88		2.86		0.144	J	0.785	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	40.7		37.1		32.8		58.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000081	J	0.000077	J
7440-62-2	Vanadium	т	mg/L	6020	0.00518	BJ	0.00526	BJ	0.00632	BJ	0.00535	BJ
7440-66-6	Zinc	Т	mg/L	6020	0.0041	J	0.00697	7	0.00615	J	0.016	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-098	81	8004-48	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260	<0.001		0.00038	J	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.00258		0.00165		<0.001		0.00078	J

C-6

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799	9	8004-098	31	8004-48	00
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000185		<0.0000185		<0.0000192		<0.0000186	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0996		<0.101		<0.103		<0.0989	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0996		<0.101		<0.103		<0.0989	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0996		<0.101		<0.103		<0.0989	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0996		<0.101		<0.103		<0.0989	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0996		<0.101		<0.103		<0.0989	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0996		<0.101		<0.103		<0.0989	

C-7

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0996		<0.101		<0.103		<0.0989	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0996		<0.101		<0.103		<0.0989	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0996		<0.101		<0.103		<0.0989	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.63	*	-1.87	*	1.6	*	3.85	*
12587-47-2	Gross Beta	Т	pCi/L	9310	16.7	*	16.5	*	10.4	*	6.35	*
10043-66-0	Iodine-131	T	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.265	*	0.0374	*	0.366	*	0.224	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.19	*	0.468	*	1.92	*	7.08	*
14133-76-7	Technetium-99	T	pCi/L	Tc-02-RC	32.7	*	35.1	*	14.4	*	14.7	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.0797	*	-0.0462	*	0.103	*	0.129	*
10028-17-8	Tritium	Т	pCi/L	906.0	60.2	*	-22.7	*	111	*	45.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		11.3	J	<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	1.03	J	2.79		1.39	J	1.44	J
S0586	Total Organic Halides	Т	mg/L	9020	0.00904	J	<0.01		0.00412	J	0.0042	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

> FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	, MW-2, etc	:.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/11/2021 0	9:10	10/11/2021	08:23	10/12/2021	06:04	10/12/2021	07:08
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG1	1-22	MW362U	G1-22	MW363U0	G1-22	MW364UG	1-22
Laboratory San	poratory Sample ID Number (if applicable)						558545	011	5587330	001	5587330	03
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					:1	10/16/20	021	10/19/20)21	10/19/202	21
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	l
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.472		0.112	J	0.17	J	0.587	
16887-00-6	Chloride(s)	т	mg/L	9056	34.2	J	3.02	J	40.2	J	36.6	J
16984-48-8	3"					J	0.357	J	0.206	J	0.19	J
s0595	0595 Nitrate & Nitrite T mg/L			9056	1	J	0.379	J	10.5		1.11	J
14808-79-8	Sulfate	т	mg/L	9056	79.2		28.4		24.3		74.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.78		29.79		29.98		29.99	
S0145	Specific Conductance	т	μ MH 0/cm	Field	355		468		418		412	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	5	8004-0986	3	8004-4796		8004-4797	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.62		337.68		323.49		322.69	
N238	Dissolved Oxygen	т	mg/L	Field	3.83		2.59		0.86		3.2	
s0266	Total Dissolved Solids	т	mg/L	160.1	279	*	406	*	274	В	254	В
S0296	рН	т	Units	Field	6.03		6.69		6.36		5.83	
NS215	Eh	т	mV	Field	370.4		220.4		272		331	
s0907	Temperature	т	°C	Field	16.22		16.06		14.72		15.11	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0293	J	<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0565		0.107		0.177		0.0605	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.122		0.018		0.0205		0.0796	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	32.7		20.5		30.1		29.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		0.00614	J
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000868	J	0.000777	J	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00145	J*	0.00139	J*	0.000998	J	0.00101	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.206		0.058	J	0.0612	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	14.6		9.29		11.9		12.8	
7439-96-5	Manganese	т	mg/L	6020	0.00551		0.0406		0.089		0.00571	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		0.000203	В	0.000196	BJ

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				8004-479	5	8004-098	86	8004-479	6	8004-479	7
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.000474	J	0.000308	J	0.000461	J
7440-02-0	Nickel	Т	mg/L	6020	0.00149	J	0.00127	J	0.0437		0.00475	
7440-09-7	Potassium	Т	mg/L	6020	2.74		0.375		2.87		2.31	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	44.4		134		40.5		41	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.00324		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.005	BJ	0.00558	ВЈ	<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	0.00535	J	0.00687	J	<0.02		0.00928	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-098	6	8004-47	96	8004-47	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00631		0.00043	J	<0.001		0.00607	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000186		<0.0000189		<0.0000189		<0.0000187	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0978		<0.0965		<0.105		<0.103	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0978		<0.0965		<0.105		<0.103	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0978		<0.0965		<0.105		<0.103	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0978		<0.0965		<0.105		<0.103	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0978		<0.0965		<0.105		<0.103	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0978		<0.0965		<0.105		<0.103	

C-13

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-0986	i	8004-479	6	8004-479)7
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0978		<0.0965		<0.105		<0.103	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0978		<0.0965		<0.105		<0.103	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0978		<0.0965		<0.105		<0.103	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.0941	*	1.93	*	4.22	*	8.26	*
12587-47-2	Gross Beta	т	pCi/L	9310	37	*	4.21	*	5.98	*	35.2	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.317	*	0.695	*	0.32	*	0.48	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.67	*	3.57	*	2.48	*	0.804	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	55.5	*	7.54	*	-1.73	*	55.3	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.982	*	-0.115	*	-0.121	*	-1.21	*
10028-17-8	Tritium	Т	pCi/L	906.0	3.04	*	41.3	*	-14.7	*	102	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		20.3	В	20.3	В
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.967	J	2.36		0.896	J	1.07	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00568	J	0.0168		0.00344	J	0.00648	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number			8004-098	4	8004-09	982	8004-47	93	8004-098	33	
Facility's Lo	cal Well or Spring Number (e.g., N	4W−1	., MW-2, etc	:.)	365		366		367		368	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/12/2021 0	7:49	10/12/2021	08:32	10/12/2021	09:17	10/12/2021	10:22
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW365UG1	1-22	MW366U0	G1-22	MW367U0	G1-22	MW368UG	1-22
Laboratory San	oratory Sample ID Number (if applicable))5	558733	007	5587330	011	5587330	13
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/19/202	1	10/19/20	021	10/19/20)21	10/19/202	21
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	7	DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.428		0.109	J	<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	2.23	J	37	J	7.72	J	2.82	J
16984-48-8	Fluoride	т	mg/L	9056	0.302	J	0.214	J	0.132	J	0.229	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.723	J	0.832	J	<10		0.0904	J
14808-79-8	Sulfate	т	mg/L	9056	59.3		41		21.9		101	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.99		30.02		30.03		30.03	
S0145	Specific Conductance	Т	μ M H0/cm	Field	300		390	_	200		501	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-4793		8004-0983	
Facility's Lo	ocal Well or Spring Number (e.g., M	√ -1,	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	329.13		323.65		323.63		328.43	
N238	Dissolved Oxygen	т	mg/L	Field	3.66		3.88		0.8		2.4	
S0266	Total Dissolved Solids	Т	mg/L	160.1	206	В	223	В	106	В	334	В
S0296	рн	Т	Units	Field	6.03		5.96		5.7		6.21	
NS215	Eh	Т	mV	Field	336		355		217		242	
s0907	Temperature	Т	°C	Field	15		15.94		15.94		15.89	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		0.0613	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00217	J	0.00256	J
7440-39-3	Barium	Т	mg/L	6020	0.0907		0.106		0.129		0.0543	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00699	J	0.057		0.0173		0.00653	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	16		26.5		12.1		58.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00111		<0.001		0.00596		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00187	J	0.000798	J	0.000679	J	0.000967	J
7439-89-6	Iron	т	mg/L	6020	<0.1		<0.1		6.31		0.0609	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	8.17		11		6.88		12.9	
7439-96-5	Manganese	т	mg/L	6020	0.00371	J	0.00113	J	1.3		0.00877	
7439-97-6	Mercury	Т	mg/L	7470	0.000119	BJ	0.000204	В	0.000257	В	0.000192	BJ

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	3
Facility's I	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020	0.000963	J	0.00029	J	<0.001		0.00061	J
7440-02-0	Nickel	Т	mg/L	6020	0.00458		0.000631	J	0.00273		0.00128	J
7440-09-7	Potassium	Т	mg/L	6020	0.255	J	2.14		3		0.52	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00322	7	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	42.7		42.5		15.6		46.7	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	0.000083	J	<0.0002		<0.0002		0.00033	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		0.00441	J
7440-66-6	Zinc	Т	mg/L	6020	0.0038	J	<0.02		0.0122	J	0.00413	J
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-098	2	8004-47	93	8004-09	83
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	cc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00309		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-479	93	8004-09	83
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191		<0.0000188		<0.0000187		<0.0000192	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.099		<0.0987		<0.0959		<0.107	
12674-11-2	PCB-1016	т	ug/L	8082	<0.099		<0.0987		<0.0959		<0.107	
11104-28-2	PCB-1221	т	ug/L	8082	<0.099		<0.0987		<0.0959		<0.107	
11141-16-5	PCB-1232	т	ug/L	8082	<0.099		<0.0987		<0.0959		<0.107	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.099		<0.0987		<0.0959		<0.107	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.099		<0.0987		<0.0959		<0.107	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.099		<0.0987		<0.0959		<0.107	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.099		<0.0987		<0.0959		<0.107	
11100-14-4	PCB-1268	т	ug/L	8082	<0.099		<0.0987		<0.0959		<0.107	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.49	*	5.6	*	-1.27	*	0.151	*
12587-47-2	Gross Beta	Т	pCi/L	9310	-2.34	*	43	*	3.57	*	6.61	*
10043-66-0	Iodine-131	T	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.157	*	0.144	*	0.831	*	0.672	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	4.45	*	4.68	*	3.5	*	1.71	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-0.0713	*	64.1	*	-3.45	*	-8.9	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.117	*	0.354	*	0.113	*	0.109	*
10028-17-8	Tritium	Т	pCi/L	906.0	-14.9	*	97.6	*	-0.742	*	60.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	22.9	В	20.3	В	22.9	В	25.5	В
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.48	J	1.12	J	0.708	J	1.78	J
S0586	Total Organic Halides	т	mg/L	9020	0.0102		0.00452	J	<0.01		<0.01	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / 1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-482	0	8004-48	318	8004-48	19	8004-480)8		
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	, MW-2, etc	:.)	369		370		371		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/12/2021 1	1:07	10/12/2021	11:50	10/12/2021	12:30	10/13/2021	06:21
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW369UG1	1-22	MW370U	G1-22	MW371U0	G1-22	MW372UG	1-22
Laboratory San	poratory Sample ID Number (if applicable)						558733	017	5587330	019	55883600	01
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					:1	10/19/20	021	10/19/20)21	10/21/202	21
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		UP		UP		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.327		0.48		0.0705	J	0.678	*
16887-00-6	Chloride(s)	т	mg/L	9056	29.3	J	37.9	J	5.3	J	39.8	J
16984-48-8	Fluoride	т	mg/L	9056	0.208	J	0.204	J	0.245	J	0.207	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.956	J	1	J	0.186	J	0.934	J
14808-79-8	Sulfate	т	mg/L	9056	8.82		21		11.9		147	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.04		30.04		30.03		29.96	
S0145	Specific Conductance	т	μ M H0/cm	Field	305		391		628		484	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

^{* =} See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-482	0	8004-4818	3	8004-4819		8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MV	I-1,	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.04		325.03		342.53		325.19	
N238	Dissolved Oxygen	T	mg/L	Field	2.82		4.6		3.36		2.28	
S0266	Total Dissolved Solids	т	mg/L	160.1	179	В	229	В	417	В	461	*
S0296	рн	т	Units	Field	6		5.9		6.32		5.8	
NS215	Eh	т	mV	Field	343		359		344		390	
S0907	Temperature	Т	°C	Field	16.5		16.39		16.5		16	
7429-90-5	Aluminum	Т	mg/L	6020	0.022	J	<0.05		0.399		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.379		0.242		0.164		0.0622	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0171		0.332		0.00734	J	1.23	
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	15.1		26.1		54		64.8	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00429		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00113	J	0.000486	J	0.00139	J	0.000755	J
7439-89-6	Iron	т	mg/L	6020	0.0624	J	<0.1		0.255		0.036	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	6.77		11		15.8		22.8	
7439-96-5	Manganese	т	mg/L	6020	0.00774		0.00119	J	0.00966		<0.005	
7439-97-6	Mercury	т	mg/L	7470	0.000172	BJ	0.000173	BJ	0.000187	BJ	0.000518	В

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBE	R ¹ , Facility Well/Sprin	g Number			8004-482	0	8004-481	18	8004-481	9	8004-480)8
Facility's	Local Well or Spring Nu	mber (e.g., MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUE	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000511	J	<0.001		0.000365	J	0.00187	*
7440-02-0	Nickel	Т	mg/L	6020	0.00279		<0.002		0.0021		<0.002	
7440-09-7	Potassium	Т	mg/L	6020	0.67		2.9		0.501		2.29	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	0.00278	J	<0.005		<0.005		0.00214	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	48.4		42		97.2		62.5	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00229		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		0.00558	J	0.00498	BJ
7440-66-6	Zinc	Т	mg/L	6020	0.0034	J	<0.02		0.0057	J	0.00601	BJ
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	*
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	08
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.00123		0.00084	J	<0.001		0.004	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-4818	3	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000189		<0.0000187		<0.000019		<0.0000188	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1336-36-3	PCB,Total	т	ug/L	8082	<0.0972		<0.0991		<0.0989		<0.102	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0972		<0.0991		<0.0989		<0.102	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0972		<0.0991		<0.0989		<0.102	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0972		<0.0991		<0.0989		<0.102	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0972		<0.0991		<0.0989		<0.102	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0972		<0.0991		<0.0989		<0.102	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0972		<0.0991		<0.0989		<0.102	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0972		<0.0991		<0.0989		<0.102	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0972		<0.0991		<0.0989		<0.102	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.47	*	3.13	*	7.13	*	-0.244	*
12587-47-2	Gross Beta	Т	pCi/L	9310	41.8	*	40.6	*	15.2	*	35.6	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.332	*	0.937	*	0.6	*	0.446	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.314	*	3.66	*	0.6	*	5.09	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	59.8	*	39.2	*	1.98	*	55.9	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.38	*	0.122	*	0.983	*	0.491	*
10028-17-8	Tritium	Т	pCi/L	906.0	13.8	*	19.3	*	-43.5	*	-8.74	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	12.6	BJ	30.6	В	22.9	В	16.2	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	1.28	J	1.19	J	2.3		1.24	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0111		0.0063	J	0.00588	J	0.0084	J
		Н										
		\mathbb{H}										
		H										<u> </u>

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-09	990	8004-09	985	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	:.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)						10/13/2021	07:58	10/13/2021	08:42	NA	
Duplicate ("Y'	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)						MW374U	G1-22	MW375U0	G1-22	NA	
Laboratory Sam	mple ID Number (if applicable)				55883600)3	558836	005	5588360	007	NA	
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e Or	ganics Anal	ysis	10/20/202	:1	10/20/2	10/20/2021		021	NA	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNK				UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.699	*	0.823	*	<0.2	*		*
16887-00-6	Chloride(s)	т	mg/L	9056	35.2	J	46.8	J	3.21	J		*
16984-48-8	16984-48-8 Fluoride T mg,				0.184	J	0.244	J	0.294	J		*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.86	J	<10		0.929	J		*
14808-79-8	Sulfate	т	mg/L	9056	155		12.7		23.2			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.95		29.95		29.95			*
S0145	Specific Conductance	т	μ MH 0/cm	Field	560		241		630			*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-4792	2	8004-0990)	8004-0985		8004-0988	\$		
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-1	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.18		338.26		335.5			*
N238	Dissolved Oxygen	Т	mg/L	Field	2		0.44		1.8			*
s0266	Total Dissolved Solids	т	mg/L	160.1	491	*	370	*	167	*		*
s0296	рН	т	Units	Field	5.77		6.44		6.19			*
NS215	Eh	т	mV	Field	372		202		327			*
s0907	Temperature	т	°C	Field	16		16.28		16.28			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00324	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0318		0.169		0.18			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.96		0.0308		0.0153			*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	67.8		25		12.8			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000826	J	<0.001			*
7440-50-8	Copper	т	mg/L	6020	0.000675	J	0.000324	J	0.00044	J		*
7439-89-6	Iron	т	mg/L	6020	0.0481	J	0.725		0.0476	J		*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	26.1		6.15		5.43			*
7439-96-5	Manganese	т	mg/L	6020	0.0108		0.219		0.00239	J		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		0.000082	BJ	0.000111	BJ		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						8004-099	00	8004-098	5	8004-098	8
Facility's I							374		375		376	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020	0.000288	J*	0.000544	J*	<0.001	*		*
7440-02-0	Nickel	Т	mg/L	6020	0.000959	J	<0.002		0.000764	J		*
7440-09-7	Potassium	Т	mg/L	6020	2.92		0.564		0.272	J		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		0.00246	J		*
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5	Sodium	T	mg/L	6020	62.8		127		52.4			*
7440-25-7	Tantalum	T	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020	0.000073	J	0.000333		<0.0002			*
7440-62-2	Vanadium	Т	mg/L	6020	0.0055	BJ	0.00495	BJ	0.00502	BJ		*
7440-66-6	Zinc	T	mg/L	6020	0.00596	BJ	<0.02		<0.02			*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8	Acrolein	T	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	373		374		375		376	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	T	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	T	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	T	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	T	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00591		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-0990	0	8004-098	35	8004-09	88
Facility's Loc	cility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) CAS RN ⁴ CONSTITUENT T Unit MET						374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000189		<0.0000186		<0.0000187			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.0993		<0.0997		<0.0967			*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0993		<0.0997		<0.0967			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0993		<0.0997		<0.0967			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0993		<0.0997		<0.0967			*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0993		<0.0997		<0.0967			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0993		<0.0997		<0.0967			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	 38
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0993		<0.0997		<0.0967			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0993		<0.0997		<0.0967			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0993		<0.0997		<0.0967			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-6.66	*	-3.21	*	7.12	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	-1.1	*	0.767	*	-2.54	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.438	*	0.627	*	-0.00436	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	4.38	*	3.76	*	2.47	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	8.12	*	-2.62	*	-3.76	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.51	*	1.39	*	0.51	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	-29.1	*	39.4	*	-76.6	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	16.2	J	16.2	J	16.2	J		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5			*
S0268	Total Organic Carbon	т	mg/L	9060	1.36	J	2.78		0.644	J		*
S0586	Total Organic Halides	Т	mg/L	9020	0.00774	J	0.0191		0.00828	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

> FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-098	9	0000-00	00	0000-000	00	0000-000	00		
Facility's Loca	al Well or Spring Number (e.g., M	/W−1	l, MW-2, etc	:.)	377		E. BLAN	ΙK	F. BLAN	K	T. BLANK	(1
Sample Sequence	e #				1		1		1		1	
If sample is a B	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						Е		F		Т	
Sample Date and		NA		10/12/2021 05:15		10/12/2021	09:20	10/11/2021 (06:45			
06:50Duplicate	06:50Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sample	Facility Sample ID Number (if applicable)						RI1UG1	-22	FB1UG1-	22	TB1UG1-	22
Laboratory Sam	ple ID Number (if applicable)				NA		558733022		5587330	21	5585450	13
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis.	NA	NA		10/19/2021		10/19/2021		21
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	SIDE	SIDE		NA			NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	S0595 Nitrate & Nitrite T mg/L 9056					*		*		*		*
14808-79-8	8-79-8 Sulfate T mg/L 9056		9056		*		*		*		*	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance T µMH0/cm Fiel					*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-0989)	0000-0000)	0000-0000		0000-0000)		
Facility's Loca	al Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-	F, etc.)	377		E. BLANK		F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	Т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	Т	mg/L	6020		*	0.000563	J	<0.002			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470		*	0.000203	В	0.000082	BJ		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	0
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	. 1
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*	0.000292	J	<0.001			*
7440-02-0	Nickel	Т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7	Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	Т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	T	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.02		<0.02			*
7440-66-6	Zinc	Т	mg/L	6020		*	<0.02		<0.02			*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260		*	0.00664	В	0.00676	В	0.00183	J
107-02-8	Acrolein	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7	Xylenes	T	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-000	0	0000-00	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	377		E. BLAN	<	F. BLAN	lK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., N	1W-1	l, MW-2, et	.c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000185		<0.0000187		<0.0000185	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0963		<0.0985			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0963		<0.0985			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0963		<0.0985			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0963		<0.0985			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0963		<0.0985			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0963		<0.0985			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989	1	0000-0000		0000-000	0	0000-0000)
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	L, MW-2, et	.c.)	377		E. BLANK		F. BLANI	K	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0963		<0.0985			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0963		<0.0985			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.0963		<0.0985			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-0.588	*	2.39	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	4.33	*	-0.687	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418		*	0.176	*	0.0673	*		*
10098-97-2	Strontium-90	T	pCi/L	905.0		*	-2.22	*	-0.365	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	-2.56	*	-6.9	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	-0.121	*	-0.143	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	62.9	*	98	*		*
s0130	Chemical Oxygen Demand	T	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	T	mg/L	9012		*		*		*		*
20461-54-5	Iodide	T	mg/L	300.0		*	<0.5		<0.5			*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

Frankfort, KY 40601 (502) 564-6716

0000-0000 AKGWA NUMBER1, Facility Well/Spring Number 0000-0000 8004-4793 367 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) T. BLANK 2 T. BLANK 3 2 Sample Sequence # If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment Т Т NA 10/12/2021 09:17 Sample Date and Time (Month/Day/Year hour: minutes) 10/12/2021 05:10 10/13/2021 05:30 Duplicate ("Y" or "N")2 Υ Ν Split ("Y" or "N")3 Ν Ν Ν MW367DUG1-22 TB2UG1-22 TB3UG1-22 Facility Sample ID Number (if applicable) 558733023 558836009 558733009 Laboratory Sample ID Number (if applicable) Date of Analysis (Month/Day/Year) For Volatile Organics Analysis 10/19/2021 10/20/2021 10/19/2021 **DOWN** Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN4 CONSTITUENT т Unit METHOD DETECTED DETECTED F DETECTED DETECTE D OF VALUE L VALUE L VALUE L VALU L MEASURE OR Α OR Α OR Α OR Α POL^6 POL⁶ POL^6 POI/6 G s s s 24959-67-9 Bromide т 9056 0.112 ma/L т 7 72 16887-00-6 Chloride(s) mq/L 9056 16984-48-8 т 9056 0 142 Fluoride mg/L s0595- -Nitrate & Nitrite т mg/L 9056 <10 14808-79-8 т Sulfate 21.9 mg/L 9056 NS1894 Barometric Pressure Reading T Inches/Ha Field S0145- -Specific Conductance uMH0/cm Field

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000		0000-0000)	8004-4793		1		
Facility's Loca	al Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	367		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED F VALUE L OR A PQL ⁶ C
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*	
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*	
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*	114	В	
s0296	рН	Т	Units	Field		*		*		*	\ /
NS215	Eh	Т	mV	Field		*		*		*	\ /
s0907	Temperature	Т	°C	Field		*		*		*	\ /
7429-90-5	Aluminum	Т	mg/L	6020		*		*	<0.05		\ /
7440-36-0	Antimony	Т	mg/L	6020		*		*	<0.003		\/
7440-38-2	Arsenic	Т	mg/L	6020		*		*	0.00216	J	X
7440-39-3	Barium	т	mg/L	6020		*		*	0.131		/\
7440-41-7	Beryllium	Т	mg/L	6020		*		*	<0.0005		/ \
7440-42-8	Boron	Т	mg/L	6020		*		*	0.0187		/ \l
7440-43-9	Cadmium	Т	mg/L	6020		*		*	<0.001		/ \
7440-70-2	Calcium	т	mg/L	6020		*		*	12.2		/ /
7440-47-3	Chromium	Т	mg/L	6020		*		*	<0.01		/
7440-48-4	Cobalt	Т	mg/L	6020		*		*	0.00589		
7440-50-8	Copper	Т	mg/L	6020		*		*	0.000721	J	7
7439-89-6	Iron	Т	mg/L	6020		*		*	6.24		
7439-92-1	Lead	Т	mg/L	6020		*		*	<0.002		
7439-95-4	Magnesium	Т	mg/L	6020		*		*	7.04		/ \
7439-96-5	Manganese	Т	mg/L	6020		*		*	1.29		/ \
7439-97-6	Mercury	Т	mg/L	7470		*		*	0.000187	BJ	/

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBE	AKGWA NUMBER ¹ , Facility Well/Spring Number						0	0000-000	00	8004-479	3	\	
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	(3	367			
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
7439-98-7		Molybdenum	Т	mg/L	6020		*		*	0.000434	J		
7440-02-0		Nickel	Т	mg/L	6020		*		*	0.00266			
7440-09-7		Potassium	T	mg/L	6020		*		*	3.08			
7440-16-6		Rhodium	T	mg/L	6020		*		*	<0.005			
7782-49-2		Selenium	T	mg/L	6020		*		*	<0.005			
7440-22-4		Silver	T	mg/L	6020		*		*	<0.001		\ /	
7440-23-5		Sodium	T	mg/L	6020		*		*	15.8		\	
7440-25-7		Tantalum	T	mg/L	6020		*		*	<0.005		\/	
7440-28-0		Thallium	Т	mg/L	6020		*		*	<0.002		X	
7440-61-1		Uranium	Т	mg/L	6020		*		*	<0.0002		/\	
7440-62-2		Vanadium	Т	mg/L	6020		*		*	<0.02		/ \	
7440-66-6		Zinc	Т	mg/L	6020		*		*	0.0113	J	/ /	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			
67-64-1		Acetone	т	mg/L	8260	0.00685	В	0.00575		<0.005			
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-000	0	8004-47	93		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	367			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			Π
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		\	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		V	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		Λ	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			\
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			\setminus
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001	*		
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			\

C-42

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000		0000-000	0	8004-4793			$\overline{}$		
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	367			\neg
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L Z S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			\Box
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005			\prod
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005	*		
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<u> </u>	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		\	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000188		<0.0000191		<0.0000184		\bigcup	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<u> </u>	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001	*		
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001	*		
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.0986			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.0986			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.0986			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.0986			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.0986			
12672-29-6	PCB-1248	Т	ug/L	8082		*		*	<0.0986		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		8004-4793		\	
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		367			
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
11097-69-1	PCB-1254	т	ug/L	8082		*		*	<0.0986			
11096-82-5	PCB-1260	Т	ug/L	8082		*		*	<0.0986			\prod
11100-14-4	PCB-1268	Т	ug/L	8082		*		*	<0.0986			/
12587-46-1	Gross Alpha	T	pCi/L	9310		*		*	1.23	*		
12587-47-2	Gross Beta	т	pCi/L	9310		*		*	2.32	*	\ /	
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\	
13982-63-3	Radium-226	T	pCi/L	AN-1418		*		*	0.432	*	\	
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*	6.23	*	V	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*	-8.77	*	\land	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*	-0.617	*	/\	
10028-17-8	Tritium	Т	pCi/L	906.0		*		*	-43.4	*	/ \	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*	20.3	В	/ \	
57-12-5	Cyanide	T	mg/L	9012		*		*	<0.2			١
20461-54-5	Iodide	Т	mg/L	300.0		*		*	<0.5			1
s0268	Total Organic Carbon	Т	mg/L	9060		*		*	0.651	J		\ \ \
s0586	Total Organic Halides	T	mg/L	9020		*		*	0.00398	J		

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG1-22	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Copper	*	Duplicate analysis not within control limits.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene		See resample.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 3.11. Rad error is 3.1.
		Gross beta		TPU is 9.43. Rad error is 9.01.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.526. Rad error is 0.526.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPl 3.98. Rad error is 3.98.
		Technetium-99		TPU is 11.5. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.82 . Rad error is 0.818 .
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 151. Rad error is 150.
004-4799 MW358	MW358UG1-22	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Copper	*	Duplicate analysis not within control limits.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPI outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.14. Rad error is 2.13.
		Gross beta		TPU is 9.79. Rad error is 9.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.637. Rad error is 0.637.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.86. Rad error is 3.86.
		Technetium-99		TPU is 11.8. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.07. Rad error is 1.07.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 146. Rad error is 146.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	MW359UG1-22	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Copper	*	Duplicate analysis not within control limits.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RF outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.81. Rad error is 3.8.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 8.19. Rad error is 8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TR 0.582. Rad error is 0.581.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To 1.94. Rad error is 1.92.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 11.3. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.33. Rad error is 1.33.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 149. Rad error is 147.
004-4800 MW360	MW360UG1-22	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Copper	*	Duplicate analysis not within control limits.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RF outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.42. Rad error is 4.37.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.51. Rad error is 6.43.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.515. Rad error is 0.515.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.93. Rad error is 4.8.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. To 10.5. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1. Rad error is 0.999.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 148. Rad error is 148.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4795 MW361	MW361UG1-22	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Copper	*	Duplicate analysis not within control limits.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD Foutside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 6.53. Rad error is 6.53.
		Gross beta		TPU is 10.1. Rad error is 8.17.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.483. Rad error is 0.483.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 1.97. Rad error is 1.92.
		Technetium-99		TPU is 13.3. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 1.03. Rad error is 1.02.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 145. Rad error is 145.
004-0986 MW362	MW362UG1-22	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Copper	*	Duplicate analysis not within control limits.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD routside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 5. Rad error is 4.99.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 6.55. Rad error is 6.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.702. Rad error is 0.701.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 4.59. Rad error is 4.55.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 10.8. Rad error is 10.8.
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.826. Rad error is 0.826.	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 149. Rad error is 149.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4796 MW363	MW363UG1-22	Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 5.04. Rad error is 4.99.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. To 8.57. Rad error is 8.52.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To 0.488. Rad error is 0.488.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To 4.16. Rad error is 4.14.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.897. Rad error is 0.896.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The state of the stat
004-4797 MW364	MW364UG1-22	Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. Ti 6.67. Rad error is 6.52.
		Gross beta		TPU is 11.4. Rad error is 9.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.538. Rad error is 0.538.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.97. Rad error is 3.97.
		Technetium-99		TPU is 15.2. Rad error is 13.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.36. Rad error is 1.36.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 125. Rad error is 123.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0984 MW365	MW365UG1-22	Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.21. Rad error is 5.21.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 7.15. Rad error is 7.14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.364. Rad error is 0.364.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.2. Rad error is 3.12.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.914. Rad error is 0.914.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 110. Rad error is 110.
004-0982 MW366	MW366UG1-22	Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 5.61. Rad error is 5.53.
		Gross beta		TPU is 12.6. Rad error is 10.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.483. Rad error is 0.483.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.72. Rad error is 4.66.
		Technetium-99		TPU is 16. Rad error is 14.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.24. Rad error is 1.24.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 125. Rad error is 124.
004-4793 MW367	MW367UG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.73. Rad error is 2.73.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 6.2. Rad error is 6.17.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.725. Rad error is 0.724.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.28. Rad error is 4.24.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.89. Rad error is 0.888.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 111. Rad error is 111.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0983 MW368	MW368UG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.29. Rad error is 4.29.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.32. Rad error is 6.21.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.718. Rad error is 0.717.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.77. Rad error is 3.76.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.873. Rad error is 0.871.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 119. Rad error is 119.
3004-4820 MW369	MW369UG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.86. Rad error is 3.85.
		Gross beta		TPU is 11.2. Rad error is 8.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.466. Rad error is 0.466.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.17. Rad error is 3.17.
		Technetium-99		TPU is 15.5. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.659. Rad error is 0.658.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 114. Rad error is 114.
004-4818 MW370	MW370UG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.77. Rad error is 4.74.
		Gross beta		TPU is 12. Rad error is 9.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.28. Rad error is 1.28.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.99. Rad error is 3.95.
		Technetium-99		TPU is 14.1. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.09. Rad error is 1.09.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 113. Rad error is 113.
004-4819 MW371	MW371UG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.54. Rad error is 6.44.
		Gross beta		TPU is 7.7. Rad error is 7.28.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.592. Rad error is 0.592.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU $3.01.$ Rad error is $3.01.$
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 12.2. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.15. Rad error is 1.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 108. Rad error is 108.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4808 MW372	MW372UG1-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Molybdenum	*	Duplicate analysis not within control limits.
		Vinyl acetate	Н	Analysis performed outside holding time requirement
		Acetone	Н	Analysis performed outside holding time requirement
		Acrolein	Н	Analysis performed outside holding time requirement
		Acrylonitrile	Н	Analysis performed outside holding time requirement
		Benzene	Н	Analysis performed outside holding time requirement
		Chlorobenzene	Н	Analysis performed outside holding time requirement
		Xylenes	Н	Analysis performed outside holding time requirement
		Styrene	Н	Analysis performed outside holding time requirement
		Toluene	Н	Analysis performed outside holding time requirement
		Chlorobromomethane	Н	Analysis performed outside holding time requirement
		Bromodichloromethane	Н	Analysis performed outside holding time requirement
		Tribromomethane	Н	Analysis performed outside holding time requirement
		Methyl bromide	Н	Analysis performed outside holding time requirement
		Methyl Ethyl Ketone	Н	Analysis performed outside holding time requirement
		trans-1,4-Dichloro-2-butene	Н	Analysis performed outside holding time requirement
		Carbon disulfide	Н	Analysis performed outside holding time requirement
		Chloroethane	Н	Analysis performed outside holding time requirement
		Chloroform	Н	Analysis performed outside holding time requirement
		Methyl chloride	Н	Analysis performed outside holding time requirement
		cis-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement
		Methylene bromide	Н	Analysis performed outside holding time requirement
		1,1-Dichloroethane	Н	Analysis performed outside holding time requirement
		1,2-Dichloroethane	Н	Analysis performed outside holding time requirement
		1,1-Dichloroethylene	Н	Analysis performed outside holding time requirement
		1,2-Dibromoethane	Н	Analysis performed outside holding time requirement
		1,1,2,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement
		1,1,1-Trichloroethane	Н	Analysis performed outside holding time requirement
		1,1,2-Trichloroethane	Н	Analysis performed outside holding time requirement
		1,1,1,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement
		Vinyl chloride	Н	Analysis performed outside holding time requirement
		Tetrachloroethene	Н	Analysis performed outside holding time requirement
		Trichloroethene	Н	Analysis performed outside holding time requirement
		Ethylbenzene	Н	Analysis performed outside holding time requirement
		2-Hexanone	Н	Analysis performed outside holding time requirement
		Iodomethane	Н	Analysis performed outside holding time requirement
		Dibromochloromethane	Н	Analysis performed outside holding time requirement
		Carbon tetrachloride	Н	Analysis performed outside holding time requirement

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4808 MW372	MW372UG1-22	Dichloromethane	Н	Analysis performed outside holding time requirement
		Methyl Isobutyl Ketone	Н	Analysis performed outside holding time requirement
		1,2-Dichloropropane	Н	Analysis performed outside holding time requirement
		trans-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement
		cis-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement
		trans-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement
		Trichlorofluoromethane	Н	Analysis performed outside holding time requirement
		1,2,3-Trichloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Н	Analysis performed outside holding time requirement
		1,4-Dichlorobenzene	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 5.74. Rad error is 5.73.
		Gross beta		TPU is 12.3. Rad error is 10.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.577. Rad error is 0.577.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.9. Rad error is 4.83.
		Technetium-99		TPU is 15. Rad error is 13.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.478. Rad error is 0.471.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 111. Rad error is 111.
3004-4792 MW373	MW373UG1-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Molybdenum	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.62. Rad error is 4.62.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 5.08. Rad error is 5.08.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.6. Rad error is 0.599.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.08. Rad error is 4.03.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.912. Rad error is 0.906.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 111. Rad error is 111.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-0990 MW374	MW374UG1-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Molybdenum	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 5.12. Rad error is 5.11.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 5.21. Rad error is 5.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.621. Rad error is 0.62.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 4.3. Rad error is 4.25.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 712.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 1.09. Rad error is 1.07.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. Tal. Rad error is 116.
04-0985 MW375	MW375UG1-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Molybdenum	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7.6. Rad error is 7.5.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 5.54. Rad error is 5.54.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.386. Rad error is 0.386.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 4.18. Rad error is 4.17.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 711.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.839. Rad error is 0.833.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 101. Rad error is 101.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample wa
		Beryllium		During sampling, the well went dry; therefore, no sample wa
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample w. collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample w. collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa
		Acetone		During sampling, the well went dry; therefore, no sample wa
		Acrolein		During sampling, the well went dry; therefore, no sample wa
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa
		Toluene		During sampling, the well went dry; therefore, no sample wa
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample w collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample we collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample woollected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample w collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample w collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample w. collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample w

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	Cample 1D	1,2-Dichlorobenzene	riag	During sampling, the well went dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample wa
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample w. collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

<u>Point</u> 004-0989 MW377	Sample ID	Constituent	Flag	Description
		Molybdenum		During sampling, the well went dry; therefore, no sample wa collected.
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa
		Tantalum		During sampling, the well went dry; therefore, no sample wa
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa
		Vanadium		During sampling, the well went dry; therefore, no sample woollected.
		Zinc		During sampling, the well went dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample w collected.
		Acetone		During sampling, the well went dry; therefore, no sample w collected.
		Acrolein		During sampling, the well went dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample w collected.
		Benzene		During sampling, the well went dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample w collected.
		Xylenes		During sampling, the well went dry; therefore, no sample w collected.
		Styrene		During sampling, the well went dry; therefore, no sample w collected.
		Toluene		During sampling, the well went dry; therefore, no sample w collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample w collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample w collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample w collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample w collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample w collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

_Point	Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample we collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample we collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample we collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample woollected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
				

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG1-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.55. Rad error is 2.54.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.81. Rad error is 5.77.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.453. Rad error is 0.453.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.81. Rad error is 3.81.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.12. Rad error is 1.12.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 118. Rad error is 117.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG1-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.51. Rad error is 3.49.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.76. Rad error is 3.76.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.346. Rad error is 0.345.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.74. Rad error is 3.74.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.891. Rad error is 0.891.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 124. Rad error is 122.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	TB1UG1-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG1-22	Zinc		Analysis of constituent not required and not performed.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RF outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG1-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	TB2UG1-22	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG1-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG1-22	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
		Total Organio Hallaco		, manyone or contentacine not required and not personned

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4793 MW367	MW367DUG1-22	Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.88. Rad error is 3.88.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.86. Rad error is 5.85.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.658. Rad error is 0.658.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.71. Rad error is 4.61.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.973. Rad error is 0.973.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 108. Rad error is 108.

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

> FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-47	98	0000-0000		\setminus			7
Facility's Loc	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, etc	:.)	MW357		T. BLANK 4					
Sample Sequenc	Sample Sequence #				3		3					
If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment				NA		Т						
Sample Date and Time (Month/Day/Year hour: minutes)					12/16/2021	13:56	12/16/2021	11:15			/	
Duplicate ("Y"	or "N") ²				N		N					
Split ("Y" or	"N") ³				N		N		\			
Facility Sampl	Facility Sample ID Number (if applicable)					-22R	TB7UG1	-22				
Laboratory Sam	mple ID Number (if applicable)				5653040	01	5653040	02				
Date of Analys	sis (Month/Day/Year) For Volatile	Or	rganics Anal	ysis	12/20/20	21	12/20/2021					
Gradient with	respect to Monitored Unit (UP, DC	, NW	, SIDE, UNKN	IOWN)	DOWN		NA	NA			X	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*	/	/		
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*	/			
16984-48-8	Fluoride	Т	mg/L	9056		*		*				
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*				
14808-79-8	Sulfate	Т	mg/L	9056		*		*				
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.03			*				
S0145	Specific Conductance	Т	μ MH 0/cm	Field	413	•		*	/			

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-4798		0000-0000		Λ			$\overline{}$
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	357		T. BLANK	4				
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR ROL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	E L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.38			*			/	
N238	Dissolved Oxygen	т	mg/L	Field	5.12			*				
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*				
S0296	рН	т	Units	Field	6.02			*				
NS215	Eh	т	mV	Field	393			*		\		
s0907	Temperature	т	°c	Field	14.67			*		\		
7429-90-5	Aluminum	т	mg/L	6020		*		*		$\overline{}$		
7440-36-0	Antimony	Т	mg/L	6020		*		*			/	
7440-38-2	Arsenic	Т	mg/L	6020		*		*			<u> </u>	
7440-39-3	Barium	т	mg/L	6020		*		*				
7440-41-7	Beryllium	Т	mg/L	6020		*		*				
7440-42-8	Boron	т	mg/L	6020		*		*				
7440-43-9	Cadmium	т	mg/L	6020		*		*	/	<u> </u>		
7440-70-2	Calcium	т	mg/L	6020		*		*				
7440-47-3	Chromium	Т	mg/L	6020		*		*				
7440-48-4	Cobalt	Т	mg/L	6020		*		*				
7440-50-8	Copper	T	mg/L	6020		*		*			\	
7439-89-6	Iron	T	mg/L	6020		*		*				
7439-92-1	Lead	Т	mg/L	6020		*		*				
7439-95-4	Magnesium	T	mg/L	6020		*		*				
7439-96-5	Manganese	T	mg/L	6020		*		*				
7439-97-6	Mercury	т	mg/L	7470		*		*	/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	0000-000	0	\setminus			/
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)			357		T. BLANK	4						
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR ROL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260		*		*				
591-78-6	2-Hexanone	Т	mg/L	8260		*		*				
74-88-4	Iodomethane	Т	mg/L	8260		*		*				
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*		*				
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*		*				
75-09-2	Dichloromethane	т	mg/L	8260		*		*				
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*		*				
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*		*		\		
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*		*			X	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*		*				
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*		*				
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*		*		/		
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*		*				
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*		*				
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*		*				
1336-36-3	PCB,Total	т	ug/L	8082		*		*			\	
12674-11-2	PCB-1016	т	ug/L	8082		*		*				\
11104-28-2	PCB-1221	т	ug/L	8082		*		*				
11141-16-5	PCB-1232	т	ug/L	8082		*		*				
53469-21-9	PCB-1242	т	ug/L	8082		*		*				\prod
12672-29-6	PCB-1248	т	ug/L	8082		*		*				

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4798 MW357 MW357UG1-22R		Bromide	riag	Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring	Facility	Constituent	Floor	Description
<u>Point</u> 004-4798 MW357	Sample ID MW357UG1-22R	Constituent Ethylbenzene	Flag	Description Analysis of constituent not required and not performed.
304-4790 WWV337	WW 337 00 1-221	2-Hexanone		Analysis of constituent not required and not performed.
		Iodomethane		Analysis of constituent not required and not performed.
		Dibromochloromethane		Analysis of constituent not required and not performed.
		Carbon tetrachloride		Analysis of constituent not required and not performed.
		Dichloromethane		Analysis of constituent not required and not performed.
		Methyl Isobutyl Ketone		Analysis of constituent not required and not performed
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performed
		1,2-Dichloropropane		Analysis of constituent not required and not performed
		trans-1,3-Dichloropropene		Analysis of constituent not required and not performed
		trans-1,2-Dichloroethene		Analysis of constituent not required and not performed. Analysis of constituent not required and not performed.
		•		,
		Trichlorofluoromethane 1,2,3-		Analysis of constituent not required and not performed
		Trichloropropane		Analysis of constituent not required and not performed
		1,2-Dichlorobenzene		Analysis of constituent not required and not performed.
		1,4-Dichlorobenzene		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB7UG1-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB7UG1-22	Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate		Analysis of constituent not required and not performed.
		Acetone		Analysis of constituent not required and not performed.
		Acrolein		Analysis of constituent not required and not performed.
		Acrylonitrile		Analysis of constituent not required and not performed.
		Benzene		Analysis of constituent not required and not performed.
		Chlorobenzene		Analysis of constituent not required and not performed.
		Xylenes		Analysis of constituent not required and not performed.
		Styrene		Analysis of constituent not required and not performed.
		Toluene		Analysis of constituent not required and not performed.
		Chlorobromomethane		Analysis of constituent not required and not performed.
		Bromodichloromethane		Analysis of constituent not required and not performed.
		Tribromomethane		Analysis of constituent not required and not performed.
		Methyl bromide		Analysis of constituent not required and not performed.
		Methyl Ethyl Ketone		Analysis of constituent not required and not performed.
		trans-1,4-Dichloro-2-butene		Analysis of constituent not required and not performed.
		Carbon disulfide		Analysis of constituent not required and not performed.
		Chloroethane		Analysis of constituent not required and not performed.
		Chloroform		Analysis of constituent not required and not performed.
		Methyl chloride		Analysis of constituent not required and not performed.
		cis-1,2-Dichloroethene		Analysis of constituent not required and not performed.
		Methylene bromide		Analysis of constituent not required and not performed.
		1,1-Dichloroethane		Analysis of constituent not required and not performed.
		1,2-Dichloroethane		Analysis of constituent not required and not performed.
		1,1-Dichloroethylene		Analysis of constituent not required and not performed.
		1,2-Dibromoethane		Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane		Analysis of constituent not required and not performed.
		1,1,1-Trichloroethane		Analysis of constituent not required and not performed.
		1,1,2-Trichloroethane		Analysis of constituent not required and not performed.
		1,1,1,2-Tetrachloroethane		Analysis of constituent not required and not performed.
		Vinyl chloride		Analysis of constituent not required and not performed.
		Tetrachloroethene		Analysis of constituent not required and not performed.
		Trichloroethene		Analysis of constituent not required and not performed.
		Ethylbenzene		Analysis of constituent not required and not performed.
		2-Hexanone		Analysis of constituent not required and not performed.
		Iodomethane		Analysis of constituent not required and not performed.
		Dibromochloromethane		Analysis of constituent not required and not performed.
		Carbon tetrachloride		Analysis of constituent not required and not performed.
		Dichloromethane		Analysis of constituent not required and not performed.
		Methyl Isobutyl Ketone		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB7UG1-22	1,2-Dibromo-3-chloropropane	_	Analysis of constituent not required and not performed.
		1,2-Dichloropropane		Analysis of constituent not required and not performed.
		trans-1,3-Dichloropropene		Analysis of constituent not required and not performed.
		trans-1,2-Dichloroethene		Analysis of constituent not required and not performed.
		Trichlorofluoromethane		Analysis of constituent not required and not performed.
		1,2,3-Trichloropropane		Analysis of constituent not required and not performed.
		1,2-Dichlorobenzene		Analysis of constituent not required and not performed.
		1,4-Dichlorobenzene		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/CONTAINED—QUARTERLY, 4th CY 2021

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-980-008-982/1

LAB ID: None For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2021 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). A statistician qualification statement has been provided for this analysis.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2021 data used to conduct the statistical analyses were collected in October and December 2021. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current guarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376a,b	SG	UCRS
MW377 ^{a,b}	SG	UCRS

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells TW: downgradient or test wells SG: sidegradient wells

downgradient data).

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

^b Well was dry this quarter, and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2021. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data.

lower $TL = X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Aluminum Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Nickel Nitrate as Nitrogen Oxidation-Reduction Potential рН* Potassium Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Trichloroethene Vanadium

Zinc

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
·	7			
Aluminum Antimony	7	3 7	0	Yes No
Beryllium	7	7	0	No
Boron	7	2	5	Yes
Bromide	7	4	3	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	5	2	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	3	4	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	0	7	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	7	0	No

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Nickel	7	1	6	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	2	5	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform			0	No
	6	6		
Bromomethane	6	6	0	No
Carbon disulfide	6	0	6	Yes
	6	6	0	No
Chemical Oxygen Demand (COD) Chloride	6	5	1	Yes
	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	1	5	Yes
Methylene chloride	6	6	0	No
Molybdenum	6	6	0	No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
77. 7		Observation	Observation	Analysis?
Nickel	6	1	5	Yes
Nitrate as Nitrogen	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	()	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6		0	No
*	6	6	0	No
1,2-Dichloropropane			0	
2-Butanone	6	6	0	No
2-Hexanone	6	6		No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	5	1	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	4	2	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	5	1	Yes
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	4	2	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No
	ı U	ı U	· • •	110

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	6	1	5	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	2	4	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 24, 25, and 26 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

This quarter's results identified historical background exceedances for calcium, dissolved solids, magnesium, nitrate as nitrogen, oxidation-reduction potential, and sulfate.

LRGA

This quarter's results identified historical background exceedances for dissolved oxygen, pH, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential
MW362: Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential, Technetium-99
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Nitrate as Nitrogen, Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW368: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW367: pH, Oxidation-Reduction Potential
MW371: Dissolved Oxygen, Oxidation-Reduction Potential	MW369: Oxidation-Reduction Potential	MW370: Dissolved Oxygen, Oxidation-Reduction Potential
MW374: Oxidation-Reduction Potential	MW372: Calcium, Dissolved Solids, Magnesium, Oxidation-Reduction Potential, Sulfate	MW373: pH, Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate		

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW365, and MW371.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

^{*}If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nitrate as Nitrogen	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentration in MW363.
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	Current results exceed statistically derived historical background concentration in MW372.
Technetium-99	Tolerance Interval	0.87	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.80	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	Current results exceed statistically derived historical background concentration in MW370.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.
рН	Tolerance Interval	0.03	Current results exceed statistically derived historical background concentration in MW367 and MW373.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration MW361 and MW364.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 6, and 4 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the sulfate concentration in MW368 exceeded its respective current TL this quarter.

URGA

This quarter's results showed a statistically significant exceedance of current background TL for nitrate as nitrogen in downgradient URGA well MW363.

LRGA

This quarter's results showed no statistically significant exceedances in LRGA wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.10, Exhibit D.11, and Exhibit D.12, respectively.

Exhibit D.10. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.76	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.23	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.90	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—URGA

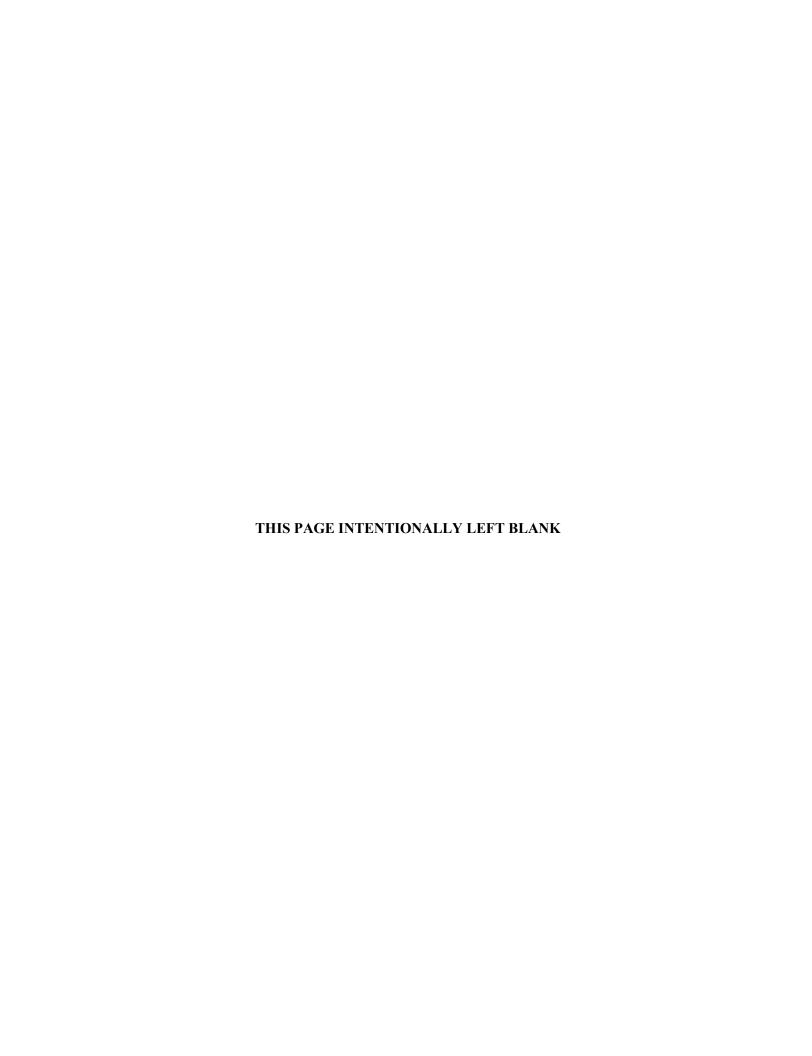

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.60	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.39	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.54	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Nitrate as Nitrogen	Tolerance Interval	0.26	MW363 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.09	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.97	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.41	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.08	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
рН	Tolerance Interval	0.02	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.75	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison UCRS** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S = 6.859

CV(1)=2.078

K factor=** 2.523

TL(1) = 20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678

CV(2) = -4.521

K factor=** 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

MW374 Upgradient

MW375 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-2.996

-2.996

N/A

N/A

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	t Yes	0.101	N/A	-2.293	NO	
MW362	Downgradient	t Yes	0.0293	N/A	-3.530	NO	
MW365	Downgradient	t No	0.05	N/A	-2.996	N/A	
MW368	Downgradient	t Yes	0.0613	N/A	-2.792	NO	
MW371	Upgradient	Yes	0.399	N/A	-0.919	NO	

N/A

N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.05

0.05

No

No

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-3

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison UCRS Boron** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor**= 2.523

TL(1)=2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2)=1.564

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
10,0,2002	o. <u>_</u>	
Well Number:	MW374	
	v. _	LN(Result)
Well Number:	MW374	LN(Result) 0.693
Well Number: Date Collected	MW374 Result	
Well Number: Date Collected 10/8/2002	MW374 Result	0.693
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 2 0.2	0.693 -1.609
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 2 0.2 0.2	0.693 -1.609 -1.609
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00956	N/A	-4.650	NO
MW362	Downgradient	Yes	0.018	N/A	-4.017	NO
MW365	Downgradient	Yes	0.00699	N/A	-4.963	NO
MW368	Downgradient	Yes	0.00653	N/A	-5.031	NO
MW371	Upgradient	Yes	0.00734	N/A	-4.914	NO
MW374	Upgradient	No	0.0308	N/A	-3.480	N/A
MW375	Sidegradient	No	0.0153	N/A	-4.180	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-4

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

S = 0.474 CV(1) = 0.340

K factor**= 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279

S = 0.332

CV(2)=1.190

K factor=** 2.523

TL(2)=1.118

LL(2)=N/A

(2)

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	1	0.000	
4/22/2002	1	0.000	
7/15/2002	1	0.000	
10/8/2002	1	0.000	
1/8/2003	1	0.000	
4/3/2003	1	0.000	
7/9/2003	1	0.000	
10/6/2003	1	0.000	
Well Number:	MW374		
Date Collected	Result	LN(Result)	
10/8/2002	2.1	0.742	
1/7/2003	2.1	0.742	
4/2/2003	1.9	0.642	
7/9/2003	1 0.000		

1.9

1.9

1.8

1.6

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
-		

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	Yes	0.112	NO	-2.189	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	Yes	0.0705	NO	-2.652	N/A
MW374	Upgradient	Yes	0.823	NO	-0.195	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.642

0.642

0.588

0.470

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-5

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 34.100 **S**= 13.637 **CV(1)**= 0.400

K factor**= 2.523 T

TL(1) = 68.505 LL(1) = N/A

Statistics-Transformed Background Data

X = 3.466 S = 0.356

CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.209
Date Collected	Result	
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	5.82	NO	1.761	N/A	
MW362	Downgradient	Yes	20.5	NO	3.020	N/A	
MW365	Downgradient	Yes	16	NO	2.773	N/A	
MW368	Downgradient	Yes	58.4	NO	4.067	N/A	
MW371	Upgradient	Yes	54	NO	3.989	N/A	
MW374	Upgradient	Yes	25	NO	3.219	N/A	
MW375	Sidegradient	Yes	12.8	NO	2.549	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-6

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

K factor**= 2.523

TL(1)= 251.437 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.000 S = 0.702

CV(2) = 0.175

K factor=** 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	20	N/A	2.996	N/A
MW362	Downgradient	No	20	N/A	2.996	N/A
MW365	Downgradient	No	22.9	N/A	3.131	N/A
MW368	Downgradient	No	25.5	N/A	3.239	N/A
MW371	Upgradient	No	22.9	N/A	3.131	N/A
MW374	Upgradient	Yes	16.2	NO	2.785	N/A
MW375	Sidegradient	Yes	16.2	NO	2.785	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-7

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison UCRS** Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor=** 2.523

TL(1)=310.697 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.620

S= 1.590

CV(2) = 0.439

K factor=** 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.294
Date Collected	Result	
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1.166

N/A

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	1.1	NO	0.095	N/A	
MW362	Downgradient	Yes	3.02	NO	1.105	N/A	
MW365	Downgradient	Yes	2.23	NO	0.802	N/A	
MW368	Downgradient	Yes	2.82	NO	1.037	N/A	
MW371	Upgradient	Yes	5.3	NO	1.668	N/A	
MW374	Upgradient	Yes	46.8	NO	3.846	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

3.21

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1)=1.314

K factor**= 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor=** 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
	MW374	LN(Result) -4.605
Date Collected	MW374 Result	
Date Collected 10/8/2002	MW374 Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	MW374 Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 0.01 0.01 0.01 0.011	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 0.01 0.01 0.01 0.001 0.00161 0.0001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data
-		

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.000407	7 N/A	-7.807	NO
MW362	Downgradient	Yes	0.000868	8 N/A	-7.049	NO
MW365	Downgradient	Yes	0.00111	N/A	-6.803	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	Yes	0.000826	6 N/A	-7.099	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Conductivity UCRS** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor**= 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 6.915
Date Collected	Result	
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW359	Downgradient	Yes	180	NO	5.193	N/A
	MW362	Downgradient	Yes	468	NO	6.148	N/A
	MW365	Downgradient	Yes	300	NO	5.704	N/A
	MW368	Downgradient	Yes	501	NO	6.217	N/A
	MW371	Upgradient	Yes	628	NO	6.443	N/A
	MW374	Upgradient	Yes	241	NO	5.485	N/A
	MW375	Sideoradient	Yes	630	NO	6 446	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **UCRS** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

CV(1)=1.275S = 0.072

K factor**= 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

CV(2) = -0.270

K factor=** 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00199	N/A	-6.220	NO
MW362	Downgradient	Yes	0.00139	N/A	-6.578	NO
MW365	Downgradient	Yes	0.00187	N/A	-6.282	NO
MW368	Downgradient	Yes	0.00096	7 N/A	-6.941	NO
MW371	Upgradient	Yes	0.00139	N/A	-6.578	NO
MW374	Upgradient	Yes	0.000324	4 N/A	-8.035	NO
MW375	Sidegradient	Yes	0.00044	N/A	-7.729	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.138S = 0.621 CV(1)=0.546

K factor=** 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor=** 2.523

TL(2)=1.441

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	C	ur	re	ent	Q	ua	ırte	r	Dat	ta
•										

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	6.05	YES	1.800	N/A
MW362	Downgradient	Yes	2.59	NO	0.952	N/A
MW365	Downgradient	Yes	3.66	YES	1.297	N/A
MW368	Downgradient	Yes	2.4	NO	0.875	N/A
MW371	Upgradient	Yes	3.36	YES	1.212	N/A
MW374	Upgradient	Yes	0.44	NO	-0.821	N/A
MW375	Sidegradient	Yes	1.8	NO	0.588	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW365 MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor**= 2.523

TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.308 S=

S = 0.383 CV(2) = 0.061

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 7.035
Date Collected	Result	` /
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.118

N/A

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	149	NO	5.004	N/A	
MW362	Downgradient	Yes	406	NO	6.006	N/A	
MW365	Downgradient	Yes	206	NO	5.328	N/A	
MW368	Downgradient	Yes	334	NO	5.811	N/A	
MW371	Upgradient	Yes	417	NO	6.033	N/A	
MW374	Upgradient	Yes	370	NO	5.914	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

167

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-13

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

CV(1) = 0.981

K factor**= 2.523

TL(1) = 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.363 S = 1.147

S = 6.487

CV(2) = 0.841

K factor**= 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
Date Collected	Result	LN(Result)
Date Collected 10/8/2002	Result 23	LN(Result) 3.135
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	LN(Result) 3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	LN(Result) 3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	LN(Result) 3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	LN(Result) 3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.206	NO	-1.580	N/A	
MW362	Downgradient	Yes	0.206	NO	-1.580	N/A	
MW365	Downgradient	No	0.1	N/A	-2.303	N/A	
MW368	Downgradient	Yes	0.0609	NO	-2.799	N/A	
MW371	Upgradient	Yes	0.255	NO	-1.366	N/A	
MW374	Upgradient	Yes	0.725	NO	-0.322	N/A	
MW375	Sidegradient	Yes	0.0476	NO	-3.045	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-14

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.347 **S**= 3.019

CV(1) = 0.266

K factor**= 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

K factor=** 2.523

TL(2) = 2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1.692

N/A

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	Yes	3.34	NO	1.206	N/A		
MW362	Downgradient	Yes	9.29	NO	2.229	N/A		
MW365	Downgradient	Yes	8.17	NO	2.100	N/A		
MW368	Downgradient	Yes	12.9	NO	2.557	N/A		
MW371	Upgradient	Yes	15.8	NO	2.760	N/A		
MW374	Upgradient	Yes	6.15	NO	1.816	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

5.43

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-15

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248

S = 0.222

CV(1)=0.894

K factor**= 2.523

TL(1) = 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.873 S = 1.068

CV(2) = -0.570

K factor=** 2.523

TL(2) = 0.821

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 10/8/2002	Result 0.596	LN(Result) -0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	LN(Result) -0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	LN(Result) -0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	LN(Result) -0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	LN(Result) -0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00494	NO	-5.310	N/A
MW362	Downgradient	Yes	0.0406	NO	-3.204	N/A
MW365	Downgradient	Yes	0.00371	NO	-5.597	N/A
MW368	Downgradient	Yes	0.00877	NO	-4.736	N/A
MW371	Upgradient	Yes	0.00966	NO	-4.640	N/A
MW374	Upgradient	Yes	0.219	NO	-1.519	N/A
MW375	Sidegradient	Yes	0.00239	NO	-6.036	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-16

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S = 0.022

CV(1)=0.980

K factor**= 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

CV(2) = -0.255

K factor=** 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	0.05	-2.996	
4/22/2002	0.05	-2.996	
7/15/2002	0.05	-2.996	
10/8/2002	0.0124	-4.390	
1/8/2003	0.005	-5.298	
4/3/2003	0.005	-5.298	
7/9/2003	0.005	-5.298	
10/6/2003	0.005	-5.298	
Well Number:	MW374		
Well Number: Date Collected	MW374 Result	LN(Result)	
		LN(Result) -2.996	
Date Collected	Result		
Date Collected 10/8/2002	Result 0.05	-2.996	
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996	
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.05 0.00794	-2.996 -2.996 -2.996 -4.836	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298	

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data					
Well No.	Gradient	De			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00193	NO	-6.250	N/A
MW362	Downgradient	Yes	0.00127	NO	-6.669	N/A
MW365	Downgradient	Yes	0.00458	NO	-5.386	N/A
MW368	Downgradient	Yes	0.00128	NO	-6.661	N/A
MW371	Upgradient	Yes	0.0021	NO	-6.166	N/A
MW374	Upgradient	No	0.002	N/A	-6.215	N/A
MW375	Sidegradient	Yes	0.00076	4 NO	-7.177	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.281 S = 78.889 CV(1) = 3.541

K factor**= 2.523

TL(1)= 221.319 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.642

S = 1.729

CV(2) = 0.475

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	264.2	N/A	5.577	YES
MW362	Downgradient	Yes	220.4	N/A	5.395	YES
MW365	Downgradient	Yes	336	N/A	5.817	YES
MW368	Downgradient	Yes	242	N/A	5.489	YES
MW371	Upgradient	Yes	344	N/A	5.841	YES
MW374	Upgradient	Yes	202	N/A	5.308	YES
MW375	Sidegradient	Yes	327	N/A	5.790	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with	Exceedances
MW359	

MW362 MW365 MW368

MW371

MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-18

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295 C

CV(1) = 0.045

K factor=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X = 1.889

S = 0.046

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarte

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW359	Downgradient	Yes	6.2	NO	1.825	N/A
MW362	Downgradient	Yes	6.69	NO	1.901	N/A
MW365	Downgradient	Yes	6.03	NO	1.797	N/A
MW368	Downgradient	Yes	6.21	NO	1.826	N/A
MW371	Upgradient	Yes	6.32	NO	1.844	N/A
MW374	Upgradient	Yes	6.44	NO	1.863	N/A
MW375	Sidegradient	Yes	6.19	NO	1.823	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-19

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

CV(1)=0.718S = 0.907

K factor=** 2.523

TL(1) = 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

CV(2) = -32.218

K factor=** 2.523

TL(2)=1.874

LL(2)=N/A

(2)

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

ı	Current	Quarter	Data
_			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	t Yes	0.144	NO	-1.938	N/A
MW362	Downgradient	Yes	0.375	NO	-0.981	N/A
MW365	Downgradient	Yes	0.255	NO	-1.366	N/A
MW368	Downgradient	Yes	0.52	NO	-0.654	N/A
MW371	Upgradient	Yes	0.501	NO	-0.691	N/A
MW374	Upgradient	Yes	0.564	NO	-0.573	N/A
MW375	Sidegradient	Yes	0.272	NO	-1.302	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor**= 2.523

TL(1)= 367.800 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356 CV(2) = 0.069

K factor=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	32.8	NO	3.490	N/A
MW362	Downgradient	Yes	134	NO	4.898	N/A
MW365	Downgradient	Yes	42.7	NO	3.754	N/A
MW368	Downgradient	Yes	46.7	NO	3.844	N/A
MW371	Upgradient	Yes	97.2	NO	4.577	N/A
MW374	Upgradient	Yes	127	NO	4.844	N/A
MW375	Sidegradient	Yes	52.4	NO	3.959	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-21

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

 $S= 3.153 \quad CV(1)=0.487$

S = 0.357

K factor**= 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794

CV(2)=0.199

K factor=** 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5 5.6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Yes

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW359	Downgradient	Yes	38.5	YES	3.651	N/A
	MW362	Downgradient	Yes	28.4	YES	3.346	N/A
	MW365	Downgradient	Yes	59.3	YES	4.083	N/A
	MW368	Downgradient	Yes	101	YES	4.615	N/A
	MW371	Upgradient	Yes	11.9	NO	2.477	N/A
	MW374	Upgradient	Yes	12.7	NO	2.542	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

YES

23.2

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

MW359 MW362

3.144

MW365

MW368

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-22

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.631 **S**= 24.314 **CV(1)**=1.379

K factor**= 2.523

TL(1)= 78.977 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979

CV(2) = 0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
10,0,2002	5.2	
Well Number:	MW374	
		LN(Result)
Well Number:	MW374	LN(Result) 4.500
Well Number: Date Collected	MW374 Result	` ′
Well Number: Date Collected 10/8/2002	MW374 Result	4.500
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 90 64	4.500 4.159
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 90 64 25	4.500 4.159 3.219
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 90 64 25 16	4.500 4.159 3.219 2.773
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	1.39	N/A	0.329	NO
MW362	Downgradient	Yes	2.36	N/A	0.859	NO
MW365	Downgradient	Yes	1.48	N/A	0.392	NO
MW368	Downgradient	Yes	1.78	N/A	0.577	NO
MW371	Upgradient	Yes	2.3	N/A	0.833	NO
MW374	Upgradient	Yes	2.78	N/A	1.022	NO
MW375	Sideoradient	Yes	0.644	N/A	-0.440	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-23

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison UCRS Total Organic Halides (TOX)** UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor**= 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.867 S = 1.065 CV(2) = 0.219

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	4.12	N/A	1.416	NO
MW362	Downgradient	Yes	16.8	N/A	2.821	NO
MW365	Downgradient	Yes	10.2	N/A	2.322	NO
MW368	Downgradient	No	10	N/A	2.303	N/A
MW371	Upgradient	Yes	5.88	N/A	1.772	NO
MW374	Upgradient	Yes	19.1	N/A	2.950	NO
MW375	Sidegradient	Yes	8.28	N/A	2.114	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-24

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072 CV(1) = 1.319

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

CV(2) = -0.265

K factor**= 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
	MW374 Result	LN(Result)
Well Number:		LN(Result) -1.609
Well Number: Date Collected	Result	
Well Number: Date Collected 10/8/2002	Result 0.2	-1.609
Well Number: Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Da	ıta
Well No.	Gradient	Detect

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.00632	N/A	-5.064	N/A
MW362	Downgradient	No	0.00558	N/A	-5.189	N/A
MW365	Downgradient	No	0.02	N/A	-3.912	N/A
MW368	Downgradient	Yes	0.00441	N/A	-5.424	NO
MW371	Upgradient	Yes	0.00558	N/A	-5.189	NO
MW374	Upgradient	No	0.00495	N/A	-5.308	N/A
MW375	Sidegradient	No	0.00502	N/A	-5.294	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-25

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083

CV(1)=1.380

K factor**= 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259 S = 0.840

CV(2) = -0.258

K factor=** 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 0.025	-3.689
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00615	N/A	-5.091	NO
MW362	Downgradient	Yes	0.00687	N/A	-4.981	NO
MW365	Downgradient	Yes	0.0038	N/A	-5.573	NO
MW368	Downgradient	Yes	0.00413	N/A	-5.489	NO
MW371	Upgradient	Yes	0.0057	N/A	-5.167	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-26

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.625S = 0.774 CV(1)=1.239

K factor**= 2.523

TL(1)=2.578

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.973 S = 0.935 CV(2) = -0.961

K factor=** 2.523

TL(2) = 1.386

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
		LN(Result)
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
Well Number: Date Collected 3/19/2002	MW372 Result 2.61	LN(Result) 0.959
Well Number: Date Collected 3/19/2002 4/23/2002	MW372 Result 2.61 0.2	LN(Result) 0.959 -1.609
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002	MW372 Result 2.61 0.2 1.14	LN(Result) 0.959 -1.609 0.131
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	MW372 Result 2.61 0.2 1.14 0.862	LN(Result) 0.959 -1.609 0.131 -0.149
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW372 Result 2.61 0.2 1.14 0.862 2.32	LN(Result) 0.959 -1.609 0.131 -0.149 0.842

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.05	N/A	-2.996	N/A
MW360	Downgradient	Yes	0.023	N/A	-3.772	NO
MW363	Downgradient	No	0.05	N/A	-2.996	N/A
MW366	Downgradient	No	0.05	N/A	-2.996	N/A
MW369	Upgradient	Yes	0.022	N/A	-3.817	NO
MW372	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-27

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Boron URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.838**K** factor**= 2.523 Statistics-Background Data X = 0.985S = 0.825TL(1) = 3.067LL(1)=N/A **Statistics-Transformed Background** X = -0.430 S = 0.990**K factor**=** 2.523

Data

CV(2) = -2.302

TL(2) = 2.068

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2 0.693 2 0.693 7/15/2002 10/8/2002 0.2 -1.6090.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.492 -0.7091/7/2003 0.492 -0.7094/2/2003 0.6 -0.511 7/9/2003 0.57 -0.562-0.504 10/7/2003 0.604

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.392	NO	-0.936	N/A
MW360	Downgradient	Yes	0.0416	NO	-3.180	N/A
MW363	Downgradient	Yes	0.0205	NO	-3.887	N/A
MW366	Downgradient	Yes	0.057	NO	-2.865	N/A
MW369	Upgradient	Yes	0.0171	NO	-4.069	N/A
MW372	Upgradient	Yes	1.23	NO	0.207	N/A
3.7/4 D	1, 11, 10, 1, 3	T D	1 . 11		10.0	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Bromide URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000**K factor**=** 2.523 TL(1)=1.000Statistics-Background Data X = 1.000S = 0.000LL(1)=N/A **Statistics-Transformed Background** X = 0.000**CV(2)=**#Num! TL(2) = 0.000

Data

S = 0.000

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.0004/22/2002 1 0.000 7/15/2002 0.0001 10/8/2002 1 0.0001 0.000 1/8/2003 4/3/2003 1 0.000 7/8/2003 1 0.000 10/6/2003 1 0.000 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.0004/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.0001/7/2003 1 0.0004/2/2003 1 0.000 7/9/2003 1 0.000 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.363	NO	-1.013	N/A
MW360	Downgradient	Yes	0.192	NO	-1.650	N/A
MW363	Downgradient	Yes	0.17	NO	-1.772	N/A
MW366	Downgradient	Yes	0.428	NO	-0.849	N/A
MW369	Upgradient	Yes	0.327	NO	-1.118	N/A
MW372	Upgradient	Yes	0.678	NO	-0.389	N/A
3.7/4 B	1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-29

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 32.763 S = 9.391

CV(1) = 0.287

K factor**= 2.523

TL(1) = 56.456

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.449 S = 0.299

CV(2) = 0.087

K factor**= 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	29.5	3.384
4/22/2002	29.8	3.395
7/15/2002	25.3	3.231
10/8/2002	21.9	3.086
1/8/2003	20.9	3.040
4/3/2003	22.2	3.100
7/8/2003	22.9	3.131
10/6/2003	21.7	3.077
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.726
Date Collected	Result	
Date Collected 3/19/2002	Result 41.5	3.726
Date Collected 3/19/2002 4/23/2002	Result 41.5 43.6	3.726 3.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 41.5 43.6 40.4	3.726 3.775 3.699
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 41.5 43.6 40.4 38.8	3.726 3.775 3.699 3.658
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 41.5 43.6 40.4 38.8 41.1	3.726 3.775 3.699 3.658 3.716

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	25.4	NO	3.235	N/A
MW360	Downgradient	Yes	18.5	NO	2.918	N/A
MW363	Downgradient	Yes	30.1	NO	3.405	N/A
MW366	Downgradient	Yes	26.5	NO	3.277	N/A
MW369	Upgradient	Yes	15.1	NO	2.715	N/A
MW372	Upgradient	Yes	64.8	YES	4.171	N/A
NI/A D	1, 11, 20, 1, 3	T D ()	1 . 11		1.7 11.1.7	1 ,

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-30

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.938 S = 3.750

CV(1)=0.104

K factor**= 2.523

TL(1)= 45.399

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.578 S = 0.089

9 **CV(2)=**0.025

K factor=** 2.523

TL(2) = 3.803

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35 3.555 4/22/2002 35 3.555 7/15/2002 35 3.555 10/8/2002 50 3.912 1/8/2003 35 3.555 4/3/2003 35 3.555 7/8/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 35 3.555 4/23/2002 35 3.555 7/16/2002 35 3.555 10/8/2002 35 3.555 1/7/2003 35 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	20	N/A	2.996	N/A
MW360	Downgradient	No	20	N/A	2.996	N/A
MW363	Downgradient	No	20.3	N/A	3.011	N/A
MW366	Downgradient	No	20.3	N/A	3.011	N/A
MW369	Upgradient	No	12.6	N/A	2.534	N/A
MW372	Upgradient	Yes	16.2	NO	2.785	N/A
NT/A D	1. 11 1	T D		1	4.7	4 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-31

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=44.119 **S**= 4.554 **CV(1)**=0.103

K factor**= 2.523

TL(1)= 55.607 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.782 S = 0.099

CV(2) = 0.026

K factor=** 2.523

TL(2) = 4.033

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.684
Date Collected	Result	, ,
Date Collected 7/16/2002	Result 39.8	3.684
Date Collected 7/16/2002 10/8/2002	Result 39.8 41	3.684 3.714
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 39.8 41 39.4	3.684 3.714 3.674
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 39.8 41 39.4 39.2	3.684 3.714 3.674 3.669
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 39.8 41 39.4 39.2 39.8	3.684 3.714 3.674 3.669 3.684

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	30	NO	3.401	N/A
MW360	Downgradient	Yes	9.12	NO	2.210	N/A
MW363	Downgradient	Yes	40.2	NO	3.694	N/A
MW366	Downgradient	Yes	37	NO	3.611	N/A
MW369	Upgradient	Yes	29.3	NO	3.378	N/A
MW372	Upgradient	Yes	39.8	NO	3.684	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-32

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025 S = 0.021

CV(1)=0.845

K factor=** 2.523

TL(1) = 0.077

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.090 S = 1.006

CV(2) = -0.246

K factor**= 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.0147	-3.689 -3.689 -3.689 -6.450 -4.220

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data										
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
•	MW357	Downgradient	No	0.001	N/A	-6.908	N/A				
	MW360	Downgradient	Yes	0.00265	NO	-5.933	N/A				
	MW363	Downgradient	Yes	0.000777	7 NO	-7.160	N/A				
	MW366	Downgradient	No	0.001	N/A	-6.908	N/A				
	MW369	Upgradient	Yes	0.00429	NO	-5.451	N/A				
	MW372	Upgradient	No	0.001	N/A	-6.908	N/A				
	3.T/4 D	1. 11 1 31	. D			1.1.1.1.1.1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-33

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 482.856 S = 57.603 CV(1) = 0.119

K factor**= 2.523

TL(1)=628.189 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor=** 2.523

TL(2)= 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	, ,
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	413	NO	6.023	N/A
MW360	Downgradient	Yes	272	NO	5.606	N/A
MW363	Downgradient	Yes	418	NO	6.035	N/A
MW366	Downgradient	Yes	390	NO	5.966	N/A
MW369	Upgradient	Yes	305	NO	5.720	N/A
MW372	Upgradient	Yes	484	NO	6.182	N/A
3.T/4 D	1, 11, 20, 1, 3	T D	1 . 11	1	10.0	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-34

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.010CV(1) = 0.400X = 0.025

K factor**= 2.523

TL(1) = 0.050LL(1)=N/A

Statistics-Transformed Background Data

X = -3.742 S = 0.307 CV(2) = -0.082

K factor=** 2.523

TL(2) = -2.967

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.05	-3.689 -3.689 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.05 0.02	-3.689 -3.689 -2.996 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.05 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result 1	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	0.00287	NO	-5.853	N/A
	MW360	Downgradient	Yes	0.00354	NO	-5.644	N/A
	MW363	Downgradient	Yes	0.000998	8 NO	-6.910	N/A
	MW366	Downgradient	Yes	0.000798	8 NO	-7.133	N/A
	MW369	Upgradient	Yes	0.00113	NO	-6.786	N/A
	MW372	Upgradient	Yes	0.000755	5 NO	-7.189	N/A
	3.1/4 D	1: 11 :10 1 3	T D			1.1.	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-35

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.781
 S= 1.351
 CV(1)=0.759
 K factor**= 2.523
 TL(1)= 5.190
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.228
 S= 1.065
 CV(2)=4.665
 K factor**= 2.523
 TL(2)= 2.915
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.688 5.41 4/22/2002 1.57 0.451 7/15/2002 -0.2230.810/8/2002 1.09 0.086 0.990 1/8/2003 2.69 4/3/2003 2.04 0.713 7/8/2003 1.19 0.174 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 1.33 0.285 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.9164/2/2003 0.91 -0.0947/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW357	Downgradient	Yes	5.12	NO	1.633	N/A				
MW360	Downgradient	Yes	2.8	NO	1.030	N/A				
MW363	Downgradient	Yes	0.86	NO	-0.151	N/A				
MW366	Downgradient	Yes	3.88	NO	1.356	N/A				
MW369	Upgradient	Yes	2.82	NO	1.037	N/A				
MW372	Upgradient	Yes	2.28	NO	0.824	N/A				
NT/A D	1, 11, 20, 1, 3	T D			10.0					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-36

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Dissolved Solids URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 285.188 S = 44.908 CV(1) = 0.157

K factor**= 2.523

TL(1)= 398.489 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor=** 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.687
Date Collected	Result	
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	217	NO	5.380	N/A			
MW360	Downgradient	Yes	221	NO	5.398	N/A			
MW363	Downgradient	Yes	274	NO	5.613	N/A			
MW366	Downgradient	Yes	223	NO	5.407	N/A			
MW369	Upgradient	Yes	179	NO	5.187	N/A			
MW372	Upgradient	Yes	461	YES	6.133	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-37

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=7.385
 S= 6.991
 CV(1)=0.947
 K factor**= 2.523
 TL(1)= 25.024
 LL(1)=N/A

 Statistics-Transformed Background Data
 X=1.358
 S= 1.323
 CV(2)=0.974
 K factor**= 2.523
 TL(2)= 4.697
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.4224/22/2002 0.695 -0.3641.960 7/15/2002 7.1 10/8/2002 21.5 3.068 2.918 1/8/2003 18.5 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 10/7/2003 0.733 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW357	Downgradient	Yes	0.039	NO	-3.244	N/A				
MW360	Downgradient	Yes	0.453	NO	-0.792	N/A				
MW363	Downgradient	Yes	0.058	NO	-2.847	N/A				
MW366	Downgradient	No	0.1	N/A	-2.303	N/A				
MW369	Upgradient	Yes	0.0624	NO	-2.774	N/A				
MW372	Upgradient	Yes	0.036	NO	-3.324	N/A				
						_				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-38

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Magnesium **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 12.864 S = 3.505

CV(1)=0.272

K factor**= 2.523

TL(1) = 21.707

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.517 S = 0.290

CV(2) = 0.115

K factor=** 2.523

TL(2) = 3.248

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 10 7/15/2002 2.303 10/8/2002 8.62 2.154 7.89 1/8/2003 2.066 4/3/2003 7.97 2.076 7/8/2003 10.3 2.332 10/6/2003 9.14 2.213 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 15.7 2.754 4/23/2002 16.6 2.809 7/16/2002 15.4 2.734 10/8/2002 2.760 15.8 1/7/2003 15.8 2.760 4/2/2003 2.797 16.4 7/9/2003 15.2 2.721 10/7/2003 17.6 2.868

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	11.4	NO	2.434	N/A
MW360	Downgradient	Yes	8.26	NO	2.111	N/A
MW363	Downgradient	Yes	11.9	NO	2.477	N/A
MW366	Downgradient	Yes	11	NO	2.398	N/A
MW369	Upgradient	Yes	6.77	NO	1.913	N/A
MW372	Upgradient	Yes	22.8	YES	3.127	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-39

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.413S = 0.274 CV(1)=0.664

K factor**= 2.523

TL(1)=1.105

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.226 S= 1.008 CV(2)=-0.822

K factor=** 2.523

TL(2) = 1.317

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.034	-3.381
4/22/2002	0.062	-2.781
7/15/2002	0.436	-0.830
10/8/2002	0.867	-0.143
1/8/2003	0.828	-0.189
4/3/2003	0.672	-0.397
7/8/2003	0.321	-1.136
10/6/2003	0.714	-0.337
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -1.585
Date Collected	Result	
Date Collected 3/19/2002	Result 0.205	-1.585
Date Collected 3/19/2002 4/23/2002	Result 0.205 0.345	-1.585 -1.064
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.205 0.345 0.21	-1.585 -1.064 -1.561
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.205 0.345 0.21 0.0539	-1.585 -1.064 -1.561 -2.921
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.205 0.345 0.21 0.0539 0.537	-1.585 -1.064 -1.561 -2.921 -0.622

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00222	NO	-6.110	N/A
MW360	Downgradient	Yes	0.0337	NO	-3.390	N/A
MW363	Downgradient	Yes	0.089	NO	-2.419	N/A
MW366	Downgradient	Yes	0.00113	NO	-6.786	N/A
MW369	Upgradient	Yes	0.00774	NO	-4.861	N/A
MW372	Upgradient	No	0.005	N/A	-5.298	N/A
37/4 B	1 1	r				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024 S = 0.021 CV(1) = 0.910

K factor=** 2.523

TL(1)= 0.078 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075

CV(2) = -0.253

K factor=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.05 -2.9964/22/2002 0.05 -2.996-2.9967/15/2002 0.05 10/8/2002 0.005 -5.298 -5.298 1/8/2003 0.005 4/3/2003 0.005 -5.2987/8/2003 0.013 -4.343 10/6/2003 0.0104 -4.566Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.05 -2.996 4/23/2002 0.05 -2.996-2.9967/16/2002 0.05 10/8/2002 0.005 -5.298 1/7/2003 0.005 -5.298-5.298 4/2/2003 0.005 7/9/2003 0.019 -3.963-5.298 10/7/2003 0.005

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	0.000928	8 NO	-6.982	N/A			
MW360	Downgradient	Yes	0.00443	NO	-5.419	N/A			
MW363	Downgradient	Yes	0.0437	NO	-3.130	N/A			
MW366	Downgradient	Yes	0.00063	1 NO	-7.368	N/A			
MW369	Upgradient	Yes	0.00279	NO	-5.882	N/A			
MW372	Upgradient	No	0.002	N/A	-6.215	N/A			
37/4 B	1 1								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-41

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Nitrate as Nitrogen UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.000CV(1)=0.000**K factor**=** 2.523 TL(1)=1.000Statistics-Background Data X = 1.000LL(1)=N/A **Statistics-Transformed Background** X = 0.000S = 0.000

Data

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 7/15/2002 0.00010/8/2002 1 0.000 0.0001/8/2003 4/3/2003 1 0.000 7/8/2003 1 0.000 10/6/2003 1 0.000 1/7/2004 1 0.000 4/7/2004 1 0.000 Well Number: MW372 Date Collected Result LN(Result) 7/16/2002 1 0.00010/8/2002 1 0.000 1/7/2003 1 0.000 4/2/2003 0.0007/9/2003 0.00010/7/2003 1 0.000 1/5/2004 1 0.000 4/5/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW357	Downgradient	Yes	1.04	N/A	0.039	N/A
	MW360	Downgradient	Yes	0.675	N/A	-0.393	N/A
	MW363	Downgradient	Yes	10.5	YES	2.351	N/A
	MW366	Downgradient	Yes	0.832	N/A	-0.184	N/A
	MW369	Upgradient	Yes	0.956	N/A	-0.045	N/A
	MW372	Upgradient	Yes	0.934	N/A	-0.068	N/A
	37/4 B	1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW363

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.563 S = 94.243 CV(1) = 1.264

K factor**= 2.523

TL(1)= 312.337 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369	
Result	LN(Result)
215	5.371
110	4.700
20	2.996
-5	#Func!
-18	#Func!
-67	#Func!
-1	#Func!
55	4.007
33	7.007
MW372	4.007
	LN(Result)
MW372	
MW372 Result	LN(Result)
MW372 Result 210	LN(Result) 5.347
MW372 Result 210 65	LN(Result) 5.347 4.174
MW372 Result 210 65 215	LN(Result) 5.347 4.174 5.371
MW372 Result 210 65 215 185	LN(Result) 5.347 4.174 5.371 5.220
MW372 Result 210 65 215 185 45	LN(Result) 5.347 4.174 5.371 5.220 3.807
	Result 215 110 20 -5 -18 -67 -1

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	393	N/A	5.974	YES
MW360	Downgradient	Yes	379.5	N/A	5.939	YES
MW363	Downgradient	Yes	272	N/A	5.606	YES
MW366	Downgradient	Yes	355	N/A	5.872	YES
MW369	Upgradient	Yes	343	N/A	5.838	YES
MW372	Upgradient	Yes	390	N/A	5.966	YES
3.7/4 D	1. 11 1	T D	1 . 11	1	4.7	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with	Exceedances
------------	-------------

MW357 MW360

MW363 MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.274 S = 0.194

CV(1) = 0.031

K factor=** 2.904

TL(1) = 6.837

LL(1)=5.7114

Statistics-Transformed Background Data

X = 1.836 S = 0.031

CV(2) = 0.017

K factor=** 2.904

TL(2)= 1.925

LL(2)=1.7467

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 1.808 7/15/2002 6.1 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Q	uarter Data
-----------	-------------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	6.02	NO	1.795	N/A
MW360	Downgradien	t Yes	6.14	NO	1.815	N/A
MW363	Downgradien	t Yes	6.36	NO	1.850	N/A
MW366	Downgradien	t Yes	5.96	NO	1.785	N/A
MW369	Upgradient	Yes	6	NO	1.792	N/A
MW372	Upgradient	Yes	5.8	NO	1.758	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-44

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.663
 S= 0.488
 CV(1)=0.293
 K factor**= 2.523
 TL(1)= 2.895
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.456
 S= 0.362
 CV(2)=0.794
 K factor**= 2.523
 TL(2)= 1.368
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2.21 0.793 2 0.693 7/15/2002 10/8/2002 0.966 -0.0351/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 7/16/2002 2 0.693 10/8/2002 1.54 0.432 1/7/2003 1.88 0.631 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577 10/7/2003 1.79 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	1.88	NO	0.631	N/A		
MW360	Downgradient	Yes	0.785	NO	-0.242	N/A		
MW363	Downgradient	Yes	2.87	NO	1.054	N/A		
MW366	Downgradient	Yes	2.14	NO	0.761	N/A		
MW369	Upgradient	Yes	0.67	NO	-0.400	N/A		
MW372	Upgradient	Yes	2.29	NO	0.829	N/A		
N/A - Recu	Its identified as N	Jon-Detects	during lah	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-45

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=45.100 **S**= 11.875 **CV(1)**=0.263

K factor=** 2.523 **TL(1)=** 75.061

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.780 S = 0.242

CV(2) = 0.064

K factor=** 2.523

TL(2) = 4.390

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 3.575 35.7 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 4.218 1/8/2003 67.9 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 4.079 10/6/2003 59.1 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 1/7/2003 34.1 3.529 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	40.7	NO	3.706	N/A	
MW360	Downgradient	Yes	58.9	NO	4.076	N/A	
MW363	Downgradient	Yes	40.5	NO	3.701	N/A	
MW366	Downgradient	Yes	42.5	NO	3.750	N/A	
MW369	Upgradient	Yes	48.4	NO	3.879	N/A	
MW372	Upgradient	Yes	62.5	NO	4.135	N/A	
3.7/4 B	1 11 10 1				4 . 44		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-46

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Sulfate URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.031 S = 33.919 CV(1) = 0.753

K factor**= 2.523

TL(1)= 130.609

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.420 S = 0.981 CV(2) = 0.287

K factor=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.272
Date Collected	Result	
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	38.6	NO	3.653	N/A
MW360	Downgradient	Yes	12.4	NO	2.518	N/A
MW363	Downgradient	Yes	24.3	NO	3.190	N/A
MW366	Downgradient	Yes	41	NO	3.714	N/A
MW369	Upgradient	Yes	8.82	NO	2.177	N/A
MW372	Upgradient	Yes	147	YES	4.990	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-47

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.821 S = 18.044 CV(1) = 0.867

K factor**= 2.523

TL(1)= 66.344 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.770 S = 1.150 CV(2) = 0.415

K factor=** 2.523

TL(2) = 3.972

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	41.7	3.731
4/22/2002	53.1	3.972
7/15/2002	18.1	2.896
10/8/2002	16.4	2.797
1/8/2003	3.49	1.250
4/3/2003	9.34	2.234
7/8/2003	17.5	2.862
10/6/2003	17	2.833
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.802
Date Collected	Result	, ,
Date Collected 3/19/2002	Result 44.8	3.802
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	32.7	NO	3.487	N/A	
MW360	Downgradient	No	14.7	N/A	2.688	N/A	
MW363	Downgradient	No	-1.73	N/A	#Error	N/A	
MW366	Downgradient	Yes	64.1	NO	4.160	N/A	
MW369	Upgradient	Yes	59.8	NO	4.091	N/A	
MW372	Upgradient	Yes	55.9	NO	4.024	N/A	
NT/A D	1, 11, 200 1 3	T D ()	1 . 11	1 .	1 / 11 /	1 ,	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Total Organic Carbon (TOC) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.226**K** factor**= 2.523 **TL(1)=** 14.378 Statistics-Background Data X = 3.513S = 4.307LL(1)=N/A **Statistics-Transformed Background**

Data

X = 0.851 S = 0.828CV(2) = 0.973 **K factor**=** 2.523 TL(2)=2.940 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 9 1/8/2003 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.0004/23/2002 1.2 0.182 0.000 7/16/2002 1 10/8/2002 1 0.0001/7/2003 1.6 0.470 4/2/2003 1.5 0.405 7/9/2003 3 1.099 10/7/2003 1.5 0.405

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	1.03	N/A	0.030	NO	
MW360	Downgradient	Yes	1.44	N/A	0.365	NO	
MW363	Downgradient	Yes	0.896	N/A	-0.110	NO	
MW366	Downgradient	Yes	1.12	N/A	0.113	NO	
MW369	Upgradient	Yes	1.28	N/A	0.247	NO	
MW372	Upgradient	Yes	1.24	N/A	0.215	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor**= 2.523

TL(1)=230.231 LL(1)=N/A

Statistics-Transformed Background Data

X=3.772 S=1.023 CV(2)=0.271

K factor**= 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369		
Date Collected	Result	LN(Result)	
3/18/2002	50	3.912	
4/22/2002	50	3.912	
7/15/2002	81	4.394	
10/8/2002	202	5.308	
1/8/2003	177	5.176	
4/3/2003	93.1	4.534	
7/8/2003	17.5	2.862	
10/6/2003	37.5	3.624	
Well Number:	MW372		
Well Number: Date Collected	MW372 Result	LN(Result)	
		LN(Result) 5.215	
Date Collected	Result	, ,	
Date Collected 3/19/2002	Result 184	5.215	
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912	
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50	5.215 3.912 3.912 3.912 2.303	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	9.04	NO	2.202	N/A		
MW360	Downgradient	Yes	4.2	NO	1.435	N/A		
MW363	Downgradient	Yes	3.44	NO	1.235	N/A		
MW366	Downgradient	Yes	4.52	NO	1.509	N/A		
MW369	Upgradient	Yes	11.1	NO	2.407	N/A		
MW372	Upgradient	Yes	8.4	NO	2.128	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-50

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

CV(1)=1.490X = 0.116S = 0.173

K factor**= 2.523

TL(1) = 0.552LL(1)=N/A

Statistics-Transformed Background

X = -2.729 S = 1.014 CV(2) = -0.371

K factor=** 2.523

TL(2) = -0.172

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369		
Date Collected	Result	LN(Result)	
3/18/2002	0.1	-2.303	
4/22/2002	0.1	-2.303	
7/15/2002	0.1	-2.303	
10/8/2002	0.025	-3.689	
1/8/2003	0.035	-3.352	
4/3/2003	0.035	-3.352	
7/8/2003	0.02	-3.912	
10/6/2003	0.02	-3.912	
Well Number:	MW372		
Well Number: Date Collected	MW372 Result	LN(Result)	
		LN(Result) -0.322	
Date Collected	Result		
Date Collected 3/19/2002	Result 0.725	-0.322	
Date Collected 3/19/2002 4/23/2002	Result 0.725 0.1	-0.322 -2.303	
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.725 0.1 0.1	-0.322 -2.303 -2.303	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.725 0.1 0.1 0.025	-0.322 -2.303 -2.303 -3.689	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.725 0.1 0.1 0.025 0.035	-0.322 -2.303 -2.303 -3.689 -3.352	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0041	N/A	-5.497	NO
MW360	Downgradient	Yes	0.016	N/A	-4.135	NO
MW363	Downgradient	No	0.02	N/A	-3.912	N/A
MW366	Downgradient	No	0.02	N/A	-3.912	N/A
MW369	Upgradient	Yes	0.0034	N/A	-5.684	NO
MW372	Upgradient	No	0.00601	N/A	-5.114	N/A
3.T/4 D	1				4 . 44	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

CV(1)=2.777X = 2.026S = 5.626

K factor**= 2.523

TL(1)= 16.219 LL(1)=N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380 CV(2) = -1.718

K factor=** 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370		
Date Collected	Result	LN(Result)	
3/17/2002	4.66	1.539	
4/23/2002	0.2	-1.609	
7/15/2002	0.2	-1.609	
10/8/2002	0.2	-1.609	
1/8/2003	0.2	-1.609	
4/3/2003	0.2	-1.609	
7/9/2003	0.2	-1.609	
10/6/2003	0.2	-1.609	
Well Number:	MW373		
Well Number: Date Collected	MW373 Result	LN(Result)	
		LN(Result) 3.122	
Date Collected	Result	, ,	
Date Collected 3/18/2002	Result 22.7	3.122	
Date Collected 3/18/2002 4/23/2002	Result 22.7 1.46	3.122 0.378	
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 22.7 1.46 0.253	3.122 0.378 -1.374	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 22.7 1.46 0.253 0.482	3.122 0.378 -1.374 -0.730	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 22.7 1.46 0.253 0.482 0.608	3.122 0.378 -1.374 -0.730 -0.498	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0194	N/A	-3.942	NO
MW361	Downgradient	No	0.05	N/A	-2.996	N/A
MW364	Downgradient	No	0.05	N/A	-2.996	N/A
MW367	Downgradient	No	0.05	N/A	-2.996	N/A
MW370	Upgradient	No	0.05	N/A	-2.996	N/A
MW373	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Boron LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.684**K** factor**= 2.523 Statistics-Background Data X = 1.140S = 0.780TL(1)=3.108LL(1)=N/A **Statistics-Transformed Background** X = -0.235 S = 1.006 CV(2) = -4.287**K factor**=** 2.523 TL(2) = 2.303LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 2. 4/23/2002 2 0.693 2 0.693 7/15/2002 10/8/2002 0.2 -1.6090.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 0.693 7/16/2002 2 10/8/2002 0.79 -0.2361/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 1.28 0.247 0.215 10/7/2003 1.24

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.339	NO	-1.082	N/A
MW361	Downgradient	Yes	0.122	NO	-2.104	N/A
MW364	Downgradient	Yes	0.0796	NO	-2.531	N/A
MW367	Downgradient	Yes	0.0187	NO	-3.979	N/A
MW370	Upgradient	Yes	0.332	NO	-1.103	N/A
MW373	Upgradient	Yes	1.96	NO	0.673	N/A
N/A - Recu	ilte identified on N	Jon Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-53

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Bromide** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000**K** factor**= 2.523 TL(1)=1.000Statistics-Background Data X = 1.000S = 0.000LL(1)=N/A **Statistics-Transformed Background** X = 0.000TL(2) = 0.000

Data

S = 0.000

CV(2)=#Num!

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.0004/23/2002 1 0.000 0.0007/15/2002 1 10/8/2002 1 0.000 1 0.000 1/8/2003 4/3/2003 1 0.000 7/9/2003 1 0.000 10/6/2003 1 0.000 Well Number: MW373 Result Date Collected LN(Result) 3/18/2002 1 0.0004/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.0001/7/2003 1 0.0004/2/2003 1 0.000 7/9/2003 1 0.000 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.417	NO	-0.875	N/A
MW361	Downgradient	Yes	0.472	NO	-0.751	N/A
MW364	Downgradient	Yes	0.587	NO	-0.533	N/A
MW367	Downgradient	Yes	0.112	NO	-2.189	N/A
MW370	Upgradient	Yes	0.48	NO	-0.734	N/A
MW373	Upgradient	Yes	0.699	NO	-0.358	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison UNITS: mg/L Calcium **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 43.413 S = 13.444 CV(1) = 0.310

K factor**= 2.523

TL(1) = 77.331

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.723 S = 0.323 CV(2) = 0.087

K factor=** 2.523

TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 34.8 3.550 4/23/2002 43.4 3.770 7/15/2002 33.2 3.503 10/8/2002 29.2 3.374 1/8/2003 31.3 3.444 4/3/2003 32.4 3.478 7/9/2003 22.9 3.131 10/6/2003 28 3.332 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 61.9 4.126 4/23/2002 59.2 4.081 7/16/2002 47.6 3.863 10/8/2002 46.1 3.831 1/7/2003 49.2 3.896 4/2/2003 57.8 4.057 7/9/2003 52.7 3.965 10/7/2003 64.9 4.173

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	31.6	NO	3.453	N/A
MW361	Downgradient	Yes	32.7	NO	3.487	N/A
MW364	Downgradient	Yes	29.9	NO	3.398	N/A
MW367	Downgradient	Yes	12.2	NO	2.501	N/A
MW370	Upgradient	Yes	26.1	NO	3.262	N/A
MW373	Upgradient	Yes	67.8	NO	4.217	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=41.938 S= 24.732 CV(1)=0.590

K factor**= 2.523

TL(1)= 104.336 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.658 S = 0.339 CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370		
Date Collected	Result	LN(Result)	
3/17/2002	35	3.555	
4/23/2002	134	4.898	
7/15/2002	35	3.555	
10/8/2002	35	3.555	
1/8/2003	35	3.555	
4/3/2003	35	3.555	
7/9/2003	35	3.555	
10/6/2003	35	3.555	
Well Number:	MW373		
Well Number: Date Collected	MW373 Result	LN(Result)	
		LN(Result) 3.555	
Date Collected	Result		
Date Collected 3/18/2002	Result 35	3.555	
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850	
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data									
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
•	MW358	Downgradient	Yes	11.3	NO	2.425	N/A			
	MW361	Downgradient	No	20	N/A	2.996	N/A			
	MW364	Downgradient	No	20.3	N/A	3.011	N/A			
	MW367	Downgradient	No	22.9	N/A	3.131	N/A			
	MW370	Upgradient	No	30.6	N/A	3.421	N/A			
	MW373	Upgradient	Yes	16.2	NO	2.785	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-56

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Chloride LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 45.919 S = 7.524CV(1)=0.164**K** factor**= 2.523 **TL(1)=** 64.901 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = 3.814 S = 0.165 CV(2) = 0.043

K factor=** 2.523 TL(2) = 4.231 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 4.016 55.5 10/8/2002 53.6 3.982 3.968 1/8/2003 52.9 4/3/2003 53.6 3.982 7/9/2003 51.9 3.949 10/6/2003 53 3.970 1/7/2004 53 3.970 3.944 4/7/2004 51.6 Well Number: MW373 Date Collected LN(Result) Result 7/16/2002 40.6 3.704 10/8/2002 38.8 3.658 1/7/2003 39 3.664 4/2/2003 38.4 3.648 7/9/2003 38.1 3.640 10/7/2003 38 3.638 1/6/2004 37.9 3.635 4/7/2004 38.8 3.658

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	27.3	NO	3.307	N/A
MW361	Downgradient	Yes	34.2	NO	3.532	N/A
MW364	Downgradient	Yes	36.6	NO	3.600	N/A
MW367	Downgradient	Yes	7.72	NO	2.044	N/A
MW370	Upgradient	Yes	37.9	NO	3.635	N/A
MW373	Upgradient	Yes	35.2	NO	3.561	N/A
3.T/4 D	1, 11, 26, 1, 3				4 . 4 . 4 . 4	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.250

S= 5.000 **CV(1)**=0.800

K factor**= 2.523

TL(1)= 18.865

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.710 S = 0.402

CV(2) = 0.235

K factor=** 2.523

TL(2)=2.725

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	5	1.609
4/23/2002	5	1.609
7/15/2002	5	1.609
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 5	1.609
Date Collected 3/18/2002 4/23/2002	Result 5 25	1.609 3.219
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 5 25 5	1.609 3.219 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 25 5	1.609 3.219 1.609 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 25 5 5 5	1.609 3.219 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.38	NO	-0.968	N/A
MW361	Downgradient	No	1	N/A	0.000	N/A
MW364	Downgradient	No	1	N/A	0.000	N/A
MW367	Downgradient	No	1	N/A	0.000	N/A
MW370	Upgradient	No	1	N/A	0.000	N/A
MW373	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-58

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.027

S = 0.032

CV(1)=1.165

K factor**= 2.523

TL(1)=0.108

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.058 S = 1.011 CV(2) = -0.249

K factor=** 2.523

TL(2) = -1.507

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.0174	-4.051
1/8/2003	0.0105	-4.556
4/3/2003	0.00931	-4.677
7/9/2003	0.137	-1.988
10/6/2003	0.0463	-3.073
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 0.025	LN(Result) -3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.034	LN(Result) -3.689 -3.381
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.034 0.025	LN(Result) -3.689 -3.381 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.034 0.025 0.00411	LN(Result) -3.689 -3.381 -3.689 -5.494
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.034 0.025 0.00411 0.00344	LN(Result) -3.689 -3.381 -3.689 -5.494 -5.672

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.0157	N/A	-4.154	NO	
MW361	Downgradient	No	0.001	N/A	-6.908	N/A	
MW364	Downgradient	No	0.001	N/A	-6.908	N/A	
MW367	Downgradient	Yes	0.00596	N/A	-5.123	NO	
MW370	Upgradient	No	0.001	N/A	-6.908	N/A	
MW373	Upgradient	No	0.001	N/A	-6.908	N/A	
3.T/4 D	1						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison **Conductivity** UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

K factor**= 2.523

TL(1)= 1002.702 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor**= 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	` /
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	353	NO	5.866	N/A
	MW361	Downgradient	Yes	355	NO	5.872	N/A
	MW364	Downgradient	Yes	412	NO	6.021	N/A
	MW367	Downgradient	Yes	200	NO	5.298	N/A
	MW370	Upgradient	Yes	391	NO	5.969	N/A
	MW373	Upgradient	Yes	560	NO	6.328	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor**= 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor**= 2.523
 TL(2) = -2.963 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6890.05 -2.9967/15/2002 10/8/2002 0.02 -3.9120.02 -3.9121/8/2003 4/3/2003 0.02 -3.9127/9/2003 0.02 -3.912-3.91210/6/2003 0.02 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 0.026 -3.6504/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.912-3.9121/7/2003 0.02 4/2/2003 0.02 -3.9127/9/2003 0.02 -3.912-3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00108	NO	-6.831	N/A
MW361	Downgradient	Yes	0.00145	NO	-6.536	N/A
MW364	Downgradient	Yes	0.00101	NO	-6.898	N/A
MW367	Downgradient	Yes	0.00072	1 NO	-7.235	N/A
MW370	Upgradient	Yes	0.00048	6 NO	-7.629	N/A
MW373	Upgradient	Yes	0.00067	5 NO	-7.301	N/A
N/A Pagu	ilte identified on N	Von Detects	during lab	orotory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-61

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.387S = 1.153 CV(1) = 0.831

K factor**= 2.523

TL(1) = 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X=-0.115 S= 1.207 CV(2)=-10.514 K factor**= 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/18/2002	Result 3.04	1.112
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.13	NO	0.122	N/A
MW361	Downgradient	Yes	3.83	NO	1.343	N/A
MW364	Downgradient	Yes	3.2	NO	1.163	N/A
MW367	Downgradient	Yes	0.8	NO	-0.223	N/A
MW370	Upgradient	Yes	4.6	YES	1.526	N/A
MW373	Upgradient	Yes	2	NO	0.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-62

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 356.188 S = 106.752 CV(1) = 0.300

K factor**= 2.523

TL(1)= 625.523 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Date Collected	Result	I M/D14)
	11000011	LN(Result)
3/18/2002	427	6.057
3/18/2002 4/23/2002	427 507	
		6.057
4/23/2002	507	6.057 6.229
4/23/2002 7/16/2002	507 464	6.057 6.229 6.140
4/23/2002 7/16/2002 10/8/2002	507 464 408	6.057 6.229 6.140 6.011
4/23/2002 7/16/2002 10/8/2002 1/7/2003	507 464 408 404	6.057 6.229 6.140 6.011 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	267	NO	5.587	N/A
MW361	Downgradient	Yes	279	NO	5.631	N/A
MW364	Downgradient	Yes	254	NO	5.537	N/A
MW367	Downgradient	Yes	114	NO	4.736	N/A
MW370	Upgradient	Yes	229	NO	5.434	N/A
MW373	Upgradient	Yes	491	NO	6.196	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-63

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.958**K** factor**= 2.523 Statistics-Background Data X = 9.230**S**= 8.841 TL(1)=31.535LL(1)=N/A **Statistics-Transformed Background**

Data

X = 1.942 S = 0.713CV(2) = 0.367 **K factor**=** 2.523 TL(2) = 3.740 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 1.258 7/15/2002 3.52 10/8/2002 7.45 2.008 1.952 1/8/2003 7.04 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 3.87 1.353 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	4.82	NO	1.573	N/A	
MW361	Downgradient	No	0.1	N/A	-2.303	N/A	
MW364	Downgradient	Yes	0.0612	NO	-2.794	N/A	
MW367	Downgradient	Yes	6.31	NO	1.842	N/A	
MW370	Upgradient	No	0.1	N/A	-2.303	N/A	
MW373	Upgradient	Yes	0.0481	NO	-3.034	N/A	
3.7/4 D	1, 11, 10, 1, 3	T D	1 . 11		10.0		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Magnesium **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

CV(1)=0.337X = 17.544 S = 5.911

K factor**= 2.523

TL(1) = 32.458LL(1)=N/A

Statistics-Transformed Background Data

X = 2.810 S = 0.343 CV(2) = 0.122

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442
4/3/2003	12.3	2.510
7/9/2003	10	2.303
10/6/2003	12.1	2.493
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.211
Date Collected	Result	
Date Collected 3/18/2002	Result 24.8	3.211
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
•	MW358	Downgradient	Yes	15	NO	2.708	N/A	
	MW361	Downgradient	Yes	14.6	NO	2.681	N/A	
	MW364	Downgradient	Yes	12.8	NO	2.549	N/A	
	MW367	Downgradient	Yes	7.04	NO	1.952	N/A	
	MW370	Upgradient	Yes	11	NO	2.398	N/A	
	MW373	Upgradient	Yes	26.1	NO	3.262	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.080 **S**= 0.674 **CV(1)**=0.624 **K factor****= 2.523 **TL(1)**= 2.780

Statistics-Transformed Background Data

X=-0.114 **S**= 0.658 **CV(2)**=-5.762

K factor**= 2.523

TL(2)= 1.547

LL(2)=N/A

LL(1)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.411 0.599 4/23/2002 1.82 0.199 7/15/2002 1.22 10/8/2002 0.988 -0.012-0.3161/8/2003 0.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 0.355 -1.036 4/23/2002 2.16 0.770 0.329 7/16/2002 1.39 10/8/2002 0.717 -0.333 1/7/2003 0.587 -0.5334/2/2003 0.545 -0.6077/9/2003 1.76 0.565 -0.562 10/7/2003 0.57

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.786	NO	-0.241	N/A
MW361	Downgradient	Yes	0.00551	NO	-5.201	N/A
MW364	Downgradient	Yes	0.00571	NO	-5.166	N/A
MW367	Downgradient	Yes	1.3	NO	0.262	N/A
MW370	Upgradient	Yes	0.00119	NO	-6.734	N/A
MW373	Upgradient	Yes	0.0108	NO	-4.528	N/A
3.T/4 D	1, 11, 20, 1, 3	T D			1. 1.1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-66

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.024 S = 0.0

= 0.024 **S**= 0.022 **CV(1)**=0.901

K factor**= 2.523

TL(1)= 0.078 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -4.239 S = 1.087

CV(2) = -0.256

K factor=** 2.523

TL(2) = -1.497

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0271	NO	-3.608	N/A
MW361	Downgradient	Yes	0.00149	NO	-6.509	N/A
MW364	Downgradient	Yes	0.00475	NO	-5.350	N/A
MW367	Downgradient	Yes	0.00273	NO	-5.903	N/A
MW370	Upgradient	No	0.002	N/A	-6.215	N/A
MW373	Upgradient	Yes	0.00095	9 NO	-6.950	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-67

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=46.688 **S**= 60.986 **CV(1)**=1.306

K factor=** 2.523

TL(1)= 200.555 LL(1)=N/A

Statistics-Transformed Background Data

X= 3.829 **S**=

 $S= 1.151 \quad CV(2)=0.301$

K factor=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	158.7	N/A	5.067	YES	
MW361	Downgradient	Yes	370.4	N/A	5.915	YES	
MW364	Downgradient	Yes	331	N/A	5.802	YES	
MW367	Downgradient	Yes	217	N/A	5.380	YES	
MW370	Upgradient	Yes	359	N/A	5.883	YES	
MW373	Upgradient	Yes	372	N/A	5.919	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-68

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904 TL(1) = 6.745 LL(1) = 5.8202

Statistics-Transformed Background Data

X=1.837 **S**= 0.025 **CV(2)**=0.014

K factor**= 2.904

TL(2)= 1.911

LL(2)=1.7634

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.841 6.3 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 1.808 6.1 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.1	NO	1.808	N/A
MW361	Downgradien	t Yes	6.03	NO	1.797	N/A
MW364	Downgradien	t Yes	5.83	NO	1.763	N/A
MW367	Downgradien	t Yes	5.7	YES	1.740	N/A
MW370	Upgradient	Yes	5.9	NO	1.775	N/A
MW373	Upgradient	Yes	5.77	YES	1.753	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with exceedances

MW367 MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-69

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 2.823 S= 0.522 CV(1)=0.185 K factor**= 2.523 TL(1)=4.139 LL(1)=N/A Statistics-Transformed Background X = 1.024 S= 0.167 CV(2)=0.163 K factor**= 2.523 TL(2)= 1.445 LL(2)=N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 2.98 1.092 7/15/2002 10/8/2002 2.46 0.900 2.41 1/8/2003 0.8804/3/2003 2.43 0.888 7/9/2003 2.44 0.892 10/6/2003 2.48 0.908 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 7/16/2002 2.93 1.075 10/8/2002 2.3 0.833 1/7/2003 2.45 0.896 4/2/2003 2.7 0.993 7/9/2003 0.986 2.68 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.86	NO	1.051	N/A
MW361	Downgradient	Yes	2.74	NO	1.008	N/A
MW364	Downgradient	Yes	2.31	NO	0.837	N/A
MW367	Downgradient	Yes	3.08	NO	1.125	N/A
MW370	Upgradient	Yes	2.9	NO	1.065	N/A
MW373	Upgradient	Yes	2.92	NO	1.072	N/A
3.T/4 D	1, 11, 10, 1				4 . 4 . 4 . 4	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-70

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Sodium LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.544 S = 15.227 CV(1) = 0.295

K factor**= 2.523

TL(1) = 89.962

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor=** 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	37.1	NO	3.614	N/A
MW361	Downgradient	Yes	44.4	NO	3.793	N/A
MW364	Downgradient	Yes	41	NO	3.714	N/A
MW367	Downgradient	Yes	15.8	NO	2.760	N/A
MW370	Upgradient	Yes	42	NO	3.738	N/A
MW373	Upgradient	Yes	62.8	NO	4.140	N/A
3.7/4 D	1, 11, 10, 1, 3	T D	1 . 11	1	10.0	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-71

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 122.381 **S**= 195.095 **CV(1)**=1.594

K factor=** 2.523

TL(1)= 614.606 LL(1)=N/A

Statistics-Transformed Background Data

X=3.985 S=1.323 CV(2)=0.332

K factor**= 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	53	N/A	3.970	NO
MW361	Downgradient	Yes	79.2	N/A	4.372	NO
MW364	Downgradient	Yes	74.4	N/A	4.309	NO
MW367	Downgradient	Yes	21.9	N/A	3.086	NO
MW370	Upgradient	Yes	21	N/A	3.045	NO
MW373	Upgradient	Yes	155	N/A	5.043	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-72

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 13.274 CV(1)=1.734**K** factor**= 2.523 **TL(1)=** 41.146 Statistics-Background Data X = 7.655LL(1)=N/A **Statistics-Transformed Background** X = 1.946 S = 0.939CV(2) = 0.483**K factor**=** 2.523 TL(2) = 3.833LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.8 2.380 4/23/2002 8.53 2.144 1.627 7/15/2002 5.09 10/8/2002 4.78 1.564 1/8/2003 -5.12#Func! 4/3/2003 5.11 1.631 7/9/2003 4.25 1.447 10/6/2003 6.54 1.878 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 16.5 2.803 4/23/2002 3.49 1.250 7/16/2002 1.42 0.351 10/8/2002 -6.06 #Func! 1/7/2003 -8.41 #Func! 4/2/2003 26.3 3.270 7/9/2003 3.06 1.118 10/7/2003 46.2 3.833

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	35.1	N/A	3.558	NO
MW361	Downgradient	Yes	55.5	N/A	4.016	YES
MW364	Downgradient	Yes	55.3	N/A	4.013	YES
MW367	Downgradient	No	-3.45	N/A	#Error	N/A
MW370	Upgradient	Yes	39.2	N/A	3.669	NO
MW373	Upgradient	No	8.12	N/A	2.094	N/A
NI/A D.	1/ 11 /20 1 N	T D ()	1 1 1 1		1.7 11.1.7	1 ,

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW361 MW364

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 6.169 **S**= 12.072 **CV(1)**=1.957

K factor**= 2.523

TL(1)= 36.626 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 1.069 **S**=

S= 1.014 **CV(2)**=0.948

K factor=** 2.523

TL(2) = 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.182 1.2 4/23/2002 4.3 1.459 2.6 0.956 7/15/2002 10/8/2002 2.3 0.833 3 1.099 1/8/2003 4/3/2003 1.2 0.182 7/9/2003 2.6 0.956 10/6/2003 1.7 0.531 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1.1 0.095 4/23/2002 17.5 2.862 49 7/16/2002 3.892 10/8/2002 2.9 1.065 1/7/2003 3.9 1.361 4/2/2003 2.5 0.916 7/9/2003 1.7 0.531 10/7/2003 1.2 0.182

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.79	N/A	1.026	NO
MW361	Downgradient	Yes	0.967	N/A	-0.034	NO
MW364	Downgradient	Yes	1.07	N/A	0.068	NO
MW367	Downgradient	Yes	0.708	N/A	-0.345	NO
MW370	Upgradient	Yes	1.19	N/A	0.174	NO
MW373	Upgradient	Yes	1.36	N/A	0.307	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-74

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor**= 2.523

TL(1)= 277.798 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor=** 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	10	N/A	2.303	N/A
MW361	Downgradient	Yes	5.68	NO	1.737	N/A
MW364	Downgradient	Yes	6.48	NO	1.869	N/A
MW367	Downgradient	Yes	3.98	NO	1.381	N/A
MW370	Upgradient	Yes	6.3	NO	1.841	N/A
MW373	Upgradient	Yes	7.74	NO	2.046	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

C-746-U Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=

X= 12.188 **S**= 6.950 **CV(1)**=0.570

K factor=** 2.523 **TL(1)=** 29.721

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.305 S = 0.687

CV(2) = 0.298

K factor=** 2.523

TL(2) = 4.039

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 2.708 7/15/2002 15 10/8/2002 18 2.890 17 1/8/2003 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 3 1.099 10/8/2002 4 1.386 1/7/2003 6 1.792 4/2/2003 5 1.609 7/9/2003 1.792 6 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.65	N/A	0.501	N/A
MW361	Downgradient	Yes	6.31	NO	1.842	N/A
MW364	Downgradient	Yes	6.07	NO	1.803	N/A
MW367	Downgradient	No	1	N/A	0.000	N/A
MW370	Upgradient	Yes	0.84	N/A	-0.174	N/A
MW373	Upgradient	Yes	5.91	NO	1.777	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-76

C-746-U Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

CV(1)=0.673S = 0.037

K factor**= 2.523

TL(1) = 0.147

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.131 S = 0.691 CV(2) = -0.221

K factor=** 2.523

TL(2) = -1.388

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.1	-2.303
4/23/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	
Date Collected 3/18/2002	Result 0.1	-2.303
Date Collected 3/18/2002 4/23/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.1 0.1 0.1	-2.303 -2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.1 0.1 0.1 0.025	-2.303 -2.303 -2.303 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.1 0.1 0.1 0.025 0.035	-2.303 -2.303 -2.303 -3.689 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	Yes	0.00697	NO	-4.966	N/A
	MW361	Downgradient	Yes	0.00535	NO	-5.231	N/A
	MW364	Downgradient	Yes	0.00928	NO	-4.680	N/A
	MW367	Downgradient	Yes	0.0122	NO	-4.406	N/A
	MW370	Upgradient	No	0.02	N/A	-3.912	N/A
	MW373	Upgradient	No	0.00596	N/A	-5.123	N/A
	3.7/4 D	1, 11, 16, 1	T D			1.1	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

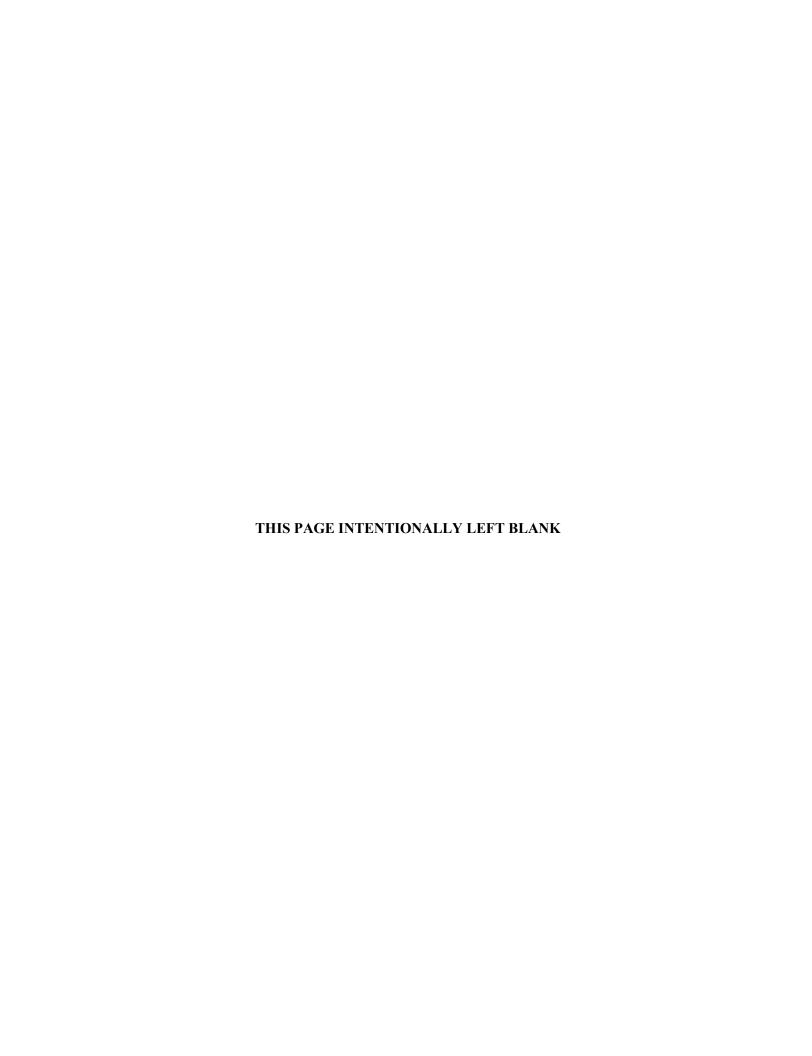
Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)


Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

Current Background Comparison

Dissolved Oxygen

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 2.450

S= 1.858

CV(1)=0.758

UNITS: mg/L

K factor**= 2.523

TL(1)=7.137

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.617

S = 0.788

CV(2)=1.277

K factor**= 2.523

TL(2) = 2.604

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 10/16/2019 1.27 0.239 3/17/2020 5.56 1.716 4/6/2020 1.221 3.39 7/23/2020 0.916 2.5 10/12/2020 1.34 0.293

 1/20/2021
 1.6
 0.470

 4/13/2021
 6.07
 1.803

 7/20/2021
 5.52
 1.708

Well Number: MW374

Date Collected	Result	LN(Result)
10/16/2019	1.88	0.631
3/17/2020	3.36	1.212
4/6/2020	0.8	-0.223
7/23/2020	0.7	-0.357
10/12/2020	0.5	-0.693
1/20/2021	0.92	-0.083
4/13/2021	2.8	1.030
7/14/2021	0.99	-0.010

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	6.05	NO	1.800	N/A
MW365	Downgradien	t Yes	3.66	NO	1.297	N/A
MW371	Upgradient	Yes	3.36	NO	1.212	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
 - Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison UCRS

Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 325.688 S = 74.720 CV(1) = 0.229

K factor**= 2.523

TL(1)= 514.205

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.754S = 0.280 CV(2) = 0.049

K factor**= 2.523

TL(2) = 6.461

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 10/16/2019 321 5.771 3/17/2020 335 5.814 4/6/2020 423 6.047 7/23/2020 361 5.889 10/12/2020 344 5.841 1/20/2021 296 5.690 4/13/2021 388 5.961 7/20/2021 401 5.994 Well Number: MW374 Date Collected Result LN(Result) 10/16/2019 233 5.451 3/17/2020 358 5.881 4/6/2020 385 5.953

304

207

145

361

349

7/23/2020

10/12/2020

1/20/2021

4/13/2021

7/14/2021

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Cullent	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	264.2	NO	5.577	N/A
MW362	Downgradient	Yes	220.4	NO	5.395	N/A
MW365	Downgradient	Yes	336	NO	5.817	N/A
MW368	Downgradient	Yes	242	NO	5.489	N/A
MW371	Upgradient	Yes	344	NO	5.841	N/A
MW374	Upgradient	Yes	202	NO	5.308	N/A
MW375	Sidegradient	Yes	327	NO	5.790	N/A

Conclusion of Statistical Analysis on Current Data

5.717

5.333

4.977 5.889

5.855

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-4

Current Background Comparison

UCRS Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 28.020 S = 25.244 CV(1) = 0.901

K factor**= 2.523

TL(1)= 91.710

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.991

S= 0.843 CV(2) = 0.282 K factor**= 2.523

TL(2) = 5.119

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
10/16/2019	30	3.401
1/21/2020	27	3.296
4/6/2020	75.3	4.321
7/23/2020	53.6	3.982
10/12/2020	29.9	3.398
1/20/2021	29.2	3.374
4/13/2021	90.7	4.508
7/20/2021	34.1	3.529
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/16/2019	Result 6.43	1.861
Date Collected 10/16/2019 1/22/2020	Result 6.43 7.75	1.861 2.048
Date Collected 10/16/2019 1/22/2020 4/6/2020	Result 6.43 7.75 8.41	1.861 2.048 2.129
Date Collected 10/16/2019 1/22/2020 4/6/2020 7/23/2020	Result 6.43 7.75 8.41 9.1	1.861 2.048 2.129 2.208
Date Collected 10/16/2019 1/22/2020 4/6/2020 7/23/2020 10/12/2020	Result 6.43 7.75 8.41 9.1 9.73	1.861 2.048 2.129 2.208 2.275

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Cullent	Vual tti	Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	38.5	NO	3.651	N/A
MW362	Downgradien	t Yes	28.4	NO	3.346	N/A
MW365	Downgradien	t Yes	59.3	NO	4.083	N/A
MW368	Downgradien	t Yes	101	YES	4.615	N/A
MW375	Sidegradient	Yes	23.2	NO	3.144	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-5

Current Background Comparison

URGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 39.575 S = 23.633 CV(1) = 0.597

K factor**= 2.523

TL(1)= 99.200

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.474

S = 0.683

CV(2) = 0.197

K factor**= 2.523

TL(2) = 5.198

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/16/2019	15.5	2.741
1/21/2020	19.1	2.950
4/6/2020	20.4	3.016
7/20/2020	16.5	2.803
10/12/2020	15.7	2.754
1/20/2021	15.4	2.734
4/13/2021	16.7	2.815
7/13/2021	15.3	2.728

7/13/2021	15.3	2.728
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/16/2019	59.4	4.084
1/22/2020	57	4.043
4/6/2020	62.7	4.138
7/23/2020	62.4	4.134
10/12/2020	62.3	4.132
1/20/2021	67.5	4.212
4/13/2021	62.3	4.132
7/14/2021	65	4.174

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current (Quarter	Data
-----------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	64.8	NO	4 171	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-6

Current Background Comparison

Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 329.625 S = 127.637 CV(1) = 0.387

K factor**= 2.523

TL(1)= 651.654

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.723

S = 0.406CV(2) = 0.071 K factor**= 2.523

TL(2) = 6.747

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/16/2019	227	5.425
1/21/2020	224	5.412
4/6/2020	214	5.366
7/20/2020	186	5.226
10/12/2020	220	5.394
1/20/2021	191	5.252
4/13/2021	209	5.342
7/13/2021	194	5.268

7/13/2021	194	5.268
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/16/2019	466	6.144
1/22/2020	423	6.047
4/6/2020	399	5.989
7/23/2020	436	6.078
10/12/2020	474	6.161
1/20/2021	447	6.103
4/13/2021	483	6.180
7/14/2021	481	6.176

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No	. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	. Ungradient	Yes	461	NO	6.133	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

Current Background Comparison

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.921 **S**= 8.121

CV(1)=0.544

K factor**= 2.523

TL(1) = 35.410

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.540

S= 0.606 **CV(2)**=0.238

K factor**= 2.523

TL(2) = 4.068

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected LN(Result) Result 10/16/2019 7.28 1.985 1/21/2020 7.14 1.966 4/6/2020 8.43 2.132 7/20/2020 6.51 1.873 10/12/2020 7.24 1.980 1/20/2021 6.85 1.924 4/13/2021 6.97 1.942 7/12/2021 1 050

7/13/2021	6.41	1.858
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/16/2019	22	3.091
1/22/2020	21.3	3.059
4/6/2020	22.4	3.109
7/23/2020	21.4	3.063
10/12/2020	23.4	3.153
1/20/2021	24.1	3.182
4/13/2021	23.2	3.144
7/14/2021	24.1	3.182

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW372	Ungradient	Yes	22.8	NO	3.127	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-8

Current Background Comparison

Nitrate as Nitrogen

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.850

S= 0.224

CV(1)=0.264

K factor**= 2.523

TL(1)= 1.416

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.193 S = 0.252

0.252 **CV**

CV(2) = -1.305

K factor**= 2.523

TL(2) = 0.443

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/16/2019	0.676	-0.392
1/21/2020	0.628	-0.465
4/6/2020	0.604	-0.504
7/20/2020	0.76	-0.274
10/12/2020	0.736	-0.307
1/20/2021	0.838	-0.177
4/13/2021	0.532	-0.631
7/13/2021	0.851	-0.161

7/13/2021	0.851	-0.161
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/16/2019	1.38	0.322
1/22/2020	0.836	-0.179
4/6/2020	0.77	-0.261
7/23/2020	1.12	0.113
10/12/2020	0.959	-0.042
1/20/2021	1.19	0.174
4/13/2021	0.807	-0.214
7/14/2021	0.909	-0.095

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW363	Downgradien	nt Yes	10.5	YES	2 351	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW363

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2021 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 365.813 S = 33.435 CV(1) = 0.091

K factor**= 2.523

TL(1)= 450.169

LL(1)=N/A

Statistics-Transformed Background Data

X= 5.898 **S**= 0.090

CV(2) = 0.015

K factor**= 2.523

TL(2) = 6.126

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/16/2019 347 5.849 3/17/2020 5.790 327 4/6/2020 390 5.966 7/23/2020 353 5.866 10/12/2020 362 5.892 1/20/2021 350 5.858 4/13/2021 444 6.096 7/13/2021 352 5.864 Well Number: MW372 Date Collected Result LN(Result) 10/16/2019 303 5.714 1/22/2020 375 5.927 4/6/2020 393 5.974 7/23/2020 5.900 365 10/12/2020 341 5.832 1/20/2021 362 5.892 6.019 4/13/2021 411 7/14/2021 378 5.935

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradien	t Yes	393	NO	5.974	N/A
MW360	Downgradien	t Yes	379.5	NO	5.939	N/A
MW363	Downgradien	t Yes	272	NO	5.606	N/A
MW366	Downgradien	t Yes	355	NO	5.872	N/A
MW369	Upgradient	Yes	343	NO	5.838	N/A
MW372	Upgradient	Yes	390	NO	5.966	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-10

Current Background Comparison

Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 66.408 **S**= 64.228 **CV(1)**=0.967

K factor**= 2.523

TL(1)= 228.455 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.341 S = 1.542 CV(2) = 0.462

K factor**= 2.523

TL(2)= 7.232

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected LN(Result) Result 10/16/2019 5.09 1.627 1/21/2020 5.54 1.712 4/6/2020 2.242 9.41 1.701 7/20/2020 5.48 10/12/2020 5.29 1.666 1/20/2021 5.86 1.768 4/13/2021 7.59 2.027

7/13/2021	8.66	2.159
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/16/2019	89.6	4.495
1/22/2020	105	4.654
4/6/2020	102	4.625
7/23/2020	124	4.820
10/12/2020	129	4.860
1/20/2021	156	5.050
4/13/2021	157	5.056
7/14/2021	147	4.990

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

W	Vell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
7	MW372	Unoradient	Yes	147	NO	4 990	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-11

Current Background Comparison

Dissolved Oxygen

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 2.593

S= 1.062

CV(1)=0.409

UNITS: mg/L

K factor**= 2.523

TL(1) = 5.272

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.871

S = 0.426 C

CV(2) = 0.489

K factor**= 2.523

TL(2)= 1.944

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW370	
Result	LN(Result)
3.7	1.308
2.86	1.051
2.72	1.001
2.86	1.051
3.45	1.238
4.3	1.459
3.57	1.273
4.47	1.497
	Result 3.7 2.86 2.72 2.86 3.45 4.3 3.57

//13/2021	4.4/	1.49/
Well Number:	MW373	
Date Collected	Result	LN(Result)
10/16/2019	1.98	0.683
1/22/2020	1.79	0.582
4/6/2020	1.18	0.166
7/23/2020	1.41	0.344
10/12/2020	1.77	0.571
1/20/2021	1.8	0.588
4/13/2021	1.33	0.285
7/14/2021	2.3	0.833

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Ungradient	Yes	4.6	NO	1 526	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
 - Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

 D2-12

C-746-U Third Quarter 2021 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 386.250 S = 32.438 CV(1) = 0.084

K factor**= 2.523

TL(1)= 468.090

LL(1)=N/A

Statistics-Transformed Background Data

X= 5.953 **S**=

 $S= 0.083 \quad CV(2)=0.014$

K factor**= 2.523

TL(2)= 6.162

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 10/16/2019 405 6.004 1/21/2020 6.052 425 4/6/2020 448 6.105 7/23/2020 5.903 366 10/12/2020 350 5.858 1/20/2021 395 5.979 4/13/2021 435 6.075 7/13/2021 5.897 364 Well Number: MW373 Date Collected Result LN(Result) 10/16/2019 347 5.849 1/22/2020 350 5.858 4/6/2020 409 6.014 7/23/2020 377 5.932 10/12/2020 350 5.858 1/20/2021 372 5.919 6.009 4/13/2021 407

380

7/14/2021

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Culltuit	Qual tti	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradien	t Yes	158.7	NO	5.067	N/A
MW361	Downgradien	t Yes	370.4	NO	5.915	N/A
MW364	Downgradien	t Yes	331	NO	5.802	N/A
MW367	Downgradien	t Yes	217	NO	5.380	N/A
MW370	Upgradient	Yes	359	NO	5.883	N/A
MW373	Upgradient	Yes	372	NO	5.919	N/A

Conclusion of Statistical Analysis on Current Data

5.940

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-13

Current Background Comparison Init LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: Std Unit

Statistics-Background Data

pН

X = 6.039

CV(1)=0.021

S = 0.126

K factor**= 2.904

TL(1)= 6.406

LL(1)=5.6722

Statistics-Transformed Background Data

X= 1.798

 $S= 0.021 \quad CV(2)=0.012$

K factor**= 2.904

TL(2)= 1.860

LL(2)=1.7366

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 10/16/2019 6.06 1.802 1/21/2020 1.820 6.17 4/6/2020 6.08 1.805 7/23/2020 1.803 6.07 10/12/2020 6.06 1.802 1/20/2021 5.79 1.756 4/13/2021 5.9 1.775 7/13/2021 5.96 1.785

MW373	
Result	LN(Result)
6.16	1.818
6.13	1.813
6.15	1.816
6.11	1.810
6.17	1.820
6.05	1.800
6	1.792
5.77	1.753
	Result 6.16 6.13 6.15 6.11 6.17 6.05

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW367	Downgradien	t Yes	5.7	NO	1.740	N/A
MW373	Upgradient	Yes	5.77	NO	1.753	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-14

Analysis Current Background Comparison UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Technetium-99

X = 43.199 S = 32.536 CV(1) = 0.753

K factor**= 2.523

TL(1)= 125.287

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.487

S= 0.791 **CV(2)**=0.227

K factor**= 2.523

TL(2) = 5.483

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370				
Date Collected	Result	LN(Result)			
10/16/2019	125	4.828			
1/21/2020	82.8	4.416			
4/6/2020	60.4	4.101			
7/23/2020	67.3	4.209			
10/12/2020	72.3	4.281			
1/20/2021	58.8	4.074			
4/13/2021	44.2	3.789			
7/13/2021	37.9	3.635			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
10/16/2010	36.5	3 507			

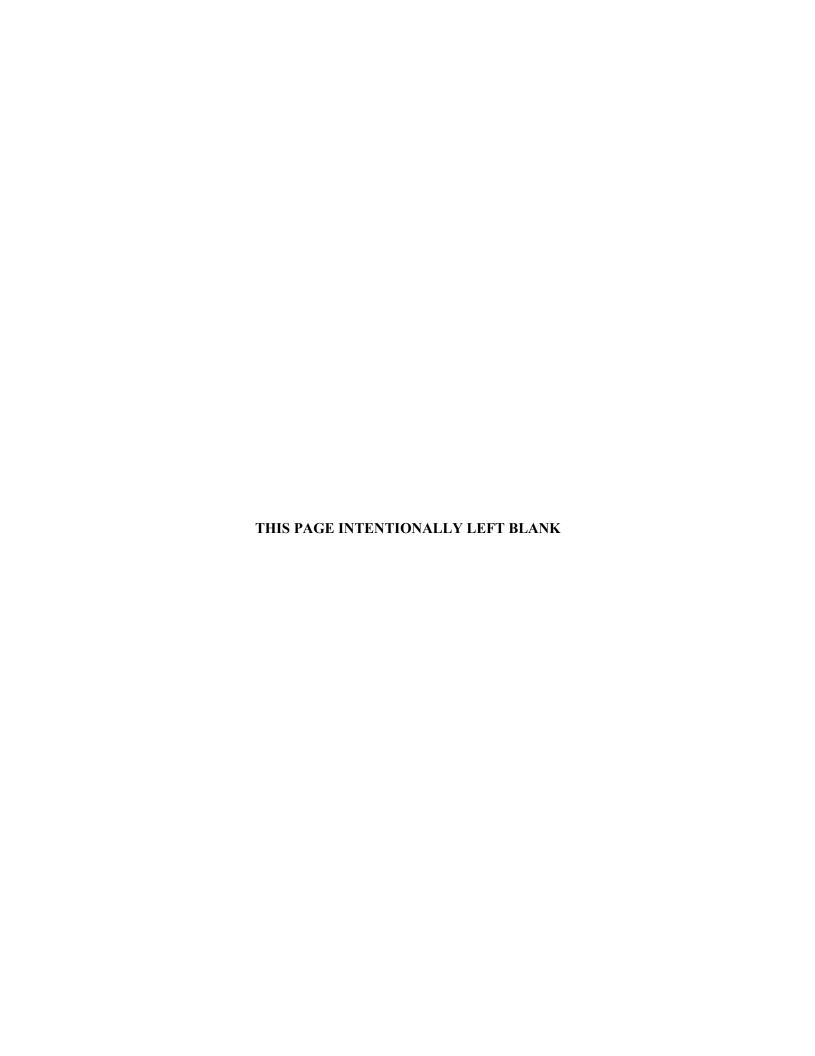
1/13/2021	1 1.2	3.707
7/13/2021	37.9	3.635
Well Number:	MW373	
Date Collected	Result	LN(Result)
10/16/2019	36.5	3.597
1/22/2020	13	2.565
4/6/2020	13.8	2.625
7/23/2020	18.4	2.912
10/12/2020	19.2	2.955
1/20/2021	9.89	2.292
4/13/2021	17.5	2.862
7/14/2021	14.2	2.653

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW361	Downgradien	t Yes	55.5	NO	4.016	N/A
MW364	Downgradien	t Yes	55.3	NO	4.013	N/A

Conclusion of Statistical Analysis on Current Data


None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-15

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

January 24, 2022

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by an independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the fourth quarter 2021 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 4th CY 2021

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2021 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on October 26, 2021. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement and sampling for laboratory analysis during this reporting period.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 1.08 × 10⁻³ ft/ft and 1.12 × 10⁻³ ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region¹ (MW98, MW100, MW125, MW139, MW165A, MW173, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 5.21 × 10⁻⁴ ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for October 2021, the groundwater flow direction in the immediate area of the landfill was to the northeast.

¹ Water level could not be measured in MW193 this quarter.

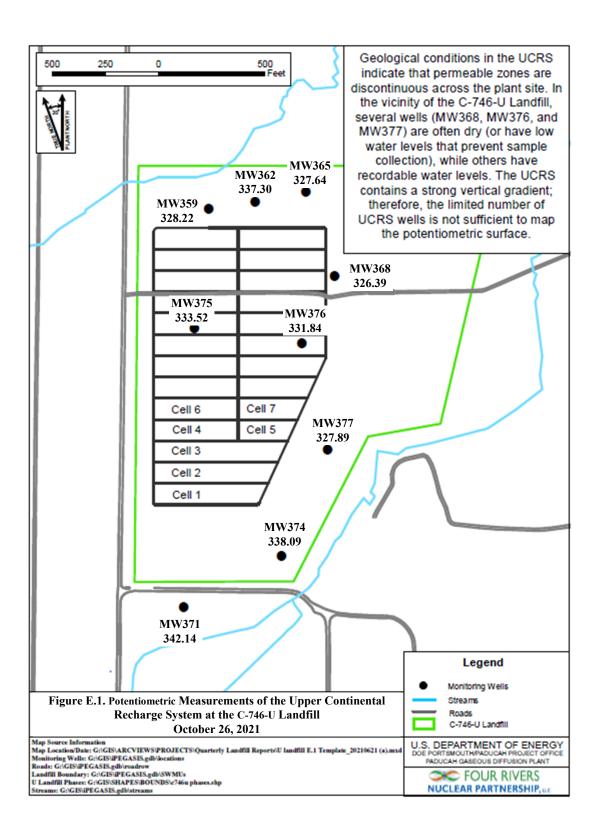


Table E.1. C-746-U Landfill Fourth Quarter 2021 (October) Water Levels

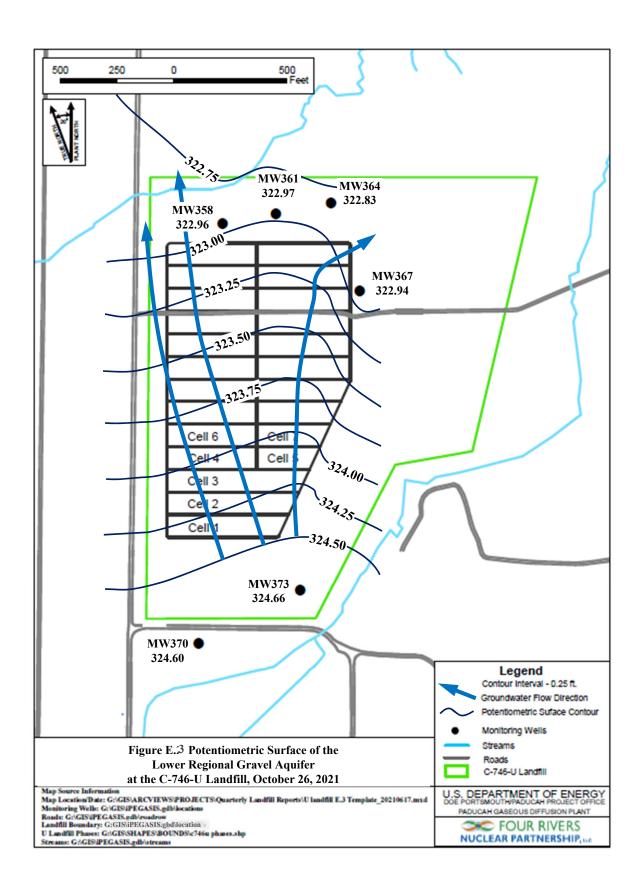
	C-746-U Landfill (October 2021) Water Levels									
				-			Raw Data		*Corrected Data	
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/26/2021	8:50	MW357	URGA	368.77	30.10	0.01	45.81	322.96	45.82	322.95
10/26/2021	8:53	MW358	LRGA	368.92	30.11	0.00	45.96	322.96	45.96	322.96
10/26/2021	8:52	MW359	UCRS	368.91	30.10	0.01	40.68	328.23	40.69	328.22
10/26/2021	8:55	MW360	URGA	362.07	30.11	0.00	39.07	323.00	39.07	323.00
10/26/2021	8:57	MW361	LRGA	361.32	30.11	0.00	38.35	322.97	38.35	322.97
10/26/2021	8:56	MW362	UCRS	361.85	30.11	0.00	24.55	337.30	24.55	337.30
10/26/2021	9:04	MW363	URGA	368.56	30.11	0.00	45.63	322.93	45.63	322.93
10/26/2021	9:06	MW364	LRGA	368.17	30.11	0.00	45.34	322.83	45.34	322.83
10/26/2021	9:05	MW365	UCRS	368.14	30.11	0.00	40.50	327.64	40.50	327.64
10/26/2021	9:00	MW366	URGA	368.95	30.11	0.00	45.82	323.13	45.82	323.13
10/26/2021	9:02	MW367	LRGA	369.37	30.11	0.00	46.43	322.94	46.43	322.94
10/26/2021	9:01	MW368	UCRS	368.98	30.11	0.00	42.59	326.39	42.59	326.39
10/26/2021	9:36	MW369	URGA	364.23	30.11	0.00	39.83	324.40	39.83	324.40
10/26/2021	9:38	MW370	LRGA	365.12	30.11	0.00	40.52	324.60	40.52	324.60
10/26/2021	9:37	MW371	UCRS	364.64	30.11	0.00	22.50	342.14	22.50	342.14
10/26/2021	9:31	MW372	URGA	359.42	30.11	0.00	34.76	324.66	34.76	324.66
10/26/2021	9:33	MW373	LRGA	359.73	30.11	0.00	35.07	324.66	35.07	324.66
10/26/2021	9:32	MW374	UCRS	359.44	30.11	0.00	21.35	338.09	21.35	338.09
10/26/2021	9:23	MW375	UCRS	370.36	30.11	0.00	36.84	333.52	36.84	333.52
10/26/2021	9:25	MW376	UCRS	370.39	30.11	0.00	38.55	331.84	38.55	331.84
10/26/2021	9:28	MW377	UCRS	365.74	30.11	0.00	37.85	327.89	37.85	327.89
Reference Barometric Pressure					30.11					

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

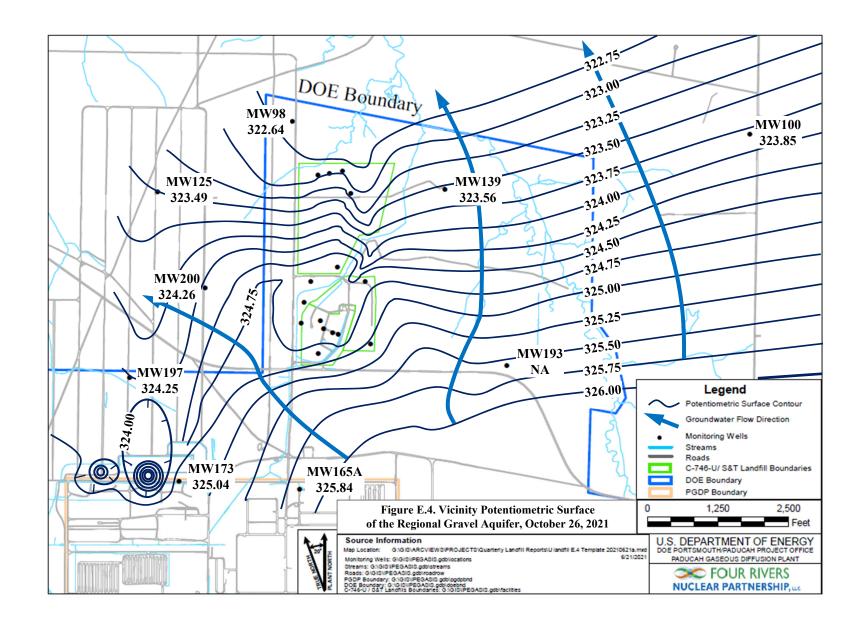
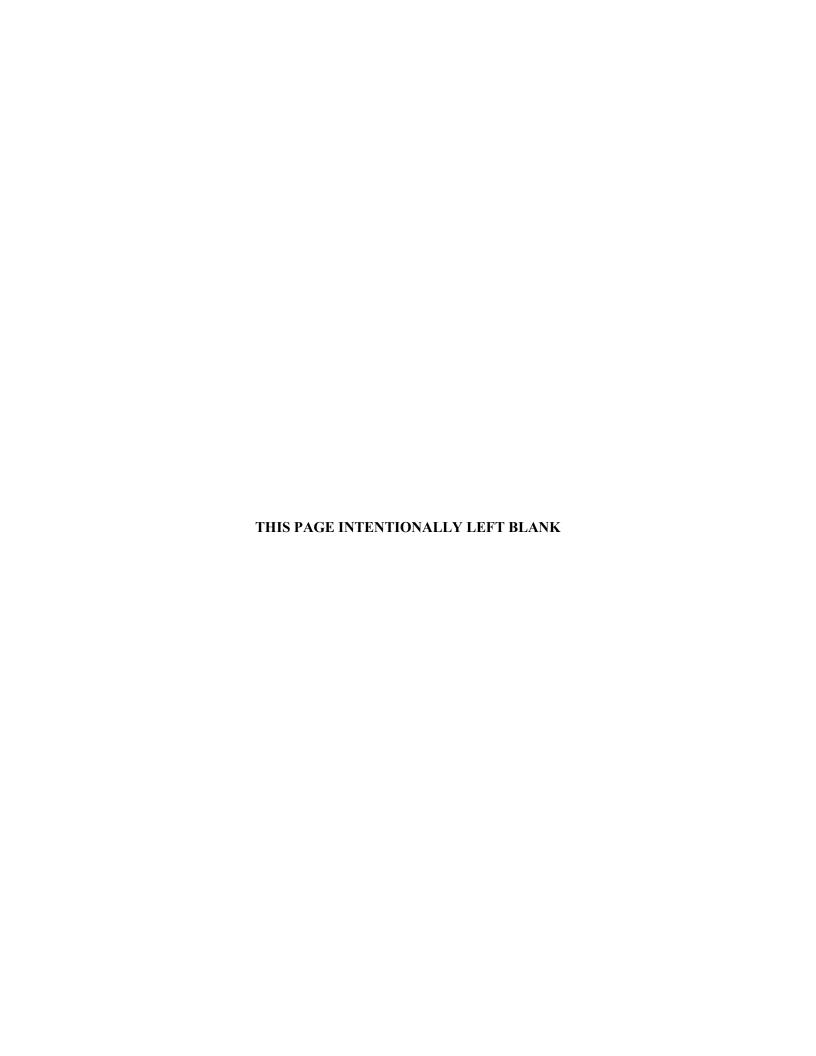



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	1.08 × 10 ⁻³
Beneath Landfill—Lower RGA	1.12 × 10 ⁻³
Vicinity	5.21 × 10 ⁻⁴

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	: Discharge (q)	Average Linear Velocity (v)			
ft/day cm/s		ft/day cm/s		ft/day	cm/s		
Upper RGA							
725 0.256		0.784	2.77×10^{-4}	3.14	1.11×10^{-3}		
425	0.150	0.460	1.62×10^{-4}	1.84	6.49×10^{-4}		
Lower RGA							
725 0.256		0.814	2.88×10^{-4}	3.26	1.15×10^{-3}		
425	0.150	0.477	1.68 × 10 ⁻⁴	1.91	6.74×10^{-4}		

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the fourth quarter 2021 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).*

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	None	
Lower Regional Gravel Aquifer	Technetium-99	MW361, MW364

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

11/16/2021

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4795	MW361	Trichloroethene	8260D	6.31	ug/L	5
8004-4796	MW363	Nitrate as Nitrogen	9056A	10.5	mg/L	10
8004-4797	MW364	Trichloroethene	8260D	6.07	ug/L	5
8004-4792	MW373	Trichloroethene	8260D	5.91	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Monitoring Well Mail Activity Mail Activi	Groundwater Flow System				UCR	S							URG						LRG	A		
ACETONE		D	S	S	S		D	D	U	U	D	D	D	D	U	U	D	D			U	U
Quarter 3, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2005 ALPHA ACTIVITY Quarter 1, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 ALPHA ACTIVITY Quarter 1, 2004 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009		368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2009 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2009 Quarter 2, 2006 Quarter 3, 2009 Quarter 2, 2006 Quarter 3, 2009 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2010 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2019 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 201																						
Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2004 Quarter 3, 2005 ALPHA ACTIVITY Quarter 2, 2004 Quarter 3, 2009 ALLININUM Quarter 3, 2009 ALLININUM Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 1, 2018 Quarter 4, 2019 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2010 Quarter 2,		-															<u> </u>		_			
Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 200		-									*						⊢		_			
Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2009 Quarter 4, 200		-								_							⊢		_			
Quarter 4, 2003										_							⊢					
Ounter 3, 2004 Ounter 4, 2005 Ounter 6, 2005 Ounter 7, 2005 Ounter 7, 2004 Ounter 7, 2006 Ounter 7, 2007 Ounter 7, 2008 Ounter 7, 2009 Ounter		*					-				*		*		<u>.</u>	*	├		*			
Quarter 3, 2005 ALPHA ACTIVITY Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2009 ALUMINUM Quarter 3, 2009 ALUMINUM Quarter 3, 2009 BETA ACTIVITY Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarte		-						*				*			*		 		_			
Quarter 1, 2005 Quarter 2, 2009 Quarter 3, 2009 ALININAUM Quarter 3, 2009 ALININAUM Quarter 3, 2009 ALININAUM Quarter 3, 2008 Quarter 4, 2004 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009		-									_						*					
ALPHA ACTIVITY Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2009 ALIMINUM Quarter 3, 2003 BETA ACTIVITY Quarter 3, 2004 Quarter 4, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2009 Quarter 4, 2008 Quarter 2, 2009 Quarter 1, 2008 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2010 Quarter 4, 2010		1								_	_				-		⊢		_			_
Quarter 1, 2004 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2003 BETA ACTIVITY Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2008 Quarter 1, 2009 Quarter 2, 2010							*															
Quarter 2, 2009 ALDMINUM Quarter 3, 2003 BETA ACTIVITY Quarter 1, 2004 Quarter 2, 2005 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter																						_
Quarter 2, 2009 Quarter 2, 2004 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2009 Quarter 2, 2001 Quarter 2, 2009 Quarter 2, 200		-					_						-		_		┢		_			_
ALUMINIM		1															┢					-
Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2010 Quarter 2,							_															
BETA ACTIVITY												*										
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2010 Quarter 4, 201												<u> </u>										
Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2020 Quarter 4,																_						
Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2009 Quarter 3, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2000 Quarter 4, 2001 Quarter 4, 2002 Quarter 5, 2002 Quarter 6, 200																_	\vdash					
Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 201		t				\vdash					l						\vdash	 	\vdash			-
Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2017 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 202		t	\vdash			\vdash					l —	\vdash			\vdash	_	\vdash		\vdash	\vdash		
Quarter 1,2006 Quarter 3,2006 Quarter 3,2006 Quarter 3,2006 Quarter 1,2007 Quarter 2,2007 Quarter 3,2007 Quarter 3,2007 Quarter 3,2007 Quarter 3,2007 Quarter 3,2007 Quarter 3,2007 Quarter 1,2008 Quarter 1,2008 Quarter 4,2008 Quarter 4,2008 Quarter 4,2008 Quarter 4,2009 Quarter 4,2009 Quarter 4,2009 Quarter 4,2009 Quarter 2,2009 Quarter 4,2009 Quarter 4,2000 Quarter 3,2000 Quarter 4,2000 Quarte		t	\vdash			\vdash				\vdash	-	\vdash			\vdash		\vdash		\vdash	\vdash		
Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020		t									l	\vdash			\vdash		\vdash		\vdash	\vdash		
Quarter 3, 2006 Quarter 1, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 200		t									l					-	\vdash		\vdash			
Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2013 Quarter 4, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2016 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2020 Quarter 4, 202		t															\vdash		 			
Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2019 Quarter 4, 2010 Quarter 4, 2020 Quarter 4, 202		t									 				\vdash	_	\vdash	<u> </u>	\vdash			
Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 201		\vdash	\vdash		\vdash	\vdash				\vdash		\vdash	\vdash	\vdash	\vdash		\vdash		\vdash	\vdash		
Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2001 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 4, 2010 Quarter 3, 2012 Quarter 4, 2010 Quarter 2, 2019 Quarter 4, 2010 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2019 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 201		\vdash	 		\vdash	\vdash					-			\vdash	\vdash		\vdash	 	\vdash		\vdash	
Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 5, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 5, 2016 Quarter 5, 2016 Quarter 6, 2017 Quarter 6, 2017 Quarter 6, 2018 Quarter 6, 2017 Quarter 6, 2018 Quarter 6, 2018 Quarter 6, 2019 Quarter 6, 201		1									_					_	⊢		_			-
Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 4, 2012 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2016 Quarter 2, 2019 Quarter 4, 2016 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 4, 202		1								_	_						⊢		<u> </u>			
Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 202		-									_		-		-		⊢	_	-			-
Quarter 3, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2019 Quarter 5, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 5, 2019 Quarter 5, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2020 Quarter 7, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 6, 202		-								_	-	_	_		_	-	╌		 			
Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 202		-									_		_		-	_	▝		_	_		
Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 4, 2016 Quarter 5, 2017 Quarter 6, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 202		-									_				_	_	⊢		_	_		
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2015 Quarter 1, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2010 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 202		-								_	_						⊢		_	-		
Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 5, 2015 Quarter 5, 2015 Quarter 5, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 5, 2017 Quarter 7, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2019 Quarter 3, 2010 Quarter 2, 2019 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2019 Quarter 3, 2010 Quarter 4, 2019 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 6, 2020 Quarter 7, 202		-									-				_	_	⊢_	_	_			
Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 5, 2012 Quarter 9, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 202		-				\vdash					_	_	_	\vdash	├		┞▀	_	├			
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2020 Quarter 5, 2020 Quarter 5, 2020 Quarter 6, 202		-				\vdash						-	-	\vdash	-		⊢	-	├	-		
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 2, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020		-									_				_	_	⊢		_			
Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 5, 2012 Quarter 6, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 8, 2012 Quarter 9, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020		-								_	_					-	⊢		_			
Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020		-								_							▝		_			-
Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020		-								_	-				_	_	⊢		<u> </u>			
Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020		_									_				_	_	├		_			
Quarter 1, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020		-									_		-		-	_	▝	-	-			
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020		-									_				-	-	⊢		-			
Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 BROMIDE													-		_		⊢					
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE						_							_			_	├	_				
Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020		_									_				_		├		_			_
Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		_														_	├		_			
Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		├	-	-	\vdash	-		-	-		-			\vdash	<u> </u>		⊢	-	<u> </u>	-		
Quarter 1, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 4, 2019 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		_													_	_	<u> </u>		_			_
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		_				_								_	<u> </u>		—		<u> </u>			
Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		₩	_		\vdash	\vdash			<u> </u>		ļ	<u> </u>	<u> </u>	\vdash	<u> </u>		⊢	<u> </u>	<u> </u>	<u> </u>		
Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		 	_	_	\vdash	\vdash	<u> </u>	_	<u> </u>				_	\vdash	<u> </u>	_	⊢	_	<u> </u>		Ш	
Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		1			Ш	\vdash		_						\vdash	_		⊢_	_	_		Ш	
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 BROMIDE		1		_	\vdash	\vdash	<u> </u>	_	<u> </u>	<u> </u>				\vdash	<u> </u>	<u> </u>	▝▘		<u> </u>	<u> </u>	Ш	
Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		₩	-	_	\vdash	\vdash	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	\vdash	<u> </u>		Ь—	<u> </u>	<u> </u>			-
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 BROMIDE		₩	_		\vdash	\vdash			<u> </u>		ļ	<u> </u>	<u> </u>	\vdash	<u> </u>	_	⊢	<u> </u>	<u> </u>	<u> </u>		
Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 BROMIDE	Quarter 4, 2016	<u> </u>	_	_	Ш	\vdash		_			L		_	\vdash			Ь—		<u> </u>	_		
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE	Quarter 2, 2017	<u> </u>			Ш	\vdash								\vdash	_		<u> </u>		_			
Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE	Quarter 3, 2017	<u> </u>			Ш	\vdash								\vdash			<u> </u>					
Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		—			\vdash	\vdash	\Box			$oxed{\Box}$		<u> </u>		\vdash	<u> </u>		Щ		<u> </u>	L_	_	
Quarter 3, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		<u> </u>			\vdash	\vdash			<u> </u>					\vdash	<u> </u>		Ь—		<u> </u>			
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		<u> </u>				\vdash											Щ					
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		<u> </u>															Ь.					
Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE	Quarter 4, 2018	<u> </u>															<u> </u>					
Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE		<u> </u>																				
Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE	Quarter 2, 2019																					
Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 BROMIDE																						
Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE	Quarter 4, 2019			Ĺ				Ĺ	Ĺ									Ĺ				
Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE				Ĺ				Ĺ	Ĺ													
Quarter 3, 2020 ■ ■ Quarter 4, 2020 ■ ■ BROMIDE ■ ■	Quarter 2, 2020			Ĺ				Ĺ								Ĺ						
Quarter 4, 2020 BROMIDE	Quarter 3, 2020					Г											Г					
BROMIDE		1																				
	BROMIDE																					
		П												*								
		_																				

Groundwater Flow System	ı —			UCR	S					_		URG	¹ A			_		LRC	¹ A		
Gradient Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 3, 2003										*											
Quarter 2, 2005																_					*
Quarter 3, 2006	_														*	Ь					
Quarter 2, 2008															*	<u> </u>					
Quarter 3, 2009	_	_			_				_					_	*	⊢	-	-			_
Quarter 4, 2009 Quarter 1, 2010	\vdash								\vdash	-				_	*	⊢	-				
Quarter 1, 2010 Quarter 2, 2010															*	⊢					
Quarter 3, 2010															*	\vdash					
Quarter 1, 2011															*	\vdash					
Quarter 2, 2011															*	\vdash					
Quarter 3, 2011																Т					*
Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*	_					*
Quarter 2, 2013															*	<u> </u>					
Quarter 3, 2013	⊢	<u> </u>		\vdash		_	\vdash		Ь—	<u> </u>	_	<u> </u>	\vdash	<u> </u>	*	⊢	_	—	-	\vdash	*
Quarter 4, 2013	 	<u> </u>		\vdash	_				\vdash	-		<u> </u>	\vdash	<u> </u>	*	⊢	_	<u> </u>	-		1 4-
Quarter 2, 2014	├	<u> </u>		\vdash		_			\vdash	<u> </u>	-	-	\vdash	<u> </u>	*	⊢	-	-			*
Quarter 3, 2014	 	<u> </u>	-	\vdash		_	\vdash		\vdash	-	-	-	\vdash	<u> </u>	*	⊢	\vdash	-	-	\vdash	*
Quarter 4, 2014	 	-	-	\vdash		_	\vdash		\vdash	-	-	-	\vdash	-	*	\vdash	<u> </u>	-	-	\vdash	<u> </u>
Quarter 2, 2015 Quarter 3, 2015	\vdash	\vdash		\vdash			\vdash		\vdash	\vdash		\vdash	\vdash	\vdash	*	\vdash	\vdash	\vdash	1	\vdash	\vdash
Quarter 3, 2015 Quarter 4, 2015	\vdash	\vdash							\vdash					\vdash	*	\vdash		<u> </u>			
Quarter 1, 2016	H											\vdash			*	\vdash	\vdash		 		\vdash
Quarter 2, 2016	1								\vdash				Н		*	\vdash					
Quarter 2, 2017	*								\vdash							г					
Quarter 1, 2018	*								П							г					
Quarter 3, 2018	*															т					
Quarter 3, 2019	*							*								Г					
Quarter 4, 2019															*						
Quarter 1, 2020								*							*						
Quarter 2, 2020								*							*						
Quarter 3, 2020	*							*							*						
Quarter 4, 2020															*						
Quarter 1, 2021															*	Щ					
Quarter 2, 2021	_							*							*	<u> </u>					
Quarter 3, 2021	_														*	⊢		-			
Quarter 4, 2021															*	_					
Quarter 3, 2003										*											
Quarter 3, 2005 Quarter 2, 2005							*			不						⊢					
Quarter 3, 2005						*	· T		\vdash					\vdash		⊢		\vdash			
Quarter 4, 2005						*										┢					
Quarter 1, 2006						*										\vdash					
Quarter 2, 2006						*										Т					
Quarter 3, 2010		*									*					Т					
Quarter 4, 2010														*		Г					
Quarter 1, 2011															*	П					
CHEMICAL OXYGEN DEMA	ND																				
Quarter 3, 2002										*	*	*	*	*	*	$ldsymbol{ldsymbol{ldsymbol{eta}}}$					
Quarter 4, 2002										*	*										
Quarter 1, 2003	<u> </u>	_		Ш	\vdash				Щ.	*	*	_	\vdash	<u> </u>		Ь.	_	<u> </u>	L		_
Quarter 2, 2003	71.	<u> </u>	_	Н	_				\vdash	*	*	*	\vdash	<u> </u>		<u> ,</u>	_	<u> </u>	-		_
Quarter 3, 2003	*	<u> </u>	-	\vdash					\vdash	*	*	-	\vdash	<u> </u>	-	*	-	 	-		-
Quarter 4, 2003	 	-		\vdash		*	\vdash		\vdash	*	木		\vdash	<u> </u>		\vdash	-	-	-	\vdash	-
Quarter 3, 2004 Quarter 3, 2005	\vdash	\vdash		\vdash		*	\vdash		\vdash	*	-	-	\vdash	\vdash	*	*	\vdash	-	*		\vdash
Quarter 3, 2005 Quarter 4, 2005	 	\vdash				*			\vdash	-	—	—	\vdash	\vdash	*	╨	\vdash	*	*		\vdash
Quarter 1, 2006	H									l -						\vdash		- T	*		
Quarter 4, 2016																		*	<u> </u>		
Quarter 1, 2017	t										*					т		Ė			
Quarter 2, 2019	T											*			*	г					
Quarter 3, 2019	1														*						*
Quarter 4, 2019			L												*						
CHLORIDE																					
Quarter 1, 2006																				*	
Quarter 2, 2014															*						
COBALT																					
Quarter 3, 2003	*			oxdot			*		\Box	*	*		*	*	*	*	*	*	_	*	
Quarter 1, 2004	<u> </u>								$oxed{oxed}$	ļ				*	<u> </u>	<u> </u>	_	<u> </u>	1	Ш	_
Quarter 2, 2016														*							
CONDUCTIVITY										45											
		<u> </u>	_	\vdash			\vdash		\vdash	*	_	-	\vdash	<u> </u>	<u> </u>	⊢	_	<u> </u>	-	\vdash	_
Quarter 4, 2002				1			\vdash		_	*		_	\vdash	<u> </u>		_	_	_			
Quarter 1, 2003																			1		
Quarter 1, 2003 Quarter 2, 2003									H	*	*					⊢					
Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003										*	*										
Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 1, 2004										*	*										
Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003										*	*										

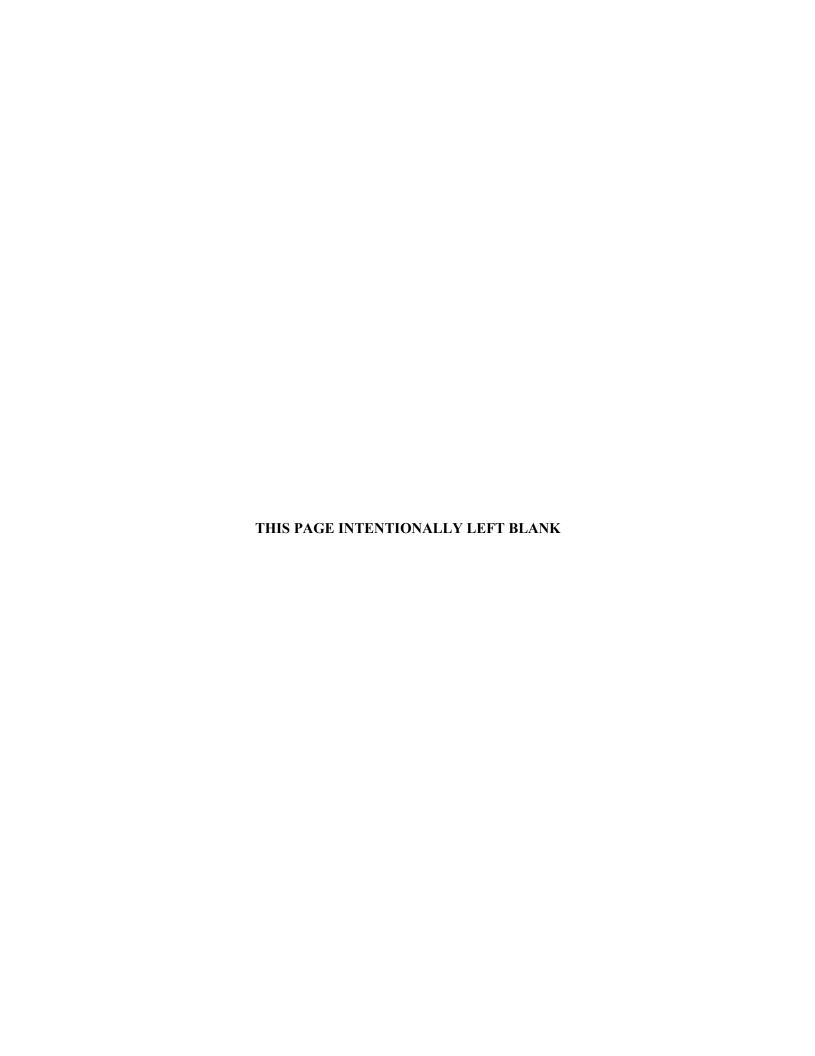
Gradient D S S S D D D U U U D D D D U U U D D D 0 D D D D	Groundwater Flow System	_			UCR						_		HDC	¹ A			_		LRG	¹ A		
Mountorn Well SONDE(FLYIN) Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4,		D	S	S			D	р	11	11	D	р			П	II	D	Б			П	11
CONDUCTIVITY																						373
Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 201			-					-			-		-									
Quenter 1, 2005 Quenter 2, 2005 Quenter 3, 2005 Quenter 4, 200											*											
Quarter 2, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 6, 2019 Quarter 7, 2016 Quarter 7, 2007 Quarter 7, 2008 Quarter 7, 2008 Quarter 7, 2007 Quarter 7, 200											_					*						
Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2008 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 200																						
Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2000 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2009 Quarter 2, 200							*									_				*		
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 200																*			*	-		
Quarter 2, 2006 Quarter 1, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 1, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2011 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 200																			<u> </u>			
Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 200						\vdash					_						_					
Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 200			-							_	_											
Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2019 Quarter 2, 2016 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2009 Quarter 2, 200			-							_	_						_					
Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2019 Quarter 4, 2016 Quarter 2, 2019 Quarter 4, 2016 Quarter 2, 2019 Quarter 2, 2009 Quarter 2, 200			-							-							_					
Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2019 Quarter 2, 2009 Quarter 2, 200											-											
Quarter 1, 2008																						
Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2000 Quarter 2, 200			-			\vdash			-	-	_			_			_	_	_		_	_
Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 4, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2019 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 200			_							_	_								_			
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 200						_				_								_	_			
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 1, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2019 Quarter 2, 2016 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 2000 Quarter 3, 200						_				_								_	_			
Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 200																						
Quarter 1, 2009																						
Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2010 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2019 Quarter 3, 2016 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2010 Quarter 2, 2019 Quarter 3, 2010 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2010 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2000 Quarter 3, 2020 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2009 Quarter 3, 2000 Quarter 3, 200																						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2016 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2019 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2007 Quarter 1, 2008 Quarter 2, 2009 Quarter 1, 2008 Quarter 2, 2009 Quarter 2, 200	Quarter 3, 2009																					
Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2019 Quarter 2, 2010 Quarter 3, 2000 Quarter 2, 200		ட	\Box							\Box	$ldsymbol{\square}$								\Box			
Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2019 Quarter 4, 2020 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 1, 2006 Quarter 2, 2009 Quarter 1, 2006 Quarter 2, 2009 Quarter 1, 2006 Quarter 2, 2009 Quarter 1, 2008 Quarter 2, 2009 Quarter 3, 20		ட	L			L				L	L								L			
Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2019 Quarter 4, 2020 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 1, 2006 Quarter 2, 2009 Quarter 1, 2006 Quarter 2, 2009 Quarter 1, 2006 Quarter 2, 2009 Quarter 1, 2008 Quarter 2, 2009 Quarter 3, 20									Ĺ	L^-	L					*			\Box			
Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2006 Quarter 3, 2007 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 200																						
Quarter 1, 2011						Г																
Quarter 2,2011 Quarter 4,2011 Quarter 4,2011 Quarter 4,2011 Quarter 1,2012 Quarter 2,2012 Quarter 2,2012 Quarter 2,2012 Quarter 2,2013 Quarter 4,2013 Quarter 3,2013 Quarter 3,2013 Quarter 4,2013 Quarter 4,2013 Quarter 4,2014 Quarter 4,2014 Quarter 4,2014 Quarter 4,2014 Quarter 4,2015 Quarter 2,2015 Quarter 3,2016 Quarter 3,2019 Quarter 1,2020 Quarter 3,2019 Quarter 1,2020 Quarter 2,2006 Quarter 2,2007 Quarter 2,2006 Quarter 2,2007 Quarter 2,2006 Quarter 2,2007 Quarter 2,2006 Quarter 2,2006 Quarter 2,2006 Quarter 2,2007 Quarter 2,2006 Quarter 2,2006 Quarter 3,2009 Quarter 2,2006 Quarter 2,2006 Quarter 2,2006 Quarter 2,2007 Quarter 3,2009 Quarter 3,2000																						
Quarter 3, 2011																						
Quarter 4, 2011																						
Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2016 Quarter 2, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2000 Quarter 3, 200																						
Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2001 Quarter 3, 2000 Quarter 3, 200						\vdash									*		\vdash		\vdash			
Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2015 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2010 Quarter 2, 2000 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *		Н											H		_		—					
Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2019 Quarter 5, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 7, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2000 Quarter 3, 2001 DISSOUYED OXYGEN Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2000 Quarter 1, 2009 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2009 Quarter			-			\vdash			-	_	_							_	_			
Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 200		\vdash	\vdash	_	\vdash	\vdash	_	_	\vdash	\vdash	<u> </u>	_	\vdash	_	—		\vdash	\vdash	\vdash	\vdash	-	
Quarter 2, 2013 Quarter 1, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2014 Quarter 3, 2014 Quarter 1, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 2, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2021 Quarter 1, 2021 Quarter 1, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2021 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2003 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 200			_			_				_								_	_			
Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2000 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 ** Quarter 2, 2009 Quarter 3, 2000 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 4,																						
Quarter 4, 2013 Quarter 1, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2016 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 1, 2003 Quarter 4, 2009 Quarter 1, 2006 Quarter 4, 2009 Quarter 1, 2000 Quarter 2, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2021 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2020 Quarter 4, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 200																						
Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2019 Quarter 2, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 5, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 2, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2006 ** Quarter 1, 2006 ** ** Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009																						
Quarter 2, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2019 Quarter 3, 2016 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2020 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2000 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2006 ** ** Quarter 2, 2006 ** ** Quarter 1, 2006 ** ** Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Qua																						
Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 3, 2019 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 2021 Quarter 1, 2021 Quarter 1, 2031 Quarter 1, 2031 Quarter 1, 2031 Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 200	Quarter 1, 2014															*						
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2030 Quarter 4, 2030 Quarter 2, 2021 Quarter 3, 2020 Quarter 2, 2005 Quarter 2, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 3, 2009 ** ** ** ** ** ** ** ** **	Quarter 2, 2014															*						
Quarter 1, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 1, 2021 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 ** ** ** ** ** ** ** Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2010 ** ** ** ** Quarter 1, 2010 Quarter 2, 2009 Quarter 2, 2010 ** ** ** Quarter 2, 2010 Quarter 2, 2009 Quarter 2, 2010 ** ** ** Quarter 2, 2010 ** ** ** Quarter 2, 2010 ** ** ** Quarter 2, 2009 Quarter 3, 2010 ** ** ** ** Quarter 2, 2010 ** ** ** Quarter 2, 2010 ** ** ** Quarter 2, 2010 Quarter 3, 2009 Quarter 2, 2010 ** ** ** ** Quarter 2, 2010 Quarter 3, 2009 Quarter 2, 2010 ** ** ** ** ** Quarter 2, 2010 Quarter 3, 2010 ** ** ** ** Quarter 2, 2010 Quarter 3, 2010 ** ** ** ** Quarter 3, 2010 ** ** ** Quarter 3, 2010 ** ** ** Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 ** ** ** Quarter 9, 2010 ** ** ** ** Quarter 9, 2010 ** ** Quarter 9, 2010 ** ** Quarter 9, 2010 ** Quarter 9, 2010 ** Quarte	Quarter 3, 2014															*						
Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2030 Quarter 2, 2041 Quarter 3, 2021 Quarter 2, 2021 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2030 Quarter 1, 2040 Quarter 2, 2050 Quarter 2, 2060 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010 ** * * * * * * * * * * * * * * * * *	Quarter 4, 2014															*						
Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 1, 2021 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 1, 2021 Quarter 3, 2020 Quarter 1, 2001 Quarter 2, 2004 Quarter 4, 2009 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 1, 2010 ** * * * * * * * * * * * * * * * * *																*						
Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2021 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 W* W* W* W* Quarter 1, 2006 W* W* W* Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 W* W* W* W* Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 W* W* W* W* Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 W* W* W* W* Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 W* W* W* W* Quarter 1, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 1, 2010 W* W* W* W* W* W* W* W* W* W																*						
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2020 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 5, 2021 Quarter 6, 2003 Quarter 7, 2021 Quarter 7, 2025 Quarter 9, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2006 ** ** ** ** ** ** ** ** ** ** ** ** *																						
Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2011 Quarter 2, 2021 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 1, 2001 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 X X X X X X X X X X X X X X X X X X																						
Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 3, 2021 Quarter 4, 2033 Quarter 4, 2033 Quarter 4, 2033 Quarter 4, 2033 Quarter 4, 2035 Quarter 2, 2044 Quarter 2, 2044 Quarter 2, 2055 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2000 Quarter 3, 200																	_					
Quarter 3, 2016 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2021 Quarter 3, 2021 DISSOLVED OXYGEN Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 20																	_					
Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 200											-						_	-				
Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010 ** ** ** ** ** ** ** ** **											_						_					
Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 3, 2021 Quarter 3, 2021 DISSOLVED OXYGEN Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 * * * * * * * * * * * * * * * * * * *			_			\vdash			-	_	_							_			_	
Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 DISSOLVED OXYGEN Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010 ** ** ** ** ** ** ** ** **										_							_	_				
Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 1, 2003 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 ** ** ** ** ** ** ** ** **											-							_				
Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 1, 2003 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 ** ** ** ** ** ** ** ** **		Н	_	_	<u> </u>	\vdash	_	_	<u> </u>			_	Ш				<u> </u>	<u> </u>	_	ш		
Quarter 4, 2020 Quarter 1, 2021 Quarter 3, 2021 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010 * * * * * * * * * * * * * * * * * * *		\vdash	<u> </u>	<u> </u>	<u> </u>	\vdash	<u> </u>	<u> </u>	<u> </u>	<u> </u>	—	<u> </u>	\vdash				<u> </u>	<u> </u>	<u> </u>	\vdash		
Quarter 1, 2021 Quarter 2, 2021 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2010 ** ** ** ** ** ** ** ** **		ш			<u> </u>	$ldsymbol{ldsymbol{eta}}$																
Quarter 2, 2021 Quarter 3, 2021 Quarter 1, 2003 Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 20																						
Quarter 3, 2021 DISSOLVED OXYGEN Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 ** ** ** ** ** ** ** ** **		ш				$oxed{\Box}$				_				<u>ل</u> ــــــــــــــــــــــــــــــــــــ					_			
DISSOLVED OXYGEN																						
Quarter 1, 2003	Quarter 3, 2021															*						
Quarter 3, 2003																						
Quarter 4, 2003	Quarter 1, 2003						*															
Quarter 1, 2004											*											
Quarter 1, 2004	Quarter 4, 2003					*																
Quarter 2, 2004																						
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 5, 2009 Quarter 6, 2008 Quarter 7, 2008 Quarter 7, 2008 Quarter 8, 2008 Quarter 9, 2008 Quarter 9, 2008 Quarter 1, 2009 Quarter 1, 2010 ** ** ** ** ** ** ** ** ** ** ** ** *									*								*					
Quarter 2, 2005 Quarter 1, 2006						*																
Quarter 1, 2006						<u> </u>			*								\vdash					
Quarter 2, 2006			\vdash			*			<u> </u>	\vdash						\vdash	\vdash		\vdash			
Quarter 3, 2006 * * * Quarter 4, 2006 * * * Quarter 2, 2007 * * * Quarter 3, 2007 * * * Quarter 1, 2008 * * * Quarter 1, 2008 * * * Quarter 2, 2008 * * * Quarter 1, 2009 * * * Quarter 2, 2009 * * * Quarter 1, 2010 * * * Quarter 2, 2010 * * *									*							\vdash	\vdash		\vdash			
Quarter 4, 2006																	\vdash					
Quarter 2, 2007		\vdash	-	-	-		—	-	*	- NE	<u> </u>	-	\vdash				 	<u> </u>	-	—		
Quarter 3, 2007 * * * * Quarter 1, 2008 * * * Quarter 2, 2008 * * * Quarter 3, 2008 * * * Quarter 1, 2009 * * * Quarter 2, 2009 * * * Quarter 3, 2009 * * * Quarter 1, 2010 * * * Quarter 2, 2010 * * *		Н	<u> </u>	—	-		_	—		T	-	—	\vdash			\vdash	<u> </u>	-	-	\vdash		
Quarter 1, 2008 * Quarter 2, 2008 * Quarter 3, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *		⊢	-	-	-		-	-		,e.	-	-	\vdash		—		<u> </u>	<u> </u>	—	—		
Quarter 2, 2008 * * * Quarter 3, 2008 * * Quarter 1, 2009 * * Quarter 2, 2009 * * * Quarter 3, 2009 * * * Quarter 1, 2010 * * * Quarter 2, 2010 * * * *		⊢	<u> </u>	<u> </u>	<u> </u>		_	<u> </u>	*	*	—	<u> </u>	\vdash			\vdash	<u> </u>	<u> </u>	<u> </u>			
Quarter 3, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 3, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *			<u> </u>			*			L_	<u> </u>						<u> </u>			_	*		
Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *		-	<u> </u>			\vdash				*	<u> </u>		\vdash	\vdash		igspace	<u> </u>		<u> </u>	\vdash		
Quarter 2, 2009 * * * * Quarter 3, 2009 * * * * Quarter 1, 2010 * * * Quarter 2, 2010 * * * *		ш	<u> </u>			$ldsymbol{ldsymbol{eta}}$			*											\Box		
Quarter 3, 2009 * * * Quarter 1, 2010 * * Quarter 2, 2010 * * *								*														
Quarter 1, 2010 * * * Quarter 2, 2010 * * *						*			*													
Quarter 1, 2010 * * * Quarter 2, 2010 * * *		LĪ	L		L		*		*	*	L						L	L	L			
Quarter 2, 2010						*		*														
							*		*	*											*	*
		_									_											

Graelient D S S S S D D D D U D D D D D D D D D D	Groundwater Flow System	I			UCR	S					ı —		URG	iA.					LRG	A		
DISSOLATE ONYCEN	Gradient	_			S	D			_	_			D	D	_	-			D	D		
Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2013 Quarter 2, 2015 Quarter 4, 2013 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 201	Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 201								*					*								*	
Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 5, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 7, 2013 Quarter 8, 2013 Quarter 9, 2015 Quarter 9, 201							*	*					*								*	
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 4, 2019 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2003 Quarter 4, 2000 Quarter 4, 2017 Quarter 4, 2010 Quarter 4, 2017 Quarter 4, 201	Quarter 2, 2011					*		*	*						*							
Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 201							*			_												
Quarter 2, 2012					444			*		_	_								_			
Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 201		*			*	*	_		*	*	-						_		-			
Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 5, 2014 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 8, 2019 Quarter 9, 2019 Quarter 9, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 201							· T			*												
Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 4, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2001 Quarter 4, 2000 Quarter 4, 2001 Quarter 4, 200	Quarter 1, 2013						*															
Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2019 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2021 Quarter 2, 2020 Quarter 2, 202	Quarter 2, 2013							_		_												
Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 1, 2019 Quarter 2, 201	Quarter 3, 2013	*				*		*	*		_											
Quarter 3, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 2, 2021 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 2, 202											_										*	
Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2000 Quarter 1, 2000 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2005 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 2001 Quarter 6, 2001 Quarter 6, 2001 Quarter 7, 2001 Quarter 7, 2001 Quarter 7, 2001 Quarter 8, 2001 Quarter 9, 2001 Quarter 9, 200									*	*	-								*			
Quarter 2, 2015		T				-		T														
Quarter 4, 2015	Quarter 2, 2015					*		*	*													
Quarter 1, 2016	Quarter 3, 2015					*			*													
Quarter 2, 2016	Quarter 4, 2015						*															
Quarter 1, 2016			-			_	.	_	-	<u>_</u>	-								-		•	•
Quarter 1, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2021 Quarter 4, 2020 Quarter 2, 2021 Quarter 4, 2020 Quarter 2, 2021 Quarter 3, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 202		*	*						_	*				*		\vdash	_		\vdash		*	*
Quarter 1, 2017						T		· T	*	*				*								
Quarter 1, 2017	Quarter 1, 2017							*		Ė				*								
Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2020 Quarter 2, 2021 Quarter 2, 202	Quarter 2, 2017	_				_		*	_													
Quarter 1, 2018	Quarter 3, 2017	*	*			*			*													
Quarter 2, 2018	Quarter 4, 2017	<u> </u>	-	_	<u> </u>	_	_		-	_	<u> </u>	<u> </u>	<u> </u>			\vdash	<u> </u>	<u> </u>	*		4	
Quarter 1, 2018									_		<u> </u>					\vdash	 				未	
Quarter 1, 2018		*							_	\vdash	\vdash	\vdash	\vdash			\vdash	\vdash					
Quarter 1, 2019	Quarter 4, 2018	<u> </u>						<u> </u>														
Quarter 1, 2019	Quarter 1, 2019					*		*	*													
Quarter 2,019	Quarter 2, 2019								_													
Quarter 1,0200		*							*													
Quarter 2, 2020						*	*		-	<u>_</u>	_								-			
Quarter 3, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2022 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2008 Quarter 2, 2009 Quarter 4, 2008 Quarter 2, 2009 Quarter 4, 2008 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 201						*	*	木	_	*	_			\vdash		\vdash	_		\vdash			
Quarter 1, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 4, 2020 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2019 Quarter 6, 201		*				_	_		-													
Quarter 2, 2021	Quarter 4, 2020					Ė		*														
Quarter 4, 2021 *	Quarter 1, 2021					_															*	
Section Sect	Quarter 2, 2021					_			_	*						\perp						
DISSOLVED SOLLDS		*				_	*	_	_	-	-						_		-			
Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 2, 2012 Quarter 4, 2013 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2013 Quarter 4, 2015 Quarter 2, 2014 Quarter 2, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2013 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 201						不		不	不												不	
Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2011 Quarter 4, 2010 Quarter 5, 2012 Quarter 6, 2013 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2019 Quarter 1, 2010 Quarter 7, 2010 Quarter 7, 2016 Quarter 7, 2019 Quarter 1, 2010 Quarter 7, 2010 Quarter 9, 201											*											
Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2012 Quarter 6, 2012 Quarter 7, 2013 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2015 Quarter 8, 2015 Quarter 9, 2015 Quarter 9, 2015 Quarter 1, 2016 Quarter 1, 2018 Quarter 1, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 6, 2012 Quarter 7, 2015 Quarter 7, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2019 Quarter 6, 2019	Quarter 1, 2003										*											
Quarter 4, 2003 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 5, 2018 Quarter 6, 2019 Quarter 7, 2019 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 5, 2015 Quarter 3, 2015 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2010 Quarter 6, 2019 Quarter 7, 2019 Quarter 7, 2010 W* W* W* W* W* W* W* W* W* W	Quarter 2, 2003										_											
Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 8, 2019 Quarter 9, 201		_						*				*										
Quarter 4, 2006							ж				*						_					
Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2010 Quarter 5, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 5, 2013 Quarter 6, 2013 Quarter 6, 2014 Quarter 7, 2015 Quarter 1, 2018 Quarter 9, 2019 Quarter 1, 2019 Quarter 1, 2010 Quarter 9, 201							·				-					*	_		 			
Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 2, 2014 Quarter 3, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019																						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2014 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 3, 2015 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2016 Quarter 1, 2019 Quarter 3, 2019 Quarter 4, 2019	Quarter 2, 2007															*						
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2019 Quarter 4, 2019	Quarter 4, 2008																					
Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2016 Quarter 1, 2019 Quarter 4, 2019																						
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 5, 2012 Quarter 6, 2012 Quarter 7, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2019 Quarter 4, 2019		\vdash	\vdash	\vdash	\vdash	\vdash	_	\vdash	\vdash		\vdash	\vdash	\vdash	\vdash	_		\vdash	\vdash	\vdash			
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019		\vdash				\vdash			\vdash		\vdash			\vdash		-	\vdash		\vdash			
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2019 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2019 Quarter 1, 2016 Quarter 1, 2019 Quarter 1, 2016 Quarter 4, 2019	Quarter 1, 2010								\vdash		\vdash						\vdash					
Quarter 3, 2010 *	Quarter 2, 2010															*						
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2010	Quarter 3, 2010																					
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2016 Quarter 1, 2019 Quarter 1, 2019 Quarter 4, 2019	Quarter 4, 2010	<u> </u>		_		L			\vdash	_	<u> </u>		<u> </u>	\vdash			<u> </u>	<u> </u>	_			
Quarter 3, 2011 * Quarter 4, 2011 * Quarter 1, 2012 * Quarter 2, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 1, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 * Quarter 4, 2013 * Quarter 4, 2014 * Quarter 4, 2014 * Quarter 2, 2015 * Quarter 3, 2015 * Quarter 4, 2016 * Quarter 1, 2016 * Quarter 4, 2019 * Quarter 4, 2019 * Quarter 4, 2019 *		_			-	\vdash		<u> </u>	<u> </u>		<u> </u>	_	<u> </u>	\vdash			_	_	_			
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2011 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2000		 									 						<u> </u>		—			
Quarter 1, 2012	Quarter 4, 2011																					
Quarter 2, 2012	Quarter 1, 2012														*							
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2019 Quarter 4, 2020 ** Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2020 ** Quarter 4, 2019 Quarter 4, 2020 ** Quarter 4, 2020	Quarter 2, 2012															*						
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2020 **	Quarter 3, 2012	_												$oxed{\Box}$								*
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2019 Quarter 1, 2020 ** Quarter 1, 2020 ** Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 ** Quarter 1, 2020		-		_	-				-		<u> </u>		_				<u> </u>					
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 **		\vdash					_	\vdash	\vdash		\vdash	\vdash	\vdash	\vdash			\vdash		\vdash			
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 **									\vdash		\vdash											
Quarter 1, 2014 * Quarter 2, 2014 * Quarter 4, 2014 * Quarter 2, 2015 * Quarter 3, 2015 * Quarter 4, 2015 * Quarter 4, 2015 * Quarter 1, 2016 * Quarter 3, 2019 * Quarter 4, 2019 * Quarter 1, 2020 *	Quarter 4, 2013																					
Quarter 4, 2014	Quarter 1, 2014															*						
Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 W* Quarter 4, 2019 W* Quarter 1, 2020 W*	Quarter 2, 2014																					
Quarter 3, 2015 * Quarter 4, 2015 * Quarter 1, 2016 * Quarter 3, 2019 * Quarter 4, 2019 * Quarter 1, 2020 *	Quarter 4, 2014	lacksquare			\vdash	\Box		\Box	\vdash	\vdash	\sqsubseteq		\sqsubseteq				\sqsubseteq	\vdash				
Quarter 4, 2015 Quarter 1, 2016 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 ** Quarter 1, 2020 **		<u> </u>		_		_			_	-	<u> </u>						<u> </u>		-			
Quarter 1, 2016											<u> </u>											
Quarter 3, 2019											\vdash						\vdash					
Quarter 4, 2019	Quarter 3, 2019										\vdash						\vdash					
	Quarter 4, 2019															*						
Quarter 2, 2020 * * *	Quarter 1, 2020																					
	Quarter 2, 2020															*	_					

Groundwater Flow System	1			UCR	c					_		URG	¹.A.					LRG	1 A		
Gradient Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED SOLIDS																					
Quarter 3, 2020															*						
Quarter 4, 2020	<u> </u>									_					*	<u> </u>					
Quarter 1, 2021	ļ									_					*	Ь					
Quarter 2, 2021	<u> </u>									-					*	⊢					
Quarter 3, 2021	-				_				-	_					*	⊢	-	\vdash			
Quarter 4, 2021 IODIDE															不						
Quarter 2, 2003																*					
Quarter 3, 2003	*									*						╨					
Quarter 4, 2003	+						*			-						\vdash					
Quarter 3, 2010	1					*		*					*			т	*				
IODINE-131																					
Quarter 3, 2010																					
IODOMETHANE																					
Quarter 4, 2003						*										_					
IRON																					
Quarter 4, 2002	<u> </u>					*				_						<u> </u>		<u> </u>			
Quarter 3, 2003	1									*						*					
Quarter 4, 2003	1				_				-	*						*	-	┢			
Quarter 1, 2004 Quarter 2, 2004	1	 	\vdash	\vdash		_	\vdash	\vdash	\vdash	*	\vdash	\vdash	\vdash		_	 *			\vdash	\vdash	
Quarter 2, 2004 Quarter 3, 2004	t									*						\vdash		1		\vdash	
Quarter 3, 2005	t									- -						*		†			
MAGNESIUM																					
Quarter 2, 2005	П														*						*
Quarter 3, 2005	t					*										Г					*
Quarter 2, 2006	L														*			L			*
Quarter 3, 2006	L														*						
Quarter 1, 2007															*						
Quarter 2, 2008															*						
Quarter 2, 2009															*	匚					
Quarter 3, 2009	<u> </u>														*						
Quarter 4, 2009	<u> </u>														*	Щ					
Quarter 1, 2010															*	_		<u> </u>			
Quarter 2, 2010	<u> </u>								_	_					*	<u> </u>	_				
Quarter 3, 2010	-									-					*	⊢		-			
Quarter 1, 2011	₩-									-					*	⊢					
Quarter 2, 2011 Quarter 3, 2011	-									-					*	⊢					
Quarter 4, 2011	t														*	⊢					
Quarter 1, 2012	 														*	\vdash					
Quarter 2, 2012	1														*	\vdash					
Quarter 3, 2012	t														*	Т					
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014										_					*	Щ					
Quarter 2, 2015										_					*	<u> </u>		_			
Quarter 3, 2015	₩-									-					*	⊢					
Quarter 4, 2015	1									_					*	⊢					
Quarter 1, 2016 Quarter 2, 2016	\vdash	 	-	\vdash			\vdash		\vdash	\vdash			\vdash		*	\vdash		\vdash	 	\vdash	
	*								\vdash	_					*	⊢		\vdash			
Quarter 3, 2016 Quarter 4, 2016	*	†				<u> </u>				┢	 					\vdash				\vdash	
Quarter 2, 2017	*			Н						H			H			Н					
Quarter 3, 2017	*															г					
Quarter 1, 2018	*															Г					
Quarter 3, 2018	*								L												
Quarter 3, 2019	*	L																L			
Quarter 4, 2019															*						
Quarter 2, 2020															*	\Box					
Quarter 4, 2020															*						
Quarter 1, 2021	_			ш					_	_			\Box		*	<u> </u>				ш	
Quarter 2, 2021	₩		_	\vdash				_	_	<u> </u>		_	\vdash		*	⊢	_	<u> </u>	<u> </u>	ш	
Quarter 3, 2021	├	-		\vdash			-	-	-	 	-	-	\vdash		*	⊢	-	-	-	Н	
Quarter 4, 2021															*						
MANGANESE Overtor 2, 2002										*		*									
Quarter 3, 2002 Quarter 4, 2002	\vdash	*	\vdash	\vdash		*	*	\vdash	\vdash	*	\vdash	*	\vdash	*		\vdash	\vdash	 	\vdash	\vdash	
Quarter 4, 2002 Quarter 2, 2003	╁	T	<u> </u>	H		TT.	*	<u> </u>		*		*	\vdash	-		\vdash		!	-	H	
Quarter 3, 2003	t									*		*	*			*	*	*	*		
Quarter 4, 2003	t									*	*	*	*			Г	*	*			
Quarter 1, 2004	t									*	*	*				*	*	*		\Box	
Quarter 2, 2004	Ī						*			*	*	*						*			
Quarter 3, 2004							*			*	*	*				*					
Quarter 4, 2004										*		*				*					
Quarter 1, 2005										*		*									
Quarter 2, 2005	_			ш					_	*		*	\Box			<u> </u>				ш	
Quarter 3, 2005	<u> </u>	_	_	\vdash			<u> </u>	_	_	*	<u> </u>	*	<u> </u>			*	_	<u> </u>	_	Ш	
Quarter 4, 2005	Ц_									*						*				ш	

Commenter Floor Southern				HCT						_		LIDA	٠.			_		I D	٠.		
Groundwater Flow System Gradient	D	S	S	UCR	D	D	D	U	U	D	D	D	D	U	U	D	D	LRC D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364		370	373
MANGANESE	500	313	370	311	337	302	303	5/1	3/4	300	500	303	331	307	312	507	501	304	550	570	313
Quarter 1, 2006										*						_					
Quarter 2, 2006	1						*			*		*				⊢					
Quarter 3, 2006	1			-	_	-	*	-	\vdash	*		*	-	-	-	*	\vdash				
	-								_					_		*	<u> </u>				
Quarter 4, 2006	-			-	-	-	-	-	-	*	-		-	-	-	⊢	-				
Quarter 1, 2007	-			-		_		_	_	*	_		_		_	⊢	<u> </u>	_			
Quarter 2, 2007	-			_		_	*		_	*	_		_			Ι—	-	_			
Quarter 3, 2007				_			*		_				_			<u> </u>	_	_			
Quarter 3, 2008							*									L					
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 3, 2011							*														
Quarter 2, 2016														*							
Quarter 3, 2016									*							П					
NICKEL																					
Quarter 3, 2003										*						Т					
NITRATE AS NITROGEN																					
Quarter 4, 2021																-					
OXIDATION-REDUCTION P	OTE	NTI A	ĭ									-									
Quarter 4, 2002	T	TIA	L														*		*		
	-			-	_	-		-	-	-				-		⊢	*		_		
Quarter 1, 2003	-				_	_			-	_				_		⊢	木		*		
Quarter 2, 2003		-	—	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	—	_	<u> </u>	<u> </u>	⊢	—	_	*	\vdash	
Quarter 3, 2003	*			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ь.	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Щ		<u> </u>	Ь	\vdash	
Quarter 4, 2003	<u> </u>				*	<u> </u>						L_			<u> </u>	<u> </u>	_			$ldsymbol{ldsymbol{ldsymbol{eta}}}$	
Quarter 2, 2004	匸	匸	匸					\Box	匸	匚		匸	*			ட	*	匸	匸		*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005	1																*			*	*
Quarter 2, 2005	t							*		T			*			т	*			*	Ė
Quarter 3, 2005	t				*	*		*		H	*	*	*			\vdash	*		*	*	*
	 	*	 	<u> </u>	┢▔	 ^		*	\vdash	\vdash	┢┸	Ť	*	\vdash		\vdash	*		 ˆ	*	
Quarter 4, 2005	\vdash	*	-	-	44	\vdash	-	_	- de	├	-	\vdash	*	<u> </u>	-	\vdash	_	_	-	*	, ale
Quarter 1, 2006		-	-	<u> </u>	*	⊢	*	*	*	⊢	<u> </u>	-	*		<u> </u>	—	*	<u> </u>	-	*	*
Quarter 2, 2006				_			*		_							<u> </u>		_			
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*			*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*			l	*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007																-	*			*	*
Quarter 1, 2008	1				*			*				*	*			\vdash	Ė		*	*	
Quarter 2, 2008	1				*			*	\vdash	*			*	*		╌		*		*	*
	-			-	*	\vdash	*	*	*	*	-	*	*	*		├	*	*	*	*	*
Quarter 3, 2008	-			-	*	_	*	*	*	*		_	*	*		⊢	*	_	*	*	
Quarter 4, 2008	-				_	-	-		-			*		_		⊢	不	*			*
Quarter 1, 2009	_						*	*	_	*		*	*			<u> </u>		*		*	
Quarter 2, 2009					*		*	*		*		*	*			<u> </u>	*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*		Ц_	*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*	Г	*	*	*	*	*
Quarter 4, 2010	1	*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011	1					*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 2, 2011	1	*		-	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
	1	*			<u> </u>	*	-	*	*	*	T	*	*	*		*	*	*	*	*	*
Quarter 3, 2011	₩			-	_	_	-		*					_	-		_		不		
Quarter 4, 2011	_	*		_	_	*		*	<u> </u>	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*	_			*		*	\perp	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012	匸	*		L	L	*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013	L^{T}	*			L	*		*	*	*	*	*	*	*	L	*	*	*		*	
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013	T	*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014	t	*				Ė		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014 Quarter 2, 2014	*	*	<u> </u>		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	*	*	\vdash	\vdash	*	*	*	*	*	*	 *	*	*	*	 *	*	*	*	*	*	*
Quarter 3, 2014	*		-	\vdash	*		*		_		\vdash	_			\vdash						
Quarter 4, 2014	₩	*	-	-	<u> </u>	*	-	*	*	*	44-	*	*	*	44-	*	*	*	*	*	*
Quarter 1, 2015	L.	*	<u> </u>	<u> </u>	<u> </u>	*	ļ.,.	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*	Ь.		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	Ш.	*	Ь.		*	*	<u> </u>	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*	レー	L	L	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*			*		*	*		*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*	-		Ė	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016 Ouarter 1, 2017	*	*	<u> </u>		\vdash	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	*	*	-		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017			 	-				_	_	_	*	_				_		_	_		
Quarter 3, 2017	*	*	₩	_	*	*	*	*	*	*	<u> </u>	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2017	L .	*	_		<u> </u>	*	*	*	*	*		*	*	*	*	L-	*	*	<u> </u>	*	*
Quarter 1, 2018	*	*	$oldsymbol{ol}}}}}}}}}}}}}}}}}$		*	*	*	*	*	*		*	*	*	*	*	*	*		*	*
Quarter 2, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2018	Ī	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Zum (01 1, 201)					Ë		_	_		÷		_	÷	_	_	_	_	_			

Groundwater Flow System	<u> </u>			UCR	s					Г		URG	Ā			Г		LRG	A		_
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
OXIDATION-REDUCTION P			L		*	*	*	- V	- L		*	*	34	- L	- L	<u>.</u>	<u> </u>	*	*	<u>.</u>	- V
Quarter 2, 2019 Quarter 3, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 2, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 3, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 4, 2020	*	*			.	*	*	*	*	*	*	4	*	*	*	*	*	*		*	*
Quarter 1, 2021	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2021 Quarter 3, 2021	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2021	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL																					
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*		_					<u> </u>		<u> </u>					
Quarter 2, 2006							*							_		├					
Quarter 3, 2006 Quarter 1, 2007							*									<u> </u>					
Quarter 2, 2007							*									\vdash					
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008		\Box					*														
Quarter 4, 2008	—						*	<u> </u>	-	<u> </u>	_		_		<u> </u>	<u> </u>	_			_	
Quarter 3, 2009	-						*			<u> </u>						\vdash					
Quarter 1, 2010 Quarter 2, 2010	\vdash	\vdash		\vdash		_	*		\vdash	_	_	\vdash		\vdash	\vdash	\vdash			_		\vdash
Quarter 2, 2010 Quarter 4, 2010		\vdash					*		\vdash	\vdash				\vdash	\vdash	\vdash					\vdash
PCB-1016																					
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														
Quarter 2, 2007							*							_		<u> </u>					
Quarter 3, 2007							*									├					
Quarter 2, 2008 Quarter 4, 2008							*									\vdash					
Quarter 3, 2009							*							\vdash		┢					
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*					*		_		Ь—					
Quarter 4, 2006							*			*						├					
Quarter 1, 2008 Quarter 2, 2012							*									<u> </u>					
PCB-1248							-														
Quarter 2, 2008							*														
PCB-1260																					
Quarter 2, 2006							*														
pH																					
Quarter 3, 2002									_	*				_		<u> </u>					
Quarter 4, 2002 Quarter 1, 2003									-	*				-		<u> </u>					
Quarter 1, 2003 Quarter 2, 2003										*						<u> </u>					
Quarter 3, 2003	*						*			*						\vdash					
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005		\Box				*												*	*		
Quarter 4, 2005						*										L.,			*		
Quarter 3, 2006														*		*					
Quarter 2, 2011 Quarter 3, 2011	 	\vdash		\vdash		_	\vdash		\vdash	\vdash	-	\vdash		*	\vdash	\vdash		_	_		\vdash
Quarter 4, 2011														*		\vdash					
Quarter 1, 2012														Ė		*	*				
Quarter 2, 2012												*									
Quarter 1, 2013										*		*				*					
Quarter 3, 2015										<u> </u>						<u> </u>	*			<u> </u>	
Quarter 2, 2016	—			H		_	_	-	-	<u> </u>	_		-	-	<u> </u>	⊢	-	-	_	*	*
Quarter 3, 2016 Quarter 2, 2017	\vdash			\vdash												\vdash	*			木	\vdash
Quarter 2, 2017 Quarter 3, 2018	H				*					*		*				\vdash	*	*	*		\vdash
Quarter 4, 2018	Г									Ë		<u> </u>				*	Ė	*	Ë		М
Quarter 3, 2019																*					
Quarter 1, 2021																*		*		*	
Quarter 3, 2021																<u> </u>					*
Quarter 4, 2021																*					*
POTASSIUM Overtor 1, 2014																*					
Quarter 1, 2014 RADIUM-228																_					
Quarter 2, 2005																					
Quarter 4, 2005						•						-		ΙĪ				•			
SELENIUM																					
Quarter 4, 2003																					


Groundwater Flow System				UCR	S					_		URG	:A			_		LRG	-A		\neg
Gradient	D	S	S	s	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SODIUM																					
Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										*											
Quarter 2, 2003										*	*					<u> </u>					
Quarter 3, 2003											*					Ц_					
Quarter 1, 2007											*					<u> </u>					
Quarter 1, 2012														*		<u> </u>					
Quarter 1, 2014															*	Щ					
Quarter 3, 2014											*										
Quarter 4, 2014											*										
Quarter 4, 2015											*										
Quarter 1, 2016											*					<u> </u>					
Quarter 2, 2016											*					Щ					
Quarter 3, 2016											*					<u> </u>					
Quarter 4, 2016								_			*					L_					
Quarter 1, 2017											*					L					
Quarter 2, 2017	_					_	_	_			*	_				<u> </u>					_
Quarter 3, 2017	_						_	_			*	_		_		<u> </u>					<u> </u>
Quarter 4, 2017	<u> </u>										*					Щ					_
Quarter 1, 2018	_	_					_	L_	_		*			_		Ь	_	_			⊢
Quarter 3, 2018	\vdash									\vdash	*					\vdash					
STRONTIUM-90																					
Quarter 4, 2008							•														
SULFATE																					
Quarter 1, 2003	_					L.	*	_			_	_				<u> </u>					_
Quarter 2, 2003						*	*									$oxed{oxed}$					
Quarter 3, 2003	*					*										Щ					\vdash
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*									П					
Quarter 3, 2009		*	Ĺ		*	*	*								*						
Quarter 4, 2009		*	Ĺ		*	*									*					Ĺ	
Quarter 1, 2010	L	*	Ĺ		*	*	*	L					Ĺ		*					Ĺ	
Quarter 2, 2010		*	Ĺ		*	*	*	Ĺ		Ĺ			Ĺ		*		Ĺ			Ĺ	
Quarter 3, 2010	L	*	Ĺ	Ĺ	*	*	*	Ĺ		Ĺ	Ĺ	Ĺ	Ĺ		*		Ĺ	Ĺ	Ĺ	Ĺ	
Quarter 4, 2010		*	Ĺ	Ĺ		*	*	Ĺ			Ĺ				*		Ĺ		Ĺ		
Quarter 1, 2011		*																			
Quarter 2, 2011		*			*	*	*								*						
Quarter 3, 2011		*				*	*	*							*						
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*	Ĺ		Ĺ		*	*					Ĺ		*					Ĺ	
Quarter 2, 2012	*	*	Ĺ	*	*	*	*	*	*				Ĺ		*		Ĺ			Ĺ	
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*	Г					
Quarter 3, 2013	*	*		*	*	*	*								*	г					
Quarter 4, 2013		*													*	Г					
Quarter 1, 2014		*													*						
Quarter 2, 2014	*	*			*		*	*							*						
Quarter 3, 2014	*	*			*	*	*	*							*						
Quarter 4, 2014		*				*										Г					
Quarter 1, 2015		*														г					

Groundwater Flow System	_			UCR								URG				_		LRG	· A		—
Gradient Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE																					
Quarter 2, 2015	*	*			*		*								*						
Quarter 3, 2015	-	*			*	*		*							*	_					\vdash
Quarter 4, 2015 Quarter 1, 2016	*	*			*	*	*	*								\vdash					\vdash
Quarter 1, 2016 Quarter 2, 2016	*	*			*	*	*			_						\vdash					\vdash
Quarter 3, 2016	*	*			*	*	*	*								\vdash					
Quarter 4, 2016	*	*			Ė	*	*	*								\vdash					
Quarter 1, 2017	*	*				*	*														
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017	*	*			*	*	*														
Quarter 4, 2017		*			<u> </u>	*	*									_					
Quarter 1, 2018	*	*			*	*	*	L	_												\vdash
Quarter 2, 2018	*	*			*	*	*	*	-							<u> </u>					\vdash
Quarter 3, 2018	*	*			*	*	*	*	_						_	-		_			\vdash
Quarter 4, 2018 Quarter 1, 2019	*	*			*	*	*	*								\vdash					\vdash
Quarter 2, 2019	*	*			*	*	*	*								\vdash					
Quarter 3, 2019	*	*			*	*	*	*													
Quarter 4, 2019	*	*			*	*	*	*													
Quarter 1, 2020	*	*			*	*	*	*													
Quarter 2, 2020	*	*			*	*	*	*													
Quarter 3, 2020	*	*	\perp		*	*	*	*	\vdash					\Box		\Box					
Quarter 4, 2020	*	*	-	<u> </u>	,,,	*	*	*	_		<u> </u>	Ш		<u> </u>	J	<u> </u>		<u> </u>		\vdash	ш
Quarter 1, 2021	*	*	-	-	*	*	*	*	-		-	ш		<u> </u>	*	 		<u> </u>	_		\vdash
Quarter 2, 2021	*	*	-	-	*	*	*	*	_	-	-	\vdash		\vdash	*	\vdash		 	-	\vdash	\vdash
Quarter 3, 2021 Quarter 4, 2021	*	*	1		*	*	*	不	\vdash			Н		\vdash	*	\vdash					\vdash
TECHNETIUM-99	Ť	—			<u> </u>	Ť	Ť								-						
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003	t						*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003																	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004															*						*
Quarter 4, 2004															*	_	*				*
Quarter 3, 2005	-		-							-					*	⊢	*				*
Quarter 1, 2006 Quarter 2, 2006	1	*							*						*	\vdash					*
Quarter 3, 2006	_	<u> </u>				\vdash			 ~			\vdash				\vdash					*
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008															*					*	*
Quarter 2, 2008						_	*	*	-					*	*	*		_	*		\vdash
Quarter 3, 2008	-					_				*					木	<u> </u>	*	_	*		\vdash
Quarter 4, 2008 Quarter 1, 2009										*						\vdash	т.		~		\vdash
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010	\perp	\perp	\perp			\Box	$ldsymbol{\Box}$	$ldsymbol{\Box}$		*		ш		\Box	*	\Box					Ш
Quarter 4, 2010	₩	-14	-		\vdash	_	_	_	<u> </u>	,,,	<u> </u>	Ш		\vdash		<u> </u>	V-	*		\vdash	Ш
Quarter 1, 2011	1	*	-	-	\vdash	<u> </u>	<u> </u>	<u> </u>	-	*	_	\vdash		<u> </u>		*	*	*	*	\vdash	$\vdash\vdash$
Quarter 1, 2011	\vdash	1	1	-	\vdash	\vdash			\vdash	-	\vdash	\vdash			\vdash	<u></u>	*	*	*		$\vdash\vdash$
Quarter 1, 2012 Quarter 2, 2012	t		 			\vdash	\vdash	*		 		\vdash			\vdash		-11	*			-1
Quarter 3, 2012	1							Ť									*	*			\Box
Quarter 4, 2012															*			*			*
Quarter 1, 2013	L					L_	L	L										*	L		*
Quarter 2, 2013																					*
Quarter 3, 2013	\perp		\perp							*		ш		\Box	لَبِا	\Box	لبا	L.			*
Quarter 4, 2013	₩	_	<u> </u>		\vdash		_	_	<u> </u>			\vdash		<u> </u>	*	<u> </u>	* 1	*		\vdash	*
Quarter 1, 2014	1	-	-		\vdash	_	-	-	-	-		Н		—	*	 	*	*		\vdash	$oldsymbol{\sqcup}$
Quarter 2, 2014 Quarter 3, 2014		-	1	-	\vdash	\vdash	-	\vdash	_	_		\vdash		\vdash		\vdash	*	*	*	\vdash	$\vdash\vdash$
Quarter 3, 2014 Quarter 4, 2014	1		!	—	\vdash	<u> </u>				<u> </u>	-	H			*	\vdash	*	-			\vdash
Quarter 1, 2015	 		 									Н			*	Н		*			\vdash
Quarter 2, 2015	t															*		<u> </u>			\Box
Quarter 3, 2015																		*	*	*	
Quarter 4, 2015	L_{-}				L	L		L							*		*	L		*	
Quarter 1, 2016																*	*	*	*		*
Quarter 2, 2016																*	*	*	*	*	
Quarter 3, 2016	ऻ—	-	—	_	\vdash	<u> </u>	<u> </u>	-	<u> </u>	L.	<u> </u>	ш		,		—	*	,,,	*	*	\vdash
Quarter 4, 2016	₽-	-	-	-	\vdash	-	-	-	-	*	<u> </u>	\vdash		*		⊢	*	*	*	*	\vdash
Quarter 1, 2017 Quarter 2, 2017		-	 	-	\vdash	-	<u> </u>	\vdash	-	_	-	Н		\vdash		\vdash	木	_	*	*	$\vdash\vdash$
Quarter 2, 2017 Quarter 3, 2017	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash	_	\vdash	\vdash			\vdash	\vdash		*		*	\vdash
Quarter 4, 2017	t											Н		*	*		*	*		*	\sqcap
Quarter 1, 2018	t											М								*	\sqcap

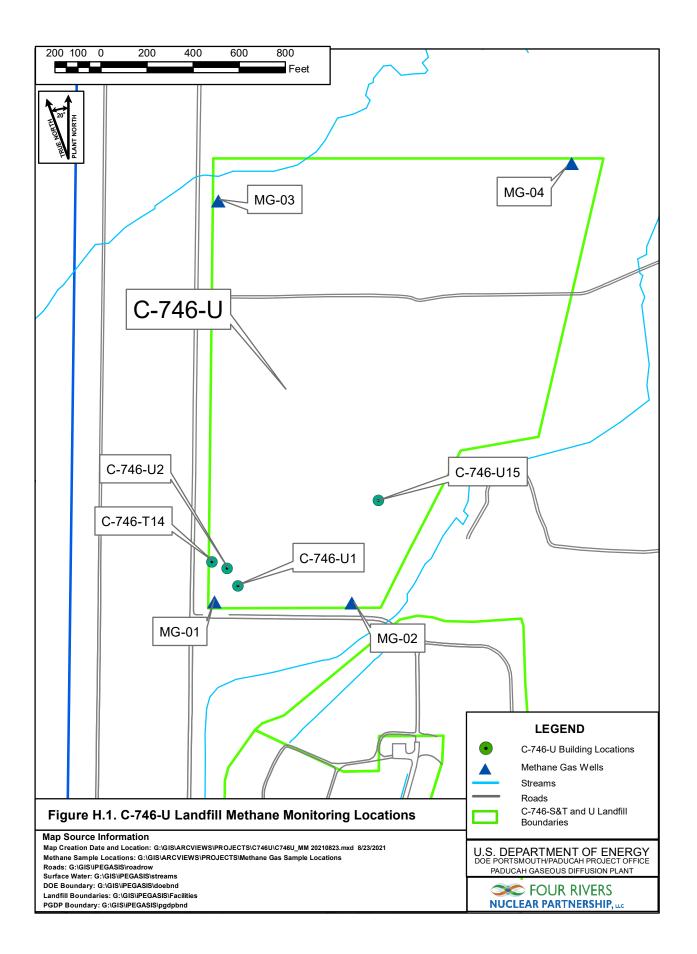
Groundwater Flow System	ı			UCR	S					_		URG	A			_		LRG	:A		_
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99														*		*				*	
Quarter 2, 2018 Quarter 3, 2018	-								-	-				*	*	*		-		*	\vdash
Quarter 4, 2018															*		*	*	*	*	
Quarter 1, 2019																*				*	
Quarter 2, 2019														*						*	
Quarter 3, 2019															*		<u> </u>	*		*	ш
Quarter 4, 2019 Quarter 1, 2020															*	-	*	*		*	\vdash
Quarter 1, 2020 Quarter 2, 2020															*	*	*	*	*	*	\vdash
Quarter 3, 2020															*		*	*	*	*	
Quarter 4, 2020															*		*	*		*	
Quarter 1, 2021																				*	
Quarter 2, 2021										*						*	*	*	*		
Quarter 3, 2021														*	*		*	*			\vdash
Quarter 4, 2021 THORIUM-230																	*	*			
Quarter 4, 2015																*					
Quarter 2, 2016										*						Ť					
Quarter 4, 2016	*											*				*			*		
Quarter 4, 2017													*								
Quarter 2, 2018	_								- 14	*			*					_			
Quarter 2, 2021 TOLUENE									*												
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003	-				\Box					ļ.,.	*					,,,					\square
Quarter 3, 2003	*		\vdash				\vdash	-	\vdash	*	*					*					Н
Quarter 4, 2003 Quarter 1, 2004	\vdash										*					\vdash		\vdash			\vdash
Quarter 3, 2005						*				*	-				*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES																					
Quarter 4, 2002										*											ш
Quarter 1, 2003 Quarter 2, 2003										*						_					\vdash
Quarter 1, 2004										_						*		 			\vdash
TRICHLOROETHENE																					
Quarter 3, 2002														•						•	
Quarter 4, 2002																					
Quarter 1, 2003															_						•
Quarter 2, 2003	_								_						-	_		-		-	
Quarter 3, 2003 Quarter 4, 2003	-						-		-						_	_		-			
Quarter 1, 2004															▔					i	
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005															▝						
Quarter 2, 2005 Quarter 3, 2005															-	_					
Quarter 3, 2005 Ouarter 4, 2005															▗					H	
Quarter 1, 2006															Ŧ	\vdash				Ŧ	
Quarter 2, 2006															Ī					Ī	Ī
Quarter 3, 2006																				•	
Quarter 4, 2006								_		L						\sqsubseteq					
Quarter 1, 2007	<u> </u>	_	_		\vdash	_	_		_	_	_				_	<u> </u>		-	_	•	-
Quarter 2, 2007 Quarter 3, 2007	\vdash	\vdash		\vdash	\vdash	_									-	\vdash		\vdash	\vdash		
Quarter 4, 2007	\vdash														÷	\vdash		\vdash			
Quarter 1, 2008															Ŧ						
Quarter 2, 2008																					
Quarter 3, 2008															▔						
Quarter 4, 2008					\Box			_	L	<u> </u>	_				•	<u> </u>	_	_			
Quarter 1, 2009	-	<u> </u>	<u> </u>	H	H	-	<u> </u>	_	-	<u> </u>	_				-	<u> </u>	_	-	<u> </u>	_	
Quarter 2, 2009 Quarter 3, 2009	 														=	_		\vdash			
Quarter 4, 2009														_	▔	\vdash		\vdash			
Quarter 1, 2010						Ē	Ī				Ē		Ī		Ī						
Quarter 2, 2010																					
Quarter 3, 2010													▝		▝			\vdash			
Quarter 4, 2010	<u> </u>	_	\vdash	<u> </u>	\vdash	_	<u> </u>	<u> </u>	\vdash	<u> </u>	_	<u> </u>	-		_	<u> </u>	_	_	-	_	
Quarter 2, 2011	\vdash	-	\vdash		\vdash	_	\vdash	\vdash	\vdash	\vdash	<u> </u>		_		-	\vdash	<u> </u>	\vdash		<u> </u>	
Quarter 3, 2011 Quarter 4, 2011	\vdash												=		=	\vdash		\vdash	-		
Quarter 1, 2012													÷		i			\vdash			
Quarter 2, 2012													_		Ŧ		Ī				
Quarter 3, 2012																					
Quarter 4, 2012									Ľ	L			_		▝	Ľ					
Quarter 1, 2013	-	<u> </u>	<u> </u>			_	<u> </u>	<u> </u>	-	<u> </u>	_		-		-	<u> </u>	_	-	-	_	
Quarter 2, 2013	_	_	_		\vdash		_	\vdash		<u> </u>	_		-		-	_				_	•
Quarter 3, 2013	_									_						_	-	_			

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2013																					
Quarter 4, 2013																П					
Quarter 1, 2014																					
Quarter 2, 2014																					
Quarter 3, 2014																Г					
Quarter 4, 2014																П					
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 3, 2015																Г					
Quarter 4, 2015																Г					
Quarter 1, 2016																Г					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																\vdash					
Quarter 1, 2017																${}^{-}$					
Quarter 2, 2017																-					
Quarter 3, 2017																					
Quarter 4, 2017																					
Quarter 1, 2018																-					
Quarter 2, 2018																					
Quarter 3, 2018																-					
Quarter 4, 2018																					
Quarter 1, 2019																					
Quarter 2, 2019																					
Quarter 3, 2019																${}^{-}$					$\overline{}$
Quarter 4, 2019																-					-
Quarter 1, 2020																					
Quarter 2, 2020																					
Quarter 3, 2020																\vdash					
Quarter 4, 2020																${}^{-}$					$\overline{}$
Quarter 1, 2021																-					-
Quarter 2, 2021																г					
Quarter 3, 2021																Г					\Box
Quarter 4, 2021																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		$\overline{}$
* Statistical test results indicate an ele	evated cor	ncentra	tion (i.	e., a sta	ntistica	l excee	dance)	_	_	_			_			_					_
■ MCL Exceedance			(,																	_
■ Previously reported as an MCL of	exceedanc	e; how	ever, r	esult w	as equa	al to M	CL														_
UCRS Upper Continental Recharge Sy			_		_																_

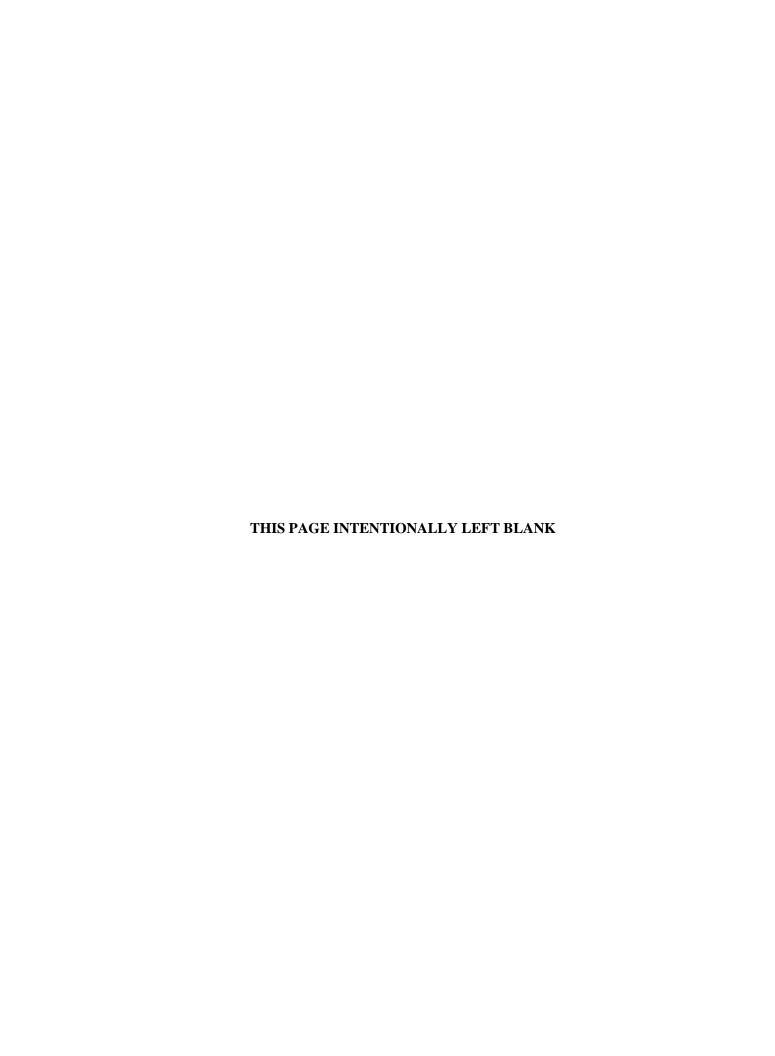
UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT


PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>


McCracken County, Kentucky

Date:	December 2, 2021	Time:	0935		Monitor:	Robert	: Kirby
Weather Co	onditions: Sunny, 56 degree	s, slight w	ind, humid	ty: 37%			
Monitoring	Equipment::Multi RAE – Se	rial # 1188	0				
	Mon	itoring Lo	cation				Reading (% LEL)
C-746-U1	Checked at floor level						0
C-746-U2	Checked at floor level						0
C-746-U-T-14	Checked at floor level						0
C-746-U15	Checked at floor level						0
MG1	Checked 1" from oper	ing		A Section of the sect			0
MG2	Checked 1" from oper						0
MG3	Checked 1" from oper						0
MG4	Checked 1" from oper						0
Suspect or Problem Ar		9					
Remarks:	N/A						
Performed	_	- WILTHERN CO.		M			. 1.1
to Danding pu	erformed by Robert KIRBY Date Signa	د روبانسجل ature	+ eccurate.	V Jan	First		レン/パ/2021 Date
							

-Robert Kirby is out of office.

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982, LAB ID: None

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L150 INSTRI	EAM	L154 INSTRI	EAM	L351 DOWNS	REAM	F. BLANK	(
Sample Sequer	nce	#				1		1		1		1	
If sample is	а В.	lank, specify Type: (F)ield, (T) ri	p, (M)ethod	, or (E)quipment	NA		NA		NA		F	
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		10/11/2021 1	6:12	12/6/2021 07	7:47	12/6/2021	07:30	10/11/2021 1	6:13
Duplicate ("	Z" (or "N") ¹				N		N		N		N	
Split ('Y' or	ו" יו	N") ²				N		N		N		N	
Facility Samp	ple	ID Number (if applicable)				L150US1-2	22	L154US1-2	22	L351US1	-22	FB1US1-2	22
Laboratory Sa	amp.	le ID Number (if applicable)				55872400	2	56407900)1	5640790	002	558724003	3
Date of Analy	ysis	s (Month/Day/Year)				11/2/202	1	12/30/202	21	12/30/20)21	10/13/202	.1
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
A200-00-0	0	Flow	Т	MGD	Field		*		*		*		*
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	15.2		2.77		2.97		<0.2	
14808-79-8	0	Sulfate	Т	mg/L	300.0	51.7		4.73		4.89		<0.4	
7439-89-6	0	Iron	Т	mg/L	200.8	2.18		1.4		1.37		<0.1	
7440-23-5	0	Sodium	Т	mg/L	200.8	8.11		2.51		2.57		<0.25	
s0268	0	Organic Carbon ⁶	т	mg/L	9060	7.07		17.8		22.9			*
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	28		65.9		65.9		-	*

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, o	r "T	JPSTREAM" or	"DOWNSTREAM")	L150 INSTR	EAM	L154 INSTR	EAM	L351 DOWNST	REAM	F. BLANK	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
S0145	1	Specific Conductance	т	µmho/cm	Field	228		114		118			*
S0270	0	Total Suspended Solids	т	mg/L	160.2	215	*	41.1		43.2			*
S0266	0	Total Dissolved Solids	Т	mg/L	160.1	253	*	130		130			*
s0269	0	Total Solids	Т	mg/L	SM-2540 B 17	470		249		257			*
s0296	0	рН	Т	Units	Field	7.97		8.22		7.96			*
7440-61-1		Uranium	т	mg/L	200.8	0.00116		0.00152		0.00244		<0.0002	
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	2.29	*	3.74	*	3.54	*	-0.943	*
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	11.9	*	18	*	14.8	*	-5.07	*

Division of Waste Management

RESIDENTIAL/CONTAINED-OUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring P	oint	: (KPDES Discharge Number, or "	UPST	REAM", or "Do	OWNSTREAM")	L150 INSTRE	AM						
Sample Seque	ence	#				2							\overline{z}
If sample is	аВ	lank, specify Type: (F)ield, ((T) r	ip, (M)ethod	, or (E) quipment	NA							
Sample Date	and	Time (Month/Day/Year hour:	ninu	tes)		10/11/2021 16	5:12						
Duplicate ('Y" (or "N") ¹				N							
Split ('Y'	or "	N") ²				N							
Facility San	mple	ID Number (if applicable)				L150DUS1-2	22						
Laboratory :	Samp.	le ID Number (if applicable)				558724001							
Date of Ana	Lysi	s (Month/Day/Year)				11/2/2021							
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OF PQL ⁵	F A G S	DETECTED VALUE OR PQL ⁵	F L A G
A200-00-0	0	Flow	т	MGD	Field		*						
16887-00-6	2	Chloride(s)	т	mg/L	300.0	15.1							
14808-79-8	0	Sulfate	т	mg/L	300.0	50.9							
7439-89-6	0	Iron	т	mg/L	200.8	2.04							
7440-23-5	0	Sodium	т	mg/L	200.8	8.24							
S0268	0	Organic Carbon ⁶	Т	mg/L	9060	6.66							
s0097	0	BOD ⁶	Т	mg/L	not applicable		*						
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	23.8							

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

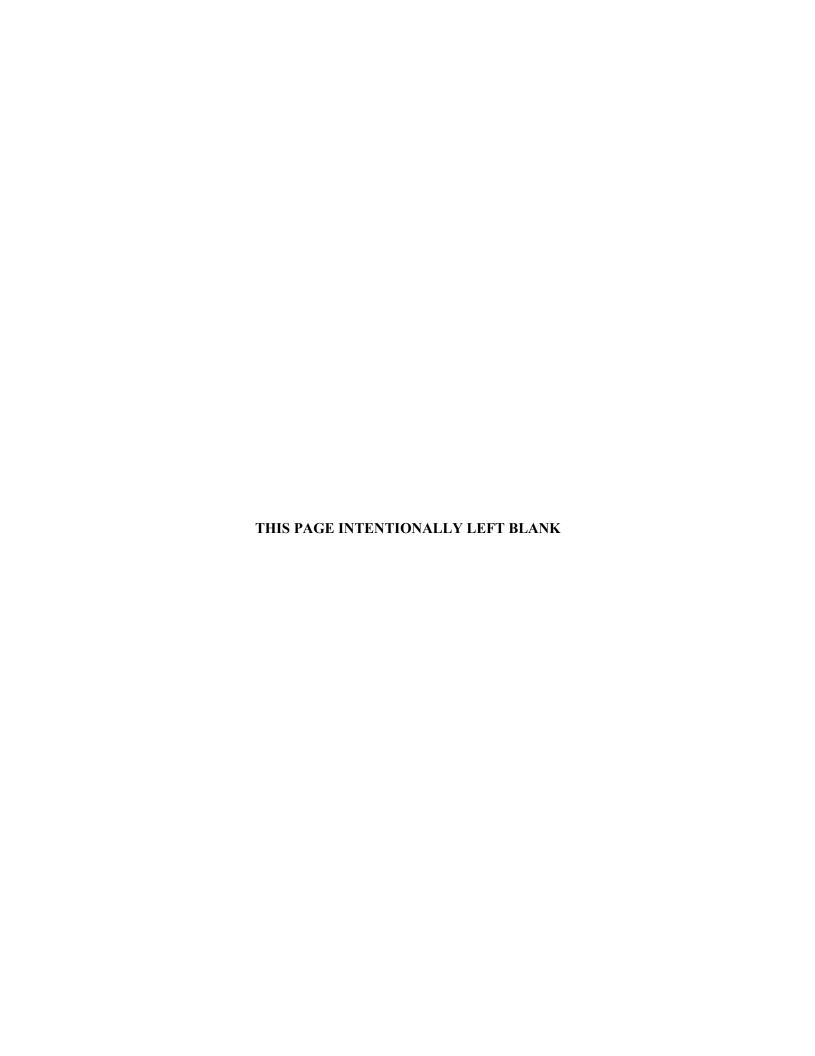
Permit Number: SW07300014, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None

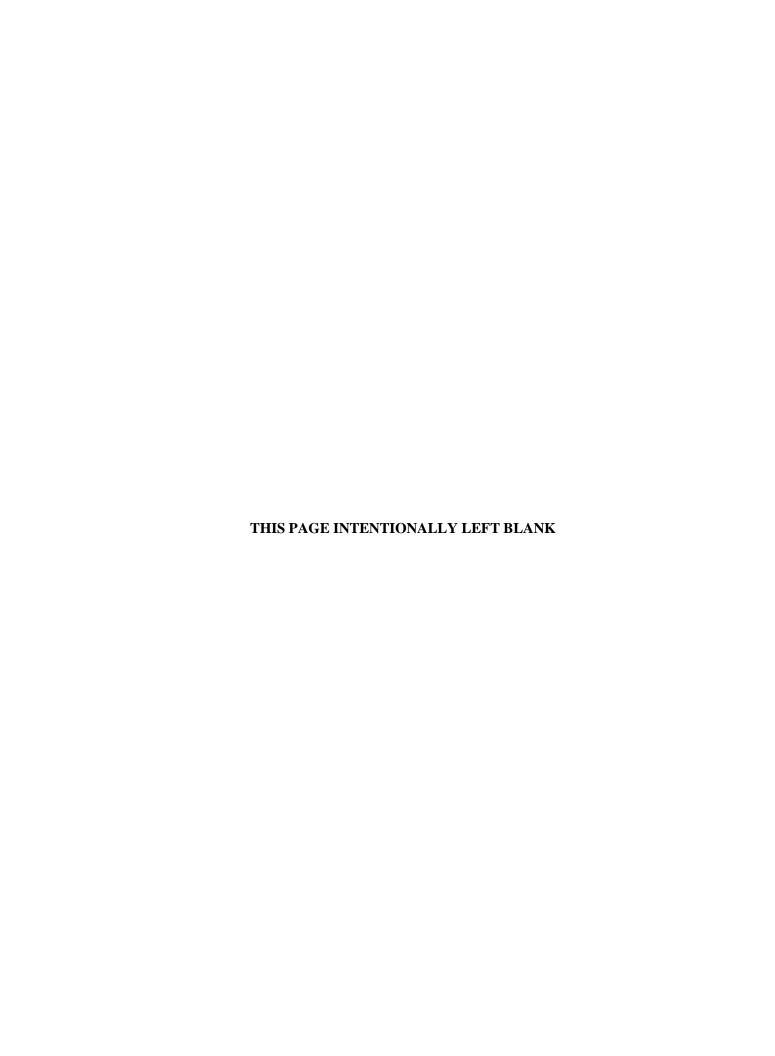
SURFACE WATER SAMPLE ANALYSIS (Cont.)

Monitoring Po	oin	t (KPDES Discharge Number, o	r "(JPSTREAM" or	"DOWNSTREAM")	L150 INSTE	REAM						
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQD ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED IN THE POLICE IN THE	L A G
S0145	1	Specific Conductance	т	µmho/cm	Field		*						
s0270	0	Total Suspended Solids	Т	mg/L	160.2	194	*						
S0266	0	Total Dissolved Solids	Т	mg/L	160.1	240	*		$ \bot $				
S0269	0	Total Solids	Т	mg/L	2540B	445							
S0296	0	рН	Т	Units	Field		*						
7440-61-1		Uranium	Т	mg/L	200.8	0.0012							
12587-46-1		Gross Alpha (α)	T	pCi/L	900.0	2.02	*						
12587-47-2		Gross Beta (β)	T	pCi/L	900.0	1.78	*						
									\angle				
													_
								/					/

I-6


RESIDENTIAL/CONTAINED – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045


Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None

SURFACE WATER WRITTEN COMMENTS

Monitorin Point	g Facility Sample ID	Constituent	Flag	Description
L150	L150US1-22	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.54. Rad error is 4.53. TPU is 7.74. Rad error is 7.49.
L154	L154US1-22	Flow Rate		Analysis of constituent not required and not performed
L104	L104001-22	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.02. Rad error is 3.96.
		Beta activity		TPU is 7.74. Rad error is 7.13.
L351	L351US1-22	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.79. Rad error is 4.75.
00	FB1US1-22	Beta activity Flow Rate		TPU is 8.1. Rad error is 7.72.
QC	FB1051-22			Analysis of constituent not required and not performe
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performe
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performe
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performe
		Conductivity Suspended Solids		Analysis of constituent not required and not performed Analysis of constituent not required and not performed Analysis of constituent not required and not performed to the constituent not not required and not
		Dissolved Solids		Analysis of constituent not required and not performe
		Total Solids		Analysis of constituent not required and not performe
		pH		Analysis of constituent not required and not performe
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.23. Rad error is 3.23.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.22. Rad error is 5.22.
L150	L150DUS1-22	Flow Rate		Analysis of constituent not required and not performe
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performe
		Conductivity		Analysis of constituent not required and not performe
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		рН		Analysis of constituent not required and not performe
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.15. Rad error is 4.14.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.84. Rad error is 5.83.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

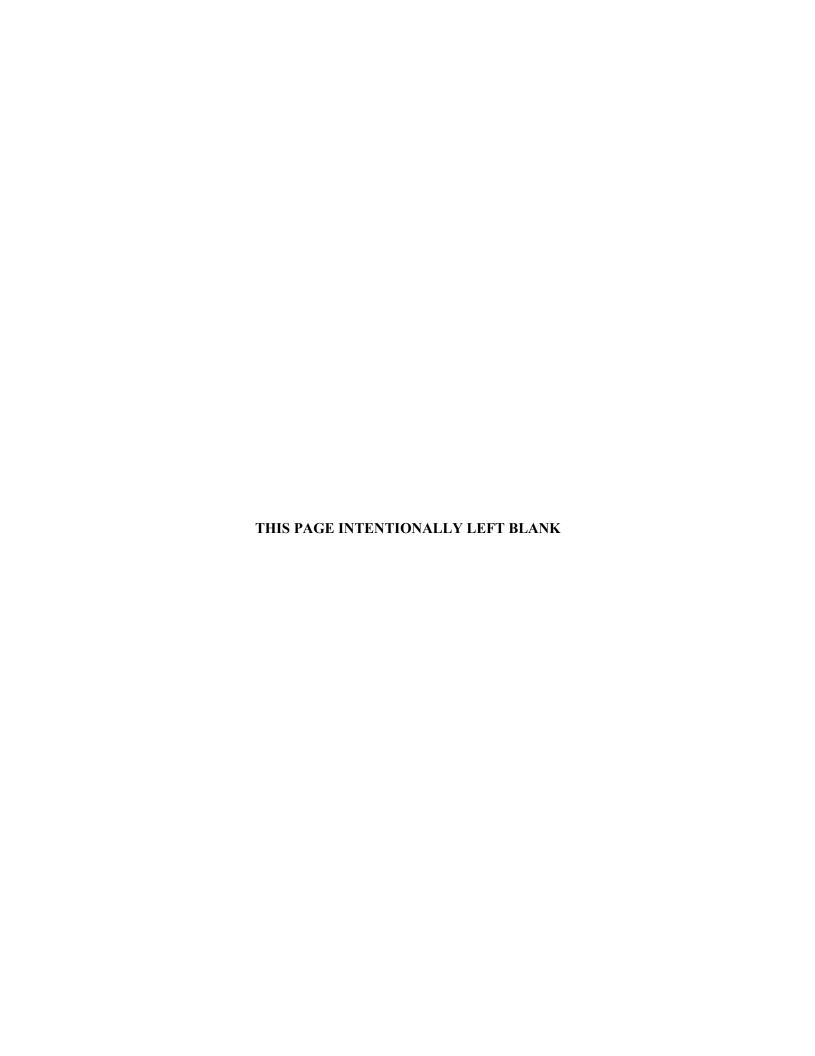
Accredited Laboratory

A2I A has accredited

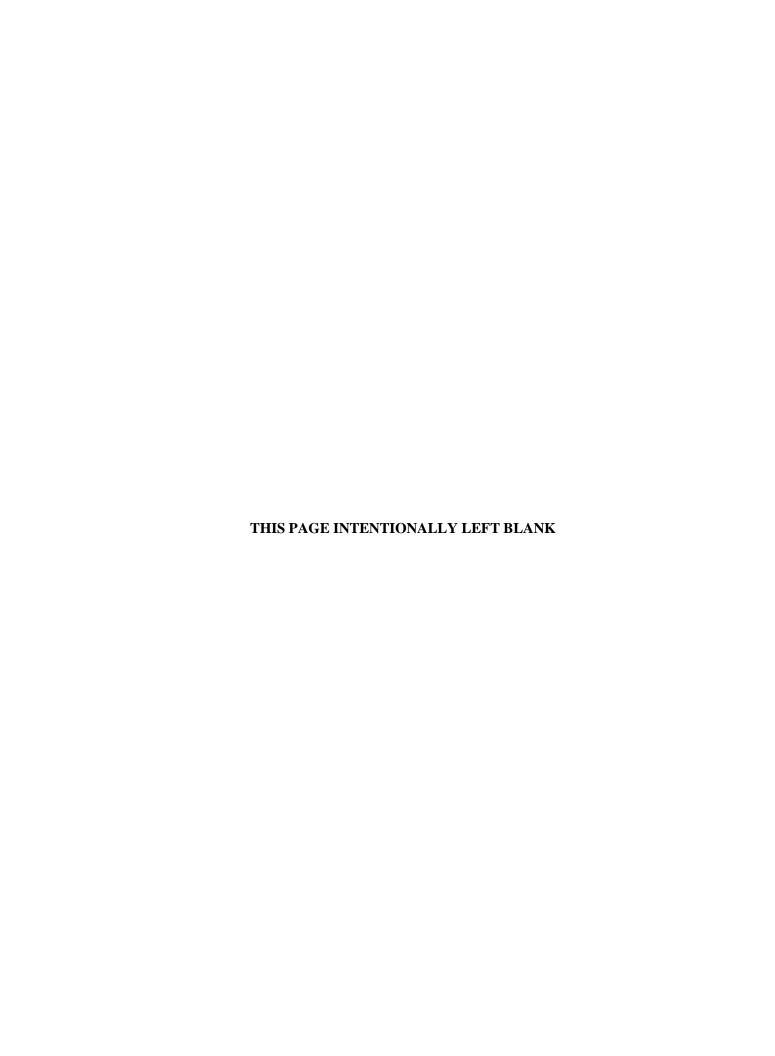
GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

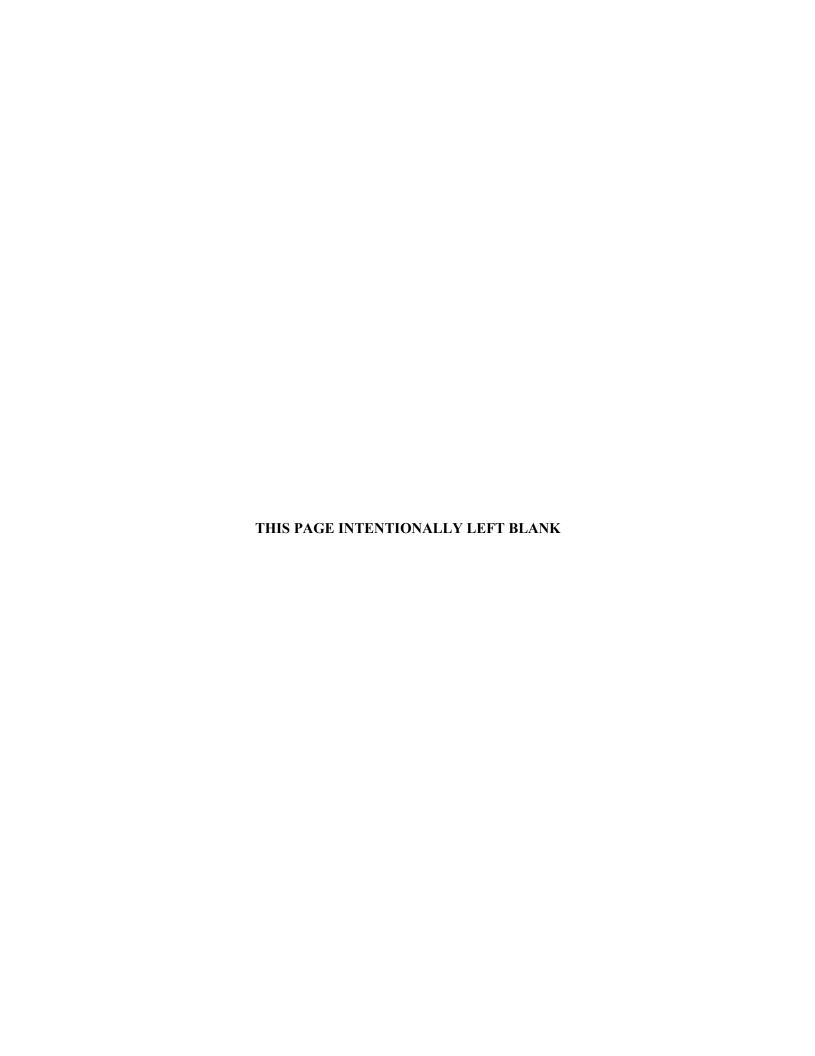

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 and 2016 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 16th day of June 2021.

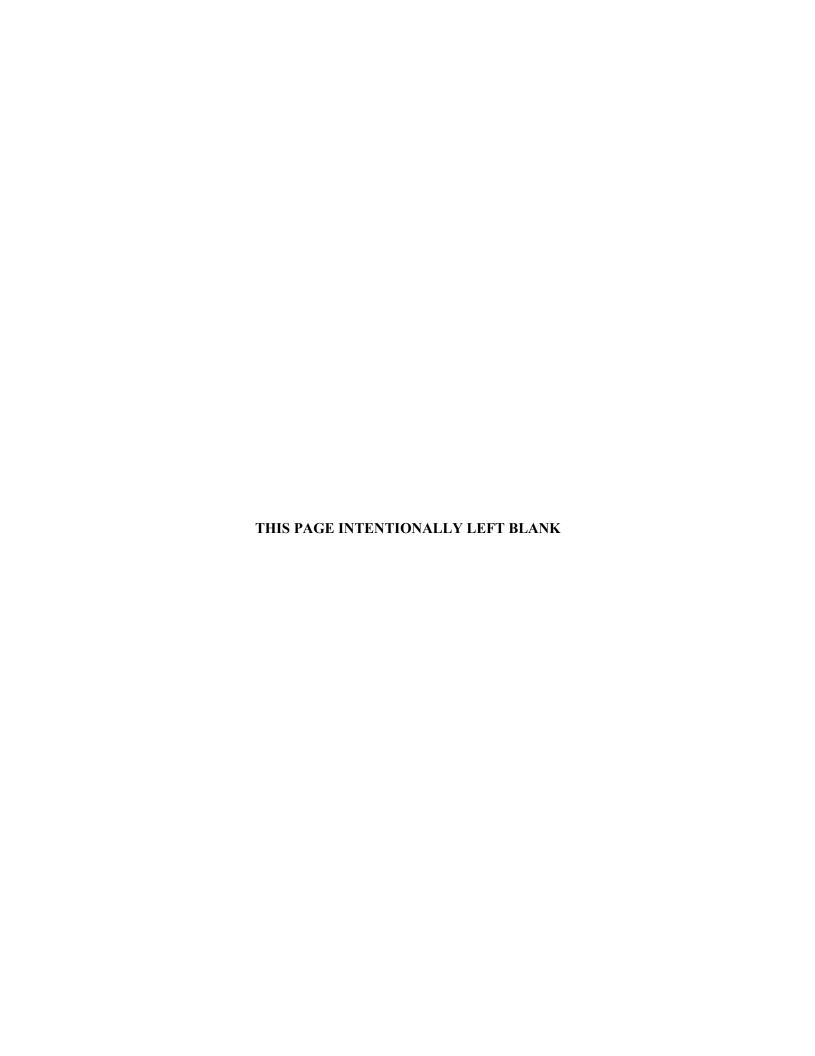
Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2023



APPENDIX K LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid



APPENDIX L MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-U Contained Landfill

		/s	ding of the state	detal	and or of the life	\$ /		/2	de la	5th /
	, and	State Ordi	strike Color	a Unital Jassali	And or of the left		and the second	Caralia Caralia	att Si	gal Juital Just
MW357	<u> </u>	<u>/ ~ </u>	<u> </u>	<u> </u>		MW358	<u> </u>	<u> </u>	\\ \sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	<u> </u>
Date Collected:10/11/2021						Date Collected:10/11/2021				
0953	63.1	287	6.27	5.19	2.00	1104	62.3	352	6.18	1.20
0956	62.3	281	6.20	5.19	2.00	1104	62.0	355	6.13	1.15
0959	62.0	283	6.22	5.14	2.02	1110	61.9	353	6.10	1.13
MW359	62.0	283	0.22	3.10	2.07	MW360	61.9	333	0.10	1.13
Date Collected: 10/11/2021						Date Collected:10/11/2021				
1150	65.6	182	6.28	6.08	5.20	0735	62.2	277	7.05	2.76
1153	65.2	179	6.18	6.02	5.40	0738	61.1	275	6.45	2.70
1156	65.5	180	6.20	6.05	4.95	0741	60.7	272	6.14	2.80
MW361	05.5	100	0.20	0.05	1.75	MW362	00.7	2/2	0.11	2.00
Date Collected: 10/11/2021						Date Collected:10/11/2021				
0900	61.3	360	6.40	4.26	2.14	0816	62.4	450	6.67	2.75
0903	60.9	354	6.05	4.20	2.05	0819	61.4	460	6.66	2.66
0906	61.3	359	6.02	3.80	2.13	0822	60.9	468	6.69	2.59
9909	61.2	355	6.03	3.83	2.16					
MW363						MW364				
Date Collected: 10/12/2021						Date Collected:10/12/2021				
0557	58.4	415	6.50	1.36	3.17	0701	59.0	409	5.96	3.50
0600	58.5	417	6.40	0.89	3.20	0704	59.1	411	5.83	3.23
0603	58.5	418	6.36	0.86	3.21	0707	59.2	412	5.83	3.20
MW365						MW366				
Date Collected:10/12/2021						Date Collected: 10/12/2021				
0742	59.5	303	6.10	3.91	2.55	0825	60.9	388	6.08	4.10
)745	58.9	300	6.05	3.70	2.50	0828	60.7	388	5.96	3.89
0748	59.0	300	6.03	3.66	2.47	0831	60.7	390	5.96	3.88
MW367						MW368				
Date Collected:10/12/2021						Date Collected: 10/12/2021				
910	60.6	210	5.96	1.11	3.93	1015	60.5	497	6.25	2.68
0913	60.7	202	5.71	0.85	4.01	1018	60.6	500	6.20	2.45
916	60.7	200	5.70	0.80	4.09	1021	60.6	501	6.21	2.40
MW369						MW370				
Date Collected: 10/12/2021	L					Date Collected: 10/12/2021				
1100	62.5	304	6.20	3.26	5.18	1143	63.0	391	6.03	4.82
1103	62.1	305	6.07	2.91	4.90	1146 1149	61.7	390	5.94	4.65
106	61.7	305	6.00	2.82	4.85	22.17	61.5	391	5.90	4.60
MW371						MW372 Data Callacted 10/13/2021				
Date Collected:10/12/2021	62.0	620	6.40	4.00	17.27	Date Collected:10/13/2021 0614	60.6	479	5.93	2.58
1223 1226	62.0	628	6.40	4.00 3.38	17.37 17.30	0614 0617	60.6	482	5.93	2.30
1226	61.6	627	6.33	3.38	17.60	0617	60.8	482	5.81	2.30
MW373	61./	628	0.32	5.50	17.60	MW374	60.8	484	5.80	2.28
Date Collected: 10/13/2021						Date Collected: 10/13/2021				
0711	61.2	561	5.90	2.34	2.01	0751	61.5	245	6.40	1.11
0714	61.0	559	5.79	2.34	1.98	0754	61.2	245	6.44	0.49
0717	60.8	560	5.77	2.04	2.11	0757	61.3	242	6.44	0.49
MW375	00.8	500	5.11	2.00	2.11	MW357 Resample	01.3	441	0.44	0.44
MW3/5 Date Collected:10/13/2021						Date Collected:12/16/2021				
0835	61.2	640	6.33	1.99	2.68	1349	58.4	413	6.09	5.33
0838	61.3	633	6.20	1.85	2.56	1352	58.5	413	6.09	5.11
0841	61.3	630	6.19	1.80	2.01	1355	58.4	413	6.01	5.11

