

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

August 26, 2021

PPPO-02-10015456-21B

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-U CONTAINED LANDFILL SECOND QUARTER CALENDAR YEAR 2021 (APRIL–JUNE) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0192/V2, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the second quarter calendar year (CY) 2021 has been uploaded to the KY eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, surface water analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the second quarter CY 2021 monitoring well (MW) data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the second quarter CY 2021, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

The second quarter 2021 groundwater data underwent assessment to identify noteworthy findings such as historic high/low results and new constituent detections. For the second quarter 2021 samples, data assessment noted a first detection of thorium-230 in Upper Continental Recharge System well MW374 and a historically high detection of technetium-99 in Upper

Regional Gravel Aquifer well MW360. The laboratory was requested to reanalyze both samples and the results indicated that concentrations for both parameters were below the detection limit. Both the original and reanalyzed sample results are reported in the document; however, only the original results were used in the statistical analysis.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

canifes Woodard

Tennifer Woodard Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill Second Quarter Calendar Year 2021 (April–June) Compliance Monitoring Report at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0192/V2

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov stephaniec.brock@ky.gov, KYRHB

cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP 2

FRNP-RPT-0192/V2

C-746-U Contained Landfill Second Quarter Calendar Year 2021 (April-June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

David Hayden FRNP Classification Support

08-25-2021 Date

FRNP-RPT-0192/V2

C-746-U Contained Landfill Second Quarter Calendar Year 2021 (April-June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—August 2021

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FI	GURES		v
ΤA	ABLES		v
AC	CRONYMS		vii
1.	1.1 BACKO 1.2 MONIT 1.2.1 1.2.2 1.2.3	ION GROUND ORING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring ESULTS	1 1 3 3
2.	DATA EVAL 2.1 STATIS 2.1.1 2.1.2 2.1.3	UATION/STATISTICAL SYNOPSIS TICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer VERIFICATION AND VALIDATION	9 10 10 10 10
3.	PROFESSION	VAL GEOLOGIST AUTHORIZATION	13
4.	REFERENCE	S	15
Ał	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
AF	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
AF	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AF	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AF	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AF	PPENDIX F:	NOTIFICATIONS	F-1
AF	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AF	PPENDIX H:	METHANE MONITORING DATA	H-1
AF	PPENDIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
AF	PPENDIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

CONTENTS

APPENDIX K:	LABORATORY ANALYTICAL METHODSK-	1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERSL-	1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	. 2
2.	C-746-U Landfill Surface Water Monitoring Locations	.4

TABLES

1.	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
	Exceedances of Current Background UTL in Downgradient Wells	
	C-746-U Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Monitoring Wells Included in Statistical Analysis	10

ACRONYMS

CFR	Code of Federal Regulations
CY	calendar year
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
LTL	lower tolerance limit
MCL	maximum contaminant level
MW	monitoring well
QA	quality assurance
QC	quality control
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Second Quarter Calendar Year 2021 (April-June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL and historical background UTL exceedances that have occurred, beginning in the fourth quarter, calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water analyses and written comments are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5, with Phases 6 and 7 approved for receipt of waste as of September 27, 2019. A minor permit modification that included upgrades to the leachate storage capacity for Phases 6 and 7 was approved by KDWM on May 21, 2021 (FRNP 2021). Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

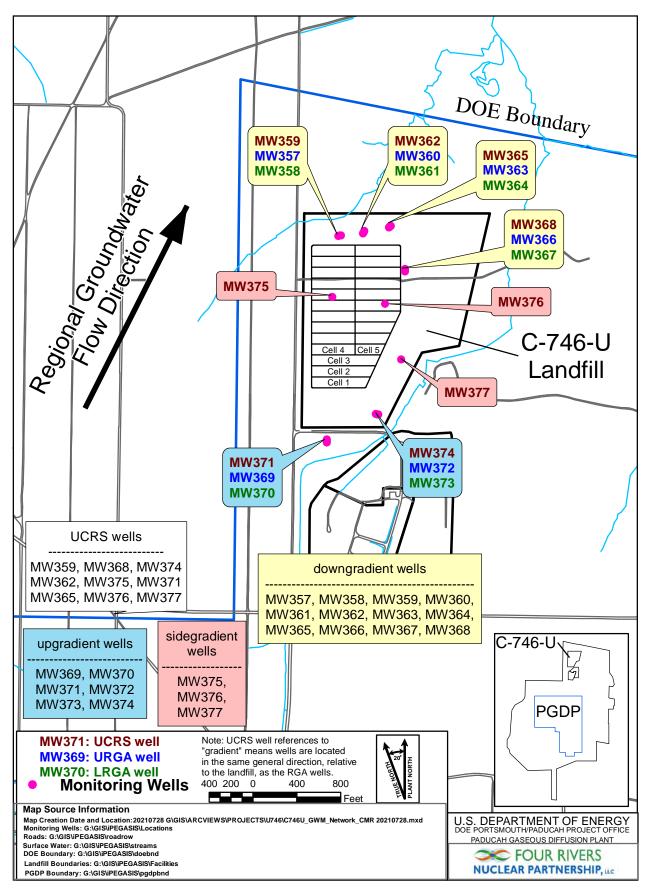


Figure 1. C-746-U Landfill Groundwater Monitoring Well Network

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2021 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the second quarter 2021 was conducted in April 2021. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 16, 2021, in MWs of the C-746-U Landfill (see Appendix E, Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Appendix E, Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During April, RGA groundwater flow in the area of the landfill was oriented northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in April was 2.60×10^{-4} ft/ft (see Appendix E, Table E.2). The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 5.32×10^{-4} ft/ft and 5.12×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.905 to 1.54 ft/day for the URGA and 0.871 to 1.49 ft/day for the LRGA (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Industrial Hygiene staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on June 16, 2021. See Appendix H for a map (see Appendix H, Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill: (1) instream location, L154; (2) downstream location, L351; and (3) instream location L150.

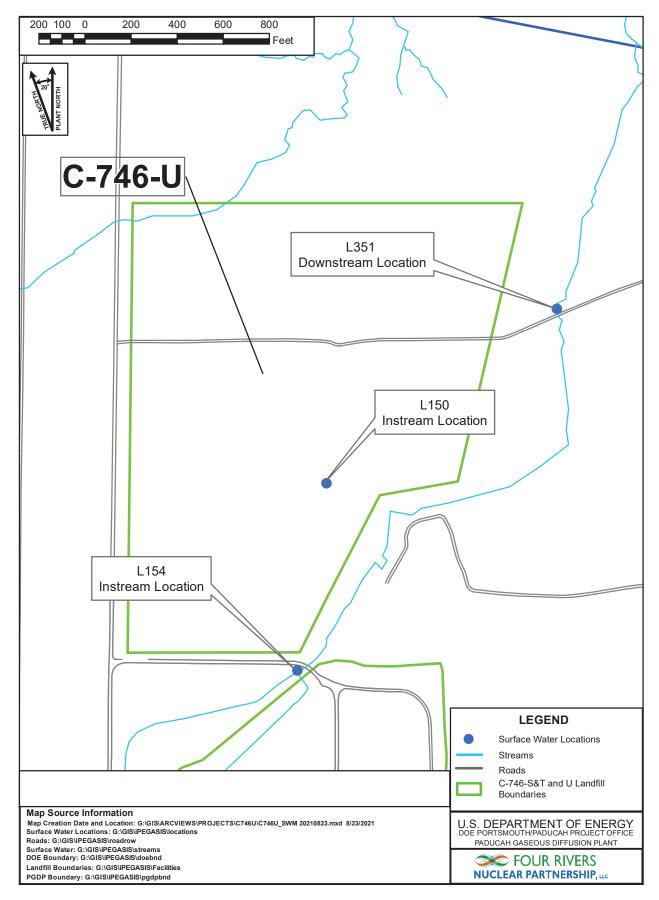


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059 (FRNP 2021), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATAKentucky 2014), which is Technical Application Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the second quarter 2021, as well as parameters that exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be background. Constituents in downgradient wells that exceeded current background UTL are shown on Table 3.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA	
None	None	MW364: Trichloroethene	
		MW373: Trichloroethene	

UCRS*	URGA	LRGA
MW359: Dissolved oxygen, oxidation-reduction potential, sulfate	MW357: Oxidation-reduction potential	MW358: Oxidation-reduction potential, technetium-99
MW362: Dissolved oxygen, oxidation-reduction potential, sulfate	MW360: Oxidation-reduction potential	MW361: Oxidation-reduction potential, technetium-99
MW365: Dissolved oxygen, oxidation-reduction potential, sulfate	MW363: Oxidation-reduction potential	MW364: Oxidation-reduction potential, technetium-99
MW368: Oxidation-reduction potential, sulfate	MW366: Oxidation-reduction potential, technetium-99	MW367: Oxidation-reduction potential, technetium-99
MW371: Calcium, dissolved oxygen, oxidation-reduction potential, sulfate	MW369: Oxidation-reduction potential	MW370: Oxidation-reduction potential
MW374: Dissolved oxygen, oxidation-reduction potential, thorium-230	MW372: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate	MW373: Oxidation-reduction potential
MW375: Oxidation-reduction potential, sulfate		

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

¹ The UTL comparison for pH uses a two-sided test for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 2. Exceedance of Statistically Derived historical Background Concentrations (Continued)

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW363: Oxidation-reduction potential	None

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW364 and MW373 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report is the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient (compliance) well concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill).

Except for MW363, all MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

The oxidation-reduction potential in MW363 (downgradient well), was shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily it was considered to be a Type 2 exceedance. To evaluate the preliminary Type 2 exceedance further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results have been summarized in Table 4. MW363 did not show an increasing Mann-Kendall trend for oxidation-reduction potential and is considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

Table 4. C-746-U Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Decision ⁴
C-746-U Landfill	MW363	Oxidation-reduction potential	8	0.05	0.089	12	No Trend

¹ An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

 3 The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 4 The Mann-Kendall decision operates on two hypotheses; the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

Note: Statistics generated using ProUCL.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2021 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

Parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6 were documented and evaluated further. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as background) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data were divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data showed a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both a UTL and LTL to determine if statistically significant deviations in concentrations existed with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 5.

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371 ^b	MW369 (background)	MW370 (background)
MW374 ^b	MW372 (background)	MW373 (background)
MW375	· - /	
MW376°		
MW377°		

Table 5. Monitoring Wells Included in Statistical Analysis^a

^a Map showing the monitoring well locations is shown on Figure 1.

^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^c Well had insufficient water to permit a water sample for laboratory analysis.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, calcium, dissolved oxygen, oxidation-reduction potential, sulfate, and thorium-230 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient UCRS wells.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. MW363 (downgradient) exceeded the current background UTL for oxidation-reduction potential and is included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient LRGA wells.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

With the exception of reanalyses discussed below, data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

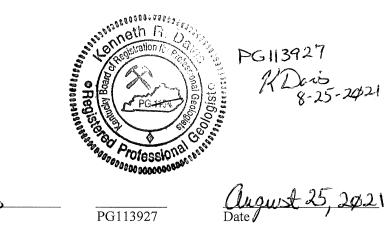
Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

In addition to data verification and validation, data underwent assessment to identify noteworthy findings such as, historic high/low results and new constituent detections. For the second quarter 2021 samples, data assessment noted a first detection of thorium-230 in UCRS well MW374 and a historically high detection of technetium-99 in URGA well MW360. The laboratory was requested to reanalyze both samples and results below the detection limits were received for both samples. Both the original and reanalyzed sample results are reported in Appendix C; however, only the original results were used in the statistical analysis. The reanalyses for thorium-230 and technetium-99 were not validated.

For the original MW374 thorium-230 result, all quality assurance (QA)/quality control (QC) data and control charts were acceptable. Tracer impurity and detector information also was reviewed and no items were identified that would cause the validator to reject the data. In comparing the original result to the reanalysis, it was determined that they are not statistically different; the comparison takes into account the total propagated uncertainty and minimum detectable activity.

For the original MW360 technetium-99 result, no items were identified that would cause the validator to reject the data. It should be noted that after the original analysis, the laboratory recounted to verify the result, and the recount result was similar to the original result. There were no issues with the QA/QC. During discussions with the laboratory, they noted that the original analysis, the recount, and reanalysis statistically duplicate due to the high percentage of uncertainty when compared to the activity concentration.


Based on the information above, it was determined during data assessment that the original results would not be qualified as unusable. It also was determined that validation of the reanalyses for thorium-230 and technetium-99 was not required.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill Second Quarter Calendar Year 2021 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0192/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

1)avis

Kenneth R. Davis

4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD- PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name: U.S. DOE-Paducah Gaseous Diffusion Plant			Activity: _C	C-746-U C	Contained Landfill	
(As officially shown on DWM Permit Face)						
Permit No:	Quarter &	Year 2	nd Qtr. CY 2021			
Please check th	he following as applica	ble:				
Chara	cterization X C	Quarterly	Semiannual	Annual	a <u></u>	Assessment
Please check applicable submittal(s): X Groundwater			X	Surface V	Vater	
			Leachate	X	Methane	Monitoring

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna Redfield, Program Manager Four Rivers Nuclear Partnership, LLC

Jennifer Woodard, Paducah Site Lead

Date Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: April 2021 Surface water: April 2021 Methane: June 2021	County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045		
Facility Name:				-			
		wn on DWM Permit Face)					
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053			
5100 1 1001 055.	Street	City/State		Zip			
Phone No: (27	D) 441-6800 Latitude:	N 37° 07' 45"	Longit	tude: W	88° 47' 55"		
	OWI	NER INFORMATION					
Facility Owner:	U.S. DOE, Joel Bradburne, Acting Manager	Phone No:	(859) 219-40	00			
Contact Person:	Bruce Ford	1 hone 100.	Phone No:		1-5357		
Contact Person	Director, Environmental Services		<u> </u>	(270) 441	1 5557		
Title:	Four Rivers Nuclear Partnership, LLC						
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053			
	Street	City/State		Zip			
	SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)						
Company: <u>GE</u>	O Consultants Corporation						
Contact Person:	Jason Boulton		Phone No:	(270) 81	6-3415		
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053			
	Street	City/State		Zip			
	LABO	RATORY RECORD #1					
Laboratory <u>GE</u>	L Laboratories, LLC	Lab I	D No: <u>KY901</u>	29			
Contact Person:	Valerie Davis		Phone No:	(843) 769	9-7391		
Mailing Address:	2040 Savage Road	Charleston, South Caro	olina	294			
	Street	City/State		Zij	p		
	LABO	PRATORY RECORD #2					
Laboratory: N/2	A	Lab ID	No: N/A				
Contact Person:	N/A		Phone No:	N/A			
Mailing Address:	N/A						
	Street	City/State			Zip		
	LABO	RATORY RECORD #3					
Laboratory: N/	A	Lab ID	No: N/A				
Contact Person:	N/A		Phone No:	N/A			
Mailing Address:	N/A						
c	Street	City/State			Zip		

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-47	799	8004-09	981	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., M	/₩-1	, MW-2, etc	:.)	357		358		359		360	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/7/2021 08	3:27	4/7/2021	09:10	4/7/2021	09:42	4/7/2021 0	6:28
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)		MW357UG3	3-21	MW358U	G3-21	MW359U0	G3-21	MW360UG	3-21		
Laboratory Sar	mple ID Number (if applicable)		54011500)1	540115	003	540115	005	5401150	07		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysi					1	4/14/20	21	4/14/20	21	4/14/202	21
Gradient with	respect to Monitored Unit (UP, DC) wn	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	l
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.37		0.417		<0.2		0.141	J
16887-00-6	Chloride (s)	т	mg/L	9056	30.2	*	32.6	*	0.919	*	7.59	*
16984-48-8	Fluoride	т	mg/L	9056	0.137		0.16		0.109		0.209	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.22		0.908		0.501		0.461	
14808-79-8	Sulfate	т	mg/L	9056	38.6	*	60.5	*	43	*	10.6	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.91		29.89		29.89		29.9	
S0145	Specific Conductance	т	µMH0/cm	Field	408		490		207		406	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4798	8	8004-4799)	8004-0981		8004-4800	
Facility's Lo	cal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.69		328.71		341.57		328.65	
N238	Dissolved Oxygen	т	mg/L	Field	4.42		0.72		3.27		0.9	
S0266	Total Dissolved Solids	т	mg/L	160.1	214		260		149		220	
s0296	рН	т	Units	Field	6.02		6.07		5.77		6	
NS215	Eh	т	mV	Field	393		179		357		409	
S0907	Temperature	т	°c	Field	16.5		16.89		16.83		15.44	
7429-90-5	Aluminum	т	mg/L	6020	0.0851		0.072		0.0331	J	0.118	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00207	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0731		0.0626		0.0228		0.196	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.345		0.403		<0.015		0.0243	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	24.5		33.8		5.15		19.8	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.0148		<0.001		0.0082	
7440-50-8	Copper	т	mg/L	6020	0.000973	J	0.00129	J	0.000603	J	0.00173	J
7439-89-6	Iron	т	mg/L	6020	0.114		3.54		0.0512	J	0.343	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.1		16.3		3.31		8.35	
7439-96-5	Manganese	т	mg/L	6020	0.0414		0.856		<0.005		0.0927	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	1	8004-480)0
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000258	BJ	0.000461	BJ	<0.001		0.000299	BJ
7440-02-0	Nickel	т	mg/L	6020	0.00108	J	0.02		0.0018	J	0.00189	J
7440-09-7	Potassium	т	mg/L	6020	1.63		2.54		<0.3		0.675	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	43		42.9		35.9		61.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		0.000101	BJ
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		0.0063	J	<0.02		0.00367	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-6

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-480	00
Facility's Loc	al Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00353		0.00286		<0.001		0.00068	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	9	8004-098	81	8004-48	00
Facility's Loo	cal Well or Spring Number (e.g., M	4 W-1	1, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204		<0.0000204		<0.0000203		<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.0985		<0.101		<0.0999	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.0985		<0.101		<0.0999	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.0985		<0.101		<0.0999	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0985		<0.101		<0.0999	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.0985		<0.101		<0.0999	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.0985		<0.101		<0.0999	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0985		<0.101		<0.0999	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0985		<0.101		<0.0999	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.0985		<0.101		<0.0999	
12587-46-1	Gross Alpha	т	pCi/L	9310	-3.39	*	1.03	*	0.157	*	0.638	*
12587-47-2	Gross Beta	т	pCi/L	9310	9.08	*	32.1	*	-1.66	*	-1.29	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.122	*	0.376	*	-0.137	*	0.261	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.863	*	0.47	*	0.00847	*	4.71	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	53.6	*	55.8	*	3.71	*	28.3	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.289	*	1.16	*	0.603	*	0.211	*
10028-17-8	Tritium	т	pCi/L	906.0	-36.1	*	-165	*	-110	*	-37.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		21.4		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.756	J	2.12		0.772	J	1.2	J
s0586	Total Organic Halides	т	mg/L	9020	0.00656	J	0.0158		0.0079	J	0.0072	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	796	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	.)	361		362		363		364	
Sample Sequen	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/7/2021 07	:00	4/7/2021	07:53	4/12/2021	06:59	4/12/2021 0)7:32
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)		MW361UG3	8-21	MW362U	G3-21	MW363U0	G3-21	MW364UG	3-21		
Laboratory Sa	mple ID Number (if applicable)		54011501	1	540115	013	540576	001	5405760	03		
Date of Analys	ce of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analys					1	4/13/20)21	4/19/20	21	4/19/202	1
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	'N	DOW	N	DOWN	l
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.425		<0.2		<0.2		0.434	
16887-00-6	Chloride(s)	т	mg/L	9056	33.4	*	4.55	*	29.1		35.7	
16984-48-8	Fluoride	т	mg/L	9056	0.118		0.449		0.183		0.14	
S0595	Nitrate & Nitrite	т	mg/L	9056	1.3		0.454		7.51		1.05	
14808-79-8	Sulfate	т	mg/L	9056	55.9	*	31.7	*	30.3		71.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.9		29.91		29.81		29.81	
S0145	Specific Conductance	т	µMH0/cm	Field	447		689		453		477	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796		8004-4797	,
Facility's Lo	cal Well or Spring Number (e.g., MW	i-1 , 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.68		341.03		328.57		327.83	
N238	Dissolved Oxygen	т	mg/L	Field	3.14		4.5		0.85		2.81	
s0266	Total Dissolved Solids	т	mg/L	160.1	244		404		243		256	
s0296	рН	т	Units	Field	5.89		6.93		6.09		5.95	
NS215	Eh	т	mV	Field	417		379		441		431	
s0907	Temperature	т	°c	Field	15.28		15.11		13.83		14.61	
7429-90-5	Aluminum	т	mg/L	6020	0.022	J	0.162		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0571		0.1		0.15		0.0635	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.361		0.0185		0.0184		0.0644	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	28.9		21.4		28.1		31.3	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.00129		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00122	J	0.0012	J	0.00285		0.00195	J
7439-89-6	Iron	т	mg/L	6020	0.0939	J	0.108		0.056	J	<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	13.3		10		10.7		13.2	
7439-96-5	Manganese	т	mg/L	6020	0.0247		0.0015	J	0.247		0.0151	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	6	8004-479	97
Facility's L	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.00048	BJ	0.00028	BJ	0.000219	BJ
7440-02-0	Nickel	т	mg/L	6020	0.00115	J	0.00135	J	0.0103		0.00212	
7440-09-7	Potassium	т	mg/L	6020	1.89		0.322		1.81		1.88	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	42.9		135		37.4		40	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.00367	В	0.000071	BJ	<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		0.00616	J	0.0236	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-098	6	8004-47	96	8004-47	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00462		<0.001		0.00089	J	0.00581	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	6	8004-479	96	8004-47	97
Facility's Loc	cal Well or Spring Number (e.g., M	1 W-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204		<0.0000205		<0.0000188		<0.0000187	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0977		<0.0997		<0.0957		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0977		<0.0997		<0.0957		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0977		<0.0997		<0.0957		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0977		<0.0997		<0.0957		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0977		<0.0997		<0.0957		<0.0952	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0977		<0.0997		<0.0957		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479)7
Facility's Loc	cal Well or Spring Number (e.g., 1	MW -1	L, MW-2, et		361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0977		<0.0997		<0.0957		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0977		<0.0997		<0.0957		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0977		<0.0997		<0.0957		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.19	*	0.931	*	3.84	*	-0.145	*
12587-47-2	Gross Beta	т	pCi/L	9310	25.4	*	7.88	*	-0.00264	*	41.6	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.331	*	0.157	*	0.399	*	0.491	*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.42	*	-1.58	*	0.895	*	1.27	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	48.4	*	12.3	*	3.06	*	54.2	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.57	*	0.828	*	0.297	*	-0.0309	*
10028-17-8	Tritium	т	pCi/L	906.0	-80.8	*	-26.1	*	41.9	*	-82.8	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		10.3	J	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.971	J	2.12		1.21	J	0.672	J
s0586	Total Organic Halides	т	mg/L	9020	0.00912	J	0.0175		0.0119		<0.01	

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	84	8004-	0982	8004-	4793	8004-09	983
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	365		36	6	36	67	368	
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/12/2021	08:05	4/12/202	21 08:40	4/12/202	21 09:16	4/12/2021	09:57
Duplicate ("Y	" or "N") ²				N		Ν		N		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW365UG	63-21	MW366	UG3-21	MW367	UG3-21	MW368U	G3-21
Laboratory Sar	mple ID Number (if applicable)		5405760	005	54057	6007	54057	6009	540576	011		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	4/17/202	21	4/17/2	2021	4/17/2	2021	4/17/20)21		
Gradient with	respect to Monitored Unit (UP, DC) wn	SIDE, UNKN	IOWN)	DOW	N	DO	WN	DO	WN	DOW	'N
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.387		0.484		<0.2	
16887-00-6	Chloride (s)	т	mg/L	9056	2.65		33.8		39		1.55	
16984-48-8	Fluoride	т	mg/L	9056	0.286		0.173		0.14		0.207	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.914		0.697		0.619		<0.1	
14808-79-8	Sulfate	т	mg/L	9056	58.7		38.6		46.3		53	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.83		29.83		29.85		29.88	
S0145	Specific Conductance	т	µMH0/cm	Field	411		434		433		430	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	¹ , Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793		8004-0983	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1 , 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	335.37		328.62		328.59		357.55	
N238	Dissolved Oxygen	т	mg/L	Field	4.03		2.51		2.19		1.2	
S0266	Total Dissolved Solids	т	mg/L	160.1	244		213		254		266	
S0296	рн	т	Units	Field	6.14		6.06		5.92		6.45	
NS215	Eh	т	mV	Field	405		423		411		390	
S0907	Temperature	т	°c	Field	15.22		15.72		15.94		15.22	
7429-90-5	Aluminum	т	mg/L	6020	0.0203	J	<0.05		<0.05		0.0716	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.101		0.101		0.154		0.0396	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00798	J	0.0682		0.0521		0.00658	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	21.8		26.6		28.6		49.8	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00162		<0.001		0.000599	J	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.0032		0.00125	J	0.00123	J	0.000777	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0331	J	0.378		0.0566	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10		11.2		12.6		11.6	
7439-96-5	Manganese	т	mg/L	6020	0.00874		0.004	J	0.24		0.00293	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	33
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		0.000548	BJ
7440-02-0		Nickel	т	mg/L	6020	0.00613		0.00154	J	0.00196	J	0.00104	J
7440-09-7		Potassium	т	mg/L	6020	0.255	J	1.71		2.88		0.288	J
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		0.00292	J	0.00241	J	<0.005	
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	49.9		40.9		38.5		24.5	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	0.000252	В	<0.0002		<0.0002		0.00027	В
7440-62-2		Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		0.00535	J
7440-66-6		Zinc	т	mg/L	6020	0.00423	J	<0.02		0.00484	J	0.00347	J
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-098	2	8004-47	93	8004-09	83
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00275		0.00453		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	4	8004-098	2	8004-479	93	8004-098	83
Facility's Lo	cal Well or Spring Number (e.g., M	4W-3	1, MW-2, et)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000187		<0.000019		<0.0000189		<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0968		<0.0954		<0.1		<0.0966	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0968		<0.0954		<0.1		<0.0966	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0968		<0.0954		<0.1		<0.0966	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0968		<0.0954		<0.1		<0.0966	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0968		<0.0954		<0.1		<0.0966	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0968		<0.0954		<0.1		<0.0966	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et		365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0968		<0.0954		<0.1		<0.0966	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0968		<0.0954		<0.1		<0.0966	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0968		<0.0954		<0.1		<0.0966	
12587-46-1	Gross Alpha	т	pCi/L	9310	7.08	*	2.48	*	8.27	*	2.61	*
12587-47-2	Gross Beta	т	pCi/L	9310	1.05	*	40.8	*	37	*	12	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.17	*	0.301	*	0.376	*	0.466	*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.21	*	0.0214	*	-1.64	*	1.59	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-1.93	*	70.7	*	63.9	*	3.12	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.42	*	0.432	*	0.67	*	0.456	*
10028-17-8	Tritium	т	pCi/L	906.0	-32.7	*	-59.6	*	-112	*	-31	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.26	J	1.04	J	0.753	J	1.43	J
s0586	Total Organic Halides	т	mg/L	9020	0.019		0.0138		0.00954	J	0.00466	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4820 8004-4818 8004-4819 8004-4808 370 371 372 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 369 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 4/13/2021 07:20 4/13/2021 07:50 4/13/2021 08:26 4/13/2021 06:38 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ Ν Ν Ν Ν MW369UG3-21 MW370UG3-21 MW371UG3-21 MW372UG3-21 Facility Sample ID Number (if applicable) 540680001 540680003 540680005 540680007 Laboratory Sample ID Number (if applicable) 4/20/2021 4/20/2021 4/20/2021 4/20/2021 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis UP UΡ UP UP Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т METHOD DETECTED DETECTED DETECTED DETECTED Unit F F F F D 5 OF VALUE VALUE VALUE VALUE г L L L MEASURE OR А OR А OR А OR Α PQL⁶ POL⁶ POL⁶ POL6 G G G G S^7 s s s 0.437 .1 0.499 <0.2 0.521 24959-67-9 Bromide т mg/L 9056 307 397 1 43 38.4 т 16887-00-6 Chloride(s) 9056 mq/L 0 222 0 173 0 164 0 183 т 16984-48-8 Fluoride mg/L 9056 0.532 0.91 < 0.1 0.807 S0595- т 9056 Nitrate & Nitrite mg/L 7.59 21.7 90.7 157 14808-79-8 т 9056 Sulfate ma/L 30 11 30 11 30.11 30.13 NS1894 Barometric Pressure Reading T Inches/Hg Field 383 492 499 795 т S0145- -Specific Conductance uMH0/cm Field

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use ``*," then describe on ``Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.82		328.8		344.94		328.85	
N238	Dissolved Oxygen	т	mg/L	Field	0.86		3.57		6.07		1.75	
S0266	Total Dissolved Solids	т	mg/L	160.1	209		271		313		483	
S0296	рН	т	Units	Field	6.01		5.9		6.53		6	
NS215	Eh	т	mV	Field	444		435		388		411	
S0907	Temperature	т	°C	Field	15		15.5		15.28		15.94	
7429-90-5	Aluminum	т	mg/L	6020	0.0299	J	<0.05		0.667		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.395		0.228		0.104		0.0622	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0302		0.933		0.0104	J	1.25	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	16.7		29.9		71.8		62.3	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00341		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.0013	J	0.000747	J	0.00101	J	0.000629	J
7439-89-6	Iron	т	mg/L	6020	0.0944	J	<0.1		0.43		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	6.97		12.9		10.9		23.2	
7439-96-5	Manganese	т	mg/L	6020	0.0217		<0.005		0.0225		<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBEI	R ¹ , Facility Well/Spring Number				8004-482	0	8004-481	8	8004-481	9	8004-480	8
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000211	J	<0.001		0.000271	J	<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.00352		0.00128	J	0.00219		0.000918	J
7440-09-7	Potassium	т	mg/L	6020	0.521		2.47		0.324		2.16	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00207	J	<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	54		47.4		12.2		59	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000477		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		0.00445	J	<0.02	
7440-66-6	Zinc	т	mg/L	6020	0.00565	J	0.00333	J	0.00465	J	<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	38
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00118		0.00124		<0.001		0.00483	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482)	8004-481	8	8004-48	19	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g., M	1 W-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000188		<0.0000189		<0.0000195		<0.000019	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.0969		<0.0971		<0.0986	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.0969		<0.0971		<0.0986	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.0969		<0.0971		<0.0986	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0969		<0.0971		<0.0986	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.0969		<0.0971		<0.0986	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.0969		<0.0971		<0.0986	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et		369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0969		<0.0971		<0.0986	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0969		<0.0971		<0.0986	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.0969		<0.0971		<0.0986	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.38	*	3.51	*	5.95	*	5.95	*
12587-47-2	Gross Beta	т	pCi/L	9310	38	*	33.5	*	12.7	*	35.3	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.231	*	0.348	*	0.673	*	0.647	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.56	*	0.106	*	0.381	*	0.867	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	60.3	*	44.2	*	5.99	*	51.3	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.377	*	-0.479	*	1.6	*	-0.0359	*
10028-17-8	Tritium	Т	pCi/L	906.0	-60.6	*	9	*	-61.1	*	-44.2	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	16.1	J	13.3	J	<20		10.6	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5	*	<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.59	J	1.49	J	1.34	J	1.29	J
S0586	Total Organic Halides	т	mg/L	9020	0.0173		0.00976	J	<0.01		0.00708	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-09	990	8004-09	985	8004-098	8
Facility's Lo	cal Well or Spring Number (e.g., M	/₩-1	, MW-2, etc	.)	373		374		375		376	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/13/2021 08	3:59	4/13/2021	09:31	4/13/2021	10:05	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG3	8-21	MW374U	G3-21	MW375U0	33-21	NA	
Laboratory Sa	mple ID Number (if applicable)		54068000	9	540680	011	540680	013	NA			
Date of Analy	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					1	4/20/20	21	4/20/20	21	NA	
Gradient with	respect to Monitored Unit (UP, DC) WN ,	SIDE, UNKN	OWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.642	J	0.532		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	38	*	46.6	*	3.51	*		*
16984-48-8	Fluoride	т	mg/L	9056	0.184		0.245		0.304			*
S0595	Nitrate & Nitrite	т	mg/L	9056	0.737		0.257		0.99			*
14808-79-8	Sulfate	т	mg/L	9056	167		13		24.8			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.14		30.14		30.15			*
S0145	Specific Conductance	т	µMH0/cm	Field	834		636		333			*

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1,	Facility Well/Spring Number				8004-4792	2	8004-0990	0	8004-0985		8004-0988	
Facility's Lo	cal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	328.83		342.37		340.69			*
N238	Dissolved Oxygen	т	mg/L	Field	1.33		2.8		0.61			*
S0266	Total Dissolved Solids	т	mg/L	160.1	484		399		193			*
s0296	рн	т	Units	Field	6		6.82		6.24			*
NS215	Eh	т	mV	Field	407		361		378			*
s0907	Temperature	т	°c	Field	16.39		16.22		16.06			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.17		0.0513			*
7440-36-0	Antimony	т	mg/L	6020	0.00127	J	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00243	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.029		0.125		0.165			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.72		0.0258		0.013	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	62.9		21.7		12.5			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.000402	J		*
7440-50-8	Copper	т	mg/L	6020	0.000611	J	0.00105	J	0.000408	J		*
7439-89-6	Iron	т	mg/L	6020	<0.1		1.38		0.0753	J		*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	24.7		4.68		5.18			*
7439-96-5	Manganese	т	mg/L	6020	0.00242	J	0.0203		0.00612			*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-0988	
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7		Molybdenum	т	mg/L	6020	<0.001		0.000416	J	<0.001			*
7440-02-0		Nickel	т	mg/L	6020	0.00131	J	<0.002		0.00103	J		*
7440-09-7		Potassium	т	mg/L	6020	2.5		0.555		0.256	J		*
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020	<0.005		0.00391	J	0.00258	J		*
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5		Sodium	т	mg/L	6020	55.4		99.4		49.4			*
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	т	mg/L	6020	<0.0002		0.000185	J	<0.0002			*
7440-62-2		Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6		Zinc	т	mg/L	6020	<0.02		0.004	J	0.00376	J		*
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5	Ī	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-0988	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00574		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-099	0	8004-09	85	8004-0988	
Facility's Loo	cal Well or Spring Number (e.g., M	1 W-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193	*	<0.0000193	*	<0.000019	*		*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.0964		<0.0998		<0.0997			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0964		<0.0998		<0.0997			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0964		<0.0998		<0.0997			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0964		<0.0998		<0.0997			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0964		<0.0998		<0.0997			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0964		<0.0998		<0.0997			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4792		8004-0990		8004-0985		8004-0988	
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	1, MW-2, et)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0964		<0.0998		<0.0997			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0964		<0.0998		<0.0997			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0964		<0.0998		<0.0997			*
12587-46-1	Gross Alpha	т	pCi/L	9310	5.14	*	1.55	*	-2.13	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	11.3	*	7.43	*	0.945	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.114	*	-0.109	*	-0.118	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.04	*	3.79	*	-0.562	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	17.5	*	-0.71	*	4.01	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.42	*	5.19	*	-0.167	*		*
10028-17-8	Tritium	т	pCi/L	906.0	-1.83	*	3.48	*	34	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		32.8		<20			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5	*		*
S0268	Total Organic Carbon	т	mg/L	9060	1.23	J	2.19		0.941	J		*
S0586	Total Organic Halides	т	mg/L	9020	0.012		0.014		0.00798	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

8004-0989 AKGWA NUMBER¹, Facility Well/Spring Number 0000-0000 0000-0000 0000-0000 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 377 E. BLANK F. BLANK T. BLANK 1 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment F Т NA Е Sample Date and Time (Month/Day/Year hour: minutes) NA 4/7/2021 05:50 4/7/2021 07.08 4/7/2021 05.45 06:50Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ Ν Ν Ν Ν NA RI1UG3-21 FB1UG3-21 TB1UG3-21 Facility Sample ID Number (if applicable) 540115016 NA 540115015 540115017 Laboratory Sample ID Number (if applicable) Date of Analysis (Month/Day/Year) For Volatile Organics Analysis NA 4/14/2021 4/14/2021 4/14/2021 Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) SIDE NA NA NA DETECTED CAS RN⁴ CONSTITUENT т Unit METHO DETECTED F F DETECTED F DETECTED F D OF D VALUE L VALUE L VALUE L VALUE L 5 MEASURE OR А OR А OR А OR А POL⁶ G POL⁶ G POL⁶ G POL⁶ G S^7 s s s т * * 24959-67-9 Bromide 9056 ma/L * т * * 16887-00-6 Chloride(s) mq/L 9056 т * * * 16984-48-8 9056 * Fluoride mg/L * * * * S0595- -Nitrate & Nitrite т ma/L 9056 * * * 14808-79-8 т * Sulfate 9056 mq/L * * NS1894 Barometric Pressure Reading T Inches/Hg Field * * * т * S0145- -Specific Conductance uMH0/cm Field

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	9	0000-0000)	0000-0000		0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1 , 1	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	<0.002		<0.002			*
7439-89-6	Iron	т	mg/L	6020		*	0.0658	J	<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-0000	
Facility's I	local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLANK		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.001		<0.001			*
7440-02-0	Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7	Potassium	т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-28-0	Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	т	mg/L	6020		*	<0.02		<0.02			*
7440-66-6	Zinc	т	mg/L	6020		*	<0.02		<0.02			*
108-05-4	Vinyl acetate	т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-0000		0000-0000		0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et)	377		E. BLANK	(F. BLAN	IK	T. BLANK 1	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000	D	000-000	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., M	MW -1	1, MW-2, et)	377		E. BLAN	<	F. BLANK		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000206		<0.0000205		<0.0000207	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.111		<0.0951			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.111		<0.0951			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.111		<0.0951			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.111		<0.0951			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.111		<0.0951			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.111		<0.0951			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-0000		0000-0000		0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.	., MW-1	L, MW-2, et)	377		E. BLANK		F. BLAN	ĸ	T. BLANK 1	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.111		<0.0951			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.111		<0.0951			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.111		<0.0951			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-2.82	*	-2.62	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	-1.01	*	5.59	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*	0.401	*	-0.00913	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*	-3.91	*	2.97	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	6.65	*	9.86	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	0.0683	*	0.511	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	-8.95	*	92.8	*		*
S0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				000-000	00	0000-00	00	8004-479	5	Ι	
Facility's Loca	al Well or Spring Number (e.g., M	W-1	, MW-2, etc	:.)	T. BLANK	(2	T. BLAN	K 3	361		$\left \right\rangle$	
Sample Sequence	e #		1		1		2					
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		т		NA			
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/12/2021 0	6:20	4/13/2021	05:55	4/7/2021 07	:00		
Duplicate ("Y"	or "N") ²				Ν		N		Y			
Split ("Y" or	"N") ³				Ν		N		N			/
Facility Sample	e ID Number (if applicable)				TB2UG3-	21	TB3UG3	-21	MW361DUG	3-21		/
Laboratory Sam	ple ID Number (if applicable)				5405760	13	5406800	15	54011500	9	$ \rangle /$	
Date of Analys:	is (Month/Day/Year) For <u>Volatile</u>	o Or	ganics Anal	ysis	4/17/202	21	4/20/20	21	4/14/2021	ļ	$ \rangle /$	
Gradient with :	respect to Monitored Unit (UP, DC	wn,	SIDE, UNKN	OWN)	NA		NA		DOWN		I X	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQI ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*	0.428			Λ
16887-00-6	Chloride(s)	т	mg/L	9056		*		*	33.5	*		Λ
16984-48-8	Fluoride	т	mg/L	9056		*		*	0.152			
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*	1.29			
14808-79-8	Sulfate	т	mg/L	9056		*		*	56	*		
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		
s0145	Specific Conductance	т	µMH0/cm	Field		*		*		*	V	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	8004-4795		Ν	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	361		$\left \right\rangle$	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*	243			/
S0296	рН	т	Units	Field		*		*		*		/
NS215	Eh	т	mV	Field		*		*		*		
S0907	Temperature	т	°C	Field		*		*		*	$ \rangle /$	
7429-90-5	Aluminum	т	mg/L	6020		*		*	<0.05			
7440-36-0	Antimony	т	mg/L	6020		*		*	<0.003			
7440-38-2	Arsenic	т	mg/L	6020		*		*	<0.005		X	
7440-39-3	Barium	т	mg/L	6020		*		*	0.056			
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005			
7440-42-8	Boron	т	mg/L	6020		*		*	0.362		$ \rangle$	
7440-43-9	Cadmium	т	mg/L	6020		*		*	<0.001			
7440-70-2	Calcium	т	mg/L	6020		*		*	29.1			$\left(\right)$
7440-47-3	Chromium	т	mg/L	6020		*		*	0.0033	J		$\left[\right]$
7440-48-4	Cobalt	т	mg/L	6020		*		*	<0.001			$ \rangle$
7440-50-8	Copper	т	mg/L	6020		*		*	0.000887	J		$ \rangle$
7439-89-6	Iron	т	mg/L	6020		*		*	0.0627	J		
7439-92-1	Lead	т	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	т	mg/L	6020		*		*	13.6			
7439-96-5	Manganese	т	mg/L	6020		*		*	0.0119		/	
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002		V	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBEI	KGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		0000-0000		8004-4795		Λ	
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	٢3	361		$\left \right\rangle$	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*		*	<0.001			\square
7440-02-0	Nickel	т	mg/L	6020		*		*	0.00085	J		\square
7440-09-7	Potassium	т	mg/L	6020		*		*	1.91			
7440-16-6	Rhodium	т	mg/L	6020		*		*	<0.005			
7782-49-2	Selenium	т	mg/L	6020		*		*	<0.005			
7440-22-4	Silver	т	mg/L	6020		*		*	<0.001			/
7440-23-5	Sodium	т	mg/L	6020		*		*	43.1			
7440-25-7	Tantalum	т	mg/L	6020		*		*	<0.005	*		
7440-28-0	Thallium	т	mg/L	6020		*		*	<0.002		X	
7440-61-1	Uranium	т	mg/L	6020		*		*	<0.0002			
7440-62-2	Vanadium	т	mg/L	6020		*		*	<0.02			
7440-66-6	Zinc	т	mg/L	6020		*		*	<0.02			
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			\mathbf{V}
67-64-1	Acetone	т	mg/L	8260	0.00779		0.00593		<0.005			
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			Λ
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-000	0	8004-47	95	Ν	
Facility's Loc	al Well or Spring Number (e.g., M	MW-1	L, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	361			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			/
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			/
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		$ \rangle /$	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			$ \rangle$
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		0.00468		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	C	0000-000	0	8004-47	95		
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et		T. BLANK	2	T. BLANK	3	361			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			Π
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			/
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			Ι
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			/
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000188		<0.0000187	*	<0.0000207			
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			\mathbb{N}
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			\mathbf{N}
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			$ \rangle$
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.101			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.101			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.101			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.101			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.101			
12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.101		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		8004-4795	5	\mathbf{N}	
Facility's Loc	al Well or Spring Number (e.g., M	MW-1	L, MW-2, et)	T. BLANK	2	T. BLANK 3		361			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	두 니 주 영 6
11097-69-1	PCB-1254	т	ug/L	8082		*		*	<0.101			\square
11096-82-5	PCB-1260	т	ug/L	8082		*		*	<0.101			Π
11100-14-4	PCB-1268	т	ug/L	8082		*		*	<0.101			
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*	-4.54	*		
12587-47-2	Gross Beta	т	pCi/L	9310		*		*	25.4	*		[
10043-66-0	Iodine-131	т	pCi/L			*		*		*	$ \rangle /$	
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*	-0.223	*		
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*	-0.661	*	V	
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*	49.8	*	Λ	
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*	0.0408	*		
10028-17-8	Tritium	т	pCi/L	906.0		*		*	13.9	*		
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*	<20			
57-12-5	Cyanide	т	mg/L	9012		*		*	<0.2			
20461-54-5	Iodide	т	mg/L	300.0		*		*	<0.5			
S0268	Total Organic Carbon	т	mg/L	9060		*		*	0.809	J		
s0586	Total Organic Halides	т	mg/L	9020		*		*	0.0087	J		\square
												\square
												\Box
											/	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring _Point	Facility Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.42. Rad error is 3.42.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 6.71. Rad error is 6.55.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.322. Rad error is 0.322.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.19. Rad error is 3.19.
		Technetium-99		TPU is 15. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.799. Rad error is 0.795.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 133. Rad error is 133.
04-4799 MW358	MW358UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.78. Rad error is 4.76.
		Gross beta		TPU is 11.4. Rad error is 10.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.375. Rad error is 0.375.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.05. Rad error is 4.05.
		Technetium-99		TPU is 14.6. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1. Rad error is 0.988.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 141. Rad error is 141.
04-0981 MW359	MW359UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.83. Rad error is 4.83.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 7.81. Rad error is 7.81.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.193. Rad error is 0.193.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.89. Rad error is 2.89.
		Technetium-99 Thorium-230	U U	Indicates analyte/nuclide was analyzed for, but not detected. TF 12.1. Rad error is 12.1. Indicates analyte/nuclide was analyzed for, but not detected. TP
				0.83. Rad error is 0.822.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 125. Rad error is 125.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

3004-4800 MW360	MW360UG3-21	Chloride	W	Deat dispation only a resource out of a start limits
			~ ~	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 3.75. Rad error is 3.74.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 8.07. Rad error is 8.07.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.422. Rad error is 0.422.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.32. Rad error is 3.24.
		Technetium-99		TPU is 12.3. Rad error is 11.9.
		Thorium-230	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.853. Rad error is 0.851.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 133. Rad error is 133.
004-4795 MW361	MW361UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.41. Rad error is 4.4.
		Gross beta		TPU is 8.25. Rad error is 7.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.411. Rad error is 0.41.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.45. Rad error is 4.44.
		Technetium-99		TPU is 14.6. Rad error is 13.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.691. Rad error is 0.69.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 130. Rad error is 130.
004-0986 MW362	MW362UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U 	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.4. Rad error is 4.39.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 7.71. Rad error is 7.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.428. Rad error is 0.428.
		Strontium-90 Technetium-99	U U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.98. Rad error is 2.98. Indicates analyte/nuclide was analyzed for, but not detected. TP
		Thorium-230	U	12.2. Rad error is 12.2. Indicates analyte/nuclide was analyzed for, but not detected. TP
				1.46. Rad error is 1.45.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 133. Rad error is 133.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4796 MW363	MW363UG3-21	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.19. Rad error is 5.15.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 7.02. Rad error is 7.02.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.454. Rad error is 0.454.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.36. Rad error is 2.35.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.881.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 156. Rad error is 156.
3004-4797 MW364	MW364UG3-21	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.12. Rad error is 4.12.
		Gross beta		TPU is 10.5. Rad error is 8.01.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.48. Rad error is 0.48.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.29. Rad error is 3.28.
		Technetium-99		TPU is 14.2. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.892. Rad error is 0.891.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 149. Rad error is 149.
004-0984 MW365	MW365UG3-21	Gross alpha		TPU is 5.27. Rad error is 5.14.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 7.02. Rad error is 7.02.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.507. Rad error is 0.507.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.03. Rad error is 4.02.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.464. Rad error is 0.463.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 152. Rad error is 152.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0982 MW366	MW366UG3-21	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.21. Rad error is 6.16.
		Gross beta		TPU is 12.4. Rad error is 10.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.423. Rad error is 0.422.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.32. Rad error is 3.32.
		Technetium-99		TPU is 15.4. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.05. Rad error is 1.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 149. Rad error is 149.
004-4793 MW367	MW367UG3-21	Gross alpha		TPU is 5.93. Rad error is 5.77.
		Gross beta		TPU is 9.86. Rad error is 7.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.06. Rad error is 1.06.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.1. Rad error is 3.1.
		Technetium-99		TPU is 14.8. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.07. Rad error is 1.06.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 141. Rad error is 141.
004-0983 MW368	MW368UG3-21	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.82. Rad error is 4.78.
		Gross beta		TPU is 7.67. Rad error is 7.41.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.456. Rad error is 0.455.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.49. Rad error is 3.48.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.944. Rad error is 0.938.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 143. Rad error is 143.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4820 MW369	MW369UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.15. Rad error is 4.13.
		Gross beta		TPU is 11.6. Rad error is 9.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.568. Rad error is 0.568.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.19. Rad error is 4.15.
		Technetium-99		TPU is 14.6. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.998. Rad error is 0.994.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 149. Rad error is 149.
		lodide	W	Post-digestion spike recovery out of control limits.
3004-4818 MW370	MW370UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.72. Rad error is 4.68.
		Gross beta		TPU is 11. Rad error is 9.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.708. Rad error is 0.708.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.86. Rad error is 2.86.
		Technetium-99		TPU is 13.6. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.96. Rad error is 2.92.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 143. Rad error is 143.
004-4819 MW371	MW371UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.65. Rad error is 5.56.
		Gross beta		TPU is 7.98. Rad error is 7.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.798. Rad error is 0.797.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.45. Rad error is 3.45.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.55. Rad error is 1.53.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 150. Rad error is 150.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4808 MW372	MW372UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 5.93. Rad error is 5.84.
		Gross beta		TPU is 11.2. Rad error is 9.53.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.863. Rad error is 0.862.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.9. Rad error is 2.9.
		Technetium-99		TPU is 14.9. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.26. Rad error is 1.26.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 151. Rad error is 151.
004-4792 MW373	MW373UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.84. Rad error is 4.77.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 9.03. Rad error is 8.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.588. Rad error is 0.588.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.5. Rad error is 2.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.8. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.988. Rad error is 0.982.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 153. Rad error is 153.
004-0990 MW374	MW374UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.67. Rad error is 3.67.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.07. Rad error is 6.96.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.628. Rad error is 0.627.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.4. Rad error is 4.36.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.1. Rad error is 11.1.
		Thorium-230		TPU is 2.68. Rad error is 2.55.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 150. Rad error is 150.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0985 MW375	MW375UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.85. Rad error is 2.84.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.11. Rad error is 7.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.337. Rad error is 0.337.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.84. Rad error is 2.84.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.635. Rad error is 0.634.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 154. Rad error is 154.
		lodide	W	Post-digestion spike recovery out of control limits.

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring _Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	•	Molybdenum		During sampling, the well went dry; therefore, no sample was
		Nickel		collected. During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377	·	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	RI1UG3-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.64. Rad error is 2.64.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.77. Rad error is 4.77.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.43. Rad error is 0.43.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.75. Rad error is 2.75.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 11.8. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.04. Rad error is 1.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 132. Rad error is 132.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG3-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.85. Rad error is 1.84.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 9.43. Rad error is 9.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.327. Rad error is 0.327.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.34. Rad error is 3.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.918. Rad error is 0.91.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 133. Rad error is 131.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG3-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG3-21	Vanadium	Flay	Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cvanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
				· ·····

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG3-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG3-21	Vanadium	l lay	Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-21	Vanadium	i iay	Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropar	ne H	Analysis performed outside holding time requirement
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
				· · · · · · · · · · · · · · · · · · ·

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring	Facility	Constituent		Description
Point	Sample ID	Constituent	Flag	Description
3004-4795 MW361	MW361DUG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.54. Rad error is 2.54.
		Gross beta		TPU is 8.72. Rad error is 7.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.32. Rad error is 0.32.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.06. Rad error is 4.06.
		Technetium-99		TPU is 14.2. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.631. Rad error is 0.629.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 135. Rad error is 135.

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4800 8004-0990 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) MW360 MW374 Sample Sequence # 3 3 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA 4/7/2021 06.28 4/13/2021 09:31 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Split ("Y" or "N")³ N N Facility Sample ID Number (if applicable) MW360UG3-21 MW374UG3-21 540680011-2 540115007-2 Laboratory Sample ID Number (if applicable) Date of Analysis (Month/Day/Year) For Volatile Organics Analysis NA NA DOWN UP Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE L 5 MEASURE OR А OR А OR OR А POL⁶ POL⁶ POL⁶ PQL⁶ G G G S^7 s s s 14133-76-7 Technetium-99 т pCi/L TC-02-RC 3.68 2.77 14269-63-7 Thorium-230 т Th-01-RC pCi/L

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4800 MW360	MW360UG3-21	Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.1. Rad error is 10.1.
		Thorium-230		Reanalysis of constituent not required and not performed.
8004-0990 MW374	MW374UG3-21	Technetium-99		Reanalysis of constituent not required and not performed.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.57. Rad error is 3.49.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2021 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). A statistician qualification statement has been provided for this analysis.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2021 data used to conduct the statistical analyses were collected in April 2021. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^{a,b}	SG	UCRS
MW377 ^{a,b}	SG	UCRS

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

^b Well was dry this quarter, and a groundwater sample could not be collected.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2021. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: $upper TL = X + (K \times S)$ lower TL = X - (K × S)

Aluminum Antimony Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride Cobalt Conductivity Copper Dissolved Oxygen Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Calcium Chemical Oxygen Demand (COD) Chloride Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Chemical Oxygen Demand (COD) Chloride Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Chloride Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Nickel Oxidation-Reduction Potential pH* Potassium Sodium
Oxidation-Reduction Potential pH* Potassium Sodium
pH* Potassium Sodium
Potassium Sodium
Sodium
Sulfate
Technetium-99
Thorium-230
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Vanadium
Zinc

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

1,1,1,2-Tetrachloroethane 7 7 0 No 1,1,2-Tetrachloroethane 7 7 0 No 1,1,2-Tetrachloroethane 7 7 0 No 1,1,2-Treitohoroethane 7 7 0 No 1,1-Dichloroethane 7 7 0 No 1,2-Dichloropropane 7 7 0 No 1,2-Dichlorobenzene 7 7 0 No 1,2-Dichlorobenzene 7 7 0 No 2-Butanone 7 7 0 No 2-Butanone 7 7 0 No Acetone 7 7 0 No Acetone 7 7 0 No Aluminum 7 7 0 No Acetone 7 7 0 No Bornoide 7 7 0 No Bornoide 7 7 0 No <th>Parameters</th> <th>Observations</th> <th>Censored Observation</th> <th>Uncensored Observation</th> <th>Statistical Analysis?</th>	Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1.1.2.2.Tetrachloroethane 7 7 0 No 1.1.2.Tetrichloroethane 7 7 0 No 1.1.2.Hickhoroethane 7 7 0 No 1.2.Dibromoethane 7 7 0 No 1.2.Dibromoethane 7 7 0 No 1.2.Dibromoethane 7 7 0 No 1.2.Dickhoropropane 7 7 0 No 1.2.Dickhoropropane 7 7 0 No 2.Butanone 7 7 0 No 2.Hexanone 7 7 0 No 4.Methyl-2-pentanone 7 7 0 No Actrolein 7 7 0 No Actroloinitile 7 7 0 No Actroloinitile 7 7 0 No Bromoidinome 7 7 0 No Bromonchorem 7 7 <td< td=""><td>1,1,1,2-Tetrachloroethane</td><td>7</td><td>7</td><td>0</td><td></td></td<>	1,1,1,2-Tetrachloroethane	7	7	0	
1.1.2-Trichloroethane 7 7 0 No 1.1-Dichloroethane 7 7 0 No 1.2.3-Trichloropropane 7 7 0 No 1.2.3-Trichloropropane 7 7 0 No 1.2.Dibromo-3-chloropropane 7 7 0 No 1.2.Dibromo-s-chloropropane 7 7 0 No 1.2.Dibromo-s-chloropropane 7 7 0 No 2.Butanone 7 7 0 No 2.Hexanone 7 7 0 No Acetone 7 7 0 No Acetone 7 7 0 No Aluminum 7 7 0 No Aluminum 7 7 0 No Boron 7 1 6 Yes Bromide 7 7 0 No Bromide 7 7 0 No </td <td></td> <td></td> <td>7</td> <td>0</td> <td></td>			7	0	
1.1-Dichloroethane 7 7 0 No 1.2.3-Trichloropropane 7 7 0 No 1.2-Dibromoethane 7 7 0 No 1.2-Dibromoethane 7 7 0 No 1.2-Dichlorobenzene 7 7 0 No 1.2-Dichloroperpane 7 7 0 No 1.2-Dichlorobenzene 7 7 0 No 2-Bitkanone 7 7 0 No 2-Bitkanone 7 7 0 No 4-Methyl-2-pentanone 7 7 0 No Acerolein 7 7 0 No Acerylonitrile 7 7 0 No Antimony 7 7 0 No No Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No No Bromodichloromethane 7 7 0				-	
1.2.3-Trichloropropane 7 7 0 No 1.2.Dibromo-3-chloropropane 7 7 0 No 1.2.Dibromo-s-chloropropane 7 7 0 No 1.2.Diblorobenzene 7 7 0 No 1.2.Diblorobenzene 7 7 0 No 2.Bitanone 7 7 0 No 2.Hexanone 7 7 0 No 2.Hexanone 7 7 0 No Actolin 7 7 0 No Actolin 7 7 0 No Accolin 7 7 0 No Acrylonitile 7 7 0 No Borona 7 1 6 Yes Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0					
1.2-Dibromo-3-chloropropane 7 7 0 No 1.2-Diblorobenzene 7 7 0 No 1.2-Dibloropropane 7 7 0 No 1.2-Dibloropropane 7 7 0 No 2-Butanone 7 7 0 No 2-Hexanore 7 7 0 No 2-Hexanore 7 7 0 No Acctone 7 7 0 No Acctone 7 7 0 No Acrylonitrile 7 7 0 No Acrylonitrile 7 7 0 No Aluminum 7 7 0 No Beryllium 7 7 0 No Bromodichoromethane 7 7 0 No Bromodichoromethane 7 7 0 No Bromoform 7 7 0 No <	,				
1.2-Dibromoethane 7 7 0 No 1.2-Dichlorobenzene 7 7 0 No 1.2-Dichloropropane 7 7 0 No 2-Butanone 7 7 0 No 2-Hexanone 7 7 0 No 2-Hexanone 7 7 0 No 4-Methyl-2-pentanone 7 7 0 No Acrolein 7 7 0 No Actrolein 7 7 0 No Actrolein 7 7 0 No Actrolein 7 7 0 No Boron 7 7 0 No Bromide 7 7 0 No Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No					
1,2-Dichloropropane 7 7 0 No 1,2-Dichloropropane 7 7 0 No 2-Butanone 7 7 0 No 2-Hexanone 7 7 0 No 2-Hexanone 7 7 0 No Acetone 7 7 0 No Aluminum 7 7 0 No Beryniliam 7 7 0 No Bromodchloromethane 7 7 0 No Bromodchloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromoform 7 7 0 No Bromoform 7 7					
1.2-Dickloropropane 7 7 0 No 2-Butanone 7 7 0 No 2-Hexanone 7 7 0 No 4-Methyl-2-pentanone 7 7 0 No Acerolein 7 7 0 No Acerolein 7 7 0 No Acerolein 7 7 0 No Actolinin 7 7 0 No Actolinin 7 7 0 No Actolinin 7 7 0 No Aluminum 7 7 0 No Bromide 7 7 0 No Bromide 7 7 0 No Bromochloromethane 7 7 0 No Bromochloromethane 7 7 0 No Bromochloromethane 7 7 0 No Carbon dis					
2-Butanone 7 7 0 No 2-Hexanone 7 7 0 No 2-Hexanone 7 7 0 No Acetone 7 7 0 No Acetone 7 7 0 No Acetone 7 7 0 No Acrolonitrile 7 7 0 No Altiminum 7 7 0 No Altimony 7 7 0 No Beryllium 7 7 0 No Bromokloromethane 7 7 0 No Catium 7 0 No Co Catium					
2-Hexanone 7 7 0 No 4-Methyl-2-pentanone 7 7 0 No Acctolen 7 7 0 No Acrolein 7 7 0 No Auminony 7 7 0 No Bromide 7 7 0 No Bromide 7 7 0 No Bromodiduloromethane 7 7 0 No Catron disulfide 7 7 0 No Cheroid sulfide 7 7 0 No					
4-Methyl-2-pentanone 7 7 0 No Acerolein 7 7 0 No Acrolein 7 7 0 No Acrolein 7 7 0 No Actrolininum 7 7 0 No Aluminum 7 7 0 No Antimony 7 7 0 No Bromide 7 7 0 No Bromide 7 6 1 Yes Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromodifile 7 7 0 No Bromodifile 7 7 0 No Choronoftane 7 7 0 No Choroottane 7 7 0 No Chloro					
Acetone 7 7 0 No Acroloin 7 7 0 No Acrylonitrile 7 7 0 No Aluminum 7 7 0 No Aluminum 7 7 0 No Bromodelonomethane 7 7 0 No Boron 7 1 6 Yes Bromochloromethane 7 7 0 No Bromodifile 7 7 0 No Bromodifile 7 7 0 No Bromodifile 7 7 0 No Cateon disulfide 7 7 0 No Chlorode 7 7 0 No Ch					
Acrolein 7 7 0 No Acrylonitrile 7 7 0 No Aluminum 7 0 7 Yes Antimony 7 7 0 No Beryllium 7 7 0 No Bromode 7 1 6 Yes Bromodelhoromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromodifue 7 7 0 No Bromodifue 7 7 0 No Bromodifue 7 7 0 No Calcium 7 7 0 No Choride 7 7 0 No Chloride 7 7 0 No Chlorobenzene					
Acrylonitrile 7 7 0 No Aluminum 7 0 7 Yes Antimony 7 7 0 No Beryllium 7 7 0 No Boron 7 1 6 Yes Bromokloromethane 7 7 0 No Bromochloromethane 7 7 0 No Bromoform 7 7 0 No Bromonethane 7 7 0 No Calcium 7 0 No Choride 7 Yes Chlorobenzene 7 7 0 No Chlorobenzene 7 7 0 No Chlorobenzene 7 7 0 No					
Aluminum 7 0 7 Yes Antimony 7 7 0 No Beryllium 7 7 0 No Boron 7 1 6 Yes Bromochloromethane 7 7 0 No Bromoform 7 7 0 No Carbon disulfide 7 7 0 No Chloride 7 7 0 No Chlorobenzene 7 7 0 No Chlorothane 7 7 0 No Cish-13-Dic					
Antimony 7 7 0 No Beryllium 7 7 0 No Boron 7 1 6 Yes Bromide 7 6 1 Yes Bromochloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromoform 7 7 0 No Bromoform 7 7 0 No Bromothane 7 7 0 No Carbon disulfide 7 7 0 No Chenical Oxygen Demand (COD) 7 6 1 Yees Chlorobenzene 7 7 0 No Chlorobenzene 7 7 0 No Chloroform 7 7 0 No Cotsit:1,2-Dichlor					
Beryllum 7 7 0 No Bronn 7 1 6 Yes Bromochloromethane 7 7 0 No Carbon disulfide 7 7 0 No Chloride 7 7 0 No Chlorothane 7 7 0 No Chlorothane 7 7 0 No Cisi-1,2-Dichloroethene 7 7 0					
Boron 7 1 6 Yes Bromide 7 6 1 Yes Bromochloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromoform 7 7 0 No Bromomethane 7 7 0 No Bromomethane 7 7 0 No Bromomethane 7 7 0 No Carbon disulfide 7 7 0 No Chenical Oxygen Demand (COD) 7 6 1 Yes Chlorobenzene 7 7 0 No No Chlorobenzene 7 7 0 No No Chlorobenzene 7 7 0 No No cis-1,2-Dichloroethane 7 7 0 No Chloromethane 7 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Bromide761YesBromochloromethane770NoBromodichloromethane770NoBromoform770NoBromoform770NoBromomethane770NoBromomethane770NoBromomethane770NoCalcium707YesCarbon disulfide770NoChemical Oxygen Demand (COD)761YesChlorobenzene770NoChlorobenzene770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoChlorothane770NoDibromochloromethane770NoDibromomethane7<					
Bromochloromethane 7 7 0 No Bromodichloromethane 7 7 0 No Bromoform 7 7 0 No Bromoform 7 7 0 No Bromomethane 7 7 0 No Calcium 7 0 7 Yes Carbon disulfide 7 7 0 No Chlorobenzene 7 7 0 No Cisi-1,2-Dichloroethene 7 7 0 No			-		
Bromodichloromethane 7 7 0 No Bromoform 7 7 0 No Bromomethane 7 7 0 No Bromomethane 7 7 0 No Carbon disulfide 7 7 0 No Chemical Oxygen Demand (COD) 7 6 1 Yes Chlorobenzene 7 0 7 Yes Chlorobenzene 7 7 0 No Chlorothane 7 7 0 No Chloroptime 7 7 0 No Cisi-1,2-Dichloroptipene 7 7 0 No Cobalt 7 7 0 No <				-	
Bromoform 7 7 0 No Bromomethane 7 7 0 No Carbon disulfide 7 7 0 No Carbon disulfide 7 7 0 No Chemical Oxygen Demand (COD) 7 6 1 Yes Chloride 7 0 No No Chlorobenzene 7 7 0 No Chlorobenzene 7 7 0 No Chlorobenzene 7 7 0 No Chloromethane 7 7 0 No Chloromethane 7 7 0 No cis-1,2-Dichloroethene 7 7 0 No cis-1,3-Dichloropropene 7 7 0 No Cobalt 7 7 0 No Cobalt 7 7 0 No Dibromomethane 7 7 0 No					
Bromomethane 7 7 0 No Calcium 7 0 7 Yes Carbon disulfide 7 7 0 No Chemical Oxygen Demand (COD) 7 6 1 Yes Chlorobenzene 7 0 7 0 No Chlorobenzene 7 7 0 No No Chlorobenzene 7 7 0 No No Chlorobenzene 7 7 0 No No Chlorobenzene No No No Chlorobenzene No No No No Chlorobenzene No No No No No No Chlorobenzene No No Cis-1,2-Dichlorobene No No No Cis-1,2-Dichlorobene No No No Cobatt 7 0 No No Cobatt 7 0 No No Disorochloromethane 7 7 0 No					
Calcium707YesCarbon disulfide770NoChemical Oxygen Demand (COD)761YesChloride707YesChlorobenzene770NoChlorobenzene770NoChlorochane770NoChlorochane770NoChlorochane770NoChlorochane770NoChlorochane770NoChlorochane770NoChlorochane770NoChloromethane770NoCis-1,2-Dichlorochene770NoCobalt752YesConductivity707YesCoductivity70NoNoDibromochloromethane770NoDibromochloromethane770NoDibromochloromethane770NoDibromochloromethane770NoDibromochloromethane770NoDissolved Oxygen707YesDissolved Solids70NoNoIodide770NoIodide770NoIodide770No <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>					
Carbon disulfide 7 7 0 No Chemical Oxygen Demand (COD) 7 6 1 Yes Chloride 7 0 7 Yes Chlorobenzene 7 0 7 Yes Chlorobenzene 7 7 0 No Chlorothane 7 7 0 No Chloromethane 7 7 0 No Cis-1,2-Dichloroethene 7 7 0 No Cis-1,3-Dichloropropene 7 7 0 No Cobalt 7 5 2 Yes Conductivity 7 0 No No Dibromochloromethane 7 7 0 No Dibromochloromethane 7 7 0					
Chemical Oxygen Demand (COD) 7 6 1 Yes Chloride 7 0 7 Yes Chlorobenzene 7 7 0 No Chlorobenzene 7 7 0 No Chlorobenzene 7 7 0 No Chloroform 7 7 0 No Chloromethane 7 7 0 No Chloromethane 7 7 0 No Cis-1,2-Dichloroethene 7 7 0 No cis-1,3-Dichloropropene 7 7 0 No Cobalt 7 0 7 Yes Conductivity 7 0 7 Yes Copper 7 0 No No Dibromochloromethane 7 7 0 No Dibromochloromethane 7 7 0 No Dissolved Oxygen 7 0 No					
Chloride 7 0 7 Yes Chlorobenzene 7 7 0 No Cis-1,2-Dichlorobene 7 7 0 No Cobalt 7 7 0 No Cobalt 7 7 0 No Disorochloromethane 7 7 0 No				0	
Chlorobenzene 7 7 0 No Chloroethane 7 7 0 No Chloroform 7 7 0 No Chloroethane 7 7 0 No Chloromethane 7 7 0 No Chloroethene 7 7 0 No cis-1,2-Dichloroethene 7 7 0 No cis-1,3-Dichloropropene 7 7 0 No Cobalt 7 5 2 Yes Conductivity 7 0 7 Yes Copper 7 0 No No Dibromochloromethane 7 7 0 No Dibromomethane 7 7 0 No Dissolved Oxygen 7 0 No No Dissolved Solids 7 0 No No Iodide 7 7 0 No			6	1	Yes
Chloroethane 7 7 0 No Chloroform 7 7 0 No Chloromethane 7 7 0 No Chloromethane 7 7 0 No Cis-1,2-Dichloroethene 7 7 0 No cis-1,3-Dichloropropene 7 7 0 No Cobalt 7 5 2 Yes Conductivity 7 0 7 Yes Copper 7 0 No No Dibromochloromethane 7 7 0 No Dissolved Oxygen 7 0 No No Dissolved Solids 7 0 No No Iodide 7 7 0 <t< td=""><td></td><td></td><td>-</td><td></td><td></td></t<>			-		
Chloroform 7 7 0 No Chloromethane 7 7 0 No cis-1,2-Dichloroethene 7 7 0 No cis-1,3-Dichloropropene 7 7 0 No Cobalt 7 5 2 Yes Conductivity 7 0 7 Yes Copper 7 0 No No Dibromochloromethane 7 7 0 No Disolved Oxygen 7 0 No No Dissolved Solids 7 0 No No Iodide 7 7 0 No Iodidee 7 7 0 <					
Chloromethane 7 7 0 No cis-1,2-Dichloroethene 7 7 0 No cis-1,3-Dichloropropene 7 7 0 No Cobalt 7 5 2 Yes Conductivity 7 0 7 Yes Copper 7 0 7 Yes Cyanide 7 7 0 No Dibromochloromethane 7 7 0 No Dibromodelarene, Total 7 7 0 No Dissolved Oxygen 7 0 No No Dissolved Solids 7 0 No No Iodide 7 7 0 No I				0	No
cis-1,2-Dichloroethene770Nocis-1,3-Dichloropropene770NoCobalt752YesConductivity707YesCopper707YesCyanide770NoDibromochloromethane770NoDibromomethane770NoDibromodelarene, Total770NoDissolved Oxygen707YesEthylbenzene770NoIodide770NoIodide770NoIodide770NoIodomethane770NoDissolved Solids707YesEthylbenzene770NoIodomethane770NoIodomethane770NoIodomethane770NoIron716YesMaganese716Yes	Chloroform	7	7	0	No
cis-1,3-Dichloropropene 7 7 0 No Cobalt 7 5 2 Yes Conductivity 7 0 7 Yes Copper 7 0 7 Yes Cyanide 7 0 7 Yes Cyanide 7 7 0 No Dibromochloromethane 7 7 0 No Dibromomethane 7 7 0 No Dibromothloromethane 7 7 0 No Dibromomethane 7 7 0 No Dissolved Oxygen 7 0 No No Dissolved Solids 7 0 No No Iddide 7 7 0 No Iddide 7 7	Chloromethane	7	7	0	No
Cobalt 7 5 2 Yes Conductivity 7 0 7 Yes Copper 7 0 7 Yes Cyanide 7 7 0 No Dibromochloromethane 7 7 0 No Dibromochloromethane 7 7 0 No Dibromomethane 7 7 0 No Dibromomethane 7 7 0 No Disolved Oxygen 7 0 No No Dissolved Solids 7 0 No No Iodide 7 7 0 No Iodide 7 7 0 No Iodide 7 7 0 No Iodomethane 7 7 0 No Iodomethane 7 7 0 No Iodomethane 7 7 0 No Magnesium <td>cis-1,2-Dichloroethene</td> <td>7</td> <td>7</td> <td>0</td> <td>No</td>	cis-1,2-Dichloroethene	7	7	0	No
Conductivity707YesCopper707YesCyanide770NoDibromochloromethane770NoDibromomethane770NoDibromomethane770NoDibromomethane770NoDibromomethane770NoDissolved Oxygen707YesDissolved Solids707YesEthylbenzene770NoIodide770NoIodomethane770NoIron716YesMagnesium716Yes	cis-1,3-Dichloropropene	7	7	0	No
Copper707YesCyanide770NoDibromochloromethane770NoDibromomethane770NoDibromomethane770NoDimethylbenzene, Total770NoDissolved Oxygen707YesDissolved Solids707YesEthylbenzene770NoIodide770NoIodomethane770NoIron716YesMagnesium716Yes	Cobalt	7	5	2	Yes
Copper 7 0 7 Yes Cyanide 7 7 0 No Dibromochloromethane 7 7 0 No Dibromomethane 7 7 0 No Dibromomethane 7 7 0 No Dibromomethane 7 7 0 No Dimethylbenzene, Total 7 7 0 No Dissolved Oxygen 7 0 7 Yes Dissolved Solids 7 0 No No Iodide 7 7 0 No Iodide 7 7 0 No Iodomethane 7 1 6 Yes Magnesium 7 1 6 Yes	Conductivity	7	0	7	Yes
Cyanide770NoDibromochloromethane770NoDibromomethane770NoDimethylbenzene, Total770NoDissolved Oxygen707YesDissolved Solids707YesEthylbenzene770NoIodide770NoIodomethane770NoIodomethane770NoIodomethane770NoIodomethane716YesMagnesium716Yes		7	0	7	Yes
Dibromomethane770NoDimethylbenzene, Total770NoDissolved Oxygen707YesDissolved Solids707YesEthylbenzene770NoIodide770NoIodomethane770NoIron716YesMagnesium716Yes		7	7	0	No
Dibromomethane770NoDimethylbenzene, Total770NoDissolved Oxygen707YesDissolved Solids707YesEthylbenzene770NoIodide770NoIodomethane770NoIron716YesMagnesium716Yes	Dibromochloromethane	7	7	0	No
Dimethylbenzene, Total770NoDissolved Oxygen707YesDissolved Solids707YesEthylbenzene770NoIodide770NoIodomethane770NoIron716YesMagnesium716Yes		7	7		
Dissolved Oxygen707YesDissolved Solids707YesEthylbenzene770NoIodide770NoIodomethane770NoIron716YesMagnesium716YesManganese716Yes					
Dissolved Solids 7 0 7 Yes Ethylbenzene 7 7 0 No Iodide 7 7 0 No Iodomethane 7 7 0 No Iron 7 7 0 No Magnesium 7 1 6 Yes Manganese 7 1 6 Yes					
Ethylbenzene 7 7 0 No Iodide 7 7 0 No Iodomethane 7 7 0 No Iron 7 1 6 Yes Magnesium 7 1 6 Yes Manganese 7 1 6 Yes					
Iodide 7 7 0 No Iodomethane 7 7 0 No Iron 7 1 6 Yes Magnesium 7 0 7 Yes Manganese 7 1 6 Yes					
Iodomethane 7 7 0 No Iron 7 1 6 Yes Magnesium 7 0 7 Yes Manganese 7 1 6 Yes					
Iron 7 1 6 Yes Magnesium 7 0 7 Yes Manganese 7 1 6 Yes					
Magnesium707YesManganese716Yes					
Manganese 7 1 6 Yes					
σ					
Molybdenum 7 5 2 Yes					

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored	Uncensored	Statistical
X74 X X		Observation	Observation	Analysis?
Nickel	7	1	6	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	1	6	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	6	1	Yes
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	2	5	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
,	6	6	0	
1,2-Dichlorobenzene				No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	3	3	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	1	5	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	3	3	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
	6	1	5	Yes
Iron		1		
Iron Magnesium		0	6	Ves
Magnesium	6	0	6	Yes Ves
-		0 1 6	6 5 0	Yes Yes No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored	Uncensored	Statistical
X74 I I	(Observation	Observation	Analysis?
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	1	5	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	5	1	Yes
Beryllium	6	6	0	No
	6	0		Yes
Boron Bromide			6	
	6	0	6	Yes No
Bromochloromethane		6	0	
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	4	2	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	4	2	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	3	3	Yes
Magnesium	6	0	6	Yes
Manganese	6	1	5	Yes
Methylene chloride	6	6	0	No
Molybdenum	6	6	0	No

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	1	5	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	2	4	Yes

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 26, 25, and 26 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified historical background exceedances for calcium, dissolved oxygen, oxidation-reduction potential, sulfate, and thorium-230.

<u>URGA</u>

This quarter's results identified historical background exceedances for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified historical background exceedances for oxidation-reduction potential and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential, Technetium-99
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential, Technetium-99
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW368: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential, Technetium-99	MW367: Oxidation-Reduction Potential, Technetium-99
MW371: Calcium, Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW369: Oxidation-Reduction Potential	MW370: Oxidation-Reduction Potential
MW374: Dissolved Oxygen, Oxidation-Reduction Potential, Thorium-230	MW372: Calcium, Conductivity, Dissolved Solids, Magnesium, Oxidation-Reduction Potential, Sulfate	MW373: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate		

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	Current results exceed statistically derived historical background concentration in MW371.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW371, and MW374.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Thorium-230	Tolerance Interval	1.25	Current results exceed statistically derived historical background concentration in MW374.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	Current results exceed statistically derived historical background concentration in MW372.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW366.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.25	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW358, MW361 MW364, and MW367.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

CV: coefficient of variation

*If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 5, 7, and 2 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the thorium-230 concentration in MW374 and the sulfate concentration in MW371 exceeded their respective current TL this quarter.

<u>URGA</u>

This quarter's results identified a current background exceedance in one downgradient well (i.e., MW363) for oxidation-reduction potential.

<u>LRGA</u>

This quarter's results showed no statistically significant exceedances in LRGA wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.10, Exhibit D.11, and Exhibit D.12, respectively.

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.53	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Oxygen	Tolerance Interval	0.70	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.23	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.84	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW371 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Thorium-230	Tolerance Interval	3.15	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW374 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.10. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.57	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.32	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.41	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.51	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.09	MW363 and MW369 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.96	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.76	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.08	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.73	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.300	S = 6.859	CV(1)= 2.078	K factor**= 2.523	TL(1)= 20.604	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.371	S= 1.678	CV(2) =-4.521	K factor**= 2.523	TL(2)= 3.863	LL(2)=N/A

Historical Bac Upgradient W		a from nsformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	21.3	3.059
1/7/2003	20	2.996
4/2/2003	4.11	1.413
7/9/2003	1.41	0.344
10/7/2003	1.09	0.086
1/6/2004	0.854	-0.158
4/7/2004	0.2	-1.609
7/14/2004	0.2	-1.609

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.0331	N/A	-3.408	NO	
MW362	Downgradient	Yes	0.162	N/A	-1.820	NO	
MW365	Downgradient	Yes	0.0203	N/A	-3.897	NO	
MW368	Downgradient	Yes	0.0716	N/A	-2.637	NO	
MW371	Upgradient	Yes	0.667	N/A	-0.405	NO	
MW374	Upgradient	Yes	0.17	N/A	-1.772	NO	
MW375	Sidegradient	Yes	0.0513	N/A	-2.970	NO	
N/A Dagu	14- 14- 14- 14- 14- 14- 14- 14- 14- 14-	Jan Datasta	1		4-4		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S= 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Bac	kground Da	ta from
		ansformed Resul
Well Number:	MW371	
Date Collected	Result	IN(Decult)
	1000000	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	2	0.693
1/7/2003	0.2	-1.609
4/2/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/7/2003	0.2	-1.609
1/6/2004	0.2	-1.609
4/7/2004	0.2	-1.609
7/14/2004	0.2	-1.609

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	No	0.015	N/A	-4.200	N/A		
MW362	Downgradient	Yes	0.0185	N/A	-3.990	NO		
MW365	Downgradient	Yes	0.00798	N/A	-4.831	NO		
MW368	Downgradient	Yes	0.00658	N/A	-5.024	NO		
MW371	Upgradient	Yes	0.0104	N/A	-4.566	NO		
MW374	Upgradient	Yes	0.0258	N/A	-3.657	NO		
MW375	Sidegradient	Yes	0.013	N/A	-4.343	NO		
NI/A D	14- 14- 416- 4 7	Jan Datasta	4					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.394	S = 0.474	CV(1)= 0.340	K factor**= 2.523	TL(1)= 2.590	LL(1)=N/A
Statistics-Transformed Background	X= 0.279	S = 0.332	CV(2)=1.190	K factor**= 2.523	TL(2)= 1.118	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	1	0.000				
4/22/2002	1 0.000					
7/15/2002	1 0.000					
10/8/2002	1 0.000					
1/8/2003	1 0.000					
4/3/2003	1	0.000				
7/9/2003	1	0.000				
10/6/2003	1	0.000				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	2.1	0.742				
1/7/2003	2.1	0.742				
4/2/2003	1.9	0.642				
7/9/2003	1	0.000				
10/7/2003	1.9 0.642					
1/6/2004	1.9	0.642				

1.8

1.6

Data

4/7/2004

7/14/2004

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	No	0.2	N/A	-1.609	N/A	
MW362	Downgradient	No	0.2	N/A	-1.609	N/A	
MW365	Downgradient	No	0.2	N/A	-1.609	N/A	
MW368	Downgradient	No	0.2	N/A	-1.609	N/A	
MW371	Upgradient	No	0.2	N/A	-1.609	N/A	
MW374	Upgradient	Yes	0.532	NO	-0.631	N/A	
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.588

0.470

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 34.100
 S= 13.637
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 68.505
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.466
 S= 0.356
 CV(2)=0.103
 K factor**= 2.523
 TL(2)= 4.364
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	17.2	2.845				
4/22/2002	22.4	3.109				
7/15/2002	25.5	3.239				
10/8/2002	26.4	3.273				
1/8/2003	27.2	3.303				
4/3/2003	30.3	3.411				
7/9/2003	25.9	3.254				
10/6/2003	27	3.296				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	67.3	4.209				
1/7/2003	60.6	4.104				
4/2/2003	47.2	3.854				
7/9/2003	34.7	3.547				
10/7/2003	37.1	3.614				
1/6/2004	37.7	3.630				
4/7/2004	32.2	3.472				

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	5.15	NO	1.639	N/A	
MW362	Downgradient	Yes	21.4	NO	3.063	N/A	
MW365	Downgradient	Yes	21.8	NO	3.082	N/A	
MW368	Downgradient	Yes	49.8	NO	3.908	N/A	
MW371	Upgradient	Yes	71.8	YES	4.274	N/A	
MW374	Upgradient	Yes	21.7	NO	3.077	N/A	
MW375	Sidegradient	Yes	12.5	NO	2.526	N/A	
N/A - Resi	ults identified as l	Non-Detects	during lal	horatory analysis or	· data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW371

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=72.938
 S= 70.749
 CV(1)=0.970
 K factor**=2.523
 TL(1)=251.437
 LL(1)=N/A

 Statistics-Transformed Background
 X=4.000
 S= 0.702
 CV(2)=0.175
 K factor**=2.523
 TL(2)=5.770
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	35	3.555				
4/22/2002	35	3.555				
7/15/2002	35	3.555				
10/8/2002	35	3.555				
1/8/2003	35	3.555				
4/3/2003	35	3.555				
7/9/2003	35	3.555				
10/6/2003	35	3.555				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	260	5.561				
1/7/2003	214	5.366				
4/2/2003	147	4.990				
7/9/2003	72	4.277				
10/7/2003	56	4.025				
1/6/2004	68	4.220				
4/7/2004	35	3.555				
7/14/2004	35	3.555				

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	No	20	N/A	2.996	N/A	
MW362	Downgradient	No	20	N/A	2.996	N/A	
MW365	Downgradient	No	20	N/A	2.996	N/A	
MW368	Downgradient	No	20	N/A	2.996	N/A	
MW371	Upgradient	No	20	N/A	2.996	N/A	
MW374	Upgradient	Yes	32.8	NO	3.490	N/A	
MW375	Sidegradient	No	20	N/A	2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 91.300
 S= 86.959
 CV(1)=0.952
 K factor**= 2.523
 TL(1)= 310.697
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.620
 S= 1.590
 CV(2)=0.439
 K factor**= 2.523
 TL(2)= 7.631
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
7/15/2002	8.3	2.116			
10/8/2002	7.6	2.028			
1/8/2003	7.7	2.041			
4/3/2003	8.8	2.175			
7/9/2003	8.1	2.092			
10/6/2003	8.6	2.152			
1/7/2004	7.6	2.028			
4/6/2004	7.6	2.028			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	199.2	5.294			
1/7/2003	199.7	5.297			
4/2/2003	171.8	5.146			
7/9/2003	178.7	5.186			
10/7/2003	175.6	5.168			
1/6/2004	170.4	5.138			
4/7/2004	156.4	5.052			

144.7

Data

7/14/2004

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.919	NO	-0.084	N/A
MW362	Downgradient	Yes	4.55	NO	1.515	N/A
MW365	Downgradient	Yes	2.65	NO	0.975	N/A
MW368	Downgradient	Yes	1.55	NO	0.438	N/A
MW371	Upgradient	Yes	1.43	NO	0.358	N/A
MW374	Upgradient	Yes	46.6	NO	3.842	N/A
MW375	Sidegradient	Yes	3.51	NO	1.256	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.975

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.007	S= 0.009	CV(1)= 1.314	K factor**= 2.523	TL(1)= 0.031	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.843	S = 1.392	CV(2) =-0.238	K factor**= 2.523	TL(2)= -2.331	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.01	-4.605
1/7/2003	0.01	-4.605
4/2/2003	0.01	-4.605
7/9/2003	0.00161	-6.432
10/7/2003	0.001	-6.908
1/6/2004	0.001	-6.908
4/7/2004	0.001	-6.908
7/14/2004	0.001	-6.908

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	No	0.001	N/A	-6.908	N/A
MW365	Downgradient	Yes	0.00162	N/A	-6.425	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	No	0.001	N/A	-6.908	N/A
MW375	Sidegradient	Yes	0.00040	2 N/A	-7.819	NO
N7/1 D	1 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 918.744 S= 417.257 CV(1)=0.454
 K factor**= 2.523
 TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background X=6.705 S= 0.550 CV(2)=0.082 Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	541	6.293			
4/22/2002	643	6.466			
7/15/2002	632	6.449			
10/8/2002	631	6.447			
1/8/2003	680	6.522			
4/3/2003	749	6.619			
7/9/2003	734	6.599			
10/6/2003	753	6.624			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
3/18/2002	1007	6.915			
10/8/2002	1680	7.427			
1/7/2003	1715.9	7.448			
4/2/2003	172	5.147			
7/9/2003	1231	7.116			
10/7/2003	1214	7.102			
1/6/2004	1172	7.066			
4/7/2004	1145	7.043			

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

K factor**= 2.523 TL(2)= 8.092 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	207	NO	5.333	N/A
MW362	Downgradient	Yes	689	NO	6.535	N/A
MW365	Downgradient	Yes	411	NO	6.019	N/A
MW368	Downgradient	Yes	430	NO	6.064	N/A
MW371	Upgradient	Yes	499	NO	6.213	N/A
MW374	Upgradient	Yes	636	NO	6.455	N/A
MW375	Sidegradient	Yes	333	NO	5.808	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.056	S = 0.072	CV(1)= 1.275	K factor**= 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.395	S= 0.915	CV(2) =-0.270	K factor**= 2.523	TL(2)= -1.086	LL(2)= N/A

r						
Historical Background Data from Upgradient Wells with Transformed Result						
Upgradient w	ells with 1 ra	ansformed Result				
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.025	-3.689				
7/15/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				
1/8/2003	0.02	-3.912				
4/3/2003	0.02	-3.912				
7/9/2003	0.02	-3.912				
10/6/2003	0.02	-3.912				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.2	-1.609				
1/7/2003	0.2	-1.609				
4/2/2003	0.2	-1.609				
7/9/2003	0.02	-3.912				
10/7/2003	0.02	-3.912				
1/6/2004	0.02	-3.912				
4/7/2004	0.02	-3.912				
7/14/2004	0.02	-3.912				

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00060	3 N/A	-7.414	NO
MW362	Downgradient	Yes	0.0012	N/A	-6.725	NO
MW365	Downgradient	Yes	0.0032	N/A	-5.745	NO
MW368	Downgradient	Yes	0.00077	7 N/A	-7.160	NO
MW371	Upgradient	Yes	0.00101	N/A	-6.898	NO
MW374	Upgradient	Yes	0.00105	N/A	-6.859	NO
MW375	Sidegradient	Yes	0.000403	8 N/A	-7.804	NO
N/A - Resu	ilts identified as I	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.138 S = 0.621 CV(1) = 0.546 K factor**= 2.523
 TL(1) = 2.704 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.013 S = 0.577 CV(2) = -43.069 K factor**= 2.523
 TL(2) = 1.441 LL(2) = N/A

 Data
 CV(2) = -43.069 K factor**= 2.523
 TL(2) = 1.441 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Resu				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	2.26	0.815		
4/22/2002	1.15	0.140		
7/15/2002	0.94	-0.062		
10/8/2002	0.74	-0.301		
1/8/2003	2.62	0.963		
4/3/2003	1.5	0.405		
7/9/2003	1.66	0.507		
10/6/2003	1.28	0.247		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
3/18/2002	0.6	-0.511		
10/8/2002	0.67	-0.400		
1/7/2003	0.23	-1.470		
4/2/2003	0.65	-0.431		
7/9/2003	0.92	-0.083		
10/7/2003	0.99	-0.010		
1/6/2004	1.11	0.104		
4/7/2004	0.88	-0.128		

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.27	YES	1.185	N/A
MW362	Downgradient	Yes	4.5	YES	1.504	N/A
MW365	Downgradient	Yes	4.03	YES	1.394	N/A
MW368	Downgradient	Yes	1.2	NO	0.182	N/A
MW371	Upgradient	Yes	6.07	YES	1.803	N/A
MW374	Upgradient	Yes	2.8	YES	1.030	N/A
MW375	Sidegradient	Yes	0.61	NO	-0.494	N/A
N/A - Resi	ults identified as I	Non-Detects	during lal	oratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW359	
MW362	
MW365	
MW371	
MW374	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 590.000 S= 248.068 CV(1)=0.420
 K factor**= 2.523
 TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background X=6.308 S= 0.383 CV(2)=0.061 Data

r		
Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	1136	7.035
1/7/2003	1101	7.004
4/2/2003	863	6.760
7/9/2003	682	6.525
10/7/2003	589	6.378
1/6/2004	603	6.402
4/7/2004	601	6.399
7/14/2004	582	6.366

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

K factor**= 2.523 TL(2)= 7.274 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	149	NO	5.004	N/A
MW362	Downgradient	Yes	404	NO	6.001	N/A
MW365	Downgradient	Yes	244	NO	5.497	N/A
MW368	Downgradient	Yes	266	NO	5.583	N/A
MW371	Upgradient	Yes	313	NO	5.746	N/A
MW374	Upgradient	Yes	399	NO	5.989	N/A
MW375	Sidegradient	Yes	193	NO	5.263	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.612	S= 6.487	CV(1)= 0.981	K factor**= 2.523	TL(1)= 22.979	LL(1)=N/A
Statistics-Transformed Background	X= 1.363	S= 1.147	CV(2)= 0.841	K factor**= 2.523	TL(2)= 4.256	LL(2)=N/A

Historical Bac		
Upgradient W	ells with Tra	ansformed Result
Well Number:	MW371	
wen Number.	IVI VV 5 / 1	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	23	3.135
1/7/2003	13.9	2.632
4/2/2003	14	2.639
7/9/2003	14.2	2.653
10/7/2003	7.92	2.069
1/6/2004	7.86	2.062
4/7/2004	4.82	1.573
7/14/2004	4.87	1.583

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.0512	NO	-2.972	N/A	
MW362	Downgradient	Yes	0.108	NO	-2.226	N/A	
MW365	Downgradient	No	0.1	N/A	-2.303	N/A	
MW368	Downgradient	Yes	0.0566	NO	-2.872	N/A	
MW371	Upgradient	Yes	0.43	NO	-0.844	N/A	
MW374	Upgradient	Yes	1.38	NO	0.322	N/A	
MW375	Sidegradient	Yes	0.0753	NO	-2.586	N/A	
N/A Door	N/A Pesults identified as Non Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 11.347
 S= 3.019
 CV(1)=0.266
 K factor**= 2.523
 TL(1)= 18.963
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.401
 S= 0.237
 CV(2)=0.099
 K factor**= 2.523
 TL(2)= 2.999
 LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	20	2.996
1/7/2003	16.1	2.779
4/2/2003	13.1	2.573
7/9/2003	10.3	2.332
10/7/2003	11.1	2.407
1/6/2004	11	2.398
4/7/2004	9.69	2.271
7/14/2004	8.49	2.139

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	3.31	NO	1.197	N/A
MW362	Downgradient	t Yes	10	NO	2.303	N/A
MW365	Downgradient	t Yes	10	NO	2.303	N/A
MW368	Downgradient	t Yes	11.6	NO	2.451	N/A
MW371	Upgradient	Yes	10.9	NO	2.389	N/A
MW374	Upgradient	Yes	4.68	NO	1.543	N/A
MW375	Sidegradient	Yes	5.18	NO	1.645	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.248	S = 0.222	CV(1)= 0.894	K factor**= 2.523	TL(1)= 0.809	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.873	S= 1.068	CV(2) =-0.570	K factor**= 2.523	TL(2)= 0.821	LL(2)=N/A

kground Dat ells with Tra	
	instormed result
MW371	
Result	LN(Result)
0.063	-2.765
0.067	-2.703
0.074	-2.604
0.0521	-2.955
0.0385	-3.257
0.0551	-2.899
0.0546	-2.908
0.0543	-2.913
MW374	
Result	LN(Result)
0.596	-0.518
0.565	-0.571
0.675	-0.393
0.397	-0.924
0.312	-1.165
0.299	-1.207
0.329	-1.112
0.342	-1.073
	MW371 Result 0.063 0.067 0.074 0.0521 0.0385 0.0551 0.0546 0.0543 MW374 Result 0.596 0.675 0.397 0.312 0.299 0.329

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	No	0.005	N/A	-5.298	N/A		
MW362	Downgradient	Yes	0.0015	NO	-6.502	N/A		
MW365	Downgradient	Yes	0.00874	NO	-4.740	N/A		
MW368	Downgradient	Yes	0.00293	NO	-5.833	N/A		
MW371	Upgradient	Yes	0.0225	NO	-3.794	N/A		
MW374	Upgradient	Yes	0.0203	NO	-3.897	N/A		
MW375	Sidegradient	Yes	0.00612	NO	-5.096	N/A		
N/A - Rest	ults identified as I	Non-Detects	during lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.006	S = 0.010	CV(1)= 1.650	K factor**= 2.523	TL(1)= 0.030	LL(1)=N/A
Statistics-Transformed Background Data	X= -6.108	S= 1.239	CV(2) =-0.203	K factor**= 2.523	TL(2)= -2.983	LL(2)= N/A

Historical Bac Upgradient W	kground Dat ells with Tra	ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.00222	-6.110
1/7/2003	0.00201	-6.210
4/2/2003	0.00159	-6.444
7/9/2003	0.00242	-6.024
10/7/2003	0.001	-6.908
1/6/2004	0.001	-6.908
4/7/2004	0.001	-6.908
7/14/2004	0.001	-6.908

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	t No	0.001	N/A	-6.908	N/A		
MW362	Downgradient	t No	0.00048	N/A	-7.642	N/A		
MW365	Downgradient	t No	0.001	N/A	-6.908	N/A		
MW368	Downgradient	t No	0.00054	8 N/A	-7.509	N/A		
MW371	Upgradient	Yes	0.00027	1 N/A	-8.213	NO		
MW374	Upgradient	Yes	0.00041	6 N/A	-7.785	NO		
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A		
NI/A Dam	14- 11	Ten Detecte	4					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.023	S = 0.022	CV(1)= 0.980	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.349	S = 1.109	CV(2) =-0.255	K factor**= 2.523	TL(2)= -1.552	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.05	-2.996
1/7/2003	0.05	-2.996
4/2/2003	0.05	-2.996
7/9/2003	0.00794	-4.836
10/7/2003	0.005	-5.298
1/6/2004	0.005	-5.298
4/7/2004	0.005	-5.298
7/14/2004	0.005	-5.298

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0018	NO	-6.320	N/A
MW362	Downgradient	Yes	0.00135	NO	-6.608	N/A
MW365	Downgradient	Yes	0.00613	NO	-5.095	N/A
MW368	Downgradient	Yes	0.00104	NO	-6.869	N/A
MW371	Upgradient	Yes	0.00219	NO	-6.124	N/A
MW374	Upgradient	No	0.002	N/A	-6.215	N/A
MW375	Sidegradient	Yes	0.00103	NO	-6.878	N/A
N/A = Rest	ilts identified as I	Non-Detects	during lab	oratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 22.281
 S=
 78.889
 CV(1)=3.541
 K factor**= 2.523
 TL(1)= 221.319
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.642
 S=
 1.729
 CV(2)=0.475
 K factor**= 2.523
 TL(2)= 5.106
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 3/18/2002 4.317 75 4/22/2002 165 5.106 7/15/2002 4.174 65 4/3/2003 -19 #Func! 7/9/2003 4.736 114 10/6/2003 -22 #Func! 1/7/2004 20.5 3.020 4/6/2004 113 4.727 Well Number: MW374 Date Collected Result LN(Result) 3/18/2002 135 4.905 4/2/2003 -56 #Func! 7/9/2003 #Func! -68 10/7/2003 -50 #Func! -85 #Func! 1/6/2004 1.792 4/7/2004 6 7/14/2004 -38 #Func! 10/7/2004 0.000 1

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	357	N/A	5.878	YES
MW362	Downgradient	Yes	379	N/A	5.938	YES
MW365	Downgradient	Yes	405	N/A	6.004	YES
MW368	Downgradient	Yes	390	N/A	5.966	YES
MW371	Upgradient	Yes	388	N/A	5.961	YES
MW374	Upgradient	Yes	361	N/A	5.889	YES
MW375	Sidegradient	Yes	378	N/A	5.935	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW359
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.	MW362
	MW365
	MW368
	MW371
	MW374
	MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.619	S= 0.295	CV(1)= 0.045	K factor**= 2.904	TL(1)= 7.475	LL(1)=5.7635
Statistics-Transformed Background Data	X= 1.889	S = 0.046	CV(2)= 0.024	K factor**= 2.904	TL(2)= 2.023	LL(2)= 1.7548

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW371							
Date Collected	Result	LN(Result)						
3/18/2002	6.3	1.841						
4/22/2002	6.5	1.872						
7/15/2002	6.5	1.872						
10/8/2002	6.6	1.887						
1/8/2003	6.6	1.887						
4/3/2003	6.9	1.932						
7/9/2003	6.7	1.902						
10/6/2003	7	1.946						
Well Number:	MW374							
Date Collected	Result	LN(Result)						
3/18/2002	5.75	1.749						
10/8/2002	6.6	1.887						
1/7/2003	6.82	1.920						
4/2/2003	6.86	1.926						
7/9/2003	6.7	1.902						
10/7/2003	6.6	1.887						
1/6/2004	6.9	1.932						
4/7/2004	6.58	1.884						

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>		
MW359	Downgradient	Yes	5.77	NO	1.753	N/A		
MW362	Downgradient	Yes	6.93	NO	1.936	N/A		
MW365	Downgradient	Yes	6.14	NO	1.815	N/A		
MW368	Downgradient	Yes	6.45	NO	1.864	N/A		
MW371	Upgradient	Yes	6.53	NO	1.876	N/A		
MW374	Upgradient	Yes	6.82	NO	1.920	N/A		
MW375	Sidegradient	Yes	6.24	NO	1.831	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.262	S = 0.907	CV(1)= 0.718	K factor**= 2.523	TL(1)= 3.549	LL(1)= N/A
Statistics-Transformed Background	X= -0.023	S= 0.752	CV(2)=-32.218	K factor**= 2.523	TL(2)= 1.874	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	3.04	1.112
1/7/2003	2.83	1.040
4/2/2003	2	0.693
7/9/2003	1.09	0.086
10/7/2003	0.802	-0.221
1/6/2004	0.897	-0.109
4/7/2004	0.689	-0.373
7/14/2004	0.716	-0.334

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	No	0.3	N/A	-1.204	N/A	
MW362	Downgradient	Yes	0.322	NO	-1.133	N/A	
MW365	Downgradient	Yes	0.255	NO	-1.366	N/A	
MW368	Downgradient	Yes	0.288	NO	-1.245	N/A	
MW371	Upgradient	Yes	0.324	NO	-1.127	N/A	
MW374	Upgradient	Yes	0.555	NO	-0.589	N/A	
MW375	Sidegradient	Yes	0.256	NO	-1.363	N/A	
3.7/1 B	1 1						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=183.063 S= 73.222
 CV(1)=0.400
 K factor**=2.523
 TL(1)=367.800
 LL(1)=N/A

 Statistics-Transformed Background
 X=5.146
 S= 0.356
 CV(2)=0.069
 K factor**=2.523
 TL(2)=6.044
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	129	4.860				
4/22/2002	131	4.875				
7/15/2002	127	4.844				
10/8/2002	123	4.812				
1/8/2003	128	4.852				
4/3/2003	144	4.970				
7/9/2003	126	4.836				
10/6/2003	120	4.787				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	336	5.817				
1/7/2003	329	5.796				
4/2/2003	287	5.659				
7/9/2003	181	5.198				
10/7/2003	182	5.204				
1/6/2004	206	5.328				
4/7/2004	182	5.204				
7/14/2004	198	5.288				

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	35.9	NO	3.581	N/A
MW362	Downgradient	t Yes	135	NO	4.905	N/A
MW365	Downgradient	t Yes	49.9	NO	3.910	N/A
MW368	Downgradient	t Yes	24.5	NO	3.199	N/A
MW371	Upgradient	Yes	12.2	NO	2.501	N/A
MW374	Upgradient	Yes	99.4	NO	4.599	N/A
MW375	Sidegradient	Yes	49.4	NO	3.900	N/A
	1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.469	S = 3.153	CV(1)= 0.487	K factor**= 2.523	TL(1)= 14.423	LL(1)=N/A
Statistics-Transformed Background	X =1.794	S = 0.357	CV(2)= 0.199	K factor**= 2.523	TL(2)= 2.694	LL(2)=N/A

P						
Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	16.3	2.791				
4/22/2002	8.6	2.152				
7/15/2002	6.7	1.902				
10/8/2002	5	1.609				
1/8/2003	5	1.609				
4/3/2003	5	1.609				
7/9/2003	5	1.609				
10/6/2003	5	1.609				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	5	1.609				
1/7/2003	5	1.609				
4/2/2003	5	1.609				
7/9/2003	5.6	1.723				
10/7/2003	5	1.609				
1/6/2004	5	1.609				
4/7/2004	11.3	2.425				
7/14/2004	5	1.609				

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	43	YES	3.761	N/A
MW362	Downgradient	t Yes	31.7	YES	3.456	N/A
MW365	Downgradient	t Yes	58.7	YES	4.072	N/A
MW368	Downgradient	t Yes	53	YES	3.970	N/A
MW371	Upgradient	Yes	90.7	YES	4.508	N/A
MW374	Upgradient	Yes	13	NO	2.565	N/A
MW375	Sidegradient	Yes	24.8	YES	3.211	N/A
N/A - Resi	ults identified as l	Non-Detects	during lal	oratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW359
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW362
concentration with respect to historical background data.	MW365
	MW368
	MW371
	MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Thorium-230 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.141	S = 0.175	CV(1)= 1.246	K factor**= 2.523	TL(1)= 0.584	LL(1)=N/A
Statistics-Transformed Background	X = -2.364	S = 1 204	CV(2) = -0.509	K factor**= 2 523	TL(2) = -0.481	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
10/7/2004	0.618	-0.481			
1/12/2005	0.221	-1.510			
4/7/2005	0.127	-2.064			
7/25/2005	0.138	-1.981			
10/12/2005	0.0792	-2.536			
1/4/2006	0.0248	-3.697			
4/5/2006	0.0411	-3.192			
7/6/2006	0.114	-2.172			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/7/2004	0.187	-1.677			
1/11/2005	0.411	-0.889			
4/13/2005	0.0248	-3.697			
7/26/2005	-0.0216	#Func!			
10/11/2005	0.289	-1.241			
1/5/2006	0.0366	-3.308			
4/6/2006	0.00954	-4.652			
7/10/2006	-0.0454	#Func!			

Data

Dry/Par	tially Dry Wells
Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.603	N/A	-0.506	N/A
MW362	Downgradient	No	0.828	N/A	-0.189	N/A
MW365	Downgradient	No	-0.42	N/A	#Error	N/A
MW368	Downgradient	No	0.456	N/A	-0.785	N/A
MW371	Upgradient	No	1.6	N/A	0.470	N/A
MW374	Upgradient	Yes	5.19	N/A	1.647	YES
MW375	Sidegradient	No	-0.167	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW374

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Г

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=17.631
 S= 24.314
 CV(1)=1.379
 K factor**=2.523
 TL(1)=78.977
 LL(1)=N/A

 Statistics-Transformed Background
 X=2.318
 S= 0.979
 CV(2)=0.422
 K factor**=2.523
 TL(2)=4.788
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	11.1	2.407				
4/22/2002	7	1.946				
7/15/2002	4.1	1.411				
10/8/2002	6	1.792				
1/8/2003	5.3	1.668				
4/3/2003	5.3	1.668				
7/9/2003	2.9	1.065				
10/6/2003	3.2	1.163				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	90	4.500				
1/7/2003	64	4.159				
4/2/2003	25	3.219				
7/9/2003	16	2.773				
10/7/2003	13	2.565				
1/6/2004	10	2.303				
4/7/2004	7.2	1.974				
7/14/2004	12	2.485				

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	Yes	0.772	N/A	-0.259	NO		
MW362	Downgradient	Yes	2.12	N/A	0.751	NO		
MW365	Downgradient	Yes	1.26	N/A	0.231	NO		
MW368	Downgradient	Yes	1.43	N/A	0.358	NO		
MW371	Upgradient	Yes	1.34	N/A	0.293	NO		
MW374	Upgradient	Yes	2.19	N/A	0.784	NO		
MW375	Sidegradient	Yes	0.941	N/A	-0.061	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 214.094 S= 231.089 CV(1)=1.079
 K factor**= 2.523
 TL(1)= 797.131
 LL(1)=N/A

Statistics-Transformed Background X=4.867 S= 1.065 CV(2)=0.219 Data

Historical Background Data from Upgradient Wells with Transformed Res					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	50	3.912			
4/22/2002	105	4.654			
7/15/2002	70	4.248			
10/8/2002	52	3.951			
1/8/2003	20.2	3.006			
4/3/2003	104	4.644			
7/9/2003	34.2	3.532			
10/6/2003	46.1	3.831			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	903	6.806			
1/7/2003	539	6.290			
4/2/2003	295	5.687			
7/9/2003	272	5.606			
10/7/2003	197	5.283			
1/6/2004	330	5.799			
4/7/2004	183	5.209			
7/14/2004	225	5.416			

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the

TL(2)= 7.554

LL(2)=N/A

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	7.9	N/A	2.067	NO
MW362	Downgradient	t Yes	17.5	N/A	2.862	NO
MW365	Downgradient	t Yes	19	N/A	2.944	NO
MW368	Downgradient	t Yes	4.66	N/A	1.539	NO
MW371	Upgradient	No	10	N/A	2.303	N/A
MW374	Upgradient	Yes	14	N/A	2.639	NO
MW375	Sidegradient	Yes	7.98	N/A	2.077	NO
N7/1 D	1					

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.055	S = 0.072	CV(1)= 1.319	K factor**= 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.438	S = 0.912	CV(2) =-0.265	K factor**= 2.523	TL(2)= -1.138	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
opgradent	•••••					
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.025	-3.689				
7/15/2002	0.025	-3.689				
10/8/2002	0.02	-3.912				
1/8/2003	0.02	-3.912				
4/3/2003	0.02	-3.912				
7/9/2003	0.02	-3.912				
10/6/2003	0.02	-3.912				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.2	-1.609				
1/7/2003	0.2	-1.609				
4/2/2003	0.2	-1.609				
7/9/2003	0.02	-3.912				
10/7/2003	0.02	-3.912				
1/6/2004	0.02	-3.912				
4/7/2004	0.02	-3.912				
7/14/2004	0.02	-3.912				

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	No	0.02	N/A	-3.912	N/A		
MW362	Downgradient	No	0.02	N/A	-3.912	N/A		
MW365	Downgradient	No	0.02	N/A	-3.912	N/A		
MW368	Downgradient	Yes	0.00535	N/A	-5.231	NO		
MW371	Upgradient	Yes	0.00445	N/A	-5.415	NO		
MW374	Upgradient	No	0.02	N/A	-3.912	N/A		
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A		
N/A Dogu	Its identified as N	Jon Dataata	during lab	oratory analyzic of	data validatio	n and wars not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.060	S = 0.083	CV(1)= 1.380	K factor**= 2.523	TL(1)= 0.270	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.259	S = 0.840	CV(2) =-0.258	K factor**= 2.523	TL(2)= -1.140	LL(2)= N/A

r		
Historical Bac		
Upgradient w	ells with 1 ra	insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.025	-3.689
1/7/2003	0.35	-1.050
4/2/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.02	-3.912
7/14/2004	0.02	-3.912

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.02	N/A	-3.912	N/A
MW362	Downgradient	t No	0.02	N/A	-3.912	N/A
MW365	Downgradient	t Yes	0.00423	N/A	-5.466	NO
MW368	Downgradient	t Yes	0.00347	N/A	-5.664	NO
MW371	Upgradient	Yes	0.00465	N/A	-5.371	NO
MW374	Upgradient	Yes	0.004	N/A	-5.521	NO
MW375	Sidegradient	Yes	0.00376	N/A	-5.583	NO
N/A - Rest	ilts identified as l	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.625	S= 0.774	CV(1)= 1.239	K factor**= 2.523	TL(1)= 2.578	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.973	S = 0.935	CV(2) =-0.961	K factor**= 2.523	TL(2)= 1.386	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.959
Date Collected	Result	()
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2.61 0.2 1.14 0.862 2.32 0.2	0.959 -1.609 0.131 -0.149 0.842 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.0851	N/A	-2.464	NO	
MW360	Downgradient	Yes	0.118	N/A	-2.137	NO	
MW363	Downgradient	No	0.05	N/A	-2.996	N/A	
MW366	Downgradient	No	0.05	N/A	-2.996	N/A	
MW369	Upgradient	Yes	0.0299	N/A	-3.510	NO	
MW372	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.985	S = 0.825	CV(1)= 0.838	K factor**= 2.523	TL(1)= 3.067	LL(1)= N/A
Statistics-Transformed Background	X= -0.430	S= 0.990	CV(2) =-2.302	K factor**= 2.523	TL(2)= 2.068	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	М	W369					
D . G 11 . 1	P	4.	T N T/D	1.5			

Result	LN(Result)
2	0.693
2	0.693
2	0.693
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
MW372	
MW372 Result	LN(Result)
	LN(Result) 0.693
Result	
Result 2	0.693
Result 2 2	0.693 0.693
Result 2 2 2	0.693 0.693 0.693
Result 2 2 2 0.492	0.693 0.693 0.693 -0.709
Result 2 2 0.492 0.492	0.693 0.693 0.693 -0.709 -0.709
	2 2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.345	NO	-1.064	N/A
MW360	Downgradient	Yes	0.0243	NO	-3.717	N/A
MW363	Downgradient	Yes	0.0184	NO	-3.995	N/A
MW366	Downgradient	Yes	0.0682	NO	-2.685	N/A
MW369	Upgradient	Yes	0.0302	NO	-3.500	N/A
MW372	Upgradient	Yes	1.25	NO	0.223	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 1112 (0

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/8/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.37	NO	-0.994	N/A
MW360	Downgradient	Yes	0.141	NO	-1.959	N/A
MW363	Downgradient	No	0.2	N/A	-1.609	N/A
MW366	Downgradient	Yes	0.387	NO	-0.949	N/A
MW369	Upgradient	Yes	0.437	NO	-0.828	N/A
MW372	Upgradient	Yes	0.521	NO	-0.652	N/A

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 32.763 S = 9.391	CV(1)= 0.287	K factor**= 2.523	TL(1)= 56.456	LL(1)=N/A
Statistics-Transformed Background Data	X = 3.449 S = 0.299	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.202	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	29.5	3.384			
4/22/2002	29.8	3.395			
7/15/2002	25.3	3.231			
10/8/2002	21.9	3.086			

20.9

22.2

22.9

21.7

MW372

Result

41.5

43.6

40.4

38.8

41.1

42.9

35.1

46.6

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	24.5	NO	3.199	N/A
MW360	Downgradient	Yes	19.8	NO	2.986	N/A
MW363	Downgradient	Yes	28.1	NO	3.336	N/A
MW366	Downgradient	Yes	26.6	NO	3.281	N/A
MW369	Upgradient	Yes	16.7	NO	2.815	N/A
MW372	Upgradient	Yes	62.3	YES	4.132	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.040

3.100

3.131

3.077

3.726

3.775

3.699

3.658

3.716

3.759

3.558

3.842

LN(Result)

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.938 S = 3.750	CV(1)= 0.104	K factor**= 2.523	TL(1)= 45.399	LL(1)=N/A
Statistics-Transformed Background Data	X =3.578 S = 0.089	CV(2)= 0.025	K factor**= 2.523	TL(2)= 3.803	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	35	3.555			
4/22/2002	35	3.555			
7/15/2002	35	3.555			

50

35

35

35

35

35

35

35

35

35

35

35

35

MW372

Result

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	20	N/A	2.996	N/A
MW360	Downgradient	No	20	N/A	2.996	N/A
MW363	Downgradient	Yes	10.3	NO	2.332	N/A
MW366	Downgradient	No	20	N/A	2.996	N/A
MW369	Upgradient	Yes	16.1	NO	2.779	N/A
MW372	Upgradient	Yes	10.6	NO	2.361	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.912

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =44.119 S = 4.554	CV(1)= 0.103	K factor**= 2.523	TL(1)= 55.607	LL(1)=N/A
Statistics-Transformed Background Data	X = 3.782 S = 0.099	CV(2)= 0.026	K factor**= 2.523	TL(2)= 4.033	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number: MW369					
Date Collected	Result	LN(Result)			
7/15/2002	48.3	3.877			
10/8/2002	47.7	3.865			

45.7

47.4

55.9

47.4

45.5

43.4

MW372

Result

39.8

39.4

39.2

39.8

40

42

43.4

41

1/8/2003

4/3/2003

7/8/2003

10/6/2003

1/7/2004

4/7/2004

Well Number:

Date Collected

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/5/2004

4/5/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	30.2	NO	3.408	N/A	
MW360	Downgradient	Yes	7.59	NO	2.027	N/A	
MW363	Downgradient	Yes	29.1	NO	3.371	N/A	
MW366	Downgradient	Yes	33.8	NO	3.520	N/A	
MW369	Upgradient	Yes	30.7	NO	3.424	N/A	
MW372	Upgradient	Yes	38.4	NO	3.648	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.822

3.859

4.024

3.859

3.818

3.770

3.684

3.714

3.674

3.669

3.684

3.689

3.770

3.738

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.021	CV(1)= 0.845	K factor**= 2.523	TL(1)= 0.077	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.090	S= 1.006	CV(2) =-0.246	K factor**= 2.523	TL(2)= -1.553	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
W7 11 NT 1	MULTO	
Well Number:	MW372	
Date Collected		LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.0147	-3.689 -3.689 -3.689 -6.450 -4.220

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	Yes	0.0082	NO	-4.804	N/A
MW363	Downgradient	Yes	0.00129	NO	-6.653	N/A
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.00341	NO	-5.681	N/A
MW372	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =482.856 S = 57.603	CV(1)= 0.119	K factor**= 2.523	TL(1)= 628.189	LL(1)=N/A
Statistics-Transformed Background Data	X = 6.173 S = 0.123	CV(2)= 0.020	K factor**= 2.523	TL(2)= 6.484	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

1 1112 (0

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	()
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 508 501 507 495 508.7 515	6.230 6.217 6.229 6.205 6.232 6.244

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	408	NO	6.011	N/A
MW360	Downgradient	Yes	406	NO	6.006	N/A
MW363	Downgradient	Yes	453	NO	6.116	N/A
MW366	Downgradient	Yes	434	NO	6.073	N/A
MW369	Upgradient	Yes	383	NO	5.948	N/A
MW372	Upgradient	Yes	795	YES	6.678	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.010	CV(1)= 0.400	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.742	S= 0.307	CV(2) =-0.082	K factor**= 2.523	TL(2)= -2.967	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number: MW369						
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.025	-3.689				
7/15/2002	0.05	-2.996				

0.02

0.02

0.02

0.02

0.02

MW372

Result

0.025

0.025

0.05

0.02

0.02

0.02

0.02

0.02

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient D	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.000973	3 NO	-6.935	N/A	
MW360	Downgradient	Yes	0.00173	NO	-6.360	N/A	
MW363	Downgradient	Yes	0.00285	NO	-5.860	N/A	
MW366	Downgradient	Yes	0.00125	NO	-6.685	N/A	
MW369	Upgradient	Yes	0.0013	NO	-6.645	N/A	
MW372	Upgradient	Yes	0.000629	9 NO	-7.371	N/A	
NT/A D	1. 1	Di			1. 1.1	1 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912 -3.912

-3.912

-3.912

-3.912

-3.689

-3.689

-2.996

-3.912

-3.912

-3.912

-3.912 -3.912

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.781	S= 1.351	CV(1)= 0.759	K factor**= 2.523	TL(1)= 5.190	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.228	S= 1.065	CV(2)= 4.665	K factor**= 2.523	TL(2)= 2.915	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	5.41	1.688				
4/22/2002	1.57	0.451				
7/15/2002	0.8	-0.223				

1.09

2.69

2.04

1.19

1.78

MW372

Result

3.89

0.05

1.33

2.66

0.4

0.91

1.42

1.26

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.42	NO	1.486	N/A
MW360	Downgradient	Yes	0.9	NO	-0.105	N/A
MW363	Downgradient	Yes	0.85	NO	-0.163	N/A
MW366	Downgradient	Yes	2.51	NO	0.920	N/A
MW369	Upgradient	Yes	0.86	NO	-0.151	N/A
MW372	Upgradient	Yes	1.75	NO	0.560	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.086

0.990

0.713

0.174

0.577

1.358

-2.996

0.285

0.978

-0.916

-0.094

0.351

0.231

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =285.188 S = 44.908	CV(1)= 0.157	K factor**= 2.523	TL(1)= 398.489	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.640 S = 0.175	CV(2)= 0.031	K factor**= 2.523	TL(2)= 6.080	LL(2)= N/A

	kground Data from ells with Transformed Result
Well Number	MW369

wen number.	IVI W 309	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.687
Date Collected	Result	
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 295 322 329 290 316 311	5.687 5.775 5.796 5.670 5.756 5.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	214	NO	5.366	N/A
MW360	Downgradient	Yes	220	NO	5.394	N/A
MW363	Downgradient	Yes	243	NO	5.493	N/A
MW366	Downgradient	Yes	213	NO	5.361	N/A
MW369	Upgradient	Yes	209	NO	5.342	N/A
MW372	Upgradient	Yes	483	YES	6.180	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.385	S= 6.991	CV(1)= 0.947	K factor**= 2.523	TL(1)= 25.024	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.358	S = 1.323	CV(2)= 0.974	K factor**= 2.523	TL(2)= 4.697	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW369

wen runber.	111 11 507	
Date Collected	Result	LN(Result)
3/18/2002	0.656	-0.422
4/22/2002	0.695	-0.364
7/15/2002	7.1	1.960
10/8/2002	21.5	3.068
1/8/2003	18.5	2.918
4/3/2003	14.9	2.701
7/8/2003	11.3	2.425
10/6/2003	14.9	2.701
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.783
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 5.95	1.783
Date Collected 3/19/2002 4/23/2002	Result 5.95 0.792	1.783 -0.233
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5.95 0.792 1.78	1.783 -0.233 0.577
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5.95 0.792 1.78 0.776	1.783 -0.233 0.577 -0.254
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5.95 0.792 1.78 0.776 3.55	1.783 -0.233 0.577 -0.254 1.267
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.95 0.792 1.78 0.776 3.55 5.02	1.783 -0.233 0.577 -0.254 1.267 1.613

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.114	NO	-2.172	N/A
MW360	Downgradient	Yes	0.343	NO	-1.070	N/A
MW363	Downgradient	Yes	0.056	NO	-2.882	N/A
MW366	Downgradient	Yes	0.0331	NO	-3.408	N/A
MW369	Upgradient	Yes	0.0944	NO	-2.360	N/A
MW372	Upgradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.864 S = 3.505	CV(1)= 0.272	K factor**= 2.523	TL(1)= 21.707	LL(1)=N/A
Statistics-Transformed Background Data	X = 2.517 S = 0.290	CV(2)= 0.115	K factor**= 2.523	TL(2)= 3.248	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			
Date Collected	Result	LN(Result)		

Date Collected	Result	LN(Result)
3/18/2002	11.4	2.434
4/22/2002	12	2.485
7/15/2002	10	2.303
10/8/2002	8.62	2.154
1/8/2003	7.89	2.066
4/3/2003	7.97	2.076
7/8/2003	10.3	2.332
10/6/2003	9.14	2.213
Well Number:	MW372	
wen number.	IVI VV 372	
Date Collected		LN(Result)
		LN(Result) 2.754
Date Collected	Result	· /
Date Collected 3/19/2002	Result 15.7	2.754
Date Collected 3/19/2002 4/23/2002	Result 15.7 16.6	2.754 2.809
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 15.7 16.6 15.4	2.754 2.809 2.734
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 15.7 16.6 15.4 15.8	2.754 2.809 2.734 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 15.7 16.6 15.4 15.8 15.8	2.754 2.809 2.734 2.760 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 15.7 16.6 15.4 15.8 15.8 16.4	2.754 2.809 2.734 2.760 2.760 2.797

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	11.1	NO	2.407	N/A
MW360	Downgradient	Yes	8.35	NO	2.122	N/A
MW363	Downgradient	Yes	10.7	NO	2.370	N/A
MW366	Downgradient	Yes	11.2	NO	2.416	N/A
MW369	Upgradient	Yes	6.97	NO	1.942	N/A
MW372	Upgradient	Yes	23.2	YES	3.144	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.413	S= 0.274	CV(1)= 0.664	K factor**= 2.523	TL(1)= 1.105	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.226	S = 1.008	CV(2) =-0.822	K factor**= 2.523	TL(2)= 1.317	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			
Date Collected	Result	LN(Result)		
3/18/2002	0.034	-3.381		
4/22/2002	0.062	-2.781		
7/15/2002	0.436	-0.830		

0.867

0.828

0.672

0.321

0.714

MW372

Result

0.205

0.345

0.21

0.0539

0.537

0.415

0.654

0.254

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0414	NO	-3.184	N/A
MW360	Downgradient	Yes	0.0927	NO	-2.378	N/A
MW363	Downgradient	Yes	0.247	NO	-1.398	N/A
MW366	Downgradient	Yes	0.004	NO	-5.521	N/A
MW369	Upgradient	Yes	0.0217	NO	-3.830	N/A
MW372	Upgradient	No	0.005	N/A	-5.298	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.143

-0.189

-0.397

-1.136

-0.337

-1.585

-1.064

-1.561

-2.921

-0.622

-0.879

-0.425 -1.370

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.010	S= 0.012	CV(1)= 1.199	K factor**= 2.523	TL(1)= 0.040	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.698	S= 1.607	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.643	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.00025	8 N/A	-8.263	N/A
MW360	Downgradient	No	0.00029	9 N/A	-8.115	N/A
MW363	Downgradient	No	0.00028	N/A	-8.181	N/A
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.00021	1 N/A	-8.464	NO
MW372	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.021	CV(1)= 0.910	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.246	S = 1.075	CV(2) =-0.253	K factor**= 2.523	TL(2)= -1.535	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00108	NO	-6.831	N/A
MW360	Downgradient	Yes	0.00189	NO	-6.271	N/A
MW363	Downgradient	Yes	0.0103	NO	-4.576	N/A
MW366	Downgradient	Yes	0.00154	NO	-6.476	N/A
MW369	Upgradient	Yes	0.00352	NO	-5.649	N/A
MW372	Upgradient	Yes	0.00091	8 NO	-6.993	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 74.563	S= 94.243	CV(1)= 1.264	K factor**= 2.523	TL(1)= 312.337	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.554	S = 0.784	CV(2)= 0.172	K factor**= 2.523	TL(2)= 5.371	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

1111200

W-11 Marsham

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 210 65 215 185 45 65	5.347 4.174 5.371 5.220 3.807 4.174

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	393	N/A	5.974	YES		
MW360	Downgradient	Yes	409	N/A	6.014	YES		
MW363	Downgradient	Yes	441	N/A	6.089	YES		
MW366	Downgradient	Yes	423	N/A	6.047	YES		
MW369	Upgradient	Yes	444	N/A	6.096	YES		
MW372	Upgradient	Yes	411	N/A	6.019	YES		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The Acet well(a) listed exceeded the Unney Televence Limit which is evidence of eleveted	MW357
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data	MW360
ncentration with respect to historical background data.	MW363
	MW366
	MW369
	MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.274	S= 0.194	CV(1)= 0.031	K factor**= 2.904	TL(1)= 6.837	LL(1)= 5.7114
Statistics-Transformed Background Data	X= 1.836	S = 0.031	CV(2)= 0.017	K factor**= 2.904	TL(2)= 1.925	LL(2)= 1.7467

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					

	112 11 0 0 0	
Date Collected	Result	LN(Result)
3/18/2002	6.1	1.808
4/22/2002	6.1	1.808
7/15/2002	6.1	1.808
10/8/2002	6.5	1.872
1/8/2003	6.5	1.872
4/3/2003	6.6	1.887
7/8/2003	6.5	1.872
10/6/2003	6.5	1.872
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.808
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 6.1	1.808
Date Collected 3/19/2002 4/23/2002	Result 6.1 6.12	1.808 1.812
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.1 6.12 6.1	1.808 1.812 1.808
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.1 6.12 6.1 6.06	1.808 1.812 1.808 1.802
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.1 6.12 6.1 6.06 6.26	1.808 1.812 1.808 1.802 1.834
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6.1 6.12 6.1 6.06 6.26 6.15	1.808 1.812 1.808 1.802 1.834 1.816

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>			
Downgradien	t Yes	6.02	NO	1.795	N/A			
Downgradien	t Yes	6	NO	1.792	N/A			
Downgradien	t Yes	6.09	NO	1.807	N/A			
Downgradien	t Yes	6.06	NO	1.802	N/A			
Upgradient	Yes	6.01	NO	1.793	N/A			
Upgradient	Yes	6	NO	1.792	N/A			
	Gradient Downgradien Downgradien Downgradien Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	GradientDetected?ResultDowngradientYes6.02DowngradientYes6DowngradientYes6.09DowngradientYes6.06UpgradientYes6.01	GradientDetected?ResultResult >TL(1)? Result <ll(1)?< th="">DowngradientYes6.02NODowngradientYes6.09NODowngradientYes6.06NODowngradientYes6.06NOUpgradientYes6.01NO</ll(1)?<>	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes 6.02 NO 1.795 DowngradientYes 6 NO 1.792 DowngradientYes 6.09 NO 1.807 DowngradientYes 6.06 NO 1.802 UpgradientYes 6.01 NO 1.793			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.663	S= 0.488	CV(1)= 0.293	K factor**= 2.523	TL(1)= 2.895	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.456	S = 0.362	CV(2)= 0.794	K factor**= 2.523	TL(2)= 1.368	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	2	0.693				
4/22/2002	2.21	0.793				
7/15/2002	2	0.693				
10/8/2002	0.966	-0.035				
1/8/2003	0.727	-0.319				
4/3/2003	0.8	-0.223				
7/8/2003	1.62	0.482				
10/6/2003	1.14	0.131				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	2.04	0.713				
4/23/2002	2.03	0.708				
7/16/2002	2	0.693				
10/8/2002	1.54	0.432				
1/7/2003	1.88	0.631				
4/2/2003	2.09	0.737				

1.78

1.79

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	1.63	NO	0.489	N/A	
MW360	Downgradient	Yes	0.675	NO	-0.393	N/A	
MW363	Downgradient	Yes	1.81	NO	0.593	N/A	
MW366	Downgradient	Yes	1.71	NO	0.536	N/A	
MW369	Upgradient	Yes	0.521	NO	-0.652	N/A	
MW372	Upgradient	Yes	2.16	NO	0.770	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.577

0.582

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 45.100	S= 11.875	CV(1)= 0.263	K factor**= 2.523	TL(1)= 75.061	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.780	S= 0.242	CV(2) =0.064	K factor**= 2.523	TL(2)= 4.390	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	35.7	3.575				
4/22/2002	37.6	3.627				
7/15/2002	42.4	3.747				
10/8/2002	66.9	4.203				
1/8/2003	67.9	4.218				
4/3/2003	61.8	4.124				
7/8/2003	45.6	3.820				
10/6/2003	59.1	4.079				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	37.2	3.616				
4/23/2002	38.6	3.653				
7/16/2002	35.6	3.572				
10/8/2002	37.5	3.624				
1/7/2003	34.1	3.529				

34.4

44.1

43.1

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	43	NO	3.761	N/A	
MW360	Downgradient	Yes	61.6	NO	4.121	N/A	
MW363	Downgradient	Yes	37.4	NO	3.622	N/A	
MW366	Downgradient	Yes	40.9	NO	3.711	N/A	
MW369	Upgradient	Yes	54	NO	3.989	N/A	
MW372	Upgradient	Yes	59	NO	4.078	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.538

3.786

3.764

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 45.031	S= 33.919	CV(1)= 0.753	K factor**= 2.523	TL(1)= 130.609	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.420	S = 0.981	CV(2)= 0.287	K factor**= 2.523	TL(2)= 5.894	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	15.5	2.741				
4/22/2002	15.8	2.760				
7/15/2002	13.8	2.625				
10/8/2002	6.9	1.932				
1/8/2003	10.5	2.351				
4/3/2003	10.5	2.351				
7/8/2003	10.9	2.389				
10/6/2003	16.3	2.791				
Well Number:	MW372					
Date Collected	Result	LN(Result)				

71.7

74.7

74.1

70.5

75.8

81.8

83.6

88.1

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	38.6	NO	3.653	N/A	
MW360	Downgradient	Yes	10.6	NO	2.361	N/A	
MW363	Downgradient	Yes	30.3	NO	3.411	N/A	
MW366	Downgradient	Yes	38.6	NO	3.653	N/A	
MW369	Upgradient	Yes	7.59	NO	2.027	N/A	
MW372	Upgradient	Yes	157	YES	5.056	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.272

4.313

4.305

4.256

4.328

4.404

4.426

4.478

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 20.821	S= 18.044	CV(1)= 0.867	K factor**= 2.523	TL(1)= 66.344	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.770	S = 1.150	CV(2) =0.415	K factor**= 2.523	TL(2)= 3.972	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Opgraulent w		ansiormed Kesuit					
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	41.7	3.731					
4/22/2002	53.1	3.972					
7/15/2002	18.1	2.896					
10/8/2002	16.4	2.797					
1/8/2003	3.49	1.250					
4/3/2003	9.34	2.234					
7/8/2003	17.5	2.862					
10/6/2003	17	2.833					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	44.8	3.802					
4/23/2002	0.802	-0.221					
7/16/2002	19.8	2.986					
10/8/2002	46.1	3.831					
1/7/2003	-0.973	#Func!					
4/2/2003	9.07	2.205					
7/9/2003	0	#Func!					
10/7/2003	36.9	3.608					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	53.6	NO	3.982	N/A	
MW360	Downgradient	Yes	28.3	NO	3.343	N/A	
MW363	Downgradient	No	3.06	N/A	1.118	N/A	
MW366	Downgradient	Yes	70.7	YES	4.258	N/A	
MW369	Upgradient	Yes	60.3	NO	4.099	N/A	
MW372	Upgradient	Yes	51.3	NO	3.938	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW366

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.513	S = 4.307	CV(1)= 1.226	K factor**= 2.523	TL(1)= 14.378	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.851	S= 0.828	CV(2)= 0.973	K factor**= 2.523	TL(2)= 2.940	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	1.7	0.531				
4/22/2002	1.6	0.470				
7/15/2002	3.1	1.131				
10/8/2002	17.7	2.874				

9

4

4.9

2.4

MW372

Result

1

1

1

1.6

1.5

3

1.5

1.2

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.756	N/A	-0.280	NO
MW360	Downgradient	Yes	1.2	N/A	0.182	NO
MW363	Downgradient	Yes	1.21	N/A	0.191	NO
MW366	Downgradient	Yes	1.04	N/A	0.039	NO
MW369	Upgradient	Yes	1.59	N/A	0.464	NO
MW372	Upgradient	Yes	1.29	N/A	0.255	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.197

1.386

1.589

0.875

0.000

0.182

0.000

0.000

0.470

0.405

1.099

0.405

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 67.963	S= 64.316	CV(1)= 0.946	K factor**= 2.523	TL(1)= 230.231	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.772	S = 1.023	CV(2)= 0.271	K factor**= 2.523	TL(2)= 6.353	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
*** 11 * 1		
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50 10	5.215 3.912 3.912 3.912 2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 184 50 50 50 10 12.7	5.215 3.912 3.912 3.912 2.303 2.542

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	6.56	NO	1.881	N/A	
MW360	Downgradient	Yes	7.2	NO	1.974	N/A	
MW363	Downgradient	Yes	11.9	NO	2.477	N/A	
MW366	Downgradient	Yes	13.8	NO	2.625	N/A	
MW369	Upgradient	Yes	17.3	NO	2.851	N/A	
MW372	Upgradient	Yes	7.08	NO	1.957	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.116	S= 0.173	CV(1)= 1.490	K factor**= 2.523	TL(1)= 0.552	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.729	S= 1.014	CV(2) =-0.371	K factor**= 2.523	TL(2)= -0.172	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

wen number.	IVI W 309	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) -0.322
Date Collected	Result	
Date Collected 3/19/2002	Result 0.725	-0.322
Date Collected 3/19/2002 4/23/2002	Result 0.725 0.1	-0.322 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.725 0.1 0.1	-0.322 -2.303 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.725 0.1 0.1 0.025	-0.322 -2.303 -2.303 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.725 0.1 0.1 0.025 0.035	-0.322 -2.303 -2.303 -3.689 -3.352
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.725 0.1 0.025 0.035 0.035	-0.322 -2.303 -2.303 -3.689 -3.352 -3.352

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.02	N/A	-3.912	N/A	
MW360	Downgradient	Yes	0.00367	N/A	-5.608	NO	
MW363	Downgradient	Yes	0.00616	N/A	-5.090	NO	
MW366	Downgradient	No	0.02	N/A	-3.912	N/A	
MW369	Upgradient	Yes	0.00565	N/A	-5.176	NO	
MW372	Upgradient	No	0.02	N/A	-3.912	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.026	S= 5.626	CV(1)= 2.777	K factor**= 2.523	TL(1)= 16.219	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.803	S= 1.380	CV(2) =-1.718	K factor**= 2.523	TL(2)= 2.678	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				

Date Collected	Result	LN(Result)
3/17/2002	4.66	1.539
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.122
Date Collected	Result	()
Date Collected 3/18/2002	Result 22.7	3.122
Date Collected 3/18/2002 4/23/2002	Result 22.7 1.46	3.122 0.378
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 22.7 1.46 0.253	3.122 0.378 -1.374
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 22.7 1.46 0.253 0.482	3.122 0.378 -1.374 -0.730
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 22.7 1.46 0.253 0.482 0.608	3.122 0.378 -1.374 -0.730 -0.498
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 22.7 1.46 0.253 0.482 0.608 0.446	3.122 0.378 -1.374 -0.730 -0.498 -0.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.072	N/A	-2.631	NO
MW361	Downgradient	Yes	0.022	N/A	-3.817	NO
MW364	Downgradient	No	0.05	N/A	-2.996	N/A
MW367	Downgradient	No	0.05	N/A	-2.996	N/A
MW370	Upgradient	No	0.05	N/A	-2.996	N/A
MW373	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Antimony UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.078	S= 0.098	CV(1)= 1.248	K factor**= 2.523	TL(1)= 0.324	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.915	S= 1.844	CV(2)= -0.471	K factor**= 2.523	TL(2)= 0.739	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.2	-1.609
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	· /
Date Collected 3/18/2002	Result 0.2	-1.609
Date Collected 3/18/2002 4/23/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.2 0.2 0.2 0.005	-1.609 -1.609 -1.609 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.2 0.2 0.2 0.005 0.005	-1.609 -1.609 -1.609 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.003	N/A	-5.809	N/A
MW361	Downgradient	No	0.003	N/A	-5.809	N/A
MW364	Downgradient	No	0.003	N/A	-5.809	N/A
MW367	Downgradient	No	0.003	N/A	-5.809	N/A
MW370	Upgradient	No	0.003	N/A	-5.809	N/A
MW373	Upgradient	Yes	0.00127	7 N/A	-6.669	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.140	S= 0.780	CV(1)= 0.684	K factor**= 2.523	TL(1)= 3.108	LL(1)=N/A
Statistics-Transformed Background	X= -0.235	S= 1.006	CV(2) =-4.287	K factor**= 2.523	TL(2)= 2.303	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW370					

wen rumber.	11110370	
Date Collected	Result	LN(Result)
3/17/2002	2	0.693
4/23/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.693
Date Collected	Result	()
Date Collected 3/18/2002	Result 2	0.693
Date Collected 3/18/2002 4/23/2002	Result 2 2	0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.79	0.693 0.693 0.693 -0.236
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 0.79 0.807	0.693 0.693 0.693 -0.236 -0.214
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2 2 0.79 0.807 1.13	0.693 0.693 0.693 -0.236 -0.214 0.122

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.403	NO	-0.909	N/A
MW361	Downgradient	Yes	0.362	NO	-1.016	N/A
MW364	Downgradient	Yes	0.0644	NO	-2.743	N/A
MW367	Downgradient	Yes	0.0521	NO	-2.955	N/A
MW370	Upgradient	Yes	0.933	NO	-0.069	N/A
MW373	Upgradient	Yes	1.72	NO	0.542	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

W-11 No..... MW270

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1	0.000
4/23/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	()
Date Collected 3/18/2002	Result 1	0.000
Date Collected 3/18/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.417	NO	-0.875	N/A
MW361	Downgradient	Yes	0.428	NO	-0.849	N/A
MW364	Downgradient	Yes	0.434	NO	-0.835	N/A
MW367	Downgradient	Yes	0.484	NO	-0.726	N/A
MW370	Upgradient	Yes	0.499	NO	-0.695	N/A
MW373	Upgradient	Yes	0.642	NO	-0.443	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 43.413	S= 13.444	CV(1)= 0.310	K factor**= 2.523	TL(1)= 77.331	LL(1)=N/A
Statistics-Transformed Background Data	X = 3.723	S = 0.323	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.539	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	34.8	3.550			
4/23/2002	43.4	3.770			
7/15/2002	33.2	3.503			
10/8/2002	29.2	3.374			
1/8/2003	31.3	3.444			
4/3/2003	32.4	3.478			
7/9/2003	22.9	3.131			
10/6/2003	28	3.332			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	61.9	4.126			
4/23/2002	59.2	4.081			
7/16/2002	47.6	3.863			
10/8/2002	46.1	3.831			
1/7/2003	49.2	3.896			
4/2/2003	57.8	4.057			

52.7

64.9

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	33.8	NO	3.520	N/A
MW361	Downgradient	Yes	29.1	NO	3.371	N/A
MW364	Downgradient	Yes	31.3	NO	3.444	N/A
MW367	Downgradient	Yes	28.6	NO	3.353	N/A
MW370	Upgradient	Yes	29.9	NO	3.398	N/A
MW373	Upgradient	Yes	62.9	NO	4.142	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.965

4.173

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 41.938	S = 24732	CV(1)= 0.590	K factor**= 2.523	TL(1) = 104336	
0					IL(I) 104.550	
Statistics-Transformed Background	X = 3.658	S = 0.339	CV(2)=0.093	K factor**= 2.523	TL(2)= 4.512	LL(2)=N/A
Data						

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
wen Rumber.	101 00 575	
Date Collected		LN(Result)
		LN(Result) 3.555
Date Collected	Result	()
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 35 47 35 35 35 35 35	3.555 3.850 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	21.4	NO	3.063	N/A
MW361	Downgradient	No	20	N/A	2.996	N/A
MW364	Downgradient	No	20	N/A	2.996	N/A
MW367	Downgradient	No	20	N/A	2.996	N/A
MW370	Upgradient	Yes	13.3	NO	2.588	N/A
MW373	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.919 S = 7.524	CV(1)= 0.164	K factor**= 2.523	TL(1)= 64.901	LL(1)=N/A
Statistics-Transformed Background Data	X = 3.814 S = 0.165	CV(2)= 0.043	K factor**= 2.523	TL(2)= 4.231	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
Well Number:	MW373	
wen Number.	101 00 575	
Date Collected		LN(Result)
-		LN(Result) 3.704
Date Collected	Result	. ,
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 40.6 38.8 39 38.4 38.1 38	3.704 3.658 3.664 3.648 3.640 3.638

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	32.6	NO	3.484	N/A
MW361	Downgradient	Yes	33.5	NO	3.512	N/A
MW364	Downgradient	Yes	35.7	NO	3.575	N/A
MW367	Downgradient	Yes	39	NO	3.664	N/A
MW370	Upgradient	Yes	39.7	NO	3.681	N/A
MW373	Upgradient	Yes	38	NO	3.638	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.027	S= 0.032	CV(1)= 1.165	K factor**= 2.523	TL(1)= 0.108	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.058	S= 1.011	CV(2) =-0.249	K factor**= 2.523	TL(2)= -1.507	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	Well Number: MW370					
Date Collected	Result	LN(Result)				
3/17/2002	0.025	-3.689				
4/23/2002	0.025	-3.689				
7/15/2002	0.025	-3.689				

0.0174

0.0105

0.137

0.0463

MW373

Result

0.025

0.034

0.025

0.00411

0.00344

0.00368

0.0405

0.00843

0.00931

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0148	N/A	-4.213	NO
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	No	0.001	N/A	-6.908	N/A
MW367	Downgradient	Yes	0.00059	9 N/A	-7.420	NO
MW370	Upgradient	No	0.001	N/A	-6.908	N/A
MW373	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-4.051

-4.556

-4.677

-1.988

-3.073

-3.689

-3.381

-3.689

-5.494

-5.672

-5.605

-3.206

-4.776

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Conductivity **UNITS: umho/cm** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=608.719 **S**= 156.157 **CV(1)**=0.257 **K factor**=** 2.523 TL(1)= 1002.702 LL(1)=N/A **Statistics-Background Data Statistics-Transformed Background X**= 6.380 **S**= 0.260 **CV(2)**= 0.041 **K factor**=** 2.523 TL(2)= 7.036 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW370

Data

Well Number

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 661 801 774 680 686.5 763	6.494 6.686 6.652 6.522 6.532 6.637

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	490	NO	6.194	N/A
MW361	Downgradient	Yes	447	NO	6.103	N/A
MW364	Downgradient	Yes	477	NO	6.168	N/A
MW367	Downgradient	Yes	433	NO	6.071	N/A
MW370	Upgradient	Yes	492	NO	6.198	N/A
MW373	Upgradient	Yes	834	NO	6.726	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison UNITS: mg/L LRGA Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.010	CV(1)= 0.399	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.739	S = 0.308	CV(2) =-0.082	K factor**= 2.523	TL(2)= -2.963	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	0.025	-3.689			
4/23/2002	0.025	-3.689			
7/15/2002	0.05	-2.996			
10/8/2002	0.02	-3.912			
1/8/2003	0.02	-3.912			
4/3/2003	0.02	-3.912			
7/9/2003	0.02	-3.912			

10/6/2003	0.02	-3.912
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	0.026	-3.650
4/23/2002	0.025	-3.689
7/16/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/7/2003	0.02	-3.912
4/2/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00129	NO	-6.653	N/A
MW361	Downgradient	Yes	0.00122	NO	-6.709	N/A
MW364	Downgradient	Yes	0.00195	NO	-6.240	N/A
MW367	Downgradient	Yes	0.00123	NO	-6.701	N/A
MW370	Upgradient	Yes	0.00074	7 NO	-7.199	N/A
MW373	Upgradient	Yes	0.00061	1 NO	-7.400	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.387	S = 1.153	CV(1)= 0.831	K factor**= 2.523	TL(1)= 4.295	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.115	S= 1.207	CV(2) =-10.514	K factor**= 2.523	TL(2)= 2.930	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	4.32	1.463				
4/23/2002	1.24	0.215				
7/15/2002	0.75	-0.288				
10/8/2002	0.94	-0.062				
1/8/2003	3.08	1.125				
4/3/2003	1.45	0.372				
7/9/2003	1.22	0.199				

1.07

MW373

Result

3.04

0.03

0.23

0.86

0.21

1.19

1.1

1.46

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.72	NO	-0.329	N/A
MW361	Downgradient	Yes	3.14	NO	1.144	N/A
MW364	Downgradient	Yes	2.81	NO	1.033	N/A
MW367	Downgradient	Yes	2.19	NO	0.784	N/A
MW370	Upgradient	Yes	3.57	NO	1.273	N/A
MW373	Upgradient	Yes	1.33	NO	0.285	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.068

1.112

-3.507

-1.470

-0.151

-1.561

0.174

0.095

0.378

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =356.188 S = 106.752	2 CV(1)=0.300	K factor**= 2.523	TL(1)= 625.523	LL(1)=N/A
Statistics-Transformed Background Data	X =5.831 S = 0.311	CV(2) =0.053	K factor**= 2.523	TL(2)= 6.616	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
wen rumber.	101 00 575	
Date Collected	Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	· /
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 427 507 464 408 404 450	6.057 6.229 6.140 6.011 6.001 6.109

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	260	NO	5.561	N/A	
MW361	Downgradient	Yes	244	NO	5.497	N/A	
MW364	Downgradient	Yes	256	NO	5.545	N/A	
MW367	Downgradient	Yes	254	NO	5.537	N/A	
MW370	Upgradient	Yes	271	NO	5.602	N/A	
MW373	Upgradient	Yes	484	NO	6.182	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.230	S= 8.841	CV(1)= 0.958	K factor**= 2.523	TL(1)= 31.535	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.942	S = 0.713	CV(2)= 0.367	K factor**= 2.523	TL(2)= 3.740	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				

Date Collected	Result	LN(Result)
3/17/2002	9.34	2.234
4/23/2002	4.33	1.466
7/15/2002	3.52	1.258
10/8/2002	7.45	2.008
1/8/2003	7.04	1.952
4/3/2003	4.64	1.535
7/9/2003	15.8	2.760
10/6/2003	6.49	1.870
Well Number:	MW373	
wen number.	IVI W 5 / 5	
Date Collected		LN(Result)
		LN(Result) 3.627
Date Collected	Result	
Date Collected 3/18/2002	Result 37.6	3.627
Date Collected 3/18/2002 4/23/2002	Result 37.6 19	3.627 2.944
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 37.6 19 10.7	3.627 2.944 2.370
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 37.6 19 10.7 3.75	3.627 2.944 2.370 1.322
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 37.6 19 10.7 3.75 3.87	3.627 2.944 2.370 1.322 1.353
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 37.6 19 10.7 3.75 3.87 3.5	3.627 2.944 2.370 1.322 1.353 1.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	3.54	NO	1.264	N/A	
MW361	Downgradient	Yes	0.0939	NO	-2.366	N/A	
MW364	Downgradient	No	0.1	N/A	-2.303	N/A	
MW367	Downgradient	Yes	0.378	NO	-0.973	N/A	
MW370	Upgradient	No	0.1	N/A	-2.303	N/A	
MW373	Upgradient	No	0.1	N/A	-2.303	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =17.544 S = 5.911	CV(1)= 0.337	K factor**= 2.523	TL(1)= 32.458	LL(1)=N/A
Statistics-Transformed Background Data	X =2.810 S = 0.343	CV(2)= 0.122	K factor**= 2.523	TL(2)= 3.676	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442

12.3

10

12.1

MW373

Result

24.8

22.7

18.8

21.1

19.9

25.5

23.3

26.9

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	16.3	NO	2.791	N/A
MW361	Downgradient	Yes	13.3	NO	2.588	N/A
MW364	Downgradient	Yes	13.2	NO	2.580	N/A
MW367	Downgradient	Yes	12.6	NO	2.534	N/A
MW370	Upgradient	Yes	12.9	NO	2.557	N/A
MW373	Upgradient	Yes	24.7	NO	3.207	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.510

2.303

2.493

3.211

3.122

2.934

3.049

2.991

3.239

3.148

3.292

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.080	S= 0.674	CV(1)= 0.624	K factor**= 2.523	TL(1)= 2.780	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.114	S = 0.658	CV(2) =-5.762	K factor**= 2.523	TL(2)= 1.547	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.244	-1.411
4/23/2002	1.82	0.599
7/15/2002	1.22	0.199
10/8/2002	0.988	-0.012
1/8/2003	0.729	-0.316
4/3/2003	0.637	-0.451
7/9/2003	2.51	0.920
10/6/2003	1.05	0.049
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	0.355	-1.036
4/23/2002	2.16	0.770

1.39

0.717

0.587

0.545

1.76

0.57

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.856	NO	-0.155	N/A
MW361	Downgradient	Yes	0.0247	NO	-3.701	N/A
MW364	Downgradient	Yes	0.0151	NO	-4.193	N/A
MW367	Downgradient	Yes	0.24	NO	-1.427	N/A
MW370	Upgradient	No	0.005	N/A	-5.298	N/A
MW373	Upgradient	Yes	0.00242	2 NO	-6.024	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.329

-0.333

-0.533

-0.607

0.565

-0.562

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.022	CV(1)= 0.901	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.239	S= 1.087	CV(2) =-0.256	K factor**= 2.523	TL(2)= -1.497	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	()
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.02	NO	-3.912	N/A
MW361	Downgradient	Yes	0.00115	NO	-6.768	N/A
MW364	Downgradient	Yes	0.00212	NO	-6.156	N/A
MW367	Downgradient	Yes	0.00196	NO	-6.235	N/A
MW370	Upgradient	Yes	0.00128	NO	-6.661	N/A
MW373	Upgradient	Yes	0.00131	NO	-6.638	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 46.688	S= 60.986	CV(1)= 1.306	K factor**= 2.523	TL(1)= 200.555	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.829	S = 1.151	CV(2)= 0.301	K factor**= 2.523	TL(2)= 4.942	LL(2)=N/A

Upgradient Wells with Transformed Result	Historical Background Data from
	Upgradient Wells with Transformed Result

1111270

W. . 11 N. 1. . . .

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 140 -20 10 10 67 -29	4.942 #Func! 2.303 2.303 4.205 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	179	N/A	5.187	YES	
MW361	Downgradient	Yes	417	N/A	6.033	YES	
MW364	Downgradient	Yes	431	N/A	6.066	YES	
MW367	Downgradient	Yes	411	N/A	6.019	YES	
MW370	Upgradient	Yes	435	N/A	6.075	YES	
MW373	Upgradient	Yes	407	N/A	6.009	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW358
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW361
concentration with respect to historical background data.	MW364
	MW367
	MW370
	MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.283	S= 0.159	CV(1)= 0.025	K factor**= 2.904	TL(1)= 6.745	LL(1)=5.8202
Statistics-Transformed Background Data	X= 1.837	S = 0.025	CV(2)= 0.014	K factor**= 2.904	TL(2)= 1.911	LL(2)= 1.7634

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	6.3	1.841				
4/23/2002	6.4	1.856				
7/15/2002	6.3	1.841				
10/8/2002	6.3	1.841				

6.4

6.5

6.3

6.5

MW373

Result

6

6.3

6.45

6.18

6.35

6.14

6.1

6

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

adient	Detected?	Result	Result >TL(1)?	I N(Pecult)	$\mathbf{I} \mathbf{N} (\mathbf{D} = 1) \times \mathbf{T} (2) 9$
			Result <ll(1)?< th=""><th>LIN(ICESUII)</th><th>LN(Result) >1L(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LIN(ICESUII)	LN(Result) >1L(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
owngradient	Yes	6.07	NO	1.803	N/A
owngradient	Yes	5.89	NO	1.773	N/A
owngradient	Yes	5.95	NO	1.783	N/A
owngradient	Yes	5.92	NO	1.778	N/A
pgradient	Yes	5.9	NO	1.775	N/A
pgradient	Yes	6	NO	1.792	N/A
0 0 0	owngradient owngradient owngradient ogradient	e	owngradientYes5.89owngradientYes5.95owngradientYes5.92ogradientYes5.9	owngradientYes5.89NOowngradientYes5.95NOowngradientYes5.92NOogradientYes5.9NO	wwngradientYes5.89NO1.773wwngradientYes5.95NO1.783wwngradientYes5.92NO1.778ogradientYes5.9NO1.775

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.856

1.872

1.841

1.872

1.792

1.841

1.864

1.821

1.848

1.815

1.808

1.792

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.823	S= 0.522	CV(1)= 0.185	K factor**= 2.523	TL(1)= 4.139	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.024	S= 0.167	CV(2)= 0.163	K factor**= 2.523	TL(2)= 1.445	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number: MW370						
Date Collected	Result	LN(Result)				
3/17/2002	3.22	1.169				
4/23/2002	3.43	1.233				
7/15/2002	2.98	1.092				

2.46

2.41

2.43

2.44

2.48

MW373

Result

4.34

3.04

2.93

2.3

2.45

2.7

2.68

2.88

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.54	NO	0.932	N/A
MW361	Downgradient	Yes	1.91	NO	0.647	N/A
MW364	Downgradient	Yes	1.88	NO	0.631	N/A
MW367	Downgradient	Yes	2.88	NO	1.058	N/A
MW370	Upgradient	Yes	2.47	NO	0.904	N/A
MW373	Upgradient	Yes	2.5	NO	0.916	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.900

0.880

0.888

0.892

0.908

1.468

1.112

1.075

0.833

0.896

0.993

0.986

1.058

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.544	S= 15.22	CV(1)= 0.295	K factor**= 2.523	TL(1)= 89.962	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.906	S = 0.272	CV(2)= 0.070	K factor**= 2.523	TL(2)= 4.592	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected 3/17/2002	Result 31.8	LN(Result) 3.459				

3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
	112 11 0 7 0	
Date Collected		LN(Result)
Date Collected 3/18/2002		LN(Result) 3.770
	Result	. ,
3/18/2002	Result 43.4	3.770
3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	42.9	NO	3.759	N/A
MW361	Downgradient	Yes	43.1	NO	3.764	N/A
MW364	Downgradient	Yes	40	NO	3.689	N/A
MW367	Downgradient	Yes	38.5	NO	3.651	N/A
MW370	Upgradient	Yes	47.4	NO	3.859	N/A
MW373	Upgradient	Yes	55.4	NO	4.015	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X=122.381 S=	= 195.095	5 CV(1)=1.594	K factor**= 2.523	TL(1)= 614.606	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.985 S =	= 1.323	CV(2)= 0.332	K factor**= 2.523	TL(2)= 7.322	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			
Data Callastad	Docult	I N(P ocult)		

Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
XX 7 11 X 7 1	1011050	
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	· · · ·
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	60.5	N/A	4.103	NO
MW361	Downgradient	Yes	56	N/A	4.025	NO
MW364	Downgradient	Yes	71.9	N/A	4.275	NO
MW367	Downgradient	Yes	46.3	N/A	3.835	NO
MW370	Upgradient	Yes	21.7	N/A	3.077	NO
MW373	Upgradient	Yes	167	N/A	5.118	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.655	S= 13.274	CV(1)= 1.734	K factor**= 2.523	TL(1)= 41.146	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.946	S = 0.939	CV(2)= 0.483	K factor**= 2.523	TL(2)= 3.833	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			
Date Collected	Result	LN(Result)		
3/17/2002	10.8	2.380		
4/23/2002	8.53	2.144		
7/15/2002	5.09	1.627		
10/8/2002	4.78	1.564		
1/8/2003	-5.12	#Func!		
4/3/2003	5.11	1.631		
7/9/2003	4.25	1.447		
10/6/2003	6.54	1.878		
Well Number:	MW373			
Date Collected	Result	LN(Result)		
3/18/2002	16.5	2.803		
4/23/2002	3.49	1.250		
7/16/2002	1.42	0.351		
10/8/2002	-6.06	#Func!		
1/7/2003	-8.41	#Func!		
4/2/2003	26.3	3.270		
7/9/2003	3.06	1.118		

46.2

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	55.8	N/A	4.022	YES
MW361	Downgradient	Yes	49.8	N/A	3.908	YES
MW364	Downgradient	Yes	54.2	N/A	3.993	YES
MW367	Downgradient	Yes	63.9	N/A	4.157	YES
MW370	Upgradient	Yes	44.2	N/A	3.789	NO
MW373	Upgradient	No	17.5	N/A	2.862	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.833

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW358	
MW361	
MW364	
MW367	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.169	S= 12.072	CV(1)= 1.957	K factor**= 2.523	TL(1)= 36.626	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.069	S= 1.014	CV(2)= 0.948	K factor**= 2.523	TL(2)= 3.626	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
Well Number:	MW373	
wen Number.	IVI VV 373	
Date Collected		LN(Result)
		LN(Result) 0.095
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1.1 17.5 49 2.9 3.9 2.5	0.095 2.862 3.892 1.065 1.361 0.916

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.12	N/A	0.751	NO
MW361	Downgradient	Yes	0.971	N/A	-0.029	NO
MW364	Downgradient	Yes	0.672	N/A	-0.397	NO
MW367	Downgradient	Yes	0.753	N/A	-0.284	NO
MW370	Upgradient	Yes	1.49	N/A	0.399	NO
MW373	Upgradient	Yes	1.23	N/A	0.207	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 79.819	S = 78.470	CV(1)= 0.983	K factor**= 2.523	TL(1)= 277.798	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.971	S= 0.950	CV(2)= 0.239	K factor**= 2.523	TL(2)= 6.368	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	50	3.912					
4/23/2002	228	5.429					
7/15/2002	88	4.477					

58

72.4

26.6

16.4

31.1

MW373

Result

50

276

177

76

45.9

57.8

10

13.9

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	15.8	NO	2.760	N/A
MW361	Downgradient	Yes	9.12	NO	2.210	N/A
MW364	Downgradient	No	10	N/A	2.303	N/A
MW367	Downgradient	Yes	9.54	NO	2.255	N/A
MW370	Upgradient	Yes	9.76	NO	2.278	N/A
MW373	Upgradient	Yes	12	NO	2.485	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.060 4.282

3.281

2.797

3.437

3.912

5.620

5.176

4.331

3.826

4.057

2.303

2.632

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 12.188 S =	= 6.950	CV(1)= 0.570	K factor**= 2.523	TL(1)= 29.721	LL(1)=N/A
Statistics-Transformed Background Data	X =2.305 S =	= 0.687	CV(2) =0.298	K factor**= 2.523	TL(2)= 4.039	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	19	2.944					
4/23/2002	17	2.833					
7/15/2002	15	2.708					

18

17

18

15

16

MW373

Result

5

25

3

4

6

5

6

6

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.86	N/A	1.051	N/A
MW361	Downgradient	Yes	4.62	N/A	1.530	N/A
MW364	Downgradient	Yes	5.81	NO	1.760	N/A
MW367	Downgradient	Yes	4.53	N/A	1.511	N/A
MW370	Upgradient	Yes	1.24	N/A	0.215	N/A
MW373	Upgradient	Yes	5.74	NO	1.747	N/A

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.890

2.833

2.890

2.708

2.773

1.609

3.219

1.099

1.386

1.792

1.609

1.792

1.792

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.055	S= 0.037	CV(1)= 0.673	K factor**= 2.523	TL(1)= 0.147	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.131	S= 0.691	CV(2) =-0.221	K factor**= 2.523	TL(2)= -1.388	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	0.1	-2.303						
4/23/2002	0.1	-2.303						

0.1

0.025

0.035

0.035

0.02

0.02

MW373

Result

0.1

0.1

0.1

0.025

0.035

0.035

0.0234

0.02

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0063	NO	-5.067	N/A
MW361	Downgradient	No	0.02	N/A	-3.912	N/A
MW364	Downgradient	Yes	0.0236	NO	-3.747	N/A
MW367	Downgradient	Yes	0.00484	NO	-5.331	N/A
MW370	Upgradient	Yes	0.00333	NO	-5.705	N/A
MW373	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.303

-3.689

-3.352

-3.352

-3.912

-3.912

-2.303

-2.303

-2.303

-3.689

-3.352

-3.352

-3.755 -3.912

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U Second Quarter 2021 Statistical Analysis **Current Background Comparison** UCRS Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 42.663	S= 22.782	CV(1)= 0.534	K factor**= 2.523	TL(1)= 100.142	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.608	S = 0.565	CV(2)= 0.157	K factor**= 2.523	TL(2)= 5.033	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result LN(Result) 3.768 4.254 4.067 4.315 4.261 4.234 4.093 4.140

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW371	Upgradient	Yes	71.8	NO	4.274	N/A

Conclusion of Statistical Analysis on Current Data

LN(Result)

3.068

3.030

3.082

3.045

3.109

3.020 3.109

3.127

Well Number:

Date Collected

4/15/2019

7/15/2019

10/16/2019

1/21/2020

4/6/2020

7/23/2020

10/12/2020

1/20/2021

4/11/2019

7/11/2019

10/16/2019

1/22/2020

4/6/2020

7/23/2020

10/12/2020

1/20/2021

Well Number:

Date Collected

MW371

Result

43.3

70.4

58.4

74.8

70.9

59.9

62.8

MW374

Result

21.5

20.7

21.8

22.4

20.5

22.4

22.8

21

69

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U Second Quarter 2021 Statistical AnalysisCurrent Background ComparisonDissolved OxygenUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.334	S= 1.631	CV(1)= 0.699	K factor**= 2.523	TL(1)= 6.450	LL(1)= N/A
Statistics-Transformed Background Data	X =0.607	S = 0.736	CV(2)= 1.211	K factor**= 2.523	TL(2)= 2.463	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 5/28/2019 5.2 1.649 7/15/2019 4.6 1.526 10/16/2019 1.27 0.239 3/17/2020 1.716 5.56 4/6/2020 3.39 1.221 7/23/2020 2.5 0.916 10/12/2020 1.34 0.293 1/20/2021 0.470 1.6 Well Number: MW374 Date Collected LN(Result) Result 5/28/2019 1.49 0.399 7/11/2019 2.23 0.802 10/16/2019 1.88 0.631 3/17/2020 1.212 3.36 0.8 4/6/2020 -0.223 7/23/2020 0.7 -0.357 -0.693 10/12/2020 0.5 1/20/2021 0.92 -0.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradien	t Yes	3.27	NO	1.185	N/A	
MW362	Downgradien	t Yes	4.5	NO	1.504	N/A	
MW365	Downgradien	t Yes	4.03	NO	1.394	N/A	
MW371	Upgradient	Yes	6.07	NO	1.803	N/A	
MW374	Upgradient	Yes	2.8	NO	1.030	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =325.438 S = 75.243	CV(1)= 0.231	K factor**= 2.523	TL(1)= 515.275	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.753 S = 0.281	CV(2)= 0.049	K factor**= 2.523	TL(2)= 6.462	LL(2)=N/A

Current Background Data from Upgradi Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
5/28/2019	363	5.894					
7/15/2019	423	6.047					
10/16/2019	321	5.771					
3/17/2020	335	5.814					
4/6/2020	423	6.047					
7/23/2020	361	5.889					
10/12/2020	344	5.841					
1/20/2021	296	5.690					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
5/28/2019	355	5.872					
7/11/2019	354	5.869					
10/16/2019	233	5.451					
3/17/2020	358	5.881					
4/6/2020	385	5.953					
7/23/2020	304	5.717					
10/12/2020	207	5.333					
1/20/2021	145	4.977					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	357	NO	5.878	N/A	
MW362	Downgradient	Yes	379	NO	5.938	N/A	
MW365	Downgradient	Yes	405	NO	6.004	N/A	
MW368	Downgradient	Yes	390	NO	5.966	N/A	
MW371	Upgradient	Yes	388	NO	5.961	N/A	
MW374	Upgradient	Yes	361	NO	5.889	N/A	
MW375	Sidegradient	Yes	378	NO	5.935	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical AnalysisCurrent Background ComparisonSulfateUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 26.748	S= 22.556	CV(1)= 0.843	K factor**= 2.523	TL(1)= 83.656	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.935	S = 0.876	CV(2)= 0.299	K factor**= 2.523	TL(2)= 5.145	LL(2)= N/A

Current Background Data from Upgradien Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
4/15/2019	59.1	4.079					
7/15/2019	55.4	4.015					
10/16/2019	30	3.401					
1/21/2020	27	3.296					
4/6/2020	75.3	4.321					
7/23/2020	53.6	3.982					
10/12/2020	29.9	3.398					
1/20/2021	29.2	3.374					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
4/11/2019	8.28	2.114					
7/11/2019	8.06	2.087					
10/16/2019	6.43	1.861					
1/22/2020	7.75	2.048					
4/6/2020	8.41	2.129					
7/23/2020	9.1	2.208					
10/12/2020	9.73	2.275					
1/20/2021	10.7	2.370					
1.20.2021	10.7	2.370					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	t Yes	43	NO	3.761	N/A	
MW362	Downgradient	t Yes	31.7	NO	3.456	N/A	
MW365	Downgradient	t Yes	58.7	NO	4.072	N/A	
MW368	Downgradient	t Yes	53	NO	3.970	N/A	
MW371	Upgradient	Yes	90.7	YES	4.508	N/A	
MW375	Sidegradient	Yes	24.8	NO	3.211	N/A	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW371

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical AnalysisCurrent Background ComparisonThorium-230UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.147	S= 0.461	CV(1)= 3.146	K factor**= 2.523	TL(1)= 1.309	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.690	S= 0.226	CV(2) =-0.328	K factor**= 2.523	TL(2)= -0.302	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
4/15/2019	-0.582	#Func!					
7/15/2019	0.739	-0.302					
10/16/2019	0.482	-0.730					
1/21/2020	-0.432	#Func!					
4/6/2020	-0.184	#Func!					
7/23/2020	-0.617	#Func!					
10/12/2020	-0.106	#Func!					
1/20/2021	0.513	-0.667					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
4/11/2019	-0.0388	#Func!					
7/11/2019	0.564	-0.573					
10/16/2019	0.486	-0.722					
1/22/2020	-0.315	#Func!					
4/6/2020	0.596	-0.518					
7/23/2020	0.363	-1.013					
10/12/2020	0.362	-1.016					
1/20/2021	0.514	-0.666					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW374	Upgradient	Yes	5.19	N/A	1.647	YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW374

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis **Current Background Comparison** URGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 38.188	S= 21.814	CV(1)= 0.571	K factor**= 2.523	TL(1)= 93.225	LL(1)=N/A
Statistics-Transformed Background	X= 3.464	S= 0.635	CV(2)=0.183	K factor**= 2.523	TL(2)= 5.066	LL(2)=N/A

Passauco CV(1) is less than or equal to

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/15/2019	20	2.996
7/15/2019	17.7	2.874
10/16/2019	15.5	2.741
1/21/2020	19.1	2.950
4/6/2020	20.4	3.016
7/20/2020	16.5	2.803
10/12/2020	15.7	2.754
1/20/2021	15.4	2.734
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.906
Date Collected	Result	
Date Collected 4/11/2019	Result 49.7	3.906
Date Collected 4/11/2019 7/11/2019	Result 49.7 49.7	3.906 3.906
Date Collected 4/11/2019 7/11/2019 10/16/2019	Result 49.7 49.7 59.4	3.906 3.906 4.084
Date Collected 4/11/2019 7/11/2019 10/16/2019 1/22/2020	Result 49.7 49.7 59.4 57	3.906 3.906 4.084 4.043
Date Collected 4/11/2019 7/11/2019 10/16/2019 1/22/2020 4/6/2020	Result 49.7 49.7 59.4 57 62.7	3.906 3.906 4.084 4.043 4.138

Current Background Data from Upgradient

Wells with Transformed Result

Data

Because $CV(1)$ is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	62.3	NO	4.132	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U Second Quarter 2021 Statistical AnalysisCurrent Background ComparisonConductivityUNITS: umho/cmURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 552.75	0 S= 178.790	0 CV(1)=0.323	K factor**= 2.523	TL(1)= 1003.83	7 LL(1)=N/A
Statistics-Transformed Background	X= 6.265	S= 0.329	CV(2) =0.052	K factor**= 2.523	TL(2)= 7.094	LL(2)=N/A

Data

Current Background Data from Upgradie Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
5/28/2019	387	5.958				
7/15/2019	373	5.922				
10/16/2019	367	5.905				
3/17/2020	440	6.087				
4/6/2020	407	6.009				
7/23/2020	372	5.919				
10/12/2020	373	5.922				
1/20/2021	373	5.922				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
5/28/2019	628	6.443				
7/11/2019	640	6.461				
10/16/2019	697	6.547				
1/22/2020	730	6.593				
4/6/2020	687	6.532				
7/23/2020	770	6.646				
10/12/2020	778	6.657				
1/20/2021	822	6.712				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	795	NO	6.678	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical AnalysisCurrent Background ComparisonDissolved SolidsUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 330.43	8 S= 134.292	2 CV(1)=0.406	K factor**= 2.523	TL(1)= 669.257	LL(1)=N/A
Statistics-Transformed Background	X= 5.724	S= 0.402	CV(2)=0.070	K factor**= 2.523	TL(2)= 6.739	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/15/2019	261	5.565
7/15/2019	194	5.268
10/16/2019	227	5.425
1/21/2020	224	5.412
4/6/2020	214	5.366
7/20/2020	186	5.226
10/12/2020	220	5.394
1/20/2021	191	5.252
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.733
Date Collected	Result	. ,
Date Collected 4/11/2019	Result 309	5.733
Date Collected 4/11/2019 7/11/2019	Result 309 616	5.733 6.423
Date Collected 4/11/2019 7/11/2019 10/16/2019	Result 309 616 466	5.733 6.423 6.144
Date Collected 4/11/2019 7/11/2019 10/16/2019 1/22/2020	Result 309 616 466 423	5.733 6.423 6.144 6.047
Date Collected 4/11/2019 7/11/2019 10/16/2019 1/22/2020 4/6/2020	Result 309 616 466 423 399	5.733 6.423 6.144 6.047 5.989

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	483	NO	6.180	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis **Current Background Comparison** URGA Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 14.501	S= 7.377	CV(1)= 0.509	K factor**= 2.523	TL(1)= 33.114	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.537	S = 0.553	CV(2)= 0.218	K factor**= 2.523	TL(2)= 3.933	LL(2)=N/A

Because CV(1) is less than or equal to

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/15/2019	9.06	2.204
7/15/2019	7.51	2.016
10/16/2019	7.28	1.985
1/21/2020	7.14	1.966
4/6/2020	8.43	2.132
7/20/2020	6.51	1.873
10/12/2020	7.24	1.980
1/20/2021	6.85	1.924
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.901
Date Collected	Result	
Date Collected 4/11/2019	Result 18.2	2.901
Date Collected 4/11/2019 7/11/2019	Result 18.2 19.2	2.901 2.955
Date Collected 4/11/2019 7/11/2019 10/16/2019	Result 18.2 19.2 22	2.901 2.955 3.091
Date Collected 4/11/2019 7/11/2019 10/16/2019 1/22/2020	Result 18.2 19.2 22 21.3	2.901 2.955 3.091 3.059
Date Collected 4/11/2019 7/11/2019 10/16/2019 1/22/2020 4/6/2020	Result 18.2 19.2 22 21.3 22.4	2.901 2.955 3.091 3.059 3.109

Current Background Data from Upgradient

Wells with Transformed Result

because e i	(1) is less than of equa
1, assume no	ormal distribution and
continue wit	th statistical analysis
utilizing TL	(1).

Current	Quarter Data	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	23.2	NO	3.144	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U Second Quarter 2021 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =361.063 S = 31.461	CV(1)= 0.087	K factor**= 2.523	TL(1)= 440.439	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.885 S = 0.089	CV(2)= 0.015	K factor**= 2.523	TL(2)= 6.109	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW369 Date Collected LN(Result) Result 5/28/2019 309 5.733 7/15/2019 410 6.016 10/16/2019 347 5.849 5.790 3/17/2020 327 4/6/2020 390 5.966 7/23/2020 353 5.866 10/12/2020 362 5.892 1/20/2021 350 5.858 Well Number: MW372 Date Collected Result LN(Result) 5/28/2019 400 5.991 7/11/2019 390 5.966 10/16/2019 303 5.714 5.927 1/22/2020 375 4/6/2020 393 5.974 7/23/2020 365 5.900 10/12/2020 341 5.832 1/20/2021 362 5.892

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	393	NO	5.974	N/A
MW360	Downgradient	Yes	409	NO	6.014	N/A
MW363	Downgradient	Yes	441	YES	6.089	N/A
MW366	Downgradient	Yes	423	NO	6.047	N/A
MW369	Upgradient	Yes	444	YES	6.096	N/A
MW372	Upgradient	Yes	411	NO	6.019	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW363 MW369

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 56.724	S= 54.719	CV(1)= 0.965	K factor**= 2.523	TL(1)= 194.780	LL(1)=N/A
Statistics-Transformed Background	X = 3.288	S = 1.421	CV(2) =0.432	K factor**= 2.523	TL(2)= 6.874	LL(2)=N/A

Current

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/15/2019	14.6	2.681
7/15/2019	8.91	2.187
10/16/2019	5.09	1.627
1/21/2020	5.54	1.712
4/6/2020	9.41	2.242
7/20/2020	5.48	1.701
10/12/2020	5.29	1.666
1/20/2021	5.86	1.768
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.267
Date Collected	Result	
Date Collected 4/11/2019	Result 71.3	4.267
Date Collected 4/11/2019 7/11/2019	Result 71.3 70.5	4.267 4.256
Date Collected 4/11/2019 7/11/2019 10/16/2019	Result 71.3 70.5 89.6	4.267 4.256 4.495
Date Collected 4/11/2019 7/11/2019 10/16/2019 1/22/2020	Result 71.3 70.5 89.6 105	4.267 4.256 4.495 4.654
Date Collected 4/11/2019 7/11/2019 10/16/2019 1/22/2020 4/6/2020	Result 71.3 70.5 89.6 105 102	4.267 4.256 4.495 4.654 4.625

Current Background Data from Upgradient

Wells with Transformed Result

Data

t Quarter Data			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	157	NO	5.056	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 69.844	S= 53.068	CV(1)= 0.760	K factor**= 2.523	TL(1)= 203.735	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.010	S= 0.701	CV(2)= 0.175	K factor**= 2.523	TL(2)= 5.779	LL(2)=N/A

Downgradient Yes

MW366

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4.258

N/A

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/15/2019	70.8	4.260
7/15/2019	55.8	4.022
10/16/2019	30.1	3.405
1/21/2020	31.7	3.456
4/6/2020	29.8	3.395
7/20/2020	20	2.996
10/12/2020	18.6	2.923
1/20/2021	47.7	3.865
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.084
Date Collected	Result	
Date Collected 4/11/2019	Result 59.4	4.084
Date Collected 4/11/2019 7/11/2019	Result 59.4 183	4.084 5.209
Date Collected 4/11/2019 7/11/2019 10/16/2019	Result 59.4 183 194	4.084 5.209 5.268
Date Collected 4/11/2019 7/11/2019 10/16/2019 1/22/2020	Result 59.4 183 194 97.2	4.084 5.209 5.268 4.577
Date Collected 4/11/2019 7/11/2019 10/16/2019 1/22/2020 4/6/2020	Result 59.4 183 194 97.2 46.5	4.084 5.209 5.268 4.577 3.839

Current Background Data from Upgradient

Wells with Transformed Result

Current	t Quarter Da	ta			
Vell No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)

NO

70.7

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =387.875 S = 31.508	CV(1)= 0.081	K factor**= 2.523	TL(1)= 467.371	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.958 S = 0.081	CV(2)= 0.014	K factor**= 2.523	TL(2)= 6.162	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW370 Date Collected Result LN(Result) 5/28/2019 400 5.991 7/15/2019 421 6.043 10/16/2019 405 6.004 6.052 1/21/2020 425 4/6/2020 448 6.105 7/23/2020 366 5.903 10/12/2020 350 5.858 1/20/2021 395 5.979 Well Number: MW373 Date Collected Result LN(Result) 5/28/2019 374 5.924 7/11/2019 417 6.033 10/16/2019 347 5.849 350 5.858 1/22/2020 4/6/2020 409 6.014 7/23/2020 377 5.932 10/12/2020 350 5.858 1/20/2021 372 5.919

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	t Yes	179	NO	5.187	N/A
MW361	Downgradient	t Yes	417	NO	6.033	N/A
MW364	Downgradient	t Yes	431	NO	6.066	N/A
MW367	Downgradient	t Yes	411	NO	6.019	N/A
MW370	Upgradient	Yes	435	NO	6.075	N/A
MW373	Upgradient	Yes	407	NO	6.009	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2021 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 52.899	S= 38.430	CV(1)= 0.726	K factor**= 2.523	TL(1)= 149.857	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.669	S = 0.845	CV(2) =0.230	K factor**= 2.523	TL(2)= 5.801	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW370 Date Collected Result LN(Result) 4/15/2019 111 4.710 7/15/2019 107 4.673 10/16/2019 125 4.828 4.416 1/21/2020 82.8 4/6/2020 60.4 4.101 7/23/2020 67.3 4.209 10/12/2020 72.3 4.281 1/20/2021 4.074 58.8 Well Number: MW373 Date Collected LN(Result) Result 4/11/2019 22.7 3.122 7/11/2019 28.3 3.343 10/16/2019 36.5 3.597 1/22/2020 13 2.565 4/6/2020 13.8 2.625 7/23/2020 18.4 2.912 2.955 10/12/2020 19.2 1/20/2021 9.89 2.292

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradien	t Yes	55.8	NO	4.022	N/A
MW361	Downgradien	t Yes	49.8	NO	3.908	N/A
MW364	Downgradien	t Yes	54.2	NO	3.993	N/A
MW367	Downgradien	t Yes	63.9	NO	4.157	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

July 28, 2021

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the second quarter 2021 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

My So

Bryan Smith

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 2nd CY 2021 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 *KAR* 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2021 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on April 16, 2021. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period but MW376 and MW377 had insufficient water for sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 5.32×10^{-4} ft/ft and 5.12×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill wes 2.60×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for April 2021, the groundwater flow direction in the immediate area of the landfill was to the northeast.

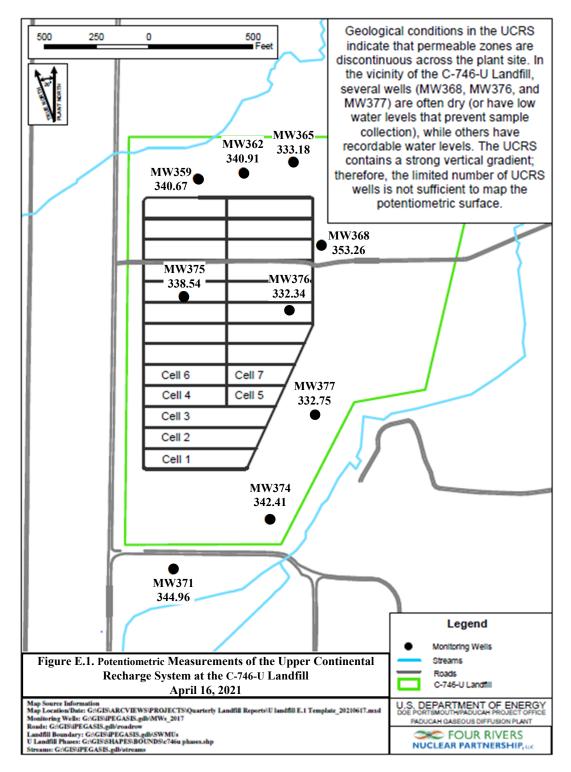


Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-U Landfill, April 16, 2021

C-746-U Landfill (April 2021) Water Levels										
								v Data		ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/16/2021	6:57	MW357	URGA	368.77	30.00	0.00	40.62	328.15	40.62	328.15
4/16/2021	6:59	MW358	LRGA	368.92	30.00	0.00	40.75	328.17	40.75	328.17
4/16/2021	6:58	MW359	UCRS	368.91	30.00	0.00	28.24	340.67	28.24	340.67
4/16/2021	7:00	MW360	URGA	362.07	30.00	0.00	33.92	328.15	33.92	328.15
4/16/2021	7:02	MW361	LRGA	361.32	30.00	0.00	33.18	328.14	33.18	328.14
4/16/2021	7:01	MW362	UCRS	361.85	30.00	0.00	20.94	340.91	20.94	340.91
4/16/2021	7:12	MW363	URGA	368.56	30.00	0.00	40.49	328.07	40.49	328.07
4/16/2021	7:14	MW364	LRGA	368.17	30.00	0.00	40.22	327.95	40.22	327.95
4/16/2021	7:13	MW365	UCRS	368.14	30.00	0.00	34.96	333.18	34.96	333.18
4/16/2021	7:09	MW366	URGA	368.95	30.00	0.00	40.78	328.17	40.78	328.17
4/16/2021	7:11	MW367	LRGA	369.37	30.00	0.00	41.18	328.19	41.18	328.19
4/16/2021	7:10	MW368	UCRS	368.98	30.00	0.00	15.72	353.26	15.72	353.26
4/16/2021	7:26	MW369	URGA	364.23	30.00	0.00	35.34	328.89	35.34	328.89
4/16/2021	7:28	MW370	LRGA	365.12	30.00	0.00	36.24	328.88	36.24	328.88
4/16/2021	7:27	MW371	UCRS	364.64	30.00	0.00	19.68	344.96	19.68	344.96
4/16/2021	7:23	MW372	URGA	359.42	30.00	0.00	30.52	328.90	30.52	328.90
4/16/2021	7:25	MW373	LRGA	359.73	30.00	0.00	30.84	328.89	30.84	328.89
4/16/2021	7:24	MW374	UCRS	359.44	30.00	0.00	17.03	342.41	17.03	342.41
4/16/2021	7:17	MW375	UCRS	370.36	30.00	0.00	31.82	338.54	31.82	338.54
4/16/2021	7:18	MW376	UCRS	370.39	30.00	0.00	38.05	332.34	38.05	332.34
4/16/2021	7:23	MW377	UCRS	365.74	30.00	0.00	32.99	332.75	32.99	332.75
Reference I	Baromet	ric Pressure			30.00					
Elev = elev	ation									
amsl = abo	ve mean	sea level								
BP = baron	netric pro	essure								
	-	ter in feet b	elow datum							
URGA = U	pper Reg	gional Grav	el Aquifer							
LRGA = Lower Regional Gravel Aquifer										
		tinental Re	-	em						
*Assumes a			U .							

Table E.1. C-746-U Landfill Second Quarter 2021 (April) Water Levels

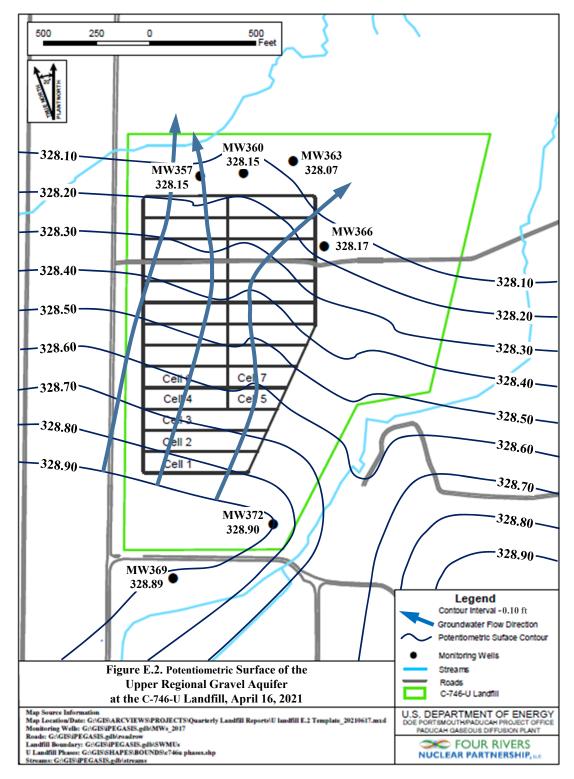


Figure E.2. Potentiometric Surface of the Upper Regional Gravel Aquifer at the C-746-U Landfill, April 16, 2021

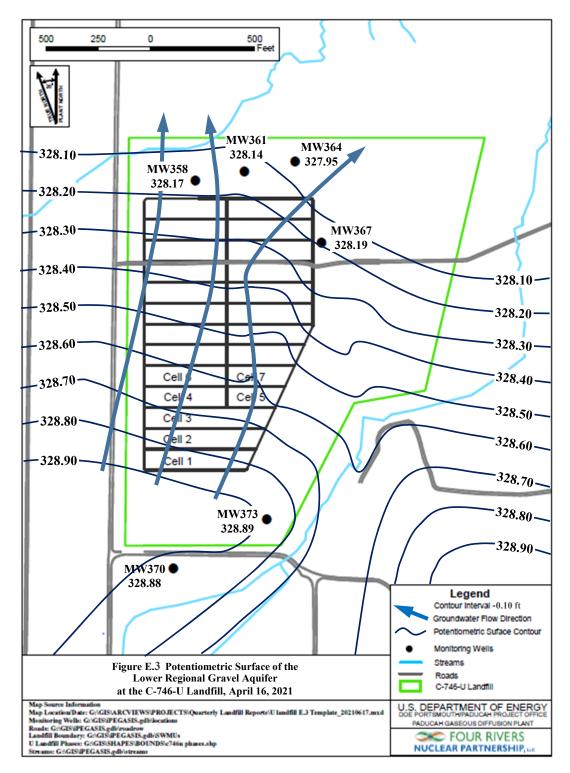


Figure E.3. Potentiometric Surface of the Lower Regional Gravel Aquifer at the C-746-U Landfill, April 16, 2021

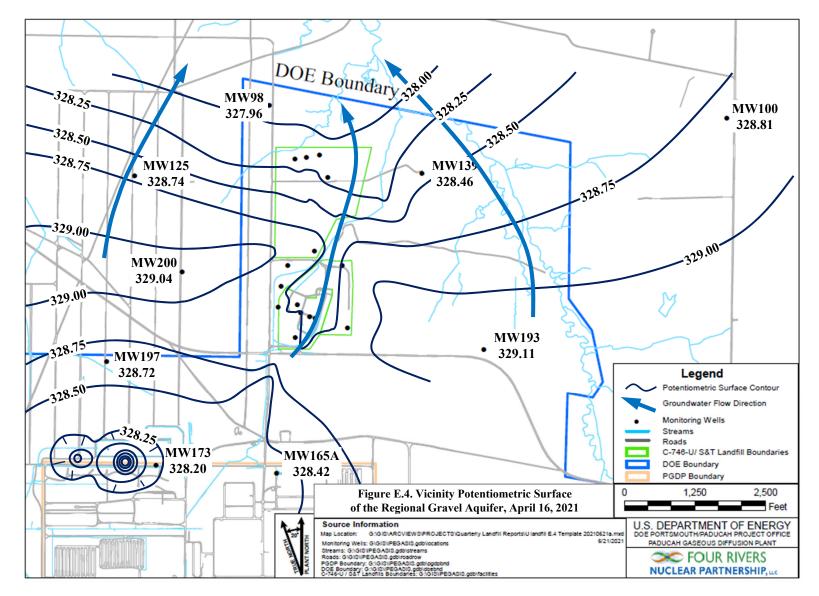


Figure E.4. Vicinity Potentiometric Surface of the Regional Gravel Aquifer, April 16, 2021

	ft/ft
Beneath Landfill—Upper RGA	5.32×10^{-4}
Beneath Landfill—Lower RGA	5.12×10^{-4}
Vicinity	2.60×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Cor	Hydraulic Conductivity (K)		Discharge (q)	Average Linear Velocity (v)		
ft/day	cm/s	ft/day	ft/day cm/s		cm/s	
Upper RGA						
725	0.256	0.386	1.36×10^{-4}	1.54	5.45×10^{-4}	
425	0.150	0.226	7.98×10^{-5}	0.905	3.19×10^{-4}	
Lower RGA			·			
725	0.256	0.371	1.31×10^{-4}	1.49	5.24×10^{-4}	
425	0.150	0.218	7.68×10^{-5}	0.871	3.07×10^{-4}	

APPENDIX F

NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the second quarter 2021 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW366
Lower Regional Gravel Aquifer	Technetium-99	MW358, MW361, MW364, MW367

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

5/17/2021

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4797	MW364	Trichloroethene	8260B	5.81	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	5.74	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

Groundwater Flow System	I			UCR	s							URC	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									<u> </u>
Quarter 1, 2003 Quarter 2, 2003										-	*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			<u> </u>
Quarter 4, 2003	4.					*	*				*			*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Quarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2009																					
ALUMINUM																					
Quarter 3, 2003											*										
BETA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004 Quarter 3, 2004															-						
Quarter 3, 2004 Quarter 4, 2004																		l —			
Quarter 4, 2004 Quarter 4, 2005	1															1		1			
Quarter 1, 2005	1	-	-					-	-				-		ī	1		1		-	
Quarter 2, 2006	1						1					1		1		1	1	1			
Quarter 3, 2006																					
Quarter 4, 2006		1	1						1				1			1		1			
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																_	_				
Quarter 2, 2009										_											<u> </u>
Quarter 3, 2009																					<u> </u>
Quarter 4, 2009																					<u> </u>
Quarter 1, 2010 Quarter 2, 2010															-						
Quarter 3, 2010																-					<u> </u>
Quarter 4, 2010										-											
Quarter 2, 2011															-						
Quarter 4, 2011										_											
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014	ļ															I		L			
Quarter 4, 2014											L				-	I		I			
Quarter 1, 2015																-		<u> </u>			
Quarter 2, 2015	<u> </u>																	<u> </u>			
Quarter 4, 2015 Quarter 3, 2016	 						-					-		-			-	 			
Quarter 3, 2016 Quarter 4, 2016															l —			l —		-	
Quarter 2, 2017	1															-					
Quarter 3, 2017	1														1	1		1			
Quarter 4, 2017	1																				
Quarter 1, 2018	1						1					1		1		1	1	1			
Quarter 2, 2018	1														1	1		1		-	
Quarter 3, 2018															L			L			
Quarter 4, 2018																					
Quarter 1, 2019																					
Quarter 2, 2019																					
Quarter 3, 2019																					
Quarter 4, 2019																					
Quarter 1, 2020																					
Quarter 2, 2020										_											
Quarter 3, 2020	ļ															L		L			
Quarter 4, 2020																				•	
BROMIDE																					
Quarter 2, 2004													*		L			L			

Groundwater Flow System	UCRS									URGA							LRGA						
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U		
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373		
CALCIUM																							
Quarter 3, 2003										*													
Quarter 2, 2005																					*		
Quarter 3, 2006															*								
Quarter 2, 2008															*								
Quarter 3, 2009															*						<u> </u>		
Quarter 4, 2009															*								
Quarter 1, 2010															*								
Quarter 2, 2010															*								
Quarter 3, 2010															*						-		
Quarter 1, 2011 Quarter 2, 2011															*						-		
Quarter 3, 2011 Ouarter 3, 2011															Ŧ						*		
Quarter 4, 2011															*						*		
Quarter 1, 2012															*						*		
Quarter 2, 2012															*						*		
Quarter 3, 2012															*						*		
Quarter 4, 2012															*								
Quarter 1, 2013															*						*		
Quarter 2, 2013															*								
Quarter 3, 2013															*						*		
Quarter 4, 2013															*								
Quarter 2, 2014	<u> </u>														*						*		
Quarter 3, 2014	L	L		L		L		L	L		L		L		*		L	L	L		*		
Quarter 4, 2014															*								
Quarter 2, 2015															*								
Quarter 3, 2015	 	<u> </u>	L	L		<u> </u>	<u> </u>	<u> </u>		*		L	L			⊢ –							
Quarter 4, 2015															*						_		
Quarter 1, 2016															*						⊢ –		
Quarter 2, 2016 Quarter 2, 2017	*														*						⊢ -		
Quarter 2, 2017 Quarter 1, 2018	*																				┝──┦		
Quarter 1, 2018 Quarter 3, 2018	*																						
Quarter 3, 2018	*							*													-		
Quarter 4, 2019	Ŧ							Ŧ							*								
Quarter 1, 2020								*							*								
Quarter 2, 2020								*							*								
Quarter 3, 2020	*							*							*								
Quarter 4, 2020															*								
Quarter 1, 2021															*								
Quarter 2, 2021								*							*								
CARBON DISULFIDE																							
Quarter 3, 2003										*													
Quarter 2, 2005							*																
Quarter 3, 2005						*																	
Quarter 4, 2005						*															(
Quarter 1, 2006						*															<u> </u>		
Quarter 2, 2006		44				*					44												
Quarter 3, 2010		*									*												
Quarter 4, 2010														*	*								
Quarter 1, 2011 CHEMICAL OXYGEN DEMA	ND														不								
										*	*	*	*	*	*								
Quarter 3, 2002 Quarter 4, 2002										*	* *	*	*	*	*						<u> </u>		
Quarter 1, 2002 Quarter 1, 2003	1						-			*	*												
Quarter 2, 2003	1							-	-	*	*	*					-	-					
Quarter 3, 2003	*									*	*					*							
Quarter 4, 2003	1					*	1	1	1	*	*						1	1	1				
Quarter 3, 2004										*													
Quarter 3, 2005						*				*					*	*			*				
Quarter 4, 2005						*												*	*				
Quarter 1, 2006										_						_			*				
Quarter 4, 2016																		*					
Quarter 1, 2017											*										\square		
Quarter 2, 2019	L	L		L		L		L	L		L	*	L		*		L	L	L		Ļ		
Quarter 3, 2019	 														*						*		
Quarter 4, 2019															*	_							
CHLORIDE																				*			
Quarter 1, 2006															*					*	⊢		
Quarter 2, 2014 COBALT															*								
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*			
Quarter 1, 2003	Ť						Ť							*	T.	T.	T.	т [.]		Ť			
Quarter 1, 2004 Quarter 2, 2016	1		-		-		-					-		*									
CONDUCTIVITY																							
Quarter 4, 2002										*													
Quarter 1, 2002	1						1			*													
Quarter 2, 2003	1						1	1	1	*	*						1	1	1				
Quarter 4, 2003	L						L			*													
Quarter 1, 2004										*													
Quarter 2, 2004										*													
																					_		

Groundwater Flow System	r			UCR	S					1		URG	1					LRG	4		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY		0.70																			0.10
Quarter 3, 2004										*											
Quarter 1, 2005										-					*						
Quarter 2, 2005															*						
Quarter 3, 2005						*													*		
Quarter 4, 2005															*			*			
Quarter 1, 2006															*						
Quarter 2, 2006															*						
Quarter 3, 2006															*						
															*						
Quarter 1, 2007																					
Quarter 2, 2007															*						
Quarter 3, 2007															*						
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						
Quarter 3, 2008															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009	1														*						
Quarter 1, 2009															*					-	-
Quarter 2, 2010	-														*						
Quarter 3, 2010				<u> </u>		<u> </u>	<u> </u>						<u> </u>	<u> </u>	*	<u> </u>					
Quarter 3, 2010 Quarter 4, 2010															*						
	I			<u> </u>		<u> </u>							<u> </u>								
Quarter 1, 2011	I														*						
Quarter 2, 2011	I														*						
Quarter 3, 2011	L		L		L			L	L						*			L			
Quarter 4, 2011	I														*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2013															*						
															*						
Quarter 2, 2014																					
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016															*						
Quarter 2, 2019															*						
Quarter 3, 2019															*						
Quarter 4, 2019															*						
Quarter 1, 2020															*						
															*						
Quarter 2, 2020	I			<u> </u>		<u> </u>							<u> </u>								
Quarter 3, 2020	I														*						
Quarter 4, 2020	I	L	L		L			L	L		L				*		L	L			
Quarter 1, 2021	I														*						
Quarter 2, 2021															*						
DISSOLVED OXYGEN																					
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Quarter 2, 2004	1							*								*					
Quarter 1, 2005	1				*																
Quarter 2, 2005	1			-	<u> </u>	-		*					-							-	-
Quarter 1, 2005	-				*										-						
Quarter 1, 2006 Quarter 2, 2006	<u> </u>				*			*							-					-	-
	I			<u> </u>	*	<u> </u>							<u> </u>								
Quarter 3, 2006	I			<u> </u>		<u> </u>		*	يد.				<u> </u>								
Quarter 4, 2006					*			*	*						<u> </u>						
Quarter 2, 2007	I				*			*													
Quarter 3, 2007	L	L	L		*			*	*		L						L	L	<u> </u>		
Quarter 1, 2008					*														*		
Quarter 2, 2008								*	*												
Quarter 3, 2008								*													
Quarter 1, 2009							*														
	1	1			*			*	*												
					-	*		*	*	1				<u> </u>	-		i –	1			
Quarter 2, 2009																					
Quarter 2, 2009 Quarter 3, 2009					*	Ŧ	*	Ŧ	Ŧ												
Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010					*		*													*	*
Quarter 2, 2009 Quarter 3, 2009					* *	* *	*	*	*											*	*

Gradient D S S S D D U U U U D<	UCRS URGA LR	LRGA							
Nantoring Well 368 375 369 372 367 374 366 363 373 307 372 367 364 388 37 Duarder 4, 2010									
DISSOUVED OXYED Dissouver Dissouver <thdissouver< th=""></thdissouver<>									
Quarter 1, 2011 Image: Constraint of the second secon									
Ounter 2, 2011 Ounter 3, 201 Ounter 1, 2012 Ounter 1, 2013 Ounter 1, 2014 Ounter 1, 2015 Ounter 1, 2016 Ounter 1		*							
Quarter 1, 2012 Image: Construct of the second									
Ounder 1, 2012 •									
Quarder 2, 2012 *									
Quarter 3, 2012 Image: Applie of the second se									
Quarter 4, 2012 Image: A grant 1, 2013 Image: A grant 1, 2013 Image: A grant 1, 2013 Quarter 2, 2013 Image: A grant 1, 2013 Image: A grant 1, 2013 Image: A grant 1, 2013 Quarter 4, 2013 Image: A grant 1, 2013 Image: A grant 1, 2013 Image: A grant 1, 2013 Quarter 4, 2014 Image: A grant 1, 2013 Image: A grant 1, 2013 Image: A grant 1, 2013 Quarter 3, 2014 Image: A grant 1, 2013 Image: A grant 1, 2013 Image: A grant 1, 2013 Quarter 3, 2014 Image: A grant 1, 2013 Image: A grant 1, 2013 Image: A grant 1, 2013 Quarter 4, 2016 Image: A grant 1, 2013 Image: A grant 1, 2013 Image: A grant 1, 2013 Quarter 4, 2016 Image: A grant 1, 2013 Image: A grant 1, 2014 Image: A grant 1, 2014 Quarter 1, 2016 Image: A grant 1, 2014 Image: A grant 1, 2014 Image: A grant 1, 2014 Quarter 1, 2017 Image: A grant 1, 2014 Image: A grant 1, 2014 Image: A grant 1, 2014 Quarter 1, 2017 Image: A grant 1, 2014 Image: A grant 1, 2014 Image: A grant 1, 2014 Quarter 1, 2017 Image: A grant 1, 2014 Image: A grant 1, 2014 Image: A grant 1,									
Quarter 1, 2013 *									
Quarter 2.2013									
Quarter 3, 2013 *									
Quarter 2, 2013									
Quarter 2, 2014 *		*							
Quarter 3, 2014 *									
Quarter 4, 2014 Image: Constraint of the con	* * * *								
Quarter 3.2015 Parter 4.2015 Parter 4.2015 Parter 4.2016 Parter 4.2017 Parter									
Quarter 1, 2016 * * *									
Quarter 1, 2016 *									
Quarter 2.2016 *									
Quarter 3, 2016 Parter 4, 2016 Parter 4, 2017 Parter 4, 2018 Parter 4, 2019 Parter									
Quarter 4, 2016 Image: Constraint of the second secon		* *							
Quarter 1, 2017 *		+ $+$ $+$							
Quarter 2, 2017 *		+ $+$ $+$							
Quarter 3, 2017 *		+++							
Quarter 4, 2017 *** ** *									
Quarter 1, 2018 * * * * * * * * * * Quarter 2, 2018 * * * * * Quarter 3, 2018 * * * * Quarter 4, 2018 * * * * Quarter 4, 2018 * * * * Quarter 4, 2019 * * * * Quarter 3, 2019 * * * *									
Quarter 2, 2018 *									
Quarter 3, 2018 * * * *									
Quarter 4, 2018 *		+ + +							
Quarter 1, 2019 **** *		+ + +							
Quarter 2, 2019 *									
Quarter 4, 2019 **** *									
Quarter 1, 2020 *** *	* * * * *								
Quarter 2, 2020 *									
Quarter 3, 2020 * * * *									
Quarter 4, 2020 *									
Quarter 1, 2021 *									
Quarter 2, 2021 *									
DISSOLVED SOLIDS <td< td=""><td></td><td>*</td></td<>		*							
Quarter 4, 2002									
Quarter 1, 2003 * <td< td=""><td></td><td></td></td<>									
Quarter 2, 2003 *									
Quarter 3, 2003 * * * * *									
Quarter 4, 2003 * * <t< td=""><td></td><td></td></t<>									
Quarter 3, 2005 * * * *									
Quarter 1, 2007 *									
Quarter 2, 2007									
Quarter 4, 2008									
Quarter 1, 2009 * * Quarter 2, 2009 * * Quarter 3, 2009 * * Quarter 1, 2010 * * Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 1, 2010 * * Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * *									
Quarter 2, 2009 * * * *									
Quarter 3, 2009 * * Quarter 4, 2009 * * Quarter 4, 2009 * * Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 4, 2010 * * Quarter 4, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * *									
Quarter 4, 2009 * * Quarter 1, 2010 * * Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * *									
Quarter 1, 2010 * * Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2010 * * Quarter 4, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * *		+ $+$ $+$							
Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 3, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * *		+++-							
Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * Quarter 3, 2011 * Quarter 3, 2011 * Quarter 4, 2011 * Quarter 4, 2011 * Quarter 4, 2011 *		+ + +							
Quarter 4, 2010 * * * * Quarter 1, 2011 * * * Quarter 2, 2011 * * * Quarter 3, 2011 * * * Quarter 1, 2012 * * *									
Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * *									
Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * *		+ + +							
Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * *									
Quarter 4, 2011 * * Quarter 1, 2012 * * *									
Quarter 1, 2012									
		*							
Quarter 3, 2012 * *		*							
Quarter 4, 2012 *									
Quarter 1, 2013		+++							
Quarter 2, 2013 *		+++							
Quarter 3, 2013		+ $+$ $+$							
Quarter 4, 2013 * • • • • • • • • • • • • • • • • • •		+++							
Quarter 1, 2014 * Quarter 2, 2014 *		+ + +							
Quarter 2, 2014 * Quarter 4, 2014		+ + +							
Quarter 4, 2014 * Quarter 2, 2015									
Quarter 3, 2015									
Quarter 4, 2015		+++							
Quarter 1, 2016		+ + +							
Quarter 3, 2019									
Quarter 4, 2019									
Quarter 1, 2020									
Quarter 2, 2020 * * *									

Gradient D S S D D U D D D U U D D D D </th <th>Froundwater Flow System</th> <th></th> <th></th> <th></th> <th>UCP</th> <th>e.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>IIDC</th> <th>۰.</th> <th></th> <th></th> <th></th> <th></th> <th>IDC</th> <th>۰۸</th> <th></th> <th></th>	Froundwater Flow System				UCP	e.							IIDC	۰.					IDC	۰ ۸		
Number 368 376 377 378 368 378<		D	s	s			D	D	П	П	D	D			П	П	D	D			U	U
INSOUVED SOLIDS Image: Control of the second seco																					370	373
Quarter 2, 2020		500	, 515	570	511	557	502	505	571	574	500	500	505	551	507	572	507	501	504	550	570	515
Quarter 4, 2020																*						
Ounter 1, 2021 Image: Control 1, 2021													1									
Quarter 2, 2021 Control 1													1									
DODDE Description Description <thdescription< th=""> <thdescription< th=""> <thde< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thde<></thdescription<></thdescription<>																						
Quarter 2, 2003 Image: Solution 2, 200																-						
Quarter 3, 2003 •																	*					
Quarter 3, 2003 Quarter 3, 2010 Image: Section 2010		*									*											
Quarter 3, 2010 Common and a second sec		-						*			-		1									
IODINE 131 IODINE 131 <thiodine 131<="" th=""> IODINE 131 IODINE 1</thiodine>							*		*					*				*				
Quarter 1, 2010 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 1,																						
IDDONCETIONE I																						
Quarter 4, 2003 Image: Construct A, 2002 Image: Construct A, 2003 Image: Construct																			_			
HON Control 3.003 Control 3.004 Control 3.005 Control 3.006 Control 3.006 <thcontrol 3.006<="" th=""> Control 3.006</thcontrol>							*															
Quarter 4, 2002 Image 4, 2003 Image							-															
Ounder 3, 2003 Image 1, 2004 Image 1, 2005 Image 1, 2006 Image 1, 2006 Image 1, 2007 Image 1							*															
Quarter 1, 2003 Image: Construct 1, 2004 Image: Construct 1, 2004 Image: Construct 1, 2004 Quarter 2, 2004 Image: Construct 1, 2005 Image:																	*					
Quarter 1, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2011 Quarter 4, 2012 Quarter 4,											*											
Ounter 3, 2004 Ounter 3, 2005 Ounter 3, 2006 Ounter 3, 2009 Ounter 3, 2001 Ounter																						
Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4,																						
Quarter 3.2005 Quarter 3.2006 Quarter 3.2009 Quarter 3.2009 Quarter 3.2009 Quarter 3.2009 Quarter 3.2009 Quarter 3.2009 Quarter 4.2009 Quarter 4.2009 Quarter 4.2010 Quarter 4.2010 Quarter 4.2010 Quarter 4.2011 Quarter																						
NACKDESILM No.			1	1							<u> </u>						*					
Quarter 2, 2005																						
Ounter 2. 2006 Ounter 2. 2008 Ounter 2. 2008 Ounter 2. 2008 Ounter 2. 2009 Ounter 2. 2001 Ounter 2. 2009 Ounter 2. 2001 Ounter				1												*						*
Quarter 2, 2006 Image 2, 2006 Image 2, 2008 Image			1	1	1		*						1									*
Ounter 1, 2007 Outer 1, 2007 Outer 2, 2008 Outer 2, 2008 Outer 2, 2009 Outer 2, 2010 Outer 2, 2010 Outer 2, 2010 Outer 2, 2011 Outer 2, 2012 Outer 2, 2013 Outer 2, 2014 Outer 2			+	1	1								1			*						*
Quarter 1, 2007			+	1																		~
Quarter 2, 2008 Construct 2, 2009			+	1	1								1									
Quarter 2, 2009			+	1																		
Quarter 3, 2009 Market Markt <th< td=""><td></td><td></td><td>+</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			+	1																		
Quarter 1, 2010 *	. /		-														-					
Quarter 1, 2010			-														-					
Quarter 2, 2010 Image: Construction of the second of the sec																						
Quarter 3, 2010 *			-														-					
Quarter 1, 2011 Image: Constraint of the second secon													-									-
Quarter 2, 2011			-														-					
Quarter 3, 2011																						
Quarter 4, 2011																						
Quarter 1, 2012			-														-					
Quarter 2, 2012 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													1									
Quarter 3, 2012													1									
Quarter 4, 2012 Image: Constraint of the constraint of t																						
Quarter 1, 2013 Image: Constraint of the constraint of t			-														-					
Quarter 2, 2013													1									
Quarter 3, 2013 Image: Constraint of the second			-														-					
Quarter 4, 2013 Image: Constraint of the second			-														-					
Quarter 2, 2014																						
Quarter 4, 2014			-														-					
Quarter 2, 2015																						
Quarter 3, 2015			-														-					
Quarter 4, 2015													1									
Quarter 1, 2016																						
Quarter 2, 2016 *													1									
Quarter 3, 2016 * <td< td=""><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			1	1	1								1									
Quarter 4, 2016 * <td< td=""><td></td><td>*</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		*	1	1												<u> </u>						
Quarter 2, 2017 * <td< td=""><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			1	1	1								1									
Quarter 3, 2017 * <td< td=""><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			1	1																		
Quarter 1, 2018 * <td< td=""><td></td><td>*</td><td>1</td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		*	1	1				1					1									
Quarter 3, 2018 * <td< td=""><td></td><td>*</td><td>1</td><td>1</td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>1</td><td>-</td><td><u> </u></td><td><u> </u></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td></td<>		*	1	1		-			-	-		-	1	-	<u> </u>	<u> </u>		-	-	-		
Quarter 3, 2019 * <td< td=""><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			1	1	1			1					1									
Quarter 4, 2019			1	1	1	1		l –	1	1		1	1	1				1	1	1		
Quarter 2, 2020 *		<u> </u>	1	1												*						
Quarter 4, 2020 * * * * Quarter 1, 2021 * * * * Quarter 1, 2021 * * * * Quarter 2, 2021 * * * * Quarter 3, 2002 * * * * Quarter 4, 2002 * * * * Quarter 3, 2003 * * * * Quarter 3, 2003 * * * * Quarter 4, 2003 * * * * Quarter 2, 2004 * * * *			1	1	1			1					1									
Quarter 1, 2021			1	1	1			1					1									
Quarter 2, 2021 # # # # # MANGANESE # # # # # Quarter 3, 2002 # # # # # Quarter 2, 2003 # # # # # Quarter 3, 2003 # # # # # Quarter 4, 2003 # # # # # Quarter 4, 2003 # # # # # Quarter 4, 2004 # # # # #			1	1	1			1					1									
MANGANESE			1	1	1	1		l	1	1		1	1	1				1	1	1		
Quarter 3, 2002 * * * * * * Quarter 4, 2002 * * * * * * Quarter 4, 2003 * * * * * * Quarter 3, 2003 * * * * * * Quarter 4, 2003 * * * * * * Quarter 4, 2003 * * * * * * Quarter 4, 2003 * * * * * * Quarter 2, 2004 * * * * * *																						
Quarter 4, 2002 * <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				1							*		*									
Quarter 2, 2003 * * * * * Quarter 3, 2003 * * * * * * Quarter 4, 2003 * * * * * * Quarter 4, 2003 * * * * * * Quarter 1, 2004 * * * * * * Quarter 2, 2004 * * * * * *			*	1			*	*							*							
Quarter 3, 2003 * <td></td> <td></td> <td>1</td> <td>1</td> <td></td>			1	1																		
Quarter 4, 2003 * * * * * * Quarter 1, 2004 * * * * * * Quarter 2, 2004 * * * * * *			1	1				1						*			*	*	*	*		
Quarter 1, 2004 *			1	1	1			1				*						_				
Quarter 2, 2004 * * * * * * *			1	1	1			1				_	_				*	_				
			1	1	1	1		*	1	1				1				1		1		
	Duarter 3, 2004		1	1	1			*			*	*	*				*					
Quarter 4, 2004 * * * * *				1																		
Quarter 1, 2005			1	1	1	1		l –	1	1		1		1				1	1	1		
Quarter 2, 2005				1																		
Quarter 3, 2005				1													*					
Quarter 4, 2005			1	1		1		1	1	1		1	1	1				1	1	1		
		-																				

Greenhouter Plone System LUC LUC <thluc< th=""> LUC <thluc< th=""></thluc<></thluc<>	Groundwater Flow System	1			UCD	e					1		UDC	•					IDC	•		
Number wet368375375376376376387 <td></td> <td>D</td> <td>S</td> <td>S</td> <td></td> <td></td> <td>D</td> <td>D</td> <td>П</td> <td>п</td> <td>D</td> <td>D</td> <td></td> <td></td> <td>П</td> <td>П</td> <td>D</td> <td>D</td> <td></td> <td></td> <td>П</td> <td>П</td>		D	S	S			D	D	П	п	D	D			П	П	D	D			П	П
								_														
Quarter 1.2006 Image: Solution 1.2006		500	515	510	511	557	502	505	5/1	571	500	500	505	551	507	512	507	501	501	550	570	515
Santar 3.2006 Image: Santar 3.2006 Image: Santar 3.2007 Image: Santar 3.											*											_
Quarter J. 2006 Image: Amage: Am								*					*									
Quarter 1, 2007 Image: All of the second secon								Ŧ					Ŧ				*					
Quarter 1.2007 Image: Solution 2.2007																	Ť					
Quarter 3.2007 Image: Amage: Ama																						
Damer 1, 2007 Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>																						
Quarter A. 2008 Image: A 2009 Image:	· · ·										*											
Quarter 3.2009 Image: Application of the second of the secon								_														
Quarter 3. 2009 Image: Solution of the second								_														
Quarter 2. 2016 Image: Control of the second s								_														
Daurer 2, 2016 Daurer 3, 2003 Description								_														
Quarter 3. 2016 Quarter 4. 2003 Quarter 4. 2004 Quarter 4. 2005 Quarter 4.	Quarter 3, 2011							*														
NUCKU. Normal Action Normal Action </td <td>Quarter 2, 2016</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Quarter 2, 2016														*							
Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 1,	Quarter 3, 2016									*												
OND ARDUCTION POTENTAL Image: Constraint of the second secon	NICKEL																					
Quarter 1, 2002 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 1,	Quarter 3, 2003										*											
Quarter 1, 2002 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 1,	OXIDATION-REDUCTION PO	DTEN	TIA	L																		
Quarter 1, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4,																		*		*	_	_
Ounter 2, 2003 Image 2																						
Quarter 3, 2003 •																		-				
Quarder 2, 2003 Quarder 2, 2004 Image 2, 2005 Image 2, 2004 Imag	- · ·	*																		Ŧ		
Outmer 2.2004 O Image 2.2004 Image 2.2005 Image 2.2007		*									—											
Quarter 3, 2004 Quarter 4, 2005 Image 4, 2007 Imag		I				*																4
Ounder 1, 2004 Ounder 2, 2005 Image 1, 2007 Image		L		L		L	L	L	L	L	L				L					L		
Ounter 1,2005 Ounter 2,2005 Ounter 2,2005 Ounter 4,2005 Ounter 4,2006 Ounter 4,2007 Ounter 4		I				*			*					*	*	*		*			*	
Quarter 3, 2005 Image: Constraint of the second of the secon													*									
Quarter 3, 2005 Image: Constraint of the second of the secon	Quarter 1, 2005																	*			*	*
Outser: Norman	Quarter 2, 2005								*					*				*			*	
Outser: Norman	· /	1				*	*					*	*							*		*
Quarter 1,2006 Image: Construct 2,2007		1	*		-	<u> </u>	<u> </u>					<u> </u>								<u> </u>		-
Ounter 2, 2006 Image: Second Sec		<u> </u>	*			*				*	-			*		-					*	*
Ounter 3, 2006 Ounter 4, 2007 Image 3 Image 3 </td <td></td> <td>I</td> <td></td> <td> </td> <td><u> </u></td> <td></td> <td> </td> <td>ي.</td> <td></td> <td>*</td> <td><u> </u></td> <td><u> </u></td> <td></td> <td>J.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td>ىك.</td> <td>т</td>		I			<u> </u>			ي.		*	<u> </u>	<u> </u>		J.							ىك.	т
Ounter 1.2006 Image: Constraint of the const	- · ·							*														
Ounter 1, 2007 *									*													
Duarter 2, 2007 Duarter 3, 2007 Duarter 4, 2008 Duarter 4, 2009 Duarter 4, 2001 Duarter 4,	Quarter 4, 2006					*		*			*		*	*				*			*	*
Ounter 3, 2007 Image: Second Sec	Quarter 1, 2007		*			*			*					*				*			*	*
Ounter 3, 2007 *	Ouarter 2, 2007					*								*				*			*	*
Ounter 1, 2008 *									*													
Quarter 1. 2008 * <td>- · ·</td> <td></td> <td>*</td>	- · ·																					*
Quarter 2, 2008 * <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>Ť</td> <td></td> <td>*</td> <td></td> <td>Ŧ</td>						*			*				*	*				Ť		*		Ŧ
Quarter 3, 2008 X											*		ѫ		4				*	Ŧ		4
Quarter 4, 2008 Image: Constraint of the second s																						
Quarter 1, 2009 Image: Constraint of the second s						*		*		*					*					*		
Quarter 2, 2009 * <td>Quarter 4, 2008</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td>	Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 3, 2009 * <td>Quarter 1, 2009</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td>	Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 3, 2009 *	Ouarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 4, 2009 * <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td>			*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 1, 2010 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								_					_									
Quarter 2, 2010 * <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ŧ</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>-</td>						*							Ŧ				*					-
Quarter 3, 2010 * <td></td> <td></td> <td>Ŧ</td> <td></td> <td></td> <td></td> <td>-</td> <td>不</td> <td></td> <td>-</td> <td></td> <td>-</td>			Ŧ				-	不												-		-
Quarter 4, 2010 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td>													*				*					
Quarter 1, 2011 * <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						*										*						
Quarter 2, 2011 *	Quarter 4, 2010		*					*	*	*		*	*						*	*	*	*
Quarter 3, 2011 *	Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 4, 2011 *	Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 4, 2011 * <td>Quarter 3, 2011</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td>	Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2012 *			*						*			*										
Quarter 2, 2012 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td>								*												*		
Quarter 3, 2012 * <td>- · ·</td> <td>*</td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- · ·	*			*	*							_									
Quarter 4, 2012 * <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td>Ŧ</td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td>		*			*	*		Ŧ		*		*										
Quarter 1, 2013 *		I		L	<u> </u>	<u> </u>		L														
Quarter 2, 2013 * <td>· /</td> <td>L</td> <td></td> <td>L</td> <td>L</td> <td>L</td> <td></td> <td>L</td> <td></td> <td>*</td> <td></td> <td>*</td>	· /	L		L	L	L		L												*		*
Quarter 3, 2013 *							*															
Quarter 4, 2013 * <td>Quarter 2, 2015</td> <td></td>	Quarter 2, 2015																					
Quarter 4, 2013 * <td>Quarter 3, 2013</td> <td>*</td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td>	Quarter 3, 2013	*	*			*		*	*				*			*	*		*	*	*	
Quarter 1, 2014 * <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td>			*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014 * <td></td>																						
Quarter 3, 2014 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td>		*				*	*	*														
Quarter 4, 2014 * <td></td>																						
Quarter 1, 2015 * <td></td> <td>- </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-						-					_									
Quarter 2, 2015 * <td></td> <td>I</td> <td></td> <td> </td> <td><u> </u></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>÷</td> <td></td>		I			<u> </u>							÷										
Quarter 3, 2015 * <td></td> <td></td> <td></td> <td>L</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>				L	<u> </u>				_													
Quarter 4, 2015 *		*						*														
Quarter 1, 2016 * <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td>						*																
Quarter 2, 2016 * <td>Quarter 4, 2015</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td>	Quarter 4, 2015	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016 * <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td></td> <td>*</td>		*	*			*		*	*		*		*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td>							*			*												
Quarter 4, 2016 * <td></td> <td>*</td> <td></td>												*										
Quarter 1, 2017 * <td></td>																						
Quarter 2, 2017 * <td></td>																						
Quarter 3, 2017 * <td></td> <td></td> <td></td> <td></td> <td>—</td> <td>ىتو</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					—	ىتو		_					_		_							
Quarter 4, 2017 * <td>× / · · ·</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>*</td> <td></td>	× / · · ·							_				*										
Quarter 1, 2018 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td>		*				*											*			*		
Quarter 2, 2018 * <td>Quarter 4, 2017</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td>	Quarter 4, 2017		*				*		*	*			*		*	*		*	*		*	*
Quarter 2, 2018 * <td></td> <td>*</td> <td>*</td> <td>1</td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>1</td> <td>*</td> <td>*</td>		*	*	1		*	*	*	*	*	*		*	*	*	*	*	*	*	1	*	*
Quarter 3, 2018 * <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td>*</td>		*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2018 * * * * * * * * * * * * * * * * * * *													_		_							
						<u> </u>		_														
Yuuuus 1, 2017 m m m m m m m m m		*				*		_														
	Quarter 1, 2017	-	*	L	L	*	-	Ŧ	*	不	-	*	*	*	*	不	*	-	*	-	*	т

Groundwater Flow System	T			UCR	s					1		URG	1			-		LRG	1		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
OXIDATION-REDUCTION P	OTEN		Ĺ																		
Quarter 2, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 4, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 2, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 3, 2020	*	*			*	*	*	*	*	*	* *	*	*	*	*	*	*	* *		*	*
Quarter 4, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 1, 2021 Quarter 2, 2021	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	* *	*
PCB, TOTAL	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2003																	*				
Quarter 3, 2005												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008	1						*	I	I			I									
Quarter 4, 2008	<u> </u>		L				*	<u> </u>	<u> </u>			<u> </u>		L	<u> </u>						
Quarter 3, 2009 Quarter 1, 2010	+						*														
Quarter 1, 2010 Quarter 2, 2010	1						* *	 	 			 		-	1						
Quarter 4, 2010	1						*							-	1						
PCB-1016																					
Quarter 3, 2004	1											*			1						
Quarter 2, 2006	1						*	1	1			*			1						
Quarter 1, 2007	L						*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010 Quarter 4, 2010							*														
PCB-1242							Ŧ														
Quarter 3, 2006							*					*									
Quarter 4, 2006							-			*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260																					
Quarter 2, 2006							*														
рН										-											
Quarter 3, 2002										*											
Quarter 4, 2002										* *											
Quarter 1, 2003 Quarter 2, 2003										*											
Quarter 2, 2003 Quarter 3, 2003	*		-		-	-	*	<u> </u>	<u> </u>	*	-	<u> </u>	-					-			
Quarter 4, 2003	Ť						*							-	1	*					
Quarter 1, 2003	1						*					1			1	*					
Quarter 3, 2005	1					*						1			1			*	*		
Quarter 4, 2005	L				L	*		L	L		L	L	L					L	*		
Quarter 3, 2006																*					
Quarter 2, 2011														*							
Quarter 3, 2011														*							
Quarter 4, 2011														*		Ļ.					
Quarter 1, 2012	1							I	I							*	*				
Quarter 2, 2012	1	<u> </u>		<u> </u>				I	I	ىبر		*			<u> </u>	ىبر			<u> </u>		
Quarter 1, 2013	-		-				-	<u> </u>	<u> </u>	*		*		-		*	يبر			<u> </u>	
Quarter 3, 2015 Quarter 2, 2016	+																*			*	*
Quarter 2, 2016 Quarter 3, 2016	+							l —	l —			<u> </u>								* *	*
Quarter 2, 2010	1						-							-	1		*			-	
Quarter 3, 2018	1				*					*		*			1		*	*	*		
Quarter 4, 2018	1							1	1			† ·			1	*		*			
Quarter 3, 2019	1							1	1			1			1	*					
Quarter 1, 2021	1							1	1						1	*		*		*	
POTASSIUM																					
Quarter 1, 2014																*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005						•												•			
SELENIUM									-												
Quarter 4, 2003	1							L				1			1						

Groundwater Flow System	1			UCR	ŝ					1		URG	Δ.			1		LRG	Δ.		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SODIUM																					
Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 3, 2003											*										
Quarter 1, 2007											*										
Quarter 1, 2012														*							
Quarter 1, 2014															*						
Quarter 3, 2014											*										
Quarter 4, 2014											*										L
Quarter 4, 2015											*										L
Quarter 1, 2016											*										
Quarter 2, 2016											*										
Quarter 3, 2016											* *										
Quarter 4, 2016											* *										
Quarter 1, 2017											*										
Quarter 2, 2017 Quarter 3, 2017											*										
Quarter 4, 2017 Quarter 4, 2017											*										
Quarter 1, 2017 Quarter 1, 2018	t										*										
Quarter 3, 2018	t										*										
STRONTIUM-90											*										
Quarter 4, 2008																					
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003	1					*	* *														
Quarter 3, 2003	*					*															
Quarter 4, 2003					*		*														
Quarter 1, 2005					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*	-		*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009	I	*			*	*									*						
Quarter 1, 2010	I	*			*	*	*								*						
Quarter 2, 2010	<u> </u>	*			*	*	*								*						
Quarter 3, 2010	ļ	*			*	*	*								*					L	
Quarter 4, 2010	I	*				*	*								*						
Quarter 1, 2011	 	*																			
Quarter 2, 2011	I	*			*	*	*								*						
Quarter 3, 2011	<u> </u>	*				*	*	*							*						
Quarter 4, 2011	I	* *				*	ىتر	ىتر	ļ			ļ			* *			ļ		L	
Quarter 1, 2012		*			.		*	*							*					<u> </u>	┝──┦
Quarter 2, 2012	*	* *		*	*	*	*	*	*						*						⊢−−
Quarter 3, 2012		*				*									*					<u> </u>	┝──┦
Quarter 4, 2012		* *				ير									*						⊢−−
Quarter 1, 2013		* *				*									*						—
Quarter 2, 2013 Quarter 3, 2013	ىتر	* *		ىئو	ىلو	يتو	ىتر								* *						—
	*	*		*	*	*	*								*						
Quarter 4, 2013		*													*						—
Quarter 1, 2014 Ouarter 2, 2014	<u>*</u>	*			*		<u>.</u>	<u>*</u>							*						
Quarter 2, 2014 Quarter 3, 2014	*	*			*	*	*	*							*						
Quarter 3, 2014 Quarter 4, 2014	-	* *			不	* *	*	*							*						
		* *				*															—
Quarter 1, 2015		*	<u> </u>	_		_	L	L	L	_	_	L	_	L	L	_	L	L	_		

Groundwater Flow System				UCR	s							URG	Ā					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE																					
Quarter 2, 2015	*	*			*		*								*						
Quarter 3, 2015		*			*	*		*							*						
Quarter 4, 2015	*	*				*	*	*													
Quarter 1, 2016	*	*			*	*	*														
Quarter 2, 2016	*	*			*	*	*														
Quarter 3, 2016	*	*			*	*	*	*													
Quarter 4, 2016	*	*				*	*	*													
Quarter 1, 2017	*	*				*	*														
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017	*	*			*	*	*														
Quarter 4, 2017		*				*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
Quarter 3, 2018	*	*			*	*	*	*													
Quarter 4, 2018		*				*	*	*													
Quarter 1, 2019	*	*			*	*	*														
Quarter 2, 2019	*	*			*	*	*	*													
Quarter 3, 2019	*	*			*	*	*	*													
Quarter 4, 2019	*	*			*	*	*	*													
Quarter 1, 2020	*	*	<u> </u>		*	*	*	*	I	L											
Quarter 2, 2020	*	*			*	*	*	*	I	L											
Quarter 3, 2020	*	*			*	*	*	*	I	L											
Quarter 4, 2020	*	*				*	*	*	I	L											
Quarter 1, 2021	*	*			*	*	*	*	I	L					*						
Quarter 2, 2021	*	*			*	*	*	*							*						
TECHNETIUM-99																					
Quarter 4, 2002		1															*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003																	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004															*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005																	*				
Quarter 1, 2006															*						*
Quarter 2, 2006	1	*							*												*
Quarter 3, 2006	1																				*
Quarter 4, 2006	1														*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007	1														*		*	*			
Quarter 4, 2007	1									*					*				*		*
Quarter 1, 2008	1														*					*	*
Quarter 2, 2008	1						*	*						*		*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010	1	Í –	1					1	1	*					*						
Quarter 4, 2010	1	1	1	1	l –	1	l –	1	1	l –	1	1	1				1	*			
Quarter 1, 2011	1	*	1	1	1	1	1	1	1	*	1	1	1				*				
Quarter 2, 2011	1	1	1	1	1	1	1	1	1		1	1	1			*	*	*	*		
Quarter 1, 2012	1	1	1		1		1	1	1	1							*	*			
Quarter 2, 2012	1	1	1		1		1	*	1	1							· ·	*			
Quarter 3, 2012	1	1	1		1		1	1 ·	1	1							*	*			
Quarter 4, 2012	1	1	1					1	1	1					*			*			*
Quarter 1, 2012	1	1	1					1	1	1								*			*
Quarter 2, 2013	1	1	1	1	l –	1	l –	1	1	l –	1	1	1				1				*
Quarter 3, 2013	1	1	1	1	1	1	1	1	1	*	1	1	1				1				*
Quarter 4, 2013	1	1	1		1		1	1	1	<u> </u>					*		*	*			*
Quarter 1, 2014	1	1	1		1		1	1	1	1					*		*	*			L -
Quarter 2, 2014	1	1	1		1		1	1	1	1					<u> </u>			*			
Quarter 3, 2014	1	1	1					1	1	I							*	*	*		
Quarter 4, 2014	1	1	1					1	1	I					*		<u> </u>	<u> </u>	<u> </u>		
Quarter 1, 2015	1	1	1					1	1	I					*			*			
Quarter 2, 2015	1	1	1					1	1	I					<u> </u>	*		<u> </u>			
Quarter 3, 2015	1	1	1					1	1	I						-		*	*	*	
Quarter 4, 2015	1	1	1					1	1	-					*		*			*	
Quarter 1, 2015 Quarter 1, 2016	1							<u> </u>	<u> </u>						-	*	*	*	*	*	*
Quarter 1, 2016 Quarter 2, 2016	1	 	-		-		-	 	 							*	*	* *	* *	*	*
	1	 	-		-		-	 	 							*	*	*	*	*	
Quarter 3, 2016 Quarter 4, 2016	1	 	-		-		-	 	 	*				*			*	*	*	Ŧ	
	+									*				*			* *	*	*	*	
	1	1	<u> </u>					 	 	<u> </u>							*		*	*	—
Quarter 1, 2017						1		1	1											*	
Quarter 1, 2017 Quarter 2, 2017																		يلو		1	
Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017														44	ىلو		ىئو	* *		*	
Quarter 1, 2017 Quarter 2, 2017														*	*		*	* *		* *	

Groundwater Flow System	I -			UCR	C.					-		URG				-		LRG	1.4		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364		370	373
TECHNETIUM-99																					
Quarter 2, 2018														*		*				*	
Quarter 3, 2018															*					*	
Quarter 4, 2018															*		*	*	*	*	
Quarter 1, 2019																*				*	
Quarter 2, 2019														*						*	
Quarter 3, 2019															*		*	*		*	
Quarter 4, 2019															*		* *	*		*	
Quarter 1, 2020 Quarter 2, 2020															*	*	Ŧ	* *	*	* *	
Quarter 3, 2020															*	*	*	*	*	*	
Quarter 4, 2020															*		*	*	*	*	
Quarter 1, 2021															-		-			*	
Quarter 2, 2021										*						*	*	*	*	-	
THORIUM-230										-							-		-		
Quarter 4, 2015																*					
Quarter 2, 2016										*						-					
Quarter 4, 2016	*									-		*				*			*		
Quarter 4, 2017													*								
Quarter 2, 2018										*			*								
Quarter 2, 2021									*												
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*										
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004											*										
Quarter 3, 2005	1					*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES	-																				
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 1, 2004																*					
TRICHLOROETHENE														_						_	
Quarter 3, 2002															_						
Quarter 4, 2002																					_
Quarter 1, 2003																					
Quarter 2, 2003							-								-					-	
Quarter 3, 2003																					
Quarter 4, 2003																				-	-
Quarter 1, 2004																					
Quarter 2, 2004 Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					-
Quarter 2, 2005																				-	Ē
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006	1																				
Quarter 3, 2006	1														Ē						ī
Quarter 4, 2006	1	1	1		1	1	1	1	1									1			
Quarter 1, 2007	1	l	1	1	l	l	1	1	1									l –	1		
Quarter 2, 2007	1	1	1	1	1	1	1	1	1									1			
Quarter 3, 2007	1	1	1	1	1	1	1	1	1									1			
Quarter 4, 2007	ĺ																				
Quarter 1, 2008	1																				
Quarter 2, 2008	1	1	1	1	1	1	1	1	1									1			
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010	1																				
0 . 0 0010			1 7																		
Quarter 3, 2010					1																
Quarter 4, 2010					_		1 -	1													
Quarter 4, 2010 Quarter 2, 2011													_								
Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013																					

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014																					
Quarter 2, 2014													_								
Quarter 3, 2014																	-				
Quarter 4, 2014																					
Quarter 1, 2015																			-		
Quarter 2, 2015	-												-								
Quarter 3, 2015	-				-														-		
Quarter 4, 2015	-																-				
Quarter 4, 2015 Ouarter 1, 2016	-																				
. ,	-											-			_			-	-		_
Quarter 2, 2016	_											-						_			
Quarter 3, 2016	_								<u> </u>	L				<u> </u>					L		
Quarter 4, 2016	_																				
Quarter 1, 2017																					
Quarter 2, 2017																					
Quarter 3, 2017																					
Quarter 4, 2017																					
Quarter 1, 2018																					
Quarter 2, 2018																					
Quarter 3, 2018																					
Quarter 4, 2018																					
Quarter 1, 2019																					
Quarter 2, 2019																					
Quarter 3, 2019																					
Quarter 4, 2019																					
Quarter 1, 2020																					
Quarter 2, 2020															_						-
Quarter 3, 2020																_					-
Quarter 4, 2020	-																				
Quarter 1, 2020	-																				
Quarter 1, 2021 Quarter 2, 2021	+																-				
TURBIDITY																					-
										*											
Quarter 1, 2003									-	*				-			-				-
URANIUM		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2002	-	Ŧ			Ŧ	Ŧ	Ŧ		<u> </u>	*	*	Ŧ	*	*	*	Ŧ	<u> </u>	不	Ŧ	주	*
Quarter 4, 2006									<u> </u>					<u> </u>			<u> </u>				*
ZINC																			444		
Quarter 3, 2005									l					l			I		*		L
* Statistical test results indicate an ele	vated con	centrat	tion (i.e	e., a sta	tistical	exceed	lance).														
 MCL Exceedance 																					
Previously reported as an MCL et		e; how	ever, re	sult wa	is equa	to MC	ĽL														
UCRS Upper Continental Recharge Sys	tem																				
URGA Upper Regional Gravel Aquifer																					
LRGA Lower Regional Gravel Aquifer																					_

APPENDIX H

METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: 073-00045

McCracken County, Kentucky

Date:	June 16, 2021	Time:	0900	Monitor:	Robert	Kirby
Weather Co	nditions: Sunny, 85 degr	ees, modera	te/low humidity	1		
Monitoring	Equipment::Multi RAE –	Serial # 1188	1			
	IV	lonitoring Lo	cation			Reading (% LEL)
C-746-U1	Checked at floor le	vel				0
C-746-U2	Checked at floor le	vel				0
C-746-U-T-14	Checked at floor le	vel				0
C-746-U15	Checked at floor le	vel				0
MG1	Checked 1" from o	pening				0
MG2	Checked 1" from o	pening				0
MG3	Checked 1" from o	pening				0
MG4	Checked 1" from o	pening				0
Suspect or Problem Ar	eas No problems noted	l				
Remarks:	N/A					
Performed I	oy: / ///		_ / /.			
	RM2	07	/07/2/			
	Sig	gnature ′	,			Date

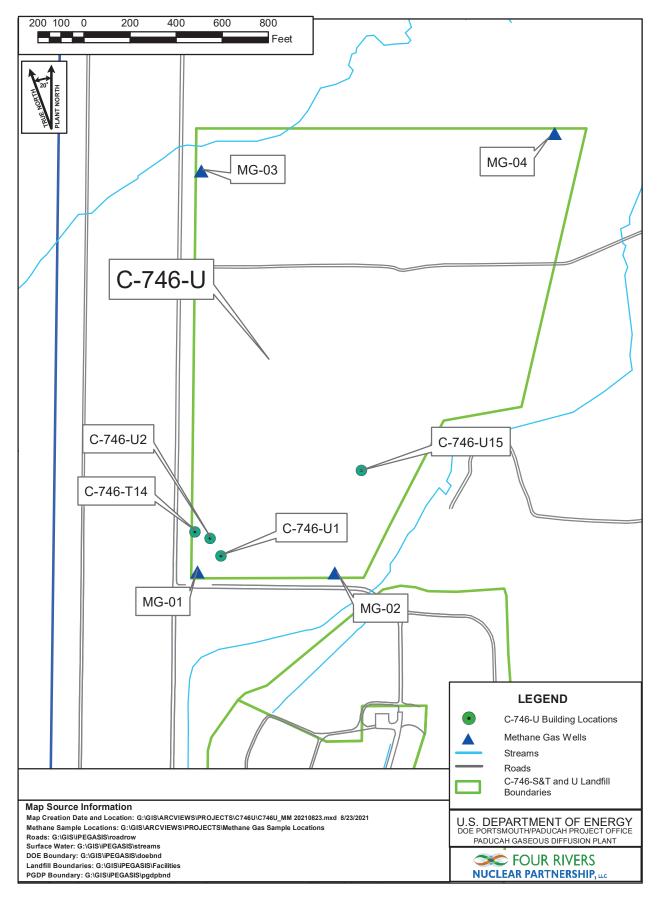


Figure H.1. C-746-U Landfill Methane Monitoring Locations

APPENDIX I

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number: SW07300014, SW07300015, SW07300045 Frankfort, KY 40601 (502)564-6716 FINDS/UNIT: KY8-890-008-982 / 1

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPSI	REAM", or "De	OWNSTREAM")	L150 AT SITE	Ē	L154 UPSTRE	AM	L351 DOWNST	REAM	Ì		
Sample Sequer	ice	#				1		1		1		$\left \right\rangle$		
If sample is a	a Bl	ank, specify Type: (F)ield, (T)r	ip, (M)ethod	, or (E)quipment	NA		NA		NA		$ \rangle$		
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		4/29/2021 07:2	28	4/29/2021 07:	42	4/29/2021 07	:17			
Duplicate ("Y	(" c	or "N") ¹				Ν		N		Ν				
Split ('Y' or	: "N	I") ²				Ν		N		Ν				/
Facility Samp	le	ID Number (if applicable)				L150US3-21		L154US3-21		L351US3-2	1			/
Laboratory Sa	mpl	e ID Number (if applicable)				542563001		542563002		542563003	3		/	
Date of Analy	ysis	s (Month/Day/Year)				5/13/2021		5/13/2021		5/13/2021			$\backslash /$	
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETE VAI O PÇ	JUE	F L A G S ⁷
A200-00-0	0	Flow	т	MGD	Field		*		*		*		/	
16887-00-6	2	Chloride(s)	т	mg/L	300.0	2.79	*	3	*	3.06	*			
14808-79-8	0	Sulfate	т	mg/L	300.0	11.3		1.82		1.82				
7439-89-6	0	Iron	т	mg/L	200.8	0.643		1.61		1.38				Ν
7440-23-5	0	Sodium	т	mg/L	200.8	4.67		3.45		3.83				\square
S0268	0	Organic Carbon ⁶	т	mg/L	9060	10.3		18.8		20		[]		\Box
s0097	0	BOD ⁶	т	mg/L	not applicable		*		*		*	/		\square
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	58.7		96.6		85.8		\backslash		

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

LAB ID: None For Official Use Only

Page 2 of 2

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant
Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	(KPDES Discharge Number, or	- "T	JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNSI	REAM		i
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G
S0145	1	Specific Conductance	т	µmho/cm	Field	165		112		91			17
S0270	0	Total Suspended Solids	т	mg/L	160.2	129		60.8		136			
S0266	0	Total Dissolved Solids	т	mg/L	160.1	194		103		90			
S0269	0	Total Solids	т	mg/L	SM-2540 B 17	311		173		257			
S0296	0	рН	т	Units	Field	6.65		7.02		6.41			
7440-61-1		Uranium	т	mg/L	200.8	0.000311		0.00174		0.00227			
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	2.68	*	6.71	*	3	*		
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	4.71	*	17.6	*	3.89	*	V	
												Λ	
													Ц
													Ц
													\square
												/	\square
												/	\

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID: None

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ing Facility Sample ID	Constituent	Flag	Description
L150	L150US3-21	Flow Rate		Analysis of constituent not required and not performed.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.29. Rad error is 4.26.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.83. Rad error is 6.79.
L154	L154US3-21	Flow Rate		Analysis of constituent not required and not performed.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.97. Rad error is 5.86.
		Beta activity		TPU is 7.45. Rad error is 6.87.
L351	L351US3-21	Flow Rate		Analysis of constituent not required and not performed.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.07. Rad error is 5.05.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.58. Rad error is 5.54.

APPENDIX J

ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Environmental Scope of Accreditation.

APPENDIX K

LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L

MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-U Contained Landfill

			opinion opinion	/	yel oxygen is	S//		/	Divid Lentral	<u> </u>	Colorigen C
				CITY /		\$`///				511	
		Condition of the	, dit	° /	5	entro de la companya de la company		aure of Conduc	, allo		ed oxyleen of
				i Ri	43°						430
		Colui /	in I	5ª /	یک ^ت ق			and I		5° /	ی ^ک کچ
	100		official and a second		2 2010		1120	, du	Divite Land		i jos
	140	/ Co.	1 হ	Dis.	<u> </u>	/	140	/ Co.	13	- Oto	1 4 ³
4W357											
Date Collected: 4/7/2021						Date Collected: 4/7/2021					
820	61.8	444	7.01	5.57	1.82	0903	61.0	498	6.27	1.91	2.06
823	61.4	406	6.07	4.48	1.10	0906	62.0	490	6.08	0.75	2.02
826	61.7	408	6.02	4.42	1.05	0909	62.4	490	6.07	0.72	2.28
1W359						MW360					
ate Collected: 4/7/2021						Date Collected: 4/7/2021					
935	61.1	215	6.02	4.40	0.0	0621	59.9	413	6.18	2.48	4.24
938	62.0	205	5.77	3.35	0.0	0624	59.8	408	6.01	0.93	6.41
941	62.3	207	5.77	3.27	0.0	0627	59.8	406	6.00	0.90	6.37
1W361						MW362					
ate Collected: 4/7/2021						Date Collected: 4/7/2021					
653	59.1	449	6.08	4.44	0.00	0746	59.4	680	7.01	6.08	2.83
656	59.3	448	5.89	3.22	0.46	0749	59.2	688	6.93	4.53	2.76
659	59.5	447	5.89	3.14	0.50	0752	59.2	689	6.93	4.50	3.01
IW363						MW364					
ate Collected: 4/12/2021						Date Collected: 4/12/2021					
652	57.3	509	6.47	1.74	14.3	0725	58.0	476	5.98	2.95	30.7
555	56.7	454	6.10	0.87	22.3	0728	58.3	478	5.96	2.80	20.9
58	56.9	453	6.09	0.85	23.1	0731	58.3	477	5.95	2.81	20.1
W365					-	MW366				-	
ate Collected: 4/12/2021						Date Collected: 4/12/2021					
58	58.9	411	6.20	4.37	0.0	0833	60.0	435	6.14	3.50	23.90
801	59.3	410	6.15	4.07	0.0	0836	60.2	434	6.06	2.55	29.60
804	59.4	411	6.14	4.03	0.0	0839	60.3	434	6.06	2.51	29.01
IW367	5711		0111		010	MW368	0015	101	0.00	2101	27101
ate Collected: 4/12/2021						Date Collected: 4/12/2021					
09	60.2	414	6.04	2.67	1.98	0950	59.2	469	6.43	2.37	25.01
12	60.6	433	5.94	2.17	2.53	0953	59.4	431	6.44	1.25	16.67
015	60.7	433	5.92	2.17	2.04	0956	59.4	430	6.45	1.20	17.01
IW369	00.7	155	5.72	2.17	2.04	MW370	57.7	150	0.75	1.20	17.01
ate Collected: 4/13/2021						Date Collected: 4/13/2021	1				
631	59.6	413	6.35	1.64	0.0	0713	59.6	471	6.16	4.80	0.0
634	59.1	383	6.02	0.85	0.0	0716	59.8	487	5.92	3.61	0.0
537	59.0	383	6.01	0.85	0.0	0719	59.9	487	5.92	3.57	0.0
1W371	59.0	565	0.01	0.00	0.0	MW372	37.7	774	5.90	5.51	0.0
ate Collected: 4/13/2021						Date Collected: 4/13/2021	1				
743	59.2	487	6.50	5.33	71.83	0819	60.2	788	6.12	2.68	0.0
746	59.2	487	6.50	6.04	59.71	0819	60.2	796	6.00	2.68	0.0
749	59.5	497	6.53	6.04	58.64	0822	60.7	790	6.00	1.79	0.0
1W373	59.5	777	0.55	0.07	56.04	0823 MW374	00.7	195	0.00	1./5	0.0
						MW374 Date Collected: 4/13/2021	-				
ate Collected: 4/13/2021	60.6	832	6.06	2.30	0.0	Date Collected: 4/13/2021 0924	60.6	640	6.82	2.17	27.22
						11				3.17	37.22
355	61.6	834	6.00	1.31	0.0	0927	60.9	638	6.82	2.89	38.02
858	61.5	834	6.00	1.33	0.0	0930	61.2	636	6.82	2.80	39.40
1W375											
Date Collected: 4/13/2021	(0.0	227	6.51	1.10	0.0						
958	60.8	337	6.51	1.19	0.0						
001	60.8	335	6.28	0.56	0.0						
004	60.9	333	6.24	0.61	0.8						