

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

November 19, 2020

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-U CONTAINED LANDFILL THIRD QUARTER CALENDAR YEAR 2020 (JULY-SEPTEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0151/V3, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

Enclosed is the subject report for the third quarter calendar year (CY) 2020. This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, surface water analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the third quarter CY 2020 monitoring well data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). This report also serves as the statistical exceedance notification for the third quarter CY 2020, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

PPPO-02-10008603-21B

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Yennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

nnifes Woodard

Enclosure:

C-746-U Contained Landfill Third Quarter CY 2020 (July-September) Compliance Monitoring Report, FRNP-RPT-0151/V3

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov, FRNP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov, FRNP jennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov robert.edwards@pppo.gov, PPPO robinc.green@ky.gov, KDEP stephaniec.brock@ky.gov, KYRHB teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP tracey.duncan@pppo.gov, PPPO

C-746-U Contained Landfill
Third Quarter Calendar Year 2020
(July-September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

C-746-U Contained Landfill
Third Quarter Calendar Year 2020
(July-September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—November 2020

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURE	S		v
ΤA	BLES	S		v
A(CRON	YMS		vii
1.	INT) 1.1 1.2	BACKO MONIT 1.2.1 1.2.2	ION GROUND ORING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring	
	1.3		ESULTS	
2.	DAT 2.1	STATIS 2.1.1 2.1.2 2.1.3	UATION/STATISTICAL SYNOPSISUTICAL ANALYSIS OF GROUNDWATER DATAUpper Continental Recharge SystemUpper Regional Gravel AquiferUpper Regional Gravel Aquifer	
3.			JAL GEOLOGIST AUTHORIZATION	
4.			S	
Αŀ	PPENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
Αŀ	PENI	OIX B:	FACILITY INFORMATION SHEET	B-1
Αŀ	PENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
Αŀ	PPENI	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
Αŀ	PENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
Αŀ	PENI	OIX F:	NOTIFICATIONS	F-1
Αŀ	PENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
Αŀ	PENI	OIX H:	METHANE MONITORING DATA	H-1
Αŀ	PENI	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
Αŀ	PPENI	OIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

APPENDIX K:	LABORATORY ANALYTICAL METHODS	K-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS	L-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
2.	C-746-U Landfill Surface Water Monitoring Locations	4
	TABLES	
1.	Summary of MCL Exceedances	5
2.	Exceedances of Statistically Derived Historical Background Concentrations	5
	Exceedances of Current Background UTL in Downgradient Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit


MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

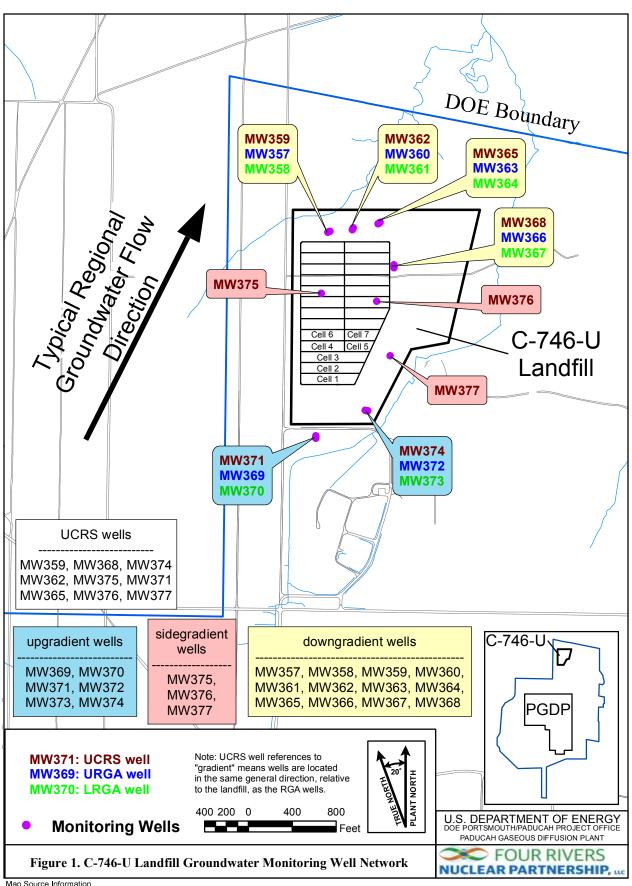
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Third Quarter Calendar Year 2020 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL and historical background UTL exceedances that have occurred, beginning in the fourth quarter, calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water analyses and written comments are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Site and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5, with Phases 6 and 7 approved for receipt of waste as of September 27, 2019. Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included

in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the third quarter 2020 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the third quarter 2020 was conducted in July and August 2020. Resampling was performed due to problems with the sample courier resulting in coolers being received outside temperature specifications. The analytical laboratory used U.S Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on July 27, 2020, in MWs of the C-746-U Landfill (see Appendix E, Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Appendix E, Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During July, RGA groundwater flow in the area of the landfill was oriented northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in July was 6.07×10^{-4} ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 1.16×10^{-3} ft/ft and 1.15×10^{-3} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.97 to 3.37 ft/day for the URGA and 1.95 to 3.33 ft/day for the LRGA (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on September 9, 2020. See Appendix H for a map (see Appendix H, Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill: (1) upstream location, L154; (2) downstream location, L351; and (3) location L150 capturing runoff from

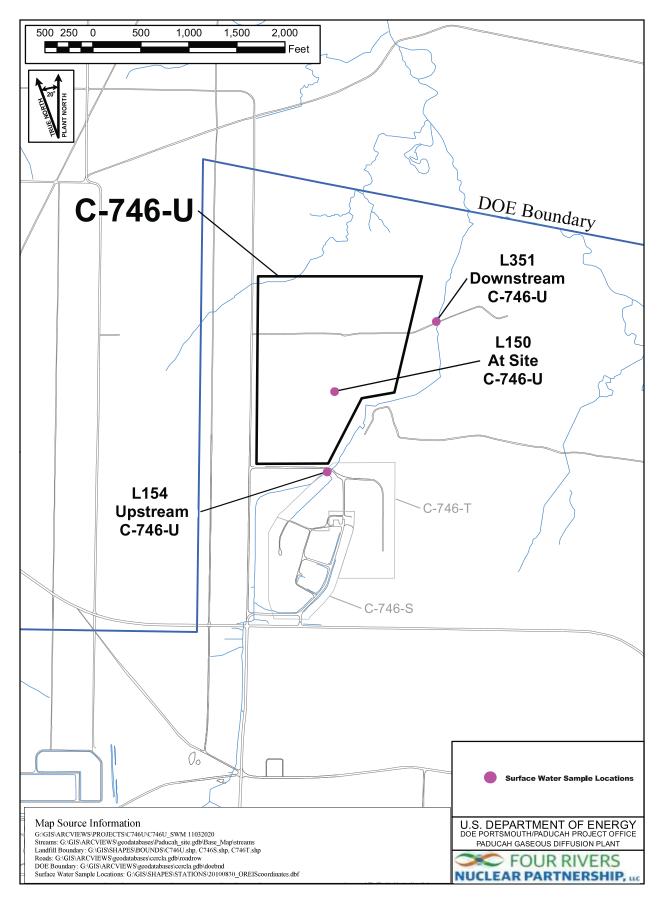


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

the landfill surface. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the third quarter 2020, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be background. Constituents in downgradient wells that exceeded current background UTL are shown on Table 3.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW372: Beta activity	MW361: Trichloroethene
		MW364: Trichloroethene
		MW370: Beta activity

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Technetium-99
oxidation-reduction potential,	potential	
sulfate		
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential,	potential	potential, technetium-99
sulfate		
MW365: Oxidation-reduction	MW363: Oxidation-reduction	MW364: Oxidation-reduction
potential, sulfate	potential	potential, technetium-99
MW368: Calcium, dissolved	MW366: Oxidation-reduction	MW367: Oxidation-reduction
oxygen, oxidation-reduction	potential	potential
potential, sulfate		
MW371: Calcium oxidation-	MW369: Oxidation-reduction	MW370: Beta activity,
reduction potential, sulfate	potential	oxidation-reduction potential,
		technetium-99
MW374: Oxidation-reduction	MW372: Beta activity, calcium,	MW373: Oxidation-reduction
potential	conductivity, dissolved solids,	potential
	oxidation-reduction potential,	
	technetium-99	
MW375: Oxidation-reduction		
potential, sulfate		

¹ The UTL comparison for pH uses a two-sided test for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 2. Exceedance of Statistically Derived historical Background Concentrations (Continued)

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA		
None	None		

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW361 and MW364 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report is the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient (compliance) well concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill).

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2020 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

Parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6 were documented and evaluated further. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as background) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data were divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data showed a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both a UTL and LTL to determine if statistically significant deviations in concentrations existed with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 4.

Table 4. Monitoring Wells Included in Statistical Analysis^a

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371 ^b	MW369 (background)	MW370 (background)
MW374 ^b	MW372 (background)	MW373 (background)
MW375	,	()
MW376 ^c		
MW377 ^c		

^a map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the third quarter, calcium, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient wells.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the URGA. During the third quarter, beta activity, calcium, conductivity, dissolved solids, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient wells.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the third quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient wells.

^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^c Well had insufficient water to permit a water sample for laboratory analysis.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

Third Quarter Calendar Year 2020 (July-September)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0151/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Registration for Arising Constitution of Arising Constitution for Arisi

PG113927 KD 11-18-2020

Movember 18, 2020

Kenneth R. Davis

PG113927

11

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD- PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:		Gaseous Diffusion Plant	Activity:C-746-	U Contained Landfill	
	(As officially show	vn on DWM Permit Face)			
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	3rd Qtr. CY 2020	
Please check the	e following as applicab	le:			
Charac	eterization X Qu	narterly Semiannual	Annual _	Assessment	
Please check ap	plicable submittal(s):	X Groundwater	X Surfac	ce Water	
		Leachate	X Metha	ne Monitoring	
This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.					
	ield, Program Manago uclear Partnership, LL		Date		
Jennifer Wood U.S. Departme	Woodana ard, Paducah Site Lea	d.	11/19 Date	12020	

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

	Groundwater: July and August Surface water: September 2020	2020		Permit	SW07300014, SW07300015,	
Sampling Date:	Methane: September 2020	County:	McCracken	_ Nos.	SW07300045	
Facility Name:	U.S. DOE—Paducah Gaseous I					
	(As officially she	own on DWM Permit Face	e)			
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053		
	Street	City/State		Zip		
Phone No: (270	0) 441-6800 Latitude:	N 37° 07' 45"	Long	itude: W	88° 47' 55"	
	ow	NER INFORMATION				
Facility Owner:	U.S. DOE, Robert E. Edward	s III, Manager	Phone No:	(859) 22'	7-5020	
Contact Person:	Bruce Ford	,	Phone No:			
	Director, Environmenta					
Contact Person Ti	-	• •				
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053		
	Street	City/State		Zip		
Company: GE		APLING PERSONNEL AN LANDFILL OR LAB	ORATORY)			
Contact Person:	Jason Boulton		Phone No:	(270) 81	6-3415	
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053		
8	Street	City/State		Zip		
	LABO	ORATORY RECORD #1	1			
Laboratory GE	L Laboratories, LLC	Lab	ID No: KY90	129		
Contact Person:	Valerie Davis		Phone No:	(843) 769	9-7391	
Mailing Address:	2040 Savage Road	Charleston, South Ca	rolina	294	07	
	Street	City/State		Zi	p	
LABORATORY RECORD #2						
Laboratory: N/A	A	Lab 1	ID No: N/A			
Contact Person:	Contact Person: N/A Phone No: N/A					
Mailing Address:	N/A					
	Street	City/State			Zip	
	LABO	ORATORY RECORD #3	3			
Laboratory: N/A	A	Lab 1	ID No: N/A			
Contact Person:	N/A		Phone No:	: N/A		
Mailing Address:	N/A					
Č	Street	City/State			Zip	

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-47	799	8004-09	981	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	, MW-2, etc	:.)	357		358		359		360	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/21/2020 08	3:06	7/21/2020	09:03	7/21/2020	10:05	7/21/2020 0	6:03
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW357UG4	-20	MW358U0	G4-20	MW359U0	34-20	MW360UG	4-20
Laboratory San	mple ID Number (if applicable)		51642600	1	516426	005	516426	007	5164260	09		
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analys)	7/24/20	20	7/24/20	20	7/24/202	:0
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.37		0.449		<0.2		0.151	J
16887-00-6	Chloride(s)	т	mg/L	9056	32.1		35.4		1.45		9.64	
16984-48-8	Fluoride	Т	mg/L	9056	0.187		0.195		<0.1		0.254	
s0595				9056	1.22		0.957		0.506		0.477	
14808-79-8	Sulfate	т	mg/L	9056	41.1		65.2		45.4		12	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.04		30.04		30.04		30.03	
S0145	Specific Conductance	Т	μ MH0/cm	Field	417		537	_	221		427	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-4799)	8004-0981		8004-4800)
Facility's Loc	al Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.98		326.98		335.19		327	
N238	Dissolved Oxygen	Т	mg/L	Field	3.49		0.75		3.59		1.03	
s0266	Total Dissolved Solids	т	mg/L	160.1	237	*	274	*	146	*	219	*
s0296	рн	т	Units	Field	6.17		6.25		6.23		6.28	
NS215	Eh	т	mV	Field	362		104		171		382	
s0907	Temperature	т	°c	Field	17.78		17		17.11		16.72	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0277	J	<0.05		0.19	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00204	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0674		0.0555		0.0235		0.176	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.338		0.372		0.00521	J	0.0366	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25		33.7		5.77		21.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00657		<0.001		0.00433	
7440-50-8	Copper	Т	mg/L	6020	0.000343	J	<0.002		0.000962	J	0.00121	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		3.39		0.0364	J	0.57	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.3		14.3		3.12		7.71	
7439-96-5	Manganese	Т	mg/L	6020	0.00517		0.495		0.00114	J	0.0784	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	1	8004-480	00
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		<0.001		<0.001		0.000217	J
7440-02-0	Nickel	Т	mg/L	6020	0.00303		0.0142		0.00324		0.00461	
7440-09-7	Potassium	Т	mg/L	6020	1.6		2.42		<0.3		0.668	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	43.9		41.7		34.9		71	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000069	J	0.000131	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	0.00639	J	0.00817	J	0.00581	J	0.00578	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-098	81	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		0.00053	J	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0034		0.00181		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799	9	8004-098	31	8004-48	00
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.0000195		<0.0000193		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0939		<0.0953		<0.0997		<0.0937	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0939		<0.0953		<0.0997		<0.0937	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0939		<0.0953		<0.0997		<0.0937	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0939		<0.0953		<0.0997		<0.0937	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0939		<0.0953		<0.0997		<0.0937	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0939		<0.0953		<0.0997		<0.0937	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	00
Facility's Loc	al Well or Spring Number (e.g., 1	MW−1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0939		<0.0953		<0.0997		<0.0937	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0939		<0.0953		<0.0997		<0.0937	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0939		<0.0953		<0.0997		<0.0937	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.914	*	6.28	*	-1.14	*	4.21	*
12587-47-2	Gross Beta	Т	pCi/L	9310	20.1	*	23.3	*	0.828	*	6.42	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.225	*	0.428	*	0.514	*	0.108	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.46	*	-1.13	*	2.72	*	1.46	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	34.3	*	49.9	*	-8.72	*	4.16	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.336	*	0.424	*	0.226	*	-0.44	*
10028-17-8	Tritium	т	pCi/L	906.0	29.9	*	-82.3	*	4.88	*	-110	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		10.1	J	<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.753	J	7.76		1.12	J	1.28	J
s0586	Total Organic Halides	Т	mg/L	9020	<0.01		<0.01		<0.01		0.00526	J
							_					

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., N	∕w-1	., MW-2, etc	:.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/21/2020 06	6:45	7/21/2020	07:24	7/30/2020	06:28	8/6/2020 06	6:45
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG4	-20	MW362U0	G4-20	MW363UG	4-20R	MW364UG4-	-20R2
Laboratory Sam	mple ID Number (if applicable)		51642601	1	516426	013	5172540	001	5177630	02		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ganics Anal	ysis	7/24/2020)	7/24/20	20	NA		8/11/202	.0	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	7	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.475		0.0936	J	0.0944	J	0.428	
16887-00-6	Chloride(s)	т	mg/L	9056	36.3		3.89		27.5		34.8	
16984-48-8	Fluoride	т	mg/L	9056	0.188		0.392		0.164		0.147	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.05		0.467		6.25		1.06	
14808-79-8	Sulfate	т	mg/L	9056	84.1		32.3		27.3		71.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.04		29.86		30.08	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	510		697		429		478	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795	5	8004-0986	3	8004-4796		8004-4797	
Facility's Loca	al Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	327		340.24		326.59		325.22	
N238	Dissolved Oxygen	Т	mg/L	Field	2.63		3.03		2		3.39	
s0266	Total Dissolved Solids	Т	mg/L	160.1	211	*	377	*	251		256	
s0296	рн	Т	Units	Field	6.08		6.93		5.97		6.03	
NS215	Eh	т	mV	Field	353		340		384		405	
s0907	Temperature	Т	°C	Field	16.39		16.33		17.83		15.56	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.022	J	0.0251	BJ	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.0547		0.0963		0.144		0.0641	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0945		0.0195		0.0234		0.0338	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	33.2		21.8		30	*	34.2	*
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		0.00102		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000612	J	0.00102	J	0.000629	J	0.000878	J
7439-89-6	Iron	Т	mg/L	6020	0.0393	J	0.044	J	0.0546	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	14.3		9.32		12.5	*	14.3	*
7439-96-5	Manganese	Т	mg/L	6020	0.0186		<0.005		0.166	*	0.00257	*J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	96	8004-479	7
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		0.000458	J	<0.001		0.000233	J
7440-02-0		Nickel	Т	mg/L	6020	0.00276		0.00272		0.0158		0.0111	
7440-09-7		Potassium	Т	mg/L	6020	2.37		0.29	J	2.06		2.12	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	46.5		137		45.2	*	44.8	*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.00346		<0.0002		<0.0002	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6		Zinc	Т	mg/L	6020	0.00483	J	0.00479	J	0.00561	BJ	0.0131	J
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-098	6	8004-479	96	8004-4797	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	T	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.0069		<0.001			*	0.00698	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	6	8004-47	96	8004-47	97
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	0.00175	J
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.000019			*	<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0945		<0.0951		0.0382	J	<0.1	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0945		<0.0951		<0.1		<0.1	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0945		<0.0951		<0.1		<0.1	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0945		<0.0951		<0.1		<0.1	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0945		<0.0951		0.0382	J	<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0945		<0.0951		<0.1		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795	i	8004-0986		8004-479	6	8004-479)7
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0945		<0.0951		<0.1		<0.1	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0945		<0.0951		<0.1		<0.1	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0945		<0.0951		<0.1		<0.1	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.364	*	0.738	*	0.595	*	1.96	*
12587-47-2	Gross Beta	Т	pCi/L	9310	46.1	*	-7.02	*	11.1	*	40.7	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.135	*	0.162	*	0.171	*	0.123	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.83	*	-3.49	*	0.265	*	-4.58	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	48.7	*	2.34	*	13.6	*	47.7	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.755	*	-0.0711	*	0.209	*	0.224	*
10028-17-8	Tritium	Т	pCi/L	906.0	32.2	*	-42.6	*	36.5	*	58.7	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		31.4		29.4	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.785	J	2.27		1.06	J	0.727	J
s0586	Total Organic Halides	Т	mg/L	9020	<0.01		0.014		0.00774	J	0.00498	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-0	983
Facility's Loc	cal Well or Spring Number (e.g., N	∕w-1	, MW-2, etc	:.)	365		36	86	36	7	368	,
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/30/2020	07:55	8/6/202	0 08:07	7/30/202	0 09:16	7/30/2020	09:53
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW365UG	4-20R	MW366U	G4-20R2	MW367U	G4-20R	MW368U0	34-20R
Laboratory Sam	oratory Sample ID Number (if applicable)					003	51776	3005	51725	4005	517254	007
Date of Analys	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u>				NA		8/11/2	2020	NA		NA	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOW	1	DO	WN	DOV	٧N	DOW	/N
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.441		0.173	J	<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	2.82		38.9		15.2		2.75	
16984-48-8	Fluoride	Т	mg/L	9056	0.268		0.161		0.0953	J	0.189	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.561		0.832		<0.1		0.0651	J
14808-79-8	Sulfate	т	mg/L	9056	57.3		42.3		28.6		81	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.84		30.1		29.84		29.84	
S0145	Specific Conductance	т	μ M H0/cm	Field	442		462		292		571	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793		8004-0983	}
Facility's Lo	ocal Well or Spring Number (e.g., M	i-1, i	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	330.55		325.97		326.79		333.05	
N238	Dissolved Oxygen	т	mg/L	Field	2.4		3.8		2.39		2	
S0266	Total Dissolved Solids	Т	mg/L	160.1	270		244		163		330	
s0296	рн	Т	Units	Field	6.25		6.18		5.93		6.42	
NS215	Eh	Т	mV	Field	360		398		262		255	
S0907	Temperature	Т	°C	Field	16.39		16.83		16.61		16.11	
7429-90-5	Aluminum	Т	mg/L	6020	0.0245	BJ	<0.05		0.0238	BJ	0.125	В
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00254	J
7440-39-3	Barium	Т	mg/L	6020	0.112		0.108		0.148		0.0445	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00795	J	0.103		0.0272		0.00691	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25.8	*	31.4	*	17.4	*	71.2	*
7440-47-3	Chromium	T	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00175		<0.001		0.00836		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00585		0.000616	J	0.000322	J	0.000471	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		<0.1		6.59		0.0747	J
7439-92-1	Lead	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	12.1	*	12.9	*	9.36	*	16.5	*
7439-96-5	Manganese	Т	mg/L	6020	0.00826	*	0.00334	*J	1.48	*	0.00521	*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spr		8004-098	4	8004-098	32	8004-479	93	8004-098	33		
Facility's	Local Well or Spring	Number (e.g., MW-	-1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITU	ENT T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		<0.001		<0.001		0.000494	J
7440-02-0	Nickel	Т	mg/L	6020	0.00928		0.0104		0.00563		0.00211	
7440-09-7	Potassium	Т	mg/L	6020	0.291	J	1.92		3.14		0.465	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	55.8	*	46	*	24.7	*	37.9	*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	0.000227		<0.0002		<0.0002		0.000432	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		0.00347	J
7440-66-6	Zinc	Т	mg/L	6020	0.00816	BJ	0.00536	J	0.0164	BJ	0.0054	BJ
108-05-4	Vinyl acetate	т	mg/L	8260		*	<0.005			*		*
67-64-1	Acetone	т	mg/L	8260		*	<0.005			*		*
107-02-8	Acrolein	Т	mg/L	8260		*	<0.005			*		*
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.005			*		*
71-43-2	Benzene	т	mg/L	8260		*	<0.001			*		*
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.001			*		*
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.003			*		*
100-42-5	Styrene	Т	mg/L	8260		*	<0.001			*		*
108-88-3	Toluene	Т	mg/L	8260		*	<0.001			*		*
74-97-5	Chlorobromomethan	е Т	mg/L	8260		*	<0.001			*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-4793		8004-0983	
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	:c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260		*	<0.001			*		*
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001			*		*
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.001			*		*
78-93-3	Methyl ethyl ketone	T	mg/L	8260		*	<0.005			*		*
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260		*	<0.005			*		*
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005			*		*
75-00-3	Chloroethane	T	mg/L	8260		*	<0.001			*		*
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001			*		*
74-87-3	Methyl chloride	T	mg/L	8260		*	<0.001			*		*
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260		*	<0.001			*		*
74-95-3	Methylene bromide	T	mg/L	8260		*	<0.001			*		*
75-34-3	1,1-Dichloroethane	T	mg/L	8260		*	<0.001			*		*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001			*		*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001			*		*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001			*		*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.001			*		*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001			*		*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001			*		*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001			*		*
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001			*		*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001			*		*
79-01-6	Ethene, Trichloro-	T	mg/L	8260		*	0.00376			*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-098	4	8004-098	2	8004-47	93	8004-09	83		
Facility's Loc	al Well or Spring Number (e.g., N	1W −1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001			*		*
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005			*		*
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.005			*		*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001			*		*
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001			*		*
75-09-2	Dichloromethane	т	mg/L	8260		*	0.00173	J		*		*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005			*		*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.000194			*		*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001			*		*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001			*		*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001			*		*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001			*		*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001			*		*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001			*		*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.001			*		*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001			*		*
1336-36-3	PCB,Total	Т	ug/L	8082	0.0709	J	<0.1		<0.102		<0.1	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.1		<0.1		<0.102		<0.1	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.1		<0.102		<0.1	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.1		<0.1		<0.102		<0.1	
53469-21-9	PCB-1242	Т	ug/L	8082	0.0709	J	<0.1		<0.102		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.1		<0.1		<0.102		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.1		<0.1		<0.102		<0.1	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.1		<0.1		<0.102		<0.1	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.1		<0.1		<0.102		<0.1	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.91	*	-1.26	*	4.37	*	4.16	*
12587-47-2	Gross Beta	Т	pCi/L	9310	-1.28	*	41.7	*	5.59	*	15.2	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.509	*	0.183	*	0.557	*	0.506	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.77	*	-2.41	*	0.0941	*	-0.189	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-1.09	*	50.5	*	-1.99	*	4.65	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	0.274	*	-0.0306	*	0.642	*	1.02	*
10028-17-8	Tritium	T	pCi/L	906.0	-32.9	*	167	*	-23.4	*	30.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		15.5	J	15.4	J	15.4	J
57-12-5	Cyanide	T	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	0.649	J	0.825	J	1.6	J	1.41	J
S0586	Total Organic Halides	Т	mg/L	9020	0.0124		0.00664	J	0.00522	J	0.00688	J
												↓
		\square										—
		H										┼

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-4	808
Facility's Loc	cal Well or Spring Number (e.g., N	4W−1	, MW-2, etc	:.)	369		37	70	37	1	372	2
Sample Sequenc	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/20/2020	06:43	7/23/202	20 07:26	7/23/202	0 08:04	7/23/2020	08:44
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW369UG	94-20	MW370L	JG4-20R	MW371U	G4-20R	MW372U0	34-20R
Laboratory San	mple ID Number (if applicable)		5164220	001	51659	2004	51659	2006	516592	2008		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e Or	ganics Anal	ysis.	NA		7/28/2	2020	7/28/2	2020	7/28/20	020
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		U	Р	UF)	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.345		0.457		<0.2		0.572	
16887-00-6	Chloride(s)	т	mg/L	9056	29.9		35.6		3.75		44.2	
16984-48-8	Fluoride	Т	mg/L	9056	0.244		0.18		0.193		0.187	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.76	*	1		0.0587	J	1.12	
14808-79-8	Sulfate	т	mg/L	9056	5.48		20.7		53.6		124	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.99		30.09		20.1		30.1	
S0145	Specific Conductance	Т	μ M H0/cm	Field	373		452		527		770	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	W-1,	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.84		328.53		345.48		328.61	
N238	Dissolved Oxygen	т	mg/L	Field	3.21		2.86		2.5		1.78	
s0266	Total Dissolved Solids	т	mg/L	160.1	186	*	241		336		436	
s0296	рн	т	Units	Field	6.21		6.07		6.42		6.16	
NS215	Eh	т	mV	Field	366		366		361		365	
s0907	Temperature	т	°C	Field	17.83		17.89		17.61		18.39	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		1.17		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00257	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.371		0.26		0.105		0.0657	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0152		0.15	*	0.0111	J	1.21	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	16.5		30.6		69		62.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00419		<0.001		0.000442	J	<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00228		0.000383	J	0.00166	J	<0.002	
7439-89-6	Iron	Т	mg/L	6020	0.135		<0.1		0.772		0.0355	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		0.000834	J	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	6.51		13		11.4		21.4	
7439-96-5	Manganese	т	mg/L	6020	0.00886		0.0022	J	0.0326		<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480)8
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	T	mg/L	6020	<0.001		0.000262	J	0.000393	J	<0.001	
7440-02-0		Nickel	T	mg/L	6020	0.0191		0.00383		0.00595		0.00253	
7440-09-7		Potassium	Т	mg/L	6020	0.485		2.8		0.504		2.22	
7440-16-6		Rhodium	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	T	mg/L	6020	<0.005		<0.005		<0.005		0.00202	J
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	T	mg/L	6020	59.6		46.2		28.9		63.8	
7440-25-7		Tantalum	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	T	mg/L	6020	<0.0002		<0.0002		0.000655		<0.0002	
7440-62-2		Vanadium	T	mg/L	6020	<0.02		<0.02		0.0064	J	<0.02	
7440-66-6		Zinc	T	mg/L	6020	0.00913	J	0.00334	J	0.00632	BJ	0.00373	BJ
108-05-4		Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	T	mg/L	8260		*	<0.005		<0.005		<0.005	
107-02-8		Acrolein	T	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	T	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-4819		8004-4808	
Facility's Loc	al Well or Spring Number (e.g., N	4W−1	L, MW-2, et	cc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	0.00058	J	<0.001		0.00293	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-4818	3	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	l, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.00002		<0.0000197		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.095		<0.0941		<0.0942		<0.096	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.095		<0.0941		<0.0942		<0.096	
11104-28-2	PCB-1221	т	ug/L	8082	<0.095		<0.0941		<0.0942		<0.096	
11141-16-5	PCB-1232	т	ug/L	8082	<0.095		<0.0941		<0.0942		<0.096	
53469-21-9	PCB-1242	т	ug/L	8082	<0.095		<0.0941		<0.0942		<0.096	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.095		<0.0941		<0.0942		<0.096	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	l, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.095		<0.0941		<0.0942		<0.096	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.095		<0.0941		<0.0942		<0.096	
11100-14-4	PCB-1268	т	ug/L	8082	<0.095		<0.0941		<0.0942		<0.096	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.906	*	5.19	*	10.2	*	4.75	*
12587-47-2	Gross Beta	Т	pCi/L	9310	17.8	*	65.5	*	10	*	76.1	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.227	*	0.199	*	0.475	*	0.00321	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.22	*	-0.928	*	-1.57	*	-1.31	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	20	*	67.3	*	-8.86	*	106	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.273	*	-0.144	*	-0.617	*	0.366	*
10028-17-8	Tritium	Т	pCi/L	906.0	-41.2	*	-75.4	*	32.1	*	-72.3	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	10.1	J	22		10.1	J	26.8	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.37	J	1.02	J	2.48		1.09	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0122		0.0092	J	0.00612	J	0.0206	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09	85	8004-098	8
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	, MW-2, etc	:.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/23/2020 09	9:24	7/23/2020	10:04	7/23/2020	06:09	NA	
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW373UG4-	20R	MW374UG	4-20R	MW375UG	4-20R	NA	
Laboratory Sam	mple ID Number (if applicable)				51659201	0	516592	012	5165920	001	NA	
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e Or	ganics Anal	ysis.	7/28/2020)	7/28/20	20	7/29/20	20	NA	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.552		0.65		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	39.3		54.5		3.64			*
16984-48-8	Fluoride	т	mg/L	9056	0.204		0.25		0.313			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.814		<0.1		1			*
14808-79-8	Sulfate	Т	mg/L	9056	169		9.1		24.3			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.1		30.11		30.07			*
S0145	Specific Conductance	т	μ M H0/cm	Field	859		687		341			*

¹AKGWA # is 0000-0000 for any type of blank.

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

^{* =} See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	3
Facility's Loc	al Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-1	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	328.61		341.75		334.72			*
N238	Dissolved Oxygen	Т	mg/L	Field	1.41		0.7		1.8			*
s0266	Total Dissolved Solids	т	mg/L	160.1	476		383		197			*
s0296	рн	т	Units	Field	6.11		6.53		6.03			*
NS215	Eh	т	mV	Field	377		304		374			*
s0907	Temperature	т	°C	Field	18.33		18.39		17.83			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00247	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0337		0.135		0.164			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.97		0.0151	*	0.00852	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	72.2		20.5		13.2			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.000837	J	0.000644	J	<0.001			*
7440-50-8	Copper	Т	mg/L	6020	0.000322	J	<0.002		0.000469	J		*
7439-89-6	Iron	Т	mg/L	6020	0.037	J	0.878		0.0384	J		*
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020	26.6		5.4		5.25			*
7439-96-5	Manganese	Т	mg/L	6020	0.0374		0.313		0.00131	J		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	35	8004-098	38
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		0.000203	J	<0.001			*
7440-02-0		Nickel	Т	mg/L	6020	0.00399		0.00233		0.00657			*
7440-09-7		Potassium	T	mg/L	6020	2.77		0.407		0.258	J		*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020	<0.005		0.00395	J	0.00266	J		*
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5		Sodium	Т	mg/L	6020	64.1		121		53.1			*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020	0.000078	J	0.000295		0.000072	J		*
7440-62-2		Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6		Zinc	T	mg/L	6020	0.00448	BJ	0.00426	BJ	0.00496	BJ		*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	T	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	T	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	T	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	T	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-099)	8004-098	35	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.00382		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-0990)	8004-098	35	8004-09	88
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	l, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000197		<0.0000195			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0958		<0.0962		<0.0946			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0958		<0.0962		<0.0946			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0958		<0.0962		<0.0946			*
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0958		<0.0962		<0.0946			*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0958		<0.0962		<0.0946			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0958		<0.0962		<0.0946			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0958		<0.0962		<0.0946			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0958		<0.0962		<0.0946			*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0958		<0.0962		<0.0946			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	9.82	*	1.44	*	-3.19	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	19.4	*	22.7	*	2.22	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.285	*	0.431	*	0.0674	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.391	*	-0.0584	*	-0.485	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	18.4	*	-1.29	*	-7.6	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.6	*	0.363	*	2.26	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	-21.3	*	-37.6	*	-43.8	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060	1.1	J	2.37		0.877	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0163		0.0327		0.0048	J		*
		Ш										
		Ш										

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., N	/W−1	l, MW-2, etc	:.)	377		E. BLAN	ΙK	F. BLAN	K	T. BLANK	(1
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) ∈	thod, or (E)	quipment	NA		Е		F		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		NA		7/21/2020	05:20	7/21/2020 0	9:06	7/21/2020 0	5:15
06:50Duplicate	("Y" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				NA		RI1UG4	20	FB1UG4-	20	TB2UG4-	20
Laboratory Sam	oratory Sample ID Number (if applicable)						5164260	16	5164260	15	51642601	17
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						7/24/20	20	7/24/202	:0	7/24/202	0
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ MH 0/cm	Field		*		*		*		*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989)	0000-0000)	0000-0000		0000-0000)
Facility's Lo	ocal Well or Spring Number (e.g., MV	v−1 ,	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	0.000828	J	0.000314	J		*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	:1
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020		*	<0.001		<0.001			*
7440-02-0		Nickel	Т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	T	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	T	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	T	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	T	mg/L	6020		*	<0.005		<0.005			*
7440-28-0		Thallium	T	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	T	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	T	mg/L	6020		*	<0.02		<0.02			*
7440-66-6		Zinc	T	mg/L	6020		*	0.00491	J	0.00409	J		*
108-05-4		Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	T	mg/L	8260		*	0.014		0.00547		0.0185	
107-02-8		Acrolein	T	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	T	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	:c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	< 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	0.00206	J	<0.005		0.00265	J
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000)	0000-00	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	1, MW-2, et	.c.)	377		E. BLAN	(F. BLAN	lK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000188		<0.0000194		<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	0.00041	J	<0.001		0.00041	J
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0958		<0.0954			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0958		<0.0954			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0958		<0.0954			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0958		<0.0954			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0958		<0.0954			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0958		<0.0954			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	377		E. BLANK		F. BLAN	K	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0958		<0.0954			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0958		<0.0954			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.0958		<0.0954			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	0.348	*	0.183	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	-3.52	*	7.91	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*	0.512	*	0.26	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-0.895	*	3.78	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	-8.52	*	-3.49	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	0.666	*	-0.0132	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	74.4	*	153	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5		<0.5			*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	8004-4799	9	\	
Facility's Loca	al Well or Spring Number (e.g., M	w−1	., MW-2, etc	:.)	T. BLANK	(2	T. BLAN	K 3	358			
Sample Sequence	#				1		1		2			
If sample is a Bl	Lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		Т		NA			
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		7/23/2020 0	5:30	8/6/2020 0	5:25	7/21/2020 09	9:03		
Duplicate ("Y"	or "N") ²				N		N		Υ			
Split ("Y" or '	'N") ³				N		N		N			
Facility Sample	e ID Number (if applicable)				TB4UG4-	20	TB6UG4	-20	MW358DUG	4-20		
Laboratory Samp	ole ID Number (if applicable)		5165920	14	5177630	09	51642600	3	\ /			
Date of Analysi	is (Month/Day/Year) For <u>Volatile</u>	ysis	7/28/202	0	8/11/20	20	7/24/2020)	\ /			
Gradient with	respect to Monitored Unit (UP, DC	SIDE, UNKN	OWN)	NA		NA		DOWN		Y		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*	0.453			1
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*	35.5			
16984-48-8	Fluoride	Т	mg/L	9056		*		*	0.187			
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*	0.961			
14808-79-8	Sulfate	Т	mg/L	9056		*		*	65.3			
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		
S0145	Specific Conductance	Т	μ MH0/cm	Field		*		*		*	<u> </u>	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	8004-4799			$\overline{}$
Facility's Loca	al Well or Spring Number (e.g., MW	-1, N	W−2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	358			$ \mathbb{I} $
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S		F L A
s0906	Static Water Level Elevation	T	Ft. MSL	Field		*		*		*		!
N238	Dissolved Oxygen	T	mg/L	Field		*		*		*		
s0266	Total Dissolved Solids	T	mg/L	160.1		*		*	247	*		
s0296	рН	T	Units	Field		*		*		*		
NS215	Eh	T	mV	Field		*		*		*		
s0907	Temperature	T	°C	Field		*		*		*	<u> </u>	
7429-90-5	Aluminum	T	mg/L	6020		*		*	<0.05		\ /	
7440-36-0	Antimony	T	mg/L	6020		*		*	<0.003		<u> </u>	
7440-38-2	Arsenic	T	mg/L	6020		*		*	0.00211	J	<u> </u>	
7440-39-3	Barium	T	mg/L	6020		*		*	0.0586		/\	
7440-41-7	Beryllium	Т	mg/L	6020		*		*	<0.0005			
7440-42-8	Boron	T	mg/L	6020		*		*	0.401		/ \	
7440-43-9	Cadmium	T	mg/L	6020		*		*	<0.001		/ \	
7440-70-2	Calcium	T	mg/L	6020		*		*	34.5		/ \	
7440-47-3	Chromium	T	mg/L	6020		*		*	<0.01		/ \	
7440-48-4	Cobalt	T	mg/L	6020		*		*	0.00543			
7440-50-8	Copper	T	mg/L	6020		*		*	0.000413	J		\
7439-89-6	Iron	Т	mg/L	6020	_	*		*	2.62			\prod
7439-92-1	Lead	T	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	T	mg/L	6020		*		*	15.2			$ \top $
7439-96-5	Manganese	Т	mg/L	6020		*		*	0.411		/	$ \top $
7439-97-6	Mercury	Т	mg/L	7470		*		*	<0.0002		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	00	8004-479	9	\	
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	(3	358			
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
7439-98-7		Molybdenum	Т	mg/L	6020		*		*	<0.001			
7440-02-0		Nickel	Т	mg/L	6020		*		*	0.0129			\prod
7440-09-7		Potassium	Т	mg/L	6020		*		*	2.44			
7440-16-6		Rhodium	Т	mg/L	6020		*		*	<0.005			
7782-49-2		Selenium	Т	mg/L	6020		*		*	<0.005			
7440-22-4		Silver	Т	mg/L	6020		*		*	<0.001		\ /	
7440-23-5		Sodium	Т	mg/L	6020		*		*	41.5		\setminus /	
7440-25-7		Tantalum	Т	mg/L	6020		*		*	<0.005		\/	
7440-28-0		Thallium	Т	mg/L	6020		*		*	<0.002		X	
7440-61-1		Uranium	Т	mg/L	6020		*		*	<0.0002		/\	
7440-62-2		Vanadium	Т	mg/L	6020		*		*	<0.02			
7440-66-6		Zinc	Т	mg/L	6020		*		*	0.00834	J	/ \	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			
67-64-1		Acetone	Т	mg/L	8260	<0.005		0.00489	J	<0.005			
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			\mathbb{I}
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-000	0	8004-47	99	\	- 1
Facility's Loc	al Well or Spring Number (e.g., N	4W −1	l, MW-2, et	c.)	T. BLANK 2	2	T. BLANK	3	358			
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		\ <i>\</i>	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		0.00052	J	/\	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			\setminus
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			\setminus
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		1	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			\
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		0.00168		7	\

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	8004-47	99		
Facility's Loc	al Well or Spring Number (e.g., M	1 ₩−1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	358			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			17
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.0000193		\bigcup	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		igwedge	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001			<u> </u>
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	0.00034	J	<0.001		<0.001			
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
1336-36-3	PCB, Total	Т	ug/L	8082		*		*	<0.0953			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.0953			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.0953			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.0953			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.0953			
12672-29-6	PCB-1248	Т	ug/L	8082		*		*	<0.0953			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000		8004-4799		\	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	T. BLANK	2	T. BLANK 3		358			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
11097-69-1	PCB-1254	Т	ug/L	8082		*		*	<0.0953			\mathcal{I}
11096-82-5	PCB-1260	Т	ug/L	8082		*		*	<0.0953			T_{-}
11100-14-4	PCB-1268	Т	ug/L	8082		*		*	<0.0953			
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*	4.95	*		
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*	22.8	*	\ /	
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*	0.409	*		
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*	-2.73	*	ackslash	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*	34.8	*	\land	
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC		*		*	0.211	*	/\	
10028-17-8	Tritium	Т	pCi/L	906.0		*		*	-34.6	*	/ \	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*	<20			
57-12-5	Cyanide	T	mg/L	9012		*		*	<0.2			1
20461-54-5	Iodide	T	mg/L	300.0		*		*	<0.5			1
s0268	Total Organic Carbon	T	mg/L	9060		*		*	11.1			
s0586	Total Organic Halides	Т	mg/L	9020		*		*	0.00442	J		
												\

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-47	96	8004-098	34	8004-479	3	8004-098	3
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	MW36	3	MW365	5	MW367		MW368	}
Sample Sequence	ce #				3		3		3		3	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		8/6/2020 (06:20	8/6/2020 0	7:42	8/6/2020 0	8:52	8/6/2020 09	:15
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW363UG4-	-20R2	MW365UG	4-20R2	MW367UG4	-20R2	MW368UG4-	20R2
Laboratory San	mple ID Number (if applicable)			51776300)1	5177630	004	5177630	07	51776300	08	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	Or	ganics Anal	ysis.	8/11/202	0	8/11/20	20	8/11/202	.0	8/11/2020	0
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.08		30.09		30.1		30.1	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	430		405		281		544	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4796	3	8004-0984	1	8004-4793		8004-0983	3
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	363		365		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.98		329.62		326.17		332.4	
N238	Dissolved Oxygen	т	mg/L	Field	0.9		1.53		0.82		2.72	
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field	5.77		6.23		5.99		6.53	
NS215	Eh	т	mV	Field	412		396		263		250	
s0907	Temperature	т	°C	Field	15.56		16.44		17.22		16.78	
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6020		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	6	8004-098	34	8004-479)3	8004-098	33
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	363		365		367		368	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020		*		*		*		*
7440-02-0		Nickel	Т	mg/L	6020		*		*		*		*
7440-09-7		Potassium	Т	mg/L	6020		*		*		*		*
7440-16-6		Rhodium	Т	mg/L	6020		*		*		*		*
7782-49-2		Selenium	T	mg/L	6020		*		*		*		*
7440-22-4		Silver	T	mg/L	6020		*		*		*		*
7440-23-5		Sodium	Т	mg/L	6020		*		*		*		*
7440-25-7		Tantalum	Т	mg/L	6020		*		*		*		*
7440-28-0		Thallium	Т	mg/L	6020		*		*		*		*
7440-61-1		Uranium	T	mg/L	6020		*		*		*		*
7440-62-2		Vanadium	T	mg/L	6020		*		*		*		*
7440-66-6		Zinc	Т	mg/L	6020		*		*		*		*
108-05-4		Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	0.00182	J	<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	T	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	,	Facility Well/Spring Number				8004-4796		8004-098	4	8004-479	93	8004-098	33
Facility's Lo	са	l Well or Spring Number (e.g., N	MW−1	L, MW-2, et	.c.)	363		365		367		368	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4		Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2		Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9		Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3		Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6		trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0		Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3		Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3		Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3		Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2		cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3		Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3		1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2		1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4		1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4		Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5		Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6		Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5		Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6		Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4		Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4		Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6		Ethene, Trichloro-	Т	mg/L	8260	0.00047	J	<0.001		0.00123		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	ô	8004-0984	4	8004-47	93	8004-09	83
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	L, MW-2, et	.c.)	363		365		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.0018	J	0.00179	J	0.00167	J	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.000194		<0.0000194		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-48	20							
Facility's Loc	al Well or Spring Number (e.g., M	₩-1	, MW-2, etc	:.)	MW369)						
Sample Sequenc	e #				3						,	
If sample is a B	clank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA							
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/23/2020	07:03						
Duplicate ("Y"	or "N") ²				N							
Split ("Y" or	"N") ³				N							
Facility Sampl	e ID Number (if applicable)		MW369UG4-	20R								
Laboratory Sam	ple ID Number (if applicable)		51659200	3								
Date of Analys	is (Month/Day/Year) For Volatile	ysis	778/2020)								
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	UP				\setminus			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		/				
16887-00-6	Chloride(s)	Т	mg/L	9056		*						
16984-48-8	Fluoride	T	mg/L	9056		*						
s0595	Nitrate & Nitrite	Т	mg/L	9056		*						
14808-79-8	Sulfate	Т	mg/L	9056		*						
NS1894	Barometric Pressure Reading	T	Inches/Hg	Field	30.09							
S0145	Specific Conductance	Т	μ MH 0/cm	Field	372							

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

			(301.3.7									
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820							/
Facility's Lo	cal Well or Spring Number (e.g., MV	7-1 , 1	MW-2, BLANK-	F, etc.)	369							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.55							
N238	Dissolved Oxygen	т	mg/L	Field	2.66							
s0266	Total Dissolved Solids	т	mg/L	160.1		*						
s0296	рн	т	Units	Field	6.2						/	
NS215	Eh	т	mV	Field	353						1	
s0907	Temperature	т	°C	Field	17.44							
7429-90-5	Aluminum	т	mg/L	6020		*				/		
7440-36-0	Antimony	Т	mg/L	6020		*						
7440-38-2	Arsenic	т	mg/L	6020		*			X			
7440-39-3	Barium	т	mg/L	6020		*						
7440-41-7	Beryllium	т	mg/L	6020		*						
7440-42-8	Boron	т	mg/L	6020		*						
7440-43-9	Cadmium	T	mg/L	6020		*						
7440-70-2	Calcium	T	mg/L	6020		*		_				
7440-47-3	Chromium	т	mg/L	6020		*						
7440-48-4	Cobalt	т	mg/L	6020		*						
7440-50-8	Copper	т	mg/L	6020		*						
7439-89-6	Iron	т	mg/L	6020		*						
7439-92-1	Lead	T	mg/L	6020		*					\	
7439-95-4	Magnesium	т	mg/L	6020		*						
7439-96-5	Manganese	т	mg/L	6020		*						
7439-97-6	Mercury	т	mg/L	7470		*						

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-482	0	\overline{N}					$\overline{}$
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369							
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020		*						
7440-02-0		Nickel	Т	mg/L	6020		*						
7440-09-7		Potassium	Т	mg/L	6020		*						
7440-16-6		Rhodium	Т	mg/L	6020		*		'				
7782-49-2		Selenium	Т	mg/L	6020		*						
7440-22-4		Silver	Т	mg/L	6020		*						
7440-23-5		Sodium	Т	mg/L	6020		*				/		
7440-25-7		Tantalum	Т	mg/L	6020		*						
7440-28-0		Thallium	Т	mg/L	6020		*			X			
7440-61-1		Uranium	Т	mg/L	6020		*						
7440-62-2		Vanadium	Т	mg/L	6020		*						
7440-66-6		Zinc	Т	mg/L	6020		*						
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005							
67-64-1		Acetone	Т	mg/L	8260	<0.005							
107-02-8		Acrolein	Т	mg/L	8260	<0.005							
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005							
71-43-2		Benzene	Т	mg/L	8260	<0.001							
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001							
1330-20-7		Xylenes	Т	mg/L	8260	<0.003							
100-42-5		Styrene	Т	mg/L	8260	<0.001							
108-88-3		Toluene	Т	mg/L	8260	<0.001							
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820)	\setminus					
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	l, MW-2, et	tc.)	369							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001							
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005						/	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005					/		
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005					7		
75-00-3	Chloroethane	Т	mg/L	8260	<0.001					/		
67-66-3	Chloroform	Т	mg/L	8260	<0.001					1		
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001							
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001							
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001							
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001			/				
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001							
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001							
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.00065	J						

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	\setminus					/
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	., M ₩-2, et	cc.)	369							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005							
74-88-4	Iodomethane	Т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001							
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005							
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000196							
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001				/		\	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001							
1336-36-3	PCB,Total	т	ug/L	8082		*						
12674-11-2	PCB-1016	т	ug/L	8082		*						
11104-28-2	PCB-1221	Т	ug/L	8082		*					\	
11141-16-5	PCB-1232	т	ug/L	8082		*						
53469-21-9	PCB-1242	т	ug/L	8082		*	/					
12672-29-6	PCB-1248	т	ug/L	8082		*	/					

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description																						
004-4798 MW357	MW357UG4-20	Total Dissolved Solids	*	Duplicate analysis not within control limits.																						
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 6.15. Rad error is 6.15.																						
		Gross beta		TPU is 9.89. Rad error is 9.32.																						
		lodine-131		Analysis of constituent not required and not performed.																						
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.553. Rad error is 0.553.																						
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.32. Rad error is 3.3.																						
		Technetium-99		TPU is 12.1. Rad error is 11.5.																						
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.818. Rad error is 0.815.																						
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 147. Rad error is 147.																						
004-4799 MW358	MW358UG4-20	Total Dissolved Solids	*	Duplicate analysis not within control limits.																						
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 8.26. Rad error is 8.16.																						
		Gross beta		TPU is 9.33. Rad error is 8.52.																						
		lodine-131		Analysis of constituent not required and not performed.																						
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.681. Rad error is 0.681.																						
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.74. Rad error is 3.74.																						
																								Technetium-99		TPU is 13.1. Rad error is 11.9.
																	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.979. Rad error is 0.974.							
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 125. Rad error is 125.																						
04-0981 MW359	MW359UG4-20	Total Dissolved Solids	*	Duplicate analysis not within control limits.																						
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.5. Rad error is 3.5.																						
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 5. Rad error is 5.																						
		lodine-131		Analysis of constituent not required and not performed.																						
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.722. Rad error is 0.721.																						
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.65. Rad error is 3.62.																						
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 10. Rad error is 10.																						
		Thorium-230	U 	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.757. Rad error is 0.754.																						
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 140. Rad error is 140.																						

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Point	Sample ID	Constituent	Flag	Description																		
004-4800 MW360	MW360UG4-20	Total Dissolved Solids	*	Duplicate analysis not within control limits.																		
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 6.86. Rad error is 6.82.																		
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.21. Rad error is 5.1.																		
		lodine-131		Analysis of constituent not required and not performed.																		
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.553. Rad error is 0.552.																		
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.77. Rad error is 3.76.																		
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 10.7. Rad error is 10.7.																		
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.16. Rad error is 1.16.																		
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 127. Rad error is 127.																		
004-4795 MW361	MW361UG4-20	Total Dissolved Solids	*	Duplicate analysis not within control limits.																		
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.73. Rad error is 4.73.																		
		Gross beta		TPU is 12.7. Rad error is 10.2.																		
		lodine-131		Analysis of constituent not required and not performed.																		
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.587. Rad error is 0.587.																		
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.56. Rad error is 3.53.																		
		Technetium-99		TPU is 13.2. Rad error is 12.1.																		
																				Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.99. Rad error is 0.981.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 146. Rad error is 145.																		
004-0986 MW362	MW362UG4-20	Total Dissolved Solids	*	Duplicate analysis not within control limits.																		
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 6.97. Rad error is 6.96.																		
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 8.36. Rad error is 8.36.																		
		lodine-131		Analysis of constituent not required and not performed.																		
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.54. Rad error is 0.54.																		
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.56. Rad error is 3.56.																		
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 10.7. Rad error is 10.7.																		
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.644. Rad error is 0.644.																		
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 128. Rad error is 128.																		

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4796 MW363	MW363UG4-20R	Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		Manganese	E	Result estimated due to matrix interferences.
		Sodium	E	Result estimated due to matrix interferences.
		Vinyl acetate		Sample received out of temperature at lab, resample result rep
		Acetone		Sample received out of temperature at lab, resample result rep
		Acrolein		Sample received out of temperature at lab, resample result rep
		Acrylonitrile		Sample received out of temperature at lab, resample result rep
		Benzene		Sample received out of temperature at lab, resample result rep
		Chlorobenzene		Sample received out of temperature at lab, resample result rep
		Xylenes		Sample received out of temperature at lab, resample result rep
		Styrene		Sample received out of temperature at lab, resample result rep
		Toluene		Sample received out of temperature at lab, resample result rep
		Chlorobromomethane		Sample received out of temperature at lab, resample result rep
		Bromodichloromethane		Sample received out of temperature at lab, resample result rep
		Tribromomethane		Sample received out of temperature at lab, resample result rep
		Methyl bromide		Sample received out of temperature at lab, resample result rep
		Methyl Ethyl Ketone		Sample received out of temperature at lab, resample result rep
		trans-1,4-Dichloro-2-butene		Sample received out of temperature at lab, resample result rep
		Carbon disulfide		Sample received out of temperature at lab, resample result rep
		Chloroethane		Sample received out of temperature at lab, resample result rep
		Chloroform		Sample received out of temperature at lab, resample result rep
		Methyl chloride		Sample received out of temperature at lab, resample result rep
		cis-1,2-Dichloroethene		Sample received out of temperature at lab, resample result rep
		Methylene bromide		Sample received out of temperature at lab, resample result rep
		1,1-Dichloroethane		Sample received out of temperature at lab, resample result rep
		1,2-Dichloroethane		Sample received out of temperature at lab, resample result rep
		1,1-Dichloroethylene		Sample received out of temperature at lab, resample result rep
		1,2-Dibromoethane		Sample received out of temperature at lab, resample result rep
		1,1,2,2-Tetrachloroethane		Sample received out of temperature at lab, resample result rep
		1,1,1-Trichloroethane		Sample received out of temperature at lab, resample result rep
		1,1,2-Trichloroethane		Sample received out of temperature at lab, resample result rep
		1,1,1,2-Tetrachloroethane		Sample received out of temperature at lab, resample result rep
		Vinyl chloride		Sample received out of temperature at lab, resample result rep
		Tetrachloroethene		Sample received out of temperature at lab, resample result rep
		Trichloroethene		Sample received out of temperature at lab, resample result rep
		Ethylbenzene		Sample received out of temperature at lab, resample result rep
		2-Hexanone		Sample received out of temperature at lab, resample result rep
		lodomethane		Sample received out of temperature at lab, resample result rep
		Dibromochloromethane		Sample received out of temperature at lab, resample result rep

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4796 MW363	MW363UG4-20R	Carbon tetrachloride		Sample received out of temperature at lab, resample result reported
		Dichloromethane		Sample received out of temperature at lab, resample result reported
		Methyl Isobutyl Ketone		Sample received out of temperature at lab, resample result reported
		1,2-Dibromo-3-chloropropane		Sample received out of temperature at lab, resample result reported
		1,2-Dichloropropane		Sample received out of temperature at lab, resample result reported
		trans-1,3-Dichloropropene		Sample received out of temperature at lab, resample result reported
		cis-1,3-Dichloropropene		Sample received out of temperature at lab, resample result reported
		trans-1,2-Dichloroethene		Sample received out of temperature at lab, resample result reported
		Trichlorofluoromethane		Sample received out of temperature at lab, resample result reported
		1,2,3-Trichloropropane		Sample received out of temperature at lab, resample result reported
		1,2-Dichlorobenzene		Sample received out of temperature at lab, resample result reported
		1,4-Dichlorobenzene		Sample received out of temperature at lab, resample result reported
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.51. Rad error is 3.51.
		Gross beta		TPU is 7.4. Rad error is 7.16.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.411. Rad error is 0.41.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.05. Rad error is 2.05.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.22. Rad error is 9.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.04. Rad error is 1.03.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 135.
8004-4797 MW364	MW364UG4-20R2	Calcium	E	Result estimated due to matrix interferences.
		Magnesium	Е	Result estimated due to matrix interferences.
		Manganese	N	Sample spike (MS/MSD) recovery not within control limits
		Sodium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.59. Rad error is 4.58.
		Gross beta		TPU is 12.7. Rad error is 10.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.408. Rad error is 0.408.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.41 . Rad error is 3.41 .
		Technetium-99		TPU is 11.5. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.875. Rad error is 0.872.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 159. Rad error is 159.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	MW365UG4-20R	Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		Manganese	E	Result estimated due to matrix interferences.
		Sodium	E	Result estimated due to matrix interferences.
		Vinyl acetate		Sample received out of temperature at lab, resample result repo
		Acetone		Sample received out of temperature at lab, resample result repo
		Acrolein		Sample received out of temperature at lab, resample result repo
		Acrylonitrile		Sample received out of temperature at lab, resample result repo
		Benzene		Sample received out of temperature at lab, resample result repo
		Chlorobenzene		Sample received out of temperature at lab, resample result repo
		Xylenes		Sample received out of temperature at lab, resample result repo
		Styrene		Sample received out of temperature at lab, resample result repo
		Toluene		Sample received out of temperature at lab, resample result repo
		Chlorobromomethane		Sample received out of temperature at lab, resample result rep
		Bromodichloromethane		Sample received out of temperature at lab, resample result repo
		Tribromomethane		Sample received out of temperature at lab, resample result rep
		Methyl bromide		Sample received out of temperature at lab, resample result repo
		Methyl Ethyl Ketone		Sample received out of temperature at lab, resample result rep
		trans-1,4-Dichloro-2-butene		Sample received out of temperature at lab, resample result rep
		Carbon disulfide		Sample received out of temperature at lab, resample result rep
		Chloroethane		Sample received out of temperature at lab, resample result rep
		Chloroform		Sample received out of temperature at lab, resample result rep
		Methyl chloride		Sample received out of temperature at lab, resample result rep
		cis-1,2-Dichloroethene		Sample received out of temperature at lab, resample result rep
		Methylene bromide		Sample received out of temperature at lab, resample result rep
		1,1-Dichloroethane		Sample received out of temperature at lab, resample result rep
		1,2-Dichloroethane		Sample received out of temperature at lab, resample result rep
		1,1-Dichloroethylene		Sample received out of temperature at lab, resample result rep
		1,2-Dibromoethane		Sample received out of temperature at lab, resample result rep
		1,1,2,2-Tetrachloroethane		Sample received out of temperature at lab, resample result rep
		1,1,1-Trichloroethane		Sample received out of temperature at lab, resample result rep
		1,1,2-Trichloroethane		Sample received out of temperature at lab, resample result rep
		1,1,1,2-Tetrachloroethane		Sample received out of temperature at lab, resample result rep
		Vinyl chloride		Sample received out of temperature at lab, resample result rep
		Tetrachloroethene		Sample received out of temperature at lab, resample result rep
		Trichloroethene		Sample received out of temperature at lab, resample result rep
		Ethylbenzene		Sample received out of temperature at lab, resample result rep
		2-Hexanone		Sample received out of temperature at lab, resample result rep
		lodomethane		Sample received out of temperature at lab, resample result rep
		Dibromochloromethane		Sample received out of temperature at lab, resample result rep

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0984 MW365	MW365UG4-20R	Carbon tetrachloride	_	Sample received out of temperature at lab, resample result reported
		Dichloromethane		Sample received out of temperature at lab, resample result reported
		Methyl Isobutyl Ketone		Sample received out of temperature at lab, resample result reported
		1,2-Dibromo-3-chloropropane		Sample received out of temperature at lab, resample result reported
		1,2-Dichloropropane		Sample received out of temperature at lab, resample result reported
		trans-1,3-Dichloropropene		Sample received out of temperature at lab, resample result reported
		cis-1,3-Dichloropropene		Sample received out of temperature at lab, resample result reported
		trans-1,2-Dichloroethene		Sample received out of temperature at lab, resample result reported
		Trichlorofluoromethane		Sample received out of temperature at lab, resample result reported
		1,2,3-Trichloropropane		Sample received out of temperature at lab, resample result reported
		1,2-Dichlorobenzene		Sample received out of temperature at lab, resample result reported
		1,4-Dichlorobenzene		Sample received out of temperature at lab, resample result reporte
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.87. Rad error is 6.87.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.25. Rad error is 4.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.508. Rad error is 0.507.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.42. Rad error is 3.42.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.28. Rad error is 8.28.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.808. Rad error is 0.805.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 132. Rad error is 132.
004-0982 MW366	MW366UG4-20R2	Calcium	Е	Result estimated due to matrix interferences.
		Magnesium	Е	Result estimated due to matrix interferences.
		Manganese	N	Sample spike (MS/MSD) recovery not within control limits
		Sodium	Ε	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.95. Rad error is 1.95.
		Gross beta		TPU is 13.1. Rad error is 11.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.421. Rad error is 0.42.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.47. Rad error is 3.47.
		Technetium-99		TPU is 11.7. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.647. Rad error is 0.646.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 168. Rad error is 165.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4793 MW367	MW367UG4-20R	Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		Manganese	E	Result estimated due to matrix interferences.
		Sodium	E	Result estimated due to matrix interferences.
		Vinyl acetate		Sample received out of temperature at lab, resample result repo
		Acetone		Sample received out of temperature at lab, resample result repo
		Acrolein		Sample received out of temperature at lab, resample result repo
		Acrylonitrile		Sample received out of temperature at lab, resample result repo
		Benzene		Sample received out of temperature at lab, resample result repo
		Chlorobenzene		Sample received out of temperature at lab, resample result repo
		Xylenes		Sample received out of temperature at lab, resample result repo
		Styrene		Sample received out of temperature at lab, resample result repo
		Toluene		Sample received out of temperature at lab, resample result repo
		Chlorobromomethane		Sample received out of temperature at lab, resample result repo
		Bromodichloromethane		Sample received out of temperature at lab, resample result repo
		Tribromomethane		Sample received out of temperature at lab, resample result repo
		Methyl bromide		Sample received out of temperature at lab, resample result repo
		Methyl Ethyl Ketone		Sample received out of temperature at lab, resample result repo
		trans-1,4-Dichloro-2-butene		Sample received out of temperature at lab, resample result repo
		Carbon disulfide		Sample received out of temperature at lab, resample result repo
		Chloroethane		Sample received out of temperature at lab, resample result repo
		Chloroform		Sample received out of temperature at lab, resample result repo
		Methyl chloride		Sample received out of temperature at lab, resample result repo
		cis-1,2-Dichloroethene		Sample received out of temperature at lab, resample result repo
		Methylene bromide		Sample received out of temperature at lab, resample result repo
		1,1-Dichloroethane		Sample received out of temperature at lab, resample result repo
		1,2-Dichloroethane		Sample received out of temperature at lab, resample result repo
		1,1-Dichloroethylene		Sample received out of temperature at lab, resample result repo
		1,2-Dibromoethane		Sample received out of temperature at lab, resample result repo
		1,1,2,2-Tetrachloroethane		Sample received out of temperature at lab, resample result repo
		1,1,1-Trichloroethane		Sample received out of temperature at lab, resample result repo
		1,1,2-Trichloroethane		Sample received out of temperature at lab, resample result repo
		1,1,1,2-Tetrachloroethane		Sample received out of temperature at lab, resample result repo
		Vinyl chloride		Sample received out of temperature at lab, resample result repo
		Tetrachloroethene		Sample received out of temperature at lab, resample result repo
		Trichloroethene		Sample received out of temperature at lab, resample result repo
		Ethylbenzene		Sample received out of temperature at lab, resample result repo
		2-Hexanone		Sample received out of temperature at lab, resample result repo
		lodomethane		Sample received out of temperature at lab, resample result repo
		Dibromochloromethane		Sample received out of temperature at lab, resample result repo

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4793 MW367	MW367UG4-20R	Carbon tetrachloride	i iag	Sample received out of temperature at lab, resample result report
		Dichloromethane		Sample received out of temperature at lab, resample result report
		Methyl Isobutyl Ketone		Sample received out of temperature at lab, resample result report
		1,2-Dibromo-3-chloropropane		Sample received out of temperature at lab, resample result report
		1,2-Dichloropropane		Sample received out of temperature at lab, resample result report
		trans-1,3-Dichloropropene		Sample received out of temperature at lab, resample result repor
		cis-1,3-Dichloropropene		Sample received out of temperature at lab, resample result repor
		trans-1,2-Dichloroethene		Sample received out of temperature at lab, resample result repor
		Trichlorofluoromethane		Sample received out of temperature at lab, resample result report
		1,2,3-Trichloropropane		Sample received out of temperature at lab, resample result report
		1,2-Dichlorobenzene		Sample received out of temperature at lab, resample result report
		1,4-Dichlorobenzene		Sample received out of temperature at lab, resample result report
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 5.15. Rad error is 5.1.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.51. Rad error is 5.43.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.492. Rad error is 0.491.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.99. Rad error is 3.99.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 8.53. Rad error is 8.53.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1. Rad error is 0.994.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 130. Rad error is 130.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	MW368UG4-20R	Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		Manganese	E	Result estimated due to matrix interferences.
		Sodium	E	Result estimated due to matrix interferences.
		Vinyl acetate		Sample received out of temperature at lab, resample result repo
		Acetone		Sample received out of temperature at lab, resample result repo
		Acrolein		Sample received out of temperature at lab, resample result repo
		Acrylonitrile		Sample received out of temperature at lab, resample result repo
		Benzene		Sample received out of temperature at lab, resample result repo
		Chlorobenzene		Sample received out of temperature at lab, resample result repo
		Xylenes		Sample received out of temperature at lab, resample result repo
		Styrene		Sample received out of temperature at lab, resample result repo
		Toluene		Sample received out of temperature at lab, resample result repo
		Chlorobromomethane		Sample received out of temperature at lab, resample result repo
		Bromodichloromethane		Sample received out of temperature at lab, resample result repo
		Tribromomethane		Sample received out of temperature at lab, resample result repo
		Methyl bromide		Sample received out of temperature at lab, resample result repo
		Methyl Ethyl Ketone		Sample received out of temperature at lab, resample result repo
		trans-1,4-Dichloro-2-butene		Sample received out of temperature at lab, resample result repo
		Carbon disulfide		Sample received out of temperature at lab, resample result repo
		Chloroethane		Sample received out of temperature at lab, resample result rep
		Chloroform		Sample received out of temperature at lab, resample result repo
		Methyl chloride		Sample received out of temperature at lab, resample result repo
		cis-1,2-Dichloroethene		Sample received out of temperature at lab, resample result repo
		Methylene bromide		Sample received out of temperature at lab, resample result repo
		1,1-Dichloroethane		Sample received out of temperature at lab, resample result repo
		1,2-Dichloroethane		Sample received out of temperature at lab, resample result repo
		1,1-Dichloroethylene		Sample received out of temperature at lab, resample result repo
		1,2-Dibromoethane		Sample received out of temperature at lab, resample result repo
		1,1,2,2-Tetrachloroethane		Sample received out of temperature at lab, resample result repo
		1,1,1-Trichloroethane		Sample received out of temperature at lab, resample result repo
		1,1,2-Trichloroethane		Sample received out of temperature at lab, resample result repo
		1,1,1,2-Tetrachloroethane		Sample received out of temperature at lab, resample result repo
		Vinyl chloride		Sample received out of temperature at lab, resample result repo
		Tetrachloroethene		Sample received out of temperature at lab, resample result repo
		Trichloroethene		Sample received out of temperature at lab, resample result repo
		Ethylbenzene		Sample received out of temperature at lab, resample result repo
		2-Hexanone		Sample received out of temperature at lab, resample result repo
		Iodomethane		Sample received out of temperature at lab, resample result repo
		Dibromochloromethane		Sample received out of temperature at lab, resample result repo

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	MW368UG4-20R	Carbon tetrachloride	i lag	Sample received out of temperature at lab, resample result repor
		Dichloromethane		Sample received out of temperature at lab, resample result repor
		Methyl Isobutyl Ketone		Sample received out of temperature at lab, resample result repor
		1,2-Dibromo-3-chloropropane		Sample received out of temperature at lab, resample result repor
		1,2-Dichloropropane		Sample received out of temperature at lab, resample result repor
		trans-1,3-Dichloropropene		Sample received out of temperature at lab, resample result report
		cis-1,3-Dichloropropene		Sample received out of temperature at lab, resample result report
		trans-1,2-Dichloroethene		Sample received out of temperature at lab, resample result repo
		Trichlorofluoromethane		Sample received out of temperature at lab, resample result repo
		1,2,3-Trichloropropane		Sample received out of temperature at lab, resample result repo
		1,2-Dichlorobenzene		Sample received out of temperature at lab, resample result repo
		1,4-Dichlorobenzene		Sample received out of temperature at lab, resample result repo
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 6.25. Rad error is 6.21.
		Gross beta		TPU is 9.3. Rad error is 8.95.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.474. Rad error is 0.473.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.07. Rad error is 2.07.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 8.66. Rad error is 8.65.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.31. Rad error is 1.3.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 144. Rad error is 144.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4820 MW369	MW369UG4-20	Nitrate & Nitrite	H	Analysis performed outside holding time requirement
70. 1020		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Vinyl acetate		Sample received out of temperature at lab, resample result repo
		Acetone		Sample received out of temperature at lab, resample result repo
		Acrolein		Sample received out of temperature at lab, resample result repo
		Acrylonitrile		Sample received out of temperature at lab, resample result repo
		Benzene		Sample received out of temperature at lab, resample result repo
		Chlorobenzene		Sample received out of temperature at lab, resample result repo
		Xylenes		Sample received out of temperature at lab, resample result repo
		Styrene		Sample received out of temperature at lab, resample result repo
		Toluene		Sample received out of temperature at lab, resample result repo
		Chlorobromomethane		Sample received out of temperature at lab, resample result repo
		Bromodichloromethane		Sample received out of temperature at lab, resample result repo
		Tribromomethane		Sample received out of temperature at lab, resample result repo
		Methyl bromide		Sample received out of temperature at lab, resample result repo
		Methyl Ethyl Ketone		Sample received out of temperature at lab, resample result repo
		trans-1,4-Dichloro-2-butene		Sample received out of temperature at lab, resample result repo
		Carbon disulfide		Sample received out of temperature at lab, resample result repo
		Chloroethane		Sample received out of temperature at lab, resample result repo
		Chloroform		Sample received out of temperature at lab, resample result repo
		Methyl chloride		Sample received out of temperature at lab, resample result repo
		cis-1,2-Dichloroethene		Sample received out of temperature at lab, resample result repo
		Methylene bromide		Sample received out of temperature at lab, resample result repo
		1,1-Dichloroethane		Sample received out of temperature at lab, resample result repo
		1,2-Dichloroethane		Sample received out of temperature at lab, resample result repo
		1,1-Dichloroethylene		Sample received out of temperature at lab, resample result repo
		1,2-Dibromoethane		Sample received out of temperature at lab, resample result repo
		1,1,2,2-Tetrachloroethane		Sample received out of temperature at lab, resample result repo
		1,1,1-Trichloroethane		Sample received out of temperature at lab, resample result repo
		1,1,2-Trichloroethane		Sample received out of temperature at lab, resample result repo
		1,1,1,2-Tetrachloroethane		Sample received out of temperature at lab, resample result repo
		Vinyl chloride		Sample received out of temperature at lab, resample result repo
		Tetrachloroethene		Sample received out of temperature at lab, resample result repo
		Trichloroethene		Sample received out of temperature at lab, resample result repo
		Ethylbenzene		Sample received out of temperature at lab, resample result repo
		2-Hexanone		Sample received out of temperature at lab, resample result repo
		Iodomethane		Sample received out of temperature at lab, resample result repo
		Dibromochloromethane		Sample received out of temperature at lab, resample result repo
		Carbon tetrachloride		Sample received out of temperature at lab, resample result repo
		Dichloromethane		Sample received out of temperature at lab, resample result repo

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4820 MW369	MW369UG4-20	Methyl Isobutyl Ketone	riay	Sample received out of temperature at lab, resample result report
004 4020 WWV000	WWV00000	1,2-Dibromo-3-chloropropane		Sample received out of temperature at lab, resample result report
		1,2-Dichloropropane		Sample received out of temperature at lab, resample result report
		trans-1,3-Dichloropropene		Sample received out of temperature at lab, resample result report
		cis-1,3-Dichloropropene		Sample received out of temperature at lab, resample result report
		trans-1,2-Dichloroethene		Sample received out of temperature at lab, resample result report
		Trichlorofluoromethane		Sample received out of temperature at lab, resample result report
		1,2,3-Trichloropropane		Sample received out of temperature at lab, resample result report
		• •		Sample received out of temperature at lab, resample result report
		1,2-Dichlorobenzene		Sample received out of temperature at lab, resample result repor
		1,4-Dichlorobenzene	U	
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 5.5. Rad error is 5.5.
		Gross beta		TPU is 9.58. Rad error is 9.12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.557. Rad error is 0.557.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.21. Rad error is 3.19.
		Technetium-99		TPU is 11.3. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.44. Rad error is 0.44.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 135. Rad error is 135.
004-4818 MW370	MW370UG4-20R	Boron	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 5.83. Rad error is 5.76.
		Gross beta		TPU is 15.2. Rad error is 10.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.44. Rad error is 0.44.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.96. Rad error is 2.96.
		Technetium-99		TPU is 16.8. Rad error is 15.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.662. Rad error is 0.661.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 133. Rad error is 133.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4819 MW371	MW371UG4-20R	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.93. Rad error is 7.73.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.64. Rad error is 7.46.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.48. Rad error is 0.479.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.38. Rad error is 3.38.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 13. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.641. Rad error is 0.641.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 130. Rad error is 130.
3004-4808 MW372	MW372UG4-20R	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.18. Rad error is 6.12.
		Gross beta		TPU is 17. Rad error is 11.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.238. Rad error is 0.238.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.87. Rad error is 3.87.
		Technetium-99		TPU is 19.4. Rad error is 15.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.11. Rad error is 1.1.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 120. Rad error is 120.
3004-4792 MW373	MW373UG4-20R	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 9.57. Rad error is 9.42.
		Gross beta		TPU is 8.68. Rad error is 8.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.592. Rad error is 0.592.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL $3.97.$ Rad error is $3.97.$
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 13.9. Rad error is 13.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.943. Rad error is 0.935.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 124. Rad error is 124.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0990 MW374	MW374UG4-20R	Boron	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.93. Rad error is 4.92.
		Gross beta		TPU is 8.86. Rad error is 8.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.469. Rad error is 0.468.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 2.93. Rad error is 2.93.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 13.1. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.797. Rad error is 0.793.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 138. Rad error is 138.
3004-0985 MW375	MW375UG4-20R	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 3.53. Rad error is 3.53.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 6.5. Rad error is 6.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.336. Rad error is 0.336.
	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 2.8. Rad error is 2.8.	
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 13.2. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.99. Rad error is 1.94.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 129. Rad error is 129.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Bromide	· ·	During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

During sampling, the well went dry; therefore, no sam collected. Nickel Nickel During sampling, the well went dry; therefore, no sam collected. Rhodium During sampling, the well went dry; therefore, no sam collected. Selenium During sampling, the well went dry; therefore, no sam collected. Selenium During sampling, the well went dry; therefore, no sam collected. Silver During sampling, the well went dry; therefore, no sam collected. Tantalum During sampling, the well went dry; therefore, no sam collected. Tantalum During sampling, the well went dry; therefore, no sam collected. Tantalum During sampling, the well went dry; therefore, no sam collected. Tantalum During sampling, the well went dry; therefore, no sam collected. Vanadium During sampling, the well went dry; therefore, no sam collected. Vinyl acetate Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Chlorobemane Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Chlorobemane Carbon disulfide During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Pribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chlorobethane	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
collected. Potassium Rhodium Rhodium During sampling, the well went dry; therefore, no sam collected. Selenium During sampling, the well went dry; therefore, no sam collected. Silver During sampling, the well went dry; therefore, no sam collected. Sodium During sampling, the well went dry; therefore, no sam collected. Tantalum During sampling, the well went dry; therefore, no sam collected. Thallium During sampling, the well went dry; therefore, no sam collected. Uranium Uranium Uranium During sampling, the well went dry; therefore, no sam collected. Vanadium Vanadium Zinc During sampling, the well went dry; therefore, no sam collected. Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein Acrolein Acrolein Acrolein During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Tolluene Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane Methyl Ethyl Ketone Urang sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone Urang sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone Carbon disulfide During sampling, the well went dry; therefore, no sam collected. During	004-0988 MW376	•			During sampling, the well went dry; therefore, no sample was
collected. Rhodium During sampling, the well went dry; therefore, no sam collected. Selenium Silver During sampling, the well went dry; therefore, no sam collected. Sodium During sampling, the well went dry; therefore, no sam collected. Tantalum During sampling, the well went dry; therefore, no sam collected. Uranium During sampling, the well went dry; therefore, no sam collected. Uranium During sampling, the well went dry; therefore, no sam collected. Zinc During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Dur			Nickel		During sampling, the well went dry; therefore, no sample was collected.
collected. Selenium During sampling, the well went dry; therefore, no sam collected. Sodium During sampling, the well went dry; therefore, no sam collected. Tantalum During sampling, the well went dry; therefore, no sam collected. Thallium During sampling, the well went dry; therefore, no sam collected. Uranium During sampling, the well went dry; therefore, no sam collected. Zinc During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During			Potassium		During sampling, the well went dry; therefore, no sample was collected.
Silver Sodium Sodium During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Tantalum During sampling, the well went dry; therefore, no sam collected. Thallium During sampling, the well went dry; therefore, no sam collected. Uranium During sampling, the well went dry; therefore, no sam collected. Vanadium During sampling, the well went dry; therefore, no sam collected. Zinc During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein Acrolein Acrolein Acrolein Acrolein Acroling sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, n			Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
Sodium During sampling, the well went dry; therefore, no sam collected. Tantalum During sampling, the well went dry; therefore, no sam collected. Thallium During sampling, the well went dry; therefore, no sam collected. Uranium During sampling, the well went dry; therefore, no sam collected. Vanadium During sampling, the well went dry; therefore, no sam collected. Zinc During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Benzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sa			Selenium		During sampling, the well went dry; therefore, no sample wa collected.
Tantalum During sampling, the well went dry; therefore, no sam collected. Thallium During sampling, the well went dry; therefore, no sam collected. Uranium During sampling, the well went dry; therefore, no sam collected. Vanadium During sampling, the well went dry; therefore, no sam collected. Zinc During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Benzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone Uring sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went			Silver		During sampling, the well went dry; therefore, no sample wa collected.
Thallium During sampling, the well went dry; therefore, no sam collected. Uranium During sampling, the well went dry; therefore, no sam collected. Vanadium During sampling, the well went dry; therefore, no sam collected. Zinc During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone Uring sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected. Chloroethane			Sodium		During sampling, the well went dry; therefore, no sample wa collected.
Uranium Uranium During sampling, the well went dry; therefore, no sam collected. Vanadium During sampling, the well went dry; therefore, no sam collected. Zinc During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Benzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam			Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
oollected. During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Benzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone Uring sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected.			Thallium		During sampling, the well went dry; therefore, no sample wa collected.
collected. Zinc During sampling, the well went dry; therefore, no sam collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Benzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected. Chloroethane			Uranium		During sampling, the well went dry; therefore, no sample wa collected.
Collected. Vinyl acetate During sampling, the well went dry; therefore, no sam collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Benzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Trans-1,4-Dichloro-2-butene During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected.			Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
collected. Acetone During sampling, the well went dry; therefore, no sam collected. Acrolein During sampling, the well went dry; therefore, no sam collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Benzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected.			Zinc		During sampling, the well went dry; therefore, no sample wa collected.
Acrolein Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Benzene During sampling, the well went dry; therefore, no sam collected. Benzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected.			Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
Collected. Acrylonitrile During sampling, the well went dry; therefore, no sam collected. Benzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Trans-1,4-Dichloro-2-butene During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected.			Acetone		During sampling, the well went dry; therefore, no sample wa collected.
collected. Benzene During sampling, the well went dry; therefore, no sam collected. Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane			Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
Chlorobenzene Chlorobenzene During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Trans-1,4-Dichloro-2-butene During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected.			Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
Collected. Xylenes During sampling, the well went dry; therefore, no sam collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected.			Benzene		During sampling, the well went dry; therefore, no sample wa collected.
collected. Styrene During sampling, the well went dry; therefore, no sam collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected.			Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
collected. Toluene During sampling, the well went dry; therefore, no sam collected. Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Trans-1,4-Dichloro-2-butene Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected.			Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
Chlorobromomethane Chlorobromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Trans-1,4-Dichloro-2-butene Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected.			Styrene		During sampling, the well went dry; therefore, no sample wa collected.
collected. Bromodichloromethane During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected.			Toluene		During sampling, the well went dry; therefore, no sample wa collected.
collected. Tribromomethane During sampling, the well went dry; therefore, no sam collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. trans-1,4-Dichloro-2-butene During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected.			Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
collected. Methyl bromide During sampling, the well went dry; therefore, no sam collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. trans-1,4-Dichloro-2-butene Carbon disulfide During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected.			Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
collected. Methyl Ethyl Ketone During sampling, the well went dry; therefore, no sam collected. trans-1,4-Dichloro-2-butene During sampling, the well went dry; therefore, no sam collected. Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected.			Tribromomethane		During sampling, the well went dry; therefore, no sample wa
collected. trans-1,4-Dichloro-2-butene trans-1,4-Dichloro-2-butene Carbon disulfide Carbon disulfide Chloroethane collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam collected.			Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
Carbon disulfide Carbon disulfide Carbon disulfide Chloroethane Collected. During sampling, the well went dry; therefore, no sam collected. During sampling, the well went dry; therefore, no sam			Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa
Carbon disulfide During sampling, the well went dry; therefore, no sam collected. Chloroethane During sampling, the well went dry; therefore, no sam collected.			trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa
Chloroethane During sampling, the well went dry; therefore, no sam			Carbon disulfide		During sampling, the well went dry; therefore, no sample wa
COIIECTECI.			Chloroethane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample w collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample w collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample w collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample w collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample w collected.
		рН		During sampling, the well went dry; therefore, no sample w collected.
		Eh		During sampling, the well went dry; therefore, no sample w collected.
		Temperature		During sampling, the well went dry; therefore, no sample w collected.
		Aluminum		During sampling, the well went dry; therefore, no sample w collected.
		Antimony		During sampling, the well went dry; therefore, no sample w collected.
		Arsenic		During sampling, the well went dry; therefore, no sample w collected.
		Barium		During sampling, the well went dry; therefore, no sample w collected.
		Beryllium		During sampling, the well went dry; therefore, no sample w collected.
		Boron		During sampling, the well went dry; therefore, no sample w collected.
		Cadmium		During sampling, the well went dry; therefore, no sample w collected.
		Calcium		During sampling, the well went dry; therefore, no sample w collected.
		Chromium		During sampling, the well went dry; therefore, no sample w collected.
		Cobalt		During sampling, the well went dry; therefore, no sample w collected.
		Copper		During sampling, the well went dry; therefore, no sample w collected.
		Iron		During sampling, the well went dry; therefore, no sample w collected.
		Lead		During sampling, the well went dry; therefore, no sample w collected.
		Magnesium		During sampling, the well went dry; therefore, no sample w collected.
		Manganese		During sampling, the well went dry; therefore, no sample w collected.
		Mercury		During sampling, the well went dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
		Acetone		During sampling, the well went dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample we collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	·	Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	, -	1,2-Dichlorobenzene	J	During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG4-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf 3.72. Rad error is 3.71.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 6.72. Rad error is 6.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.727. Rad error is 0.727.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To 3.01. Rad error is 3.01.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.889. Rad error is 0.881.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 146. Rad error is 145.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG4-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.27. Rad error is 5.26.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 9.23. Rad error is 9.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.577. Rad error is 0.577.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.57. Rad error is 4.53.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 10.3. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.726. Rad error is 0.725.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 170. Rad error is 168.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG4-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	TB2UG4-20	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG4-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG4-20	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB6UG4-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC TB6U	TB6UG4-20	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4799 MW358	MW358DUG4-20	Barometric Pressure Reading	_	Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 8.1. Rad error is 8.06.
		Gross beta		TPU is 8.27. Rad error is 7.38.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.713. Rad error is 0.712.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.77. Rad error is 2.77.
		Technetium-99		TPU is 12.2. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.736. Rad error is 0.733.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 131. Rad error is 131.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4796 MW363	MW363UG4-20R2	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	MW365UG4-20R2	Bromide	_	Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4793 MW367	MW367UG4-20R2	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	MW368UG4-20R2	Bromide	_	Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045


Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4820 MW369	MW369UG4-20R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-980-008-982/1</u>

LAB ID: None
For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2020 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The third quarter 2020 data used to conduct the statistical analyses were collected in July and August 2020. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^{a,b}	SG	UCRS
MW377 ^{a,b}	SG	UCRS

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells TW: downgradient or test wells SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

^b Well was dry this quarter, and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2020. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data.

lower TL = $X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Acetone Aluminum Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Methylene Chloride Molybdenum Nickel Oxidation-Reduction Potential PCB, Total PCB-1242 рН* Potassium Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Trichloroethene Vanadium

Zinc

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	4	3	Yes
Antimony	7	7	0	No
<u> </u>	7	7	0	
Beryllium				No
Boron	7	0	7	Yes
Bromide	7	5	2	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	5	2	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	6	1	Yes
Conductivity	7	0	7	Yes
Copper	7	1	6	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	3	4	Yes
Methylene chloride	7	6	1	Yes
Molybdenum	7	3	4	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
27.1		Observation	Observation	Analysis?
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	6	1	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	6	1	Yes
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
pH	7	0	7	Yes
Potassium	7	1	6	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	5	2	Yes
ZIIIV	,		_	100

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	5	1	Yes
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	5	1	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	1	5	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium				
Carbon disulfide	6	0	6	Yes No
	6	6		
Chemical Oxygen Demand (COD) Chloride	6	2	4	Yes
Chlorobenzene	6	0	6	Yes
		6	0	No
Chloroethane	6	6	0	No
Chloroform Chloromethane	6	6	0	No
	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene		6	Ü	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	1	5	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	1	5	Yes
Methylene chloride	6	4	2	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Molybdenum	6	5	1	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	5	1	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	5	1	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	2	4	Yes

 \boldsymbol{Bold} denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum		5	1	Yes
	6	6	0	No
Antimony				
Beryllium	6	6	0	No
Beta activity	6	1	5	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	2	4	Yes
Chloride	6		6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	5	1	Yes
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	4	2	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	1	5	Yes
Methylene chloride	6	4	2	Yes

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	5	1	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	2	4	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 30, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for calcium, dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

This quarter's results identified historical background exceedances for beta activity, calcium, conductivity, dissolved solids, oxidation-reduction potential, and technetium-99.

LRGA

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Technetium-99
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential, Technetium-99
MW365: Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW368: Calcium, Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential
MW371: Calcium, Oxidation-Reduction Potential, Sulfate	MW369: Oxidation-Reduction Potential	MW370: Beta activity, Oxidation-Reduction Potential, Technetium-99
MW374: Oxidation-Reduction Potential	MW372: Beta Activity, Calcium, Conductivity, Dissolved Solids, Oxidation-Reduction Potential, Technetium-99	MW373: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate		

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	Current results exceed statistically derived historical background concentration in MW368 and MW371.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, and MW368.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	3.88	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Beta Activity	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW372.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Methylene Chloride	Tolerance Interval	0.36	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration.
pH	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cis-1,2- Dichloroethene	Tolerance Interval	0.80	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW361, MW364, MW367, MW370, and MW373.
pH	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

¹ A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 4, 6, and 3 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

UCRS

This quarter's results showed no exceedances in wells located downgradient of the landfill.

<u>URGA</u>

This quarter's results showed no exceedances in wells located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.10, Exhibit D.11, and Exhibit D.12, respectively.

Exhibit D.10. Test Summaries for Qualified Parameters for Current Background—UCRS

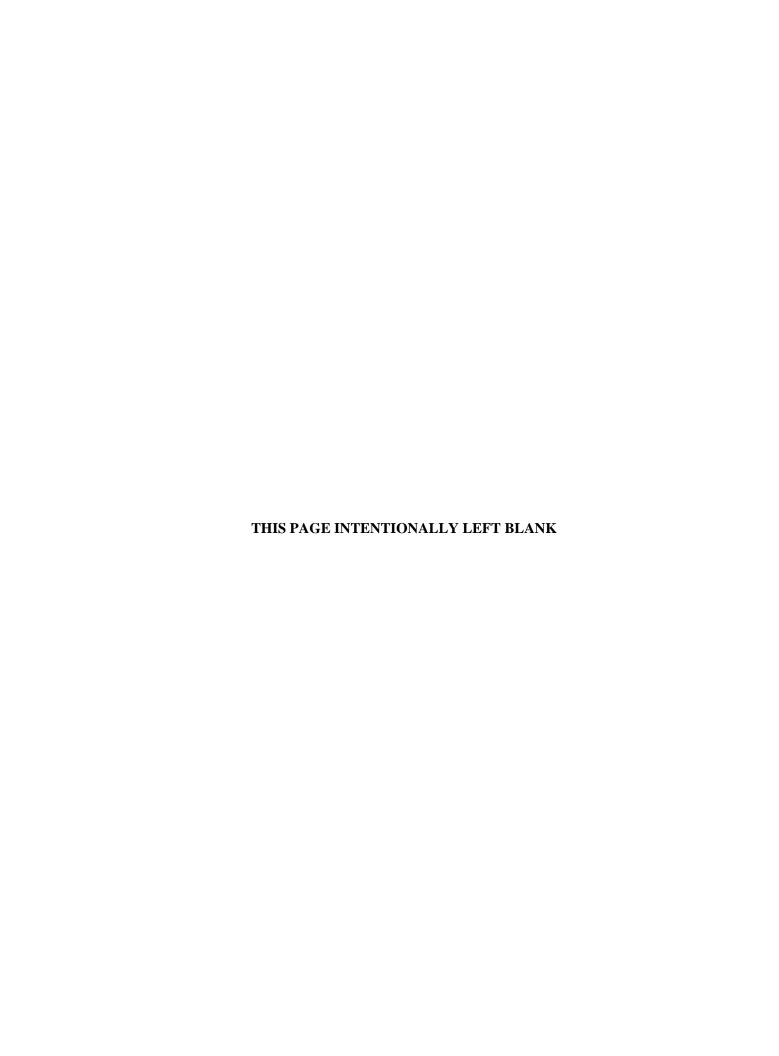
Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.53	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Oxygen	Tolerance Interval	0.78	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.19	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.95	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.83	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Calcium	Tolerance Interval	0.53	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.27	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.39	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.11	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.74	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation


Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.68	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.11	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.77	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S = 6.859

CV(1)=2.078

K factor**= 2.523

TL(1)=20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678

CV(2) = -4.521

K factor=** 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
10/0/2003	0.2	1.005
Well Number:	MW374	11003
		LN(Result)
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Well Number: Date Collected 10/8/2002	MW374 Result 21.3	LN(Result) 3.059
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 21.3 20	LN(Result) 3.059 2.996
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 21.3 20 4.11	LN(Result) 3.059 2.996 1.413
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 21.3 20 4.11 1.41	LN(Result) 3.059 2.996 1.413 0.344
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 21.3 20 4.11 1.41 1.09	LN(Result) 3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

MW374 Upgradient

MW375 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-2.996

-2.996

N/A

N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.05	N/A	-2.996	N/A
MW362	Downgradient	Yes	0.022	N/A	-3.817	NO
MW365	Downgradient	No	0.0245	N/A	-3.709	N/A
MW368	Downgradient	Yes	0.125	N/A	-2.079	NO
MW371	Upgradient	Yes	1.17	N/A	0.157	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

N/A

0.05

0.05

No

No

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor=** 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2)=1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 0.2	0.693 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00521	N/A	-5.257	NO
MW362	Downgradient	Yes	0.0195	N/A	-3.937	NO
MW365	Downgradient	Yes	0.00795	N/A	-4.835	NO
MW368	Downgradient	Yes	0.00691	N/A	-4.975	NO
MW371	Upgradient	Yes	0.0111	N/A	-4.501	NO
MW374	Upgradient	Yes	0.0151	N/A	-4.193	NO
MW375	Sidegradient	Yes	0.00852	N/A	-4.765	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

S= 0.474 **CV(1)**=0.340

K factor=** 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279

S= 0.332

CV(2)=1.190

K factor=** 2.523

TL(2)=1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.742
Date Collected	Result	
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2.1 2.1 1.9 1 1.9	0.742 0.742 0.642 0.000 0.642

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	Yes	0.0936	NO	-2.369	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.65	NO	-0.431	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 34.100 S = 13.637 CV(1) = 0.400

K factor**= 2.523

TL(1) = 68.505

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.466S = 0.356

CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.209
Date Collected	Result	
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376

MW377 Sidegradient

MW375 Sidegradient

Yes

utilizing TL(1).

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	5.77	NO	1.753	N/A
MW362	Downgradient	Yes	21.8	NO	3.082	N/A
MW365	Downgradient	Yes	25.8	NO	3.250	N/A
MW368	Downgradient	Yes	71.2	YES	4.265	N/A
MW371	Upgradient	Yes	69	YES	4.234	N/A
MW374	Upgradient	Yes	20.5	NO	3.020	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

13.2

NO

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

MW368 MW371

2.580

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

K factor**= 2.523

TL(1)= 251.437 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.000 S = 0.702

CV(2) = 0.175

K factor=** 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW359	Downgradient	No	20	N/A	2.996	N/A
	MW362	Downgradient	No	20	N/A	2.996	N/A
	MW365	Downgradient	No	20	N/A	2.996	N/A
	MW368	Downgradient	Yes	15.4	NO	2.734	N/A
	MW371	Upgradient	Yes	10.1	NO	2.313	N/A
	MW374	Upgradient	No	20	N/A	2.996	N/A
	MW375	Sidegradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor**= 2.523

TL(1)= 310.697 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 3.620 **S**= 1.590

CV(2) = 0.439

K factor=** 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.294
Date Collected	Result	
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data		•			
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	1.45	NO	0.372	N/A
MW362	Downgradient	Yes	3.89	NO	1.358	N/A
MW365	Downgradient	Yes	2.82	NO	1.037	N/A
MW368	Downgradient	Yes	2.75	NO	1.012	N/A
MW371	Upgradient	Yes	3.75	NO	1.322	N/A
MW374	Upgradient	Yes	54.5	NO	3.998	N/A
MW375	Sidegradient	Yes	3.64	NO	1.292	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1)=1.314

K factor**= 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor=** 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	No	0.001	N/A	-6.908	N/A
MW365	Downgradient	Yes	0.00175	N/A	-6.348	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	No	0.00044	2 N/A	-7.724	N/A
MW374	Upgradient	No	0.00064	4 N/A	-7.348	N/A
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2020 Statistical Analysis **Conductivity** UNITS: umho/cm **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor**= 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.915
Date Collected	Result	
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	221	NO	5.398	N/A
MW362	Downgradient	Yes	697	NO	6.547	N/A
MW365	Downgradient	Yes	405	NO	6.004	N/A
MW368	Downgradient	Yes	544	NO	6.299	N/A
MW371	Upgradient	Yes	527	NO	6.267	N/A
MW374	Upgradient	Yes	687	NO	6.532	N/A
MW375	Sidegradient	Yes	341	NO	5.832	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison UCRS** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072

CV(1) = 1.275

K factor**= 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915 CV(2) = -0.270

K factor=** 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00096	2 N/A	-6.946	NO
MW362	Downgradient	Yes	0.00102	N/A	-6.888	NO
MW365	Downgradient	Yes	0.00585	N/A	-5.141	NO
MW368	Downgradient	Yes	0.00047	1 N/A	-7.661	NO
MW371	Upgradient	Yes	0.00166	N/A	-6.401	NO
MW374	Upgradient	No	0.002	N/A	-6.215	N/A
MW375	Sidegradient	Yes	0.00046	9 N/A	-7.665	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.138 S = 0.621

CV(1) = 0.546

K factor**= 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor=** 2.523

TL(2) = 1.441

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
,	MW359	Downgradient	Yes	3.59	YES	1.278	N/A	
	MW362	Downgradient	Yes	3.03	YES	1.109	N/A	
	MW365	Downgradient	Yes	1.53	NO	0.425	N/A	
	MW368	Downgradient	Yes	2.72	YES	1.001	N/A	
	MW371	Upgradient	Yes	2.5	NO	0.916	N/A	
	MW374	Upgradient	Yes	0.7	NO	-0.357	N/A	
	MW375	Sidegradient	Yes	1.8	NO	0.588	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW368

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor=** 2.523

TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.308

S = 0.383 CV(2) = 0.061

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 7.035
Date Collected	Result	
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	146	NO	4.984	N/A	
MW362	Downgradient	Yes	377	NO	5.932	N/A	
MW365	Downgradient	Yes	270	NO	5.598	N/A	
MW368	Downgradient	Yes	330	NO	5.799	N/A	
MW371	Upgradient	Yes	336	NO	5.817	N/A	
MW374	Upgradient	Yes	383	NO	5.948	N/A	
MW375	Sidegradient	Yes	197	NO	5.283	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

S = 6.487

CV(1)=0.981

K factor**= 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.363 S = 1.147

CV(2) = 0.841

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.135
Date Collected	Result	
Date Collected 10/8/2002	Result 23	3.135
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0364	NO	-3.313	N/A
MW362	Downgradient	Yes	0.044	NO	-3.124	N/A
MW365	Downgradient	No	0.1	N/A	-2.303	N/A
MW368	Downgradient	Yes	0.0747	NO	-2.594	N/A
MW371	Upgradient	Yes	0.772	NO	-0.259	N/A
MW374	Upgradient	Yes	0.878	NO	-0.130	N/A
MW375	Sidegradient	Yes	0.0384	NO	-3.260	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.347 S = 3.019

CV(1)=0.266

K factor=** 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

K factor=** 2.523

TL(2) = 2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.9962.7792.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	3.12	NO	1.138	N/A	
MW362	Downgradient	Yes	9.32	NO	2.232	N/A	
MW365	Downgradient	Yes	12.1	NO	2.493	N/A	
MW368	Downgradient	Yes	16.5	NO	2.803	N/A	
MW371	Upgradient	Yes	11.4	NO	2.434	N/A	
MW374	Upgradient	Yes	5.4	NO	1.686	N/A	
MW375	Sidegradient	Yes	5.25	NO	1.658	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248 S = 0.222

CV(1) = 0.894

K factor**= 2.523

TL(1)= 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.873 **S**= 1.068

CV(2) = -0.570

K factor=** 2.523

TL(2) = 0.821

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	No	0.00114	N/A	-6.777	N/A	
MW362	Downgradient	No	0.005	N/A	-5.298	N/A	
MW365	Downgradient	Yes	0.00826	NO	-4.796	N/A	
MW368	Downgradient	Yes	0.00521	NO	-5.257	N/A	

MW371 Upgradient 0.0326 NO -3.423N/A Yes MW374 Upgradient Yes 0.313 NO N/A -1.1620.00131 MW375 Sidegradient No N/A -6.638N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 5.125

CV(1) = 0.293

K factor**= 2.523

TL(1)= 8.910

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.595 **S**= 0.296

S = 1.500

CV(2) = 0.186

K factor=** 2.523

TL(2) = 2.343

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	5	1.609
7/15/2002	10	2.303
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW359	Downgradient	No	5	N/A	1.609	N/A
	MW362	Downgradient	No	5	N/A	1.609	N/A
	MW365	Downgradient	Yes	1.79	NO	0.582	N/A
	MW368	Downgradient	No	5	N/A	1.609	N/A
	MW371	Upgradient	No	5	N/A	1.609	N/A
	MW374	Upgradient	No	5	N/A	1.609	N/A
	MW375	Sidegradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

S = 0.010

CV(1) = 1.650

K factor**= 2.523

TL(1) = 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.108 S = 1.239

CV(2) = -0.203

K factor=** 2.523

TL(2) = -2.983

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -6.110
Date Collected	Result	` '
Date Collected 10/8/2002	Result 0.00222	-6.110
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data	
-----------------------------	--

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	Yes	0.000458	8 N/A	-7.689	NO
MW365	Downgradient	No	0.001	N/A	-6.908	N/A
MW368	Downgradient	Yes	0.000494	4 N/A	-7.613	NO
MW371	Upgradient	Yes	0.000393	3 N/A	-7.842	NO
MW374	Upgradient	Yes	0.000203	3 N/A	-8.502	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S= 0.022

CV(1)=0.980**K** factor**= 2.523 TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

CV(2) = -0.255

K factor=** 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.005 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Da	ta
Well No.	Gradient	Detected?

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00324	NO	-5.732	N/A
MW362	Downgradient	Yes	0.00272	NO	-5.907	N/A
MW365	Downgradient	Yes	0.00928	NO	-4.680	N/A
MW368	Downgradient	Yes	0.00211	NO	-6.161	N/A
MW371	Upgradient	Yes	0.00595	NO	-5.124	N/A
MW374	Upgradient	Yes	0.00233	NO	-6.062	N/A
MW375	Sidegradient	Yes	0.00657	NO	-5.025	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.281 **S**= 78.889 **CV(1)**= 3.541

K factor**= 2.523

TL(1)= 221.319 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.642 S = 1.729

CV(2) = 0.475

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	171	N/A	5.142	YES
MW362	Downgradient	Yes	340	N/A	5.829	YES
MW365	Downgradient	Yes	396	N/A	5.981	YES
MW368	Downgradient	Yes	250	N/A	5.521	YES
MW371	Upgradient	Yes	361	N/A	5.889	YES
MW374	Upgradient	Yes	304	N/A	5.717	YES
MW375	Sidegradient	Yes	374	N/A	5.924	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW359
MW362
MW365
MW368
MW371
MW374
MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** PCB, Total **UNITS: UG/L UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.224

CV(1)=0.922S = 0.207

K factor**= 2.523

TL(1) = 0.746

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.647 S = 0.440

CV(2) = -0.267

K factor=** 2.523

TL(2) = -0.537

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.17	-1.772
10/6/2003	0.17	-1.772
7/13/2004	0.18	-1.715
7/25/2005	0.17	-1.772
4/5/2006	0.18	-1.715
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.772
Date Collected	Result	,
Date Collected 7/9/2003	Result 0.17	-1.772
Date Collected 7/9/2003 10/7/2003	Result 0.17 0.17	-1.772 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.17 0.17 0.18	-1.772 -1.772 -1.715
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.17 0.17 0.18 0.17	-1.772 -1.772 -1.715 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.17 0.17 0.18 0.17 0.18	-1.772 -1.772 -1.715 -1.772 -1.715

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	No	0.0997	N/A	-2.306	N/A		
MW362	Downgradient	No	0.0951	N/A	-2.353	N/A		
MW365	Downgradient	Yes	0.0709	NO	-2.646	N/A		
MW368	Downgradient	No	0.1	N/A	-2.303	N/A		
MW371	Upgradient	No	0.0942	N/A	-2.362	N/A		
MW374	Upgradient	No	0.0962	N/A	-2.341	N/A		
MW375	Sidegradient	No	0.0946	N/A	-2.358	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.159 **S**= 0.224

CV(1)=1.409

K factor**= 2.523

TL(1)= 0.726

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.134 S = 0.579

CV(2) = -0.272

K factor**= 2.523

TL(2) = -0.672

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/9/2003	0.13	-2.040
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/25/2005	0.09	-2.408
4/5/2006	0.1	-2.303
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.040
Date Collected	Result	
Date Collected 7/9/2003	Result 0.13	-2.040
Date Collected 7/9/2003 10/7/2003	Result 0.13 0.09	-2.040 -2.408
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.13 0.09 0.1	-2.040 -2.408 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303 -2.303

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	No	0.0997	N/A	-2.306	N/A	
MW362	Downgradient	No	0.0951	N/A	-2.353	N/A	
MW365	Downgradient	Yes	0.0709	N/A	-2.646	NO	
MW368	Downgradient	No	0.1	N/A	-2.303	N/A	
MW371	Upgradient	No	0.0942	N/A	-2.362	N/A	
MW374	Upgradient	No	0.0962	N/A	-2.341	N/A	
MW375	Sidegradient	No	0.0946	N/A	-2.358	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295

CV(1)=0.045

K factor=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X = 1.889

S = 0.046

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
	MW374 Result	LN(Result)
Well Number:		LN(Result)
Well Number: Date Collected	Result	
Well Number: Date Collected 3/18/2002	Result 5.75	1.749
Well Number: Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Well Number: Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Well Number: Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Well Number: Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<>
MW359	Downgradien	t Yes	6.23	NO	1.829	N/A
MW362	Downgradien	t Yes	6.93	NO	1.936	N/A
MW365	Downgradien	t Yes	6.23	NO	1.829	N/A
MW368	Downgradien	t Yes	6.53	NO	1.876	N/A
MW371	Upgradient	Yes	6.42	NO	1.859	N/A
MW374	Upgradient	Yes	6.53	NO	1.876	N/A
MW375	Sidegradient	Yes	6.03	NO	1.797	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S= 0.907 **CV(1)**=0.718

K factor**= 2.523

TL(1) = 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

.752 CV(2) = -32.218

K factor**= 2.523

TL(2) = 1.874

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.112
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	· Data			
337 11 NT	_	1.		

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.3	N/A	-1.204	N/A
MW362	Downgradient	Yes	0.29	NO	-1.238	N/A
MW365	Downgradient	Yes	0.291	NO	-1.234	N/A
MW368	Downgradient	Yes	0.465	NO	-0.766	N/A
MW371	Upgradient	Yes	0.504	NO	-0.685	N/A
MW374	Upgradient	Yes	0.407	NO	-0.899	N/A
MW375	Sidegradient	Yes	0.258	NO	-1.355	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Sodium** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor**= 2.523

TL(1)= 367.800 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356 CV(2) = 0.069

K factor=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	Yes	34.9	NO	3.552	N/A		
MW362	Downgradient	Yes	137	NO	4.920	N/A		
MW365	Downgradient	Yes	55.8	NO	4.022	N/A		
MW368	Downgradient	Yes	37.9	NO	3.635	N/A		
MW371	Upgradient	Yes	28.9	NO	3.364	N/A		
MW374	Upgradient	Yes	121	NO	4.796	N/A		
MW375	Sidegradient	Yes	53.1	NO	3.972	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 6.469

S = 3.153

CV(1) = 0.487

K factor=** 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background

X = 1.794

S = 0.357

CV(2) = 0.199

K factor**= 2.523

TL(2)=2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
-		LN(Result) 1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5.6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5 6 5 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	45.4	YES	3.816	N/A	
MW362	Downgradient	Yes	32.3	YES	3.475	N/A	
MW365	Downgradient	Yes	57.3	YES	4.048	N/A	
MW368	Downgradient	Yes	81	YES	4.394	N/A	
MW371	Upgradient	Yes	53.6	YES	3.982	N/A	
MW374	Upgradient	Yes	9.1	NO	2.208	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

YES

24.3

Yes

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

MW359 MW362

3.190

MW365

MW368 MW371

1411275

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.631 S = 24.314 CV(1) = 1.379

K factor**= 2.523

TL(1)= 78.977 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979 CV(2) = 0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

J	Current Quarter Data						
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
-	MW359	Downgradient	Yes	1.12	N/A	0.113	NO
	MW362	Downgradient	Yes	2.27	N/A	0.820	NO
	MW365	Downgradient	Yes	0.649	N/A	-0.432	NO
	MW368	Downgradient	Yes	1.41	N/A	0.344	NO
	MW371	Upgradient	Yes	2.48	N/A	0.908	NO
	MW374	Upgradient	Yes	2.37	N/A	0.863	NO
	MW375	Sidegradient	Yes	0.877	N/A	-0.131	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor**= 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.867 S = 1.0

 $S= 1.065 \quad CV(2)=0.219$

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
•	MW359	Downgradient	No	10	N/A	2.303	N/A	
	MW362	Downgradient	Yes	14	N/A	2.639	NO	
	MW365	Downgradient	Yes	12.4	N/A	2.518	NO	
	MW368	Downgradient	Yes	6.88	N/A	1.929	NO	
	MW371	Upgradient	Yes	6.12	N/A	1.812	NO	
	MW374	Upgradient	Yes	32.7	N/A	3.487	NO	
	MW375	Sidegradient	Yes	4.8	N/A	1.569	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1)=1.319

K factor**= 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

CV(2) = -0.265

K factor=** 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.02	N/A	-3.912	N/A
MW362	Downgradient	No	0.02	N/A	-3.912	N/A
MW365	Downgradient	No	0.02	N/A	-3.912	N/A
MW368	Downgradient	Yes	0.00347	/ N/A	-5.664	NO
MW371	Upgradient	Yes	0.0064	N/A	-5.051	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083

CV(1)=1.380

K factor**= 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259 S = 0.840

CV(2) = -0.258

K factor=** 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 0.025	-3.689
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data
Wall No	Gradient

	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
,	MW359	Downgradient	Yes	0.00581	N/A	-5.148	NO
	MW362	Downgradient	Yes	0.00479	N/A	-5.341	NO
	MW365	Downgradient	No	0.00816	N/A	-4.809	N/A
	MW368	Downgradient	No	0.0054	N/A	-5.221	N/A
	MW371	Upgradient	No	0.00632	N/A	-5.064	N/A
	MW374	Upgradient	No	0.00426	N/A	-5.458	N/A
	MW375	Sidegradient	No	0.00496	N/A	-5.306	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 372.563 S = 1447.319CV(1) = 3.885

K factor**= 2.523

TL(1)= 4024.149 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.736 S = 1.603 CV(2) = 0.586

K factor=** 2.523

TL(2) = 6.780

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	5	1.609
4/22/2002	10	2.303
7/15/2002	14	2.639
10/8/2002	10	2.303
1/8/2003	10	2.303
4/3/2003	10	2.303
7/8/2003	10	2.303
10/6/2003	5800	8.666
Well Number:	MW372	
Well Nullibel.	WI W 3 / 2	
Date Collected	1.1 0 / 2	LN(Result)
	1.1 0 / 2	LN(Result) 2.639
Date Collected	Result	
Date Collected 3/19/2002	Result 14	2.639
Date Collected 3/19/2002 4/23/2002	Result 14 10	2.639 2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 14 10 10	2.639 2.303 2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 14 10 10 10	2.639 2.303 2.303 2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 14 10 10 10 10	2.639 2.303 2.303 2.303 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	5	N/A	1.609	N/A	
MW360	Downgradient	No	5	N/A	1.609	N/A	
MW363	Downgradient	Yes	1.82	N/A	0.599	NO	
MW366	Downgradient	No	5	N/A	1.609	N/A	
MW369	Upgradient	No	5	N/A	1.609	N/A	
MW372	Upgradient	No	5	N/A	1.609	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.625 S = 0.774 CV(1) = 1.239 K factor**= 2.523
 TL(1) = 2.578 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.973 S = 0.935 CV(2) = -0.961 K factor**= 2.523
 TL(2) = 1.386 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.255 -1.366-1.6094/22/2002 0.2 7/15/2002 0.322 -1.13310/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.60910/6/2003 0.689 -0.373MW372 Well Number: Date Collected Result LN(Result) 3/19/2002 2.61 0.959 0.2 4/23/2002 -1.6097/16/2002 1.14 0.131 10/8/2002 0.862 -0.1491/7/2003 2.32 0.842 4/2/2003 0.2 -1.6097/9/2003 0.2 -1.60910/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.05	N/A	-2.996	N/A
MW360	Downgradient	Yes	0.19	N/A	-1.661	NO
MW363	Downgradient	No	0.0251	N/A	-3.685	N/A
MW366	Downgradient	No	0.05	N/A	-2.996	N/A
MW369	Upgradient	No	0.05	N/A	-2.996	N/A
MW372	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L Beta activity **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=15.996 S=11.899 CV(1)=0.744

K factor**= 2.523 TL(1) = 46.017 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.497 S = 0.783 CV(2) = 0.314

K factor=** 2.523

TL(2) = 4.473

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369		
Date Collected	Result	LN(Result)	
3/18/2002	32.5	3.481	
4/22/2002	35.4	3.567	
7/15/2002	12.9	2.557	
10/8/2002	7.59	2.027	
1/8/2003	9.58	2.260	
4/3/2003	6.69	1.901	
7/8/2003	9.1	2.208	
10/6/2003	7.31	1.989	
Well Number:	MW372		
Well Number: Date Collected	MW372 Result	LN(Result)	
		LN(Result) 3.350	
Date Collected	Result		
Date Collected 3/19/2002	Result 28.5	3.350	
Date Collected 3/19/2002 4/23/2002	Result 28.5 5.37	3.350 1.681	
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 28.5 5.37 19.9	3.350 1.681 2.991	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 28.5 5.37 19.9 38.7	3.350 1.681 2.991 3.656	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 28.5 5.37 19.9 38.7 13	3.350 1.681 2.991 3.656 2.565	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	20.1	N/A	3.001	N/A	
MW360	Downgradient	No	6.42	N/A	1.859	N/A	
MW363	Downgradient	Yes	11.1	N/A	2.407	N/A	
MW366	Downgradient	Yes	41.7	N/A	3.731	N/A	
MW369	Upgradient	Yes	17.8	N/A	2.879	N/A	
MW372	Upgradient	Yes	76.1	YES	4.332	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

MW372

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.985
 S= 0.825
 CV(1)=0.838
 K factor**= 2.523
 TL(1)= 3.067
 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.430
 S= 0.990
 CV(2)=-2.302
 K factor**= 2.523
 TL(2)= 2.068
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 2 0.693 0.693 4/22/2002 2 7/15/2002 2 0.693 10/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.60910/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.6932 4/23/2002 0.693 7/16/2002 2 0.693 10/8/2002 0.492 -0.7091/7/2003 0.492 -0.7094/2/2003 0.6 -0.511 7/9/2003 0.57 -0.56210/7/2003 0.604 -0.504

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
Downgradient	Yes	0.338	NO	-1.085	N/A			
Downgradient	Yes	0.0366	NO	-3.308	N/A			
Downgradient	Yes	0.0234	NO	-3.755	N/A			
Downgradient	Yes	0.103	NO	-2.273	N/A			
Upgradient	Yes	0.0152	NO	-4.186	N/A			
Upgradient	Yes	1.21	NO	0.191	N/A			
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 0.338 Downgradient Yes 0.0366 Downgradient Yes 0.0234 Downgradient Yes 0.103 Upgradient Yes 0.0152	Gradient Detected? Result Result >TL(1)? Downgradient Yes 0.338 NO Downgradient Yes 0.0366 NO Downgradient Yes 0.0234 NO Downgradient Yes 0.103 NO Upgradient Yes 0.0152 NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes0.338NO-1.085DowngradientYes0.0366NO-3.308DowngradientYes0.0234NO-3.755DowngradientYes0.103NO-2.273UpgradientYes0.0152NO-4.186			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S= 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1)=N/A Statistics-Transformed Background X = 0.000 S= 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2)=N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.000 0.000 4/22/2002 1 7/15/2002 1 0.000 10/8/2002 0.0001/8/2003 0.0004/3/2003 0.000 7/8/2003 0.000 1 10/6/2003 1 0.000Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.0001 0.000 4/23/2002 1 7/16/2002 1 0.000 10/8/2002 1 0.000 1/7/2003 0.000 4/2/2003 0.0007/9/2003 0.000 10/7/2003 1 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Downgradient	Yes	0.37	NO	-0.994	N/A		
Downgradient	Yes	0.151	NO	-1.890	N/A		
Downgradient	Yes	0.0944	NO	-2.360	N/A		
Downgradient	Yes	0.441	NO	-0.819	N/A		
Upgradient	Yes	0.345	NO	-1.064	N/A		
Upgradient	Yes	0.572	NO	-0.559	N/A		
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 0.37 Downgradient Yes 0.151 Downgradient Yes 0.0944 Downgradient Yes 0.441 Upgradient Yes 0.345	Gradient Detected? Result Result >TL(1)? Downgradient Yes 0.37 NO Downgradient Yes 0.151 NO Downgradient Yes 0.0944 NO Downgradient Yes 0.441 NO Upgradient Yes 0.345 NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes0.37NO-0.994DowngradientYes0.151NO-1.890DowngradientYes0.0944NO-2.360DowngradientYes0.441NO-0.819UpgradientYes0.345NO-1.064		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 32.763 **S**= 9.391

CV(1) = 0.287 K fs

K factor=** 2.523

TL(1)= 56.456

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.449 **S**= 0.299

 $\mathbf{CV(2)} = 0.087$

K factor=** 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 29.5 3.384 4/22/2002 29.8 3.395 7/15/2002 25.3 3.231 10/8/2002 21.9 3.086 1/8/2003 20.9 3.040 4/3/2003 22.2 3.100 7/8/2003 22.9 3.131 10/6/2003 21.7 3.077 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 41.5 3.726 4/23/2002 43.6 3.775 7/16/2002 40.4 3.699 10/8/2002 38.8 3.658 1/7/2003 41.1 3.716 4/2/2003 42.9 3.759 7/9/2003 35.1 3.558 10/7/2003 46.6 3.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW357	Downgradient	Yes	25	NO	3.219	N/A
	MW360	Downgradient	Yes	21.2	NO	3.054	N/A
	MW363	Downgradient	Yes	30	NO	3.401	N/A
	MW366	Downgradient	Yes	31.4	NO	3.447	N/A
	MW369	Upgradient	Yes	16.5	NO	2.803	N/A
	MW372	Upgradient	Yes	62.4	YES	4.134	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 35.938
 S= 3.750
 CV(1)=0.104
 K factor**= 2.523
 TL(1)= 45.399
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.578
 S= 0.089
 CV(2)=0.025
 K factor**= 2.523
 TL(2)= 3.803
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 35 3.555 4/22/2002 35 3.555 35 7/15/2002 3.555 10/8/2002 50 3.912 1/8/2003 35 3.555 4/3/2003 35 3.555 7/8/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 35 3.555 4/23/2002 35 3.555 7/16/2002 35 3.555 10/8/2002 35 3.555 1/7/2003 35 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Downgradient	No	20	N/A	2.996	N/A		
Downgradient	No	20	N/A	2.996	N/A		
Downgradient	Yes	31.4	NO	3.447	N/A		
Downgradient	Yes	15.5	NO	2.741	N/A		
Upgradient	Yes	10.1	NO	2.313	N/A		
Upgradient	Yes	26.8	NO	3.288	N/A		
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient No Downgradient No Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient No 20 Downgradient No 20 Downgradient Yes 31.4 Downgradient Yes 15.5 Upgradient Yes 10.1	Gradient Detected? Result Result >TL(1)? Downgradient No 20 N/A Downgradient No 20 N/A Downgradient Yes 31.4 NO Downgradient Yes 15.5 NO Upgradient Yes 10.1 NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientNo20N/A2.996DowngradientNo20N/A2.996DowngradientYes31.4NO3.447DowngradientYes15.5NO2.741UpgradientYes10.1NO2.313		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 44.119 S = 4.554

CV(1)=0.103

K factor**= 2.523

TL(1) = 55.607

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.782 S = 0.099 CV(2) = 0.026

K factor=** 2.523

TL(2) = 4.033

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.684
Date Collected	Result	
Date Collected 7/16/2002	Result 39.8	3.684
Date Collected 7/16/2002 10/8/2002	Result 39.8 41	3.684 3.714
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 39.8 41 39.4	3.684 3.714 3.674
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 39.8 41 39.4 39.2	3.684 3.714 3.674 3.669
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 39.8 41 39.4 39.2 39.8	3.684 3.714 3.674 3.669 3.684

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	32.1	NO	3.469	N/A
MW360	Downgradient	Yes	9.64	NO	2.266	N/A
MW363	Downgradient	Yes	27.5	NO	3.314	N/A
MW366	Downgradient	Yes	38.9	NO	3.661	N/A
MW369	Upgradient	Yes	29.9	NO	3.398	N/A
MW372	Upgradient	Yes	44.2	NO	3.789	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025S = 0.021 CV(1) = 0.845

K factor**= 2.523

TL(1) = 0.077

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.090 S = 1.006 CV(2) = -0.246

K factor=** 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.0147	-3.689 -3.689 -3.689 -6.450 -4.220

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.001	N/A	-6.908	N/A		
MW360	Downgradient	Yes	0.00433	NO	-5.442	N/A		
MW363	Downgradient	Yes	0.00102	. NO	-6.888	N/A		
MW366	Downgradient	No	0.001	N/A	-6.908	N/A		
MW369	Upgradient	Yes	0.00419	NO	-5.475	N/A		
MW372	Upgradient	No	0.001	N/A	-6.908	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 482.856 **S**= 57.603 **CV(1)**=0.119

K factor=** 2.523

TL(1)= 628.189 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor=** 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 388 5.961 4/22/2002 404 6.001 7/15/2002 394 5.976 10/8/2002 403 5.999 1/8/2003 520 6.254 4/3/2003 487 6.1887/8/2003 478 6.170 10/6/2003 476 6.165 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 508 6.230 4/23/2002 501 6.217 507 7/16/2002 6.229 10/8/2002 495 6.205 1/7/2003 508.7 6.232 4/2/2003 515 6.244 7/9/2003 576 6.356 10/7/2003 565 6.337

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
Downgradient	Yes	417	NO	6.033	N/A			
Downgradient	Yes	427	NO	6.057	N/A			
Downgradient	Yes	430	NO	6.064	N/A			
Downgradient	Yes	462	NO	6.136	N/A			
Upgradient	Yes	372	NO	5.919	N/A			
Upgradient	Yes	770	YES	6.646	N/A			
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 417 Downgradient Yes 427 Downgradient Yes 430 Downgradient Yes 462 Upgradient Yes 372	Gradient Detected? Result Result >TL(1)? Downgradient Yes 417 NO Downgradient Yes 427 NO Downgradient Yes 430 NO Downgradient Yes 462 NO Upgradient Yes 372 NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes417NO6.033DowngradientYes427NO6.057DowngradientYes430NO6.064DowngradientYes462NO6.136UpgradientYes372NO5.919			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances
MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.025 S= 0.010 CV(1)=0.400 K factor**= 2.523 TL(1)= 0.050 LL(1)=N/A

Statistics-Transformed Background Data

X=-3.742 **S**= 0.307 **CV(2)**=-0.082

K factor=** 2.523 **TL(2)=** -2.967

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.689-2.996 7/15/2002 0.05 10/8/2002 0.02 -3.912 1/8/2003 0.02 -3.9124/3/2003 0.02 -3.9127/8/2003 0.02 -3.91210/6/2003 0.02 -3.912 Well Number: MW372 Date Collected Result LN(Result) 0.025 3/19/2002 -3.6894/23/2002 0.025 -3.6897/16/2002 0.05 -2.99610/8/2002 0.02 -3.9121/7/2003 0.02 -3.9124/2/2003 0.02 -3.912 7/9/2003 0.02 -3.91210/7/2003 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
	Well No.	Gradient	Detected?	Result Re	esult >TL(1)?	LN(Result)	LN(Result) >TL(2)		
•	MW357	Downgradient	Yes	0.000343	NO	-7.978	N/A		
	MW360	Downgradient	Yes	0.00121	NO	-6.717	N/A		
	MW363	Downgradient	Yes	0.000629	NO	-7.371	N/A		
	MW366	Downgradient	Yes	0.000616	NO	-7.392	N/A		
	MW369	Upgradient	Yes	0.00228	NO	-6.084	N/A		
	MW372	Upgradient	No	0.002	N/A	-6.215	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.781
 S= 1.351
 CV(1)=0.759 K factor**= 2.523
 TL(1)=5.190 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.228
 S= 1.065
 CV(2)=4.665 K factor**= 2.523
 TL(2)=2.915 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 5.41 1.688 0.451 4/22/2002 1.57 7/15/2002 0.8 -0.22310/8/2002 1.09 0.0861/8/2003 2.69 0.990 4/3/2003 2.04 0.7137/8/2003 1.19 0.174 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 1.33 0.285 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.9164/2/2003 0.91 -0.0947/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

>TL(2)
>]

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**= 0.157

K factor**= 2.523

TL(1)= 398.489 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor=** 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 173 5.153 4/22/2002 246 5.505 7/15/2002 232 5.447 10/8/2002 275 5.617 1/8/2003 269 5.595 4/3/2003 250 5.521 7/8/2003 295 5.687 10/6/2003 5.620 276 Well Number: MW372 Date Collected Result LN(Result) 295 3/19/2002 5.687 4/23/2002 322 5.775 7/16/2002 329 5.796 10/8/2002 290 5.670 1/7/2003 316 5.756 4/2/2003 311 5.740 7/9/2003 347 5.849 10/7/2003 337 5.820

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	237	NO	5.468	N/A
MW360	Downgradient	Yes	219	NO	5.389	N/A
MW363	Downgradient	Yes	251	NO	5.525	N/A
MW366	Downgradient	Yes	244	NO	5.497	N/A
MW369	Upgradient	Yes	186	NO	5.226	N/A
MW372	Upgradient	Yes	436	YES	6.078	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.385
 S= 6.991
 CV(1)=0.947 K factor**= 2.523
 TL(1)=25.024 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 1.358
 S= 1.323
 CV(2)=0.974 K factor**= 2.523
 TL(2)=4.697 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.422-0.3644/22/2002 0.695 1.960 7/15/2002 7.1 10/8/2002 21.5 3.068 1/8/2003 18.5 2.918 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 10/7/2003 0.733 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.1	N/A	-2.303	N/A	
MW360	Downgradient	Yes	0.57	NO	-0.562	N/A	
MW363	Downgradient	Yes	0.0546	NO	-2.908	N/A	
MW366	Downgradient	No	0.1	N/A	-2.303	N/A	
MW369	Upgradient	Yes	0.135	NO	-2.002	N/A	
MW372	Upgradient	Yes	0.0355	NO	-3.338	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 12.864 S = 3.505

CV(1)=0.272

K factor**= 2.523

TL(1) = 21.707

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.517 S = 0.290 CV(2) = 0.115

K factor=** 2.523

TL(2) = 3.248

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 7/15/2002 10 2.303 10/8/2002 8.62 2.154 1/8/2003 7.89 2.066 4/3/2003 7.97 2.076 7/8/2003 2.332 10.3 10/6/2003 9.14 2.213 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 15.7 2.754 16.6 4/23/2002 2.809 7/16/2002 15.4 2.734 10/8/2002 15.8 2.760 1/7/2003 15.8 2.760 4/2/2003 16.4 2.797 7/9/2003 15.2 2.721 10/7/2003 17.6 2.868

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	10.3	NO	2.332	N/A		
MW360	Downgradient	Yes	7.71	NO	2.043	N/A		
MW363	Downgradient	Yes	12.5	NO	2.526	N/A		
MW366	Downgradient	Yes	12.9	NO	2.557	N/A		
MW369	Upgradient	Yes	6.51	NO	1.873	N/A		
MW372	Upgradient	Yes	21.4	NO	3.063	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.274CV(1)=0.664**K** factor**= 2.523 TL(1)=1.105**Statistics-Background Data** X = 0.413LL(1)=N/A **Statistics-Transformed Background** TL(2) = 1.317

Data

X = -1.226 S = 1.008 CV(2) = -0.822

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.034 -3.381-2.7814/22/2002 0.062 7/15/2002 0.436 -0.83010/8/2002 0.867-0.1431/8/2003 0.828 -0.1894/3/2003 0.672-0.3977/8/2003 0.321 -1.13610/6/2003 0.714 -0.337Well Number: MW372 Date Collected Result LN(Result) 0.205 3/19/2002 -1.5854/23/2002 0.345 -1.0647/16/2002 -1.561 0.21 10/8/2002 0.0539 -2.9211/7/2003 0.537 -0.6224/2/2003 0.415 -0.8797/9/2003 0.654 -0.42510/7/2003 0.254 -1.370

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	0.00517	NO	-5.265	N/A		
MW360	Downgradient	Yes	0.0784	NO	-2.546	N/A		
MW363	Downgradient	Yes	0.166	NO	-1.796	N/A		
MW366	Downgradient	Yes	0.00334	NO	-5.702	N/A		
MW369	Upgradient	Yes	0.00886	NO	-4.726	N/A		
MW372	Upgradient	No	0.005	N/A	-5.298	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Methylene chloride UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 1.931 CV(1)=0.355**K** factor**= 2.523 **TL(1)=** 10.310 **Statistics-Background Data** X = 5.438LL(1)=N/A **Statistics-Transformed Background** X = 1.639S = 0.345 CV(2) = 0.211

Data

K factor=** 2.523

TL(2) = 2.510

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/22/2002 5 1.609 7/15/2002 10 2.303 10/8/2002 5 1.609 1/8/2003 5 1.609 5 4/3/2003 1.609 5 7/8/2003 1.609 10/6/2003 5 1.609 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5 1.609 5 4/23/2002 1.609 7/16/2002 10 2.303 10/8/2002 5 1.609 1/7/2003 5 1.609 4/2/2003 5 1.609 5 7/9/2003 1.609 10/7/2003 5 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	5	N/A	1.609	N/A	
MW360	Downgradient	No	5	N/A	1.609	N/A	
MW363	Downgradient	Yes	1.8	NO	0.588	N/A	
MW366	Downgradient	Yes	1.73	NO	0.548	N/A	
MW369	Upgradient	No	5	N/A	1.609	N/A	
MW372	Upgradient	No	5	N/A	1.609	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.012X = 0.010

CV(1)=1.199

K factor**= 2.523

TL(1) = 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.698 S = 1.607 CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.643

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.001	N/A	-6.908	N/A		
MW360	Downgradient	Yes	0.00021	7 N/A	-8.436	NO		
MW363	Downgradient	No	0.001	N/A	-6.908	N/A		
MW366	Downgradient	No	0.001	N/A	-6.908	N/A		
MW369	Upgradient	No	0.001	N/A	-6.908	N/A		
MW372	Upgradient	No	0.001	N/A	-6.908	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

CV(1)=0.910X = 0.024S = 0.021

K factor**= 2.523

TL(1) = 0.078LL(1)=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075 CV(2) = -0.253

K factor=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	0.00303	NO	-5.799	N/A		
MW360	Downgradient	Yes	0.00461	NO	-5.380	N/A		
MW363	Downgradient	Yes	0.0158	NO	-4.148	N/A		
MW366	Downgradient	Yes	0.0104	NO	-4.566	N/A		
MW369	Upgradient	Yes	0.0191	NO	-3.958	N/A		
MW372	Upgradient	Yes	0.00253	NO	-5.980	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.563 S = 94.243 CV(1) = 1.264

K factor**= 2.523

TL(1)=312.337 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	362	N/A	5.892	YES		
MW360	Downgradient	Yes	382	N/A	5.945	YES		
MW363	Downgradient	Yes	412	N/A	6.021	YES		
MW366	Downgradient	Yes	398	N/A	5.986	YES		
MW369	Upgradient	Yes	353	N/A	5.866	YES		
MW372	Upgradient	Yes	365	N/A	5.900	YES		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW357 MW360

MW363 MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison PCB, Total UNITS: UG/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.390 S = 0.350 CV(1) = 0.897 K factor**= 2.523
 TL(1) = 1.272 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.238 S = 0.737 CV(2) = -0.595 K factor**= 2.523
 TL(2) = 0.622 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 -1.7724/22/2002 0.17 -1.7727/15/2002 0.17 7/8/2003 1.15 0.14010/6/2003 0.605 -0.5037/13/2004 0.42 -0.8680.28 -1.2737/20/2005 4/4/2006 0.23 -1.470MW372 Well Number: Date Collected Result LN(Result) 3/19/2002 0.0001 -1.7724/23/2002 0.17 7/16/2002 0.17 -1.7727/9/2003 0.17 -1.77210/7/2003 0.17 -1.7727/14/2004 0.18 -1.715 7/21/2005 0.17 -1.7724/5/2006 0.18 -1.715

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0939	N/A	-2.366	N/A
MW360	Downgradient	No	0.0937	N/A	-2.368	N/A
MW363	Downgradient	Yes	0.0382	NO	-3.265	N/A
MW366	Downgradient	No	0.1	N/A	-2.303	N/A
MW369	Upgradient	No	0.095	N/A	-2.354	N/A
MW372	Upgradient	No	0.096	N/A	-2.343	N/A
MW372	Upgradient	No	0.096	N/A	-2.343	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.281 S = 0.383 CV(1) = 1.361 K factor** = 2.523
 TL(1) = 1.247 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.835 S = 0.938 CV(2) = -0.511 K factor** = 2.523
 TL(2) = 0.532 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 0.11 -2.207-2.207 7/15/2002 0.11 7/8/2003 1.15 0.14010/6/2003 0.09 -2.4087/13/2004 0.1 -2.3030.1 -2.3037/20/2005 4/4/2006 0.1 -2.303Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.0001 4/23/2002 0.11 -2.2077/16/2002 0.11 -2.2077/9/2003 0.13 -2.04010/7/2003 0.09 -2.4087/14/2004 0.1 -2.3037/21/2005 0.1 -2.3034/5/2006 0.1 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0939	N/A	-2.366	N/A
MW360	Downgradient	No	0.0937	N/A	-2.368	N/A
MW363	Downgradient	Yes	0.0382	N/A	-3.265	NO
MW366	Downgradient	No	0.1	N/A	-2.303	N/A
MW369	Upgradient	No	0.095	N/A	-2.354	N/A
MW372	Upgradient	No	0.096	N/A	-2.343	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.274 S = 0.194 CV(1) = 0.031 K factor**= 2.904
 TL(1) = 6.837 LL(1) = 5.7114

 Statistics-Transformed Background Data
 X = 1.836 S = 0.031 CV(2) = 0.017 K factor**= 2.904
 TL(2) = 1.925 LL(2) = 1.7467

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 6.1 1.808 4/22/2002 6.1 1.808 7/15/2002 6.1 1.808 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 1.872 6.5 MW372 Well Number: Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>, ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	, ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	6.17	NO	1.820	N/A
MW360	Downgradien	t Yes	6.28	NO	1.837	N/A
MW363	Downgradien	t Yes	5.77	NO	1.753	N/A
MW366	Downgradien	t Yes	6.18	NO	1.821	N/A
MW369	Upgradient	Yes	6.2	NO	1.825	N/A
MW372	Upgradient	Yes	6.16	NO	1.818	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.663 S= 0.488 CV(1)=0.293 K factor**= 2.523 TL(1)=2.895 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.456 S= 0.362 CV(2)=0.794 K factor**= 2.523 TL(2)=1.368 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 2 0.693 0.793 4/22/2002 2.21 0.693 7/15/2002 2 10/8/2002 0.966-0.0351/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.04 0.7132.03 0.708 4/23/2002 7/16/2002 2 0.693 10/8/2002 1.54 0.432 1/7/2003 1.88 0.631 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577 10/7/2003 1.79 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.6	NO	0.470	N/A
MW360	Downgradient	Yes	0.668	NO	-0.403	N/A
MW363	Downgradient	Yes	2.06	NO	0.723	N/A
MW366	Downgradient	Yes	1.92	NO	0.652	N/A
MW369	Upgradient	Yes	0.485	NO	-0.724	N/A
MW372	Upgradient	Yes	2.22	NO	0.798	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Sodium** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 45.100 S = 11.875 CV(1) = 0.263**K** factor**= 2.523 **Statistics-Background Data** TL(1) = 75.061LL(1)=N/A **Statistics-Transformed Background** X = 3.780 S = 0.242

Data

CV(2) = 0.064

K factor**= 2.523

TL(2) = 4.390

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 10/6/2003 59.1 4.079 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 1/7/2003 34.1 3.529 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Downgradient	Yes	43.9	NO	3.782	N/A
Downgradient	Yes	71	NO	4.263	N/A
Downgradient	Yes	45.2	NO	3.811	N/A
Downgradient	Yes	46	NO	3.829	N/A
Upgradient	Yes	59.6	NO	4.088	N/A
Upgradient	Yes	63.8	NO	4.156	N/A
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 43.9 Downgradient Yes 71 Downgradient Yes 45.2 Downgradient Yes 46 Upgradient Yes 59.6	Gradient Detected? Result Result >TL(1)? Downgradient Yes 43.9 NO Downgradient Yes 71 NO Downgradient Yes 45.2 NO Downgradient Yes 46 NO Upgradient Yes 59.6 NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes43.9NO3.782DowngradientYes71NO4.263DowngradientYes45.2NO3.811DowngradientYes46NO3.829UpgradientYes59.6NO4.088

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Sulfate** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.031 S = 33.919 CV(1) = 0.753

K factor**= 2.523

TL(1)=130.609 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.420 S = 0.981 CV(2) = 0.287

K factor=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.272
Date Collected	Result	
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	41.1	NO	3.716	N/A
MW360	Downgradient	Yes	12	NO	2.485	N/A
MW363	Downgradient	Yes	27.3	NO	3.307	N/A
MW366	Downgradient	Yes	42.3	NO	3.745	N/A
MW369	Upgradient	Yes	5.48	NO	1.701	N/A
MW372	Upgradient	Yes	124	NO	4.820	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.821 S = 18.044 CV(1) = 0.867

K factor**= 2.523

TL(1) = 66.344

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.770 S = 1.150 CV(2) = 0.415

K factor=** 2.523

TL(2) = 3.972

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	41.7	3.731
4/22/2002	53.1	3.972
7/15/2002	18.1	2.896
10/8/2002	16.4	2.797
1/8/2003	3.49	1.250
4/3/2003	9.34	2.234
7/8/2003	17.5	2.862
10/6/2003	17	2.833
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.802
Date Collected	Result	
Date Collected 3/19/2002	Result 44.8	3.802
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data		•			
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	34.3	NO	3.535	N/A
MW360	Downgradient	No	4.16	N/A	1.426	N/A
MW363	Downgradient	No	13.6	N/A	2.610	N/A
MW366	Downgradient	Yes	50.5	NO	3.922	N/A
MW369	Upgradient	Yes	20	NO	2.996	N/A
MW372	Upgradient	Yes	106	YES	4.663	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.513
 S= 4.307
 CV(1)=1.226 K factor**= 2.523
 TL(1)=14.378 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.851
 S= 0.828
 CV(2)=0.973 K factor**= 2.523
 TL(2)=2.940 LL(2)=N/A

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1.7	0.531
4/22/2002	1.6	0.470
7/15/2002	3.1	1.131
10/8/2002	17.7	2.874
1/8/2003	9	2.197
4/3/2003	4	1.386
7/8/2003	4.9	1.589
10/6/2003	2.4	0.875
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.000
Date Collected	Result	, ,
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1.2	0.000 0.182
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1.2 1	0.000 0.182 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1.2 1	0.000 0.182 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1.2 1 1.6	0.000 0.182 0.000 0.000 0.470

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.753	N/A	-0.284	NO
MW360	Downgradient	Yes	1.28	N/A	0.247	NO
MW363	Downgradient	Yes	1.06	N/A	0.058	NO
MW366	Downgradient	Yes	0.825	N/A	-0.192	NO
MW369	Upgradient	Yes	1.37	N/A	0.315	NO
MW372	Upgradient	Yes	1.09	N/A	0.086	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor**= 2.523

TL(1)=230.231 LL(1)=N/A

Statistics-Transformed Background Data

X=3.772 S=1.023 CV(2)=0.271

K factor=** 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.215
Date Collected	Result	
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 10	5.215 3.912 3.912 3.912 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	No	10	N/A	2.303	N/A			
MW360	Downgradient	Yes	5.26	NO	1.660	N/A			
MW363	Downgradient	Yes	7.74	NO	2.046	N/A			
MW366	Downgradient	Yes	6.64	NO	1.893	N/A			
MW369	Upgradient	Yes	12.2	NO	2.501	N/A			
MW372	Upgradient	Yes	20.6	NO	3.025	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S= 0.173 CV(1)=1.490X = 0.116

K factor**= 2.523

TL(1) = 0.552

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.729 S = 1.014 CV(2) = -0.371

K factor=** 2.523

TL(2) = -0.172

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.1 -2.303-2.3034/22/2002 0.1 -2.303 7/15/2002 0.1 10/8/2002 0.025-3.6891/8/2003 0.035 -3.3524/3/2003 0.035 -3.3527/8/2003 0.02 -3.91210/6/2003 0.02 -3.912 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.725 -0.322-2.3034/23/2002 0.1 7/16/2002 0.1 -2.30310/8/2002 0.025 -3.6891/7/2003 0.035 -3.3524/2/2003 0.035 -3.352 7/9/2003 0.2 -1.60910/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	0.00639	N/A	-5.053	NO			
MW360	Downgradient	Yes	0.00578	N/A	-5.153	NO			
MW363	Downgradient	No	0.00561	N/A	-5.183	N/A			
MW366	Downgradient	Yes	0.00536	N/A	-5.229	NO			
MW369	Upgradient	Yes	0.00913	N/A	-4.696	NO			
MW372	Upgradient	No	0.00373	N/A	-5.591	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 5.626CV(1)=2.777X = 2.026

K factor**= 2.523

TL(1)= 16.219

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380 CV(2) = -1.718

K factor=** 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 4.66 1.539 4/23/2002 0.2 -1.6097/15/2002 0.2 -1.60910/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/9/2003 0.2 -1.60910/6/2003 0.2 -1.609 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 22.7 3.122 4/23/2002 1.46 0.378 7/16/2002 0.253 -1.37410/8/2002 0.482 -0.7301/7/2003 0.608 -0.4984/2/2003 0.446 -0.8077/9/2003 0.2 -1.60910/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	0.0277	N/A	-3.586	NO			
MW361	Downgradient	No	0.05	N/A	-2.996	N/A			
MW364	Downgradient	No	0.05	N/A	-2.996	N/A			
MW367	Downgradient	No	0.0238	N/A	-3.738	N/A			
MW370	Upgradient	No	0.05	N/A	-2.996	N/A			
MW373	Upgradient	No	0.05	N/A	-2.996	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 9.815 S= 7.838 CV(1)=0.799
 K factor**= 2.523 TL(1)= 29.591 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 2.072 S= 0.630 CV(2)=0.304 K factor**= 2.523 TL(2)= 3.662 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.1 2.313 4/23/2002 4.46 1.495 7/15/2002 6.58 1.884 10/8/2002 4.9 1.589 1/8/2003 4.47 1.497 4/3/2003 8.65 2.158 7/9/2003 1.297 3.66 10/6/2003 5.38 1.683 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 15.1 2.715 4/23/2002 6.26 1.834 7/16/2002 6.22 1.828 10/8/2002 4.06 1.401 1/7/2003 11.2 2.416 4/2/2003 18.5 2.918 7/9/2003 13.3 2.588 10/7/2003 34.2 3.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	23.3	N/A	3.148	N/A			
MW361	Downgradient	Yes	46.1	N/A	3.831	N/A			
MW364	Downgradient	Yes	40.7	N/A	3.706	N/A			
MW367	Downgradient	No	5.59	N/A	1.721	N/A			
MW370	Upgradient	Yes	65.5	YES	4.182	N/A			
MW373	Upgradient	Yes	19.4	N/A	2.965	N/A			
37/4 D	1 1				4 . 4:4 .:				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Boron** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.780CV(1)=0.684**K** factor**= 2.523 **Statistics-Background Data** X = 1.140TL(1) = 3.108LL(1)=N/A **Statistics-Transformed Background** X = -0.235 S = 1.006 CV(2) = -4.287**K factor**=** 2.523 TL(2) = 2.303LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 2 0.693 0.693 4/23/2002 2 7/15/2002 2 0.693 10/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/9/2003 0.2 -1.60910/6/2003 0.2 -1.609 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.6934/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.79 -0.2361/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 1.28 0.247 10/7/2003 1.24 0.215

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.401	NO	-0.914	N/A		
MW361	Downgradient	Yes	0.0945	NO	-2.359	N/A		
MW364	Downgradient	Yes	0.0338	NO	-3.387	N/A		
MW367	Downgradient	Yes	0.0272	NO	-3.605	N/A		
MW370	Upgradient	Yes	0.15	NO	-1.897	N/A		
MW373	Upgradient	Yes	1.97	NO	0.678	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S= 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1)=N/A Statistics-Transformed Background X = 0.000 S= 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2)=N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.000 0.000 4/23/2002 1 7/15/2002 1 0.000 10/8/2002 0.0001/8/2003 0.0004/3/2003 0.000 7/9/2003 0.000 1 10/6/2003 1 0.000Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.0001 4/23/2002 0.000 1 7/16/2002 1 0.000 10/8/2002 1 0.000 1/7/2003 0.000 4/2/2003 0.0007/9/2003 0.000 10/7/2003 1 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
Downgradient	Yes	0.453	NO	-0.792	N/A				
Downgradient	Yes	0.475	NO	-0.744	N/A				
Downgradient	Yes	0.428	NO	-0.849	N/A				
Downgradient	Yes	0.173	NO	-1.754	N/A				
Upgradient	Yes	0.457	NO	-0.783	N/A				
Upgradient	Yes	0.552	NO	-0.594	N/A				
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 0.453 Downgradient Yes 0.475 Downgradient Yes 0.428 Downgradient Yes 0.173 Upgradient Yes 0.457	Gradient Detected? Result Result >TL(1)? Downgradient Yes 0.453 NO Downgradient Yes 0.475 NO Downgradient Yes 0.428 NO Downgradient Yes 0.173 NO Upgradient Yes 0.457 NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes0.453NO-0.792DowngradientYes0.475NO-0.744DowngradientYes0.428NO-0.849DowngradientYes0.173NO-1.754UpgradientYes0.457NO-0.783				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 43.413 S = 13.444 CV(1) = 0.310

K factor**= 2.523

TL(1) = 77.331

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.723 S = 0.323 CV(2) = 0.087

K factor=** 2.523

TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 34.8 3.550 4/23/2002 43.4 3.770 7/15/2002 33.2 3.503 10/8/2002 29.2 3.374 1/8/2003 31.3 3.444 4/3/2003 32.4 3.478 7/9/2003 22.9 3.131 10/6/2003 28 3.332 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 61.9 4.126 4/23/2002 4.081 59.2 7/16/2002 47.6 3.863 10/8/2002 46.1 3.831 1/7/2003 49.2 3.896 4/2/2003 57.8 4.057 7/9/2003 52.7 3.965 10/7/2003 64.9 4.173

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	34.5	NO	3.541	N/A			
MW361	Downgradient	Yes	33.2	NO	3.503	N/A			
MW364	Downgradient	Yes	34.2	NO	3.532	N/A			
MW367	Downgradient	Yes	17.4	NO	2.856	N/A			
MW370	Upgradient	Yes	30.6	NO	3.421	N/A			
MW373	Upgradient	Yes	72.2	NO	4.279	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.938 S = 24.732 CV(1) = 0.590

K factor**= 2.523

TL(1)= 104.336 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.658 S = 0.339 CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	10.1	NO	2.313	N/A			
MW361	Downgradient	No	20	N/A	2.996	N/A			
MW364	Downgradient	Yes	29.4	NO	3.381	N/A			
MW367	Downgradient	Yes	15.4	NO	2.734	N/A			
MW370	Upgradient	Yes	22	NO	3.091	N/A			
MW373	Upgradient	No	20	N/A	2.996	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.919 S = 7.524

CV(1)=0.164

K factor**= 2.523

TL(1)= 64.901

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.814 S = 0.165 CV(2) = 0.043

K factor=** 2.523

TL(2) = 4.231

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 55.5 4.016 3.982 10/8/2002 53.6 3.968 1/8/2003 52.9 4/3/2003 53.6 3.982 7/9/2003 51.9 3.949 10/6/2003 53 3.970 53 3.970 1/7/2004 4/7/2004 51.6 3.944 Well Number: MW373 Date Collected Result LN(Result) 7/16/2002 40.6 3.704 10/8/2002 38.8 3.658 1/7/2003 39 3.664 4/2/2003 38.4 3.648 7/9/2003 38.1 3.640 10/7/2003 38 3.638 1/6/2004 37.9 3.635 4/7/2004 38.8 3.658

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	35.5	NO	3.570	N/A			
MW361	Downgradient	Yes	36.3	NO	3.592	N/A			
MW364	Downgradient	Yes	34.8	NO	3.550	N/A			
MW367	Downgradient	Yes	15.2	NO	2.721	N/A			
MW370	Upgradient	Yes	35.6	NO	3.572	N/A			
MW373	Upgradient	Yes	39.3	NO	3.671	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.250

CV(1)=0.800

K factor**= 2.523

TL(1)= 18.865

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.710 **S**= 0.402

S = 5.000

CV(2) = 0.235

K factor**= 2.523

TL(2) = 2.725

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 5 1.609 4/23/2002 5 1.609 5 7/15/2002 1.609 10/8/2002 5 1.609 5 1/8/2003 1.609 5 4/3/2003 1.609 5 7/9/2003 1.609 10/6/2003 5 1.609 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 5 1.609 10/8/2002 5 1.609 1/7/2003 5 1.609 4/2/2003 5 1.609 5 7/9/2003 1.609 10/7/2003 5 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.53	NO	-0.635	N/A		
MW361	Downgradient	No	1	N/A	0.000	N/A		
MW364	Downgradient	No	1	N/A	0.000	N/A		
MW367	Downgradient	No	1	N/A	0.000	N/A		
MW370	Upgradient	No	1	N/A	0.000	N/A		
MW373	Upgradient	No	1	N/A	0.000	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.027

S = 0.032

CV(1)=1.165

K factor**= 2.523

TL(1) = 0.108

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.058 S = 1.011 CV(2) = -0.249

K factor=** 2.523

TL(2) = -1.507

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.0174	-4.051
1/8/2003	0.0105	-4.556
4/3/2003	0.00931	-4.677
7/9/2003	0.137	-1.988
10/6/2003	0.0463	-3.073
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.034	-3.689 -3.381
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.034 0.025	-3.689 -3.381 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.034 0.025 0.00411	-3.689 -3.381 -3.689 -5.494
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.034 0.025 0.00411 0.00344	-3.689 -3.381 -3.689 -5.494 -5.672

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.00657	N/A	-5.025	NO	
MW361	Downgradient	No	0.001	N/A	-6.908	N/A	
MW364	Downgradient	No	0.001	N/A	-6.908	N/A	
MW367	Downgradient	Yes	0.00836	N/A	-4.784	NO	
MW370	Upgradient	No	0.001	N/A	-6.908	N/A	
MW373	Upgradient	No	0.00083	7 N/A	-7.086	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 608.719 **S**= 156.157 **CV(1)**=0.257

K factor=** 2.523

TL(1)= 1002.702 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor=** 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	,
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	537	NO	6.286	N/A	
MW361	Downgradient	Yes	510	NO	6.234	N/A	
MW364	Downgradient	Yes	478	NO	6.170	N/A	
MW367	Downgradient	Yes	281	NO	5.638	N/A	
MW370	Upgradient	Yes	452	NO	6.114	N/A	
MW373	Upgradient	Yes	859	NO	6.756	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor**= 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor**= 2.523
 TL(2) = -2.963 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.689-2.996 7/15/2002 0.05 10/8/2002 0.02 -3.912 1/8/2003 0.02 -3.9124/3/2003 0.02 -3.912 7/9/2003 0.02 -3.91210/6/2003 0.02 -3.912 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026-3.6504/23/2002 0.025 -3.6897/16/2002 0.05 -2.99610/8/2002 0.02 -3.9121/7/2003 0.02 -3.9124/2/2003 0.02 -3.912 7/9/2003 0.02 -3.91210/7/2003 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.00041	3 NO	-7.792	N/A	
MW361	Downgradient	Yes	0.00061	2 NO	-7.399	N/A	
MW364	Downgradient	Yes	0.00087	78 NO	-7.038	N/A	
MW367	Downgradient	Yes	0.00032	22 NO	-8.041	N/A	
MW370	Upgradient	Yes	0.00038	33 NO	-7.867	N/A	
MW373	Upgradient	Yes	0.00032	22 NO	-8.041	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 1.153CV(1) = 0.831X = 1.387

K factor**= 2.523

TL(1) = 4.295LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207 CV(2) = -10.514 K factor** = 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.112
Date Collected	Result	
Date Collected 3/18/2002	Result 3.04	1.112
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.75	NO	-0.288	N/A	
MW361	Downgradient	Yes	2.63	NO	0.967	N/A	
MW364	Downgradient	Yes	3.39	NO	1.221	N/A	
MW367	Downgradient	Yes	0.82	NO	-0.198	N/A	
MW370	Upgradient	Yes	2.86	NO	1.051	N/A	
MW373	Upgradient	Yes	1.41	NO	0.344	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 356.188 S = 106.752 CV(1) = 0.300

K factor**= 2.523

TL(1)= 625.523 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number:	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	274	NO	5.613	N/A	
MW361	Downgradient	Yes	211	NO	5.352	N/A	
MW364	Downgradient	Yes	256	NO	5.545	N/A	
MW367	Downgradient	Yes	163	NO	5.094	N/A	
MW370	Upgradient	Yes	241	NO	5.485	N/A	
MW373	Upgradient	Yes	476	NO	6.165	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 8.841 CV(1)=0.958**K** factor**= 2.523 **Statistics-Background Data** X = 9.230TL(1) = 31.535LL(1)=N/A **Statistics-Transformed Background** X = 1.942 S = 0.713 CV(2) = 0.367LL(2)=N/A

Data

K factor=** 2.523

TL(2) = 3.740

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 7/15/2002 3.52 1.258 10/8/2002 7.45 2.008 1/8/2003 7.04 1.952 4/3/2003 4.64 1.535 7/9/2003 2.760 15.8 10/6/2003 6.49 1.870 MW373 Well Number: Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 3.87 1.353 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well N	lo. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW35	58 Downgradient	Yes	3.39	NO	1.221	N/A	
MW36	51 Downgradient	t Yes	0.0393	NO	-3.237	N/A	
MW36	64 Downgradient	t No	0.1	N/A	-2.303	N/A	
MW36	7 Downgradient	t Yes	6.59	NO	1.886	N/A	
MW37	70 Upgradient	No	0.1	N/A	-2.303	N/A	
MW37	73 Upgradient	Yes	0.037	NO	-3.297	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.544 S = 5.911

CV(1) = 0.337**K** factor**= 2.523

TL(1)=32.458

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.810 S = 0.343 CV(2) = 0.122

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370		
Date Collected	Result	LN(Result)	
3/17/2002	12.1	2.493	
4/23/2002	15.1	2.715	
7/15/2002	12.4	2.518	
10/8/2002	12.2	2.501	
1/8/2003	11.5	2.442	
4/3/2003	12.3	2.510	
7/9/2003	10	2.303	
10/6/2003	12.1	2.493	
Well Number:	MW373		
Well Number: Date Collected	MW373 Result	LN(Result)	
		LN(Result) 3.211	
Date Collected	Result		
Date Collected 3/18/2002	Result 24.8	3.211	
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122	
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	15.2	NO	2.721	N/A	
MW361	Downgradient	Yes	14.3	NO	2.660	N/A	
MW364	Downgradient	Yes	14.3	NO	2.660	N/A	
MW367	Downgradient	Yes	9.36	NO	2.236	N/A	
MW370	Upgradient	Yes	13	NO	2.565	N/A	
MW373	Upgradient	Yes	26.6	NO	3.281	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.674CV(1)=0.624**K** factor**= 2.523 Statistics-Background Data X = 1.080TL(1) = 2.780LL(1)=N/A **Statistics-Transformed Background** LL(2)=N/A

Data

X = -0.114 S = 0.658CV(2) = -5.762

MW370 Upgradient

MW373 Upgradient

No

Yes

K factor=** 2.523 TL(2) = 1.547

utilizing TL(1).

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

-6.119

-3.286

N/A

N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.411 0.599 4/23/2002 1.82 0.199 7/15/2002 1.22 10/8/2002 0.988-0.0121/8/2003 0.729 -0.3164/3/2003 0.637 -0.4517/9/2003 2.51 0.920 10/6/2003 1.05 0.049 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.355 -1.0364/23/2002 0.770 2.16 7/16/2002 1.39 0.329 10/8/2002 0.717 -0.3331/7/2003 0.587 -0.5334/2/2003 0.545 -0.607 7/9/2003 1.76 0.565 10/7/2003 0.57 -0.562

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.495	NO	-0.703	N/A
MW361	Downgradient	Yes	0.0186	NO	-3.985	N/A
MW364	Downgradient	Yes	0.00257	NO	-5.964	N/A
MW367	Downgradient	Yes	1.48	NO	0.392	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

NO

0.0022

0.0374

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: ug/L Methylene chloride LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 2.156CV(1) = 0.401**K** factor**= 2.523 **TL(1)=** 10.816 **Statistics-Background Data** X = 5.375LL(1)=N/A **Statistics-Transformed Background**

Data

X = 1.603**S**= 0.428 **CV(2)**=0.267 **K factor**=** 2.523 TL(2) = 2.683 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 2 0.693 4/23/2002 5 1.609 7/15/2002 10 2.303 10/8/2002 5 1.609 1/8/2003 5 1.609 5 4/3/2003 1.609 5 7/9/2003 1.609 10/6/2003 5 1.609 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.6937 4/23/2002 1.946 7/16/2002 10 2.303 10/8/2002 5 1.609 1/7/2003 5 1.609 4/2/2003 5 1.609 5 7/9/2003 1.609 10/7/2003 5 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	5	N/A	1.609	N/A
MW361	Downgradient	No	5	N/A	1.609	N/A
MW364	Downgradient	Yes	1.75	NO	0.560	N/A
MW367	Downgradient	Yes	1.67	NO	0.513	N/A
MW370	Upgradient	No	5	N/A	1.609	N/A
MW373	Upgradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.012X = 0.010

CV(1)=1.198

K factor**= 2.523

TL(1) = 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.693 S = 1.604 CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.647

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00113	-6.786
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/16/2002	0.025	-3.689
10/8/2002	0.001	-6.908
10/0/2002	0.001	-0.508
1/7/2003	0.001	-6.908
1/7/2003	0.001	-6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.001	N/A	-6.908	N/A
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	Yes	0.000233	3 N/A	-8.364	NO
MW367	Downgradient	No	0.001	N/A	-6.908	N/A
MW370	Upgradient	No	0.000262	2 N/A	-8.247	N/A
MW373	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.022CV(1) = 0.901**K** factor**= 2.523 **Statistics-Background Data** X = 0.024TL(1) = 0.078LL(1)=N/A **Statistics-Transformed Background**

Data

X = -4.239 S = 1.087CV(2) = -0.256 **K factor**=** 2.523 TL(2) = -1.497 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.05 -2.996-2.9964/23/2002 0.05 -2.996 7/15/2002 0.05 10/8/2002 0.005-5.2981/8/2003 0.005 -5.2984/3/2003 0.005-5.298 7/9/2003 -3.6340.0264 10/6/2003 0.00971 -4.635 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.05 -2.996 4/23/2002 0.05 -2.9967/16/2002 0.05 -2.99610/8/2002 0.005 -5.298 1/7/2003 0.005 -5.298 4/2/2003 0.005 -5.298 7/9/2003 0.0112 -4.49210/7/2003 0.005 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0142	NO	-4.255	N/A
MW361	Downgradient	Yes	0.00276	NO	-5.893	N/A
MW364	Downgradient	Yes	0.0111	NO	-4.501	N/A
MW367	Downgradient	Yes	0.00563	NO	-5.180	N/A
MW370	Upgradient	Yes	0.00383	NO	-5.565	N/A
MW373	Upgradient	Yes	0.00399	NO	-5.524	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 46.688 S = 60.986 CV(1) = 1.306

K factor**= 2.523

TL(1)=200.555 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.829 S = 1.151 CV(2) = 0.301

K factor=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	104	N/A	4.644	NO
MW361	Downgradient	Yes	353	N/A	5.866	YES
MW364	Downgradient	Yes	405	N/A	6.004	YES
MW367	Downgradient	Yes	263	N/A	5.572	YES
MW370	Upgradient	Yes	366	N/A	5.903	YES
MW373	Upgradient	Yes	377	N/A	5.932	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW361 MW364 MW367 MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904
 TL(1) = 6.745 LL(1) = 5.8202

 Statistics-Transformed Background Data
 X = 1.837 X = 0.025 X = 0.025</th

Historical Background Data from Upgradient Wells with Transformed Result

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 6.3 1.841 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1.792 6 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 6.1 1.808 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.25	NO	1.833	N/A
MW361	Downgradien	t Yes	6.08	NO	1.805	N/A
MW364	Downgradien	t Yes	6.03	NO	1.797	N/A
MW367	Downgradien	t Yes	5.99	NO	1.790	N/A
MW370	Upgradient	Yes	6.07	NO	1.803	N/A
MW373	Upgradient	Yes	6.11	NO	1.810	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 2.823
 S= 0.522
 CV(1)=0.185
 K factor**= 2.523
 TL(1)= 4.139
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.024
 S= 0.167
 CV(2)=0.163
 K factor**= 2.523
 TL(2)= 1.445
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 1.092 7/15/2002 2.98 10/8/2002 2.46 0.9001/8/2003 2.41 0.8804/3/2003 2.43 0.8887/9/2003 2.44 0.892 10/6/2003 2.48 0.908 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 7/16/2002 2.93 1.075 10/8/2002 2.3 0.833 1/7/2003 2.45 0.896 4/2/2003 2.7 0.993 7/9/2003 2.68 0.986 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.44	NO	0.892	N/A
MW361	Downgradient	Yes	2.37	NO	0.863	N/A
MW364	Downgradient	Yes	2.12	NO	0.751	N/A
MW367	Downgradient	Yes	3.14	NO	1.144	N/A
MW370	Upgradient	Yes	2.8	NO	1.030	N/A
MW373	Upgradient	Yes	2.77	NO	1.019	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Sodium** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.544 S = 15.227 CV(1) = 0.295

K factor**= 2.523

TL(1)= 89.962

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor=** 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data	•	•			
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	41.7	NO	3.731	N/A
MW361	Downgradient	Yes	46.5	NO	3.839	N/A
MW364	Downgradient	Yes	44.8	NO	3.802	N/A
MW367	Downgradient	Yes	24.7	NO	3.207	N/A
MW370	Upgradient	Yes	46.2	NO	3.833	N/A
MW373	Upgradient	Yes	64.1	NO	4.160	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison Sulfate** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 122.381 **S**= 195.095 **CV(1)**= 1.594

K factor**= 2.523

TL(1)= 614.606 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.985 S = 1.323 CV(2) = 0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	65.3	N/A	4.179	NO
MW361	Downgradient	Yes	84.1	N/A	4.432	NO
MW364	Downgradient	Yes	71.5	N/A	4.270	NO
MW367	Downgradient	Yes	28.6	N/A	3.353	NO
MW370	Upgradient	Yes	20.7	N/A	3.030	NO
MW373	Upgradient	Yes	169	N/A	5.130	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.655
 S= 13.274 CV(1)=1.734
 K factor**= 2.523
 TL(1)= 41.146
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.946
 S= 0.939 CV(2)=0.483
 K factor**= 2.523
 TL(2)= 3.833
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	10.8	2.380
4/23/2002	8.53	2.144
7/15/2002	5.09	1.627
10/8/2002	4.78	1.564
1/8/2003	-5.12	#Func!
4/3/2003	5.11	1.631
7/9/2003	4.25	1.447
10/6/2003	6.54	1.878
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.803
Date Collected	Result	
Date Collected 3/18/2002	Result 16.5	2.803
Date Collected 3/18/2002 4/23/2002	Result 16.5 3.49	2.803 1.250
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 16.5 3.49 1.42	2.803 1.250 0.351
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 16.5 3.49 1.42 -6.06	2.803 1.250 0.351 #Func!
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 16.5 3.49 1.42 -6.06 -8.41	2.803 1.250 0.351 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	49.9	N/A	3.910	YES
MW361	Downgradient	Yes	48.7	N/A	3.886	YES
MW364	Downgradient	Yes	47.7	N/A	3.865	YES
MW367	Downgradient	No	-1.99	N/A	#Error	N/A
MW370	Upgradient	Yes	67.3	N/A	4.209	YES
MW373	Upgradient	No	18.4	N/A	2.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361 MW364 MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Total Organic Carbon (TOC)** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 6.169**S**= 12.072 **CV(1)**=1.957 **K** factor**= 2.523 **Statistics-Background Data** TL(1) = 36.626LL(1)=N/A **Statistics-Transformed Background**

Data

X = 1.069 $S= 1.014 \quad CV(2)=0.948$ **K factor**=** 2.523

TL(2) = 3.626

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.2 0.182 4.3 4/23/2002 1.459 0.956 7/15/2002 2.6 10/8/2002 2.3 0.833 1/8/2003 3 1.099 4/3/2003 1.2 0.182 7/9/2003 2.6 0.956 10/6/2003 1.7 0.531 Well Number: MW373 Date Collected Result LN(Result) 0.095 3/18/2002 1.1 4/23/2002 17.5 2.862 7/16/2002 49 3.892 10/8/2002 2.9 1.065 1/7/2003 3.9 1.361 4/2/2003 2.5 0.916 7/9/2003 1.7 0.531 10/7/2003 1.2 0.182

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	11.1	N/A	2.407	NO
MW361	Downgradient	Yes	0.785	N/A	-0.242	NO
MW364	Downgradient	Yes	0.727	N/A	-0.319	NO
MW367	Downgradient	Yes	1.6	N/A	0.470	NO
MW370	Upgradient	Yes	1.02	N/A	0.020	NO
MW373	Upgradient	Yes	1.1	N/A	0.095	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 79.819 **S**= 78.470 **CV(1)**= 0.983

K factor**= 2.523 TL(1)= 277.7

TL(1)= 277.798 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 3.971 **S**= 0.950 **CV(2)**= 0.239

K factor**= 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	4.42	NO	1.486	N/A
MW361	Downgradient	No	10	N/A	2.303	N/A
MW364	Downgradient	Yes	4.98	NO	1.605	N/A
MW367	Downgradient	Yes	5.22	NO	1.652	N/A
MW370	Upgradient	Yes	9.2	NO	2.219	N/A
MW373	Upgradient	Yes	16.3	NO	2.791	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 12.188
 S= 6.950
 CV(1)=0.570
 K factor**= 2.523
 TL(1)= 29.721
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.305
 S= 0.687
 CV(2)=0.298
 K factor**= 2.523
 TL(2)= 4.039
 LL(2)=N/A

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	19	2.944
4/23/2002	17	2.833
7/15/2002	15	2.708
10/8/2002	18	2.890
1/8/2003	17	2.833
4/3/2003	18	2.890
7/9/2003	15	2.708
10/6/2003	16	2.773
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 3/18/2002	Result 5	1.609
Date Collected 3/18/2002 4/23/2002	Result 5 25	1.609 3.219
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 5 25 3	1.609 3.219 1.099
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 25 3 4	1.609 3.219 1.099 1.386
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 25 3 4 6	1.609 3.219 1.099 1.386 1.792

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.81	N/A	0.593	N/A
MW361	Downgradient	Yes	6.9	NO	1.932	N/A
MW364	Downgradient	Yes	6.98	NO	1.943	N/A
MW367	Downgradient	Yes	1.23	N/A	0.207	N/A
MW370	Upgradient	Yes	0.58	N/A	-0.545	N/A
MW373	Upgradient	Yes	3.82	N/A	1.340	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.037X = 0.055

CV(1) = 0.673

K factor**= 2.523

TL(1) = 0.147

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.131 S = 0.691 CV(2) = -0.221

K factor=** 2.523

TL(2) = -1.388

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.1	-2.303
4/23/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	
Date Collected 3/18/2002	Result 0.1	-2.303
Date Collected 3/18/2002 4/23/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.1 0.1 0.1	-2.303 -2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.1 0.1 0.1 0.1 0.025	-2.303 -2.303 -2.303 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.1 0.1 0.1 0.1 0.025 0.035	-2.303 -2.303 -2.303 -3.689 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00834	NO	-4.787	N/A
MW361	Downgradient	Yes	0.00483	NO	-5.333	N/A
MW364	Downgradient	Yes	0.0131	NO	-4.335	N/A
MW367	Downgradient	No	0.0164	N/A	-4.110	N/A
MW370	Upgradient	Yes	0.00334	NO	-5.702	N/A
MW373	Upgradient	No	0.00448	N/A	-5.408	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

Current Background Comparison

Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 39.606 S = 21.096 CV(1) = 0.533

K factor=** 2.523

TL(1) = 92.832

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.545 S = 0.534 CV(2) = 0.151

K factor=** 2.523

TL(2) = 4.892

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW371 Well Number: Date Collected LN(Result) Result 7/18/2018 58.4 4.067 10/10/2018 48 3.871 1/16/2019 40 3.689 4/15/2019 43.3 3.768 7/15/2019 70.4 4.254 10/16/2019 58.4 4.067 1/21/2020 74.8 4.315

4/6/2020 70.9 4.261 Well Number: MW374 Date Collected Result LN(Result) 7/18/2018 19.9 2.991 10/10/2018 20.4 3.016 3.082 1/17/2019 21.8 4/11/2019 3.068 21.5 7/11/2019 20.7 3.030 10/16/2019 21.8 3.082 1/22/2020 21 3.045 4/6/2020 22.4 3.109

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW368	Downgradien	t Yes	71.2	NO	4.265	N/A
MW371	Ungradient	Yes	69	NO	4.234	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

Current Background Comparison

Dissolved Oxygen

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.858

CV(1)=0.782

UNITS: mg/L

K factor**= 2.523

TL(1)= 8.495

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.726

S = 0.867

S = 2.234

CV(2)=1.194

K factor**= 2.523

TL(2) = 2.914

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected LN(Result) Result 7/18/2018 4.89 1.587 10/10/2018 0.96 -0.041

1/16/2019 8.02 2.082 5/28/2019 5.2 1.649 7/15/2019 4.6 1.526 10/16/2019 1.27 0.239 3/17/2020

5.56

4/6/2020 3.39 Well Number: MW374

Date Collected Result LN(Result) 7/18/2018 0.52 -0.65410/10/2018 0.88 -0.128-0.4001/17/2019 0.67 5/28/2019 0.399 1.49 7/11/2019 2.23 0.80210/16/2019 1.88 0.631 3/17/2020 1.212 3.36 4/6/2020 0.8 -0.223

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW359	Downgradien	Yes	3.59	NO	1.278	N/A
MW362	Downgradien	t Yes	3.03	NO	1.109	N/A
MW368	Downgradien	Yes	2.72	NO	1.001	N/A

Conclusion of Statistical Analysis on Current Data

1.716

1.221

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 334.813 S = 62.762 CV(1) = 0.187

K factor**= 2.523

TL(1)= 493.162 L

LL(1)=N/A

Statistics-Transformed Background Data

X= 5.795 **S**= 0.202

CV(2) = 0.035

K factor**= 2.523

TL(2) = 6.305

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW371 Well Number: Date Collected LN(Result) Result 7/18/2018 342 5.835 10/10/2018 328 5.793 1/16/2019 396 5.981 5/28/2019 363 5.894 7/15/2019 423 6.047 10/16/2019 321 5.771 3/17/2020 335 5.814 4/6/2020 423 6.047 Well Number: MW374 Date Collected Result LN(Result) 7/18/2018 269 5.595 10/10/2018 218 5.384 1/17/2019 254 5.537 5/28/2019 5.872 355 7/11/2019 354 5.869 10/16/2019 233 5.451 3/17/2020 358 5.881 4/6/2020 385 5.953

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW359	Downgradien	t Yes	171	NO	5.142	N/A
MW362	Downgradien	t Yes	340	NO	5.829	N/A
MW365	Downgradien	t Yes	396	NO	5.981	N/A
MW368	Downgradien	t Yes	250	NO	5.521	N/A
MW371	Upgradient	Yes	361	NO	5.889	N/A
MW374	Upgradient	Yes	304	NO	5.717	N/A
MW375	Sidegradient	Yes	374	NO	5.924	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 24.158 S = 22.855 CV(1) = 0.946

K factor**= 2.523

TL(1)= 81.820

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.779

 $S= 0.915 \quad CV(2)=0.329$

K factor**= 2.523

TL(2) = 5.086

LL(2)=N/A

L(2)

Current Background Data from Upgradient Wells with Transformed Result

MW371 Well Number: Date Collected LN(Result) Result 7/18/2018 47.7 3.865 10/10/2018 21.9 3.086 1/16/2019 10.1 2.313 4/15/2019 59.1 4.079 7/15/2019 55.4 4.015 10/16/2019 30 3.401 1/21/2020 27 3.296 4/6/2020 75.3 4.321 Well Number: MW374 Date Collected Result LN(Result) 7/18/2018 7.69 2.040 10/10/2018 1.887 6.6 1/17/2019 6.8 1.917 4/11/2019 2.114 8.28 7/11/2019 8.06 2.087 10/16/2019 6.43 1.861 1/22/2020 2.048 7.75

8.41

4/6/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW359	Downgradien	t Yes	45.4	NO	3.816	N/A
MW362	Downgradien	t Yes	32.3	NO	3.475	N/A
MW365	Downgradien	t Yes	57.3	NO	4.048	N/A
MW368	Downgradien	t Yes	81	NO	4.394	N/A
MW371	Upgradient	Yes	53.6	NO	3.982	N/A
MW375	Sidegradient	Yes	24.3	NO	3.190	N/A

Conclusion of Statistical Analysis on Current Data

2.129

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 53.650 S = 44.743 CV(1) = 0.834

K factor**= 2.523

TL(1)= 166.536 **LL(1)=**N/A

URGA

Statistics-Transformed Background Data

X = 3.667

S = 0.809CV(2) = 0.221 K factor**= 2.523

TL(2) = 5.708

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected LN(Result) Result 7/18/2018 14.9 2.701 10/9/2018 23.2 3.144 1/16/2019 22.5 3.114 4/15/2019 83.7 4.427 7/15/2019 120 4.787 10/16/2019 14.8 2.695 1/21/2020 16.8 2.821 4/6/2020 27.8 3.325

Well Number: MW372 Date Collected Result LN(Result) 7/18/2018 27.7 3.321 10/10/2018 123 4.812 1/17/2019 3.235 4/11/2019 3.714 7/11/2019 141 4.949 10/16/2019 105 4.654 1/22/2020 50.7 3.926

20.9

4/6/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

V	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW372	Ungradient	Yes	76.1	NO	4.332	N/A

Conclusion of Statistical Analysis on Current Data

3.040

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 34.644 S = 18.421 CV(1) = 0.532

K factor**= 2.523

TL(1)= 81.120 LL

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.399 **S**= 0.569

CV(2) = 0.167

K factor**= 2.523

TL(2) = 4.833

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/18/2018	15.6	2.747
10/9/2018	16.3	2.791
1/16/2019	16.3	2.791
4/15/2019	20	2.996
7/15/2019	17.7	2.874
10/16/2019	15.5	2.741
1/21/2020	19.1	2.950
4/6/2020	20.4	3.016

20.4	5.010
MW372	
Result	LN(Result)
38.4	3.648
49.7	3.906
46.8	3.846
49.7	3.906
49.7	3.906
59.4	4.084
57	4.043
62.7	4.138
	MW372 Result 38.4 49.7 46.8 49.7 49.7 59.4 57

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Vec	62.4	NO	1 13/1	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 519.750 S = 140.621 CV(1) = 0.271

K factor=** 2.523

TL(1) = 874.537

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.218 S = 0.274 CV(2) = 0.044

K factor**= 2.523

TL(2) = 6.911

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW369	
Result	LN(Result)
372	5.919
374	5.924
386	5.956
387	5.958
373	5.922
367	5.905
440	6.087
407	6.009
	Result 372 374 386 387 373 367 440

	4/6/2020	407	6.009	
	Well Number:	MW372		
Date Collected		Result	LN(Result)	
	7/18/2018	597	6.392	
	10/10/2018	618	6.426	
	1/17/2019	613	6.418	
	5/28/2019	628	6.443	
	7/11/2019	640	6.461	
	10/16/2019	697	6.547	
	1/22/2020	730	6.593	
	4/6/2020	687	6.532	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Vec	770	NO	6.646	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

Current Background Comparison

Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 312.688 S = 120.821 CV(1) = 0.386

K factor**= 2.523

TL(1)= 617.520 **LL(1)=**N/A

URGA

Statistics-Transformed Background Data

X = 5.682S = 0.358CV(2) = 0.063 K factor**= 2.523

TL(2) = 6.587

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/18/2018	197	5.283
10/9/2018	196	5.278
1/16/2019	224	5.412
4/15/2019	261	5.565
7/15/2019	194	5.268
10/16/2019	227	5.425
1/21/2020	224	5.412
4/6/2020	214	5.366

4/6/2020	214	5.366		
Well Number:	MW372			
Date Collected	Result	LN(Result)		
7/18/2018	323	5.778		
10/10/2018	336	5.817		
1/17/2019	394	5.976		
4/11/2019	309	5.733		
7/11/2019	616	6.423		
10/16/2019	466	6.144		
1/22/2020	423	6.047		
4/6/2020	399	5.989		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Ves	436	NO	6.078	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Oxidation-Reduction Potential

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mV

Statistics-Background Data

X = 363.375 S = 41.315 CV(1) = 0.114

K factor**= 2.523

TL(1) = 467.612 LL(1) = N/A

Statistics-Transformed Background Data

X = 5.889 S = 0.116

CV(2) = 0.020

K factor**= 2.523

TL(2)= 6.182

LL(2)=N/A

L(2)

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/18/2018	338	5.823
10/9/2018	341	5.832
1/16/2019	432	6.068
5/28/2019	309	5.733
7/15/2019	410	6.016
10/16/2019	347	5.849
3/17/2020	327	5.790
4/6/2020	390	5.966
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.916
Date Collected	Result	
Date Collected 7/18/2018	Result 371	5.916
Date Collected 7/18/2018 10/10/2018	Result 371 295	5.916 5.687
Date Collected 7/18/2018 10/10/2018 1/17/2019	Result 371 295 393	5.916 5.687 5.974
Date Collected 7/18/2018 10/10/2018 1/17/2019 5/28/2019	Result 371 295 393 400	5.916 5.687 5.974 5.991
Date Collected 7/18/2018 10/10/2018 1/17/2019 5/28/2019 7/11/2019	Result 371 295 393 400 390	5.916 5.687 5.974 5.991 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW357	Downgradien	t Yes	362	NO	5.892	N/A
MW360	Downgradien	t Yes	382	NO	5.945	N/A
MW363	Downgradien	t Yes	412	NO	6.021	N/A
MW366	Downgradien	t Yes	398	NO	5.986	N/A
MW369	Upgradient	Yes	353	NO	5.866	N/A
MW372	Upgradient	Yes	365	NO	5.900	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.231 S = 55.245 CV(1) = 0.744

K factor**= 2.523

TL(1)= 213.614 **LL(1)=**N/A

URGA

Statistics-Transformed Background Data

X = 4.095S = 0.642CV(2) = 0.157

K factor**= 2.523

TL(2) = 5.715

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected LN(Result) Result 7/18/2018 3.447 31.4 10/9/2018 55 4.007 1/16/2019 39.1 3.666 4/15/2019 70.8 4.260 7/15/2019 55.8 4.022 3.405 10/16/2019 30.1 1/21/2020 31.7 3.456 4/6/2020 29.8 3.395

Well Number: MW372 Date Collected Result LN(Result) 7/18/2018 70.9 4.261 10/10/2018 158 5.063 1/17/2019 35 3.555 4/11/2019 59.4 4.084 7/11/2019 183 5.209 10/16/2019 194 5.268 1/22/2020 97.2 4.577 4/6/2020 46.5 3.839

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Ves	106	NO	4 663	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 44.628 S = 30.407 CV(1) = 0.681

K factor**= 2.523

TL(1)= 121.343

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.506

S= 0.870 CV(2) = 0.248 K factor**= 2.523

TL(2) = 5.701

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/18/2018 4.625 102 10/9/2018 81.7 4.403 1/16/2019 75.8 4.328 4/15/2019 61 4.111 7/15/2019 52.7 3.965 4.250 10/16/2019 70.1 4.329 1/21/2020 75.9 4/6/2020 2 070

4/6/2020	53	3.970
Well Number:	MW373	
Date Collected	Result	LN(Result)
7/18/2018	30.6	3.421
10/10/2018	22.8	3.127
1/17/2019	17.4	2.856
4/11/2019	13.7	2.617
7/11/2019	21.9	3.086
10/16/2019	17.3	2.851
1/22/2020	13.4	2.595

4.74

4/6/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well N	o. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW3	70 Ungradient	Vec	65.5	NO	4 182	N/A

Conclusion of Statistical Analysis on Current Data

1.556

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mV

Statistics-Background Data

X = 390.188 S = 41.594 CV(1) = 0.107

K factor**= 2.523

TL(1)= 495.128 **LL(1)=**N/A

LRGA

Statistics-Transformed Background Data

X = 5.961**S**= 0.109 CV(2) = 0.018

K factor**= 2.523

TL(2) = 6.235

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW370 Well Number: Date Collected LN(Result) Result 7/18/2018 5.911 369 10/9/2018 5.846 346 1/16/2019 440 6.087 5/28/2019 400 5.991 7/15/2019 421 6.043 6.004 10/16/2019 405 1/21/2020 425 6.052 4/6/2020 448 6.105 Well Number: MW373 Date Collected Result LN(Result) 7/18/2018 318 5.762 10/10/2018 438 6.082 1/17/2019 336 5.817 5/28/2019 5.924 374 7/11/2019 417 6.033 10/16/2019 347 5.849 1/22/2020 5.858 350

409

4/6/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW361	Downgradien	t Yes	353	NO	5.866	N/A
MW364	Downgradien	t Yes	405	NO	6.004	N/A
MW367	Downgradien	t Yes	263	NO	5.572	N/A
MW370	Upgradient	Yes	366	NO	5.903	N/A
MW373	Upgradient	Yes	377	NO	5.932	N/A

Conclusion of Statistical Analysis on Current Data

6.014

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2020 Statistical Analysis

Current Background Comparison LRGA

Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 58.613 S = 45.133 CV(1) = 0.770

K factor**= 2.523

TL(1)= 172.482

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.879

S = 0.823 CV(2) = 0.212

K factor**= 2.523

TL(2) = 4.828

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/18/2018	96.2	4.566
10/9/2018	114	4.736
1/16/2019	94.3	4.546
4/15/2019	111	4.710
7/15/2019	107	4.673
10/16/2019	125	4.828
1/21/2020	82.8	4.416
4/6/2020	60.4	4.101
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) #Func!
Date Collected	Result	
Date Collected 7/18/2018	Result -15.9	#Func!
Date Collected 7/18/2018 10/10/2018	Result -15.9 20.3	#Func! 3.011
Date Collected 7/18/2018 10/10/2018 1/17/2019	Result -15.9 20.3 28.4	#Func! 3.011 3.346
Date Collected 7/18/2018 10/10/2018 1/17/2019 4/11/2019	Result -15.9 20.3 28.4 22.7	#Func! 3.011 3.346 3.122
Date Collected 7/18/2018 10/10/2018 1/17/2019 4/11/2019 7/11/2019	Result -15.9 20.3 28.4 22.7 28.3	#Func! 3.011 3.346 3.122 3.343

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

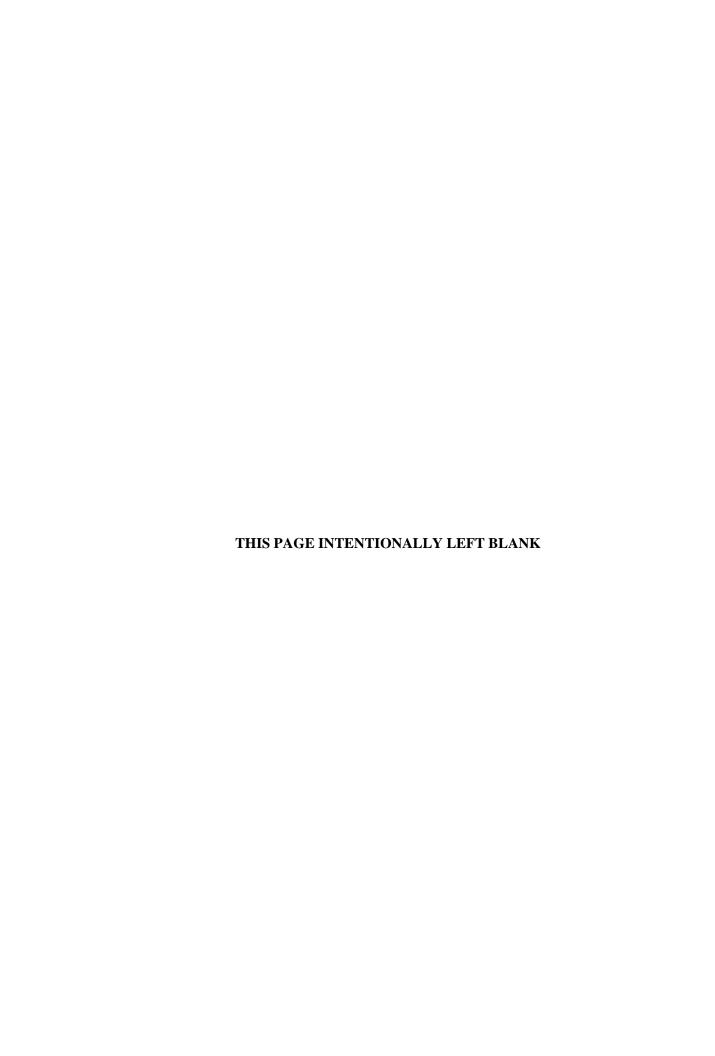
~	_	-
`urrent	Ouarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	49.9	NO	3.910	N/A
MW361	Downgradient	t Yes	48.7	NO	3.886	N/A
MW364	Downgradient	t Yes	47.7	NO	3.865	N/A
MW370	Upgradient	Yes	67.3	NO	4.209	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.


CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

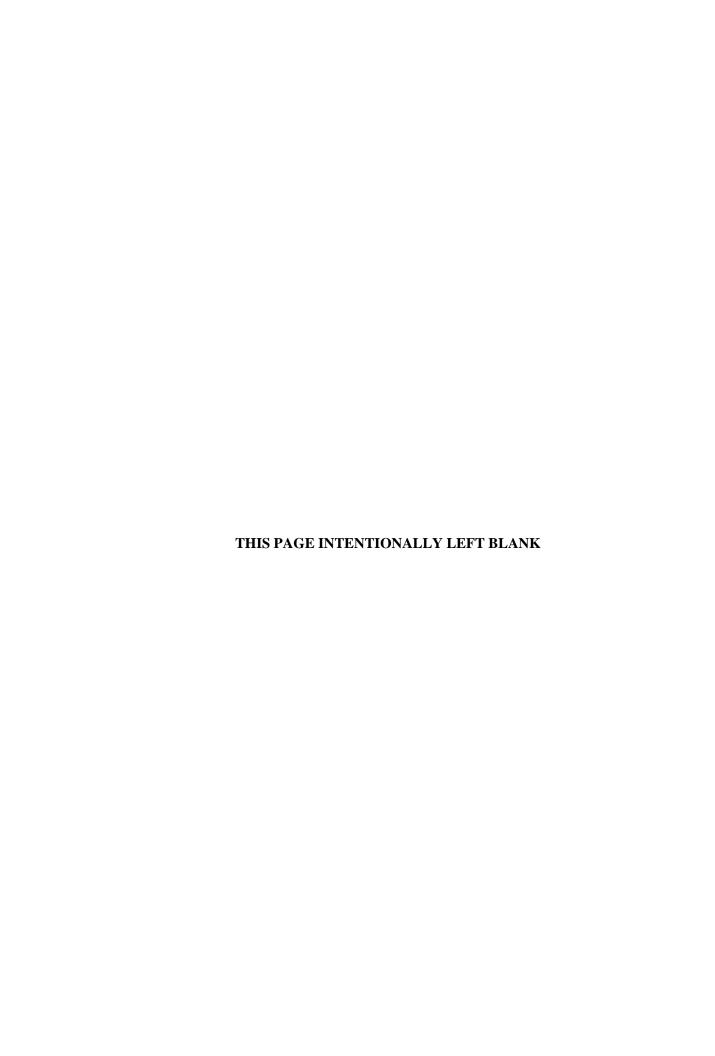
ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

October 20, 2020

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053


Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the third quarter 2020 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

D3-3

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 3rd CY 2020

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2020 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on July 27, 2020. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 1.16×10^{-3} ft/ft and 1.15×10^{-3} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 6.07×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for July 2020, the groundwater flow direction in the immediate area of the landfill was to the northeast.

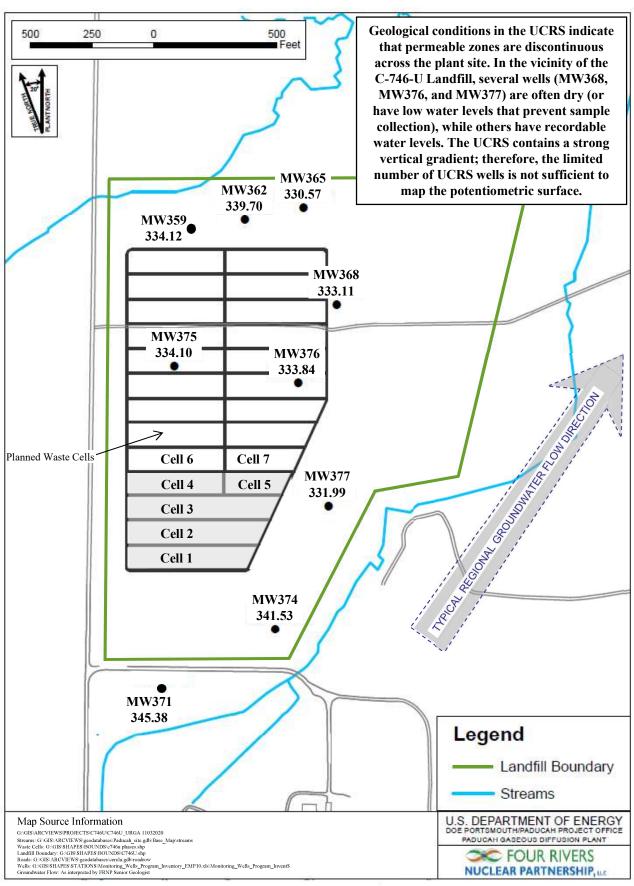


Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-U Landfill July 27, 2020

Table E.1. C-746-U Landfill Third Quarter 2020 (July) Water Levels

			C-7	746-U Landfill	(July 2020)) Water Lev	els			
							Rav	w Data	*Corr	ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
7/27/2020	7:07	MW357	URGA	368.82	30.06	0.00	42.25	326.57	42.25	326.57
7/27/2020	7:09	MW358	LRGA	368.97	30.06	0.00	42.40	326.57	42.40	326.57
7/27/2020	7:08	MW359	UCRS	368.96	30.06	0.00	34.84	334.12	34.84	334.12
7/27/2020	7:04	MW360	URGA	362.12	30.06	0.00	35.53	326.59	35.53	326.59
7/27/2020	7:05	MW361	LRGA	361.37	30.06	0.00	34.81	326.56	34.81	326.56
7/27/2020	7:06	MW362	UCRS	361.90	30.06	0.00	22.20	339.70	22.20	339.70
7/27/2020	7:12	MW363	URGA	368.61	30.06	0.00	42.09	326.52	42.09	326.52
7/27/2020	7:13	MW364	LRGA	368.22	30.06	0.00	41.82	326.40	41.82	326.40
7/27/2020	7:14	MW365	UCRS	368.19	30.06	0.00	37.62	330.57	37.62	330.57
7/27/2020	7:15	MW366	URGA	369.00	30.06	0.00	42.25	326.75	42.25	326.75
7/27/2020	7:16	MW367	LRGA	369.42	30.06	0.00	42.65	326.77	42.65	326.77
7/27/2020	7:17	MW368	UCRS	369.03	30.06	0.00	35.92	333.11	35.92	333.11
7/27/2020	7:42	MW369	URGA	364.28	30.06	0.00	35.90	328.38	35.90	328.38
7/27/2020	7:43	MW370	LRGA	365.17	30.06	0.00	36.78	328.39	36.78	328.39
7/27/2020	7:44	MW371	UCRS	364.69	30.06	0.00	19.31	345.38	19.31	345.38
7/27/2020	7:38	MW372	URGA	359.47	30.06	0.00	31.03	328.44	31.03	328.44
7/27/2020	7:39	MW373	LRGA	359.78	30.06	0.00	31.36	328.42	31.36	328.42
7/27/2020	7:40	MW374	UCRS	359.49	30.06	0.00	17.96	341.53	17.96	341.53
7/27/2020	7:32	MW375	UCRS	370.41	30.06	0.00	36.31	334.10	36.31	334.10
7/27/2020	7:34	MW376	UCRS	370.44	30.06	0.00	36.60	333.84	36.60	333.84
7/27/2020	7:36	MW377	UCRS	365.79	30.06	0.00	33.80	331.99	33.80	331.99
Reference B	arometri	c Pressure		30.06						

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

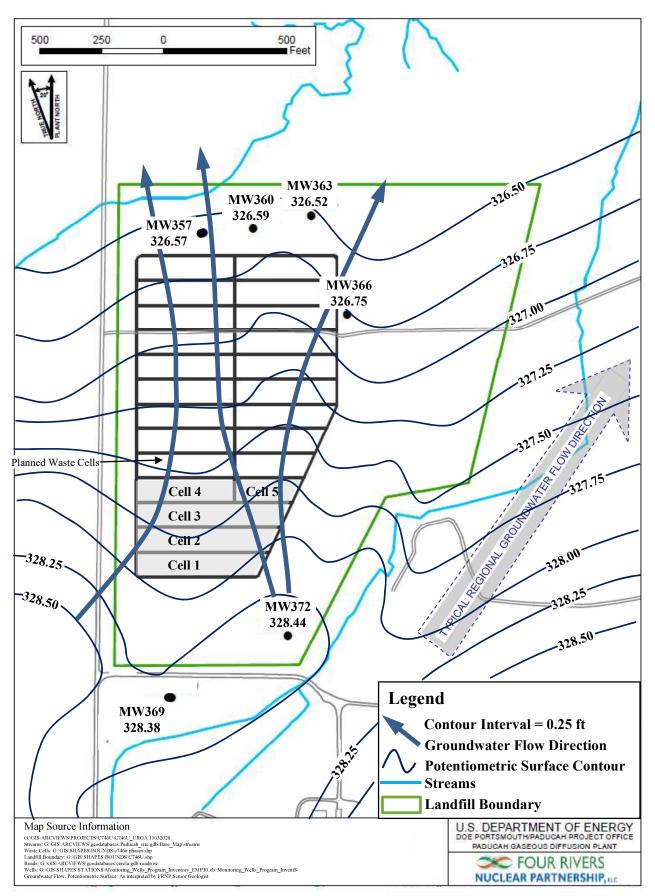


Figure E.2. Potentiometric Surface of the Upper Regional Gravel Aquifer at the C-746-U Landfill July 27, 2020

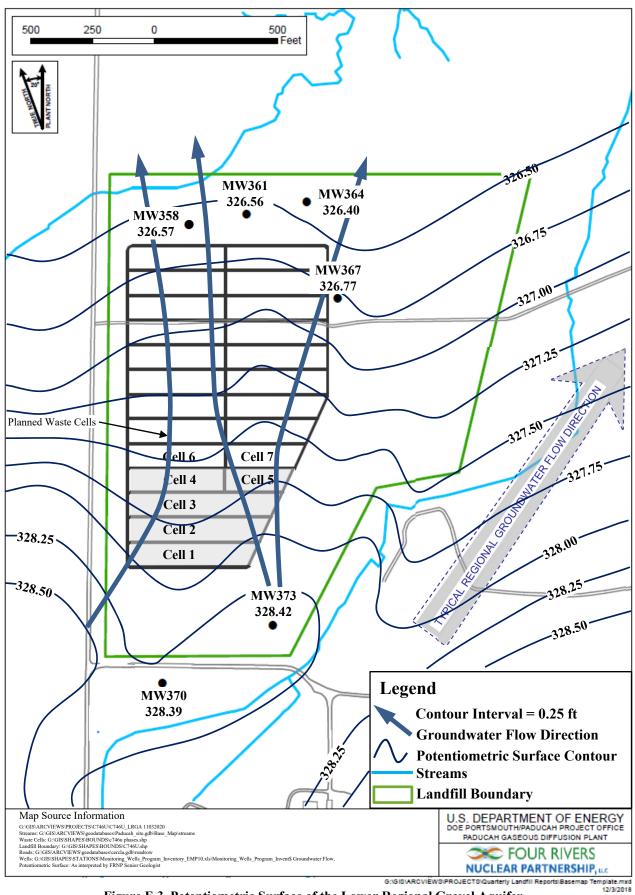
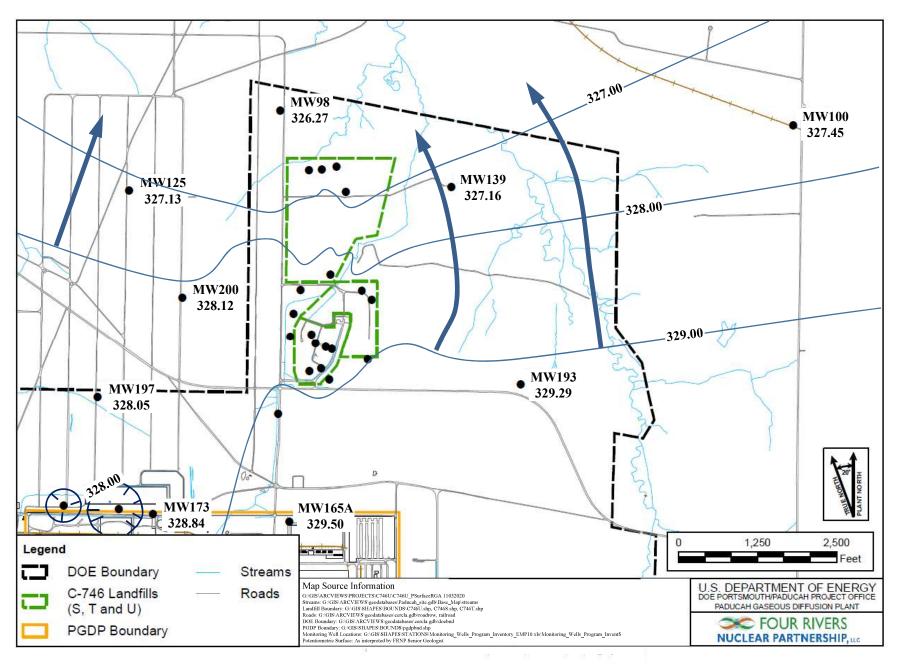


Figure E.3. Potentiometric Surface of the Lower Regional Gravel Aquifer at the C-746-U Landfill, July 27, 2020

E-7



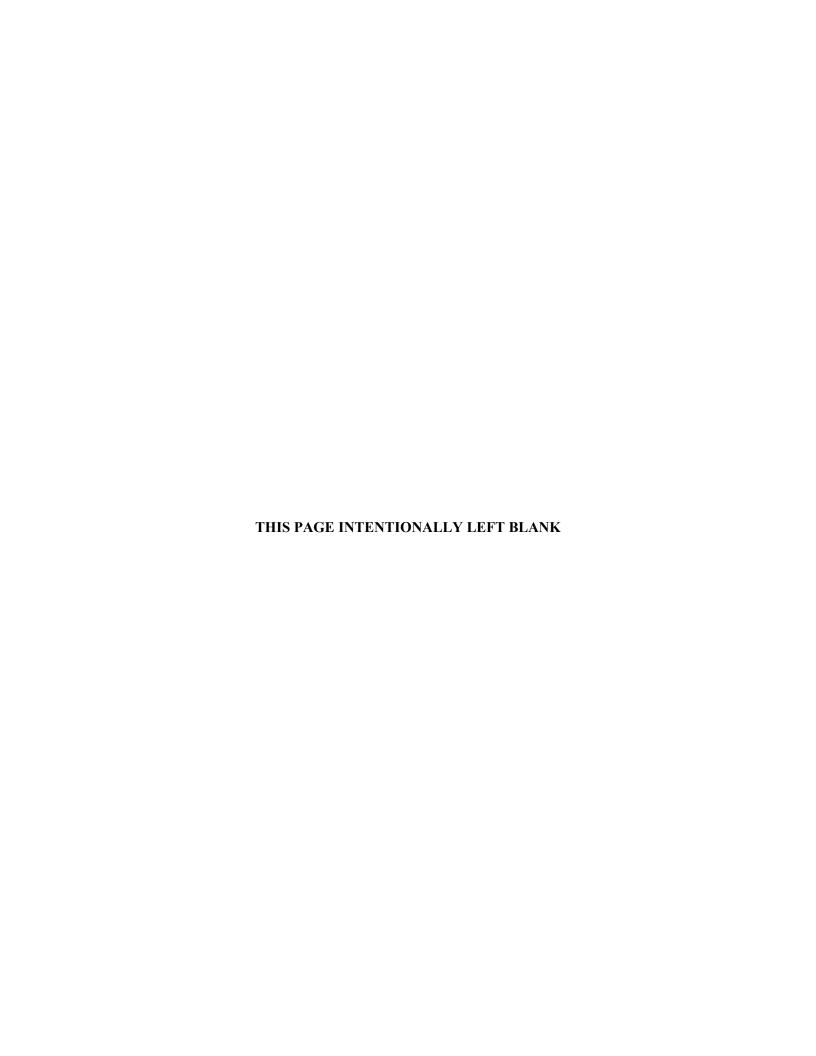

Figure E.4. Vicinity Potentiometric Surface of the Regional Gravel Aquifer July 27, 2020

Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	1.16×10^{-3}
Beneath Landfill—Lower RGA	1.15×10^{-3}
Vicinity	6.07×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific	Discharge (q)	Average I	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.841	2.97 × 10 ⁻⁴	3.37	1.19×10^{-3}
425	0.150	0.493	1.74×10^{-4}	1.97	6.96×10^{-4}
Lower RGA					
725	0.256	0.833	2.94×10^{-4}	3.33	1.18×10^{-3}
425	0.150	0.488	1.72×10^{-4}	1.95	6.90×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the third quarter 2020 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW372
Lower Regional Gravel Aquifer	Technetium-99	MW358, MW361, MW364, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

8/18/2020

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4795	MW361	Trichloroethene	8260B	6.9	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	6.98	ug/L	5
8004-4818	MW370	Beta activity	9310	65.5	pCi/L	50
8004-4808	MW372	Beta activity	9310	76.1	pCi/L	50

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Monitoring Well See 375 376 377 359 362 365 371 374 366 360 361 377 369 372 367 361 364 388 370 373 Apparet 4, 2002 Joanter 4, 1003 Joanter 4, 1005 Joanter 4, 2003 Joanter 4, 2005 Joanter 4, 2006 Joanter 4, 2007 Joanter 4, 2008 Joanter 4, 2007 Joanter 4, 2008 Joante	Groundwater Flow System	Т			UCR	S							URG	A					LRG	ĜA		
Marter 4, 2002	Gradient	D	S	S	S	D	D	D	U	U	D	D			U	U	D	D			U	U
Quarter 1, 1903 Quarter 2, 1903 Quarter 3, 1905 Quarter 1, 1903 Quarter 3, 1905 Quarter 4, 1905 Quarter 3, 1905 Quarter 4, 1907 Quarter 3, 1907 Quarter 3, 1907 Quarter 4, 1907 Quarter 3, 1907 Quarter 4,	Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2,0002	ACETONE																					
Quarter 1, 2003	Quarter 3, 2002																					
Quarter 2, 2003	Quarter 4, 2002										*											
Quarter 4, 2003		1																				
Quarter 4, 2003																						
Quarter 3, 2004		*									*		*			*			*			
Quarter 4, 2005		4—						*				*			*							
Quarter 1, 2004		4—															*					
ALDINACTIVITY Junter 2, 2004 Junter 3, 2009 ALMINISM Junter 3, 2003 BETA ACTIVITY Junter 3, 2004 Junter 4, 2004 Junter 4, 2004 Junter 4, 2005 Junter 1, 2006 Junter 4, 2007 Junter 4, 2008 Junter 4, 2009 Junter 4, 2010 Junter 6, 2010 Junter 6, 2010 Junter 7, 2010 Junter 8, 2010 Junter 8, 2010 Junter 8, 2010 Junter 9, 2010 Junter 9, 2010 Junter 9, 2010		_																				
Quarter 1, 2004		_					*															
Quarter 2, 2009		-																				_
Quarter 3, 2009		-					_															_
MAINTINUM DETARCTIVITY DUMBER 1, 2004 DUMBER 2, 2004 DUMBER 2, 2005 DUMBER 1, 2008 DUMBER 3, 2008 DUMBER 1, 2008 DUMBER 3, 2008 DUMBER 3, 2009 DUMBER 4, 2019 DUMBER 4, 2011 DUMBE		+															-					
Description							_															
DETA ACTIVITY Department		-										- 14										
Dauter 1, 2004 Dauter 2, 2009 Dauter 3, 2009 Dauter 4, 2008 Dauter 4, 2007 Dauter 4, 2007 Dauter 4, 2008 Dauter 4, 2009 Dauter 4, 2010 Dauter 4, 2011 Dauter 4, 2010 Dauter 4, 2010 Dauter 4, 2010 Dauter 4, 2011 Dauter 4, 2010 Dauter 5, 2010 Dauter 6, 2010 Dauter 6, 2010 Dauter 6, 2010 Dauter 7, 2010 Dauter 8, 2010 Dauter 8, 2010												*										
Dauter 1, 2004 Dauter 1, 2004 Dauter 2, 2006 Dauter 1, 2006 Dauter 2, 2006 Dauter 2, 2006 Dauter 3, 2006 Dauter 4, 2006 Dauter 2, 2006 Dauter 4, 2007 Dauter 2, 2007 Dauter 2, 2007 Dauter 3, 2007 Dauter 3, 2007 Dauter 4, 2007 Dauter 4, 2007 Dauter 4, 2007 Dauter 4, 2009 Dauter 4, 2008 Dauter 4, 2008 Dauter 4, 2009 Dauter 4, 2010 Dauter 4, 2011 Dauter 4, 2012 Dauter 4, 2012 Dauter 4, 2013 Dauter 4, 2013 Dauter 4, 2013 Dauter 4, 2015 Dauter 4, 2015 Dauter 4, 2015 Dauter 4, 2015 Dauter 4, 2016 Dauter 4, 2015 Dauter 4, 2016 Dauter 4, 2019 Dauter 5, 2019 Dauter 6, 2019 Dauter 6, 2019 Dauter 7, 2019 Dauter		+														_						
Dauter 1, 2004 Dauter 1, 2005 Dauter 1, 2006 Dauter 1, 2007 Dauter 1, 2008 Dauter 2, 2009 Dauter 2, 2010 Dauter 3, 2010 Dauter 4, 2011 Dauter 4, 2013 Dauter 4, 2019 Dauter 2, 2017 Dauter 4, 2019 Dauter 2, 2020 Dauter 3, 2020 Dauter 4, 2019 Dauter 5, 2020 Dauter 6, 2020 Dauter		+														_						_
Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4,		+														_						_
Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4,		+	 	_		_		_		_	_	_	-	_	 	_	1	-	-	-	\vdash	\vdash
Daurter 1, 2006 Daurter 2, 2006 Daurter 3, 2006 Daurter 3, 2006 Daurter 4, 2006 Daurter 4, 2006 Daurter 4, 2007 Daurter 2, 2007 Daurter 2, 2007 Daurter 3, 2007 Daurter 4, 2007 Daurter 3, 2008 Daurter 4, 2009 Daurter 3, 2009 Daurter 4, 2010 Daurter 4, 2010 Daurter 4, 2010 Daurter 4, 2010 Daurter 4, 2011 Daurter 4, 2012 Daurter 4, 2012 Daurter 4, 2012 Daurter 4, 2013 Daurter 4, 2013 Daurter 4, 2013 Daurter 4, 2014 Daurter 4, 2015 Daurter 4, 2015 Daurter 4, 2016 Daurter 4, 2017 Daurter 4, 2018 Daurter 4, 2019 Daurter 4, 2016 Daurter 4, 2017 Daurter 4, 2017 Daurter 4, 2018 Daurter 4, 2018 Daurter 4, 2019 Daurter 4,		+-																				
Dauter 2, 2006 Dauter 3, 2006 Dauter 4, 2006 Dauter 4, 2006 Dauter 4, 2007 Dauter 5, 2007 Dauter 5, 2007 Dauter 6, 2008 Dauter 6, 2009 Dauter 6, 2010 Dauter		+-																				
Quarter 1, 2006		1-														-						
Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2000 Quarter 4,		1-																				
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4,		1-														_						
Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2000 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 6, 201		1-																				
Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2000 Quarter 4,		1-														_						
Quarter 1, 2008		+																				_
Quarter 1, 2008		1														_						_
Quarter 2, 2008		1														_						_
Quarter 3, 2008		1									_					_	-					
Quarter 1, 2009		1									-				_	-	┢═			-		
Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 3, 2010 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2019 Quarter 4,		1														_						
Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 3, 2020		1																		_		
Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2019 Quarter 4, 2017 Quarter 2, 2019 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 202		1														_						
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 6, 202																_						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 202																_						
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 3, 2020																_						
Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 202	Quarter 2, 2010																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 202																						
Quarter 2, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 7, 2012 Quarter 8, 2012 Quarter 9, 2012 Quarter 9, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 1, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 BROMIDE																						
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 202	Quarter 2, 2011																					
Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 4, 2011																					
Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 1, 2012																					
Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 2, 2012																					
Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 3, 2012																					
Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 4, 2012																					
Quarter 4, 2013 Quarter 1, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 1, 2013																					
Quarter 1, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 3, 2013																					
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 4, 2013																					
Quarter 1, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 1, 2014																					
Quarter 2, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 4, 2014																					
Quarter 4, 2015 Image: Control of the control of t	Quarter 1, 2015																					
Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 2, 2015																					
Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 4, 2015																					
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 3, 2016																					
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 4, 2016																					
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 BROMIDE	Quarter 2, 2017																					
Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 3, 2017																					
Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 4, 2017																					
Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 202	Quarter 1, 2018																					
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 6, 2020 Quarter 9, 202	Quarter 2, 2018																					
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE	Quarter 3, 2018																					
Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 202	Quarter 4, 2018																					
Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 202	Quarter 1, 2019																					
Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 202	Quarter 2, 2019																					
Quarter 1, 2020 ■ ■ ■ Quarter 2, 2020 ■ ■ Quarter 3, 2020 ■ ■ BROMIDE ■ ■	Quarter 3, 2019																					
Quarter 2, 2020 ■ Quarter 3, 2020 ■ BROMIDE ■	Quarter 4, 2019																					
Quarter 3, 2020	Quarter 1, 2020																					
BROMIDE	Quarter 2, 2020																					
	Quarter 3, 2020																					
Quarter 2, 2004 *	BROMIDE																					
	Quarter 2, 2004													*								

Groundwater Flow System				UCR	S							URG	î.A			ı		LRC	- A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well		375	376	377	_	362	365			366	360	363			372	367					373
CALCIUM							-					-									
Quarter 3, 2003										*											
Quarter 2, 2005																					*
Quarter 3, 2006															*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011																					*
Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
Quarter 3, 2013															*						*
Quarter 4, 2013					Ĺ										*						
Quarter 2, 2014															*						*
Quarter 3, 2014															*						*
Quarter 4, 2014															*						
Quarter 2, 2015					Ĺ										*						
Quarter 3, 2015					Ĺ										*						
Quarter 4, 2015						L									*	L	L	L			
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 2, 2017	*																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
Quarter 3, 2019	*							*													
Quarter 4, 2019															*						
Quarter 1, 2020								*							*						
Quarter 2, 2020								*							*						
Quarter 3, 2020	*							*							*						
CARBON DISULFIDE																					
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006						*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						
CHEMICAL OXYGEN DEMA	AND																				
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003						*				*	*										
Quarter 3, 2004	<u> </u>	<u> </u>				Ļ.				*						L_	Ь—	Ь—		<u> </u>	Ш
Quarter 3, 2005						*				*					*	*		_	*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		ш
Quarter 4, 2016																		*			
Quarter 1, 2017											*										
Quarter 2, 2019												*			*						
Quarter 3, 2019															*						*
Quarter 4, 2019															*						
CHLORIDE																					
Quarter 1, 2006																				*	
Quarter 2, 2014										_					*						
COBALT																					
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	ш
Quarter 1, 2004														*							
Quarter 2, 2016	\vdash			_						\vdash	_		_	*		_					
CONDUCTIVITY																					
Quarter 4, 2002										*											
Quarter 1, 2003										*	L										ш
Quarter 2, 2003										*	*										
Quarter 4, 2003										*											
Quarter 1, 2004										*											
Quarter 2, 2004	ட									*											ш
	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_			_	_

Groundwater Flow System				UCR	S					Ī		URG	šΑ		_	Ī		LRG	ĜA		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY																					
Quarter 3, 2004										*											
Quarter 1, 2005															*						
Quarter 2, 2005															*						
Quarter 3, 2005						*							L.,						*		
Quarter 4, 2005															*			*			
Quarter 1, 2006													L.,		*						
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 3, 2007															*						
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						
Quarter 3, 2008															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010							t		t	t				 	*	1					
Quarter 3, 2010							t		t	t				 	*	1					
Quarter 4, 2010	1									1	<u> </u>	t	\vdash	t	*	1		t	<u> </u>		
Quarter 1, 2011										l		T	T	t	*	 					
Quarter 2, 2011	1	-	-				 	-	 	1	-	 	-	 	*	1	-	1	-		1
Quarter 3, 2011	1	-	-				 	-	 	1	-	 	-	 	*	1	-	1	-		1
Quarter 4, 2011										 		t	t	t	*						
Quarter 1, 2012	 	 	 	\vdash	 	 	—	 	—	\vdash	 	\vdash	\vdash	*	*	\vdash	 	\vdash	 	\vdash	\vdash
												-	-	不	*						
Quarter 2, 2012												-	-		*						
Quarter 3, 2012												-	_								
Quarter 4, 2012												-	_		*						
Quarter 1, 2013															*	_					
Quarter 2, 2013												-			*						
Quarter 3, 2013												-			*						
Quarter 4, 2013												-			*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 3, 2014													—		*						
Quarter 4, 2014															*						
Quarter 1, 2015													<u> </u>		*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016													L		*						
Quarter 3, 2016													L		*						
Quarter 2, 2019															*						
Quarter 3, 2019															*						
Quarter 4, 2019															*						
Quarter 1, 2020															*						
Quarter 2, 2020															*						
Quarter 3, 2020															*						
DISSOLVED OXYGEN																					
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Quarter 2, 2004								*		1						*					
Quarter 1, 2005					*		i	Ė	i	1				1		İ		1			
Quarter 2, 2005					É			*		1				t							
Quarter 1, 2006					*		t		t	t —				 		1					
Quarter 2, 2006	1				*			*		1	-	t	\vdash	t	1	1		t	-		
Quarter 3, 2006	1				*			*		1	-	t	\vdash	t	1	1		t	-		
Quarter 4, 2006	1	-	-		*		 	T-	*	1	-	 	-	 	₩	1	-	 	-		1
Quarter 2, 2007	 	 	 	\vdash	*	\vdash	—	*		\vdash	 	\vdash	\vdash	\vdash	 	\vdash	 	\vdash	 	\vdash	\vdash
Quarter 3, 2007	 	 	 	\vdash	*	\vdash	—	*	*	\vdash	 	\vdash	\vdash	\vdash	 	\vdash	 	\vdash	 	\vdash	\vdash
Quarter 1, 2008	├			<u> </u>	*	—		₩.	*	 	_	\vdash	\vdash	\vdash	 	\vdash		 	*	<u> </u>	
	1				*		-	*	*	1	-	₩	₩	₩	\vdash	1		1	₩.		1
Quarter 2, 2008								*	*	!		₩	 	<u> </u>	\vdash	_		<u> </u>			<u> </u>
Quarter 3, 2008	├			<u> </u>	—	—	ىد	*		 	_	\vdash	\vdash	\vdash	 	\vdash		 	_	<u> </u>	-
Quarter 1, 2009					4		*	مدر	ىد	!		₩	 		\vdash	_					
Quarter 2, 2009	₽			<u> </u>	*			*	*	 		├	₩	-	\vdash	 		-		<u> </u>	
Quarter 3, 2009	_					*	al.	*	*			<u> </u>	—		$ldsymbol{f eta}$						
Quarter 1, 2010	L				*	.,	*					<u> </u>	—		$ldsymbol{f eta}$						_
			ı		*	*		*	*				Ь.		Щ.					*	*
Quarter 2, 2010																					
					*	*															

Groundwater Flow System	L	_		UCF	RS			_				URC	A	_			_	LRC	A		_
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN							14					ale.								ada .	
Quarter 4, 2010 Quarter 1, 2011	<u> </u>					*	*					*								*	\vdash
Quarter 2, 2011					*	*	*	*	*					*							\vdash
Quarter 3, 2011					т.	*	т	т	*					т.							
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012									*												
Quarter 1, 2013						*			*												ш
Quarter 2, 2013	L.						*		*												\vdash
Quarter 3, 2013	*				*		*	*	*												\vdash
Quarter 4, 2013 Quarter 2, 2014	*				*	*	*	*	*									*		*	\vdash
Quarter 3, 2014 Quarter 3, 2014	*				*	*	*	不	不									不			\vdash
Quarter 4, 2014	-				-	*															
Quarter 2, 2015					*	*	*	*													
Quarter 3, 2015					*	*		*													
Quarter 4, 2015	*					*	*														
Quarter 1, 2016	*				*		*														
Quarter 2, 2016	*	*			*	*	*	*	*											*	*
Quarter 3, 2016	_				*	*	*	*					*								\vdash
Quarter 4, 2016	1—	 	<u> </u>	 	<u> </u>	*	*	<u> </u>	*			-	*	<u> </u>		-	<u> </u>	-	-		\vdash
Quarter 1, 2017 Quarter 2, 2017	*	_	 	-	*	*	*	*	-	 	 	-	*	 	 	 	 	-			
Quarter 2, 2017 Quarter 3, 2017	*	*			*	*	*	*										*			
Quarter 4, 2017	*	Tr.		 	Ψ.	*	*	π'	 									*	l -		
Quarter 1, 2018	1				*	*	*	*										7.		*	
Quarter 2, 2018	1				*	*	*	*													
Quarter 3, 2018	*				*	*	*	*													
Quarter 4, 2018						*															
Quarter 1, 2019					*	*	*	*													
Quarter 2, 2019					*	*		*													ш
Quarter 3, 2019	*				*	*	*	*													\vdash
Quarter 4, 2019	-				*	*	*	*	*												\vdash
Quarter 1, 2020 Quarter 2, 2020	1	-			*	*	木	*	木												\vdash
Quarter 3, 2020	*	1			*	*		*													
DISSOLVED SOLIDS	1				_	_															
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003										*											
Quarter 3, 2005						*															ш
Quarter 4, 2006	_														*						\vdash
Quarter 1, 2007	-														*						\vdash
Quarter 2, 2007 Quarter 4, 2008	1	-													*						\vdash
Quarter 1, 2009	1	1													*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						ш
Quarter 4, 2010	1—	1	<u> </u>		<u> </u>		<u> </u>	<u> </u>				—		<u> </u>	*	<u> </u>	<u> </u>	—			ш
Quarter 1, 2011	1—	 	<u> </u>	 	<u> </u>	-	<u> </u>	<u> </u>	 			-		<u> </u>	*	-	<u> </u>	-	-		\vdash
Quarter 2, 2011 Quarter 3, 2011	1														*						\vdash
Quarter 4, 2011	1	-													*						\vdash
Quarter 1, 2012														*	*						
Quarter 2, 2012														-	*						*
Quarter 3, 2012															*						*
Quarter 4, 2012	L	L													*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>					<u> </u>	*		<u> </u>				lacksquare
Quarter 4, 2013	<u> </u>	1													*						<u> </u>
Quarter 1, 2014	1	1			_			_			_		_	_	*		_				_
Quarter 2, 2014	1—	1-	<u> </u>	 	<u> </u>	-	<u> </u>	<u> </u>	 			1		<u> </u>	*	 	<u> </u>	1	-		\vdash
Quarter 4, 2014 Quarter 2, 2015	1	_	 	-	 		 	 	-	 	 	-	 	 	*	 	 	-			
Quarter 2, 2015 Quarter 3, 2015	1	1													*						—
Quarter 3, 2015 Quarter 4, 2015	1	1	<u> </u>				<u> </u>								*	\vdash					
	1	1		 		l -			 						*				l -		
					_	-	-	 	1	_		\vdash		-				 	 	\vdash	\vdash
Quarter 1, 2016	1							ı							*				l		
Quarter 1, 2016 Quarter 3, 2019															*						
Quarter 1, 2016																					
Quarter 1, 2016 Quarter 3, 2019 Quarter 4, 2019															*						
Quarter 1, 2016 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020															*						

Grantene	Groundwater Flow System				UCF	RS							URC	iΑ					LRO	ŝΑ		
Country 2, 2003	Gradient	_								_												
Ounter 2, 2003 Ounter 3, 2005 Ounter 4, 2001 Ounter 5, 2001 Ounter 6, 2001 Ounter 7, 2001 Ounter 7, 2001 Ounter 7, 2001 Ounter 7, 2003 Ounter 7, 2004 Ounter 7, 2005 Ounter 7, 2005 Ounter 7, 2005 Ounter 7, 2006 Ounter 7, 2007 Ounter 7, 2006 Ounter 7, 2007	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373	
Quanter 3, 2003 Quanter 3, 2010 Quanter 3, 2010 Quanter 3, 2010 Quanter 4, 2010 Quanter 3, 2010 Quanter 3, 2010 Quanter 4, 2011 Quanter 4, 2010 Quanter 4,																	*					
Quarter 4, 2003 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2007 Quarter 2, 2009 Quarter 2, 200		*									*											
COMMET C								*														
Quarter 4, 2003							*		*					*				*				
ODOMETIANE																						
Quarter 4, 2003																			•			
MONTE MONT							*															
Quarter 1, 2003							*															
Quanter 1, 2003 Quarter 1, 2004 Quanter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 200							*															
Quarter 1, 2004																	*					
Quarter 2, 2004	Quarter 4, 2003										*						*					
Quarter 3, 2009																	*					
Quarter 2, 2005																						
MACINSUM Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2010 Quarter 2, 2000 Quart											*											
Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 1, 2009 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 200																	*					
Quarter 3, 2005																*						*
Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2000 Quarter 4, 2001 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2000 Quarter 4,							*									*						_
Quarter 1, 2006							т.									*						
Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 3, 2006 Quarter 3, 2005 Quarter 4, 2004 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 200																						-
Ounter 2,2009 Ounter 4,2009 Ounter 4,2009 Ounter 4,2009 Ounter 2,2010 Ounter 2,2010 Ounter 3,2010 Ounter 2,2010 Ounter 3,2010 Ounter 2,2011 Ounter 2,2011 Ounter 2,2011 Ounter 2,2011 Ounter 4,2011 Ounter 4,2011 Ounter 4,2012 Ounter 4,2012 Ounter 4,2012 Ounter 4,2012 Ounter 3,2013 Ounter 4,2013 Ounter 4,2013 Ounter 4,2013 Ounter 4,2013 Ounter 4,2014 Ounter 2,2014 Ounter 3,2016 Ounter 3,2016 Ounter 3,2016 Ounter 3,2016 Ounter 4,2015 Ounter 4,2015 Ounter 4,2016 Ounter 3,2016 Ounter 3,2016 Ounter 4,2016 Ounter 3,2016 Ounter 3,2016 Ounter 3,2017 Ounter 3,2016 Ounter 4,2016 Ounter 3,2017 Ounter 4,2010 Ounter 4,2010 Ounter 3,2010 Ounter 4,2010 Ounter 3,2010 Ounter 3,2000 Ou																						
Ounter 3, 2009 Ounter 1, 2010 Ounter 2, 2010 Ounter 2, 2010 Ounter 3, 2010 Ounter 3, 2010 Ounter 3, 2011 Ounter 3, 2011 Ounter 2, 2011 Ounter 3, 2011 Ounter 4, 2011 Ounter 3, 2011 Ounter 3, 2011 Ounter 4, 2011 Ounter 2, 2012 Ounter 3, 2012 Ounter 4, 2012 Ounter 3, 2012 Ounter 3, 2012 Ounter 4, 2012 Ounter 3, 2012 Ounter 4, 2012 Ounter 4, 2013 Ounter 2, 2013 Ounter 2, 2013 Ounter 2, 2013 Ounter 2, 2014 Ounter 4, 2015 Ounter 4, 2015 Ounter 4, 2015 Ounter 4, 2016 Ounter 2, 2016 Ounter 3, 2016 Ounter 3, 2017 Ounter 3, 2019 Ounter 3, 2019 Ounter 3, 2016 Ounter 3, 2016 Ounter 3, 2017 Ounter 3, 2019 Ounter 3, 2010 Ounter 3, 2000 Ount																						
Quarter 4, 2000 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2017 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2010 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 200																						
Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2013 Quarter 4, 2012 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 200																						
Quarter 2, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 200	· /		<u> </u>					<u> </u>		<u> </u>										<u> </u>		
Quarter 3, 2010 Quarter 4, 2011 Quarter 5, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 8, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 2, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 2, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006																						
Quarter 1, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 1, 2013 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 5, 2016 Quarter 6, 2016 Quarter 6, 2016 Quarter 7, 2016 Quarter 7, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 201																_						
Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 3, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 1, 2018 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2010 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2009 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 200																_						
Quarter 3, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2006 Quarter 3, 2009 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000			<u> </u>													_						
Quarter 4, 2011			<u> </u>													_						
Quarter 1, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2019 Quarter 3, 2016 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2000 Quarter 2, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006																_						
Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2019 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2000 Quarter 5, 2000 Quarter 5, 2000 Quarter 5, 2000 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006																_						
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 1, 2018 Quarter 3, 2017 # Quarter 4, 2017 Quarter 1, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2000 MANGANESE MANGANESE Quarter 2, 2000 MANGANESE Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3,	Quarter 2, 2012															*						
Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 * Quarter 4, 2016 Quarter 3, 2017 * Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006																						
Quarter 2, 2013 Quarter 3, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 ** Quarter 3, 2017 ** Quarter 1, 2018 ** Quarter 3, 2017 Quarter 1, 2018 ** Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2020 MANGANESE MANGANESE MANGANESE MANGANESE MANGANESE Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2004 Quarter 2, 2005 Quarter 1, 2006 Quarter 2, 2005 Quarter 1, 2006 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4,																						
Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006																						
Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 * Quarter 1, 2018 * Quarter 1, 2018 * Quarter 1, 2018 * Quarter 3, 2019 * Quarter 3, 2019 * Quarter 4, 2019 Quarter 3, 2019 * Quarter 3, 2019 * Quarter 3, 2002 Quarter 3, 2002 Quarter 3, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2006																						
Quarter 2, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 12, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2002 Quarter 3, 2002 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006																						
Quarter 4, 2014			_																			
Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 MANGANESE Quarter 2, 2020 MANGANESE Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4,																						
Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Representation of the second of the																_						
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 MANGANESE Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006																						
Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 R Quarter 3, 2017 R Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2020 MANGANESE Quarter 4, 2002 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006																						
Quarter 3, 2016																*						
Quarter 4, 2016	Quarter 2, 2016															*						
Quarter 2, 2017																						
Quarter 3, 2017																						
Quarter 1, 2018																						
Quarter 3, 2018			<u> </u>	<u> </u>									<u> </u>					<u> </u>		-		
Quarter 3, 2019 *		_	1	-				<u> </u>		<u> </u>	\vdash		-	-		<u> </u>	\vdash	-		1		
Quarter 4, 2019		_	 								\vdash						\vdash					
Quarter 2, 2020			t													*				t		
MANGANESE																*						
Quarter 4, 2002 *																						
Quarter 2, 2003	Quarter 3, 2002										*		*									
Quarter 3, 2003 # # # # # # # # # # # Quarter 4, 2003 # # # # # # # # # Quarter 1, 2004 # # # # # # # # # # # Quarter 2, 2004 # # # # # # # # # # Quarter 3, 2004 # # # # # # # # # # Quarter 4, 2004 # # # # # # # # # # Quarter 1, 2005 # # # # # # # # Quarter 2, 2005 # # # # # # # # # Quarter 3, 2005 # # # # # # # # # # # Quarter 4, 2005 # # # # # # # # # # # Quarter 1, 2006 # # # # # # # # # # # Quarter 2, 2006 # # # # # # # # # # # # # Quarter 4, 2006 # # # # # # # # # # # # # # # # # Quarter 4, 2006 # # # # # # # # # # # # # # # # # # #			*				*	*							*							
Quarter 4, 2003 # # # # # # # # # # # # # # # # # # #																						
Quarter 1, 2004 * * * * * Quarter 2, 2004 * * * * * * Quarter 3, 2004 * * * * * * Quarter 4, 2004 * * * * * Quarter 1, 2005 * * * * Quarter 2, 2005 * * * * Quarter 3, 2005 * * * * Quarter 4, 2005 * * * * * Quarter 4, 2005 * * * * * Quarter 4, 2006 * * * * * Quarter 2, 2006 * * * * * Quarter 4, 2006 * * * * * Quarter 4, 2006 * * * * * Quarter 4, 2006 * * * * *																	*			*		
Quarter 2, 2004 * * * * * Quarter 3, 2004 * * * * * Quarter 4, 2004 * * * * * Quarter 1, 2005 * * * * Quarter 2, 2005 * * * * Quarter 3, 2005 * * * * Quarter 4, 2005 * * * * Quarter 1, 2006 * * * * Quarter 2, 2006 * * * * Quarter 3, 2006 * * * * Quarter 4, 2006 * * * *			<u> </u>	<u> </u>										*			*			-		
Quarter 3, 2004 * * * * * * * * Quarter 4, 2004 * * * * * * Quarter 1, 2005 * * * * Quarter 2, 2005 * * * * Quarter 3, 2005 * * * * * Quarter 4, 2005 * * * * * Quarter 4, 2006 * * * * * Quarter 2, 2006 * * * * * Quarter 3, 2006 * * * * Quarter 4, 2006 * * * *		_	├	<u> </u>				*						-			木	本		 		
Quarter 4, 2004 # # # # Quarter 1, 2005 # # #		 	1	1						 				-		 	*	1	亦	1		-
Quarter 1, 2005 # # Quarter 2, 2005 # # Quarter 3, 2005 # # Quarter 4, 2005 # # Quarter 1, 2006 # # Quarter 2, 2006 # # Quarter 3, 2006 # # Quarter 4, 2006 # #			1					Ψ.				-m'		l -						 		
Quarter 2, 2005 # # # # # #			1											l			<u> </u>					
Quarter 3, 2005 * * * Quarter 4, 2005 * * * Quarter 1, 2006 * * * Quarter 2, 2006 * * * Quarter 3, 2006 * * * Quarter 4, 2006 * * *																						
Quarter 4, 2005 # Quarter 1, 2006 # Quarter 2, 2006 # Quarter 3, 2006 # Quarter 4, 2006 #																	*					
Quarter 1, 2006 # Quarter 2, 2006 # Quarter 3, 2006 # Quarter 4, 2006 #	Quarter 4, 2005										*											
Quarter 3, 2006 * Quarter 4, 2006 *	Quarter 1, 2006																					
Quarter 4, 2006 **								*					*				L		_			
			1	<u> </u>									<u> </u>	ļ			*	<u> </u>	<u> </u>			
Quarter 1, 200/		<u> </u>	<u> </u>	—	ļ	ļ	ļ		ļ			ļ	—	ļ	ļ		<u> </u>	—	1	—		
	It browfor 1 2002/		1	Ī	I	I	I	I	ı	I	*	I	Ī	ı	I			1	Ĭ.	I		ĺ.

Groundwater Flow System	Ι			UCF	RS							URC	iΑ			I		LRC	iΑ		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
MANGANESE																					
Quarter 2, 2007							*			*											
Quarter 3, 2007		-					*														
Quarter 3, 2008							*														
Quarter 4, 2008 Quarter 3, 2009							*														
Quarter 3, 2011							*														
Quarter 2, 2016							~							*							
Quarter 3, 2016									*												
NICKEL																					
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTIA	L																		
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004					L.			L					*				*				*
Quarter 3, 2004		-			*			*					*	*	*		*			*	*
Quarter 4, 2004		-										*					- 14			- 14	*
Quarter 1, 2005		<u> </u>	 	 	 	 	_		 	-	<u> </u>	-	75.		-	<u> </u>	*	 	<u> </u>	*	*
Quarter 2, 2005	-	 	 	-	344	عدر	-	*	-	<u> </u>	JE.	<u>J4</u>	*			 	*	-	<u> </u>	*	<u>J4</u>
Quarter 3, 2005	1	*	├—	 	*	*	 	*	 	-	*	*	*		-	 	*	 	*	*	*
Quarter 4, 2005 Quarter 1, 2006	1	木	<u> </u>	 	*	 	\vdash	*	*	—			*			 	*	 		*	*
Quarter 1, 2006 Quarter 2, 2006	 	╁	╁	 	*	 	*	*	T	—	<u> </u>		*			\vdash	*	 	<u> </u>	*	*
Quarter 2, 2006 Quarter 3, 2006	 	╁	╁	 	*	 	~	*	 	—	<u> </u>		*			\vdash	*	 	<u> </u>	*	
Quarter 4, 2006					*		*	т.		*		*	*				*			*	*
Quarter 1, 2007		*	1		*			*					*			1	*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*									*			*	Ė
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*	L	*	*		*			*			*	*	*		*	
Quarter 2, 2010		<u> </u>			*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*	<u> </u>			*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011		*			*	*	*	*		*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2011		*	<u> </u>		木		木	*	*	*	木	*	*	*		*	*			*	
Quarter 3, 2011		*	<u> </u>			*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2012 Quarter 2, 2012	*	*	-	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012	4.	*				*		*		*	-4-	*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*	1			Ť		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*	i –		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2014		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2015		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015		*			*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*	<u> </u>			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*	<u> </u>	<u> </u>	*	L	*	*	L.	*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*	<u> </u>	—	*	*	*	*	*	*	11.	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*	├	 	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*	 	<u> </u>	<u> </u>	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*	 	-	طو	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Character 2 2017	*	*	 	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*		1		ᅏ	*	*	*	*	*	<u> </u>	*	*	_	*	*	*	*	*	*	*
Quarter 3, 2017	*								-												
Quarter 3, 2017 Quarter 4, 2017		*			*									*		*		*			
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018	*	* *			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018	*	* * *				* *	*	* *	* *	* *	*	* *	* *	* *	* *	*	* *	* *	*	* *	* *
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018	*	* *			*	*	* *	*	*	*		*	*	*	*	*	*	*		*	*

Groundwater Flow System				UCF	S							URG	iΑ			T		LRG	iΑ		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368		376		359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
OXIDATION-REDUCTION P	OTE	NTIA																			
Quarter 2, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 4, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 2, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
Quarter 3, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
PCB, TOTAL																					
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*			_											
PCB-1016																					
Quarter 3, 2004	<u> </u>	<u> </u>		<u> </u>			L.	<u> </u>				*			<u> </u>	<u> </u>	<u> </u>				
Quarter 2, 2006	-	—		—	ļ	ļ	*		ļ		ļ	*	ļ	ļ		<u> </u>		ļ	ļ	ļ	
Quarter 1, 2007							*									<u> </u>					
Quarter 2, 2007							*									_					
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009	-						*									-					
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010 PCB-1242							*														
							*					*									
Quarter 3, 2006 Quarter 4, 2006							*			*		*									
Quarter 1, 2008							*			_											
Quarter 2, 2012							*														
PCB-1248							-														
Quarter 2, 2008							*														
PCB-1260							-														
Quarter 2, 2006							*														
pH							-														
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*												*	*		
Quarter 4, 2005						*													*		
Quarter 3, 2006																*					
Quarter 2, 2011														*							
Quarter 3, 2011														*							
Quarter 4, 2011														*							
Quarter 1, 2012																*	*				
Quarter 2, 2012												*									
Quarter 1, 2013										*		*				*					
Quarter 3, 2015																	*				
Quarter 2, 2016																				*	*
Quarter 3, 2016																				*	
Quarter 2, 2017																	*				
Quarter 3, 2018					*					*		*					*	*	*		
Quarter 4, 2018																*		*			
Quarter 3, 2019	\vdash															*					
POTASSIUM																					
Quarter 1, 2014																*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005						•						•						•			
SELENIUM																					
Quarter 4, 2003	<u> </u>		Ш		<u> </u>	<u> </u>		<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>						

Groundwater Flow System	+_	1 ~	-	UCF	_	-	-	7.	**	_	- r	URG			7.	_	-	LRC			
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D 250	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SODIUM																					
Quarter 3, 2002										*	*		*								Ш
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 3, 2003	1										*										
Quarter 1, 2007											*										
Quarter 1, 2007	+										-			*							
	1													*	*						
Quarter 1, 2014	-	-					-		-	_		-			不		-	-			-
Quarter 3, 2014											*										-
Quarter 4, 2014											*										<u> </u>
Quarter 4, 2015											*										Ь.
Quarter 1, 2016											*										
Quarter 2, 2016											*										
Quarter 3, 2016											*										
Quarter 4, 2016	1										*										
Quarter 1, 2017	1 -										*										
Quarter 2, 2017	+										*										
	+						_		-		*						-	-			—
Quarter 3, 2017	-	-					-		-	_		-					-	-			-
Quarter 4, 2017	1	1									*					_					⊢
Quarter 1, 2018	1	<u> </u>					Ь		<u> </u>		*	<u> </u>				<u> </u>	<u> </u>	<u> </u>			
Quarter 3, 2018	\bot	∟_					$oxed{oxed}$				*										_
STRONTIUM-90																					
Quarter 4, 2008	\perp	L	L		L			L	L		L	L	L	L	L	L	L	L	L	L	L
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														Т
Quarter 3, 2003	*	1				*	_														\vdash
	*				*	*	*		-								-	-			—
Quarter 4, 2003	-	-				- 14	_		-	_	-	-					-	-			-
Quarter 1, 2004					*	*	*														—
Quarter 2, 2004					*	*	*														<u> </u>
Quarter 3, 2004					*	*	*														Ь.
Quarter 1, 2005					*	*			*												<u>L</u>
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005	1														*						
Quarter 1, 2006	1 -				*				*												
Quarter 2, 2006	+				-,-	*	*		*						*						
	+	-				т.	*		-T						т.						
Quarter 3, 2006	-	-							-	_	-	-					-	-			-
Quarter 1, 2007							*														—
Quarter 2, 2007							*														Ь.
Quarter 3, 2007							*														Ш
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008	1 -	*			Ė	*	*														
Quarter 1, 2009	+-	*					*														
	+	*			*	*	*														
Quarter 2, 2009	-								-	_	-	-					-	-			-
Quarter 3, 2009	₩	*	-	-	*	*	*	-	 		-	-	-	-	*	├	 	 	-	-	├—
Quarter 4, 2009	1	*			*	*	L.,		<u> </u>		<u> </u>	<u> </u>			*	<u> </u>	<u> </u>	<u> </u>			
Quarter 1, 2010	1	*			*	*	*								*						_
Quarter 2, 2010		*			*	*	*		Щ.						*		Щ.	Щ.			L
Quarter 3, 2010		*			*	*	*				L	L			*	L					
Quarter 4, 2010		*				*	*								*						I
Quarter 1, 2011		*																			
Quarter 2, 2011		*			*	*	*								*						\vdash
Quarter 2, 2011 Ouarter 3, 2011	1	*			-	*	*	*							**	\vdash					\vdash
Quarter 4, 2011	1	*				*	<u> </u>	<u> </u>	\vdash	—	1	1	\vdash		*	\vdash	\vdash	\vdash	 	\vdash	\vdash
	+		-	-	-	*		,1,	 	-	-	-	-	-		 	 	 	-	-	\vdash
Quarter 1, 2012	+	*			<u></u>	,ı.	*	*	,		!	!	<u> </u>		*	<u> </u>	<u> </u>	<u> </u>		<u> </u>	\vdash
Quarter 2, 2012	*	*	-	*	*	*	*	*	*		—	—		-	*	<u> </u>	Ь—	Ь—	<u> </u>		<u> </u>
Quarter 3, 2012	_	*				*									*						\vdash
Quarter 4, 2012		*	L	L	L	L		L		L				L	*	L			<u></u>		
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*						
Quarter 3, 2013	*	*		*	*	*	*								*						\vdash
Quarter 4, 2013	+-	*		-	-	-	-								*	\vdash					H
	1	*					 		 		!	!			*	 	 	 			\vdash
Quarter 1, 2014	4		-	-	طو	-	طو	طو	 	-	-	-	-	-		 	 	 	-	-	⊢
Quarter 2, 2014	*	*			*	,	*	*	 		<u> </u>	<u> </u>	<u> </u>		*	<u> </u>	 	 		<u> </u>	-
Quarter 3, 2014	*	*			*	*	*	*	<u> </u>		<u> </u>	<u> </u>			*	<u> </u>	<u> </u>	<u> </u>			
Quarter 4, 2014	1	*				*															_
Quarter 1, 2015		*	L		L			L	∟					L	L		∟	∟	L		L
																					_

Groundwater Flow System				UCR								URG						LRG			
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE																					
Quarter 2, 2015	*	*			*		*								*						
Quarter 3, 2015		*			*	*		*							*						
Quarter 4, 2015	*	*				*	*	*													
Quarter 1, 2016	*	*			*	*	*														
Quarter 2, 2016	*	*			*	*	*														
Quarter 3, 2016	*	*			*	*	*	*													
Quarter 4, 2016	*	*				*	*	*													
Quarter 1, 2017	*	*				*	*														
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017	*	*			*	*	*														
Quarter 4, 2017		*				*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
Quarter 3, 2018	*	*			*	*	*	*													
Quarter 4, 2018		*				*	*	*													
Quarter 1, 2019	*	*			*	*	*														
Quarter 2, 2019	*	*			*	*	*	*													
Quarter 3, 2019	*	*			*	*	*	*													
Quarter 4, 2019	*	*	t		*	*	*	*			<u> </u>									t	
Quarter 1, 2020	*	*	1		*	*	*	*	-		-	-						-	-	1	
Quarter 2, 2020	*	*	1		*	*	*	*	-		-	-						-	-	1	
Quarter 3, 2020 Quarter 3, 2020	*	*	1		*	*	*	*			-									1	\vdash
	*	*			*	*	*	*													
TECHNETIUM-99																	*	*	3k		
Quarter 4, 2002	-		<u> </u>													4	*	*	*	<u> </u>	3.
Quarter 2, 2003	_						*						*			*	*	*	*		*
Quarter 3, 2003	_																* :				<u> </u>
Quarter 4, 2003	_	<u> </u>															*				*
Quarter 1, 2004	1													Ш	*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004															*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005																	*				
Quarter 1, 2006															*						*
Quarter 2, 2006		*							*												*
Quarter 3, 2006																					*
Quarter 4, 2006	1														*						*
Quarter 1, 2007															***						*
Quarter 2, 2007	+												*		*					*	-
Quarter 3, 2007	+												-		*		*	*		-	
	+									*					*		*	*	*		*
Quarter 4, 2007	-									本									不	- Jac	*
Quarter 1, 2008	-						- 14	14						- 14	*	- 14			- 14	*	*
Quarter 2, 2008	_						*	*						*	14	*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010															_						
Quarter 1, 2011		4			_		_											*			_
		*								*							*	*			
	-	木								*						*	*	*	*		
Quarter 2, 2011		本								*						*			*		
Quarter 2, 2011 Quarter 1, 2012		本						*		*						*	*	*	*		
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012		本						*		*						*	*	* *	*		
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012		本						*		*					*	*	*	*	*		*
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012		**************************************						*		*					*	*	*	* * * *	*		*
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013		*						*		*					*	*	*	* *	*		*
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013		*						*							*	*	*	* * * *	*		*
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013		*						*		*					*	*	*	* * * * * *	*		* *
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013		*						*							*	*	* *	* * * * * *	*		*
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014		*						*							*	*	*	* * * * * *	*		* *
Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014		*						*								*	* * *	* * * * * * *			* *
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014		*						*							*	*	* *	* * * * * *	*		* *
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014		*						*							*	*	* * *	* * * * * * * *			* *
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015		*						*							*		* * *	* * * * * * *			* *
Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015		*						*							*	*	* * *	* * * * * * * *			* *
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015		*						*							*		* * *	* * * * * * * *		*	* *
Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015		**************************************						*							*		* * *	****	*	*	* *
Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 1, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015		**************************************						*							* *		* * *	****	*		* *
Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2015 Quarter 4, 2015 Quarter 1, 2016		**************************************						*							* *	*	* * *	****	*		* * *
Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016		**************************************						*							* *	*	***	****	*	*	* * *
Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016		**************************************						*		*				*	* *	*	***	*****	*	*	* * *
Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016		**************************************						*						*	* *	*	****	****	*	* *	* * *
Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016		**************************************						*		*				*	* *	*	***	*****	*	* * *	* * *
Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017		**************************************						*		*				*	* *	*	****	****	*	* * *	* * *
Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017		T						*		*					* *	*	****	****	*	* * * *	* * *
Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017		The state of the s						*		*				*	* *	*	****	****	*	* * *	* * *

Groundwater Flow System Gradient	D	S	S	UCR S	D	D	D	U	U	D	D	URG D	A D	U	U	D	D	LRC D	D D	U	ι
Gradient Monitoring Well	368		376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	_
TECHNETIUM-99	308	3/3	3/0	3//	339	302	303	3/1	3/4	300	300	303	33/	309	3/2	30/	301	304	338	3/0	3/
														*		*				*	-
Quarter 2, 2018		-												不	*	不				*	╁
Quarter 3, 2018		<u> </u>													*		*	- Jac	*	*	₩
Quarter 4, 2018		-													*		木	*	木		₩
Quarter 1, 2019																*				*	╄
Quarter 2, 2019														*						*	<u> </u>
Quarter 3, 2019															*			*		*	
Quarter 4, 2019															*		*	*		*	
Quarter 1, 2020															*		*	*		*	
Quarter 2, 2020																*		*	*	*	
Quarter 3, 2020															*		*	*	*	*	T
THORIUM-230																					Т
Quarter 4, 2015																*					т
Quarter 2, 2016										*											十
Quarter 4, 2016	*											*				*			*		╁
	*	-										· T	- ME			*			*		┿
Quarter 4, 2017		-	-							- 14		\vdash	*					-			╄
Quarter 2, 2018										*			*								_
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002				L	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}$					*	*	*		*		L			L		*
Quarter 4, 2002										*	*			*							Г
Quarter 1, 2003											*										П
Quarter 3, 2003	*									*	*					*					T
Quarter 4, 2003	Ť	t	t	-						*	*					Ė			-		t
Quarter 1, 2004	\vdash	╁	\vdash	 	 	H		 		-	*	\vdash		 	 	\vdash	<u> </u>	\vdash	 	\vdash	+
Quarter 1, 2004 Ouarter 3, 2005	1	1	1	-		*				*	*				*	*	-	1	*		╁
,	_	 	<u> </u>							木		-			木	木		طور			⊬
Quarter 4, 2005	<u> </u>	!	—	<u> </u>		*		<u> </u>	<u> </u>			Н.		<u> </u>	<u> </u>	<u> </u>	-	*	*	<u> </u>	₩
Quarter 1, 2006				_	_					_					_		_		*		\perp
TOTAL ORGANIC HALIDES																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											П
Quarter 1, 2004																*					T
TRICHLOROETHENE																					-
Quarter 3, 2002														_						_	-
														-						i	╁
Quarter 4, 2002		-	-									\vdash			-			-			┾-
Quarter 1, 2003		-													_					▝	
Quarter 2, 2003																				•	<u> </u>
Quarter 3, 2003																					
Quarter 4, 2003																					
Quarter 1, 2004																				•	
Quarter 2, 2004																					1
Quarter 3, 2004																					П
Quarter 4, 2004		1																			П
Quarter 1, 2005																				Ī	Ħ
		-													f					f	Ħ
Quarter 2, 2005		-	-									\vdash						-			_
Quarter 3, 2005																				_	╙
Quarter 4, 2005																				•	
Quarter 1, 2006		<u> </u>																			<u> </u>
Quarter 2, 2006						[ـــــا															l
Quarter 3, 2006	L	L^{T}	L	L		╚		L	\Box		L	LT		L		L	L^{T}	L	L		
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																				Ħ	Ħ
Quarter 3, 2007		 													F	1					Ħ
	\vdash	╁	\vdash	 	 	H		\vdash		1	\vdash	\vdash		\vdash	F	\vdash	—	\vdash	 	\vdash	ti
Quarter 4, 2007	 	 	1			H						\vdash				 		1			H
Quarter 1, 2008	 	!	-	-	-	H		-			-	\vdash		-	_	├	-	 	-	-	-
Quarter 2, 2008		<u> </u>										—			_						ļ!
Quarter 3, 2008	<u> </u>	<u> </u>				Ш						$ldsymbol{ldsymbol{ldsymbol{eta}}}$				<u> </u>					L
Quarter 4, 2008															•						ı
Quarter 1, 2009	L	L	L	L	L	L□Ū		L	LJ	L	L	L∏		L		L	L	L	L	L	I
Quarter 2, 2009	L			L	L						L				•			L^{-}	L		
Quarter 3, 2009																					
Quarter 4, 2009																					Ti
Quarter 1, 2010							_				Ē		Ī	Ħ							Ħ
Quarter 2, 2010		-											=		f	 					Hi
	 	 	1			H						\vdash	=		i	 		1			H
Quarter 3, 2010	 	!	-	-	-	H		-			-	\vdash	_	-		├	-	 	-	-	
Quarter 4, 2010	<u> </u>	!	—	<u> </u>				<u> </u>	<u> </u>			Н.	•	<u> </u>	_	<u> </u>	-	Ь—	—	<u> </u>	Ŀ
Quarter 2, 2011		<u> </u>													_			<u> </u>			Ľ
Quarter 3, 2011	Ш	<u> </u>	Ь_	<u> </u>	<u> </u>			Щ.		L	Щ.			Щ.		Щ	<u> </u>	Ь.		Щ.	ļ
Quarter 4, 2011	L	L	L	L	L	L□Ū		L	LJ	L	L	L∏		L		L	L	L	L	L	
Quarter 1, 2012																					П
Quarter 2, 2012																					Ħ
Quarter 3, 2012																					Ħ
Quarter 4, 2012		-													Ŧ	 					Ħ
	1	1	1	-										_	i	1	-	1	-		H
Quarter 1, 2013	 	1	1			—			-		_	!				 	-	 	-		-
			1	ı	i			i	1		Ī	1		Ī		i		ı		Ī	
Quarter 2, 2013 Quarter 3, 2013		-	1		_	-													_		_

Groundwater Flow System				UCR	S							URG	iΑ					LRG	iΑ		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2013													•		•						•
Quarter 4, 2013																					
Quarter 1, 2014																					
Quarter 2, 2014																					
Quarter 3, 2014																					
Quarter 4, 2014																					
Quarter 1, 2015																					•
Quarter 2, 2015																					
Quarter 3, 2015																					
Quarter 4, 2015																					•
Quarter 1, 2016																					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																	•		•		•
Quarter 1, 2017																					
Quarter 2, 2017																					•
Quarter 3, 2017																					
Quarter 4, 2017																					
Quarter 1, 2018																					
Quarter 2, 2018																					
Quarter 3, 2018																	•				
Quarter 4, 2018													•								•
Quarter 1, 2019																					
Quarter 2, 2019																					•
Quarter 3, 2019																					
Quarter 4, 2019																					
Quarter 1, 2020																					
Quarter 2, 2020																					
Quarter 3, 2020																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an eleva-	ated con	centrat	ion (i.e	., a sta	tistical	exceed	lance).														

[|] MCL Exceedance | MCL exceedance; however, result was equal to MCL UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

1 1			0800	Monitor:	Robe	ert Kirby
Weather Co	^{onditions:} Sunny, Cool	, Slight	Wind and 71 D	egrees		
Monitoring	^{Equipment::} RAE Syste	ems, Mu	ulti-RAE Serial	# 7971		
		itoring Lo				Reading (% LEL)
C-746-U1	Checked at floo	r level				0
C-746-U2	Checked at floo	r level				0
C-746-U-T-14	Checked at floo	r level				0
C-746-U15	Checked at floo	r level				0
MG1	Dry casing					0
MG2	Dry casing					0
MG3	Dry casing					0
MG4	Dry casing					0
Suspect or Problem Are	No problems r	noted				NA
Remarks:	NA					
Performed k	Dy: MAKE			11	1/02/	, 2 <i>u</i>
	Signa	ture				Date

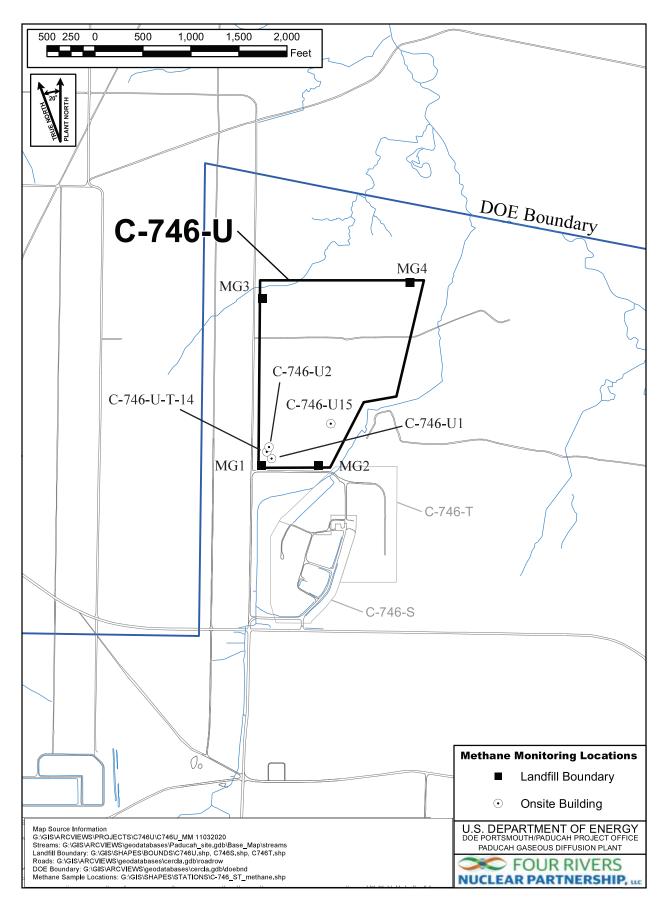


Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L150 AT SITE		L154 UPSTRE	AM	L351 DOWNSTF	REAM	\	
Sample Seque	nce	#				1		1		1			
If sample is	a Bl	lank, specify Type: (F)ield, (T) r	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		9/2/2020 06:5	7	9/2/2020 07:1	13	9/2/2020 06:	36		
Duplicate ("Y" or "N") ¹						N		N		N			
Split ('Y' o	r "1	N") ²				N		N		N			
Facility Samp	ole	ID Number (if applicable)				L150US4-20F	₹	L154US4-20	R	L351US4-20	R		
Laboratory Sa	amp]	Le ID Number (if applicable)				520388001		520388002		520388003	}		1
Date of Analy	ysis	s (Month/Day/Year)				9/21/2020		9/21/2020		9/21/2020			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL	F L A G S ⁷
A200-00-0	0	Flow	Т	MGD	Field		*		*		*		
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	2.39		3.85		4.92			
14808-79-8	0	Sulfate	Т	mg/L	300.0	48.1		7.54		14.9			
7439-89-6	0	Iron	Т	mg/L	200.8	0.221		0.827		0.925			
7440-23-5	0	Sodium	Т	mg/L	200.8	4.38		4.35		7.39			
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	6.68		14.4		23.3			
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	10.5	J	36.3		81.4			

¹Respond "Y" if the sample was a duplicate of another sample in this report

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

 $^{^{2}}$ Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, o	זיי ב	JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM	\	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F I G S ⁷
S0145	1	Specific Conductance	т	µmho/cm	Field	407		252		233			
s0270	0	Total Suspended Solids	Т	mg/L	160.2	15.3	*	11.9	*	23.5	*		
s0266	0	Total Dissolved Solids	Т	mg/L	160.1	249		170		190			
s0269	0	Total Solids	Т	mg/L	SM-2540 B 17	258		182		216			
s0296	0	рН	Т	Units	Field	8.08		7.88		7.42			
7440-61-1		Uranium	т	mg/L	200.8	0.00316		0.00759		0.00581			
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	-0.237	*	5.05	*	6.78	*	\	
12587-47-2		Gross Beta (β)	т	pCi/L	9310	9.03	*	31.4	*	23.2	*	V	
												Å	
													igsquare
												/	\

RESIDENTIAL/CONTAINED - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitor Point	ing Facility Sample ID	Constituent	Flag	Description
L150	L150US4-20R	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.48. Rad error is 3.48.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.57. Rad error is 6.4.
L154	L154US4-20R	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.21. Rad error is 6.15.
		Beta activity		TPU is 12. Rad error is 10.8.
L351	L351US4-20R	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.65. Rad error is 6.56.
		Beta activity		TPU is 10.3. Rad error is 9.52.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DOD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

APPENDIX K LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-U Contained Landfill

			ditte district of the second	\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A CONTROL OF THE PARTY OF THE P	<u> </u>		/	July Strate	à /	Tuito Tuito
				got /	/ Ś	» / /			Zal ^c	~ /	
		Statute Contil	(MIN)		A GEORGE OF THE PROPERTY OF TH			Conduc	igited de la constant	/_	Line Control of the C
		nie	States St.	Will!	200° /	(\$)		nie /	ill /	Still /	YOUN
		50° /2		۶ / غ			1 25				
	Zeitil.	Cont	1300	355	Turo,		L'ettik	Cont	1300	3550	Ligo.
MW357				Ĺ		MW358				Ĺ	
Date Collected: 7/21/2020						Date Collected: 7/21/2020					
759	62.8	442	6.58	3.31	0.0	0856	60.8	537	6.36	1.10	0.5
802	63.8	414	6.18	3.51	0.0	0859	62.0	531	6.27	0.83	0.0
805	64.0	417	6.17	3.49	0.0	0902	62.6	537	6.25	0.75	0.0
MW359						MW360					
Date Collected: 7/21/2020						Date Collected: 7/21/2020					
958	61.5	240	6.54	3.75	2.8	0556	60.9	433	6.25	1.33	27.2
001	62.6	227	6.26	3.62	0.0	0559	61.9	430	6.28	1.04	17.0
004	62.8	221	6.23	3.59	0.0	0602	62.1	427	6.28	1.03	16.2
AW361						MW362					
Date Collected: 7/21/2020						Date Collected: 7/21/2020					
0638	60.5	494	6.28	2.92	1.2	0717	60.7	692	6.68	3.63	2.0
641	61.5	509	6.09	2.66	0.0	0720	61.3	701	6.91	3.07	0.8
644	61.5	510	6.08	2.63	0.0	0723	61.4	697	6.93	3.03	0.2
AW363						MW364					
Date Collected: 7/30/2020						Date Collected: 8/6/2020					
621	62.8	432	5.93	2.85	12.1	0638	59.7	470	5.96	4.79	0.0
524	63.6	429	5.95	2.01	5.3	0641	60.0	474	6.02	3.44	0.0
527	64.1	429	5.97	2.00	3.6	0644	60.0	478	6.03	3.39	0.0
IW365						MW366					
ate Collected: 7/30/2020						Date Collected: 8/6/2020					
748	61.9	448	6.23	2.71	0.0	0800	62.1	455	6.24	4.26	0.0
751	61.7	442	6.25	2.42	0.0	0803	62.2	463	6.17	3.89	0.0
754	61.5	442	6.25	2.40	0.0	0806	62.3	462	6.18	3.80	0.0
IW367						MW368					
ate Collected: 7/30/2020						Date Collected: 7/30/2020					
009	62.1	296	5.93	3.69	3.4	0946	61.9	570	6.36	1.73	0.0
912	62.0	292	5.95	2.43	0.0	0949	61.3	570	6.40	1.96	0.0
915	61.9	292	5.93	2.39	0.0	0952	61.0	571	6.42	2.00	0.0
IW369						MW370					
Pate Collected: 7/20/2020						Date Collected: 7/23/2020					
636	62.9	383	6.28	4.35	8.5	0719	62.5	450	6.19	2.85	0.8
639	64.0	374	6.21	3.25	0.0	0722	63.5	447	6.08	2.83	2.0
642	64.1	373	6.21	3.21	0.0	0725	64.2	452	6.07	2.86	2.2
1W371						MW372					
Date Collected: 7/23/2020					$oxed{oxed}$	Date Collected: 7/23/2020					
757	62.8	490	6.24	2.11	2000	0837	62.6	764	6.40	2.43	9.2
800	63.9	524	6.40	2.48	577	0840	64.7	772	6.17	1.76	3.2
803	63.7	527	6.42	2.50	580	0843	65.1	770	6.16	1.78	3.7
IW373						MW374					
ate Collected: 7/23/2020						Date Collected: 7/23/2020					
017	63.6	849	6.22	1.75	8.3	0956	63.3	689	6.39	1.01	22.3
920	64.7	858	6.12	1.40	1.8	0959	64.4	688	6.49	0.79	10.2
923	65.0	859	6.11	1.41	1.9	1002	65.1	687	6.53	0.70	10.3
IW375											
Date Collected: 7/23/2020		1		l							
0602	63.3	337	5.99	2.34	13.9						
1602 1605 1608	63.3 64.0 64.1	337 340 341	5.99 6.02 6.03	2.34 1.82 1.80	13.9 3.7 3.0						

