

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

August 26, 2020

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-U CONTAINED LANDFILL SECOND QUARTER CALENDAR YEAR 2020 (APRIL-JUNE) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0151/V2, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

Enclosed is the subject report for the second quarter calendar year (CY) 2020. This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). The report includes groundwater analytical data, surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the second quarter CY 2020 monitoring well data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). This report also serves as the statistical exceedance notification for the second quarter CY 2020, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

PPPO-02-10007684-20B

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Jennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

Jenniles Woodard

Enclosure:

C-746-U Landfill 2nd Qtr. CY 2020 Compliance Monitoring Report, FRNP-RPT-0151/V2

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov bill.clark@pad.pppo.gov, FRNP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO david.ruckstuhl@pad.pppo.gov, FRNP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.watson@pad.pppo.gov, FRNP jennifer.woodard@pppo.gov, PPPO jerry.arnzen@pad.pppo.gov, FRNP joel.bradburne@pppo.gov, PPPO kelly.layne@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov robert.edwards@pppo.gov, PPPO robinc.green@ky.gov, KDEP stephaniec.brock@ky.gov, KYRHB tabitha.owens@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

tracey.duncan@pppo.gov, PPPO

C-746-U Contained Landfill
Second Quarter Calendar Year 2020
(April—June)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

8-19-2020

Date

C-746-U Contained Landfill Second Quarter Calendar Year 2020 (April—June) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—August 2020

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURES		V
T/	ABLES		v
Α(CRONYMS		vii
1.	1.1 BACKO 1.2 MONIT	TIONGROUNDORING PERIOD ACTIVITIES	1 1
	1.2.2 1.2.3	Groundwater Monitoring Methane Monitoring Surface Water Monitoring ESULTS	3 3
2.	2.1 STATIS 2.1.1 2.1.2 2.1.3	UATION/STATISTICAL SYNOPSIS	8 8 8
3.		VERIFICATION AND VALIDATION	
4.	REFERENCE	S	13
ΑI	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑI	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
ΑI	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑI	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑI	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑI	PPENDIX F:	NOTIFICATIONS	F-1
ΑI	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑI	PPENDIX H:	METHANE MONITORING DATA	H-1
ΑI	PPENDIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
ΑI	PPENDIX I	ANALYTICAL LABORATORY CERTIFICATION	J-1

APPENDIX K:	LABORATORY ANALYTICAL METHODSK	(-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERSL	1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
	C-746-U Landfill Surface Water Monitoring Locations	
	TABLES	
	Summary of MCL Exceedances	
2.	Exceedances of Statistically Derived Historical Background Concentrations	5
3.	Exceedances of Current Background UTL in Downgradient Wells	6
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

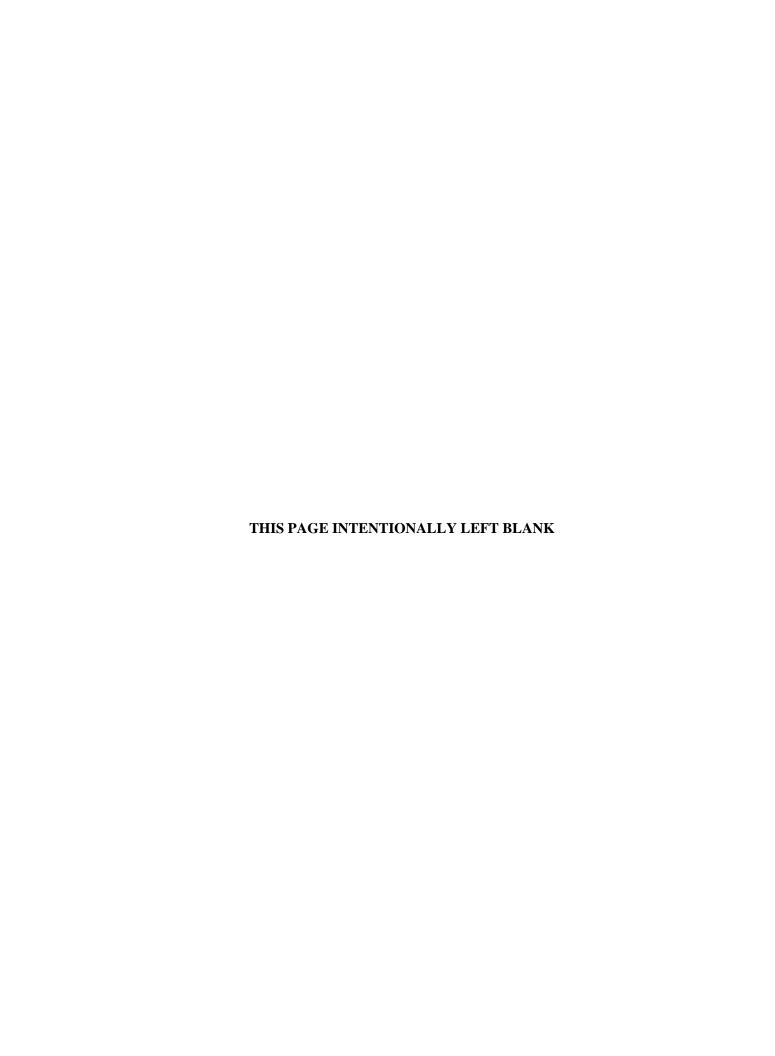
CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit


MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

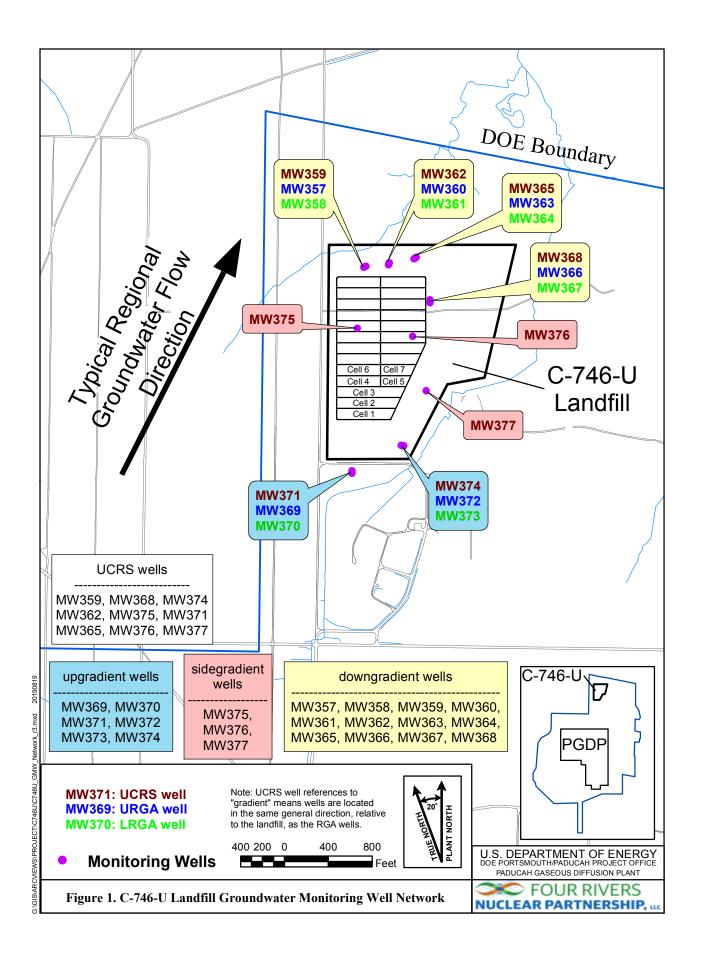
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Second Quarter Calendar Year 2020 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL and historical background UTL exceedances that have occurred, beginning in the fourth quarter, calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water analyses and written comments are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Site and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5, with Phases 6 and 7 approved for receipt of waste as of September 27, 2019. Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included

in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2020 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the second quarter 2020 was conducted April 1, 2, and 6, 2020. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 14, 2020, in MWs of the C-746-U Landfill (see Appendix E, Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Appendix E, Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During April, RGA groundwater flow in the area of the landfill was oriented northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in April was 5.09×10^{-4} ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 6.96×10^{-4} ft/ft and 6.92×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.18 to 2.02 ft/day for the URGA and 1.18 to 2.01 ft/day for the LRGA (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on June 3, 2020. See Appendix H for a map (see Appendix H, Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill: (1) upstream location, L154; (2) downstream location, L351; and (3) location L150 capturing

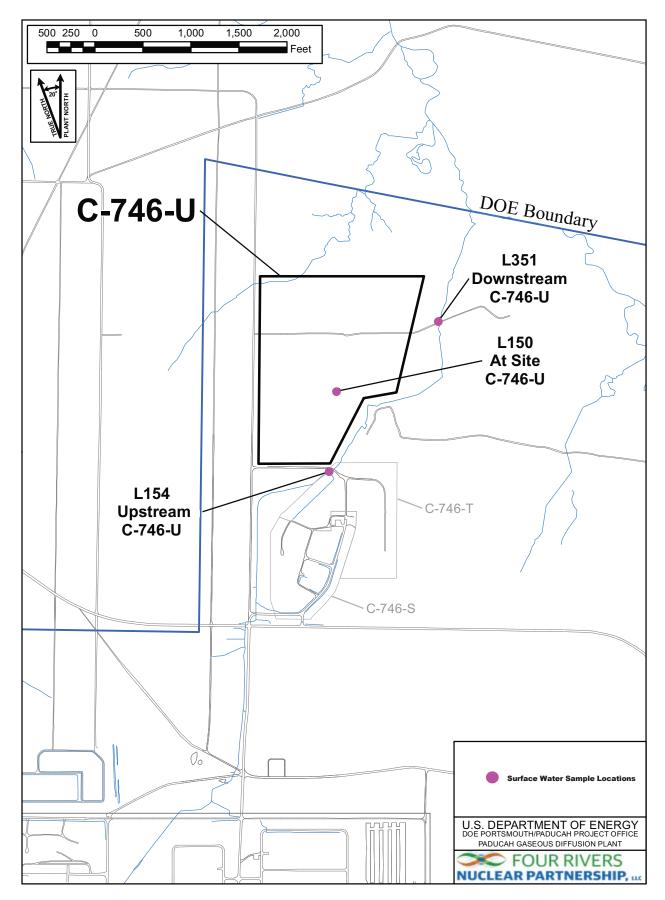


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the second quarter 2020, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be background. Constituents in downgradient wells that exceeded current background UTL are shown on Table 3.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	None	MW364: Trichloroethene
		MW367: Trichloroethene
		MW370: Beta activity

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Technetium-99
oxidation-reduction potential,	potential	
sulfate		
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential,	potential	potential
sulfate		
MW365: Oxidation-reduction	MW363: Oxidation-reduction	MW364: Oxidation-reduction
potential, sulfate	potential	potential, technetium-99
MW368: Oxidation-reduction	MW366: Oxidation-reduction	MW367: Oxidation-reduction
potential, sulfate	potential	potential, technetium-99
MW371: Calcium, dissolved	MW369: Oxidation-reduction	MW370: Beta activity,
oxygen, oxidation-reduction	potential	oxidation-reduction potential,
potential, sulfate		technetium-99
MW374: Oxidation-reduction	MW372: Calcium, conductivity,	MW373: Oxidation-reduction
potential	dissolved solids, magnesium,	potential
	oxidation-reduction potential	
MW375: Oxidation-reduction		
potential, sulfate		

_

¹ The UTL comparison for pH uses a two-sided test for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 2. Exceedance of Statistically Derived historical Background Concentrations (Continued)

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA			
None	None			

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW364 and MW367 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report is the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient (compliance) well concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill).

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2020 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

Parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6 were documented and evaluated further. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as background) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data were divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data showed a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both a UTL and LTL to determine if statistically significant deviations in concentrations existed with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 4.

Table 4. Monitoring Wells Included in Statistical Analysis^a

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371 b	MW369 (background)	MW370 (background)
MW374 b	MW372 (background)	MW373 (background)
MW375		
MW376 ^c		
MW377 ^c		

a A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, calcium, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient wells.

2.1.2 Upper Regional Gravel Aquifer

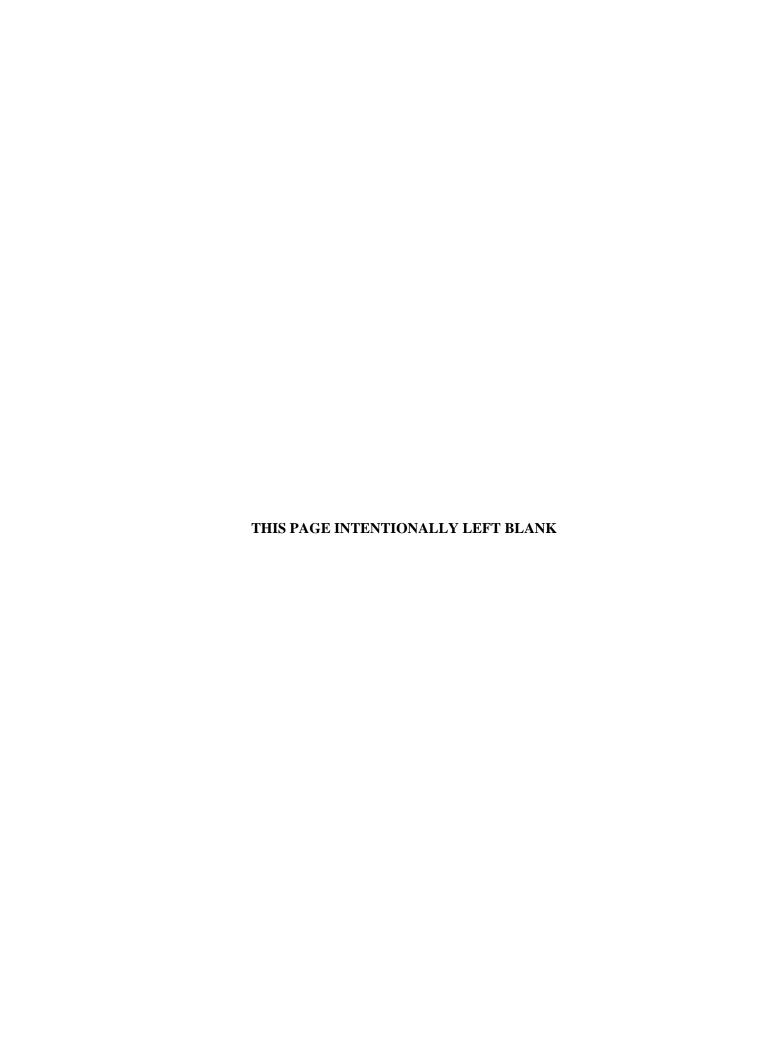
In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, calcium, conductivity, dissolved solids, magnesium, and oxidation-reduction potential displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient wells.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient wells.

b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

c Well had insufficient water to permit a water sample for laboratory analysis.


2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

Second Quarter Calendar Year 2020 (April–June)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0151/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

PG 113927

Regulation for Dollar Band St. 19-2000

Regulation of Dollar Band St. 19-2000

Regula

Kenneth R. Davis

neth R. Davis PG113927

Date

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.*
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

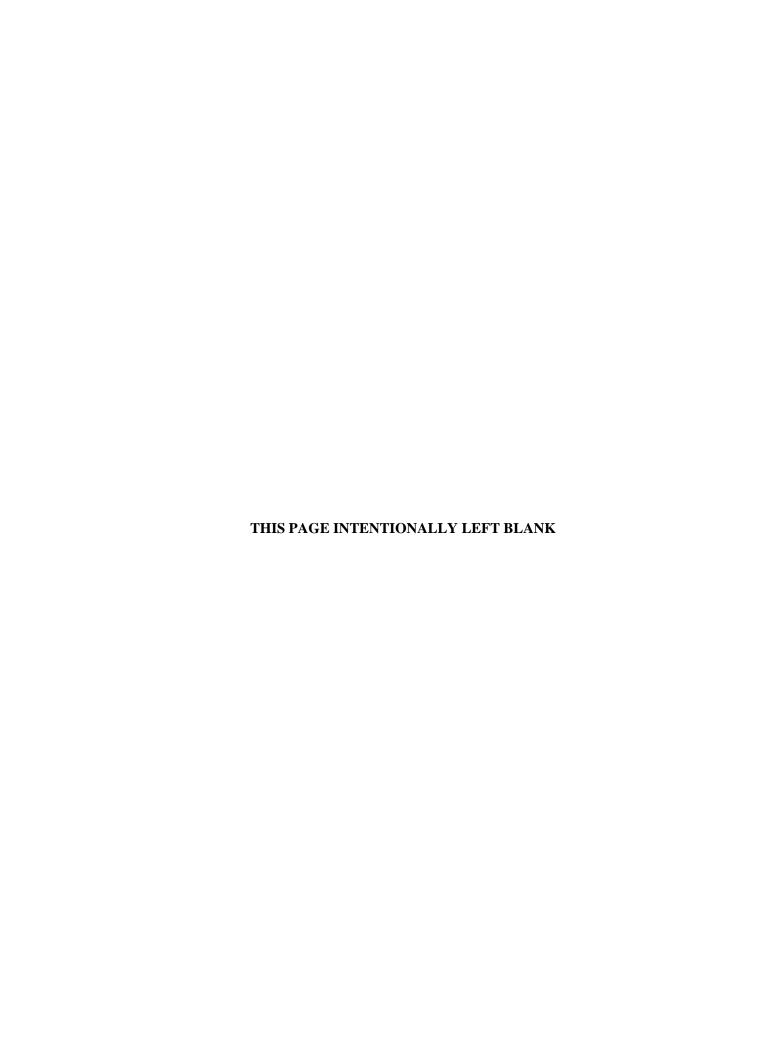
GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:			cah Gaseous	Diffusion Plant 1 Permit Face)	Activity:	C-746-	U Contained Landfill
Permit No:	SW0730001- SW0730001: SW0730004:	5,	Fi	nds/Unit No:	Quarter	& Year	2nd Qtr. CY 2020
Please check to	he following a	ıs applice	able:				
Chara	acterization	X	Quarterly	Semiannual	Ann	ual	Assessment
Please check a	pplicable sub	mittal(s).	: X	Groundwater	X	_ Surfac	ce Water
				Leachate	X	Metha	ane Monitoring
urisdiction of the 48) hours of m Submitting the lanstruction pages. certify under pen with a system desinquiry of the personal control of the 48) hours of the personal control of the 48) hours of the personal control of the 48) hours of the 18	e Division of Vaking the details report is NO malty of law that signed to assure son or persons collef, true, accurate	Waste Ma ermination T consider this document that qualificately researce, and co	nagement. Yon using state ered notificate ment and all a lified personn sponsible for omplete. I am	trachments were prepared tell properly gather and ev gathering the information aware that there are significations.	dication of cot t comparison pleting the for under my dire valuate the info n, the informat	ontaminate , or other mare attanction or sub- primation signs submi	tion within forty-eight er similar techniques. ched. Do not submit the apervision in accordance submitted. Based on my tted is, to the best of my
Myrna E. Rec Four Rivers N						Date	
Jennifer Woo	dard, Paduca	h Site L	ead			Date	

U.S. Department of Energy



APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Canadia a Data	Groundwater: April 2020 Surface water: April and May 2		MaCroalean	Permit	SW07300014, SW07300015,				
Sampling Date:	Methane: June 2020	County:	McCracken	_ Nos.	SW07300045				
Facility Name:	U.S. DOE—Paducah Gaseous l								
	(As officially sh	own on DWM Permit Face	e)						
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053					
	Street	City/State		Zip					
Phone No: (270)) 441-6800 Latitude:	N 37° 07' 45"	Long	itude: <u>W</u>	88° 47' 55"				
	ow	NER INFORMATION							
Facility Owner:	U.S. DOE, Robert E. Edward	s III, Manager	Phone No:	(859) 227	7-5020				
Contact Person:	Bruce Ford		Phone No:	(270) 441	1-5357				
	Director, Environmenta								
Contact Person Tit									
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053					
	Street	City/State		Zip					
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: GEO Consultants Corporation									
Contact Person:	Jason Boulton		Phone No:	(270) 81	6-3415				
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053					
	Street	City/State		Zip					
	LABO	ORATORY RECORD #1	L						
Laboratory GEI	L Laboratories, LLC	Lab	ID No: KY90	129					
Contact Person:	Valerie Davis		Phone No:	(843) 769	9-7391				
Mailing Address:	2040 Savage Road	Charleston, South Ca	rolina	294	07				
	Street	City/State		Zi	p				
	LAB	ORATORY RECORD #2	2						
Laboratory: N/A	A	Lab I	D No: N/A						
Contact Person:	N/A		Phone No:	: <u>N/A</u>					
Mailing Address:	N/A								
	Street	City/State			Zip				
	LABORATORY RECORD #3								
Laboratory: N/A	A	Lab I	D No: N/A						
Contact Person:	N/A		Phone No:	: N/A					
Mailing Address:	N/A								
-	Street	City/State			Zip				

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-47	799	8004-09	81	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., h	4W−1	, MW-2, etc	:.)	357		358		359		360	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/1/2020 09	:50	4/1/2020	10:52	4/1/2020	11:32	4/1/2020 0	7:18
Duplicate ("Y'	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW357UG3	-20	MW358U0	G3-20	MW359U0	G3-20	MW360UG	3-20
Laboratory Sam	mple ID Number (if applicable)		50872100	1	508721	003	508721	005	5087210	07		
Date of Analys	sis (Month/Day/Year) For Volatile	ysis.	4/3/2020		4/3/202	20	4/3/202	20	4/3/2020	0		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	Ī
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.335		0.39		<0.2		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	29.4		34		0.768		7.96	
16984-48-8	Fluoride	Т	mg/L	9056	0.141		0.15		0.126		0.253	
s0595	0595 Nitrate & Nitrite T mg/			9056	1.16		1.18		0.555		0.666	*
14808-79-8	Sulfate	т	mg/L	9056	39.2		58.4		42.9		10	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.08		30.09		30.09		30.05	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	415		492		219		443	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-4799)	8004-0981		8004-4800	١
Facility's Loca	al Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	331.89		331.9		346.19		331.88	
N238	Dissolved Oxygen	Т	mg/L	Field	3.43		0.53		3.99		0.75	
s0266	Total Dissolved Solids	Т	mg/L	160.1	230		429		326		319	
s0296	рн	т	Units	Field	6.18		6.17		5.99		6.05	
NS215	Eh	Т	mV	Field	409		92		223		408	
s0907	Temperature	Т	°C	Field	15.39		15.39		15.39		13.33	
7429-90-5	Aluminum	Т	mg/L	6020	0.0774		0.0562		0.0346	J	0.086	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00258	J	<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.0864		0.0589		0.0291		0.188	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.481		0.601		0.0164		0.0324	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	24.9		32.6		8.3		20.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00117		0.00722		<0.001		0.00722	
7440-50-8	Copper	Т	mg/L	6020	0.0013	J	0.000593	J	0.00102	J	0.000834	J
7439-89-6	Iron	Т	mg/L	6020	0.289		3.39		0.0508	J	0.596	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.6		14.5		3.62		7.86	
7439-96-5	Manganese	Т	mg/L	6020	0.173	*	0.509	*	0.0012	*J	0.152	*
7439-97-6	Mercury	Т	mg/L	7470	0.000141	BJ	0.000125	BJ	0.000136	BJ	0.000137	BJ

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	8	8004-479	9	8004-098	1	8004-480	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000239	J	<0.001		0.000248	J
7440-02-0	Nickel	Т	mg/L	6020	0.000824	J	0.0108		0.000948	J	0.00165	J
7440-09-7	Potassium	Т	mg/L	6020	1.62		2.39		0.153	J	0.644	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	46.3		45.2		35.3		71.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000078	J	0.000204	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		0.00373	J	<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	0.00618	J	0.00629	٦	<0.02		0.00464	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

C-5

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-48	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00318		0.00352		<0.001		0.00086	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799	9	8004-098	31	8004-48	00
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.0000192		<0.0000196		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0987		<0.0965		<0.0962		<0.0967	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0987		<0.0965		<0.0962		<0.0967	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0987		<0.0965		<0.0962		<0.0967	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0987		<0.0965		<0.0962		<0.0967	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0987		<0.0965		<0.0962		<0.0967	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0987		<0.0965		<0.0962		<0.0967	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	00
Facility's Loc	al Well or Spring Number (e.g., N	⁄w-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0987		<0.0965		<0.0962		<0.0967	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0987		<0.0965		<0.0962		<0.0967	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0987		<0.0965		<0.0962		<0.0967	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.4	*	1.11	*	-2.61	*	-1.93	*
12587-47-2	Gross Beta	Т	pCi/L	9310	27.3	*	33.7	*	-1.76	*	5.22	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.121	*	0.39	*	0.136	*	0.181	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.418	*	1.61	*	1.98	*	2.56	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	36	*	52.2	*	-1.98	*	7.89	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.646	*	0.571	*	0.297	*	0.424	*
10028-17-8	Tritium	Т	pCi/L	906.0	5.4	*	9.47	*	-3.4	*	-5.78	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	9.2	J	23.8		14.1	J	16.5	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.913	J	4.52		0.974	J	1.39	J
s0586	Total Organic Halides	т	mg/L	9020	0.00638	J	0.0102		<0.01		0.0115	
										_		

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., N	4W−1	., MW-2, etc	:.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/1/2020 08	:02	4/1/2020	09:05	4/2/2020 (7:04	4/2/2020 08	8:05
Duplicate ("Y'	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG3	-20	MW362U0	G3-20	MW363U0	93-20	MW364UG	3-20
Laboratory Sam	mple ID Number (if applicable)		50872101	1	508721	013	5088090	001	5088090	03		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis.	4/3/2020		4/3/202	20	4/6/202	20	4/6/2020	0		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	٧	DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.376		<0.2		<0.2	*	0.456	*
16887-00-6	Chloride(s)	т	mg/L	9056	31.3		3.83		23.7		36.7	
16984-48-8	Fluoride	Т	mg/L	9056	0.139		0.343		0.217	*	0.141	*
s0595			mg/L	9056	1.1		0.499		5.51		1.1	
14808-79-8	Sulfate	Т	mg/L	9056	59		30.4		33.8		74	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.06		30.08		30.15		30.17	
S0145	Specific Conductance	Т	μ M H0/cm	Field	464		701		417		478	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	5	8004-0986	5	8004-4796		8004-4797	
Facility's Lo	ocal Well or Spring Number (e.g., M	ī-1, i	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	331.91		342.75		331.83		331.16	
N238	Dissolved Oxygen	т	mg/L	Field	3.37		4.64		0.87		2.51	
s0266	Total Dissolved Solids	т	mg/L	160.1	240		420		184		230	
s0296	рн	T	Units	Field	6.11		7.02		5.89		6.07	
NS215	Eh	Т	mV	Field	399		390		415		410	
S0907	Temperature	Т	°C	Field	13.78		13.89		13.83		14.67	
7429-90-5	Aluminum	T	mg/L	6020	0.0195	J	1.11		0.0229	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0649		0.108		0.15		0.0659	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.44		0.027		0.0209	В	0.0335	В
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	29.3		21.6		25.2		30	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000395	J	0.00053	J	0.00216		0.000365	J
7440-50-8	Copper	т	mg/L	6020	0.000615	J	0.00211		0.000965	J	0.000969	J
7439-89-6	Iron	т	mg/L	6020	0.148		0.771		0.134		0.183	
7439-92-1	Lead	т	mg/L	6020	<0.002		0.000648	J	<0.002		0.000505	J
7439-95-4	Magnesium	т	mg/L	6020	12.5		9.57		9.96		12.7	
7439-96-5	Manganese	Т	mg/L	6020	0.0689	*	0.00646	*	0.336		0.0472	
7439-97-6	Mercury	Т	mg/L	7470	0.000134	BJ	0.000135	BJ	<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number		8004-479	5	8004-098	36	8004-479	16	8004-479	17		
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		0.000626	J	<0.001		0.000201	J
7440-02-0		Nickel	Т	mg/L	6020	<0.002		0.00121	J	0.00277		0.000657	J
7440-09-7		Potassium	Т	mg/L	6020	1.75		0.386		1.47		1.9	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	46		146		38.8		40.5	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.00392		<0.0002		<0.0002	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		0.00411	J	<0.02		<0.02	
7440-66-6		Zinc	Т	mg/L	6020	0.00376	J	0.0053	J	0.00704	J	0.0316	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4795		8004-098	6	8004-479	96	8004-47	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00458		<0.001		0.00042	J	0.00688	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	ŝ	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	l, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.0000197		<0.0000195		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0955		<0.0973		<0.102		<0.0964	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0955		<0.0973		<0.102		<0.0964	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0955		<0.0973		<0.102		<0.0964	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0955		<0.0973		<0.102		<0.0964	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0955		<0.0973		<0.102		<0.0964	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0955		<0.0973		<0.102		<0.0964	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479	 97
Facility's Lo	cal Well or Spring Number (e.g.,	MW -1	1, MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0955		<0.0973		<0.102		<0.0964	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0955		<0.0973		<0.102		<0.0964	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0955		<0.0973		<0.102		<0.0964	
12587-46-1	Gross Alpha	T	pCi/L	9310	3.29	*	4.96	*	-0.621	*	1.32	*
12587-47-2	Gross Beta	T	pCi/L	9310	31.9	*	5	*	6.51	*	45.6	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418	-0.0209	*	0.699	*	0.329	*	0.00826	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.1	*	2.2	*	0.585	*	3.76	*
14133-76-7	Technetium-99	T	pCi/L	Tc-02-RC	42.4	*	7.35	*	6.59	*	56	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.244	*	-0.277	*	0.242	*	0.616	*
10028-17-8	Tritium	Т	pCi/L	906.0	-47.8	*	87.3	*	83.1	*	-39.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	14.1	J	11.6	J	20.8		23.9	
57-12-5	Cyanide	T	mg/L	9012	<0.2		<0.2		<0.2	*	<0.2	*
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	T	mg/L	9060	0.748	J	2.16		1.17	BJ	0.852	BJ
s0586	Total Organic Halides	Т	mg/L	9020	0.00452	J	0.0141		0.0159		0.00518	J
												
		\perp										—
		\vdash										

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-09	983
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	365		36	86	36	7	368	1
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/2/2020 (08:47	4/2/202	0 09:31	4/2/2020	0 10:15	4/2/2020	10:55
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW365U0	33-20	MW366	UG3-20	MW3671	JG3-20	MW368U	G3-20
Laboratory San	oratory Sample ID Number (if applicable)					005	50880	9007	50880	9009	508809	011
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Ar				4/6/202	20	4/6/2	:020	4/6/2	020	4/6/20	20
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	DOW	N	DO	WN	DOV	٧N	DOW	'N
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2	*	0.476	*	0.509	*	<0.2	*
16887-00-6	Chloride(s)	т	mg/L	9056	2.45		37.9		41.4		0.473	
16984-48-8	Fluoride	т	mg/L	9056	0.305	*	0.162	*	0.141	*	0.215	*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.34		0.8		0.687		<0.1	
14808-79-8	Sulfate	т	mg/L	9056	61.7		44.1		50.1		15.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.17		30.17		30.16		30.17	
S0145	Specific Conductance	т	μ MH 0/cm	Field	401		456		466		351	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-4793		8004-0983	
Facility's Lo	ocal Well or Spring Number (e.g., M	₹-1,	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	338.84		331.61		331.83		363.19	
N238	Dissolved Oxygen	т	mg/L	Field	2.53		2.13		1.5		1.27	
s0266	Total Dissolved Solids	т	mg/L	160.1	220		220		256		174	
s0296	рн	т	Units	Field	6.18		6.15		6.11		6.65	
NS215	Eh	т	mV	Field	408		414		410		400	
s0907	Temperature	т	°c	Field	14.78		15.39		15.44		14.94	
7429-90-5	Aluminum	т	mg/L	6020	0.0327	J	<0.05		<0.05		0.0473	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00222	J	0.00212	J
7440-39-3	Barium	Т	mg/L	6020	0.111		0.111		0.151		0.029	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00833	BJ	0.104	В	0.0602	В	0.0074	BJ
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	21.6		28.1		29		40.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.0016		<0.001		0.000629	J	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00294		0.000409	J	0.000748	J	0.000527	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		<0.1		0.96		0.0336	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.11		11.9		12.4		9.35	
7439-96-5	Manganese	Т	mg/L	6020	0.0562		0.00581		0.109		0.00186	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	13
Facility's I	ocal Well or Spring Number (e.g.	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		0.000512	J
7440-02-0	Nickel	т	mg/L	6020	0.00404		<0.002		0.000791	J	<0.002	
7440-09-7	Potassium	Т	mg/L	6020	0.229	J	1.72		2.68		0.228	J
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00214	J	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	49.1		42.1		39.4		16.2	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	0.00018	J	<0.0002		0.000075	J	0.00029	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		0.00496	J
7440-66-6	Zinc	Т	mg/L	6020	0.00672	J	0.00421	٦	0.00617	J	0.0041	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-0984		8004-098	2	8004-47	93	8004-09	83
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	cc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00361		0.00515		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-479	93	8004-09	83
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	l, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000197		<0.0000193		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0985		<0.0971		<0.0971		<0.0967	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0985		<0.0971		<0.0971		<0.0967	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0985		<0.0971		<0.0971		<0.0967	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0985		<0.0971		<0.0971		<0.0967	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0985		<0.0971		<0.0971		<0.0967	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0985		<0.0971		<0.0971		<0.0967	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982	2	8004-479)3	8004-098	33
Facility's Loc	al Well or Spring Number (e.g., N	MW−1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0985		<0.0971		<0.0971		<0.0967	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0985		<0.0971		<0.0971		<0.0967	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0985		<0.0971		<0.0971		<0.0967	
12587-46-1	Gross Alpha	Т	pCi/L	9310	6.5	*	2.86	*	-0.0821	*	1.55	*
12587-47-2	Gross Beta	Т	pCi/L	9310	2.36	*	41.6	*	33.1	*	0.139	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.123	*	0.0304	*	0.374	*	-0.0491	*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.6	*	-0.585	*	-0.99	*	3.76	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	0.935	*	60	*	63	*	-2.18	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.691	*	-0.11	*	0.31	*	0.0791	*
10028-17-8	Tritium	Т	pCi/L	906.0	7.41	*	-49.3	*	44.1	*	-101	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	11.8	J	14.8	J	17.8	J	11.8	J
57-12-5	Cyanide	т	mg/L	9012	<0.2	*	<0.2	*	<0.2	*	<0.2	*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.52	BJ	0.89	BJ	0.942	BJ	1.5	BJ
s0586	Total Organic Halides	Т	mg/L	9020	0.0128		0.00616	J	0.00738	J	<0.01	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-48	320	8004-	4818	8004-4	4819	8004-48	808
Facility's Lo	cal Well or Spring Number (e.g., N	1W−1	, MW-2, etc	:.)	369		37	0	37	1	372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/6/2020	10:08	4/6/202	0 11:56	4/6/2020	12:36	4/6/2020	08:03
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW369U0	G3-20	MW370	UG3-20	MW371	JG3-20	MW372U	G3-20
Laboratory Sam	oratory Sample ID Number (if applicable)				5089130	001	50891	3003	50891	3005	508913	007
Date of Analy	sis (Month/Day/Year) For <u>Volatil</u> e	ganics Anal	ysis.	4/9/202	20	4/9/2	020	4/9/2	020	4/9/20	20	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		U	Р	UI)	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.502	*	0.436	*	<0.2	*	0.512	*
16887-00-6	Chloride(s)	т	mg/L	9056	31.2		36.7		1.2		39.5	
16984-48-8	Fluoride	т	mg/L	9056	0.154		0.144		0.141		0.17	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.604	J	1.02		<0.1		0.77	J
14808-79-8	Sulfate	т	mg/L	9056	9.41		21		75.3		102	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.12		30.09		30.09		30.12	
S0145	Specific Conductance	т	μ M H0/cm	Field	407		474		441		687	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

^{* =} See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	332.57		332.61		349.16		332.6	
N238	Dissolved Oxygen	Т	mg/L	Field	0.65		2.72		3.39		0.83	
S0266	Total Dissolved Solids	т	mg/L	160.1	214		246		289		399	
S0296	рн	Т	Units	Field	6.23		6.08		6.49		6.17	
NS215	Eh	Т	mV	Field	390		448		423		393	
s0907	Temperature	Т	°C	Field	17.72		18.33		17.5		15.78	
7429-90-5	Aluminum	T	mg/L	6020	0.0243	J	<0.05		4.86		0.0233	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00229	J	0.00306	J	0.00239	J
7440-39-3	Barium	Т	mg/L	6020	0.465		0.239		0.11		0.0681	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		0.000232	J	<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0202		0.302		0.0108	J	1.15	
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	20.4		33.5		70.9		62.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00643	J	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00564		0.000469	J	0.00101		0.000789	J
7440-50-8	Copper	Т	mg/L	6020	0.00111	J	0.000905	J	0.00301		0.00052	J
7439-89-6	Iron	Т	mg/L	6020	0.178		0.0608	J	3.38		0.179	
7439-92-1	Lead	T	mg/L	6020	<0.002		<0.002		0.00194	J	<0.002	
7439-95-4	Magnesium	T	mg/L	6020	8.43		14.1		11.1		22.4	
7439-96-5	Manganese	Т	mg/L	6020	0.503		0.0121		0.0631		0.00952	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480	8
Facility's	Local Well or Spring Number (e.g	., MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.000235	J	<0.001		0.000352	J	0.000352	J
7440-02-0	Nickel	т	mg/L	6020	0.00798		0.000725	J	0.00484		0.00126	J
7440-09-7	Potassium	Т	mg/L	6020	0.625		2.77		0.593		2.45	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	62		49.4		9.2		57.7	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000514	В	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		0.0108	J	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	0.00687	J	0.00339	J	0.0114	J	0.00503	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	369		370		371		372	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00067	J	0.00066	J	<0.001		0.00345	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-482	0	8004-4818	3	8004-48	19	8004-48	08	
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	l, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193	*	<0.000194	*	<0.0000199	*	<0.0000195	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.0991		<0.0986		<0.0972	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.1		<0.0991		<0.0986		<0.0972	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.0991		<0.0986		<0.0972	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0991		<0.0986		<0.0972	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.0991		<0.0986		<0.0972	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.0991		<0.0986		<0.0972	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818	3	8004-481	9	8004-480	08
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.1		<0.0991		<0.0986		<0.0972	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.1		<0.0991		<0.0986		<0.0972	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.1		<0.0991		<0.0986		<0.0972	
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.87	*	-0.343	*	-1.64	*	3.91	*
12587-47-2	Gross Beta	Т	pCi/L	9310	27.8	*	53	*	16.9	*	20.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.244	*	0.327	*	0.172	*	0.498	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	4.17	*	-1.21	*	1.61	*	-0.521	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	29.8	*	60.4	*	0.471	*	46.5	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.0905	*	0.1	*	-0.184	*	0.707	*
10028-17-8	Tritium	Т	pCi/L	906.0	-92.9	*	4.57	*	-92.6	*	-137	*
s0130	Chemical Oxygen Demand	T	mg/L	410.4	33.9		<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2	*	0.00209	*J	<0.2	*	<0.2	*
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.83	BJ	1.09	BJ	1.28	BJ	1.2	BJ
s0586	Total Organic Halides	Т	mg/L	9020	0.0369		0.0131		<0.01		0.0125	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-09	990	8004-09	85	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	, MW-2, etc	:.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/6/2020 08	3:46	4/6/2020	09:25	4/6/2020 (07:18	NA	
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW373UG3	3-20	MW374U	G3-20	MW375U0	33-20	NA	
Laboratory San	mple ID Number (if applicable)		50891300	9	508913	011	5089130	013	NA			
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ganics Anal	ysis.	4/9/2020		4/9/20	20	4/9/202	20	NA		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.515	*	0.674	*	<0.2	*		*
16887-00-6	Chloride(s)	т	mg/L	9056	19		58.6		3.51			*
16984-48-8	Fluoride	Т	mg/L	9056	0.143		0.217		0.267			*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.692	J	<1		0.91			*
14808-79-8	Sulfate	т	mg/L	9056	73.5		8.41		23.7			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.12		30.12		30.11			*
S0145	Specific Conductance	Т	μ M H0/cm	Field	827		662		339			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-479	2	8004-0990)	8004-0985		8004-0988	}
Facility's Lo	ocal Well or Spring Number (e.g., M	₹-1,	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.57		344.26		347.27			*
N238	Dissolved Oxygen	т	mg/L	Field	1.18		0.8		0.6			*
s0266	Total Dissolved Solids	т	mg/L	160.1	471		297		271			*
s0296	рн	т	Units	Field	6.15		6.73		6.09			*
NS215	Eh	т	mV	Field	409		385		403			*
s0907	Temperature	т	°c	Field	16.33		17.17		14.89			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0195	J	0.208			*
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	Т	mg/L	6020	0.00211	J	0.00289	J	<0.005			*
7440-39-3	Barium	Т	mg/L	6020	0.0385		0.153		0.178			*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	Т	mg/L	6020	1.83		0.0167		0.0115	J		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	74.6		22.4		14.4			*
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.000573	J	<0.001		0.00203			*
7440-50-8	Copper	т	mg/L	6020	0.000882	J	0.000571	J	0.00141	J		*
7439-89-6	Iron	Т	mg/L	6020	0.192		1.24		0.798			*
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020	27.8		5.92		5.68			*
7439-96-5	Manganese	Т	mg/L	6020	0.0235		0.064		0.0371			*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	35	8004-098	8
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.000313	J	<0.001			*
7440-02-0	Nickel	Т	mg/L	6020	0.00111	J	<0.002		0.00156	J		*
7440-09-7	Potassium	Т	mg/L	6020	2.92		0.44		0.291	J		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00471	J	0.0026	J		*
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		0.00395			*
7440-23-5	Sodium	Т	mg/L	6020	64.8		132		57.4			*
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.000305	В	0.000074	BJ		*
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6	Zinc	Т	mg/L	6020	0.00349	J	<0.02		0.00394	J		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-099)	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.00381		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-0990)	8004-098	35	8004-09	88
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194	*	<0.000194	*	<0.0000195	*		*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.097		<0.101		<0.0975			*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.097		<0.101		<0.0975			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.097		<0.101		<0.0975			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.097		<0.101		<0.0975			*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.097		<0.101		<0.0975			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.097		<0.101		<0.0975			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.097		<0.101		<0.0975			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.097		<0.101		<0.0975			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.097		<0.101		<0.0975			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	4.34	*	-0.963	*	-0.396	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	4.74	*	-0.58	*	6.95	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.57	*	0.338	*	0.437	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.21	*	3.25	*	-1.37	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	13.8	*	-6.79	*	-8.94	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.42	*	0.596	*	-0.00349	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	-36.2	*	-79.6	*	-43.3	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	27.2		27.2		<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2	*	<0.2	*	<0.2	*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060	1.23	BJ	2.39	В	1.05	BJ		*
s0586	Total Organic Halides	т	mg/L	9020	0.00892	J	0.0149		0.0136			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	/W−1	l, MW-2, etc	:.)	377		E. BLAN	IK	F. BLAN	K	T. BLANK	(1
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA		Е		F		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		NA		4/1/2020 0	6:50	4/1/2020 0	8:04	4/1/2020 06	6:45
06:50Duplicate	("Y" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				NA		RI1UG3	20	FB1UG3-	20	TB1UG3-	20
Laboratory Sam	oratory Sample ID Number (if applicable)						5087210	16	5087210	15	50872101	17
Date of Analys	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						4/3/202	0	4/3/202	0	4/3/2020)
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595				9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ MH 0/cm	Field		*		*		*		*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- b Analyte lound in bia
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
Facility's Lo	ocal Well or Spring Number (e.g., M	√-1,	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	Т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	Т	mg/L	6020		*	<0.002		<0.002			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005	*	<0.005	*		*
7439-97-6	Mercury	т	mg/L	7470		*	0.000211	В	0.000154	BJ		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	:1
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020		*	<0.001		<0.001			*
7440-02-0		Nickel	Т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	T	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	T	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	T	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	T	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	T	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	T	mg/L	6020		*	<0.02		<0.02			*
7440-66-6		Zinc	T	mg/L	6020		*	<0.02		<0.02			*
108-05-4		Vinyl acetate	T	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	T	mg/L	8260		*	0.00246	J	0.00259	J	0.00225	J
107-02-8		Acrolein	T	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	T	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	:c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	< 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
75-35-4	1,1-Dichloroethylene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	0	0000-000	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., N	4W−1	L, MW-2, et	.c.)	377		E. BLAN	<	F. BLAN	IK	T. BLANI	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.00002		<0.0000198		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*	<0.101		<0.0959			*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.101		<0.0959			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.101		<0.0959			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.101		<0.0959			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.101		<0.0959			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.101		<0.0959			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-0000)
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	l, MW-2, et	.c.)	377		E. BLANK		F. BLANI	<	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.101		<0.0959			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.101		<0.0959			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.101		<0.0959			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-0.533	*	5.05	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	-4.18	*	1.05	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*	0.483	*	0.341	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-1.14	*	1.26	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	3.85	*	1.29	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	0.179	*	0.184	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	40.3	*	171	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000	00	0000-00	00	8004-479	5				
Facility's Loca	al Well or Spring Number (e.g., M	w−1	., MW-2, etc	:.)	T. BLANK	(2	T. BLAN	K 3	361			
Sample Sequence	#				1		1		2			
If sample is a B	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						Т		NA			
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/2/2020 06	6:00	4/6/2020 0	6:15	4/1/2020 08	:02		
Duplicate ("Y"	or "N") ²				N		N		Y			
Split ("Y" or '	"N") ³				N		N		N			
Facility Sample	e ID Number (if applicable)				TB2UG3-	20	TB3UG3	-20	MW361DUG	3-20		
Laboratory Samp	Laboratory Sample ID Number (if applicable)						5089130	15	508721009		\ /	
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	Or	ganics Anal	ysis	4/6/2020)	4/9/202	0	4/3/2020		\ /	
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	OWN)	NA		NA		DOWN		Y	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI6	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*	0.384			1
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*	31.1			
16984-48-8	Fluoride	Т	mg/L	9056		*		*	0.14			
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*	1.1			
14808-79-8	Sulfate	Т	mg/L	9056		*		*	58.7			
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		
S0145	Specific Conductance	Т	μ MH0/cm	Field		*		*		*	/	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	8004-4795		
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	361		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED F VALUE L OR A PQL ⁶ G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*	
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*	
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*	254		\ /
s0296	рН	т	Units	Field		*		*		*	
NS215	Eh	т	mV	Field		*		*		*	\
s0907	Temperature	т	ပ	Field		*		*		*	\ /
7429-90-5	Aluminum	т	mg/L	6020		*		*	0.0232	J	\ /
7440-36-0	Antimony	т	mg/L	6020		*		*	<0.003		\/
7440-38-2	Arsenic	т	mg/L	6020		*		*	<0.005		X I
7440-39-3	Barium	т	mg/L	6020		*		*	0.0721		/\
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005		/ \
7440-42-8	Boron	Т	mg/L	6020		*		*	0.512		/ \
7440-43-9	Cadmium	T	mg/L	6020		*		*	<0.001		/ \
7440-70-2	Calcium	т	mg/L	6020		*		*	30.9		/ \
7440-47-3	Chromium	Т	mg/L	6020		*		*	<0.01		
7440-48-4	Cobalt	Т	mg/L	6020		*		*	0.000414	J	
7440-50-8	Copper	Т	mg/L	6020		*		*	0.000978	J	
7439-89-6	Iron	T	mg/L	6020		*		*	0.203		<i> </i>
7439-92-1	Lead	T	mg/L	6020		*		*	<0.002		
7439-95-4	Magnesium	Т	mg/L	6020		*		*	13.3		
7439-96-5	Manganese	т	mg/L	6020		*		*	0.0846	*	/
7439-97-6	Mercury	т	mg/L	7470		*		*	0.000149	BJ	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	AKGWA NUMBER ¹ , Facility Well/Spring Number							0000-0000		8004-4795			1
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	(3	361			
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
7439-98-7		Molybdenum	Т	mg/L	6020		*		*	<0.001			
7440-02-0		Nickel	Т	mg/L	6020		*		*	<0.002			Π
7440-09-7		Potassium	Т	mg/L	6020		*		*	1.85			
7440-16-6		Rhodium	т	mg/L	6020		*		*	<0.005			
7782-49-2		Selenium	Т	mg/L	6020		*		*	<0.005			
7440-22-4		Silver	Т	mg/L	6020		*		*	<0.001		\ /	
7440-23-5		Sodium	т	mg/L	6020		*		*	48.3		\ /	
7440-25-7		Tantalum	т	mg/L	6020		*		*	<0.005	*	\/	
7440-28-0		Thallium	т	mg/L	6020		*		*	<0.002		X	
7440-61-1		Uranium	Т	mg/L	6020		*		*	<0.0002		/\	
7440-62-2		Vanadium	Т	mg/L	6020		*		*	<0.02		/ \	
7440-66-6		Zinc	т	mg/L	6020		*		*	0.00494	J	/ \	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			\setminus
67-64-1		Acetone	т	mg/L	8260	<0.005		0.0106		<0.005			\setminus
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			\setminus
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000)	8004-479	95		
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	361			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		0.00173	J	<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		\	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		\	
67-66-3	Chloroform	Т	mg/L	8260	0.0004	J	<0.001		<0.001		V	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		Λ	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001	*		
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		0.0046			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000	0	0000-0000		8004-4795					
Facility's Loc	al Well or Spring Number (e.g., N	1W−1	L, MW-2, et	cc.)	T. BLANK	2	T. BLANK	3	361			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005			1/
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		\	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000195	*	<0.0000198		\/	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		/\	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.0969			
12674-11-2	PCB-1016	Т	ug/L	8082		*		*	<0.0969			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.0969			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.0969			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.0969			
12672-29-6	PCB-1248	Т	ug/L	8082		*		*	<0.0969		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		8004-4795			
Facility's Loc	al Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		361			\Box
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*	<0.0969		\ /	
11096-82-5	PCB-1260	Т	ug/L	8082		*		*	<0.0969		\ /	
11100-14-4	PCB-1268	Т	ug/L	8082		*		*	<0.0969		\ /	
12587-46-1	Gross Alpha	T	pCi/L	9310		*		*	8.66	*	\ /	
12587-47-2	Gross Beta	T	pCi/L	9310		*		*	29.1	*	\ /	
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*	0.54	*	\	
10098-97-2	Strontium-90	T	pCi/L	905.0		*		*	-0.38	*	V I	
14133-76-7	Technetium-99	T	pCi/L	Tc-02-RC		*		*	45.3	*	\land	
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC		*		*	-0.359	*	/\	
10028-17-8	Tritium	T	pCi/L	906.0		*		*	-80.7	*	/ \	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*	9.2	J	/ \	
57-12-5	Cyanide	T	mg/L	9012		*		*	<0.2		/ \	
20461-54-5	Iodide	Т	mg/L	300.0		*		*	<0.5		/ /	
S0268	Total Organic Carbon	Т	mg/L	9060		*		*	0.763	J	/	
s0586	Total Organic Halides	т	mg/L	9020		*		*	0.00526	J	/ \	$\overline{}$
												\top
											/	\top
												$\neg \neg$
												$\neg \uparrow$

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

3.69, Rad error is 3.68. Gross beta Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.417. Rad error is 0.417. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.44. Rad error is 2.44. Technetium-99 Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.467. Rad error is 14.6. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.467. Rad error is 0.467. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.44. Rad error is 124. Rad error is 124. Rad error is 124. Rad error is 124. Rad error is 124. Radium-214. Rad error is 124. Radium-226 Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.45. Radium-24. Rad error is 1.24. Rad error is 2.57. Radium-25. Radium-26 U Indicates analyte/nuclide was analyze	Monitoring Point	Facility Sample ID	Constituent	Flag	Description											
1,2-Dichloroethane Gross alpha U Indicates analyterinuclide was analyzed for, but not detected. TP 3,68. Rad error is 3,68. TPU is 9,77. Rad error is 8,68. Indicates analyterinuclide was analyzed for, but not detected. TP 3,68. Rad error is 2,47. Rad error is 2,44. Rad error is 2,46. Rad error is 3,46. Rad error is 4,46. Rad error is	004-4798 MW357	MW357UG3-20	Manganese	N	Sample spike (MS/MSD) recovery not within control limits											
Gross beta Iodine-131 Radium-226 Unidicates analyte/muclide was analyzed for, but not detected. TP 19.19.77. Rad error is 3.68. Rad error is 3.69.			Tantalum	N	Sample spike (MS/MSD) recovery not within control limits											
3.69. Rad error is 3.88. Gross beta Iodine-131 Analysis of constituent not required and not performed. Radium-226 U			1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria											
lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.417, Rad error is 0.417. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.417, Rad error is 0.417. Technetium-99 Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.467. Rad error is 0.467. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.467. Rad error is 0.467. Tritium N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Qross alpha Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 5.56. Rad error is 0.468. Trul is 10.4. Rad error is 8.8. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.468. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.58. Rad error is 0.466. Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.19. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.19. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.39. Wasspies of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.39. Wasspies pike (MS/MSD) recovery not within control limits Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.30. Rad error is 0.468. Rad error is 0.468. Rad error is 0.469. Rad error is 0.			Gross alpha	U												
Radium-226 Strontium-90 Undicates analyte/nuclide was analyzed for, but not detected. TP 0.417. Rad error is 0.417. Technetium-99 Technetium-99 Thorium-230 Undicates analyte/nuclide was analyzed for, but not detected. TP 2.44. Rad error is 2.44. TPU is 15.2. Rad error is 14.6. Thorium-230 Undicates analyte/nuclide was analyzed for, but not detected. TP 0.467. Rad error is 10.467. Tritium Undicates analyte/nuclide was analyzed for, but not detected. TP 124. Rad error is 124. Rad error is 125. Rad error is 124. Rad error is 125. Rad error is 124. Rad error is 124			Gross beta		TPU is 9.77. Rad error is 8.68.											
Strontium-90 Uniciates analyteriucide was analyzed for, but not detected. TP 2.44. Rad error is 2.44. Technetium-99 Tritium U indicates analyteriucide was analyzed for, but not detected. TP 0.467. Rad error is 0.467. Tritium Uniciates analyteriucide was analyzed for, but not detected. TP 0.467. Rad error is 0.467. Tritium Uniciates analyteriucide was analyzed for, but not detected. TP 124. Rad error is 125. Rad error is 124. Rad error is 126. Rad error is 126. Rad error is 127. Rad error is 128. Rad error is 128. Rad error is 129. Rad error is 120. Rad error is 12			lodine-131		Analysis of constituent not required and not performed.											
Technetium-99 Technetium-99 Technetium-99 Technetium-99 Technetium-99 Technetium-90 Technetium-930 Unidicates analyteriucide was analyzed for, but not detected. Technetium-95 Tritium Unidicates analyteriucide was analyzed for, but not detected. Technetium-95 Tantalum Nample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Gross alpha Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Technetium-99 Thorium-230 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Thorium-230 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Thorium-230 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Thorium-230 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Thorium-230 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Thorium-230 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Thorium-230 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Thorium-230 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Thorium-230 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but not detected. Technetium-99 Unidicates analyteriucide was analyzed for, but			Radium-226													
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.467. Rad error is 0.467. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 124. Rad error is 124. Manganese N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 5.56. Rad error is 15.56. Gross beta TPU is 10.4. Rad error is 8.8. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 2.67. Technetium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 13.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 13.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 13.9. Washes psike (MS/MSD) recovery not within control limits 1.2-Dichloroethane Y1 MS/MSD recovery not within control limits 1.2-Dichloroethane Y1 MS/MSD recovery not within control limits 1.2-Dichloroethane Y1 MS/MSD recovery not within control limits 1.30. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 3.06. Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 3.06. Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 3.04. Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 3.04. Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 3.04. Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 3.04. Indicates analyte/nuclide was analyzed for, but not dete				U												
Tritium U Indicates analyteriuclide was analyzed for, but not detected. TP 124. Rad error is 8.8. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.468. Rad error is 1.25. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.39. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.39. Rad error is 3.06. Rad error is 3.0			Technetium-99		TPU is 15.2. Rad error is 14.6.											
124. Rad error is 124. Manganese Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 5.56. Rad error is 8.8. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.46. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.58. Rad error is 0.46. Rad error is 0.36. Rorss alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.7. Pichloroethane Y1 MS/MSD recovery outside acceptance criteria Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 0.36. Rad error is 0.36. Rad error is 0.36. Rad error is 0.36. Rad error is 0.343. Rad error is 0.46. Rad error is 0.343. Rad error is 0.246. Rad error is 0.247. Rad error is 0.248. Rad error is 0.248. Rad error is 0.248. Rad error is 0.249. Rad error is 0.249. Rad error is 0.249.																
Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 5.56. Rad error is 3.56. TPU is 10.4. Rad error is 8.8. lodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.466. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.58. Rad error is 1.3.9. TPU is 15.4 Rad error is 1.49. Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.1. Rad error is 1.1. Rad error is 1.1. Rad error is 1.2. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.14. Rad error is 1.2. Rad error is 3.0. Rad error is 3.4. Ra			Tritium	U												
1,2-Dichloroethane Gross alpha Gross beta Iodine-131 Radium-226 Strontium-90 Thorium-230 Manganese Tantalum N Sample spike (MS/MSD) recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 5.56. Rad error is 8.8. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.466. Strontium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 13.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.24. Rad error is 124. Sample spike (MS/MSD) recovery not within control limits Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.043. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.24. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.24. Rad error is 12.4. Indicates analyte/nuclide was analyzed for, but not detected. TP 1.24. Rad error is 12.4. Indicates analyte/nuclide was analyzed for, but not detected. TP 1.24. Rad error is 1.24.	004-4799 MW358	MW358UG3-20	Manganese	N	Sample spike (MS/MSD) recovery not within control limits											
Gross alpha Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 5.56. Rad error is 5.56. TPU is 10.4. Rad error is 8.8. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.466. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.466. Rad error is 0.466. Rad error is 13.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 13.9. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.1. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.24. Rad error is 1.24. Rad error is 1.24. Rad error is 1.25. Rad error is 1.25. Rad error is 1.26. Wanganese N Sample spike (MS/MSD) recovery not within control limits Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 2.46. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Irritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.			Tantalum	N	Sample spike (MS/MSD) recovery not within control limits											
S.56. Rad error is 5.56. Gross beta TPU is 10.4. Rad error is 8.8. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.466. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.58. Rad error is 2.57. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.1. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.24. Rad error is 1.24. Rad error is 1.24. Rad error is 1.24. Rad error is 1.24. Rad error is 1.24. Rad error is 1.24. Rad error is 1.24. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 3.06. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 0.343. Rad error is 0.343. Rad error is 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.4. Rad error is 2.46. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.4. Rad error is 2.46. Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Indicates analyte/nuclide was analyzed for, but not detected. TP 1.4. Rad error is 0.973. Rad error is 0.973. Rad error is 0.973. Indicates analyte/nuclide was analyzed for, but not detected. TP 1.4. Rad error is 0.973. Indicates analyte/nuclide was analyzed for, but not detected. TP 1.4. Rad error is 0.973. Indicates analyte/nuclide was analyzed for, but not detected. TP 1.4. Rad error is 0.973. Indicates analyte/nuclide was analyzed for, but not detected. TP 1.4. Rad error is 0.973. Indicates analyte/nuclide was analyzed for, but not detected. TP 1.4. Rad error is 0.97			1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria											
lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.466. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.58. Rad error is 2.57. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 13.9. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 11.1. Rad error is 124. Rad error is 124. N Sample spike (MS/MSD) recovery not within control limits Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 12.4. Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 12.4. Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 12.4. Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 12.4. Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 12.4.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.56. Rad error is 5.56.											
Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.466. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.58. Rad error is 2.57. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.1. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 124. Rad error is 124. Rad error is 124. Rad error is 124. Rad error is 125. Manganese N Sample spike (MS/MSD) recovery not within control limits Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 0.343. Tritium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.			Gross beta		TPU is 10.4. Rad error is 8.8.											
O.466. Rad error is 0.466. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.58. Rad error is 2.57. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 13.9. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.24. Rad error is 124. Wanganese N Sample spike (MS/MSD) recovery not within control limits Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.248. Rad error is 0.345. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.248. Rad error is 12.46. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.248. Rad error is 12.49. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.248. Rad error is 12.49. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.			lodine-131		Analysis of constituent not required and not performed.											
2.58. Rad error is 2.57. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.1. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.24. Rad error is 1.24. Manganese N Sample spike (MS/MSD) recovery not within control limits Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.973.			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.466.											
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.1. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 124. Rad error is 124. Manganese N Sample spike (MS/MSD) recovery not within control limits Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.															U	
1.11. Rad error is 1.1. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 124. Rad error is 124. Rad error is 124. Rad error is 125. Manganese N Sample spike (MS/MSD) recovery not within control limits Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.							Technetium-99		TPU is 15. Rad error is 13.9.							
124. Rad error is 124. 125. Rample spike (MS/MSD) recovery not within control limits Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Gross alpha Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4.			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.11. Rad error is 1.1.											
Tantalum N Sample spike (MS/MSD) recovery not within control limits 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.																
1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.	004-0981 MW359	MW359UG3-20	Manganese	N												
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.			Tantalum	N	Sample spike (MS/MSD) recovery not within control limits											
3.07. Rad error is 3.06. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 4.66. Rad error is 4.66. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.			1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria											
4.66. Rad error is 4.66. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.07. Rad error is 3.06.											
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.				U												
0.343. Rad error is 0.343. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973.					Analysis of constituent not required and not performed.											
2.48. Rad error is 2.46. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP				U	0.343. Rad error is 0.343.											
12.4. Rad error is 12.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP					2.48. Rad error is 2.46.											
0.978. Rad error is 0.973. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP					12.4. Rad error is 12.4.											
Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 123. Rad error is 123.					0.978. Rad error is 0.973.											
			I ritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 123. Rad error is 123.											

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description								
04-4800 MW360	MW360UG3-20	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement								
		Manganese	N	Sample spike (MS/MSD) recovery not within control limits								
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits								
		1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria								
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.99. Rad error is 1.98.								
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.77. Rad error is 6.71.								
		lodine-131		Analysis of constituent not required and not performed.								
							Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.389. Rad error is 0.389.			
			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.37. Rad error is 3.34.							
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I 12.7. Rad error is 12.7.								
				Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.942. Rad error is 0.936.						
				Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 123. Rad error is 123.						
04-4795 MW361	MW361UG3-20	Manganese	N	Sample spike (MS/MSD) recovery not within control limits								
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits								
		1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria								
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 5.47. Rad error is 5.45.								
		Gross beta		TPU is 10.2. Rad error is 8.74.								
		lodine-131		Analysis of constituent not required and not performed.								
								F	Rad	Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.499. Rad error is 0.499.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.75. Rad error is 2.73.								
		Technetium-99		TPU is 14.7. Rad error is 13.9.								
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.684. Rad error is 0.681.								
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I 122. Rad error is 122.								

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0986 MW362	MW362UG3-20	Manganese	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.03. Rad error is 7.98.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.28. Rad error is 8.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.764. Rad error is 0.763.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.66. Rad error is 2.64.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.15. Rad error is 1.15.
004 4700 1414000	MM0001100 00	Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 129. Rad error is 128.
004-4796 MW363	MW363UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.55. Rad error is 4.55.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.81. Rad error is 6.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.385. Rad error is 0.385.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.83. Rad error is 2.83.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 12.3. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.708. Rad error is 0.705.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 153. Rad error is 152.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits
004-4797 MW364	MW364UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.11. Rad error is 5.11.
		Gross beta		TPU is 13.1. Rad error is 10.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.294. Rad error is 0.294.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.83. Rad error is 3.78.
		Technetium-99		TPU is 15.5. Rad error is 14.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.861. Rad error is 0.853.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 143. Rad error is 143.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description																								
004-0984 MW365	MW365UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.																								
		Fluoride	W	Post-digestion spike recovery out of control limits.																								
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 6.78. Rad error is 6.7.																								
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 6.65. Rad error is 6.63.																								
		lodine-131		Analysis of constituent not required and not performed.																								
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.45. Rad error is 0.45.																								
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.75. Rad error is 3.7.																								
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 11.7. Rad error is 11.7.																								
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.911. Rad error is 0.903.																								
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 144. Rad error is 144.																								
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits																								
004-0982 MW366	MW366UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.																								
		Fluoride	W	Post-digestion spike recovery out of control limits.																								
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.99. Rad error is 4.97.																								
		Gross beta		TPU is 11.3. Rad error is 9.07.																								
		lodine-131		Analysis of constituent not required and not performed.																								
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.358. Rad error is 0.358.																								
																										Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.8. Rad error is 2.8.
		Technetium-99		TPU is 15.9. Rad error is 14.5.																								
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.859. Rad error is 0.859.																								
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 143. Rad error is 143.																								
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits																								
004-4793 MW367	MW367UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.																								
		Fluoride	W	Post-digestion spike recovery out of control limits.																								
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.16. Rad error is 3.16.																								
		Gross beta		TPU is 10.7. Rad error is 9.27.																								
		lodine-131		Analysis of constituent not required and not performed.																								
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.495. Rad error is 0.495.																								
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.48. Rad error is 3.48.																								
		Technetium-99		TPU is 15.4. Rad error is 13.7.																								
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.719. Rad error is 0.715.																								
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 142. Rad error is 142.																								
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits																								

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description																	
3004-0983 MW368	MW368UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.																	
		Fluoride	W	Post-digestion spike recovery out of control limits.																	
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.57. Rad error is 5.56.																	
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.68. Rad error is 4.68.																	
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.																	
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.289. Rad error is 0.289.																	
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.76. Rad error is 3.71.																	
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.9. Rad error is 11.9.																	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.703. Rad error is 0.702.																	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 143. Rad error is 143.																	
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits																	
004-4820 MW369	MW369UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.																	
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria																	
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.44. Rad error is 4.39.																	
		Gross beta		TPU is 10.5. Rad error is 9.52.																	
		lodine-131		Analysis of constituent not required and not performed.																	
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.367. Rad error is 0.367.																	
																			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.12. Rad error is 3.05.
		Technetium-99		TPU is 13.3. Rad error is 12.9.																	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.724. Rad error is 0.722.																	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 132. Rad error is 132.																	
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits																	
004-4818 MW370	MW370UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.																	
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria																	
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.07. Rad error is 3.06.																	
		Gross beta		TPU is 13.7. Rad error is 10.7.																	
		lodine-131		Analysis of constituent not required and not performed.																	
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.405. Rad error is 0.405.																	
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.37. Rad error is 2.37.																	
		Technetium-99		TPU is 15.6. Rad error is 14.1.																	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.894. Rad error is 0.892.																	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 136. Rad error is 136.																	
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits																	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4819 MW371	MW371UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.39. Rad error is 2.38.
		Gross beta		TPU is 8.42. Rad error is 7.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.412. Rad error is 0.412.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.89. Rad error is 2.88.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.587. Rad error is 0.586.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 136. Rad error is 136.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits
004-4808 MW372	MW372UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.99. Rad error is 5.96.
		Gross beta		TPU is 9.05. Rad error is 8.35.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.464. Rad error is 0.464.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.95. Rad error is 2.95.
		Technetium-99		TPU is 14.2. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.945. Rad error is 0.936.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 131. Rad error is 131.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits
004-4792 MW373	MW373UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.81. Rad error is 7.78.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.22. Rad error is 6.17.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.519. Rad error is 0.519.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.29. Rad error is 2.29.
		Technetium-99	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPU 12.6. Rad error is 12.5.
		Thorium-230	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.723. Rad error is 0.718.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 136. Rad error is 136.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-0990 MW374	<u> </u>	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. To 3.6. Rad error is 3.6.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 8.29. Rad error is 8.29.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.471. Rad error is 0.47.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.67. Rad error is 3.63.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12.7. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.876. Rad error is 0.869.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 134. Rad error is 134.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits
004-0985 MW375	MW375UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.94. Rad error is 4.94.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.92. Rad error is 7.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.511. Rad error is 0.511.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.76. Rad error is 2.76.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.709. Rad error is 0.708.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 135. Rad error is 135.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376	·	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

004-0988 MW376	 Constituent	Flag	Description
	Chloroform		During sampling, the well went dry; therefore, no sample was collected.
	Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
	cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
	Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
	1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
	1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
	1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
	1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
	1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
	1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
	1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
	1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
	Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
	Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
	Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
	Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
	2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
	lodomethane		During sampling, the well went dry; therefore, no sample wa collected.
	Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
	Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
	Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
	Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
	1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
	1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
	trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
	cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
	trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
	Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
	1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample we collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample we collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample w collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample w collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample we collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample w collected.
		рН		During sampling, the well went dry; therefore, no sample w collected.
		Eh		During sampling, the well went dry; therefore, no sample w collected.
		Temperature		During sampling, the well went dry; therefore, no sample w collected.
		Aluminum		During sampling, the well went dry; therefore, no sample w collected.
		Antimony		During sampling, the well went dry; therefore, no sample w collected.
		Arsenic		During sampling, the well went dry; therefore, no sample w collected.
		Barium		During sampling, the well went dry; therefore, no sample w collected.
		Beryllium		During sampling, the well went dry; therefore, no sample w collected.
		Boron		During sampling, the well went dry; therefore, no sample w collected.
		Cadmium		During sampling, the well went dry; therefore, no sample w collected.
		Calcium		During sampling, the well went dry; therefore, no sample w collected.
		Chromium		During sampling, the well went dry; therefore, no sample w collected.
		Cobalt		During sampling, the well went dry; therefore, no sample w collected.
		Copper		During sampling, the well went dry; therefore, no sample w collected.
		Iron		During sampling, the well went dry; therefore, no sample w collected.
		Lead		During sampling, the well went dry; therefore, no sample w collected.
		Magnesium		During sampling, the well went dry; therefore, no sample w collected.
		Manganese		During sampling, the well went dry; therefore, no sample w collected.
		Mercury		During sampling, the well went dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Molybdenum		During sampling, the well went dry; therefore, no sample we collected.
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample w collected.
		Silver		During sampling, the well went dry; therefore, no sample w collected.
		Sodium		During sampling, the well went dry; therefore, no sample w collected.
		Tantalum		During sampling, the well went dry; therefore, no sample w collected.
		Thallium		During sampling, the well went dry; therefore, no sample w collected.
		Uranium		During sampling, the well went dry; therefore, no sample w collected.
		Vanadium		During sampling, the well went dry; therefore, no sample w collected.
		Zinc		During sampling, the well went dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample w collected.
		Acetone		During sampling, the well went dry; therefore, no sample v collected.
		Acrolein		During sampling, the well went dry; therefore, no sample v collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample v collected.
		Benzene		During sampling, the well went dry; therefore, no sample v collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample v collected.
		Xylenes		During sampling, the well went dry; therefore, no sample v collected.
		Styrene		During sampling, the well went dry; therefore, no sample v collected.
		Toluene		During sampling, the well went dry; therefore, no sample v collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample v collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample v collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample w collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample v collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample w collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample w collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample we collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample we collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample we collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample we collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample we collected.
		lodomethane		During sampling, the well went dry; therefore, no sample we collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample we collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample we collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample we collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG3-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Manganese	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.34. Rad error is 3.34.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.52. Rad error is 4.52.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.426. Rad error is 0.425.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.45. Rad error is 2.45.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.881. Rad error is 0.879.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 124. Rad error is 124.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG3-20	Bromide	- riag	Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Manganese	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.85. Rad error is 4.78.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 8.23. Rad error is 8.22.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.414. Rad error is 0.414.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 3.51. Rad error is 3.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.885. Rad error is 0.882.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 134. Rad error is 130.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG3-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG3-20	Zinc		Analysis of constituent not required and not performed.
		1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG3-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG3-20	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

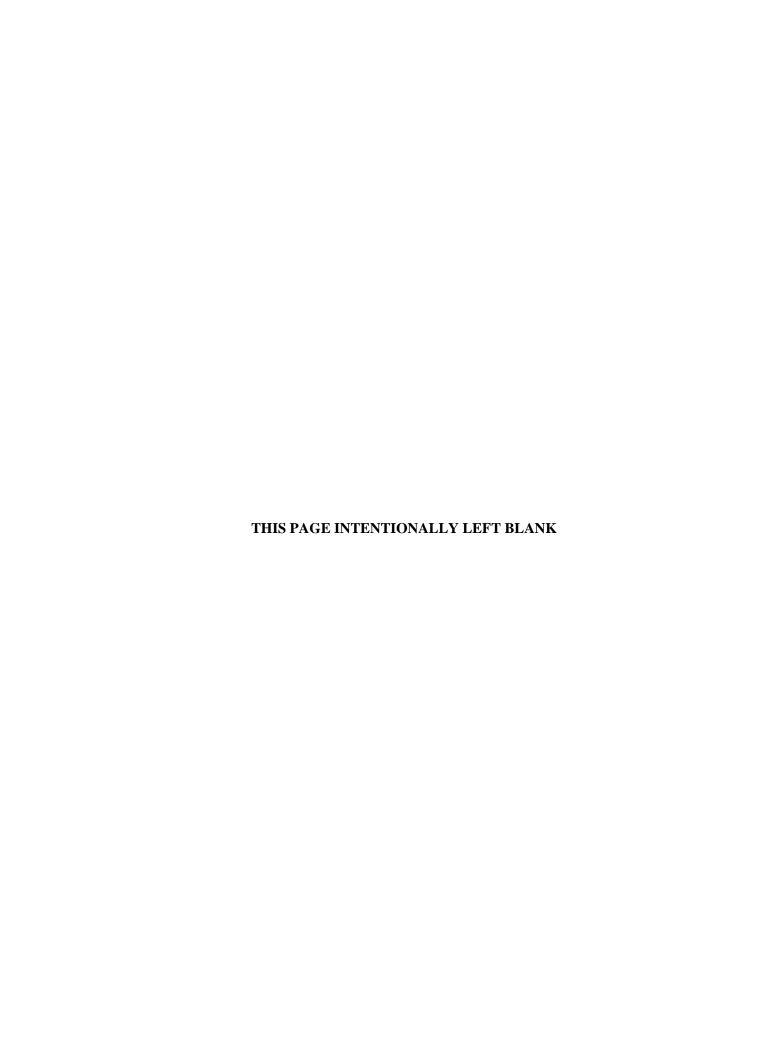
LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only


Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-20	Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4795 MW361	MW361DUG3-20	Barometric Pressure Reading	_	Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		pH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Manganese	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.4. Rad error is 7.26.
		Gross beta		TPU is 9.25. Rad error is 7.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.495. Rad error is 0.494.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.39. Rad error is 2.39.
		Technetium-99		TPU is 15.5. Rad error is 14.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.656. Rad error is 0.655.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 117. Rad error is 117.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Finds/Unit: <u>KY8-980-008-982/1</u>

LAB ID: None
For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2020 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2020 data used to conduct the statistical analyses were collected in April 2020. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
$MW376^{a,b}$	SG	UCRS
$MW377^{a,b}$	SG	UCRS

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells TW: downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

^b Well was dry this quarter, and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2020. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data.

lower $TL = X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters
Aluminum
Beryllium
Beta Activity
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Conductivity
Copper
Cyanide
Dissolved Oxygen
Dissolved Solids
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
pH*
Potassium
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Vanadium
Zinc
For nH, the test well results were compared to both an unper and lower TI to determine if the current result

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	0	7	Yes
Antimony	7	7	0	No
Beryllium	7	6	1	Yes
Boron	7	2	5	Yes
Bromide	7	6	1	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
	·	,		
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	2	5	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	3	4	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	0	7	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	3	4	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	7	2	5	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
pН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	4	3	Yes
Total Organic Halides (TOX)	7	3	4	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	4	3	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	2	5	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	1	5	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	2	4	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	1	5	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	1	5	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Oxygen Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	
		3	3	No Vos
Molybdenum	6	3	3	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	6	1	5	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	4	2	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	0	6	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Butanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	1	5	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	1	5	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	0	6	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	5	1	Yes
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Oxygen Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	0	6	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	4	2	Yes
Nickel	6	1	5	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	1	5	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	4	2	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	0	6	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 26, 25, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for calcium, dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

This quarter's results identified historical background exceedances for calcium, conductivity, dissolved solids, magnesium, and oxidation-reduction potential.

LRGA

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Technetium-99
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential
MW365: Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW368: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential, Technetium-99
MW371: Calcium, Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW369: Oxidation-Reduction Potential	MW370: Beta activity, Oxidation-Reduction Potential, Technetium-99
MW374: Oxidation-Reduction Potential	MW372: Calcium, Conductivity, Dissolved Solids, Magnesium, Oxidation-Reduction Potential	MW373: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate		

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Beryllium	Tolerance Interval	1.12	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	Current results exceed statistically derived historical background concentration in MW371.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, and MW371.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

^{*}If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Cyanide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW361, MW364, MW367, MW370, and MW373.
pH	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW358, MW364, MW367, and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 4, 5, and 3 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

UCRS

This quarter's results showed no exceedances in UCRS wells located downgradient of the landfill.

URGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.10, Exhibit D.11, and Exhibit D.12, respectively.

Exhibit D.10. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.52	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Oxygen	Tolerance Interval	0.79	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.17	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	1.02	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—URGA

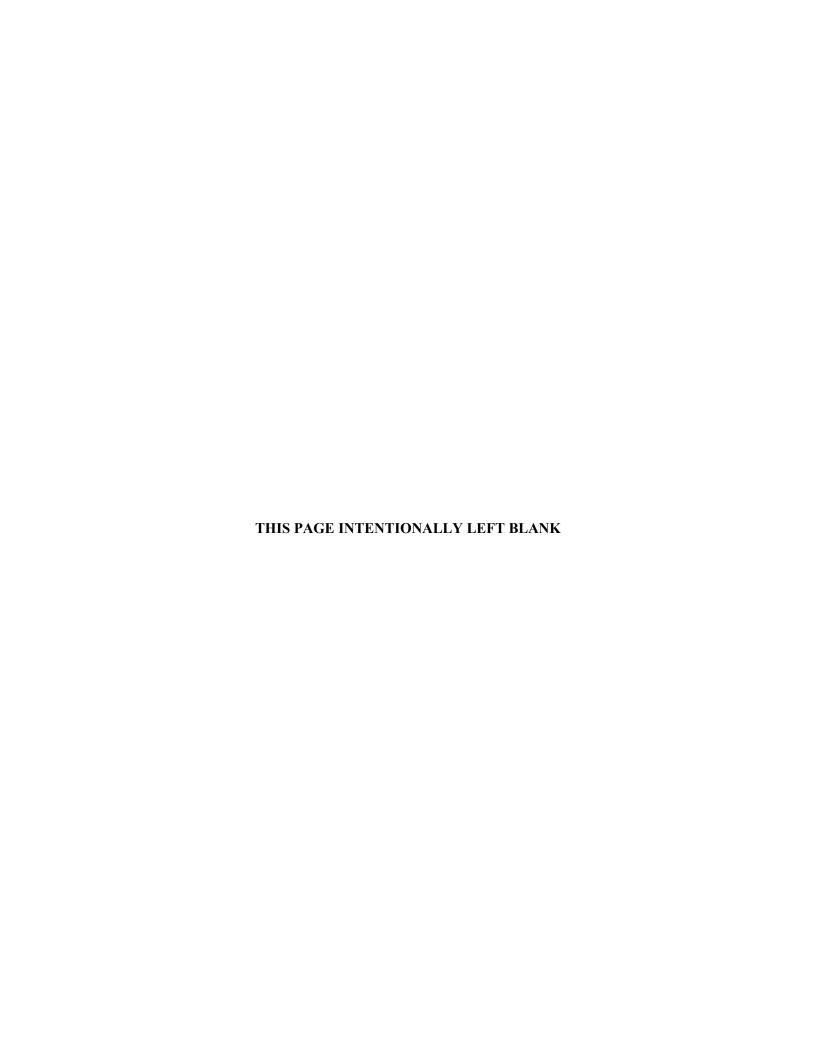

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.50	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.26	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.37	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.45	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.11	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.68	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.10	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.73	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **UCRS** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S = 6.859

CV(1)=2.078

K factor**= 2.523

TL(1)=20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678

CV(2) = -4.521

K factor=** 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

ı	Current	Quarter	Data
---	---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0346	N/A	-3.364	NO
MW362	Downgradient	Yes	1.11	N/A	0.104	NO
MW365	Downgradient	Yes	0.0327	N/A	-3.420	NO
MW368	Downgradient	Yes	0.0473	N/A	-3.051	NO
MW371	Upgradient	Yes	4.86	N/A	1.581	NO
MW374	Upgradient	Yes	0.0195	N/A	-3.937	NO
MW375	Sidegradient	Yes	0.208	N/A	-1.570	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-3

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **UCRS** Beryllium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.002

S = 0.003

CV(1)=1.125

K factor**= 2.523

TL(1) = 0.009

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.462 S = 0.812 CV(2) = -0.126

K factor=** 2.523

TL(2) = -4.413

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.005	-5.298
4/22/2002	0.005	-5.298
7/15/2002	0.005	-5.298
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.001	-4.605 -6.908
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.001 0.001	-4.605 -6.908 -6.908
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.001 0.001 0.001	-4.605 -6.908 -6.908 -6.908
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.001 0.001 0.001 0.001	-4.605 -6.908 -6.908 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Qu	ıarter Data
------------	-------------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	No	0.0005	N/A	-7.601	N/A
MW365	Downgradient	No	0.0005	N/A	-7.601	N/A
MW368	Downgradient	No	0.0005	N/A	-7.601	N/A
MW371	Upgradient	Yes	0.00023	2 N/A	-8.369	NO
MW374	Upgradient	No	0.0005	N/A	-7.601	N/A
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-4

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S= 0.805

CV(1)=1.238

K factor=** 2.523

TL(1)= 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 0.2	0.693 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW359	Downgradient	Yes	0.0164	N/A	-4.110	NO
	MW362	Downgradient	Yes	0.027	N/A	-3.612	NO
	MW365	Downgradient	No	0.00833	N/A	-4.788	N/A
	MW368	Downgradient	No	0.0074	N/A	-4.906	N/A
	MW371	Upgradient	Yes	0.0108	N/A	-4.528	NO
	MW374	Upgradient	Yes	0.0167	N/A	-4.092	NO
	MW375	Sidegradient	Yes	0.0115	N/A	-4.465	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-5

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

CV(1) = 0.340

K factor**= 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X= 0.279 **S**= 0.332

S= 0.474

CV(2) = 1.190

K factor=** 2.523

TL(2)=1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.742
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2.1 2.1 1.9 1 1.9	0.742 0.742 0.642 0.000 0.642

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	No	0.2	N/A	-1.609	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.674	NO	-0.395	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-6

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 34.100 S = 13.637 CV(1) = 0.400

K factor=** 2.523

TL(1) = 68.505

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.466 S = 0.35

S = 0.356 CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.209
Date Collected	Result	
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	8.3	NO	2.116	N/A
MW362	Downgradient	Yes	21.6	NO	3.073	N/A
MW365	Downgradient	Yes	21.6	NO	3.073	N/A
MW368	Downgradient	Yes	40.2	NO	3.694	N/A
MW371	Upgradient	Yes	70.9	YES	4.261	N/A
MW374	Upgradient	Yes	22.4	NO	3.109	N/A
MW375	Sidegradient	Yes	14.4	NO	2.667	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW371

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-7

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

K factor**= 2.523

TL(1)= 251.437 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.000 S = 0.702

CV(2) = 0.175

K factor=** 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	14.1	NO	2.646	N/A
MW362	Downgradient	Yes	11.6	NO	2.451	N/A
MW365	Downgradient	Yes	11.8	NO	2.468	N/A
MW368	Downgradient	Yes	11.8	NO	2.468	N/A
MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	Yes	27.2	NO	3.303	N/A
MW375	Sidegradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-8

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor**= 2.523

TL(1)= 310.697 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 3.620 **S**= 1.590

CV(2) = 0.439

K factor=** 2.523

TL(2) = 7.631

LL(2)=N/A

(2)

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.294
Date Collected	Result	•
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	0.768	NO	-0.264	N/A
MW362	Downgradient	Yes	3.83	NO	1.343	N/A
MW365	Downgradient	Yes	2.45	NO	0.896	N/A
MW368	Downgradient	Yes	0.473	NO	-0.749	N/A
MW371	Upgradient	Yes	1.2	NO	0.182	N/A
MW374	Upgradient	Yes	58.6	NO	4.071	N/A
MW375	Sidegradient	Yes	3.51	NO	1.256	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-9

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S= 0.009

CV(1)=1.314

K factor**= 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

2 **CV(2)=**-0.238

K factor**= 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.01 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data	Current	Ouarter	Data
----------------------	---------	----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	Yes	0.00053	N/A	-7.543	NO
MW365	Downgradient	Yes	0.0016	N/A	-6.438	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	Yes	0.00101	N/A	-6.898	NO
MW374	Upgradient	No	0.001	N/A	-6.908	N/A
MW375	Sidegradient	Yes	0.00203	N/A	-6.200	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-10

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Conductivity** UNITS: umho/cm **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor**= 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.915
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	219	NO	5.389	N/A	
MW362	Downgradient	Yes	701	NO	6.553	N/A	
MW365	Downgradient	Yes	401	NO	5.994	N/A	
MW368	Downgradient	Yes	351	NO	5.861	N/A	
MW371	Upgradient	Yes	441	NO	6.089	N/A	
MW374	Upgradient	Yes	662	NO	6.495	N/A	
MW375	Sidegradient	Yes	339	NO	5.826	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison UNITS: mg/L **UCRS** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072

CV(1) = 1.275

K factor**= 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915 CV(2) = -0.270

K factor=** 2.523

TL(2) = -1.086

Because CV(1) is greater than 1, the

LL(2)=N/A

(2)

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quart	ter Data
----------------------	----------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	0.00102	N/A	-6.888	NO
MW362	Downgradient	t Yes	0.00211	N/A	-6.161	NO
MW365	Downgradient	t Yes	0.00294	N/A	-5.829	NO
MW368	Downgradient	Yes	0.00052	7 N/A	-7.548	NO
MW371	Upgradient	Yes	0.00301	N/A	-5.806	NO
MW374	Upgradient	Yes	0.00057	1 N/A	-7.468	NO
MW375	Sidegradient	Yes	0.00141	N/A	-6.564	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison UNITS: mg/L **Dissolved Oxygen UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.138S = 0.621 CV(1)=0.546

K factor=** 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577 CV(2) = -43.069

K factor=** 2.523

TL(2) = 1.441

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

*** 11 2 7 1		
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.99	YES	1.384	N/A
MW362	Downgradient	Yes	4.64	YES	1.535	N/A
MW365	Downgradient	Yes	2.53	NO	0.928	N/A
MW368	Downgradient	Yes	1.27	NO	0.239	N/A
MW371	Upgradient	Yes	3.39	YES	1.221	N/A
MW374	Upgradient	Yes	0.8	NO	-0.223	N/A
MW375	Sidegradient	Yes	0.6	NO	-0.511	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362 MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-13

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor**= 2.523

TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.308

 $S= 0.383 \quad CV(2)=0.061$

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 7.035
Date Collected	Result	
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	326	NO	5.787	N/A	
MW362	Downgradient	Yes	420	NO	6.040	N/A	
MW365	Downgradient	Yes	220	NO	5.394	N/A	
MW368	Downgradient	Yes	174	NO	5.159	N/A	
MW371	Upgradient	Yes	289	NO	5.666	N/A	
MW374	Upgradient	Yes	297	NO	5.694	N/A	
MW375	Sidegradient	Yes	271	NO	5.602	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-14

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

CV(1)=0.981

K factor**= 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.363 S = 1.147

S = 6.487

CV(2) = 0.841

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

(2)

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.135
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 23	3.135
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Qu	ıarter Data
------------	-------------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	0.0508	NO	-2.980	N/A
MW362	Downgradient	Yes	0.771	NO	-0.260	N/A
MW365	Downgradient	No	0.1	N/A	-2.303	N/A
MW368	Downgradient	Yes	0.0336	NO	-3.393	N/A
MW371	Upgradient	Yes	3.38	NO	1.218	N/A
MW374	Upgradient	Yes	1.24	NO	0.215	N/A
MW375	Sidegradient	Yes	0.798	NO	-0.226	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-15

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.347 S = 3.019

CV(1)=0.266

K factor**= 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

K factor=** 2.523

TL(2) = 2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

|--|

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.62	NO	1.286	N/A
MW362	Downgradient	Yes	9.57	NO	2.259	N/A
MW365	Downgradient	Yes	9.11	NO	2.209	N/A
MW368	Downgradient	Yes	9.35	NO	2.235	N/A
MW371	Upgradient	Yes	11.1	NO	2.407	N/A
MW374	Upgradient	Yes	5.92	NO	1.778	N/A
MW375	Sidegradient	Yes	5.68	NO	1.737	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-16

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248 S = 0.222

CV(1) = 0.894

K factor**= 2.523

TL(1) = 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.873 **S**= 1.068

CV(2) = -0.570

K factor=** 2.523

TL(2) = 0.821

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	0.0012	NO	-6.725	N/A
MW362	Downgradient	Yes	0.00646	NO	-5.042	N/A
MW365	Downgradient	Yes	0.0562	NO	-2.879	N/A
MW368	Downgradient	Yes	0.00186	NO	-6.287	N/A
MW371	Upgradient	Yes	0.0631	NO	-2.763	N/A
MW374	Upgradient	Yes	0.064	NO	-2.749	N/A
MW375	Sidegradient	Yes	0.0371	NO	-3.294	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-17

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

S = 0.010

CV(1) = 1.650

K factor**= 2.523

TL(1) = 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.108 S = 1.239

CV(2) = -0.203

K factor=** 2.523

TL(2) = -2.983

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -6.110
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 0.00222	-6.110
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Q	uarter Data
-----------	-------------

Well No	o. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	2 Downgradient	Yes	0.00062	6 N/A	-7.376	NO
MW365	Downgradient	No	0.001	N/A	-6.908	N/A
MW368	B Downgradient	Yes	0.00051	2 N/A	-7.577	NO
MW37	Upgradient	Yes	0.00035	2 N/A	-7.952	NO
MW374	Upgradient	Yes	0.00031	3 N/A	-8.069	NO
MW375	5 Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-18

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Nickel** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S = 0.022

CV(1)=0.980

K factor**= 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

CV(2) = -0.255

K factor=** 2.523

TL(2) = -1.552

Because CV(1) is less than or equal to

LL(2)=N/A

(2)

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number:	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.05 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Q	uarter Data
-----------	-------------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	0.000948	8 NO	-6.961	N/A
MW362	Downgradient	Yes	0.00121	NO	-6.717	N/A
MW365	Downgradient	Yes	0.00404	NO	-5.512	N/A
MW368	Downgradient	No	0.002	N/A	-6.215	N/A
MW371	Upgradient	Yes	0.00484	NO	-5.331	N/A
MW374	Upgradient	No	0.002	N/A	-6.215	N/A
MW375	Sidegradient	Yes	0.00156	NO	-6.463	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **UNITS: mV Oxidation-Reduction Potential UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.281 S = 78.889 CV(1) = 3.541

K factor**= 2.523

TL(1)= 221.319 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.642**S**= 1.729 CV(2) = 0.475

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	223	N/A	5.407	YES
MW362	Downgradient	Yes	390	N/A	5.966	YES
MW365	Downgradient	Yes	408	N/A	6.011	YES
MW368	Downgradient	Yes	400	N/A	5.991	YES
MW371	Upgradient	Yes	423	N/A	6.047	YES
MW374	Upgradient	Yes	385	N/A	5.953	YES
MW375	Sidegradient	Yes	403	N/A	5.999	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW359 MW362 MW365

MW368

MW371 MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295 CV(1) = 0.045

K factor=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X= 1.889 **S**= 0.046

CV(2) = 0.024

K factor**= 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)2 LN(Result) <ll(2)2< th=""></ll(2)2<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)2 LN(Result) <ll(2)2< th=""></ll(2)2<>
MW359	Downgradien	t Yes	5.99	NO	1.790	N/A
MW362	Downgradien	t Yes	7.02	NO	1.949	N/A
MW365	Downgradien	t Yes	6.18	NO	1.821	N/A
MW368	Downgradien	t Yes	6.65	NO	1.895	N/A
MW371	Upgradient	Yes	6.49	NO	1.870	N/A
MW374	Upgradient	Yes	6.73	NO	1.907	N/A
MW375	Sidegradient	Yes	6.09	NO	1.807	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-21

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Potassium** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S = 0.907CV(1) = 0.718 **K factor**=** 2.523

TL(1) = 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752 CV(2) = -32.218

K factor=** 2.523

TL(2) = 1.874

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 3.04 2.83 2 1.09 0.802 0.897	1.112 1.040 0.693 0.086 -0.221 -0.109

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	Current	Ouarter	Data
----------------------	---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.153	NO	-1.877	N/A
MW362	Downgradient	Yes	0.386	NO	-0.952	N/A
MW365	Downgradient	Yes	0.229	NO	-1.474	N/A
MW368	Downgradient	Yes	0.228	NO	-1.478	N/A
MW371	Upgradient	Yes	0.593	NO	-0.523	N/A
MW374	Upgradient	Yes	0.44	NO	-0.821	N/A
MW375	Sidegradient	Yes	0.291	NO	-1.234	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-22

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor**= 2.523

TL(1)=367.800 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356 CV(2) = 0.069

K factor=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	,
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	35.3	NO	3.564	N/A	
MW362	Downgradient	Yes	146	NO	4.984	N/A	
MW365	Downgradient	Yes	49.1	NO	3.894	N/A	
MW368	Downgradient	Yes	16.2	NO	2.785	N/A	
MW371	Upgradient	Yes	9.2	NO	2.219	N/A	
MW374	Upgradient	Yes	132	NO	4.883	N/A	
MW375	Sidegradient	Yes	57.4	NO	4.050	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-23

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **UCRS Sulfate** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

S = 3.153

CV(1) = 0.487

Yes

Yes

K factor=** 2.523

TL(1)=14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794

S = 0.357

CV(2) = 0.199

K factor=** 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5 5 6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.723 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 5 5 5 5 5 6 5 5 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376

MW377 Sidegradient

MW374 Upgradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	42.9	YES	3.759	N/A
MW362	Downgradien	t Yes	30.4	YES	3.414	N/A
MW365	Downgradien	t Yes	61.7	YES	4.122	N/A
MW368	Downgradien	t Yes	15.5	YES	2.741	N/A
MW371	Upgradient	Yes	75.3	YES	4.321	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

YES

8.41

23.7

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

N/A

MW359 MW362

2.129

3.165

MW365

MW368

MW371

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-24

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison UNITS: mg/L **Total Organic Carbon (TOC) UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.631 S = 24.314 CV(1) = 1.379

K factor**= 2.523

TL(1)= 78.977 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979 CV(2) = 0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

(2)

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	` '
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	0.974	N/A	-0.026	NO
MW362	Downgradient	Yes	2.16	N/A	0.770	NO
MW365	Downgradient	No	1.52	N/A	0.419	N/A
MW368	Downgradient	No	1.5	N/A	0.405	N/A
MW371	Upgradient	No	1.28	N/A	0.247	N/A
MW374	Upgradient	Yes	2.39	N/A	0.871	NO
MW375	Sidegradient	No	1.05	N/A	0.049	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-25

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor**= 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 4.867 **S**=

 $S= 1.065 \quad CV(2)=0.219$

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	I N/D14)
2410 001100110	11000010	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	10	N/A	2.303	N/A
MW362	Downgradient	Yes	14.1	N/A	2.646	NO
MW365	Downgradient	Yes	12.8	N/A	2.549	NO
MW368	Downgradient	No	10	N/A	2.303	N/A
MW371	Upgradient	No	10	N/A	2.303	N/A
MW374	Upgradient	Yes	14.9	N/A	2.701	NO
MW375	Sidegradient	Yes	13.6	N/A	2.610	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-26

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1)=1.319

K factor**= 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912 CV(2) = -0.265

K factor=** 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data	
----------------------	--

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.02	N/A	-3.912	N/A
MW362	Downgradient	Yes	0.00411	N/A	-5.494	NO
MW365	Downgradient	No	0.02	N/A	-3.912	N/A
MW368	Downgradient	Yes	0.00496	N/A	-5.306	NO
MW371	Upgradient	Yes	0.0108	N/A	-4.528	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-27

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083

CV(1)=1.380

K factor**= 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259 S = 0.840

CV(2) = -0.258

K factor=** 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 10/8/2002	Result 0.025	-3.689
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.02	N/A	-3.912	N/A
MW362	Downgradient	Yes	0.0053	N/A	-5.240	NO
MW365	Downgradient	Yes	0.00672	N/A	-5.003	NO
MW368	Downgradient	Yes	0.0041	N/A	-5.497	NO
MW371	Upgradient	Yes	0.0114	N/A	-4.474	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	Yes	0.00394	N/A	-5.537	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.774X = 0.625

K factor**= 2.523

TL(1) = 2.578

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.973 S = 0.935 CV(2) = -0.961

CV(1)=1.239

K factor=** 2.523

TL(2) = 1.386

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.959
Date Collected	Result	
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	0.0774	N/A	-2.559	NO
	MW360	Downgradient	Yes	0.086	N/A	-2.453	NO
	MW363	Downgradient	Yes	0.0229	N/A	-3.777	NO
	MW366	Downgradient	No	0.05	N/A	-2.996	N/A
	MW369	Upgradient	Yes	0.0243	N/A	-3.717	NO
	MW372	Upgradient	Yes	0.0233	N/A	-3.759	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-29

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Boron** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 0.985S = 0.825CV(1)=0.838**K** factor**= 2.523 **Statistics-Background Data** TL(1) = 3.067LL(1)=N/A **Statistics-Transformed Background** X = -0.430 S = 0.990 CV(2) = -2.302**K factor**=** 2.523 TL(2) = 2.068LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/8/2003 0.2 -1.60910/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 0.693 7/16/2002 2 10/8/2002 0.492 -0.7090.492-0.7091/7/2003 4/2/2003 0.6 -0.5117/9/2003 0.57 -0.562-0.504 10/7/2003 0.604

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.481	NO	-0.732	N/A
MW360	Downgradient	Yes	0.0324	NO	-3.430	N/A
MW363	Downgradient	Yes	0.0209	NO	-3.868	N/A
MW366	Downgradient	Yes	0.104	NO	-2.263	N/A
MW369	Upgradient	Yes	0.0202	NO	-3.902	N/A
MW372	Upgradient	Yes	1.15	NO	0.140	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S= 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1)=N/A Statistics-Transformed Background X = 0.000 S= 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2)=N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.0004/22/2002 1 0.000 7/15/2002 0.0001 10/8/2002 1 0.0001 0.000 1/8/2003 4/3/2003 1 0.000 7/8/2003 0.0001 10/6/2003 1 0.000 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.0004/23/2002 1 0.000 0.000 7/16/2002 10/8/2002 0.000 1/7/2003 0.0001 4/2/2003 1 0.000 7/9/2003 0.000 1

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Curren	it Quarter Data					
Well No	o. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	7 Downgradient	t Yes	0.335	NO	-1.094	N/A
MW360) Downgradient	t No	0.2	N/A	-1.609	N/A
MW363	B Downgradient	t No	0.2	N/A	-1.609	N/A
MW366	6 Downgradient	t Yes	0.476	NO	-0.742	N/A
MW369	9 Upgradient	Yes	0.502	NO	-0.689	N/A
MW372	2 Upgradient	Yes	0.512	NO	-0.669	N/A
37/4 D	1, 11, 10, 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-31

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 32.763 S = 9.391

CV(1) = 0.287

K factor=** 2.523

TL(1)= 56.456

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.449 **S**= 0.299

CV(2) = 0.087

K factor**= 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 29.5 3.384 4/22/2002 29.8 3.395 7/15/2002 25.3 3.231 10/8/2002 21.9 3.086 3.040 1/8/2003 20.9 4/3/2003 22.2 3.100 7/8/2003 22.9 3.131 10/6/2003 21.7 3.077 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 41.5 3.726 4/23/2002 43.6 3.775 3.699 7/16/2002 40.4 10/8/2002 38.8 3.658 3.716 1/7/2003 41.1 4/2/2003 42.9 3.759 7/9/2003 35.1 3.558 10/7/2003 46.6 3.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.016

4.138

MW372

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	24.9	NO	3.215	N/A
	MW360	Downgradient	Yes	20.4	NO	3.016	N/A
	MW363	Downgradient	Yes	25.2	NO	3.227	N/A
	MW366	Downgradient	Yes	28.1	NO	3.336	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

YES

20.4

62.7

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW369

Upgradient

MW372 Upgradient

Yes

Yes

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-32

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Chemical Oxygen Demand (COD)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X= 35.938 **S**= 3.750 CV(1)=0.104**K** factor**= 2.523 TL(1)= 45.399 **Statistics-Background Data** LL(1)=N/A **Statistics-Transformed Background** X = 3.578 S = 0.089

Data

CV(2) = 0.025

K factor=** 2.523 TL(2) = 3.803 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35 3.555 4/22/2002 35 3.555 7/15/2002 35 3.555 10/8/2002 50 3.912 35 1/8/2003 3.555 4/3/2003 35 3.555 7/8/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 35 3.555 4/23/2002 35 3.555 7/16/2002 35 3.555 10/8/2002 35 3.555 1/7/2003 35 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	9.2	NO	2.219	N/A
	MW360	Downgradient	Yes	16.5	NO	2.803	N/A
	MW363	Downgradient	Yes	20.8	NO	3.035	N/A
	MW366	Downgradient	Yes	14.8	NO	2.695	N/A
	MW369	Upgradient	Yes	33.9	NO	3.523	N/A
	MW372	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 44.119 **S**= 4.554 **CV(1)**= 0.103

K factor=** 2.523

TL(1) = 55.607

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.782 S = 0.099

CV(2) = 0.026

K factor=** 2.523

TL(2) = 4.033

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/15/2002 3.877 48.3 10/8/2002 47.7 3.865 1/8/2003 45.7 3.822 4/3/2003 47.4 3.859 4.024 7/8/2003 55.9 10/6/2003 47.4 3.859 1/7/2004 45.5 3.818 4/7/2004 43.4 3.770 Well Number: MW372 Date Collected LN(Result) Result 7/16/2002 39.8 3.684 10/8/2002 41 3.714 1/7/2003 39.4 3.674 4/2/2003 39.2 3.669 7/9/2003 39.8 3.684 10/7/2003 40 3.689 1/5/2004 43.4 3.770 4/5/2004 42 3.738

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	29.4	NO	3.381	N/A
MW360	Downgradient	Yes	7.96	NO	2.074	N/A
MW363	Downgradient	Yes	23.7	NO	3.165	N/A
MW366	Downgradient	Yes	37.9	NO	3.635	N/A
MW369	Upgradient	Yes	31.2	NO	3.440	N/A
MW372	Upgradient	Yes	39.5	NO	3.676	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-34

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW372 Upgradient

Statistics-Background Data

X= 0.025 **S**= 0.021 **CV(1)**= 0.845

K factor=** 2.523

TL(1)= 0.077 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -4.090 S = 1.006

CV(2) = -0.246

K factor=** 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.00938-4.669 -5.207 0.00548 1/8/2003 4/3/2003 0.00587 -5.1387/8/2003 0.0541 -2.91710/6/2003 0.0689 -2.675Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.025 -3.689 4/23/2002 0.025 -3.689 7/16/2002 0.025 -3.68910/8/2002 0.00158-6.4500.0147 -4.2201/7/2003 -4.457 4/2/2003 0.0116 7/9/2003 0.0653 -2.7290.00788 -4.843 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00117	NO	-6.751	N/A
MW360	Downgradient	Yes	0.00722	NO	-4.931	N/A
MW363	Downgradient	Yes	0.00216	NO	-6.138	N/A
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.00564	NO	-5.178	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.000789

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-35

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Conductivity** UNITS: umho/cm **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 482.856 S = 57.603 CV(1) = 0.119

K factor**= 2.523

TL(1)= 628.189 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor=** 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	415	NO	6.028	N/A
MW360	Downgradient	Yes	443	NO	6.094	N/A
MW363	Downgradient	Yes	417	NO	6.033	N/A
MW366	Downgradient	Yes	456	NO	6.122	N/A
MW369	Upgradient	Yes	407	NO	6.009	N/A
MW372	Upgradient	Yes	687	YES	6.532	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025

S = 0.010

CV(1)=0.400

K factor**= 2.523

TL(1) = 0.050

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.742 S = 0.307 CV(2) = -0.082

K factor=** 2.523

TL(2) = -2.967

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.05	-3.689 -3.689 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.05 0.02	-3.689 -3.689 -2.996 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.05 0.02 0.02	-3.689 -3.689 -2.996 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0013	NO	-6.645	N/A
MW360	Downgradient	Yes	0.00083	4 NO	-7.089	N/A
MW363	Downgradient	Yes	0.00096	5 NO	-6.943	N/A
MW366	Downgradient	Yes	0.00040	9 NO	-7.802	N/A
MW369	Upgradient	Yes	0.00111	NO	-6.803	N/A
MW372	Upgradient	Yes	0.00052	NO	-7.562	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-37

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.781
 S= 1.351
 CV(1)=0.759 K factor**= 2.523
 TL(1)=5.190 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.228
 S= 1.065
 CV(2)=4.665 K factor**= 2.523
 TL(2)=2.915 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.688 5.41 4/22/2002 1.57 0.451 7/15/2002 -0.2230.810/8/2002 1.09 0.086 0.990 1/8/2003 2.69 4/3/2003 2.04 0.713 7/8/2003 1.19 0.174 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 1.33 0.285 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.9164/2/2003 0.91 -0.0947/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	3.43	NO	1.233	N/A
MW360	Downgradient	Yes	0.75	NO	-0.288	N/A
MW363	Downgradient	Yes	0.87	NO	-0.139	N/A
MW366	Downgradient	Yes	2.13	NO	0.756	N/A
MW369	Upgradient	Yes	0.65	NO	-0.431	N/A
MW372	Upgradient	Yes	0.83	NO	-0.186	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-38

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**= 0.157

K factor=** 2.523

TL(1)= 398.489 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor=** 2.523

TL(2)= 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 173 5.153 4/22/2002 246 5.505 7/15/2002 232 5.447 10/8/2002 275 5.617 5.595 1/8/2003 269 4/3/2003 250 5.521 7/8/2003 295 5.687 10/6/2003 276 5.620 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 295 5.687 4/23/2002 322 5.775 7/16/2002 329 5.796 10/8/2002 290 5.670 5.756 1/7/2003 316 4/2/2003 311 5.740 7/9/2003 347 5.849 10/7/2003 337 5.820

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	230	NO	5.438	N/A
MW360	Downgradient	Yes	319	NO	5.765	N/A
MW363	Downgradient	Yes	184	NO	5.215	N/A
MW366	Downgradient	Yes	220	NO	5.394	N/A
MW369	Upgradient	Yes	214	NO	5.366	N/A
MW372	Upgradient	Yes	399	YES	5.989	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-39

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.385
 S= 6.991
 CV(1)=0.947 K factor**= 2.523
 TL(1)=25.024 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 1.358
 S= 1.323
 CV(2)=0.974 K factor**= 2.523
 TL(2)=4.697 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.4224/22/2002 0.695 -0.3647/15/2002 1.960 7.1 10/8/2002 21.5 3.068 2.918 1/8/2003 18.5 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2543.55 1.267 1/7/2003 4/2/2003 5.02 1.613 7/9/2003 10 2.303 10/7/2003 0.733 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	0.289	NO	-1.241	N/A
	MW360	Downgradient	Yes	0.596	NO	-0.518	N/A
	MW363	Downgradient	Yes	0.134	NO	-2.010	N/A
	MW366	Downgradient	No	0.1	N/A	-2.303	N/A
	MW369	Upgradient	Yes	0.178	NO	-1.726	N/A
	MW372	Upgradient	Yes	0.179	NO	-1.720	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-40

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW372 Upgradient

Yes

Statistics-Background Data

X = 12.864 S = 3.505

CV(1)=0.272

K factor**= 2.523

TL(1)=21.707

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.517 S = 0.290 CV(2) = 0.115

K factor=** 2.523

TL(2) = 3.248

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	11.4	2.434
4/22/2002	12	2.485
7/15/2002	10	2.303
10/8/2002	8.62	2.154
1/8/2003	7.89	2.066
4/3/2003	7.97	2.076
7/8/2003	10.3	2.332
10/6/2003	9.14	2.213
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.754
Date Collected	Result	
Date Collected 3/19/2002	Result 15.7	2.754
Date Collected 3/19/2002 4/23/2002	Result 15.7 16.6	2.754 2.809
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 15.7 16.6 15.4	2.754 2.809 2.734
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 15.7 16.6 15.4 15.8	2.754 2.809 2.734 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 15.7 16.6 15.4 15.8	2.754 2.809 2.734 2.760 2.760

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.109

MW372

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
,	MW357	Downgradient	Yes	10.6	NO	2.361	N/A
	MW360	Downgradient	Yes	7.86	NO	2.062	N/A
	MW363	Downgradient	Yes	9.96	NO	2.299	N/A
	MW366	Downgradient	Yes	11.9	NO	2.477	N/A
	MW369	Upgradient	Yes	8.43	NO	2.132	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

YES

22.4

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.413S = 0.274 CV(1)=0.664

K factor**= 2.523

TL(1)=1.105

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.226 S = 1.008 CV(2) = -0.822

K factor=** 2.523

TL(2) = 1.317

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.034	-3.381
4/22/2002	0.062	-2.781
7/15/2002	0.436	-0.830
10/8/2002	0.867	-0.143
1/8/2003	0.828	-0.189
4/3/2003	0.672	-0.397
7/8/2003	0.321	-1.136
10/6/2003	0.714	-0.337
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -1.585
Date Collected	Result	
Date Collected 3/19/2002	Result 0.205	-1.585
Date Collected 3/19/2002 4/23/2002	Result 0.205 0.345	-1.585 -1.064
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.205 0.345 0.21	-1.585 -1.064 -1.561
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.205 0.345 0.21 0.0539	-1.585 -1.064 -1.561 -2.921
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.205 0.345 0.21 0.0539 0.537	-1.585 -1.064 -1.561 -2.921 -0.622

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.173	NO	-1.754	N/A
MW360	Downgradient	Yes	0.152	NO	-1.884	N/A
MW363	Downgradient	Yes	0.336	NO	-1.091	N/A
MW366	Downgradient	Yes	0.00581	NO	-5.148	N/A
MW369	Upgradient	Yes	0.503	NO	-0.687	N/A
MW372	Upgradient	Yes	0.00952	. NO	-4.654	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW372 Upgradient

Statistics-Background Data

S = 0.012X = 0.010

CV(1)=1.199

K factor**= 2.523

TL(1) = 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.698 S = 1.607 CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.643

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-7.952

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	Yes	0.000248	8 N/A	-8.302	NO
MW363	Downgradient	No	0.001	N/A	-6.908	N/A
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.00023	5 N/A	-8.356	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.000352 N/A

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Nickel** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW372 Upgradient

Statistics-Background Data

CV(1)=0.910X = 0.024S = 0.021

K factor**= 2.523

TL(1) = 0.078LL(1)=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075 CV(2) = -0.253

K factor=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.05 -2.9964/22/2002 0.05 -2.9967/15/2002 -2.9960.05 10/8/2002 0.005-5.298-5.298 1/8/2003 0.005 4/3/2003 0.005 -5.2987/8/2003 0.013 -4.343 10/6/2003 0.0104 -4.566Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.05 -2.996 4/23/2002 0.05 -2.996-2.9967/16/2002 0.05 10/8/2002 0.005-5.2980.005-5.2981/7/2003 -5.298 4/2/2003 0.005 7/9/2003 0.019 -3.963-5.298 10/7/2003 0.005

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-6.677

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00082	4 NO	-7.101	N/A
MW360	Downgradient	Yes	0.00165	NO	-6.407	N/A
MW363	Downgradient	Yes	0.00277	NO	-5.889	N/A
MW366	Downgradient	No	0.002	N/A	-6.215	N/A
MW369	Upgradient	Yes	0.00798	NO	-4.831	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

0.00126

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.563 S = 94.243 CV(1) = 1.264

K factor**= 2.523

TL(1)= 312.337 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	409	N/A	6.014	YES
MW360	Downgradient	Yes	408	N/A	6.011	YES
MW363	Downgradient	Yes	415	N/A	6.028	YES
MW366	Downgradient	Yes	414	N/A	6.026	YES
MW369	Upgradient	Yes	390	N/A	5.966	YES
MW372	Upgradient	Yes	393	N/A	5.974	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW357 MW360

MW363 MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-45

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.274 S = 0.194 CV(1) = 0.031 K factor** = 2.904 TL(1) = 6.837 LL(1) = 5.7114

Statistics-Transformed Background Data

X= 1.836 **S**= 0.031 **CV(2)**= 0.017

K factor**= 2.904 Tl

TL(2)= 1.925

LL(2)=1.7467

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 1.808 6.1 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 6.26 1.834 1/7/2003 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841

6.4

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	
-----------------------------	--

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	6.18	NO	1.821	N/A
MW360	Downgradien	t Yes	6.05	NO	1.800	N/A
MW363	Downgradien	t Yes	5.89	NO	1.773	N/A
MW366	Downgradien	t Yes	6.15	NO	1.816	N/A
MW369	Upgradient	Yes	6.23	NO	1.829	N/A
MW372	Upgradient	Yes	6.17	NO	1.820	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.856

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-46

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 1.663	S = 0.488	CV(1)= 0.293	K factor**= 2.523	TL(1)= 2.895	LL(1)=N/A
Statistics-Transformed Background Data	X = 0.456	S = 0.362	CV(2)= 0.794	K factor**= 2.523	TL(2)= 1.368	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2 0.793 4/22/2002 2.21 7/15/2002 2 0.693 10/8/2002 0.966 -0.0351/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 0.482 1.62 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 0.693 7/16/2002 10/8/2002 1.54 0.432 1.88 0.6311/7/2003 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577 10/7/2003 1.79 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.62	NO	0.482	N/A
MW360	Downgradient	Yes	0.644	NO	-0.440	N/A
MW363	Downgradient	Yes	1.47	NO	0.385	N/A
MW366	Downgradient	Yes	1.72	NO	0.542	N/A
MW369	Upgradient	Yes	0.625	NO	-0.470	N/A
MW372	Upgradient	Yes	2.45	NO	0.896	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-47

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 45.100 S = 11.875 CV(1) = 0.263**K** factor**= 2.523 **Statistics-Background Data** TL(1) = 75.061LL(1)=N/A **Statistics-Transformed Background**

Data

X = 3.780 S = 0.242 CV(2) = 0.064

K factor=** 2.523 TL(2) = 4.390 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 4.079 10/6/2003 59.1 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 3.529 1/7/2003 34.1 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

j	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	46.3	NO	3.835	N/A
	MW360	Downgradient	Yes	71.6	NO	4.271	N/A
	MW363	Downgradient	Yes	38.8	NO	3.658	N/A
	MW366	Downgradient	Yes	42.1	NO	3.740	N/A
	MW369	Upgradient	Yes	62	NO	4.127	N/A
	MW372	Upgradient	Yes	57.7	NO	4.055	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.031 S = 33.919 CV(1) = 0.753

K factor**= 2.523

TL(1)= 130.609 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.420 S = 0.981 CV(2) = 0.287

K factor=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.272
Date Collected	Result	
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	39.2	NO	3.669	N/A
MW360	Downgradient	Yes	10	NO	2.303	N/A
MW363	Downgradient	Yes	33.8	NO	3.520	N/A
MW366	Downgradient	Yes	44.1	NO	3.786	N/A
MW369	Upgradient	Yes	9.41	NO	2.242	N/A
MW372	Upgradient	Yes	102	NO	4.625	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 20.821 S = 18.044 CV(1) = 0.867 K factor**= 2.523 TL(1) = 66.344 LL(1) = N/A

Statistics-Transformed Background Data

X= 2.770 **S**= 1.150 **CV(2)**= 0.415

K factor**= 2.523

TL(2)=3.972 LL

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 41.7 3.731 4/22/2002 53.1 3.972 7/15/2002 18.1 2.896 10/8/2002 16.4 2.797 3.49 1/8/2003 1.250 4/3/2003 9.34 2.234 7/8/2003 17.5 2.862 10/6/2003 17 2.833 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 44.8 3.802 4/23/2002 0.802 -0.2212.986 7/16/2002 19.8 10/8/2002 46.1 3.831 -0.973#Func! 1/7/2003 9.07 2.205 4/2/2003 7/9/2003 #Func! 0 10/7/2003 36.9 3.608

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	36	NO	3.584	N/A
MW360	Downgradient	No	7.89	N/A	2.066	N/A
MW363	Downgradient	No	6.59	N/A	1.886	N/A
MW366	Downgradient	Yes	60	NO	4.094	N/A
MW369	Upgradient	Yes	29.8	NO	3.395	N/A
MW372	Upgradient	Yes	46.5	NO	3.839	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-50

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison UNITS: mg/L **Total Organic Carbon (TOC) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 4.307CV(1)=1.226**K** factor**= 2.523 **TL(1)=** 14.378 **Statistics-Background Data** X = 3.513LL(1)=N/A **Statistics-Transformed Background** TL(2) = 2.940

Data

X = 0.851 S = 0.828 CV(2) = 0.973

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 9 1/8/2003 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.0004/23/2002 1.2 0.182 0.000 7/16/2002 1 10/8/2002 1 0.000 1/7/2003 1.6 0.4704/2/2003 1.5 0.405 7/9/2003 3 1.099 10/7/2003 1.5 0.405

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	0.913	N/A	-0.091	NO
	MW360	Downgradient	Yes	1.39	N/A	0.329	NO
	MW363	Downgradient	No	1.17	N/A	0.157	N/A
	MW366	Downgradient	No	0.89	N/A	-0.117	N/A
	MW369	Upgradient	No	1.83	N/A	0.604	N/A
	MW372	Upgradient	No	1.2	N/A	0.182	N/A
							_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Total Organic Halides (TOX)** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor**= 2.523

TL(1)= 230.231 LL(1)=N/A

Statistics-Transformed Background Data

X=3.772 S=1.023 CV(2)=0.271

K factor=** 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50	5.215 3.912 3.912 3.912 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	6.38	NO	1.853	N/A
MW360	Downgradient	Yes	11.5	NO	2.442	N/A
MW363	Downgradient	Yes	15.9	NO	2.766	N/A
MW366	Downgradient	Yes	6.16	NO	1.818	N/A
MW369	Upgradient	Yes	36.9	NO	3.608	N/A
MW372	Upgradient	Yes	12.5	NO	2.526	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.173CV(1)=1.490X = 0.116

K factor**= 2.523 TL(1) = 0.552 LL(1)=N/A

Statistics-Transformed Background Data

X = -2.729 S = 1.014 CV(2) = -0.371

K factor=** 2.523

TL(2) = -0.172

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -0.322
Date Collected	Result	,
Date Collected 3/19/2002	Result 0.725	-0.322
Date Collected 3/19/2002 4/23/2002	Result 0.725 0.1	-0.322 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.725 0.1 0.1	-0.322 -2.303 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.725 0.1 0.1 0.025	-0.322 -2.303 -2.303 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.725 0.1 0.1 0.025 0.035	-0.322 -2.303 -2.303 -3.689 -3.352

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00618	N/A	-5.086	NO
MW360	Downgradient	Yes	0.00464	N/A	-5.373	NO
MW363	Downgradient	Yes	0.00704	N/A	-4.956	NO
MW366	Downgradient	Yes	0.00421	N/A	-5.470	NO
MW369	Upgradient	Yes	0.00687	N/A	-4.981	NO
MW372	Upgradient	Yes	0.00503	N/A	-5.292	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-53

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.026S = 5.626 CV(1)=2.777

K factor**= 2.523

TL(1)= 16.219

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380 CV(2) = -1.718

K factor=** 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.66	1.539
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 22.7	LN(Result) 3.122
Date Collected 3/18/2002 4/23/2002	Result 22.7 1.46	LN(Result) 3.122 0.378
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 22.7 1.46 0.253	LN(Result) 3.122 0.378 -1.374
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 22.7 1.46 0.253 0.482	LN(Result) 3.122 0.378 -1.374 -0.730
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 22.7 1.46 0.253 0.482 0.608	LN(Result) 3.122 0.378 -1.374 -0.730 -0.498

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
Downgradient	Yes	0.0562	N/A	-2.879	NO	
Downgradient	Yes	0.0232	N/A	-3.764	NO	
Downgradient	No	0.05	N/A	-2.996	N/A	
Downgradient	No	0.05	N/A	-2.996	N/A	
Upgradient	No	0.05	N/A	-2.996	N/A	
Upgradient	No	0.05	N/A	-2.996	N/A	
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient No Downgradient No Upgradient No	GradientDetected?ResultDowngradientYes0.0562DowngradientYes0.0232DowngradientNo0.05DowngradientNo0.05UpgradientNo0.05	Gradient Detected? Result Result >TL(1)? Downgradient Yes 0.0562 N/A Downgradient Yes 0.0232 N/A Downgradient No 0.05 N/A Downgradient No 0.05 N/A Upgradient No 0.05 N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 0.0562 N/A -2.879 Downgradient Yes 0.0232 N/A -3.764 Downgradient No 0.05 N/A -2.996 Downgradient No 0.05 N/A -2.996 Upgradient No 0.05 N/A -2.996	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 9.815
 S= 7.838
 CV(1)=0.799
 K factor**= 2.523
 TL(1)= 29.591
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 2.072
 S= 0.630
 CV(2)=0.304
 K factor**= 2.523
 TL(2)= 3.662
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.1 2.313 4/23/2002 4.46 1.495 7/15/2002 6.58 1.884 10/8/2002 4.9 1.589 4.47 1/8/2003 1.497 4/3/2003 8.65 2.158 7/9/2003 1.297 3.66 10/6/2003 5.38 1.683 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 15.1 2.715 4/23/2002 6.26 1.834 7/16/2002 6.22 1.828 10/8/2002 4.06 1.401 11.2 2.416 1/7/2003 4/2/2003 18.5 2.918 7/9/2003 13.3 2.588 10/7/2003 34.2 3.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	33.7	N/A	3.517	N/A		
MW361	Downgradient	Yes	31.9	N/A	3.463	N/A		
MW364	Downgradient	Yes	45.6	N/A	3.820	N/A		
MW367	Downgradient	Yes	33.1	N/A	3.500	N/A		
MW370	Upgradient	Yes	53	YES	3.970	N/A		
MW373	Upgradient	No	4.74	N/A	1.556	N/A		
NI/A D	1, 11, 200 1 3	T D	1 . 11		1 / 11 /	1 4		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-55

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.140
 S= 0.780
 CV(1)=0.684
 K factor**= 2.523
 TL(1)= 3.108
 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.235
 S= 1.006
 CV(2)=-4.287
 K factor**= 2.523
 TL(2)= 2.303
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 4/23/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 0.693 7/16/2002 2 10/8/2002 0.79 -0.2360.807-0.2141/7/2003 4/2/2003 1.13 0.122 7/9/2003 1.28 0.247 0.215 10/7/2003 1.24

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.601	NO	-0.509	N/A
MW361	Downgradient	Yes	0.512	NO	-0.669	N/A
MW364	Downgradient	Yes	0.0335	NO	-3.396	N/A
MW367	Downgradient	Yes	0.0602	NO	-2.810	N/A
MW370	Upgradient	Yes	0.302	NO	-1.197	N/A
MW373	Upgradient	Yes	1.83	NO	0.604	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-56

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=1.000 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.000 S= 0.000 CV(2)=#Num! K factor**= 2.523 TL(2)=0.000 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.0004/23/2002 1 0.000 7/15/2002 0.0001 10/8/2002 1 0.0001 0.000 1/8/2003 4/3/2003 1 0.000 7/9/2003 0.0001 10/6/2003 1 0.000 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1 0.0004/23/2002 1 0.000 0.000 7/16/2002 10/8/2002 0.000 1/7/2003 0.0001 4/2/2003 1 0.000 7/9/2003 0.000 1 0.000 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

l	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	Yes	0.39	NO	-0.942	N/A
	MW361	Downgradient	Yes	0.384	NO	-0.957	N/A
	MW364	Downgradient	Yes	0.456	NO	-0.785	N/A
	MW367	Downgradient	Yes	0.509	NO	-0.675	N/A
	MW370	Upgradient	Yes	0.436	NO	-0.830	N/A
	MW373	Upgradient	Yes	0.515	NO	-0.664	N/A
	NT/A D	1, 11, 20, 1, 3	T D ()	1 1 1 1	1 .	1.4 11.1.41	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-57

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 43.413 S = 13.444 CV(1) = 0.310

K factor**= 2.523

TL(1) = 77.331

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.723 S = 0.323 CV(2) = 0.087

K factor=** 2.523

TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	34.8	3.550
4/23/2002	43.4	3.770
7/15/2002	33.2	3.503
10/8/2002	29.2	3.374
1/8/2003	31.3	3.444
4/3/2003	32.4	3.478
7/9/2003	22.9	3.131
10/6/2003	28	3.332
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.126
Date Collected	Result	
Date Collected 3/18/2002	Result 61.9	4.126
Date Collected 3/18/2002 4/23/2002	Result 61.9 59.2	4.126 4.081
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 61.9 59.2 47.6	4.126 4.081 3.863
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 61.9 59.2 47.6 46.1	4.126 4.081 3.863 3.831
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 61.9 59.2 47.6 46.1 49.2	4.126 4.081 3.863 3.831 3.896

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	32.6	NO	3.484	N/A
MW361	Downgradient	Yes	30.9	NO	3.431	N/A
MW364	Downgradient	Yes	30	NO	3.401	N/A
MW367	Downgradient	Yes	29	NO	3.367	N/A
MW370	Upgradient	Yes	33.5	NO	3.512	N/A
MW373	Upgradient	Yes	74.6	NO	4.312	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Chemical Oxygen Demand (COD)** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.938 S = 24.732 CV(1) = 0.590

K factor**= 2.523

TL(1)= 104.336 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.658 S = 0.339 CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 35 3.555 4/23/2002 134 4.898 7/15/2002 35 3.555 10/8/2002 35 3.555 35 1/8/2003 3.555 4/3/2003 35 3.555 7/9/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 35 3.555 4/23/2002 47 3.850 7/16/2002 35 3.555 10/8/2002 35 3.555 35 3.555 1/7/2003 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	23.8	NO	3.170	N/A			
MW361	Downgradient	Yes	14.1	NO	2.646	N/A			
MW364	Downgradient	Yes	23.9	NO	3.174	N/A			
MW367	Downgradient	Yes	17.8	NO	2.879	N/A			
MW370	Upgradient	No	20	N/A	2.996	N/A			
MW373	Upgradient	Yes	27.2	NO	3.303	N/A			
NI/A D	1, 11, 20, 1, 3	T D	1 1 1 1	1 .	1 4 11 1 41	1 4			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.919 S = 7.524

K factor**= 2.523

TL(1)= 64.901

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.814 S = 0.165 CV(2) = 0.043

CV(1)=0.164

K factor=** 2.523

TL(2) = 4.231

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.704
Date Collected	Result	
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	34	NO	3.526	N/A
MW361	Downgradient	Yes	31.3	NO	3.444	N/A
MW364	Downgradient	Yes	36.7	NO	3.603	N/A
MW367	Downgradient	Yes	41.4	NO	3.723	N/A
MW370	Upgradient	Yes	36.7	NO	3.603	N/A
MW373	Upgradient	Yes	19	NO	2.944	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.032X = 0.027

CV(1)=1.165

K factor**= 2.523

TL(1) = 0.108

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.058 S = 1.011 CV(2) = -0.249

K factor=** 2.523

TL(2) = -1.507

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.0174	-4.051
1/8/2003	0.0105	-4.556
4/3/2003	0.00931	-4.677
7/9/2003	0.137	-1.988
10/6/2003	0.0463	-3.073
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.034	-3.689 -3.381
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.034 0.025	-3.689 -3.381 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.034 0.025 0.00411	-3.689 -3.381 -3.689 -5.494
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.034 0.025 0.00411 0.00344	-3.689 -3.381 -3.689 -5.494 -5.672

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00722	N/A	-4.931	NO
MW361	Downgradient	Yes	0.000414	4 N/A	-7.790	NO
MW364	Downgradient	Yes	0.000365	5 N/A	-7.916	NO
MW367	Downgradient	Yes	0.000629	9 N/A	-7.371	NO
MW370	Upgradient	Yes	0.000469	9 N/A	-7.665	NO
MW373	Upgradient	Yes	0.000573	3 N/A	-7.465	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-61

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

K factor**= 2.523

TL(1)= 1002.702 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor=** 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	492	NO	6.198	N/A
MW361	Downgradient	Yes	464	NO	6.140	N/A
MW364	Downgradient	Yes	478	NO	6.170	N/A
MW367	Downgradient	Yes	466	NO	6.144	N/A
MW370	Upgradient	Yes	474	NO	6.161	N/A
MW373	Upgradient	Yes	827	NO	6.718	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-62

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -2.963 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.05 -2.99610/8/2002 0.02 -3.912 0.02 -3.9121/8/2003

 4/3/2003
 0.02
 -3.912

 7/9/2003
 0.02
 -3.912

 10/6/2003
 0.02
 -3.912

Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.6504/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.9120.02 -3.912 1/7/2003 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912

0.02

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result I	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	0.000593	NO	-7.430	N/A
	MW361	Downgradient	Yes	0.000978	NO NO	-6.930	N/A
	MW364	Downgradient	Yes	0.000969	NO	-6.939	N/A
	MW367	Downgradient	Yes	0.000748	NO NO	-7.198	N/A
	MW370	Upgradient	Yes	0.000905	NO	-7.008	N/A
	MW373	Upgradient	Yes	0.000882	. NO	-7.033	N/A
							_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-63

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Cyanide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.020 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 0.020 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -3.912 S = 0.000 CV(2) = 0.0000 CV(2) = 0.000 CV(2) = 0.0000

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.02 -3.912-3.9124/23/2002 0.02 7/15/2002 0.02 -3.912 10/8/2002 0.02 -3.912 0.02 -3.9124/3/2003 7/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912 -3.9121/7/2004 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.02 -3.9124/23/2002 0.02 -3.912 -3.9127/16/2002 0.02 10/8/2002 0.02 -3.912-3.912 0.02 4/2/2003 -3.912 7/9/2003 0.02 10/7/2003 0.02 -3.912-3.912 1/6/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.2	N/A	-1.609	N/A
MW361	Downgradient	No	0.2	N/A	-1.609	N/A
MW364	Downgradient	No	0.2	N/A	-1.609	N/A
MW367	Downgradient	No	0.2	N/A	-1.609	N/A
MW370	Upgradient	Yes	0.00209) NO	-6.171	N/A
MW373	Upgradient	No	0.2	N/A	-1.609	N/A
3.7/4 D	1, 11, 126 1 3				4 . 4 . 4	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-64

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 1.153X = 1.387

CV(1) = 0.831

K factor**= 2.523

TL(1) = 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207 CV(2) = -10.514 K factor** = 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.112
Date Collected	Result	
Date Collected 3/18/2002	Result 3.04	1.112
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.53	NO	-0.635	N/A
MW361	Downgradient	Yes	3.37	NO	1.215	N/A
MW364	Downgradient	Yes	2.51	NO	0.920	N/A
MW367	Downgradient	Yes	1.5	NO	0.405	N/A
MW370	Upgradient	Yes	2.72	NO	1.001	N/A
MW373	Upgradient	Yes	1.18	NO	0.166	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 356.188 S = 106.752 CV(1) = 0.300

K factor**= 2.523

TL(1)= 625.523 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 236 5.464 4/23/2002 337 5.820 7/15/2002 266 5.583 10/8/2002 240 5.481 1/8/2003 282 5.642 4/3/2003 238 5.472 7/9/2003 248 5.513 10/6/2003 224 5.412 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 427 6.057 4/23/2002 507 6.229 7/16/2002 464 6.140 10/8/2002 408 6.011 404 6.001 1/7/2003 4/2/2003 450 6.109 7/9/2003 487 6.188 10/7/2003 481 6.176

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Downgradient	Yes	429	NO	6.061	N/A
Downgradient	Yes	254	NO	5.537	N/A
Downgradient	Yes	230	NO	5.438	N/A
Downgradient	Yes	256	NO	5.545	N/A
Upgradient	Yes	246	NO	5.505	N/A
Upgradient	Yes	471	NO	6.155	N/A
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 429 Downgradient Yes 254 Downgradient Yes 230 Downgradient Yes 256 Upgradient Yes 246	Gradient Detected? Result Result >TL(1)? Downgradient Yes 429 NO Downgradient Yes 254 NO Downgradient Yes 230 NO Downgradient Yes 256 NO Upgradient Yes 246 NO	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 429 NO 6.061 Downgradient Yes 254 NO 5.537 Downgradient Yes 230 NO 5.438 Downgradient Yes 256 NO 5.545 Upgradient Yes 246 NO 5.505

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison UNITS: mg/L LRGA Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 8.841 CV(1)=0.958**K** factor**= 2.523 **TL(1)=** 31.535 **Statistics-Background Data** X = 9.230LL(1)=N/A **Statistics-Transformed Background**

Data

X = 1.942 S = 0.713 CV(2) = 0.367

K factor=** 2.523 TL(2) = 3.740 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 7/15/2002 1.258 3.52 10/8/2002 7.45 2.008 1.952 1/8/2003 7.04 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 1.353 3.87 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	3.39	NO	1.221	N/A
MW361	Downgradient	Yes	0.203	NO	-1.595	N/A
MW364	Downgradient	Yes	0.183	NO	-1.698	N/A
MW367	Downgradient	Yes	0.96	NO	-0.041	N/A
MW370	Upgradient	Yes	0.0608	NO	-2.800	N/A
MW373	Upgradient	Yes	0.192	NO	-1.650	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.544 **S**= 5.911 **CV(1)**= 0.337

K factor**= 2.523

TL(1)= 32.458 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 2.810 S = 0.343 CV(2) = 0.122

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 2.493 12.1 4/23/2002 15.1 2.715 7/15/2002 2.518 12.4 10/8/2002 12.2 2.501 1/8/2003 11.5 2.442 4/3/2003 12.3 2.510 7/9/2003 10 2.303 10/6/2003 12.1 2.493 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 24.8 3.211 4/23/2002 22.7 3.122 2.934 7/16/2002 18.8 10/8/2002 21.1 3.049 19.9 2.991 1/7/2003

25.5

23.3

26.9

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	14.5	NO	2.674	N/A
	MW361	Downgradient	Yes	13.3	NO	2.588	N/A
	MW364	Downgradient	Yes	12.7	NO	2.542	N/A
	MW367	Downgradient	Yes	12.4	NO	2.518	N/A
	MW370	Upgradient	Yes	14.1	NO	2.646	N/A
	MW373	Upgradient	Yes	27.8	NO	3.325	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.239

3.148

3.292

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-68

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 1.080 **S=** 0.674 **CV(1)=** 0.624

K factor**= 2.523

TL(1)= 2.780 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -0.114 S = 0.658 CV(2) = -5.762

K factor**= 2.523

TL(2) = 1.547

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.4110.599 4/23/2002 1.82 7/15/2002 0.199 1.22 10/8/2002 0.988 -0.012-0.3161/8/2003 0.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.355 -1.0364/23/2002 2.16 0.770 0.329 7/16/2002 1.39 10/8/2002 0.717 -0.3330.587 -0.5331/7/2003 4/2/2003 0.545 -0.6077/9/2003 1.76 0.565 -0.562 10/7/2003 0.57

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.509	NO	-0.675	N/A
MW361	Downgradient	Yes	0.0846	NO	-2.470	N/A
MW364	Downgradient	Yes	0.0472	NO	-3.053	N/A
MW367	Downgradient	Yes	0.109	NO	-2.216	N/A
MW370	Upgradient	Yes	0.0121	NO	-4.415	N/A
MW373	Upgradient	Yes	0.0235	NO	-3.751	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-69

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.010 S = 0.012

CV(1)=1.198

K factor**= 2.523

TL(1)= 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X=-5.693 **S**= 1.604

CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.647

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.00113-6.786-6.908 0.001 1/8/2003 4/3/2003 0.001 -6.9087/9/2003 0.001 -6.908 10/6/2003 0.001 -6.908Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 0.025 -3.6894/23/2002 0.025 -3.6897/16/2002 0.025 -3.68910/8/2002 0.001-6.9080.001 -6.9081/7/2003 4/2/2003 0.001 -6.9087/9/2003 0.001 -6.908-6.908 10/7/2003 0.001

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result R	esult >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	0.000239	N/A	-8.339	NO
	MW361	Downgradient	No	0.001	N/A	-6.908	N/A
	MW364	Downgradient	Yes	0.000201	N/A	-8.512	NO
	MW367	Downgradient	No	0.001	N/A	-6.908	N/A
	MW370	Upgradient	No	0.001	N/A	-6.908	N/A
	MW373	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-70

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Nickel** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.022CV(1) = 0.901**K** factor**= 2.523 TL(1) = 0.078**Statistics-Background Data** X = 0.024LL(1)=N/A **Statistics-Transformed Background** X = -4.239 S = 1.087

Data

CV(2) = -0.256

K factor=** 2.523

TL(2) = -1.497

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.05 -2.9964/23/2002 0.05 -2.9967/15/2002 -2.9960.05 10/8/2002 0.005 -5.298 -5.298 0.005 1/8/2003 4/3/2003 0.005 -5.2987/9/2003 0.0264 -3.63410/6/2003 0.00971 -4.635Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.05 -2.996 4/23/2002 0.05 -2.996-2.9967/16/2002 0.05 10/8/2002 0.005-5.2980.005-5.298 1/7/2003 -5.298 4/2/2003 0.005 7/9/2003 0.0112 -4.4920.005 -5.298 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	0.0108	NO	-4.528	N/A
	MW361	Downgradient	No	0.002	N/A	-6.215	N/A
	MW364	Downgradient	Yes	0.000657	7 NO	-7.328	N/A
	MW367	Downgradient	Yes	0.000791	l NO	-7.142	N/A
	MW370	Upgradient	Yes	0.000725	5 NO	-7.229	N/A
	MW373	Upgradient	Yes	0.00111	NO	-6.803	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-71

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Oxidation-Reduction Potential UNITS: mV** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 46.688 S = 60.986 CV(1) = 1.306

K factor**= 2.523

TL(1)=200.555 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.829 S = 1.151 CV(2) = 0.301

K factor=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
,	MW358	Downgradient	Yes	92	N/A	4.522	NO
	MW361	Downgradient	Yes	399	N/A	5.989	YES
	MW364	Downgradient	Yes	410	N/A	6.016	YES
	MW367	Downgradient	Yes	410	N/A	6.016	YES
	MW370	Upgradient	Yes	448	N/A	6.105	YES
	MW373	Upgradient	Yes	409	N/A	6.014	YES
	37/4 D	1. 11 .16 1 3	T D			1.1.1.1	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW361 MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

MW370 Upgradient

MW373 Upgradient

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904
 TL(1) = 6.745 LL(1) = 5.8202

 Statistics-Transformed Background Data
 X = 1.837 X = 0.025 X = 0.025</td

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.841 6.3 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 6.35 1.848 1/7/2003 4/2/2003 6.14 1.815 7/9/2003 1.808 6.1 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1.805

1.816

N/A

N/A

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.17	NO	1.820	N/A
MW361	Downgradien	t Yes	6.11	NO	1.810	N/A
MW364	Downgradien	t Yes	6.07	NO	1.803	N/A
MW367	Downgradien	t Yes	6.11	NO	1.810	N/A

NO

NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

6.08

6.15

Yes

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-73

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Potassium** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.522CV(1)=0.185**K** factor**= 2.523 TL(1) = 4.139**Statistics-Background Data** X = 2.823LL(1)=N/A **Statistics-Transformed Background** X = 1.024 S = 0.167CV(2) = 0.163TL(2) = 1.445LL(2)=N/A

Data

K factor=** 2.523

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 7/15/2002 2.98 1.092 10/8/2002 2.46 0.900 2.41 1/8/2003 0.8804/3/2003 2.43 0.888 7/9/2003 2.44 0.892 0.908 10/6/2003 2.48 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 1.075 7/16/2002 2.93 10/8/2002 2.3 0.8331/7/2003 0.8962.45 0.993 4/2/2003 2.7 7/9/2003 0.986 2.68 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.39	NO	0.871	N/A
MW361	Downgradient	Yes	1.85	NO	0.615	N/A
MW364	Downgradient	Yes	1.9	NO	0.642	N/A
MW367	Downgradient	Yes	2.68	NO	0.986	N/A
MW370	Upgradient	Yes	2.77	NO	1.019	N/A
MW373	Upgradient	Yes	2.92	NO	1.072	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 51.544 **S**= 15.227 **CV(1)**= 0.295

K factor=** 2.523 **TL(1)=** 89.962

.962 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor**= 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	45.2	NO	3.811	N/A
	MW361	Downgradient	Yes	48.3	NO	3.877	N/A
	MW364	Downgradient	Yes	40.5	NO	3.701	N/A
	MW367	Downgradient	Yes	39.4	NO	3.674	N/A
	MW370	Upgradient	Yes	49.4	NO	3.900	N/A
	MW373	Upgradient	Yes	64.8	NO	4.171	N/A
							_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-75

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 122.381 **S**= 195.095 **CV(1)**=1.594

K factor**= 2.523

TL(1)= 614.606 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.985 S = 1.323 CV(2) = 0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 17.4 2.856 4/23/2002 37.9 3.635 7/15/2002 2.754 15.7 10/8/2002 13.4 2.595 1/8/2003 14.4 2.667 4/3/2003 18.1 2.896 7/9/2003 9.6 2.262 10/6/2003 16.5 2.803 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 163.3 5.096 4/23/2002 809.6 6.697 7/16/2002 109.4 4.695 10/8/2002 110.6 4.706 1/7/2003 113.7 4.734 4/2/2003 133 4.890 7/9/2003 182.1 5.205 10/7/2003 193.4 5.265

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	58.4	N/A	4.067	NO
MW361	Downgradient	Yes	59	N/A	4.078	NO
MW364	Downgradient	Yes	74	N/A	4.304	NO
MW367	Downgradient	Yes	50.1	N/A	3.914	NO
MW370	Upgradient	Yes	21	N/A	3.045	NO
MW373	Upgradient	Yes	73.5	N/A	4.297	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-76

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison **Technetium-99** UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 13.274 CV(1)=1.734**K** factor**= 2.523 **TL(1)=** 41.146 **Statistics-Background Data** X = 7.655LL(1)=N/A **Statistics-Transformed Background**

Data

X = 1.946 S = 0.939 CV(2) = 0.483

K factor=** 2.523

TL(2) = 3.833

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	10.8	2.380
4/23/2002	8.53	2.144
7/15/2002	5.09	1.627
10/8/2002	4.78	1.564
1/8/2003	-5.12	#Func!
4/3/2003	5.11	1.631
7/9/2003	4.25	1.447
10/6/2003	6.54	1.878
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 2.803
Date Collected	Result	
Date Collected 3/18/2002	Result 16.5	2.803
Date Collected 3/18/2002 4/23/2002	Result 16.5 3.49	2.803 1.250
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 16.5 3.49 1.42	2.803 1.250 0.351
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 16.5 3.49 1.42 -6.06	2.803 1.250 0.351 #Func!
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 16.5 3.49 1.42 -6.06 -8.41	2.803 1.250 0.351 #Func! #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	52.2	N/A	3.955	YES
MW361	Downgradient	Yes	45.3	N/A	3.813	NO
MW364	Downgradient	Yes	56	N/A	4.025	YES
MW367	Downgradient	Yes	63	N/A	4.143	YES
MW370	Upgradient	Yes	60.4	N/A	4.101	YES
MW373	Upgradient	No	13.8	N/A	2.625	N/A
3.7/4 B	1 1	T			4 . 4 . 4 . 4	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW364 MW367

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 6.169 **S**= 12.072 **CV(1)**=1.957

K factor**= 2.523

TL(1)= 36.626 **LL(1)=**N/A

Statistics-Transformed Background Data

X=1.069 S=1.014 CV(2)=0.948

K factor=** 2.523

TL(2) = 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.182 1.2 4/23/2002 4.3 1.459 7/15/2002 2.6 0.956 10/8/2002 2.3 0.8333 1/8/2003 1.099 4/3/2003 1.2 0.182 7/9/2003 2.6 0.956 10/6/2003 1.7 0.531 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1.1 0.095 4/23/2002 17.5 2.862 49 7/16/2002 3.892 10/8/2002 2.9 1.065 1/7/2003 3.9 1.361 0.916 4/2/2003 2.5 7/9/2003 1.7 0.531 10/7/2003 1.2 0.182

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	4.52	N/A	1.509	NO
MW361	Downgradient	Yes	0.763	N/A	-0.270	NO
MW364	Downgradient	No	0.852	N/A	-0.160	N/A
MW367	Downgradient	No	0.942	N/A	-0.060	N/A
MW370	Upgradient	No	1.09	N/A	0.086	N/A
MW373	Upgradient	No	1.23	N/A	0.207	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-78

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison UNITS: ug/L **Total Organic Halides (TOX)** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor**= 2.523

TL(1)= 277.798 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor=** 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	10.2	NO	2.322	N/A
MW361	Downgradient	Yes	5.26	NO	1.660	N/A
MW364	Downgradient	Yes	5.18	NO	1.645	N/A
MW367	Downgradient	Yes	7.38	NO	1.999	N/A
MW370	Upgradient	Yes	13.1	NO	2.573	N/A
MW373	Upgradient	Yes	8.92	NO	2.188	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 12.188
 S= 6.950
 CV(1)=0.570
 K factor**= 2.523
 TL(1)= 29.721
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.305
 S= 0.687
 CV(2)=0.298
 K factor**= 2.523
 TL(2)= 4.039
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 7/15/2002 15 2.708 10/8/2002 18 2.890 17 1/8/2003 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 1.099 7/16/2002 3 10/8/2002 4 1.386 1/7/2003 6 1.792 4/2/2003 5 1.609 7/9/2003 6 1.792 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	3.52	N/A	1.258	N/A
	MW361	Downgradient	Yes	4.6	N/A	1.526	N/A
	MW364	Downgradient	Yes	6.88	NO	1.929	N/A
	MW367	Downgradient	Yes	5.15	NO	1.639	N/A
	MW370	Upgradient	Yes	0.66	N/A	-0.416	N/A
	MW373	Upgradient	Yes	3.81	N/A	1.338	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-80

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.008CV(1)=0.324**K** factor**= 2.523 TL(1) = 0.044**Statistics-Background Data** X = 0.024LL(1)=N/A **Statistics-Transformed Background** X = -3.749 S = 0.265 CV(2) = -0.071LL(2)=N/A **K factor**=** 2.523 TL(2) = -3.080

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.035	-3.352
4/23/2002	0.033	-3.411
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.037
Date Collected	Result	
Date Collected 3/18/2002	Result 0.048	-3.037
Date Collected 3/18/2002 4/23/2002	Result 0.048 0.025	-3.037 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.048 0.025 0.025	-3.037 -3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.048 0.025 0.025 0.02	-3.037 -3.689 -3.689 -3.912
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.048 0.025 0.025 0.02 0.02	-3.037 -3.689 -3.689 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00373	NO	-5.591	N/A
MW361	Downgradient	No	0.02	N/A	-3.912	N/A
MW364	Downgradient	No	0.02	N/A	-3.912	N/A
MW367	Downgradient	No	0.02	N/A	-3.912	N/A
MW370	Upgradient	No	0.02	N/A	-3.912	N/A
MW373	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-81

C-746-U Second Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.037CV(1) = 0.673 **K** factor**= 2.523

TL(1) = 0.147

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.131 S = 0.691 CV(2) = -0.221

K factor=** 2.523

TL(2) = -1.388

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.1	-2.303
4/23/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 0.1	-2.303
Date Collected 3/18/2002 4/23/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.1 0.1 0.1	-2.303 -2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.1 0.1 0.1 0.1 0.025	-2.303 -2.303 -2.303 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.1 0.1 0.1 0.025 0.035	-2.303 -2.303 -2.303 -3.689 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00629	NO	-5.069	N/A
MW361	Downgradient	Yes	0.00494	NO	-5.310	N/A
MW364	Downgradient	Yes	0.0316	NO	-3.455	N/A
MW367	Downgradient	Yes	0.00617	NO	-5.088	N/A
MW370	Upgradient	Yes	0.00339	NO	-5.687	N/A
MW373	Upgradient	Yes	0.00349	NO	-5.658	N/A

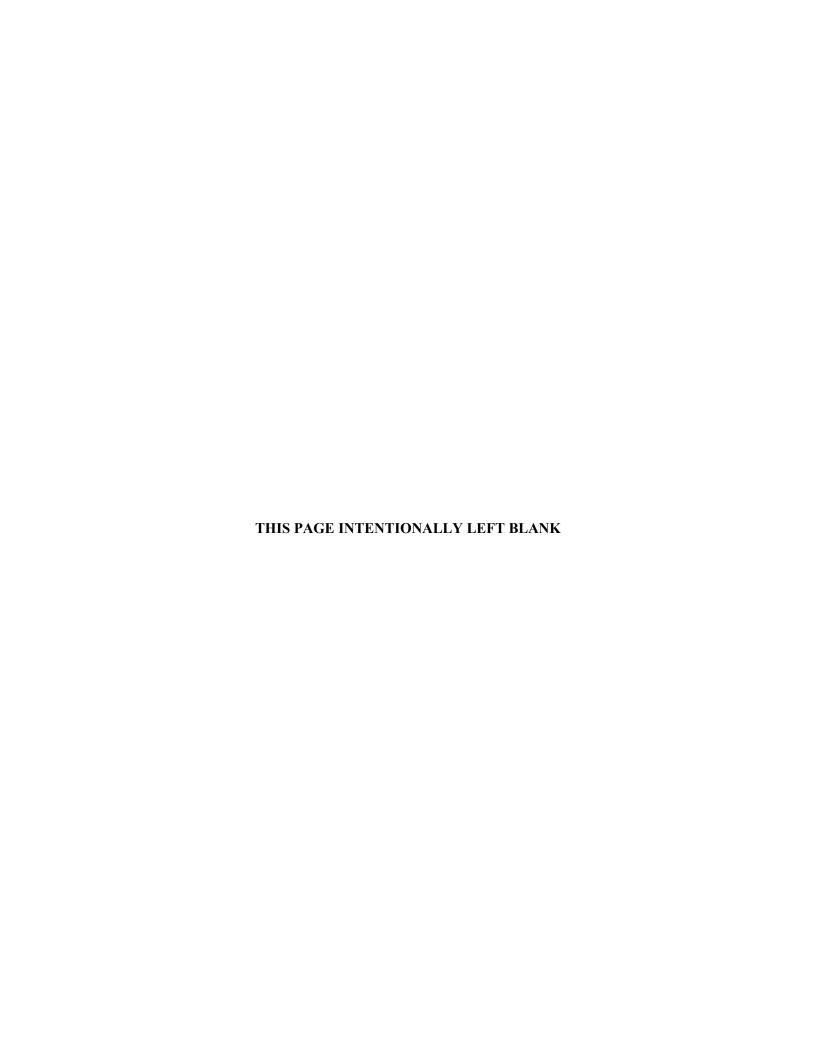
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5


TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-82

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-U Second Quarter 2020 Statistical Analysis

Current Background Comparison

UCRS Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 39.019 S = 20.413 CV(1) = 0.523

K factor**= 2.523

TL(1)= 90.521

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.534S = 0.526CV(2)=0.149 K factor**= 2.523

TL(2) = 4.862

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected LN(Result) Result 4/12/2018 62.5 4.135 7/18/2018 58.4 4.067 10/10/2018 48 3.871 1/16/2019 40 3.689 4/15/2019 43.3 3.768 7/15/2019 70.4 4.254 10/16/2019 58.4 4.067 1 /0 1 /0 0 0 0

1/21/2020	74.8	4.315
Well Number:	MW374	
Date Collected	Result	LN(Result)
4/12/2018	21.4	3.063
7/18/2018	19.9	2.991
10/10/2018	20.4	3.016
1/17/2019	21.8	3.082
4/11/2019	21.5	3.068
7/11/2019	20.7	3.030
10/16/2019	21.8	3.082
1/22/2020	21	3.045

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW371	Ungradient	Yes	70.9	NO	4 261	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis Current Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.191	S = 2.516	CV(1)= 0.788	K factor**= 2.523	TL(1)= 9.537	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.825	S = 0.887	CV(2)= 1.076	K factor**= 2.523	TL(2)= 3.063	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 4/12/2018 7.85 2.061 7/18/2018 4.89 1.587 10/10/2018 0.96 -0.0412.082 1/16/2019 8.02 5/28/2019 5.2 1.649 7/15/2019 4.6 1.526 10/16/2019 1.27 0.239 3/17/2020 1.716 5.56 Well Number: MW374 Date Collected Result LN(Result) 4/12/2018 0.513 1.67 7/18/2018 0.52 -0.65410/10/2018 0.88 -0.128-0.4001/17/2019 0.67 0.399 5/28/2019 1.49 7/11/2019 2.23 0.802 10/16/2019 1.88 0.631 3/17/2020 3.36 1.212

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	
----------------------	--

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	3.99	NO	1.384	N/A
MW362	Downgradien	t Yes	4.64	NO	1.535	N/A
MW371	Upgradient	Yes	3.39	NO	1.221	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 327.813 S = 57.115 CV(1) = 0.174

K factor**= 2.523

TL(1)= 471.915 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.777**S**= 0.188 CV(2) = 0.032 K factor**= 2.523

TL(2) = 6.250

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
4/12/2018	365	5.900
7/18/2018	342	5.835
10/10/2018	328	5.793
1/16/2019	396	5.981
5/28/2019	363	5.894
7/15/2019	423	6.047
10/16/2019	321	5.771
3/17/2020	335	5.814
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
-		LN(Result) 5.802
Date Collected	Result	
Date Collected 4/12/2018	Result 331	5.802
Date Collected 4/12/2018 7/18/2018	Result 331 269	5.802 5.595
Date Collected 4/12/2018 7/18/2018 10/10/2018	Result 331 269 218	5.802 5.595 5.384
Date Collected 4/12/2018 7/18/2018 10/10/2018 1/17/2019	Result 331 269 218 254	5.802 5.595 5.384 5.537
Date Collected 4/12/2018 7/18/2018 10/10/2018 1/17/2019 5/28/2019	Result 331 269 218 254 355	5.802 5.595 5.384 5.537 5.872

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	223	NO	5.407	N/A
MW362	Downgradient	Yes	390	NO	5.966	N/A
MW365	Downgradient	Yes	408	NO	6.011	N/A
MW368	Downgradient	Yes	400	NO	5.991	N/A
MW371	Upgradient	Yes	423	NO	6.047	N/A
MW374	Upgradient	Yes	385	NO	5.953	N/A
MW375	Sidegradient	Yes	403	NO	5.999	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 25.103 S = 25.550 CV(1) = 1.018

.018 **K factor**=** 2.523

TL(1)= 89.566

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.782 **S**= 0.945

CV(2)=0.340

K factor**= 2.523

TL(2) = 5.167

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 4/12/2018 91.6 4.517 7/18/2018 47.7 3.865 10/10/2018 21.9 3.086 1/16/2019 10.1 2.313 4/15/2019 59.1 4.079 7/15/2019 55.4 4.015 10/16/2019 30 3.401 1/21/2020 27 3.296

MW374	
Result	LN(Result)
7.24	1.980
7.69	2.040
6.6	1.887
6.8	1.917
8.28	2.114
8.06	2.087
6.43	1.861
7.75	2.048
	Result 7.24 7.69 6.6 6.8 8.28 8.06 6.43

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	42.9	N/A	3.759	NO
MW362	Downgradien	t Yes	30.4	N/A	3.414	NO
MW365	Downgradien	t Yes	61.7	N/A	4.122	NO
MW368	Downgradien	t Yes	15.5	N/A	2.741	NO
MW371	Upgradient	Yes	75.3	N/A	4.321	NO
MW375	Sidegradient	Yes	23.7	N/A	3.165	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis

Current Background Comparison URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Calcium

X = 34.363 S = 17.062 CV(1) = 0.497

K factor**= 2.523

TL(1)= 77.410

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.406

S = 0.543CV(2)=0.159 K factor**= 2.523

TL(2) = 4.775

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/11/2018	28.7	3.357
7/18/2018	15.6	2.747
10/9/2018	16.3	2.791
1/16/2019	16.3	2.791
4/15/2019	20	2.996
7/15/2019	17.7	2.874
10/16/2019	15.5	2.741
1/21/2020	19.1	2.950

Well Number:	MW372	
Date Collected	Result	LN(Result)
4/12/2018	49.9	3.910
7/18/2018	38.4	3.648
10/10/2018	49.7	3.906
1/17/2019	46.8	3.846
4/11/2019	49.7	3.906
7/11/2019	49.7	3.906
10/16/2019	59.4	4.084
1/22/2020	57	4.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	62.7	NO	4.138	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 516.313 S = 135.056 CV(1) = 0.262

K factor**= 2.523

TL(1)= 857.059

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.214 S = 0.265 CV(2) = 0.043

K factor=** 2.523

TL(2) = 6.883

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 4/11/2018 425 6.052 7/18/2018 5.919 372 10/9/2018 5.924 374 1/16/2019 386 5.956 5/28/2019 387 5.958 7/15/2019 373 5.922 10/16/2019 367 5.905 3/17/2020 440 6.087

Well Number:	MW372	
Date Collected	Result	LN(Result)
4/12/2018	614	6.420
7/18/2018	597	6.392
10/10/2018	618	6.426
1/17/2019	613	6.418
5/28/2019	628	6.443
7/11/2019	640	6.461
10/16/2019	697	6.547
1/22/2020	730	6.593

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Unoradient	Yes	687	NO	6 532	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis

I Analysis Current Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Dissolved Solids

X= 314.188 **S**= 116.797 **CV(1)**=0.372

K factor=** 2.523

TL(1)= 608.866

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.692 S = 0.344

CV(2) = 0.060

K factor**= 2.523

TL(2) = 6.559

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 4/11/2018 281 5.638 7/18/2018 197 5.283 10/9/2018 196 5.278 1/16/2019 224 5.412 4/15/2019 261 5.565 7/15/2019 194 5.268 10/16/2019 227 5.425 1/21/2020 224 5.412

1/21/2020	227	3.712
Well Number:	MW372	
Date Collected	Result	LN(Result)
4/12/2018	356	5.875
7/18/2018	323	5.778
10/10/2018	336	5.817
1/17/2019	394	5.976
4/11/2019	309	5.733
7/11/2019	616	6.423
10/16/2019	466	6.144
1/22/2020	423	6.047

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	399	NO	5 989	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis

Current Background Comparison URGA

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 13.661 **S**= 6.091 **CV(1)**= 0.446

K factor**= 2.523

TL(1) = 29.028

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.509 S = 0.488 CV(2) = 0.195

K factor=** 2.523

TL(2) = 3.740

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 4/11/2018 12.6 2.534 7/18/2018 6.5 1.872 10/9/2018 7.02 1.949 1.970 1/16/2019 7.17 4/15/2019 9.06 2.204 7/15/2019 7.51 2.016 10/16/2019 7.28 1.985 1/21/2020 1.966 7.14

Well Number:	MW372	
Date Collected	Result	LN(Result)
4/12/2018	19.4	2.965
7/18/2018	16.2	2.785
10/10/2018	19.1	2.950
1/17/2019	18.9	2.939
4/11/2019	18.2	2.901
7/11/2019	19.2	2.955
10/16/2019	22	3.091
1/22/2020	21.3	3.059

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	22.4	NO	3.109	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis **UNITS: mV**

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 361.000 S = 41.064 CV(1) = 0.114

K factor**= 2.523

TL(1) = 464.605

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.883

S = 0.115CV(2) = 0.020 K factor**= 2.523

TL(2) = 6.173

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Oxidation-Reduction Potential

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/11/2018	397	5.984
7/18/2018	338	5.823
10/9/2018	341	5.832
1/16/2019	432	6.068
5/28/2019	309	5.733
7/15/2019	410	6.016
10/16/2019	347	5.849
3/17/2020	327	5.790
Well Number:	MW372	
Date Collected	Result	LN(Result)
4/12/2018	348	5.852
7/18/2018	371	5.916
10/10/2018	295	5.687
1/17/2019	393	5.974
5/28/2019	400	5.991

390

303

375

7/11/2019

10/16/2019

1/22/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradien	t Yes	409	NO	6.014	N/A
MW360	Downgradien	t Yes	408	NO	6.011	N/A
MW363	Downgradien	t Yes	415	NO	6.028	N/A
MW366	Downgradien	t Yes	414	NO	6.026	N/A
MW369	Upgradient	Yes	390	NO	5.966	N/A
MW372	Upgradient	Yes	393	NO	5.974	N/A

Conclusion of Statistical Analysis on Current Data

5.966

5.714

5.927

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis **Current Background Comparison LRGA** Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 44.456 S = 30.339 CV(1) = 0.682

K factor**= 2.523

TL(1)= 121.001

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.505

S= 0.861 CV(2) = 0.245 K factor**= 2.523

TL(2) = 5.676

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
4/11/2018	50	3.912
7/18/2018	102	4.625
10/9/2018	81.7	4.403
1/16/2019	75.8	4.328
4/15/2019	61	4.111
7/15/2019	52.7	3.965
10/16/2019	70.1	4.250
1/21/2020	75.9	4.329

1/21/2020	75.9	4.329
Well Number:	MW373	
Date Collected	Result	LN(Result)
4/12/2018	4.99	1.607
7/18/2018	30.6	3.421
10/10/2018	22.8	3.127
1/17/2019	17.4	2.856
4/11/2019	13.7	2.617
7/11/2019	21.9	3.086
10/16/2019	17.3	2.851
1/22/2020	13.4	2.595

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Ungradient	Vec	53	NO	3 970	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 381.500 S = 39.289 CV(1) = 0.103

UNITS: mV

K factor**= 2.523

TL(1)= 480.625 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.939S = 0.103 CV(2) = 0.017

K factor**= 2.523

TL(2) = 6.199

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Oxidation-Reduction Potential

Well Number:	MW370	
Date Collected	Result	LN(Result)
4/11/2018	368	5.908
7/18/2018	369	5.911
10/9/2018	346	5.846
1/16/2019	440	6.087
5/28/2019	400	5.991
7/15/2019	421	6.043
10/16/2019	405	6.004
1/21/2020	425	6.052
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.858
Date Collected	Result	
Date Collected 4/12/2018	Result 350	5.858
Date Collected 4/12/2018 7/18/2018	Result 350 318	5.858 5.762
Date Collected 4/12/2018 7/18/2018 10/10/2018	Result 350 318 438	5.858 5.762 6.082
Date Collected 4/12/2018 7/18/2018 10/10/2018 1/17/2019	Result 350 318 438 336	5.858 5.762 6.082 5.817
Date Collected 4/12/2018 7/18/2018 10/10/2018 1/17/2019 5/28/2019	Result 350 318 438 336 374	5.858 5.762 6.082 5.817 5.924

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW361	Downgradien	t Yes	399	NO	5.989	N/A
MW364	Downgradien	t Yes	410	NO	6.016	N/A
MW367	Downgradien	t Yes	410	NO	6.016	N/A
MW370	Upgradient	Yes	448	NO	6.105	N/A
MW373	Upgradient	Yes	409	NO	6.014	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2020 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 62.550	S = 45.785	CV(1) = 0.732	K factor**= 2.523	TL(1)= 178.065	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.969	S = 0.784	CV(2)= 0.197	K factor**= 2.523	TL(2)= 4.828	LL(2)= N/A

Current Quarter Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
4/11/2018	107	4.673
7/18/2018	96.2	4.566
10/9/2018	114	4.736
1/16/2019	94.3	4.546
4/15/2019	111	4.710
7/15/2019	107	4.673
10/16/2019	125	4.828
1/21/2020	82.8	4.416
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.408
Date Collected	Result	
Date Collected 4/12/2018	Result 30.2	3.408
Date Collected 4/12/2018 7/18/2018	Result 30.2 -15.9	3.408 #Func!
Date Collected 4/12/2018 7/18/2018 10/10/2018	Result 30.2 -15.9 20.3	3.408 #Func! 3.011
Date Collected 4/12/2018 7/18/2018 10/10/2018 1/17/2019	Result 30.2 -15.9 20.3 28.4	3.408 #Func! 3.011 3.346
Date Collected 4/12/2018 7/18/2018 10/10/2018 1/17/2019 4/11/2019	Result 30.2 -15.9 20.3 28.4 22.7	3.408 #Func! 3.011 3.346 3.122

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	t Yes	52.2	NO	3.955	N/A
MW364	Downgradient	t Yes	56	NO	4.025	N/A
MW367	Downgradient	t Yes	63	NO	4.143	N/A
MW370	Upgradient	Yes	60.4	NO	4.101	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

July 29, 2020

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053


Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the second quarter 2020 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

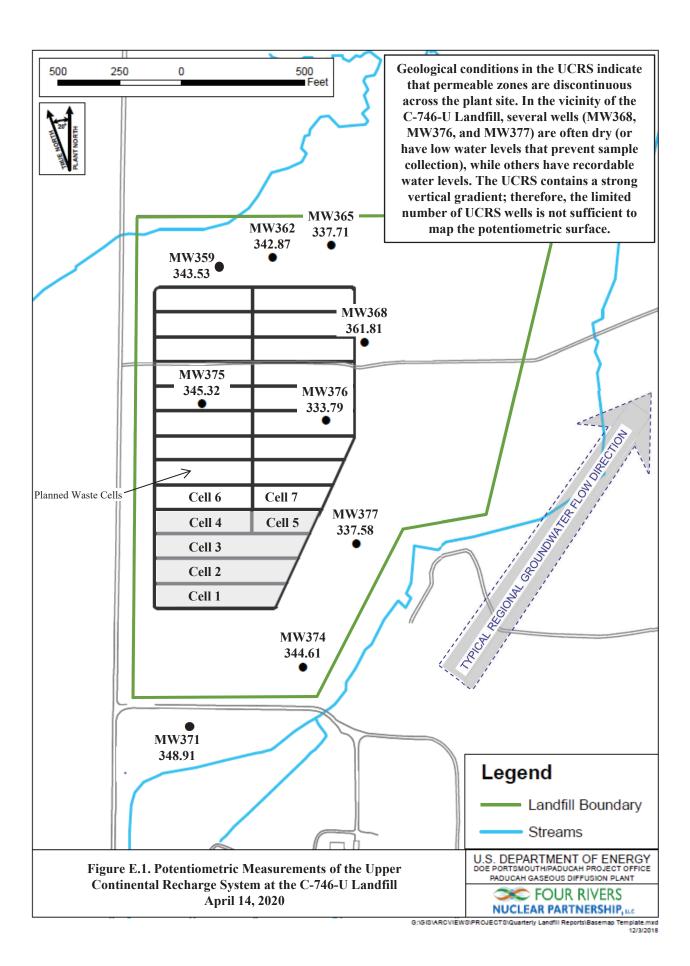
RESIDENTIAL/CONTAINED—OUARTERLY, 2nd CY 2020

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION


Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR § 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2020 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on April 14, 2020. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 6.96×10^{-4} ft/ft and 6.92×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 5.09×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for April 2020, the groundwater flow direction in the immediate area of the landfill was to the northeast.

E-4

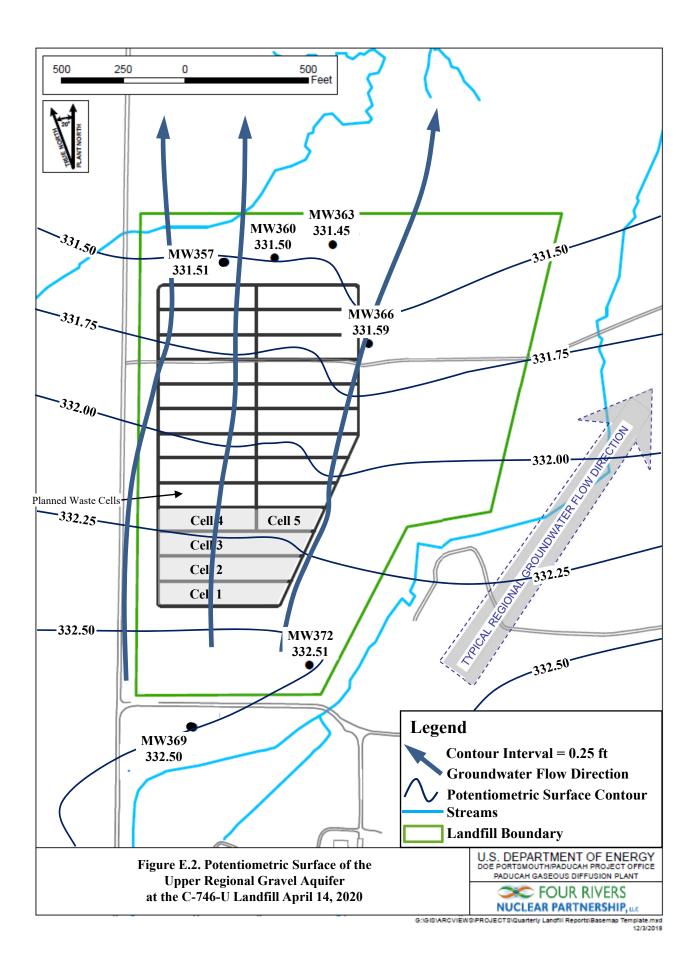
Table E.1. C-746-U Landfill Second Quarter 2020 (April) Water Levels

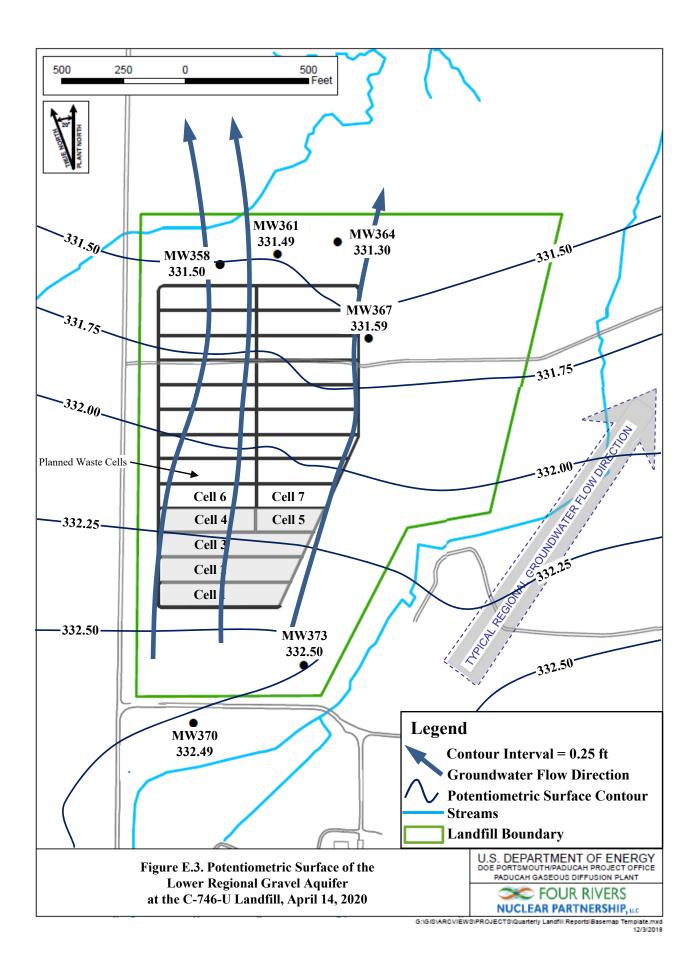
			C-74	46-U Landfill (A	April 2020)) Water Lev	els			
					·		Rav	w Data	*Corre	ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/14/2020	9:30	MW357	URGA	368.82	30.29	0.01	37.30	331.52	37.31	331.51
4/14/2020	9:32	MW358	LRGA	368.97	30.29	0.01	37.46	331.51	37.47	331.50
4/14/2020	9:31	MW359	UCRS	368.96	30.29	0.01	25.42	343.54	25.43	343.53
4/14/2020	9:26	MW360	URGA	362.12	30.29	0.01	30.61	331.51	30.62	331.50
4/14/2020	9:27	MW361	LRGA	361.37	30.29	0.01	29.87	331.50	29.88	331.49
4/14/2020	9:28	MW362	UCRS	361.90	30.29	0.01	19.02	342.88	19.03	342.87
4/14/2020	9:42	MW363	URGA	368.61	30.29	0.01	37.15	331.46	37.16	331.45
4/14/2020	9:45	MW364	LRGA	368.22	30.29	0.01	36.91	331.31	36.92	331.30
4/14/2020	9:44	MW365	UCRS	368.19	30.29	0.01	30.47	337.72	30.48	337.71
4/14/2020	9:47	MW366	URGA	369.00	30.29	0.01	37.40	331.60	37.41	331.59
4/14/2020	9:49	MW367	LRGA	369.42	30.29	0.01	37.82	331.60	37.83	331.59
4/14/2020	9:48	MW368	UCRS	369.03	30.29	0.01	7.21	361.82	7.22	361.81
4/14/2020	10:03	MW369	URGA	364.28	30.30	0.00	31.78	332.50	31.78	332.50
4/14/2020	10:05	MW370	LRGA	365.17	30.30	0.00	32.68	332.49	32.68	332.49
4/14/2020	10:04	MW371	UCRS	364.69	30.30	0.00	15.78	348.91	15.78	348.91
4/14/2020	9:59	MW372	URGA	359.47	30.30	0.00	26.96	332.51	26.96	332.51
4/14/2020	10:01	MW373	LRGA	359.78	30.30	0.00	27.28	332.50	27.28	332.50
4/14/2020	10:00	MW374	UCRS	359.49	30.30	0.00	14.88	344.61	14.88	344.61
4/14/2020	9:55	MW375	UCRS	370.41	30.30	0.00	25.09	345.32	25.09	345.32
4/14/2020	9:53	MW376	UCRS	370.44	30.30	0.00	36.65	333.79	36.65	333.79
4/14/2020	9:57	MW377	UCRS	365.79	30.30	0.00	28.21	337.58	28.21	337.58
Reference B	arometri	c Pressure		30.30						

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

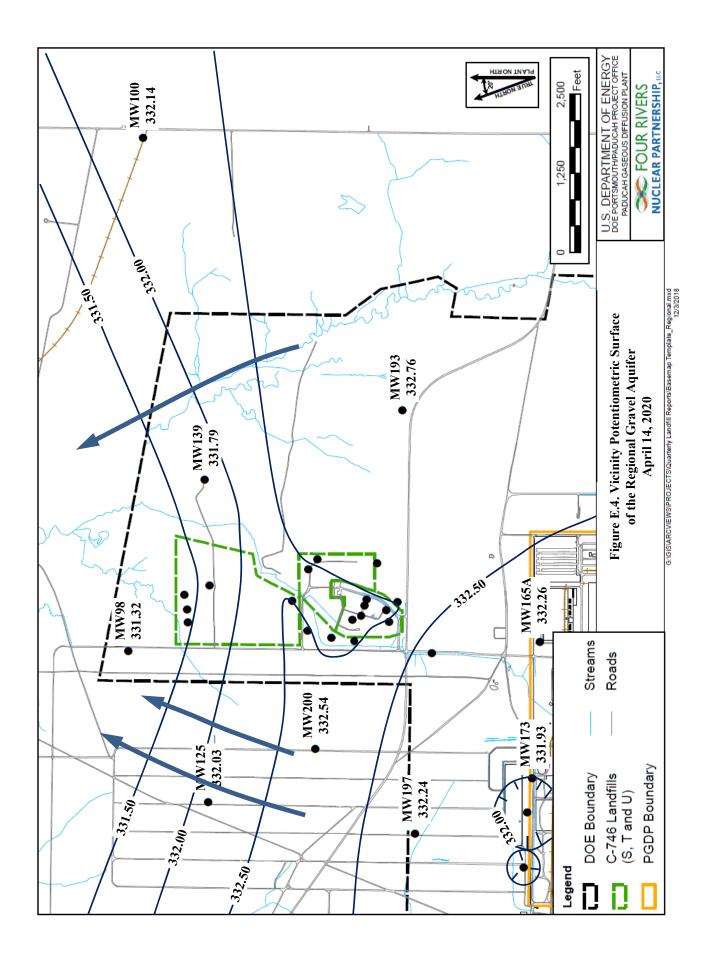
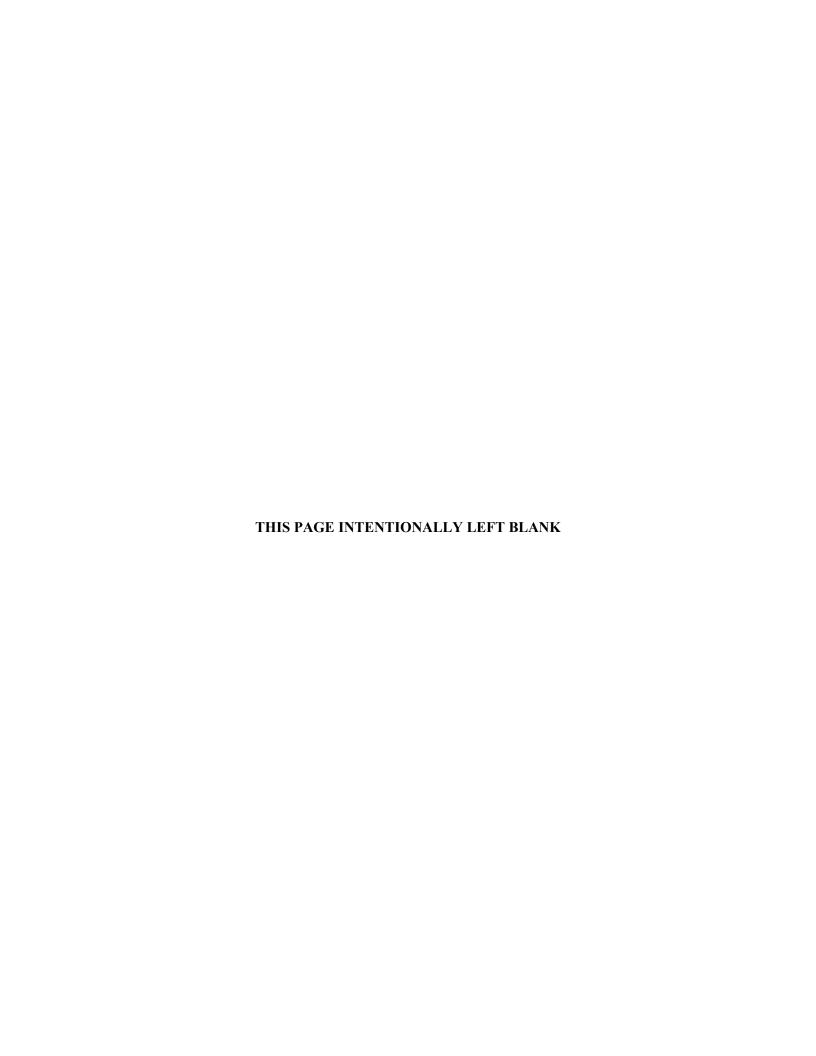



Table E.2. C-746-U Landfill Hydraulic Gradients

Area	Gradient (ft/ft)
Beneath Landfill—Upper RGA	6.96 × 10 ⁻⁴
Beneath Landfill—Lower RGA	6.92×10^{-4}
Vicinity	5.09 × 10 ⁻⁴

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific D	ischarge (q)	Average Linear Velocity (v)				
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s			
Upper RGA								
725	0.256	0.505	1.78×10^{-4}	2.02	7.13×10^{-4}			
425	0.150	0.296	1.04×10^{-4}	1.18	4.18×10^{-4}			
Lower RGA								
725	0.256	0.502	1.77×10^{-4}	2.01	7.09×10^{-4}			
425	0.150	0.294	1.04×10^{-4}	1.18	4.15×10^{-4}			

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the second quarter 2020 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	None	
Lower Regional Gravel Aquifer	Technetium-99	MW358, MW364, MW367, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

5/26/2020

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4797	MW364	Trichloroethene	8260B	6.88	ug/L	5
8004-4793	MW367	Trichloroethene	8260B	5.15	ug/L	5
8004-4818	MW370	Beta activity	9310	53	pCi/L	50

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Gradient D. S. S. S. D. D. D. U. U. D. D. D. D. U. U. U. D. D. D. D. D. D. D. U. U. U. D. U. U. U. D.	Groundwater Flow System				UCR	S							URG	GA					LRG	A		\neg
Monitoring Well See 3 375 376 377 359 362 365 371 374 366 360 363 357 369 372 367 361 364 388 370 373 CARLETONE Danter 4, 2002 Danter 4, 2003 Danter 9, 2004 Danter 9, 2006 Danter 9, 2007 Danter 9, 2	Gradient	D	S	S			D	D	U	U	D	D		_	U	U	D	D			U	U
ACEPTONE	Monitoring Well																					373
Quarter 1, 2002	ACETONE																					
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2013 Quarter 4, 2019 Quarter 5, 201	Quarter 3, 2002										*	*	*									
Quarter 1, 2003	Quarter 4, 2002																					
Quarter 2, 2003	Quarter 1, 2003																					
Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2001 Quarter 5, 200	Quarter 2, 2003																					
Quarter 4, 2003 Quarter 3, 2005 Quarter 4, 2005 ALPHA ACTIVITY Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2009 Quarter 3, 2009 ALLONINIM Quarter 3, 2009 ALLONINIM Quarter 3, 2009 ALLONINIM Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Q	Quarter 3, 2003	*						*			*					*			*			
Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2006 Quarter 3, 2009 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2009 Quarter 4, 2001 Quarter 4,							*	*				*			*							
Quarter 3, 2005 ALPHA ACTIVITY Quarter 2, 2004 Quarter 2, 2009 ALLONINUM Quarter 3, 2009 ALLONINUM Quarter 3, 2009 ALLONINUM Quarter 3, 2009 ALLONINUM Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 4, 2001 Quarter 6, 2001 Quarter 6, 2001 Quarter 6, 2001 Quarter 7, 2001 Quarter 8, 2001 Quarter 9, 2002 Quarter 9, 2002 Quarter 9, 2002 Quarter 9, 2002 Quarte							*										*					
Quarter 1, 2005							*															
ALDINA ACTIVITY																						
Quarter 1, 2004																						
Quarter 2, 2009																						
Quarter 3, 2009																						
DETA ACTIVITY Department of the property o	Quarter 3, 2009																					
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4,																						
BETAACTIVITY Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019												*										
Quarter 1, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 4, 2010 Quarter 4,																						
Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2018 Quarter 4, 2019 Quarter 4,																_						
Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4,																_						
Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 6, 201																						_
Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2001 Quarter 4,		1																				
Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 4, 2010 Quarter 4, 201		1	\vdash	 				 			1	 	 	 	 	_	 	 	 	 		
Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 200	,	╂	-											-		_	-		-			
Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2015 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 7, 2020		 	-	<u> </u>				<u> </u>		<u> </u>	-	<u> </u>	<u> </u>	-	<u> </u>	-	 	<u> </u>	-	<u> </u>		
Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 2, 2011 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 7, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 6, 201																_						
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2010 Quarter 2, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 5, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 2, 2017 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 6, 2019 Quarter 7, 2020 Quarter 7, 2020																						
Quarter 2, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2019 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2019 Quarter 4, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 4, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 6, 201		 	-	-				.			-	.	.	 	.		-	-	 	.		
Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2018 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 201																_						
Quarter 1, 2008																_						▝
Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 201																						
Quarter 2, 2008																						
Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2018 Quarter 4, 2011 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020																						
Quarter 1, 2008	,																					
Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 202	Quarter 3, 2008																					
Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020	Quarter 4, 2008																					
Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 1, 2020 Quarter 2, 2020 BROMIDE	Quarter 1, 2009																					
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 1, 2020 Quarter 2, 2020 BROMIDE	Quarter 2, 2009															•						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 1, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 BBKOMIDE	Quarter 3, 2009																					
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 BBKOMIDE	Quarter 4, 2009																					
Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 3, 2019 Quarter 2, 2020 BBKOMIDE	Quarter 1, 2010																					
Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2020 Quarter 3, 2019 Quarter 2, 2020 BBKOMIDE	Quarter 2, 2010																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2020 BROMIDE																						
Quarter 2, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 BROMIDE																						
Quarter 4, 2011 Quarter 7, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020																						
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 BROMIDE											_						_					
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 BROMIDE																_						
Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 BROMIDE																			W"W			
Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 BROMIDE																			Ulmilli			
Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2018 Quarter 3, 2019 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 BROMIDE											-					_						
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 BROMIDE		╂	-											-		_	-		-			
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 202		╂	-											-			-		-			
Quarter 1, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 BROMIDE		 	-	<u> </u>				<u> </u>		<u> </u>	-	<u> </u>	<u> </u>	-	<u> </u>		 	<u> </u>	-	<u> </u>		-
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2020 BROMIDE		 	-	-				-		-		-	-	-	-	_	-	-	-	-		\vdash
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 BROMIDE		 	-	-				-		-		-	-	-	-	_	-	-	-	-		\vdash
Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, 202		 	 	<u> </u>				<u> </u>		<u> </u>	!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	₽	<u> </u>	<u> </u>	<u> </u>	<u> </u>		\vdash
Quarter 4, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2020 BROMIDE	` '	 	 	<u> </u>				<u> </u>		<u> </u>	!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	▝	<u> </u>	<u> </u>	<u> </u>	<u> </u>		\vdash
Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 5, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 BROMIDE		<u> </u>														_				_		<u> </u>
Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 BROMIDE																						Ш
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 202	` '	ļ																				$oxed{oxed}$
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 202	Quarter 4, 2016																					
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 BROMIDE																						
Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2000 BROMIDE	Quarter 3, 2017																					
Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 1, 2020 Quarter 2, 2020 BROMIDE	Quarter 4, 2017																					
Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 BROMIDE	Quarter 1, 2018	L	L																			
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, 202	Quarter 2, 2018																					
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, 202	Quarter 3, 2018																					
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 BROMIDE	Quarter 4, 2018																					
Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2000 BROMIDE	Quarter 1, 2019																					
Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 BROMIDE	Quarter 2, 2019																					
Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 BROMIDE	` '																					
Quarter 1, 2020															Ť							
Quarter 2, 2020 BROMIDE																						
BROMIDE		1								_						_						
Quarter 2, 2001														*								
	Quarter 2, 2004	_												*			_		_			

Groundwater Flow System	Π			UCR	S							URG	iΑ					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 3, 2003	1									*											
Quarter 2, 2005	1														*						*
Quarter 3, 2006 Quarter 2, 2008	1														*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011	1														*						
Quarter 2, 2011	1	-										-			*			-			*
Quarter 3, 2011 Ouarter 4, 2011	1														*						*
Quarter 1, 2012	1														*						*
Quarter 2, 2012	1														*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
Quarter 3, 2013	<u> </u>														*						*
Quarter 4, 2013	₽-														*						ų.
Quarter 2, 2014 Quarter 3, 2014	├														*						*
Quarter 3, 2014 Quarter 4, 2014	 											_			*			_			*
Quarter 2, 2015															*						
Quarter 3, 2015	t														*						
Quarter 4, 2015	t														*						
Quarter 1, 2016	L														*						
Quarter 2, 2016															*						
Quarter 2, 2017	*																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
Quarter 3, 2019	*							*							46						
Quarter 4, 2019 Quarter 1, 2020	₩							*							*						
Quarter 1, 2020 Quarter 2, 2020	1							*							*						
CARBON DISULFIDE								т.							т.						
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006	1	44				*					- Ju										
Quarter 3, 2010	1	*									*	-		.				-			
Quarter 4, 2010 Quarter 1, 2011	1													*	*						
CHEMICAL OXYGEN DEMA	ND														T						
Quarter 3, 2002	I									*	*	*	*	*	*						
Quarter 4, 2002	1									*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003	<u> </u>					*				*	*										
Quarter 3, 2004	₽—					Nr.				*					J.	, J.			ų.		
Quarter 3, 2005	├					*				*					*	*		*	*		
Quarter 4, 2005 Quarter 1, 2006	 	-	<u> </u>		_	*		<u> </u>		 		-				 		木	*		_
Quarter 1, 2006 Quarter 4, 2016	\vdash	 		 		 	 		l -		l -	 	 	 			l -	*	T		
		1	-								*										
	1				_							*			*						
Quarter 1, 2017 Quarter 2, 2019															*						*
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019												_			*						+
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019															*						T
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE																					т
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006															*					*	т
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014																				*	т
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT	- V									3 42	*		*	**	*	**	- Ak	44			*
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	T
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004	*						*			*	*		*	* *	*	*	*	*			
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016	*						*			*	*		*	*	*	*	*	*			
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004	*						*			*	*		*	*	*	*	*	*			
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2014 COBALT COBALT Quarter 2, 2014 COBALT C	*						*				*		*	*	*	*	*	*			
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002	*						*			*	*		*	*	*	*	*	*			
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003	*						*			* * *			*	*	*	*	*	*			
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004	*						*			* * * *			*	*	*	*	*	*			
Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003	*						*			* * *			*	*	*	*	*	*			

Groundwater Flow System	L			UCR	S_							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY Quarter 3, 2004										*											
Quarter 1, 2005	l														*						
Quarter 2, 2005															*						
Quarter 3, 2005						*													*		
Quarter 4, 2005	₽														*			*			
Quarter 1, 2006 Quarter 2, 2006	1														*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 3, 2007															*						
Quarter 4, 2007	₽														*						
Quarter 1, 2008 Quarter 2, 2008	ł —														*						
Quarter 3, 2008	<u> </u>														*						
Quarter 4, 2008	t														*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009	ļ														*						
Quarter 4, 2009 Quarter 1, 2010	₩			_	_				_			_			*	_	_	-			\dashv
Quarter 1, 2010 Quarter 2, 2010	I														*						\dashv
Quarter 2, 2010 Quarter 3, 2010	t														*						-
Quarter 4, 2010	1														*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011	.														*						
Quarter 4, 2011 Quarter 1, 2012	-													*	*						
Quarter 1, 2012 Quarter 2, 2012	1													本	*						
Quarter 3, 2012	1														*						
Quarter 4, 2012	t														*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013	.														*						
Quarter 4, 2013	!														*			-			_
Quarter 1, 2014 Quarter 2, 2014	ł —														*						
Quarter 3, 2014	<u> </u>														*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015	<u> </u>														*						
Quarter 4, 2015	-														*						
Quarter 1, 2016 Quarter 2, 2016	\vdash														*						
Quarter 3, 2016	1														*						
Quarter 2, 2019															*						
Quarter 3, 2019															*						
Quarter 4, 2019															*						
Quarter 1, 2020	₽														*						
Quarter 2, 2020 DISSOLVED OXYGEN															*						
Quarter 1, 2003					*	*				*											
Quarter 3, 2003	t				*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Quarter 2, 2004	<u> </u>							*								*					
Quarter 1, 2005	!				*			*										-			_
Quarter 2, 2005 Quarter 1, 2006	1				*			不													
Quarter 1, 2006 Quarter 2, 2006	 				*			*													
Quarter 3, 2006	t				*			*													\exists
Quarter 4, 2006					*				*												
Quarter 2, 2007					*			*													
Quarter 3, 2007	!			<u> </u>	*			*	*	<u> </u>		<u> </u>				<u> </u>	<u> </u>		J .		
Quarter 1, 2008	 				*			*	*									-	*		
Quarter 2, 2008 Quarter 3, 2008	├							*	*												
Quarter 3, 2008 Quarter 1, 2009	t						*	₩.								 		\vdash			-
Quarter 2, 2009	t				*		_	*	*									 			\dashv
Quarter 3, 2009						*		*	*												
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*		*	*											*	*
Quarter 3, 2010					*	*				_						Щ					

Gradient	Groundwater Flow System	1			UCR	S							URG	Ā					LRG	Ā		
DISSOMEN	Gradient				S	D							D	D					D	D		
Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2016 Quarter 2, 201	Monitoring Well																				370	
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2019 Quarter 4, 201	DISSOLVED OXYGEN																					
Quarter 2, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 201			ļ					*					*								*	ш
Quarter 3, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2007 Quarter 2, 200		1				- V		.	.	3 L					3E							\vdash
Ounter 1, 2012 Ounter 2, 2012 Ounter 3, 2012 Ounter 4, 2012 Ounter 5, 2013 Ounter 6, 2013 Ounter 6, 2013 Ounter 7, 2014 Ounter 7, 2015 Ounter 7, 2016 Ounter 7, 2017 Ounter 7, 2018 Ounter 7, 2019 Ounter 7, 2017 Ounter 7, 2017 Ounter 7, 2018 Ounter		\vdash				本		本	本						木							$\vdash \vdash$
Ounter 2, 2012 Ounter 4, 2012 Ounter 4, 2012 Ounter 6, 2013 Ounter 1, 2013 Ounter 1, 2013 Ounter 1, 2013 Ounter 2, 2013 Ounter 2, 2013 Ounter 2, 2014 Ounter 3, 2014 Ounter 4, 2014 Ounter 4, 2014 Ounter 4, 2015 Ounter 6, 2015 Ounter 7, 2016 Ounter 7, 2016 Ounter 7, 2016 Ounter 7, 2017 Ounter 7, 2016 Ounter 7, 2017 Ounter 7, 2016 Ounter 7, 2017 Ounter							-	*														
Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 201		*			*	*	*		*													
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2007 Quarter 2, 200	Quarter 3, 2012						*															
Quarter 2, 2013																						
Quarter 1, 2013		-					*	.														$\vdash \vdash$
Quarter 4, 2013		*	-			*			*													\vdash
Quarter 2, 2014		<u> </u>				т.		т	т												*	
Quarter 4, 2014	Quarter 2, 2014	*				*	*	*	*										*			
Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2009 Quarter 2, 200	Quarter 3, 2014	*				*	*	*														
Quarter 1, 2015	Quarter 4, 2014	<u> </u>	<u> </u>																			ш
Quarter 2015		₩.	<u> </u>					*														ш
Quarter 2016		*	-			本		*	本													$\vdash \vdash$
Quarter 2, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 2000 Quarter 2, 2001 Quarter 2, 200						*	Ψ.															\vdash
Ounter 1, 2016 Ounter 1, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 3, 2018 Ounter 3, 2018 Ounter 2, 2018 Ounter 3, 2018 Ounter 3, 2018 Ounter 4, 2019 Ounter 4, 2000 Ounter 5, 2000 Ounter 6, 2000 Ounter		_	*				*		*	*											*	*
Ounter 1.2017	Quarter 3, 2016					*		*	*					*								
Ounter 2, 2017							*			*												ш
Quarter 3, 2017	~ /		ļ											*								ш
Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 2, 2030 PISSOLVED SOLIDS Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2031 Quarter 3, 2035 Quarter 3, 2			3E																*			\vdash
Quarter 1.2018	~ /	~	·			*			~													
Quarter 3, 2018		1				*			*												*	
Quarter 4, 2018	Quarter 2, 2018					*	*	*	*													
Quarter 1, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 1, 2030 Quarter 2, 2020 Quarter 2, 2003 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 2, 2012 Quarter 3, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 201		*				*		*	*													ш
Quarter 2, 2019			ļ																			ш
Quarter 1, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 4, 2030 Quarter 4, 2030 Quarter 3, 2031 Quarter 4, 2031 Quarter 4, 2031 Quarter 4, 2032 Quarter 2, 2033 Quarter 3, 2035 Quarter 4, 2031 Quarter 5, 2031 Quarter 6, 2031 Quarter 6, 2031 Quarter 6, 203		1						*														\vdash
Quarter 4, 2019		*						*														
Quarter 1, 2020 Quarter 4, 2002 Quarter 4, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2011 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 201		1																				
DISSOLVED SOLIDS	Quarter 1, 2020							*	*	*												
Quarter 4, 2002 Quarter 2, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2010 Quarter 9, 2019 Quarter 9, 201						*	*		*													
Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2008 Quarter 1, 2007 Quarter 4, 2008 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2010 Quarter 5, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 5, 2015 Quarter 6, 2019 Quarter 6, 201											4											
Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 7, 2011 Quarter 8, 2011 Quarter 9, 2011 Quarter 9, 2011 Quarter 9, 2011 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2019 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2016 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 9, 201																						\vdash
Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2012 Quarter 7, 2012 Quarter 7, 2013 Quarter 8, 2014 Quarter 9, 2015 Quarter 9, 2015 Quarter 9, 2015 Quarter 9, 2015 Quarter 9, 2016 Quarter 9, 2015 Quarter 9, 2016 Quarter 9, 2017 Quarter 9, 2017 Quarter 9, 2018 Quarter 9, 2019 Quarter 9, 201		1																				
Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019	Quarter 3, 2003							*				*										
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2019	Quarter 4, 2003										*											
Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 9, 2011 Quarter 9, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2019	Quarter 3, 2005						*															
Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2019 Quarter 2, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019		-																				$\vdash \vdash$
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2020		1																				$\vdash \vdash$
Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2019 Quarter 1, 2016 Quarter 1, 2019 Quarter 1, 2016 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2016 Quarter 3, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 201																						\vdash
Quarter 3, 2009		1														_						
Quarter 4, 2009 * * * Quarter 1, 2010 * * * * Quarter 2, 2010 * * * * Quarter 3, 2010 * * * * Quarter 3, 2010 * * * * Quarter 4, 2011 * * * Quarter 3, 2011 * * * * * Quarter 3, 2011 *	Quarter 2, 2009															*						
Quarter 1, 2010	Quarter 3, 2009															_						
Quarter 2, 2010		-																				$\vdash \vdash$
Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2015 Quarter 4, 2019 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2016 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2019	~ /	1																				$\vdash \vdash$
Quarter 4, 2010																*						\vdash
Quarter 1, 2011	Quarter 4, 2010	L	L	L	L	L		L	L	L	L		L		L	*		L	L	L		
Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2019 Quarter 1, 2016 Quarter 3, 2019 Quarter 1, 2020 ** Quarter 1, 2020 ** Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020	Quarter 1, 2011															*						
Quarter 4, 2011	Quarter 2, 2011	$ldsymbol{oxed}$																				تـــا
Quarter 1, 2012 ** *		1	<u> </u>																			
Quarter 2, 2012 * * * Quarter 3, 2012 * * * Quarter 4, 2012 * * * Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * * Quarter 1, 2014 * * * Quarter 2, 2014 * * * Quarter 4, 2014 * * * Quarter 2, 2015 * * * Quarter 3, 2015 * * * Quarter 4, 2015 * * * Quarter 1, 2016 * * * Quarter 3, 2019 * * * Quarter 1, 2020 * * *		1	1	-	-	-		 	 	-	-		-		*		-	 		-		\vdash
Quarter 3, 2012 * * * Quarter 4, 2012 * * * Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * * Quarter 1, 2014 * * * Quarter 2, 2014 * * * Quarter 4, 2014 * * * Quarter 2, 2015 * * * Quarter 3, 2015 * * * Quarter 4, 2015 * * * Quarter 1, 2016 * * * Quarter 3, 2019 * * * Quarter 1, 2020 * * *		H													*							*
Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2019 Quarter 1, 2016 Quarter 3, 2019 Quarter 1, 2020 ** Quarter 1, 2020 ** Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020 ** Quarter 1, 2020 ** Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020	Quarter 3, 2012	t	t																			
Quarter 1, 2013 # Quarter 2, 2013 # Quarter 3, 2013 # Quarter 4, 2013 # Quarter 1, 2014 # Quarter 2, 2014 # Quarter 4, 2014 # Quarter 2, 2015 # Quarter 3, 2015 # Quarter 4, 2015 # Quarter 1, 2016 # Quarter 3, 2019 # Quarter 1, 2020 #	Quarter 4, 2012	L														*						
Quarter 3, 2013	Quarter 1, 2013																					
Quarter 4, 2013 * Quarter 1, 2014 * Quarter 2, 2014 * Quarter 4, 2014 * Quarter 2, 2015 * Quarter 3, 2015 * Quarter 4, 2015 * Quarter 4, 2015 * Quarter 1, 2016 * Quarter 3, 2019 * Quarter 4, 2019 * Quarter 1, 2020 *	Quarter 2, 2013	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		_		<u> </u>		<u> </u>			<u> </u>				<u> </u>
Quarter 1, 2014 # Quarter 2, 2014 # Quarter 4, 2014 # Quarter 2, 2015 # Quarter 3, 2015 # Quarter 4, 2015 # Quarter 4, 2015 # Quarter 1, 2016 # Quarter 3, 2019 # Quarter 4, 2019 # Quarter 1, 2020 #		1	1	<u> </u>	<u> </u>	<u> </u>		├	├	-	-		<u> </u>		<u> </u>		-	├		-		
Quarter 2, 2014		\vdash	\vdash	 	 	 		 	 	-	\vdash		 		 		<u> </u>	 	\vdash	<u> </u>		
Quarter 4, 2014 # Quarter 2, 2015 # Quarter 3, 2015 # Quarter 4, 2015 # Quarter 1, 2016 # Quarter 3, 2019 # Quarter 4, 2019 # Quarter 1, 2020 #	Quarter 2, 2014	t	†																			
Quarter 2, 2015 * Quarter 3, 2015 * Quarter 4, 2015 * Quarter 1, 2016 * Quarter 3, 2019 * Quarter 4, 2019 * Quarter 4, 2019 * Quarter 1, 2020 *	Quarter 4, 2014	T																				
Quarter 4, 2015 # Quarter 1, 2016 # Quarter 3, 2019 # Quarter 4, 2019 # Quarter 1, 2020 #	Quarter 2, 2015															*						
Quarter 1, 2016 # Quarter 3, 2019 # Quarter 4, 2019 # Quarter 1, 2020 #	Quarter 3, 2015																					
Quarter 3, 2019 * Quarter 4, 2019 * Quarter 1, 2020 *																						<u> </u>
Quarter 4, 2019 * Quarter 1, 2020 *		<u> </u>	<u> </u>							-	_											-
Quarter 1, 2020 **		1	1	 	 	 		-	-	-	-		 		 		-	-	-	-		—
		\vdash	 																			
		t	†								\vdash						_					
	,	_																				

Groundwater Flow System	Г			UCR	S					1		URG	A					LRG	A		\neg
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODIDE																					
Quarter 2, 2003																*					
Quarter 3, 2003	*									*											
Quarter 4, 2003							*														Ш
Quarter 3, 2010						*		*					*				*				
IODINE-131																		_			
Quarter 3, 2010																		•			
Quarter 4, 2003						*															
IRON						Α															
Quarter 4, 2002						*															
Quarter 3, 2003																*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006	!		<u> </u>			<u> </u>		ļ		!	<u> </u>	ļ			*	-			<u> </u>		*
Quarter 3, 2006	_														*						\vdash
Quarter 1, 2007	_														*						\vdash
Quarter 2, 2008	 	-		<u> </u>						!			<u> </u>	<u> </u>	*	<u> </u>					\vdash
Quarter 2, 2009	 	 	-	-		-		-		 	-	-	-	-	*				-		\vdash
Quarter 4, 2009	1—	-			<u> </u>		<u> </u>		<u> </u>	 					*	 	<u> </u>	 			\vdash
Quarter 4, 2009 Quarter 1, 2010	1									1					*						\vdash
Quarter 1, 2010 Quarter 2, 2010			 			 				1	 				*	-			 		\vdash
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						Ш
Quarter 2, 2014															*						Ш
Quarter 4, 2014															*						\vdash
Quarter 2, 2015															*						\vdash
Quarter 3, 2015															*						\vdash
Quarter 4, 2015 Quarter 1, 2016															*						\vdash
~ /															*						\vdash
Quarter 2, 2016 Quarter 3, 2016	*														*						
Quarter 4, 2016	*																				
Quarter 2, 2017	*																				
Quarter 3, 2017	*																				
Quarter 1, 2018	*		l			l		l			l	l							l		
Quarter 3, 2018	*																				
Quarter 3, 2019	*																				
Quarter 4, 2019															*						
Quarter 2, 2020															*						
MANGANESE																					
Quarter 3, 2002										*		*		L							ш
Quarter 4, 2002		*				*	*			*		*		*							ш
Quarter 2, 2003	-		<u> </u>			<u> </u>		ļ		*	<u> </u>	*	.,								ш
Quarter 3, 2003	-		<u> </u>			<u> </u>		ļ		*	L	*	*			*	*	*	*		Щ
Quarter 4, 2003	├									*	*	*	*			,	*	*			
Quarter 1, 2004	 	-		<u> </u>			*			*	*	*	<u> </u>	<u> </u>		*	*	*			\vdash
Quarter 2, 2004	 	 	-	-	-	-	*	-	-	*	*	*	-	-		. Mr	-	*	-		\vdash
Quarter 3, 2004	├	 	-	<u> </u>		-	*	-		*	*	*	<u> </u>	<u> </u>		*			-		⊢
Quarter 4, 2004 Quarter 1, 2005	1	1	-		-	-	-	-	-	*	-	*				木	-		-		\vdash
Quarter 1, 2005 Quarter 2, 2005	1	-	-			-		-		*	-	*				-			-		\vdash
Quarter 3, 2005	\vdash	 	<u> </u>	 	*	 	*	 	 		*	 	<u> </u>	 		\vdash					
Quarter 4, 2005			 			 				*	 	T.				*			 		\vdash
Quarter 1, 2006	t	t	<u> </u>			<u> </u>				*	<u> </u>					Ė			<u> </u>		\Box
Quarter 2, 2006	H	t					*			*		*									\Box
Quarter 3, 2006	Ī	t					Ė			*		Ė				*					
Quarter 4, 2006										*											
Quarter 1, 2007										*											
																					_

Groundwater Flow System	ı			UCR	S							URC	ZΔ					LRG	ΞA		_
Gradient Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371		366	360	363	357	369	372	367	361	364		370	373
MANGANESE																					
Quarter 2, 2007							*			*											
Quarter 3, 2007	L						*														
Quarter 3, 2008	L						*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 3, 2011							*														
Quarter 2, 2016														*							
Quarter 3, 2016									*												
NICKEL																					
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTEN	TIA	Ĺ																		
Quarter 4, 2002	П	T															*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005	1																*			*	*
Quarter 2, 2005	t	1		†		†		*	1				*				*			*	Ė
Quarter 3, 2005	t	1		†	*	*		*	1		*	*	*				*		*	*	*
Quarter 4, 2005	t	*			Ė	Ė		*			Ë	Ė	*				*		Ė	*	
Quarter 1, 2006	t	Ė		†	*	†		*	*				Ė				*			m	*
Quarter 2, 2006	1	 			*		*	*	<u> </u>				*			1	*			*	
Quarter 3, 2006	1	 			*		Ė	*	 				*			1	*			*	
Quarter 4, 2006	t	t -	t	t	*	t	*	<u> </u>	t -	*	1	*	*	1		1	*	t		*	*
Quarter 1, 2007	t	*	t	t	*	t	-	*	t -	<u> </u>			*			1	*	t		*	*
Quarter 2, 2007	1	-			*				 				*			1	*			*	*
Quarter 3, 2007					*			*					-4-				*			*	
Quarter 4, 2007	1	<u> </u>			т.			т.	<u> </u>								*			*	*
Quarter 1, 2008	1	-			*			*	-			*	*				-		*	*	т
Quarter 1, 2008 Quarter 2, 2008	1	-			*			*	-	*		т.	*	*				*	· T	*	*
					*		*	*	*	*		*	*	*		-	*	*	*	*	*
Quarter 3, 2008 Quarter 4, 2008					不		不	*	不	*		*	*	不		-	*	*	不	*	*
Quarter 1, 2009	1	-					*	*	-	*		*	*				· T	*		*	*
	1				*		*	*		*		*	*				*	*		*	*
Quarter 2, 2009		*			*	*	*	*	*	*		*	*	*		-	*	*	*	*	*
Quarter 3, 2009	1				不							*		不					*		
Quarter 4, 2009	1	*			*	*	*	*	*	*		木	*			3E	*	*	*	*	*
Quarter 1, 2010	1	*			*	.	*	*	-	*		4	*			*	*	*		*	
Quarter 2, 2010	-				*	*		*		*	*	*	*		4	*	*	*	*	*	*
Quarter 3, 2010	1	*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012	L.,	*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012	<u> </u>	*				*		*	<u> </u>	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012	<u> </u>	*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013	<u> </u>	*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2014		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2015		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015		*			*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*			*		*	*		*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*		Ĺ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 4, 2017	Ė	*		†	Ė	*	*	*	*	*		*	*	*	*	Ė	*	*	Ė	*	*
Quarter 1, 2018	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*		*	*
Quarter 2, 2018	*	*		†	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2018	t	*			Ė	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Vaultel 1, 2017	<u> </u>	<u> </u>			· *	<u> </u>	_ ~	<u> </u>	<u> </u>	·F	·r	· **	· **	·*		. *	· *	<u> </u>	· **	**	·F

Gradient D Monitoring Well 368	\$ 375 TIAI * * * *	S 376 L	S 377	D 359 * * *	D 362 * * *	D 365 * * * *	U 371 * * *	U 374 * * * *	D 366 * * *	D 360 * * * *	D 363 * * *	D 357 * * *	U 369 * * *	U 372 * * *	D 367 * * *	D 361 * * *	D 364 * * *	D 358 *	* * * *	U 373 * *
OXIDATION-REDUCTION POTEN	* * * *		377	* *	* * *	* * *	* *	* * *	* * *	* * *	*	* *	* *	*	*	*	*	*	* *	*
Quarter 2, 2019	* * *			*	* *	* *	*	* *	*	* *	*	*	*	*	*	*	*		*	*
Quarter 3, 2019	* *			*	* *	* *	*	* *	*	* *	*	*	*	*	*	*	*		*	*
Quarter 4, 2019	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
Quarter 1, 2020	*			*	*	*	*	*	*	*								*		*
Quarter 2, 2020 ** PCB, TOTAL Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2007 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 1, 2010 Quarter 2, 2010								_			*	*	*	*	*	*	*	1)	*	
PCB, TOTAL Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2007 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010	*			*	*	*	*	*							_			-		*
Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2009 Quarter 1, 2010 Quarter 4, 2010 Quarter 3, 2004 Quarter 2, 2010 Quarter 3, 2004 Quarter 1, 2010 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010								_	~	*	*	*	*	*	*	*	*		*	*
Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2006 Quarter 3, 2004 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010					, ,															
Quarter 3, 2005 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 2, 2010 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010					\vdash		igwdapsilon									*	\vdash	igwdap		
Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010				-			Щ				*						\vdash	igwdown	Щ	<u> </u>
Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 1, 2010 Quarter 1, 2007 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010						*	igwdapsilon										\vdash	igwdap		
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2007 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010			_			*											$oxed{eta}$			
Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2007 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010						*	Ш										Ш	igwdown	Щ	<u> </u>
Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010						*											$oxed{eta}$			
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010		_				*	Ш										Ш	igwdown	Щ	<u> </u>
Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 3, 2009 Quarter 2, 2010						*											$oxed{eta}$			
Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010						*	Ш										Ш	igwdown	Щ	<u> </u>
Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010						*	Ш										\vdash	igwdown	Щ	<u> </u>
Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010						*	igwdapsilon										\vdash	igwdap	\vdash	
Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010						*	لسا		_								ш	ш	ш	<u> </u>
Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010	-				Ш	*	ш	ш	ш	ш	ш				Ш		ш	ш	Щ	—
PCB-1016 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010	<u> </u>					*	\vdash	ш	ш	ш	Ш				Ш		ш	Щ	Щ	├
Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010						*				\blacksquare										
Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010											y.									
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010					\vdash	1,2	ш	$\vdash \vdash$	Н	$\vdash \vdash$	*				Ш		$\vdash \vdash$	$\vdash \vdash$	Щ	—
Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010	.					*	\vdash	$\vdash \vdash$	\vdash	$\vdash \vdash$	*				\vdash		\vdash	$\vdash\vdash$	\vdash	├—
Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010	<u> </u>			\vdash	\vdash	*	\vdash	$\vdash \vdash$	Н	$\vdash \vdash$	$\vdash \vdash$				\vdash		$\vdash \vdash$	$\vdash \vdash$	$\vdash\vdash$	├—
Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010					\vdash	*	\vdash	$\vdash\vdash$	Н	$\vdash\vdash$	\vdash				\vdash	=	$\vdash\vdash$	$\vdash\vdash$	$\vdash\vdash$	-
Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010					\vdash	*	\vdash	$\vdash\vdash$	Н	$\vdash\vdash$	\vdash				\vdash	=	$\vdash\vdash$	$\vdash\vdash$	$\vdash\vdash$	-
Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010							\vdash		\vdash	\vdash						_	\vdash	\vdash	\vdash	
Quarter 1, 2010 Quarter 2, 2010						*	\vdash										\vdash	\vdash	\vdash	
Quarter 2, 2010						*	\vdash		\vdash	\vdash						_	\vdash	\vdash	\vdash	
						*	\vdash		\vdash	\vdash						_	\vdash	\vdash	\vdash	
						*	\vdash										\vdash	\vdash	\vdash	
~ /						*														
PCB-1242						*					*									
Quarter 3, 2006						~	\vdash		*		*						\vdash	\vdash	\vdash	
Quarter 4, 2006						*	\vdash		不								\vdash	\vdash	\vdash	
Quarter 1, 2008 Quarter 2, 2012						*	\vdash										\vdash	\vdash	\vdash	
PCB-1248						<u> </u>														
Quarter 2, 2008						*														
PCB-1260						Ť														
Quarter 2, 2006						*														
pH						Ť														
Quarter 3, 2002									*											
Quarter 4, 2002							\vdash		*											
Quarter 1, 2003							\vdash		*										H	
Quarter 2, 2003									*											
Quarter 3, 2003 *						*		\vdash	*	\vdash					\vdash	-	\vdash	-	-	\vdash
Quarter 4, 2003						*		\vdash	H	\vdash					*	-	\vdash	-	-	\vdash
Quarter 1, 2004						*		\vdash	Н	Н	Н				*	\rightarrow	\Box		-	
Quarter 3, 2005					*	 		\vdash	Н	$\vdash \vdash$	\vdash		-		-	\dashv	*	*	\Box	
Quarter 4, 2005					*			\vdash	П	\vdash						-	M	*	\Box	
Quarter 3, 2006									П						*	\neg		اث	一	
Quarter 2, 2011						\vdash		\vdash	М	\vdash			*		H	=	\Box		\Box	\vdash
Quarter 3, 2011						\vdash			П	\vdash			*			-			\Box	
Quarter 4, 2011						\vdash		\vdash	П	\vdash			*			-			\Box	
Quarter 1, 2012						\vdash		\vdash	П	\vdash			-		*	*			\Box	
Quarter 2, 2012						\Box		\Box	М	\Box	*				H	\neg				
Quarter 1, 2013						\vdash		\vdash	*	\vdash	*				*	-			\Box	
Quarter 3, 2015									П							*				
Quarter 2, 2016						П		П	М	П						=			*	*
Quarter 3, 2016									П										*	
Quarter 2, 2017									П							*				
Quarter 3, 2018				*					*		*					*	*	*		
Quarter 4, 2018									П						*	=	*			
Quarter 3, 2019									П						*				\Box	
POTASSIUM																				
Quarter 1, 2014															*					
RADIUM-228		_			_	-														
Quarter 2, 2005																				
Quarter 4, 2005																				
SELENIUM					•						•						-			
Quarter 4, 2003					•						•		•							
											•		•							

Gradient	### ### ### ### ### ### ### ### ### ##	7 369	**	D 367	D 361	D 364	D	U 370	37
SODIUM		*		367	361	364	358	370	37
Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2007 Quarter 1, 2012 Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2018 ** ** ** ** ** ** ** ** ** ** ** ** *	*	*	*						
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2007 Quarter 1, 2001 Quarter 1, 2012 Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 STRONTIUM-90 Quarter 4, 2008 SULFATE Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Page 1 ** ** ** ** ** ** ** ** **	*	*	*						
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2007 Quarter 1, 2012 Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 5, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2018 Quarter 9, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2008 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2006 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 200			*						
Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2007 Quarter 1, 2012 Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 STRONTIUM-90 Quarter 4, 2008 STLEATE Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 9, 2000 Quarter 9		*	*						
Quarter 3, 2003 Quarter 1, 2007 Quarter 1, 2012 Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2008 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 1, 2008 ** ** ** ** ** ** ** ** **		*	*						
Quarter 1, 2017 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 STRONTIUM-90 Quarter 4, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008		*	*						
Quarter 1, 2012 Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 3, 2018 STRONTIUM-90 Quarter 3, 2018 STRONTIUM-90 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2007 Quarter 4, 2008 W * * * * * Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2007 Quarter 4, 2008 W * * * * * * * * * * * * * * * * * *		*	*						
Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 4, 2018 STRONTIUM-90 Quarter 4, 2008 SULFATE Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 W * * * * * * * * * * * * * * * * * *		*	*						
Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 3, 2018 STRONTIUM-90 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 ** ** ** ** ** ** ** ** ** ** ** ** *			*						
Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2008 SULFATE Quarter 1, 2008 SULFATE Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Residuation Resi									
Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2008 SULFATE Quarter 1, 2008 SULFATE Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Residuation Resi									
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 STRONTIUM-90 Quarter 4, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008									
Quarter 1, 2016 * Quarter 2, 2016 * Quarter 3, 2016 * Quarter 4, 2016 * Quarter 1, 2017 * Quarter 3, 2017 * Quarter 3, 2017 * Quarter 4, 2017 * Quarter 1, 2018 * STRONTIUM-90 * Quarter 4, 2008 * SULFATE * Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2004 * Quarter 1, 2004 * Quarter 2, 2004 * Quarter 3, 2004 * Quarter 2, 2005 * Quarter 2, 2005 * Quarter 4, 2005 * Quarter 2, 2006 * Quarter 2, 2007 * Quarter 2, 2007 * Quarter 4, 2007 * Quarter 2, 2008 * Quarter 3, 2008 *									
Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 3, 2018 STRONTIUM-90 Quarter 4, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 ** ** ** ** ** ** ** ** ** ** ** ** *									
Quarter 3, 2016 * Quarter 4, 2016 * Quarter 1, 2017 * Quarter 2, 2017 * Quarter 3, 2017 * Quarter 1, 2018 * Quarter 3, 2018 * STRONTIUM-90 * Quarter 4, 2008 * SULFATE * Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2004 * Quarter 4, 2003 * Quarter 1, 2004 * Quarter 3, 2004 * Quarter 3, 2004 * Quarter 4, 2005 * Quarter 4, 2005 * Quarter 1, 2006 * Quarter 2, 2007 * Quarter 3, 2006 * Quarter 3, 2007 * Quarter 1, 2008 * Quarter 1, 2009 * Quarter 2, 2007 * Quarter 3, 2006 * Quarter 3, 2007 * Quarter 4, 2008 * </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 STRONTIUM-90 Quarter 4, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2005 SULFATE Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 ** ** ** ** ** ** ** ** ** ** ** ** *									
Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 STRONTIUM-90 Quarter 4, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008									
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 3, 2018 STRONTIUM-90 Quarter 4, 2008 SULFATE Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 % ** ** ** Quarter 4, 2008 ** ** ** ** ** ** ** ** **									E
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 3, 2018 STRONTIUM-90 Quarter 4, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008									+-
Quarter 4, 2017 Quarter 1, 2018 Quarter 3, 2018 STRONTIUM-90 Quarter 4, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 W Quarter 3, 2005 Quarter 3, 2006 W Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 W Quarter 3, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 W Quarter 3, 2008 Quarter 4, 2008 W W W W W W W W W W W W W W W W W W									1
Quarter 1, 2018 Quarter 3, 2018 \$\begin{array}{c c c c c c c c c c c c c c c c c c c						1			t
Quarter 3, 2018					-				\vdash
STRONTIUM-90 Quarter 4, 2008 ■ ■ ■ SULFATE ■ ■ ■ Quarter 1, 2003 * * * ■ Quarter 2, 2003 * * * ■ <				_	i	 			\vdash
Quarter 4, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 ** ** ** Quarter 4, 2008 ** ** ** ** ** ** ** ** **									
SULFATE Quarter 1, 2003 Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2003 * Quarter 1, 2004 * Quarter 2, 2004 * Quarter 3, 2004 * Quarter 1, 2005 * Quarter 2, 2005 * Quarter 4, 2005 * Quarter 1, 2006 * Quarter 2, 2006 * Quarter 3, 2006 * Quarter 4, 2007 * Quarter 3, 2007 * Quarter 1, 2008 * Quarter 2, 2008 * Quarter 4, 2008 * * * Quarter 4, 2008 *									
Quarter 1, 2003 * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 1, 2004 * * Quarter 2, 2004 * * Quarter 3, 2004 * * Quarter 1, 2005 * * Quarter 2, 2005 * * Quarter 3, 2005 * * Quarter 4, 2005 * * Quarter 1, 2006 * * Quarter 2, 2006 * * Quarter 3, 2006 * * Quarter 1, 2007 * * Quarter 3, 2007 * * Quarter 4, 2007 * * Quarter 1, 2008 * * * Quarter 2, 2008 * * * Quarter 4, 2008 * * *									
Quarter 2, 2003 * * * Quarter 3, 2003 * * * Quarter 1, 2003 * * * Quarter 1, 2004 * * * Quarter 2, 2004 * * * Quarter 3, 2004 * * * Quarter 1, 2005 * * * Quarter 2, 2005 * * * Quarter 3, 2005 * * * Quarter 1, 2006 * * * Quarter 2, 2006 * * * Quarter 3, 2006 * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 4, 2007 * * * Quarter 1, 2008 * * * * Quarter 2, 2008 * * * * Quarter 4, 2008 * * * *									
Quarter 3, 2003 * * * * Quarter 4, 2003 *	++			-	1	1	-	-	\vdash
Quarter 4, 2003 * * * Quarter 1, 2004 * * * * Quarter 2, 2004 * * * * * Quarter 3, 2004 * <t< td=""><td>1 1</td><td>+</td><td>\vdash</td><td> </td><td>├—</td><td>├—</td><td>-</td><td>-</td><td>1</td></t<>	1 1	+	\vdash	 	├—	├—	-	-	1
Quarter 1, 2004 * * * * Quarter 2, 2004 * * * * * * Quarter 3, 2004 * <		-			<u> </u>	<u> </u>			₩
Quarter 2, 2004 * * * * Quarter 3, 2004 * * * * Quarter 1, 2005 * * * * Quarter 2, 2005 * * * * Quarter 3, 2005 * * * * * Quarter 4, 2005 * * * * Quarter 1, 2006 * * * Quarter 2, 2006 * * * * Quarter 3, 2006 * * * * Quarter 1, 2007 * * Quarter 2, 2007 * * Quarter 2, 2007 * * Quarter 4, 2007 * * Quarter 4, 2007 * * Quarter 3, 2008 * * * * * Quarter 4, 2008 * * * * * Quarter 4, 2008 * * * * * Quarter 4, 2008 * * * * *	 				-	-			-
Quarter 3, 2004 * * * Quarter 1, 2005 * * * Quarter 2, 2005 * * * Quarter 3, 2005 * * * Quarter 4, 2005 * * * * Quarter 1, 2006 * * * * Quarter 2, 2006 * * * * Quarter 3, 2006 * * * Quarter 1, 2007 * * Quarter 2, 2007 * * Quarter 3, 2007 * * Quarter 4, 2007 * * Quarter 1, 2008 * * * * * Quarter 2, 2008 * * * * * Quarter 4, 2008 * * * * * Quarter 4, 2008 * * * * * Quarter 4, 2008 * * * * *					ļ	ļ			▙
Quarter 1, 2005 * * * Quarter 2, 2005 * * * * Quarter 3, 2005 * * * * Quarter 4, 2005 Quarter 1, 2006 * * * Quarter 2, 2006 * * * Quarter 3, 2006 * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 3, 2007 * * * Quarter 4, 2007 * * * Quarter 1, 2008 * * * Quarter 2, 2008 * * * Quarter 4, 2008 * * * Quarter 4, 2008 * * *	<u> </u>	_							닏
Quarter 2, 2005 * * * Quarter 3, 2005 * * * Quarter 4, 2005 * * * Quarter 1, 2006 * * * Quarter 3, 2006 * * * Quarter 3, 2007 * * * Quarter 2, 2007 * * * Quarter 3, 2007 * * * Quarter 4, 2007 * * * Quarter 1, 2008 * * * Quarter 2, 2008 * * * Quarter 4, 2008 * * * Quarter 4, 2008 * * *	<u> </u>	_							닏
Quarter 3, 2005 * * * Quarter 4, 2005 * * Quarter 1, 2006 * * Quarter 2, 2006 * * * Quarter 3, 2006 * * * Quarter 1, 2007 * * Quarter 2, 2007 * * Quarter 3, 2007 * * Quarter 4, 2007 * * Quarter 1, 2008 * * * * * Quarter 2, 2008 * * * * * Quarter 3, 2008 * * * * * Quarter 4, 2008 * * * * * Quarter 4, 2008 * * * * *	<u> </u>	_							닏
Quarter 4, 2005 Quarter 1, 2006 * * * Quarter 2, 2006 * * * Quarter 3, 2006 * * * Quarter 1, 2007 * * * Quarter 3, 2007 * * * Quarter 4, 2007 * * * Quarter 1, 2008 * * * * Quarter 2, 2008 * * * * Quarter 3, 2008 * * * * Quarter 4, 2008 * * * *	<u> </u>	_	*						닏
Quarter 1, 2006 * * Quarter 2, 2006 * * Quarter 3, 2006 * * Quarter 1, 2007 * * Quarter 2, 2007 * * Quarter 3, 2007 * * Quarter 4, 2007 * * Quarter 1, 2008 * * * Quarter 2, 2008 * * * Quarter 3, 2008 * * * Quarter 4, 2008 * * *	<u> </u>	_							닏
Quarter 2, 2006 * * * Quarter 3, 2006 * * Quarter 1, 2007 * * Quarter 2, 2007 * * Quarter 3, 2007 * * Quarter 4, 2007 * * Quarter 1, 2008 * * * * Quarter 2, 2008 * * * * * Quarter 3, 2008 * * * * * Quarter 4, 2008 * * * * * Quarter 4, 2008 * * * * *			*						L
Quarter 3, 2006 * Quarter 1, 2007 * Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 1, 2008 * Quarter 2, 2008 * Quarter 3, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * * * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>L</td></td<>									L
Quarter 1, 2007 * Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 1, 2008 * Quarter 2, 2008 * Quarter 3, 2008 * Quarter 4, 2008 * * * Quarter 4, 2008 * * * * * * * * * * * * * * * * * * * * * * * * *			*						L
Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 1, 2008 * Quarter 2, 2008 * Quarter 3, 2008 * Quarter 4, 2008 *									L
Quarter 3, 2007 * Quarter 4, 2007 * Quarter 1, 2008 * Quarter 2, 2008 * Quarter 3, 2008 * Quarter 4, 2008 *									L
Quarter 4, 2007 * Quarter 1, 2008 * Quarter 2, 2008 * Quarter 3, 2008 * Quarter 4, 2008 * * * * * * * * * * * * * * * * * * * * * * * * *									L
Quarter 1, 2008 * * * * Quarter 2, 2008 * * * * Quarter 3, 2008 * * * * Quarter 4, 2008 * * *									L
Quarter 2, 2008 * * * Quarter 3, 2008 * * * Quarter 4, 2008 * * *									L
Quarter 3, 2008 * * * Quarter 4, 2008 * * *									<u>L</u>
Quarter 4, 2008 * * *									
Ouarter 1, 2009 * *									
**····································									
Quarter 2, 2009 * * * * *									Г
Quarter 3, 2009 * * * *			*						
Quarter 4, 2009 * * * *			*						
Quarter 1, 2010 * * * *			*						
Quarter 2, 2010 * * * *			*						
Quarter 3, 2010 * * * *			*						
Quarter 4, 2010 * * *			*						
Quarter 1, 2011 *	1 1				i –	i –			Г
Quarter 2, 2011	t		*		1	1			T
Quarter 3, 2011	1 1		*		t	t	-	-	T
Quarter 4, 2011 * *	1 1		*		t	t	 	 	T
Quarter 1, 2012 * * *	1 1		*		 	 			t
Quarter 2, 2012 * * * * * * * *	1 1		*		 	 			t
Quarter 3, 2012 * * *	+		*		 	 			\vdash
Quarter 4, 2012 *	+		*		 	 			\vdash
	+	+	*	1	1	1	-	-	\vdash
	+-			 	┢	┢	<u> </u>	<u> </u>	⊢
	+	+	*	 	├—	├—	-	-	1
Quarter 3, 2013 * * * * * * *	+-	+	*	-	1—	1—	-	-	⊬
Quarter 4, 2013 *		+	*	<u> </u>	├	├	<u> </u>	<u> </u>	\vdash
Quarter 1, 2014 *	+	+	*	<u> </u>	├	├	<u> </u>	<u> </u>	\vdash
Quarter 2, 2014 * * * * *			*		<u> </u>	<u> </u>			\vdash
Quarter 3, 2014 * * * * * *			*		<u> </u>	<u> </u>			\vdash
Quarter 4, 2014 * *					<u> </u>	<u> </u>			\vdash
Quarter 1, 2015 *			Щ	ᆫ			Щ.	Щ.	ᆫ

Groundwater Flow System	1			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE Overton 2, 2015	*	*			*		- NE								3E						
Quarter 2, 2015 Quarter 3, 2015	*	*	-		*	*	*	*							*						\vdash
Quarter 4, 2015	*	*				*	*	*													
Quarter 1, 2016	*	*			*	*	*														
Quarter 2, 2016	*	*			*	*	*														
Quarter 3, 2016	*	*			*	*	*	*													
Quarter 4, 2016	*	*	<u> </u>			*	*	*													<u> </u>
Quarter 1, 2017	*	*			*	*	*														\vdash
Quarter 2, 2017 Quarter 3, 2017	*	*			*	*	*													\vdash	\vdash
Quarter 4, 2017	-	*			-	*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
Quarter 3, 2018	*	*			*	*	*	*													
Quarter 4, 2018		*				*	*	*													
Quarter 1, 2019	*	*	<u> </u>		*	*	*														\vdash
Quarter 2, 2019 Quarter 3, 2019	*	*	-		*	*	*	*												\vdash	\vdash
Quarter 4, 2019	*	*			*	*	*	*													
Quarter 1, 2020	*	*			*	*	*	*													
Quarter 2, 2020	*	*			*	*	*	*													
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*	ш	*
Quarter 3, 2003	1	<u> </u>	<u> </u>	-				<u> </u>	<u> </u>								*	<u> </u>		ш	- 10
Quarter 4, 2003	1-	-	<u> </u>	-					-						JŁ.		*			$\vdash \vdash$	*
Quarter 1, 2004 Quarter 2, 2004	1-		-	-	-	 	 	 			-	-			*	-	*	 		$\vdash\vdash$	*
Quarter 3, 2004	1														*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005																	*				
Quarter 1, 2006															*						*
Quarter 2, 2006		*							*												*
Quarter 3, 2006																					*
Quarter 4, 2006															*					—	*
Quarter 1, 2007			<u> </u>										*		*					*	*
Quarter 2, 2007 Quarter 3, 2007	1		-										不		*		*	*		*	\vdash
Quarter 4, 2007	1									*					*		Ψ.	· T	*		*
Quarter 1, 2008	1									-					*					*	*
Quarter 2, 2008							*	*						*		*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009	ļ									*											\vdash
Quarter 2, 2009			<u> </u>							ų.					•			*			\vdash
Quarter 3, 2009 Quarter 4, 2009	1		-					*		*					*			*	*	\vdash	\vdash
Quarter 2, 2010	1									*					т	*	*	*	*		
Quarter 3, 2010	1									*					*						
Quarter 4, 2010	L																	*			
Quarter 1, 2011		*								*							*				
Quarter 2, 2011		lacksquare							lacksquare							*	*	*	*		
Quarter 1, 2012	1	<u> </u>	<u> </u>	-				40	<u> </u>								*	*		ш	$\vdash \vdash$
Quarter 2, 2012 Ouarter 3, 2012	1		-					*									*	*		Н	
Quarter 3, 2012 Quarter 4, 2012	1	_	1					-	_						*		*	*		$\vdash\vdash$	*
Quarter 4, 2012 Quarter 1, 2013	1	1	1	_				\vdash	1		-				-17			*		\vdash	*
Quarter 2, 2013	1		t															Ė		М	*
Quarter 3, 2013	L									*											*
Quarter 4, 2013															*		*	*			*
Quarter 1, 2014															*		*	*			
Quarter 2, 2014	<u> </u>		<u> </u>															*		ш	ш
Quarter 3, 2014	1-	-	<u> </u>	-					-						, W		*	*	*	$\vdash \vdash$	\vdash
Quarter 4, 2014 Quarter 1, 2015	1-	-	├	-	_			_	-				_		*	-		*	_	$\vdash \vdash$	\vdash
Quarter 1, 2015 Quarter 2, 2015	1	\vdash	 	\vdash				 	\vdash	 					*	*		*		\vdash	\vdash
Quarter 3, 2015	f		1	†														*	*	*	
Quarter 4, 2015	1														*		*			*	
Quarter 1, 2016	L															*	*	*	*		*
Quarter 2, 2016																*	*	*	*	*	
Quarter 3, 2016		lacksquare							lacksquare	ĻĪ							*	Ļ	*	*	
Quarter 4, 2016	1	<u> </u>	<u> </u>	-				<u> </u>	<u> </u>	*				*			*	*	4		\vdash
Quarter 1, 2017	1-	-	<u> </u>	-					-								*		*	*	\vdash
Quarter 2, 2017 Quarter 3, 2017	1	-	-	-				_										*		*	\vdash
Quarter 3, 2017 Quarter 4, 2017	1	\vdash	\vdash	\vdash	<u> </u>	 	 	\vdash	\vdash	\vdash	 		_	*	*	\vdash	*	*	_	*	\vdash
Quarter 4, 2017 Quarter 1, 2018	1		t					\vdash			<u> </u>				-1*		<u> </u>	<u> </u>		*	\vdash
,	-																				
					_	_	_	_	_	_		_	_		_		_	_	_	-	

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99														-11						-11	
Quarter 2, 2018														*		*				*	
Quarter 3, 2018		-		-											*	-	*	*	*	*	
Quarter 4, 2018 Quarter 1, 2019		-													不	*	不	不	不	*	
Quarter 2, 2019		1												*		*				*	
Quarter 3, 2019															*			*		*	
Quarter 4, 2019															*		*	*		*	
Quarter 1, 2020															*		*	*		*	
Quarter 2, 2020																*		*	*	*	
THORIUM-230																					
Quarter 4, 2015																*					
Quarter 2, 2016										*											
Quarter 4, 2016	*											*				*			*		
Quarter 4, 2017													*								
Quarter 2, 2018										*			*								
TOLUENE Overton 2, 2014										*				*							
Quarter 2, 2014 TOTAL ORGANIC CARBON		<u> </u>								不				不							
Quarter 3, 2002		Т .								*	*	*		*							*
Quarter 4, 2002		1								*	*	Ψ.		*							-
Quarter 1, 2003										-	*										
Quarter 3, 2003	*	t		t		<u> </u>	<u> </u>			*	*			<u> </u>		*		t		\vdash	\vdash
Quarter 4, 2003	Ė	1	l			l	l		l	*	*			l		Ė	l				
Quarter 1, 2004		1									*										
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005		L				*												*	*		
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 1, 2004																*					
TRICHLOROETHENE														_							
Quarter 3, 2002														•	_					•	
Quarter 4, 2002		-																		•	
Quarter 1, 2003																				-	•
Quarter 2, 2003 Quarter 3, 2003		-													-					=	_
Quarter 4, 2003							-									-				Ŧ	Ŧ
Quarter 1, 2004															Ħ					Ħ	Ħ
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					•
Quarter 3, 2006	-	1	ļ			<u> </u>	<u> </u>		ļ					<u> </u>	_	<u> </u>	ļ				-
Quarter 4, 2006	-	1	<u> </u>	-		<u> </u>	<u> </u>		<u> </u>					<u> </u>	Ļ	<u> </u>	<u> </u>	-		Щ	-
Quarter 1, 2007		<u> </u>													-					•	-
Quarter 2, 2007	-	1	-	-	-	 	 	-	-		.		.	 		 	-	-	.	$\vdash \vdash$	
Quarter 3, 2007	 	├	-	 		-	-		-	-	<u> </u>		<u> </u>	-	H	1	-	 	<u> </u>	\vdash	=
Quarter 4, 2007	-	1	-	-		-	-		-					-	=	1	-	-		\vdash	=
Quarter 1, 2008 Quarter 2, 2008	-	1	-	1		-	-	-	-					-	H	1	-	1	•	\vdash	=
Quarter 3, 2008	-	!				 	 							 	Ħ	1				\vdash	=
Quarter 4, 2008		 													ī					\vdash	-
Quarter 1, 2009		 		 											1	1		 		\vdash	-
Quarter 1, 2009 Quarter 2, 2009		1	l			l	l		l					l	=		l				=
Quarter 3, 2009		1		t														t		\vdash	
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010		L																			
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																			•		•
Quarter 3, 2011													-		•				•		•
Quarter 4, 2011													•							Ш	•
Quarter 1, 2012	-	1	ļ			<u> </u>	<u> </u>		ļ				•	<u> </u>	_	<u> </u>				Щ	-
Quarter 2, 2012		<u> </u>		<u> </u>							L		L			<u> </u>		<u> </u>	L	<u> </u>	•
Quarter 3, 2012	-	 		-							<u> </u>		<u> </u>	-	-	 		-	<u> </u>	\vdash	-
Quarter 4, 2012	 	1		-	<u> </u>								_			 		-		$\vdash \vdash$	•
Quarter 1, 2013	 	├	-	 		-	-		-	-	<u> </u>		-	-	=	1	-	 	_	\vdash	-
			l	i				Ī					•	l		<u> </u>			-		-
Quarter 2, 2013																					

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System				UCR	S							URG	iΑ					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2013															•						•
Quarter 4, 2013																					
Quarter 1, 2014															•						•
Quarter 2, 2014															•						
Quarter 3, 2014																					
Quarter 4, 2014																					
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					
Quarter 2, 2017																					
Quarter 3, 2017																					
Quarter 4, 2017																					
Quarter 1, 2018																					
Quarter 2, 2018																					
Quarter 3, 2018																					
Quarter 4, 2018																					
Quarter 1, 2019																					
Quarter 2, 2019																					
Quarter 3, 2019																					
Quarter 4, 2019																					
Quarter 1, 2020																					
Quarter 2, 2020																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an eleva	ted conc	entratio	on (i.e	a statis	stical e	xceeda:	nce)					•	•	•			•		•		_

* Statistical test results indicate an elevated concentration (i.e., a statistical exceedance

MCL Exceedance

Previously reported as an MCL exceedance; however, result was equal to MCL

UCRS Upper Continental Recharge System

URGA Upper Regional Gravel Aquifer

LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

1 1	3/20	Time:	0615	Monitor:	Robe	ert Kirby
Weather Condition	s: Sunny, Cool,	Slight	Wind and 71 D	egrees		
Monitoring Equipm	^{nent::} RAE Syste	ms, Mı	ulti-RAE Serial	# 7971		
		toring Lo				Reading (% LEL)
C-746-U1	Checked at floor	level				0
C-746-U2	Checked at floor	level				0
C-746-U-T-14	Checked at floor	level				0
C-746-U15	Checked at floor	level				0
MG1	Dry casing					0
MG2	Dry casing					0
MG3	Dry casing					0
MG4	Dry casing					0
Suspect or Problem Areas	No problems n	oted				NA
Remarks: NA		A Third of Control				
						İ
Performed by:	Als Rub	atKi	iby			07/28/2020
	Signat	ure	-			Date

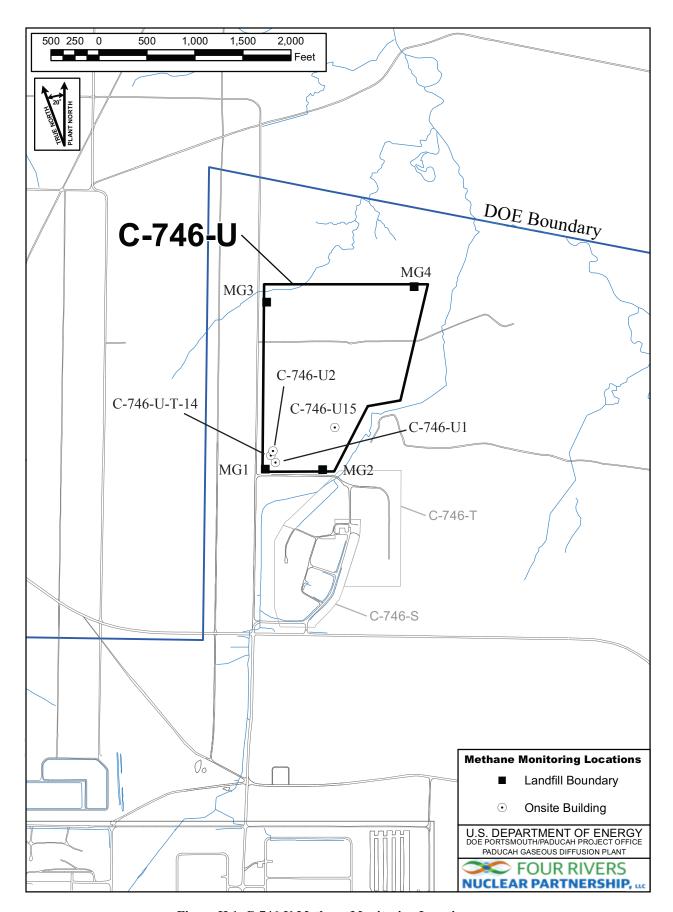


Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")					L150 AT SITE		L154 UPSTREAM		L351 DOWNSTREAM				
Sample Sequer	ıce	#				1		1		1			
If sample is a	a Bl	ank, specify Type: (F)ield, (T) ri	p, (M) ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	ind	Time (Month/Day/Year hour: m	inu	tes)		4/29/2020 08:2	26	4/29/2020 08:	42	5/13/2020 10	:09		
Duplicate ("Y	?" c	or "N") ¹				N		N		N			
Split ('Y' or	: "N	"") ²				N		N		N			7
Facility Sample ID Number (if applicable)				L150US3-20)	L154US3-20	L154US3-20		20				
Laboratory Sa	boratory Sample ID Number (if applicable)				510448001		510448002		511239001		\ /		
Date of Analy	sis	(Month/Day/Year)				5/18/2020		5/8/2020		5/22/2020			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*		*		*		(
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	1.23		1.4		3.84			
14808-79-8	0	Sulfate	Т	mg/L	300.0	12.4		1.32		22.5	*		1
7439-89-6	0	Iron	Т	mg/L	200.8	1.07		0.815		2.23	*		
7440-23-5	0	Sodium	Т	mg/L	200.8	2.22		1.86		5.72			\Box
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	3.88		12.6		3.74	В		
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	12	BJ	37	В	35.2			

¹Respond "Y" if the sample was a duplicate of another sample in this report

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

						(Ī				<u> </u>	
Monitoring Po	itoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM") L150 AT SITE L154 UPSTREAM L351 DOWNSTREAM						\						
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L F
S0145	1	Specific Conductance	т	µmho/cm	Field	107		80		228			
s0270	0	Total Suspended Solids	т	mg/L	160.2	3140	*	212	*	25.5			1
s0266	0	Total Dissolved Solids	Т	mg/L	160.1	170		40		123	*	\setminus \land	
s0269	0	Total Solids	Т	mg/L	SM-2540 B 17	2590		244		197		\ /	
s0296	0	рН	Т	Units	Field	7.1		7.54		7.65		\ /	
7440-61-1		Uranium	т	mg/L	200.8	0.00225		0.00436		0.00513		\ /	
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	131	*	8.53	*	2.57	*	\	
12587-47-2		Gross Beta (β)	т	pCi/L	9310	102	*	8.21	*	8.13	*	V	
												\land	
												/ \	
												/ \]	
												/ \	
													1
													$ \downarrow $
													\perp
													\perp
												/	

RESIDENTIAL/CONTAINED - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Uni	t: <u>KY8-890-008-982 / 1</u>
LAB ID:	None
For Official	Use Only

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L150	L150US3-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 27.5. Rad error is 17.3.
		Beta activity		TPU is 19.1. Rad error is 9.26.
L154	L154US3-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.15. Rad error is 7.01.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.35. Rad error is 6.19.
L351	L351US3-20	Flow Rate		Analysis of constituent not required and not performed.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Iron	Ν	Sample spike (MS/MSD) recovery not within control limits
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.73. Rad error is 6.72.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.72. Rad error is 6.57.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

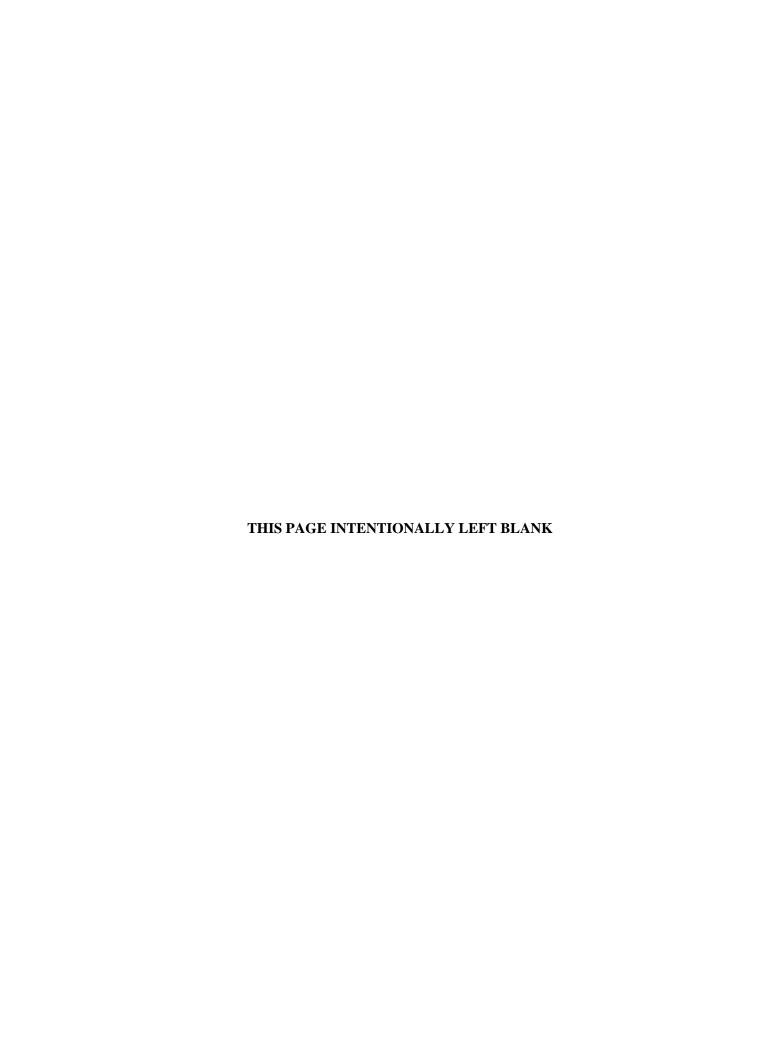
GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DOD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



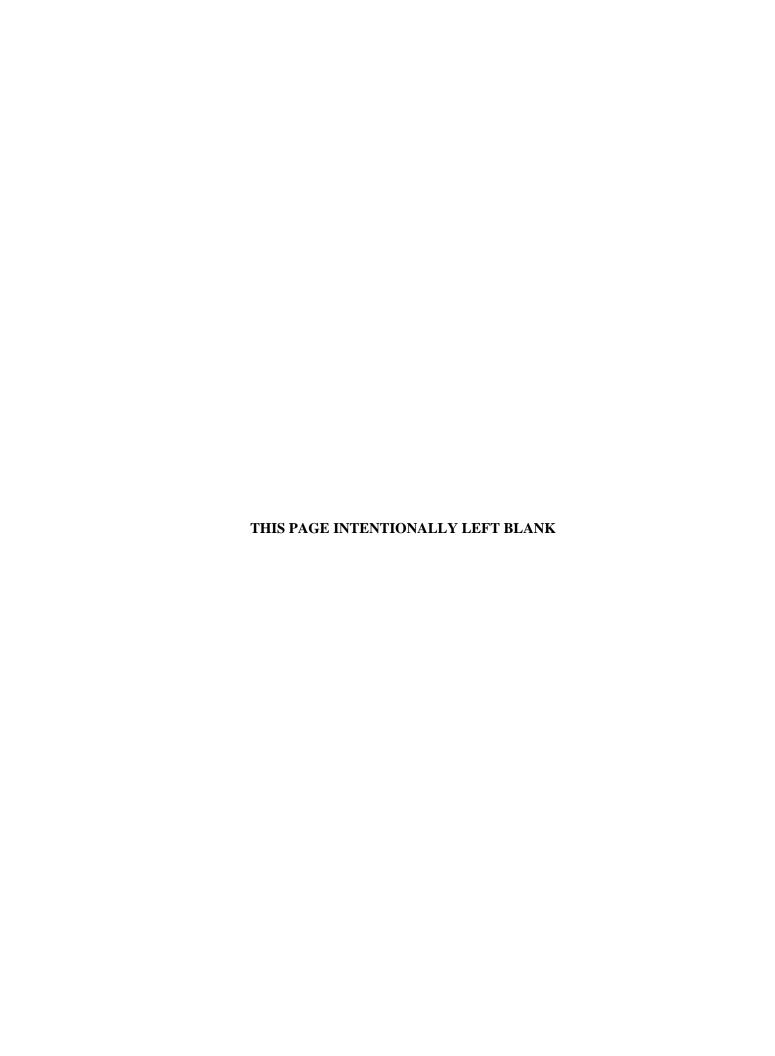
Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

APPENDIX K LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid



APPENDIX L MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-U Contained Landfill

			January St.	/a /	A GENERAL STATE OF THE PARTY OF				July State S	a /	- Stady agent
				91011 /		» / /			296	~ /	
		State of the	(MI)		Joen .	MW158		Conductive Conductive	(Mills	/_	Line Child
		rije	Jegind St. S.	Titl	124 /	€ /		rije	igited definition	Titl /	JOHN.
			STITE / CX	§ / <u>\$</u>	ž ^{ol} /,88	3 /	1 25		17 /20		
	Z STITE	COTIC	1300	J. S.	Z IZO		Z STILL	COTIC	1300	is sign	Light
MW357	/ ``	\sim		\sim		MW358				$\widetilde{}$	
Date Collected: 4/1/2020	1					Date Collected: 4/1/2020					
943	60.4	427	6.75	4.31	3.2	1045	60.3	492	6.43	1.20	0.0
946	59.7	412	6.21	3.52	0.0	1048	59.8	495	6.17	0.56	0.0
949	59.7	415	6.18	3.43	0.0	1051	59.7	492	6.17	0.53	0.0
1W359	57.7	115	0.10	31.13	0.0	MW360	5717	172	0.17	0.00	0.0
ate Collected: 4/1/2020						Date Collected: 4/1/2020					
125	60.4	230	6.40	4.53	0.0	0711	56.9	466	5.47	5.86	10.7
128	59.7	221	5.98	4.04	0.0	0714	56.1	438	6.02	0.77	7.1
131	59.7	219	5.99	3.99	0.0	0717	56.0	443	6.05	0.75	6.9
IW361					0.0	MW362			0.00		
Date Collected: 4/1/2020						Date Collected: 4/1/2020					
755	57.2	465	6.44	4.82	6.6	0858	58.3	701	6.80	4.89	79.0
758	56.9	461	6.14	3.46	5.1	0901	57.2	702	7.00	4.71	43.6
801	56.8	464	6.11	3.37	4.2	0904	57.0	701	7.02	4.64	42.9
1W363	20.0		0.11	3.37	2	MW364	57.0	701	7.02		12.7
Date Collected: 4/2/2020						Date Collected: 4/2/2020					
657	56.9	430	5.72	3.13	4.5	0758	59.6	480	6.11	4.48	2.9
700	56.9	413	5.87	0.93	1.0	0801	58.4	483	6.06	2.56	0.3
03	56.9	417	5.89	0.87	0.3	0804	58.4	478	6.07	2.51	0.5
IW365		12,		0.07	0.0	MW366			0.07		
ate Collected: 4/2/2020						Date Collected: 4/2/2020					
340	59.2	420	6.41	4.08	0.7	0924	60.6	456	6.30	3.49	0.0
43	58.8	404	6.20	2.61	0.0	0927	60.0	459	6.15	2.20	0.0
346	58.6	401	6.18	2.53	0.0	0930	59.7	456	6.15	2.13	0.0
IW367						MW368					
ate Collected: 4/2/2020						Date Collected: 4/2/2020					
08	60.2	455	6.39	2.76	17.6	1048	60.5	369	6.56	4.13	4.9
11	59.9	470	6.10	1.58	17.2	1051	59.1	352	6.62	1.32	0.0
14	59.8	466	6.11	1.50	18.0	1054	58.9	351	6.65	1.27	0.0
W369						MW370					
ate Collected: 4/6/2020						Date Collected: 4/6/2020					
001	63.2	450	6.54	4.27	0.0	1149	64.1	475	6.03	3.73	6.0
004	63.9	403	6.25	0.72	0.0	1152	64.7	475	6.09	2.74	0.0
007	63.9	407	6.23	0.65	0.0	1155	65.0	474	6.08	2.72	0.0
1W371						MW372					
ate Collected: 4/6/2020						Date Collected: 4/6/2020	1				
229	65.2	445	6.60	4.49	2000	0756	59.7	696	6.21	2.89	6.1
232	63.5	445	6.50	3.43	419	0759	60.3	690	6.16	0.87	3.0
235	63.5	441	6.49	3.39	411	0802	60.4	687	6.17	0.83	1.5
W373						MW374					
ate Collected: 4/6/2020						Date Collected: 4/6/2020					
339	60.4	815	6.37	2.07	3.9	0918	62.7	703	6.74	3.39	10.8
342	61.2	822	6.15	1.12	3.3	0921	62.8	663	6.70	0.87	10.0
845	61.4	827	6.15	1.18	3.0	0924	62.9	662	6.73	0.80	9.6
IW375											
ate Collected: 4/6/2020											
711	58.4	351	5.99	1.70	11.8						
714	58.8	340	6.06	0.69	11.2						
)717	58.8	339	6.09	0.60	11.0						
1 /	50.0	22)	0.07	0.00	11.0						

