

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

May 27, 2020

Ms. Robin Green Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-U CONTAINED LANDFILL FIRST QUARTER CALENDAR YEAR 2020 (JANUARY–MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0151/V1, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

Enclosed is the subject report for the first quarter of calendar year (CY) 2020. This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). The report includes groundwater analytical data, surface water analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the first quarter CY 2020 monitoring well data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the first quarter CY 2020, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

PPPO-02-10006097-20C

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

ennifer Woodard

tennifer Woodard Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-U Landfill 1st Qtr. CY 2020 Compliance Monitoring Report, FRNP-RPT-0151/V1

cc w/enclosure: abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO david.ruckstuhl@pad.pppo.gov, FRNP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO kelly.layne@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov robert.edwards@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB tabitha.owens@ky.gov, KDEP todd.hendricks@ky.gov, KDEP tracey.duncan@pppo.gov, PPPO

FRNP-RPT-0151/V1

C-746-U Contained Landfill First Quarter Calendar Year 2020 (January–March) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

5-19-2020 Date

FRNP-RPT-0151/V1

C-746-U Contained Landfill First Quarter Calendar Year 2020 (January-March) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2020

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FIC	FIGURES				
TA	TABLES				
AC	RON	YMS		vii	
1.	INTF 1.1 1.2 1.3	BACKG MONITO 1.2.1 0 1.2.2 M 1.2.3 S	ON ROUND DRING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring SULTS	1 1 3 3	
2.	DAT 2.1 2.2	STATIST 2.1.1 U 2.1.2 U 2.1.3 L	JATION/STATISTICAL SYNOPSIS IICAL ANALYSIS OF GROUNDWATER DATA Jpper Continental Recharge System Jpper Regional Gravel Aquifer Lower Regional Gravel Aquifer ERIFICATION AND VALIDATION	8 8 8 8	
3.	PRO	FESSION	AL GEOLOGIST AUTHORIZATION	11	
4.	REFI	ERENCES	5	13	
AP	PENC	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1	
AP	PENC	OIX B:	FACILITY INFORMATION SHEET	B-1	
AP	PENC	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1	
AP	PENC	OIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1	
AP	PENC	IX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1	
AP	PENC	OIX F:	NOTIFICATIONS	F-1	
AP	PENC	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1	
AP	PENC	OIX H:	METHANE MONITORING DATA	H-1	
AP	PENC	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1	
AP	APPENDIX J: ANALYTICAL LABORATORY CERTIFICATION				

CONTENTS

APPENDIX K:	LABORATORY ANALYTICAL METHODS	l
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS	1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	. 2
2.	C-746-U Landfill Surface Water Monitoring Locations	.4

TABLES

1.	Summary of MCL Exceedances	. 5
	Exceedances of Statistically Derived Historical Background Concentrations	
	Exceedances of Current Background UTL in Downgradient Wells	
4.	Monitoring Wells Included in Statistical Analysis	. 8

ACRONYMS

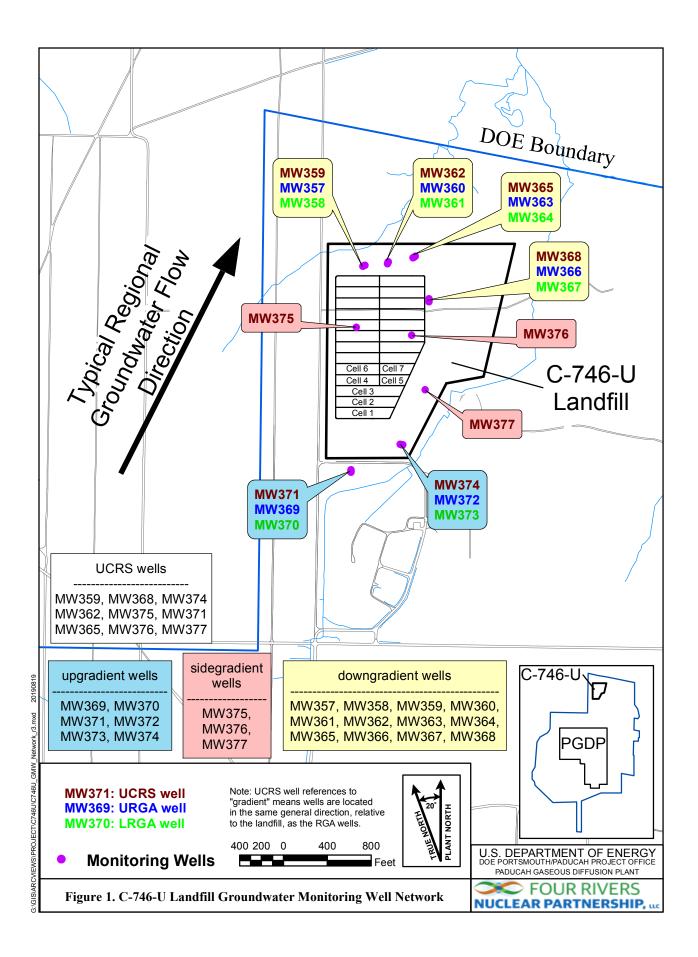
CFR CY	Code of Federal Regulations
01	calendar year
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
LTL	lower tolerance limit
MCL	maximum contaminant level
MW	monitoring well
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill First Quarter Calendar Year 2020 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL) or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL and historical background UTL exceedances that have occurred, beginning in the fourth quarter, calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water analyses and written comments are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micro-purging stability parameter results are provided in Appendix L.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Site and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5, with Phases 6 and 7 approved for receipt of waste as of September 27, 2019. Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included

in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2020 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the first quarter 2020 was completed in two phases. The initial sampling for the C-746-U Landfill was conducted on January 16, 21, and 22, 2020. Resampling of 5 MWs was performed on March 17, 2020. Review of the initial sampling analytical results showed anomalous TCE results for MW366, MW368, MW369, MW371, and MW374. These wells were resampled and analyzed for TCE as well as field parameters (conductivity, dissolved oxygen, oxidation-reduction potential, and pH). The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 27 and 28, 2020, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During January, RGA groundwater flow in the area of the landfill was oriented northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in January was 5.82×10^{-4} ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 2.22×10^{-4} ft/ft and 2.17×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.378 to 0.644 ft/day for the URGA and 0.368 to 0.628 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on February 27, 2020. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill: (1) upstream location, L154; (2) downstream location, L351; and (3) location L150 capturing

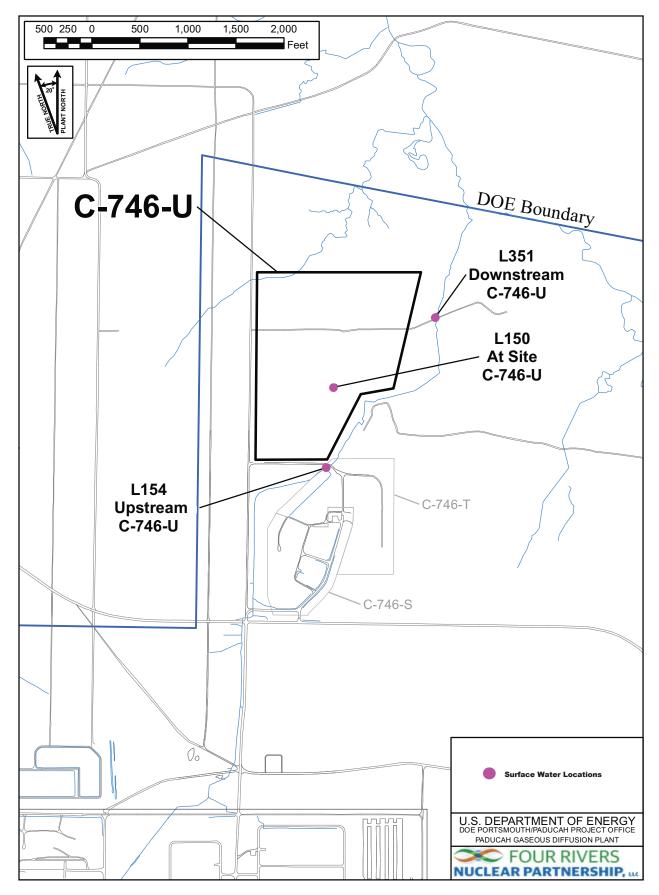


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 *KAR* 48:300 § 2, and the approved *Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (PRS 2008), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the first quarter 2020, as well as parameters that exceeded their historical background UTL¹ during the first quarter 2020, as well as parameters that in downgradient wells) that exceeded their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

UCRS	URGA	LRGA
MW374: Beta Activity	MW372: Beta activity, Trichloroethene	MW361: Trichloroethene
		MW364: Trichloroethene
		MW370: Beta activity

Table 1. Summary	of MCL	Exceedances
------------------	--------	-------------

Table 2. Exceedances of Statistically	y Derived Historical	Background Concentrations

UCRS*	URGA	LRGA
MW359: Oxidation-reduction	MW357: Oxidation-reduction	MW361: Oxidation-reduction
potential, sulfate	potential	potential, technetium-99
MW362: Oxidation-reduction	MW360: Oxidation-reduction	MW364: Oxidation-reduction
potential, sulfate	potential	potential, technetium-99
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW367: Oxidation-reduction
oxidation-reduction potential,	potential	potential
sulfate		
MW368: Oxidation-reduction	MW366: Oxidation-reduction	MW370: Beta activity,
potential, sulfate	potential	oxidation-reduction potential,
		technetium-99
MW371: Calcium, dissolved	MW369: Oxidation-reduction	MW373: Oxidation-reduction
oxygen, oxidation-reduction	potential	potential
potential, sulfate		
MW374: Beta activity, dissolved	MW372: Beta activity, calcium,	
oxygen, oxidation-reduction	conductivity, dissolved solids,	
potential	oxidation-reduction potential,	
	technetium-99	
MW375: Oxidation-reduction		
potential, sulfate		

¹ The UTL comparison for pH uses a two-sided test for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 2. Exceedance of Statistically Derived historical Background Concentrations (Continued)

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
None	None

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW361 and MW364 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report is the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as background in order to determine if the current compliance well concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in compliance wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill).

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2020 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

The statistical evaluation utilized TCE, conductivity, dissolved oxygen, oxidation-reduction potential, and pH data from the resampling on March 17, 2020, in place of data from the original sampling on January 21, 2020.

Parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6 were documented and evaluated further. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a-downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both a UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 4.

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (background)	MW370 (background)
MW374**	MW372 (background)	MW373 (background)
MW375		
MW376***		
MW377***		

Table 4. Monitoring Wells Included in Statistical Analysis*

*A map showing the monitoring well locations is shown on Figure 1.

**In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

***Well had insufficient water to permit a water sample for laboratory analysis.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 31 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, beta activity, calcium, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in compliance wells.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, beta activity, calcium, conductivity, dissolved solids, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in compliance wells.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in compliance wells.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary

Groundwater sampling for the first quarter 2020 was completed in two phases. The initial sampling for the C-746-U Landfill was conducted samples were collected on January 16, 21, and 22, 2020. Resampling of 5 MWs was performed on March 17, 2020. Review of the initial sampling analytical results showed anomalous TCE results for MW366, MW368, MW369, MW371, and MW374. These wells were resampled and analyzed for TCE as well as field parameters (conductivity, dissolved oxygen, oxidation-reduction potential, and pH). TCE results from the initial sampling of these wells were rejected during data assessment. The TCE and field parameter results reported and used in the statistical evaluation are those from the resampling.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.


Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill First Quarter Calendar Year 2020 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0151/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

May 18, 2020

R. Davis

Kenneth R. Davis

PG113927

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD- PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

U.S. DOE–Paducah Gaseous Diffusion Plant Activity: C-746-U Contained Landfill

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

r aonity r anno.						
	(As officially show					
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	1st Qtr. CY 2020		
Please check the following as applicable:						
Chara	acterization <u>X</u> Qua	arterly Semiannual	Annual	Assessment		
Please check applicable submittal(s): X Groundwater X Surface Water						
		Leachate	X Metha	ne Monitoring		

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E. Redfield, Program Manager Four Rivers Nuclear Partnership, LLC

Facility Name:

Date

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: January and Marc Surface water: February 2020 Methane: February 2020	h 2020 County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045			
Facility Name: U.S. DOE—Paducah Gaseous Diffusion Plant								
(As officially shown on DWM Permit Face)								
Site Address:	5600 Hobbs Road	Kevil, Kentucky	42053					
	Street	City/State	Zip					
Phone No: (27	70) 441-6800 Latitude:	N 37° 07' 45"	Longitude: W 88° 47' 55"					
			_					
OWNER INFORMATION								
Facility Owner:	ility Owner: U.S. DOE, Robert E. Edwards III, Manager		Phone No: (859) 227-5020					
Contact Person:	Bruce Ford		Phone No:	(270) 44	1-5357			
Contact Person Title: Director, Environmental Services Four Rivers Nuclear Partnership, LLC								
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky	42053					
C	Street	City/State		Zip				
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: GEO Consultants, LLC								
Contact Person:	Jason Boulton		Phone No:	(270) 81	6-3415			
			1	(=/0)01				

Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky	42053				
	Street	City/State	Zip				
LABORATORY RECORD #1							
Laboratory <u>GEL L</u>	aboratories, LLC	Lab ID No: <u>KY90129</u>					
Contact Person:	Valerie Davis	Pho	Phone No: (843) 769-7391				
Mailing Address:	2040 Savage Road	Charleston, South Carolina	29407				
	Street	City/State	Zip				
LABORATORY RECORD #2							
Laboratory: N/A		Lab ID No: _N/A					
Contact Person:	N/A	Phone No: <u>N/A</u>					
Mailing Address:	N/A						
	Street	City/State	Zip				
LABORATORY RECORD #3							
Laboratory: N/A		Lab ID No: N/A					
Contact Person:	N/A	Phone No: N/A					
Mailing Address:	N/A						
	Street	City/State	Zip				

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4798	3	8004-4	799	8004-09	981	8004-480	00
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, etc	.)	357		358		359		360	
Sample Sequen	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/16/2020 09	9:59	1/16/2020	11:09	1/16/2020	12:34	1/16/2020 0)7:23
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW357UG2	-20	MW358U	G2-20	MW359U	G2-20	MW360UG	2-20
Laboratory Sa	mple ID Number (if applicable)		50147300	1	501473	003	501473	005	5014730	09		
Date of Analy:	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analys)	1/22/20	20	1/22/20	20	1/22/202	20
Gradient with	dient with respect to Monitored Unit (UP,			OWN)	DOWN		DOW	N	DOW	N	DOWN	l
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.346		0.407		<0.2		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	30		33.3		0.925		9.38	
16984-48-8	Fluoride	т	mg/L	9056	0.2		0.207		0.195		0.263	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.22		0.81		0.6		0.439	
14808-79-8	Sulfate	т	mg/L	9056	40.4		61.4		45.4		11.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.65		30.65		30.65		30.6	
S0145	Specific Conductance	т	µMH0/cm	Field	414		505		250		402	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	3	8004-4799	9	8004-0981		8004-4800)
Facility's Lo	ocal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	325.41	1	325.4		338.77		325.38	
N238	Dissolved Oxygen	т	mg/L	Field	3.31		1.29		2		1	
S0266	Total Dissolved Solids	т	mg/L	160.1	250		300		211		250	
S0296	рн	т	Units	Field	6.4		6.4		6.28		6.31	
NS215	Eh	т	mV	Field	353		122		240		421	
S0907	Temperature	т	°c	Field	13.61		15.5		14.11		13.33	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0198	J	0.0328	J	0.0285	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00339	J	0.00242	J	0.00233	J
7440-39-3	Barium	т	mg/L	6020	0.0695		0.0586		0.0259		0.191	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.357		0.422		<0.015		0.0631	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.3		34.5		6.07		21.3	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00701		<0.001		0.00163	
7440-50-8	Copper	т	mg/L	6020	0.0019	J	0.00194	J	0.00257		0.00195	J
7439-89-6	Iron	т	mg/L	6020	<0.1		2.7		0.454		0.286	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.3		16.3		3.55		8.73	
7439-96-5	Manganese	т	mg/L	6020	0.00406	J	0.504		0.00251	J	0.0187	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	1	8004-480	0
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000227	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.000619	J	0.0131		0.000822	J	0.0012	J
7440-09-7	Potassium	т	mg/L	6020	1.69		2.62		<0.3		0.795	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	43.2		42.8		39.2		58.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000122	J	0.000075	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		0.00376	BJ	0.00681	BJ	<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		0.00537	J	<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-48	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00289		0.00281		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	3	8004-479	9	8004-09	81	8004-48	00
Facility's Loo	cal Well or Spring Number (e.g., M	1 W-1	L, MW-2, et		357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195	*	<0.0000198	*	<0.00002	*	<0.0000199	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0935		<0.0935		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0935		<0.0935		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0935		<0.0935		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0935		<0.0935		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0935		<0.0935		<0.0952	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.0935		<0.0935		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	0
Facility's Loo	cal Well or Spring Number (e.g.	, MW-1	L, MW-2, et		357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0935		<0.0935		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.0935		<0.0935		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.0935		<0.0935		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.028	*	-2.27	*	4.22	*	0.345	*
12587-47-2	Gross Beta	т	pCi/L	9310	8.99	*	25.4	*	4.95	*	4.66	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.417	*	0.232	*	0.325	*	0.255	*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.4	*	2.65	*	1.36	*	0.417	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	32.1	*	36.3	*	0.908	*	-6.42	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.39	*	0.484	*	0.582	*	0.928	*
10028-17-8	Tritium	т	pCi/L	906.0	8.14	*	41.2	*	53.5	*	30.5	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	15.3	J	<20		10.1	J	15.3	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.842	J	3.22		0.989	J	1.33	J
S0586	Total Organic Halides	т	mg/L	9020	<0.01		0.00604	J	<0.01		0.00384	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4795 8004-0986 8004-4796 8004-4797 363 364 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 361 362 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 1/16/2020 13:23 1/16/2020 14:12 1/16/2020 08:37 1/16/2020 09:12 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ Ν Ν Ν Ν MW363UG2-20 MW364UG2-20 MW361UG2-20 MW362UG2-20 Facility Sample ID Number (if applicable) 501473011 501473013 501473015 501473017 Laboratory Sample ID Number (if applicable) 1/22/2020 1/22/2020 1/22/2020 1/22/2020 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis DOWN DOWN DOWN DOWN Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN4 CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE L 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ PQL⁶ G G G G S^7 s s s 0.437 < 0.2 0.126 J 0.449 24959-67-9 Bromide т mg/L 9056 332 4 23 28.8 34.8 16887-00-6 т 9056 Chloride(s) mg/L 0 187 0 423 0 241 0 142 16984-48-8 Fluoride т 9056 mg/L 1.01 0.495 5.03 0.954 s0595- -Nitrate & Nitrite т ma/L 9056 78.4 29.6 26.7 70.8 14808-79-8 т 9056 Sulfate ma/L 30.62 30.63 30.63 30.63 NS1894 Barometric Pressure Reading T Inches/Hg Field 509 716 409 481 S0145- т Specific Conductance µMH0/cm Field

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-479	5	8004-0986	3	8004-4796		8004-4797	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.41		338.85		325.38		324.56	
N238	Dissolved Oxygen	т	mg/L	Field	2.79		1.96		2.8		2.37	
s0266	Total Dissolved Solids	т	mg/L	160.1	294		420		271		283	
s0296	рн	т	Units	Field	6.17		6.85		6.24		6.17	
NS215	Eh	т	mV	Field	370		375		330		375	
S0907	Temperature	т	°c	Field	13.56		14.33		13.56		14.56	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0264	J	<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.0022	J	0.0024	J	<0.005		0.00225	J
7440-39-3	Barium	т	mg/L	6020	0.0566		0.107		0.142		0.0643	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0973		0.0161		0.0139	J	0.0228	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	33.8		22.7		28.1		33.8	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.00118		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00179	J	0.0023		0.000323	J	0.000393	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0664	J	0.0561	J	0.0727	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	15.2		10.2		11.1		14.6	
7439-96-5	Manganese	т	mg/L	6020	0.004	J	<0.005		0.3		0.0184	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	6	8004-479	7
Facility's I	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000534	J	<0.001		0.000241	J
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.000789	J	0.00402		<0.002	
7440-09-7	Potassium	т	mg/L	6020	2.53		0.323		1.64		2.12	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	47.8		139		41		45.2	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.00387		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		0.0278	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-098	6	8004-47	96	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00529		<0.001		0.00046	J	0.00612	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	ô	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et		361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197	*	<0.0000203	*	<0.0000194		<0.0000197	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0943		<0.0935		<0.0952		<0.0943	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943		<0.0935		<0.0952		<0.0943	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0943		<0.0935		<0.0952		<0.0943	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943		<0.0935		<0.0952		<0.0943	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0943		<0.0935		<0.0952		<0.0943	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0943		<0.0935		<0.0952		<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479)7
Facility's Loc	cal Well or Spring Number (e.g., M	MW -1	L, MW-2, et		361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0943		<0.0935		<0.0952		<0.0943	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943		<0.0935		<0.0952		<0.0943	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943		<0.0935		<0.0952		<0.0943	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.956	*	4.1	*	-0.247	*	3.41	*
12587-47-2	Gross Beta	т	pCi/L	9310	33.3	*	5.57	*	22.1	*	33.1	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.299	*	0.873	*	0.162	*	0.693	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.828	*	3.28	*	-1.05	*	-0.414	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	58.9	*	-8.78	*	-11	*	47.5	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.378	*	1.13	*	0.398	*	0.533	*
10028-17-8	Tritium	т	pCi/L	906.0	102	*	109	*	101	*	140	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	12.7	J	<20		<20		10.1	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.955	J	2.39		1.26	J	0.811	J
s0586	Total Organic Halides	т	mg/L	9020	0.00348	J	0.0158		<0.01		0.00772	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	84	8004-	0982	8004-	4793	8004-0	983
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	365		36	6	36	67	368	}
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/21/2020	07:33	1/21/202	20 08:22	1/21/202	20 09:07	1/21/2020	0 10:11
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW365UG	62-20	MW366	UG2-20	MW367	UG2-20	MW368U	G2-20
Laboratory Sam	mple ID Number (if applicable)		5018400	003	50184	0005	50184	0001	501840	007		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					20	1/24/2	2020	1/24/2	2020	1/24/20)20
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKN				DOWN	١	DO	WN	DO	WN	DOW	/N
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.44		0.389		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	2.27		36.5		28.8		1.83	
16984-48-8	Fluoride	т	mg/L	9056	0.283		0.183		0.144		0.298	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.29		0.924		0.441	J	<0.5	
14808-79-8	Sulfate	т	mg/L	9056	60		41		39.3		61.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.66		30.66		30.68		30.68	
S0145	Specific Conductance	т	µMH0/cm	Field	392		447		367		429	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-4793		8004-0983	
Facility's Lo	cal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	334.96		325.75		325.99		353.8	
N238	Dissolved Oxygen	т	mg/L	Field	4.29		3.23		2.41		2.09	
S0266	Total Dissolved Solids	т	mg/L	160.1	351		293		221		286	
S0296	рН	т	Units	Field	6.21		6.2		6.04		6.3	
NS215	Eh	т	mV	Field	457		468		406		392	
S0907	Temperature	т	°c	Field	12.5		12.94		13.28		14.39	
7429-90-5	Aluminum	т	mg/L	6020	0.0224	J	<0.05		0.0225	J	0.687	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00267	J	0.00382	J
7440-39-3	Barium	т	mg/L	6020	0.0981		0.113		0.17		0.0264	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00719	J	0.122		0.0498		0.00573	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.4	В	33.6	В	28.2	В	37.8	В
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00148		<0.001		0.00465		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00742		0.00431		0.000561	J	0.000518	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.106		1.89		0.306	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	9.43		12.4		11.4		9.4	
7439-96-5	Manganese	т	mg/L	6020	0.0113		0.0185		1.34		0.0152	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	33
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		0.000978	J
7440-02-0	Nickel	т	mg/L	6020	0.00433		0.000726	J	0.00245		0.000621	J
7440-09-7	Potassium	т	mg/L	6020	0.235	J	1.86		3.03		0.449	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00235	J	<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	51		48.8		37.9		48.8	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	0.000122	BJ	<0.0002		0.000068	BJ	0.000213	В
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		0.00886	J
7440-66-6	Zinc	т	mg/L	6020	0.0141	J	0.00973	J	0.00967	J	<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-098	2	8004-47	93	8004-098	83
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001			*	0.00276			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-47	93	8004-09	83
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	1, MW-2, et		365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000202	*	<0.0000199	*	<0.0000196	*	<0.0000198	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	0.0533	J	<0.0937		<0.1		<0.0936	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0939		<0.0937		<0.1		<0.0936	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0939		<0.0937		<0.1		<0.0936	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0939		<0.0937		<0.1		<0.0936	
53469-21-9	PCB-1242	т	ug/L	8082	0.0533	J	<0.0937		<0.1		<0.0936	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0939		<0.0937		<0.1		<0.0936	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0939		<0.0937		<0.1		<0.0936	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0939		<0.0937		<0.1		<0.0936	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0939		<0.0937		<0.1		<0.0936	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.48	*	3.73	*	6.7	*	1.88	*
12587-47-2	Gross Beta	т	pCi/L	9310	3.69	*	21.5	*	24.6	*	1.52	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.89	*	0.48	*	0.607	*	0.966	*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.4	*	-0.679	*	-0.597	*	1.89	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-10.5	*	54.9	*	36.2	*	4.59	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.461	*	0.0739	*	0.635	*	0.703	*
10028-17-8	Tritium	т	pCi/L	906.0	-81.4	*	-85.1	*	-23.1	*	-19.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	33.1		<20		<20		38.2	
57-12-5	Cyanide	т	mg/L	9012	0.00322	J	<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.26	J	0.725	J	0.622	J	1.07	J
s0586	Total Organic Halides	т	mg/L	9020	0.00846	J	0.00838	J	0.0089	J	0.00465	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-48	20	8004-	4818	8004-	4819	8004-4	808
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, etc	.)	369		37	0	37	'1	372	2
Sample Sequen	ce #				1		1		1		1	
If sample is a 3	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/21/2020	12:25	1/21/202	20 13:11	1/21/202	0 13:55	1/22/2020	07:34
Duplicate ("Y	" or "N") ²				Ν		N		N		Ν	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW369UG	62-20	MW370	UG2-20	MW371	JG2-20	MW372U	G2-20
Laboratory Sa	mple ID Number (if applicable)		5018400	009	50184	0011	50184	0013	501922	2003		
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	e Or	rganics Anal	ysis	1/24/202	20	1/24/2	2020	1/24/2	020	1/28/20	020
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	OWN)	UP		U	Р	U	Ρ	UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.349		0.482		<0.2		0.54	
16887-00-6	Chloride(s)	т	mg/L	9056	29.2		37.7		2.26		41.1	*
16984-48-8	Fluoride	т	mg/L	9056	0.22		0.181		0.218		0.187	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.628		1.03		<0.5		0.836	
14808-79-8	Sulfate	т	mg/L	9056	5.54		21.2		27		105	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.63		30.59		30.57		30.38	
S0145	Specific Conductance	т	µMH0/cm	Field	387		475		589		730	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-482	0	8004-4818	3	8004-4819		8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MW	i-1 , 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.45		326.43		343.84		326.49	
N238	Dissolved Oxygen	т	mg/L	Field	1.3		2.86		2.96		1.9	
S0266	Total Dissolved Solids	т	mg/L	160.1	224		261		377		423	
S0296	рн	т	Units	Field	6.29		6.17		6.61		6.15	
NS215	Eh	т	mV	Field	431		425		398		375	
S0907	Temperature	т	°c	Field	13.44		13.44		14		12.67	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		3.81		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00238	J	<0.005		0.00256	BJ
7440-39-3	Barium	т	mg/L	6020	0.41		0.249		0.023		0.0636	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		0.000263	J	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0151		0.335		<0.015		1.09	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	19.1	В	36	В	74.8	В	57	В
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00317	J	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00379		<0.001		0.000837	J	0.000679	J
7440-50-8	Copper	т	mg/L	6020	0.000827	J	0.000528	J	0.00185	J	0.000739	BJ
7439-89-6	Iron	т	mg/L	6020	0.0746	J	<0.1		2.55		0.156	В
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		0.00164	J	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	7.14		13.4		1.94		21.3	
7439-96-5	Manganese	т	mg/L	6020	0.02		0.00145	J	0.426		0.00615	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480	08
Facility's 1	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		0.0002	BJ
7440-02-0	Nickel	т	mg/L	6020	0.00264		<0.002		0.00264		<0.002	
7440-09-7	Potassium	т	mg/L	6020	0.508		2.72		0.245	J	2.32	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	64.8		53.8		67.9		61	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000364	В	<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00373	J	<0.02		0.0504		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		0.00848	J	<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	0.00346			*	0.00564	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482)	8004-481	8	8004-48	19	8004-48	808
Facility's Lo	cal Well or Spring Number (e.g., M	4W-1	l, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000202	*	<0.0000204	*	<0.0000198	*	<0.000019	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		0.00105		<0.001		0.00046	J
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		0.00057	J	<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0937		<0.094		<0.0938		<0.0956	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0937		<0.094		<0.0938		<0.0956	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0937		<0.094		<0.0938		<0.0956	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0937		<0.094		<0.0938		<0.0956	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0937		<0.094		<0.0938		<0.0956	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0937		<0.094		<0.0938		<0.0956	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	L, MW-2, et)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0937		<0.094		<0.0938		<0.0956	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0937		<0.094		<0.0938		<0.0956	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0937		<0.094		<0.0938		<0.0956	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.754	*	4.01	*	7.19	*	-1.55	*
12587-47-2	Gross Beta	т	pCi/L	9310	16.8	*	75.9	*	4.84	*	50.7	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	1.35	*	0.795	*	0.575	*	-0.193	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.73	*	4	*	-0.522	*	-0.771	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	31.7	*	82.8	*	-1.48	*	97.2	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.16	*	0.14	*	-0.432	*	-0.399	*
10028-17-8	Tritium	т	pCi/L	906.0	28.6	*	-66.6	*	-90	*	-76.4	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	10	J	<20		10	J	17.7	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.26	J	1.06	J	1.84	J	1.02	J
s0586	Total Organic Halides	т	mg/L	9020	0.0253		0.00768	J	0.0075	J	0.00548	BJ

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-OUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (5)

8004-0988 AKGWA NUMBER¹, Facility Well/Spring Number 8004-4792 8004-0990 8004-0985 373 374 375 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 376 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 1/22/2020 08:20 1/22/2020 09:30 1/22/2020 10:19 NA Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ N Ν Ν Ν MW373UG2-20 MW374UG2-20 MW375UG2-20 Facility Sample ID Number (if applicable) NA 501922001 501922005 501922007 NA Laboratory Sample ID Number (if applicable) 1/28/2020 1/28/2020 1/28/2020 NA Date of Analysis (Month/Day/Year) For Volatile Organics Analysis UP UP SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) SIDE CAS RN⁴ CONSTITUENT т METHOD DETECTED DETECTED DETECTED DETECTED Unit F F F F D 5 OF VALUE VALUE VALUE VALUE г L L L MEASURE OR А OR А OR А OR А PQL⁶ POL⁶ PQL^6 POL⁶ G G G G s^7 s s s 0.602 0.687 <0.2 24959-67-9 Bromide т mg/L 9056 374 59 5 36 т 16887-00-6 Chloride(s) 9056 mq/L 0.22 041 0.332 т 16984-48-8 Fluoride mg/L 9056 0.803 0.089 J 0.939 S0595- т 9056 Nitrate & Nitrite mg/L 7.75 24.5 * 147 14808-79-8 т Sulfate ma/L 9056 30.38 30.39 30.37 * NS1894 Barometric Pressure Reading T Inches/Hg Field 844 726 327 * т S0145- -Specific Conductance uMH0/cm Field

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	Facility Well/Spring Number				8004-479	2	8004-099	0	8004-0985	5	8004-0988	3
Facility's Lo	cal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	327.73		340.46		343.08			*
N238	Dissolved Oxygen	т	mg/L	Field	1.79		1.72		0.7			*
S0266	Total Dissolved Solids	т	mg/L	160.1	514		410		221			*
s0296	рн	т	Units	Field	6.13		6.65		6.43			*
NS215	Eh	т	mV	Field	350		310		312			*
S0907	Temperature	т	°c	Field	14.06		14		14.33			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0445	J	0.147			*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	0.0033	BJ	0.00391	BJ	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0367		0.155		0.166			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.85		0.0265		0.00914	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	72.8	В	21	В	13.9	В		*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.000381	J	0.00119		0.00155			*
7440-50-8	Copper	т	mg/L	6020	0.000401	BJ	0.00095	BJ	0.00063	BJ		*
7439-89-6	Iron	т	mg/L	6020	0.0455	BJ	1.11	В	0.54	В		*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	31.7		5.36		5.95			*
7439-96-5	Manganese	т	mg/L	6020	0.0157		0.148		0.0186			*
7439-97-6	Mercury	т	mg/L	7470	0.000093	J	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number		8004-479	2	8004-099	90	8004-098	5	8004-098	8		
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000823	BJ	<0.001			*
7440-02-0	Nickel	т	mg/L	6020	0.00133	J	0.00145	J	0.000648	J		*
7440-09-7	Potassium	т	mg/L	6020	3.19		0.582		0.304			*
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00631		0.00276	J		*
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		0.000638	J		*
7440-23-5	Sodium	т	mg/L	6020	65.9		133		58			*
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	т	mg/L	6020	0.000091	J	0.00154		0.000079	J		*
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02			*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-4792		8004-099	0	8004-09	85	8004-09	88		
Facility's Lo	ocal Well or Spring Number (e.g., 1	MW-:	1, MW-2, et)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00327			*	0.00151			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1,	, Facility Well/Spring Number		8004-4792	2	8004-099	0	8004-09	85	8004-09	988		
Facility's Lo	cal Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000199		<0.0000197		<0.00002			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.099		<0.095		<0.0942			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.099		<0.095		<0.0942			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.099		<0.095		<0.0942			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.099		<0.095		<0.0942			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.099		<0.095		<0.0942			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.099		<0.095		<0.0942			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	18
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	L, MW-2, et)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.099		<0.095		<0.0942			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.099		<0.095		<0.0942			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.099		<0.095		<0.0942			*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.885	*	1.06	*	-1.26	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	13.4	*	209	*	5.88	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.234	*	0.307	*	0.909	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.11	*	-1.18	*	0.674	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	13	*	-9.67	*	1.31	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.211	*	-0.315	*	-0.172	*		*
10028-17-8	Tritium	т	pCi/L	906.0	-40.8	*	-91.5	*	-113	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	15.1	J	48.5		79.2			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
S0268	Total Organic Carbon	т	mg/L	9060	1.13	J	2.71		0.783	J		*
S0586	Total Organic Halides	т	mg/L	9020	0.00388	BJ	0.0281	В	0.00992	BJ		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	, Facility Well/Spring Number		8004-098	9	0000-00	00	0000-000	00	0000-000	0		
Facility's Lo	cal Well or Spring Number (e.g., M	IW-1	., MW-2, etc	:.)	377		E. BLAN	IK	F. BLAN	IK	T. BLANK	. 1
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		E		F		Т	
Sample Date a	Sample Date and Time (Month/Day/Year hour: minutes)						1/16/2020 06:35		1/16/2020 ()7:25	1/16/2020 0	6:30
06:50Duplicat	06:50Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or		N		N		N		N				
Facility Samp	Facility Sample ID Number (if applicable)						RI1UG2-	20	FB1UG2-	-20	TB1UG2-	20
Laboratory Sa	mple ID Number (if applicable)				NA		5014730	20	5014730	19	50147302	21
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	01	rganics Anal	ysis	NA		1/22/202	20	1/22/202	20	1/22/202	0
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	SIDE		NA		NA		NA		
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-098	9	0000-0000)	0000-0000		0000-0000)	
Facility's Lo	ocal Well or Spring Number (e.g., MW	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1		
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	0.00237	J	0.00228	J		*
7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	0.000455	J	<0.002			*
7439-89-6	Iron	т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number		8004-098	9	0000-000	00	0000-000	0	0000-000	0		
Facility's L	cility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						E. BLAN	K	F. BLAN	К	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.001		<0.001			*
7440-02-0	Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7	Potassium	т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	т	mg/L	6020		*	0.00493	BJ	0.0047	BJ		*
7440-66-6	Zinc	т	mg/L	6020		*	<0.02		<0.02			*
108-05-4	Vinyl acetate	т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260		*	0.00261	J	<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-000	C	0000-00	00	0000-00	00
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	377		E. BLAN	<	F. BLAN	١K	T. BLANI	K 1
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000	C	0000-000	00	0000-00	00
Facility's Loo	cal Well or Spring Number (e.g., M	1 W-1	L, MW-2, et		377		E. BLANK	<	F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.00002	*	<0.0000201	*	<0.0000207	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0952		<0.0952			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0952		<0.0952			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0952		<0.0952			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0952		<0.0952			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0952		<0.0952			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0952		<0.0952			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-0000)
Facility's Loc	cal Well or Spring Number (e.g., M		377		E. BLANK		F. BLAN	<	T. BLANK	1		
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0952		<0.0952			*
11096-82-5	РСВ-1260	т	ug/L	8082		*	<0.0952		<0.0952			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0952		<0.0952			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	0.394	*	-3.6	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	3.92	*	-1.14	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*	0.352	*	0.437	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*	-0.261	*	2.63	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	-11.5	*	-0.954	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	2.79	*	0.993	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	28.9	*	52.1	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

0000-0000 AKGWA NUMBER¹, Facility Well/Spring Number 0000-0000 8004-4800 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) T. BLANK 2 T. BLANK 3 360 2 Sample Sequence # 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment Т Т NA 1/16/2020 07:23 Sample Date and Time (Month/Day/Year hour: minutes) 1/21/2020 06:30 1/22/2020 06:45 Duplicate ("Y" or "N")² Υ Ν Ν Split ("Y" or "N")³ Ν N Ν MW360DUG2-20 TB2UG2-20 TB3UG2-20 Facility Sample ID Number (if applicable) 501840015 501922009 501473007 Laboratory Sample ID Number (if applicable) Date of Analysis (Month/Day/Year) For Volatile Organics Analysis 1/24/2020 1/28/2020 1/22/2020 DOWN Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) NA NA CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED F DETECTED F DETECTE F D OF VALUE L VALUE L VALUE L VALU L 5 MEASURE OR А OR А OR А OR А POL⁶ G POL⁶ G POL⁶ G POI G S^7 s s s * .1 24959-67-9 Bromide т 9056 0.185 ma/L т 14 3 16887-00-6 Chloride(s) mq/L 9056 т * 16984-48-8 Fluoride 9056 0 2 4 4 mg/L * 0.633 s0595- -Nitrate & Nitrite т ma/L 9056 * 14808-79-8 т Sulfate 18.1 mg/L 9056 * NS1894 Barometric Pressure Reading T Inches/Ha Field * * S0145- т Specific Conductance uMH0/cm Field

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000)	0000-0000		8004-4800		Ν			
Facility's Loo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK 2		T. BLANK 3		360		\mathbf{N}	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		\square
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*	300			1/
S0296	рн	т	Units	Field		*		*		*		/
NS215	Eh	т	mV	Field		*		*		*		
s0907	Temperature	т	°C	Field		*		*		*		
7429-90-5	Aluminum	т	mg/L	6020		*		*	0.0222	J		
7440-36-0	Antimony	т	mg/L	6020		*		*	<0.003			
7440-38-2	Arsenic	т	mg/L	6020		*		*	0.00286	J	X	
7440-39-3	Barium	т	mg/L	6020		*		*	0.19			
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005		/ \	
7440-42-8	Boron	т	mg/L	6020		*		*	0.0367			
7440-43-9	Cadmium	т	mg/L	6020		*		*	<0.001			
7440-70-2	Calcium	т	mg/L	6020		*		*	20.5			\backslash
7440-47-3	Chromium	т	mg/L	6020		*		*	<0.01			$\left \right\rangle$
7440-48-4	Cobalt	т	mg/L	6020		*		*	0.0019			$ \rangle$
7440-50-8	Copper	т	mg/L	6020		*		*	0.00202			
7439-89-6	Iron	т	mg/L	6020		*		*	0.448			
7439-92-1	Lead	т	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	т	mg/L	6020		*		*	8.73			
7439-96-5	Manganese	т	mg/L	6020		*		*	0.0258			
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number	0000-000	0	0000-000	00	8004-4800						
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK 2		T. BLANK 3		360			\square
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*		*	<0.001			\square
7440-02-0	Nickel	т	mg/L	6020		*		*	0.000886	J		\square
7440-09-7	Potassium	т	mg/L	6020		*		*	0.755			7
7440-16-6	Rhodium	т	mg/L	6020		*		*	<0.005			
7782-49-2	Selenium	т	mg/L	6020		*		*	<0.005			
7440-22-4	Silver	т	mg/L	6020		*		*	<0.001			
7440-23-5	Sodium	т	mg/L	6020		*		*	61.9			
7440-25-7	Tantalum	т	mg/L	6020		*		*	<0.005			
7440-28-0	Thallium	т	mg/L	6020		*		*	<0.002		X	
7440-61-1	Uranium	т	mg/L	6020		*		*	0.000074	J		
7440-62-2	Vanadium	т	mg/L	6020		*		*	0.00713	BJ		
7440-66-6	Zinc	т	mg/L	6020		*		*	<0.02			
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			\square
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number	0000-0000		0000-000	0	8004-4800						
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	T. BLANK 2	2	T. BLANK 3		360			
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			\square
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			1/
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			/
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		\setminus /	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001	*	<0.001		X	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			N
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			$\left \right\rangle$
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			$ \rangle$
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000	C	0000-0000		8004-4800					
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		360		\backslash	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			17
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			/
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198	*	<0.00002		<0.00002	*		
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			$\left \right\rangle$
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			$ \rangle$
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.0952			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.0952			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.0952			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.0952			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.0952		/	
12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.0952		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		8004-4800			
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et		T. BLANK 2	2	T. BLANK 3		360		\backslash	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*	<0.0952			17
11096-82-5	PCB-1260	т	ug/L	8082		*		*	<0.0952			1/
11100-14-4	PCB-1268	т	ug/L	8082		*		*	<0.0952			V
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*	0.622	*		
12587-47-2	Gross Beta	т	pCi/L	9310		*		*	7.56	*		
10043-66-0	Iodine-131	т	pCi/L			*		*		*		
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*	0.388	*		
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*	-1.57	*	l V	
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*	-0.0147	*		
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*	0.724	*		
10028-17-8	Tritium	т	pCi/L	906.0		*		*	37.9	*		
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*	15.3	J		
57-12-5	Cyanide	т	mg/L	9012		*		*	<0.2			
20461-54-5	Iodide	т	mg/L	300.0		*		*	<0.5			Ν
S0268	Total Organic Carbon	т	mg/L	9060		*		*	1.37	J		$ \rangle$
s0586	Total Organic Halides	т	mg/L	9020		*		*	<0.01			$ \rangle$
												$ \rangle$

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG2-20	1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.88. Rad error is 2.87.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 7.87. Rad error is 7.74.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.655. Rad error is 0.655.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.18. Rad error is 3.16.
		Technetium-99		TPU is 12.7. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.34. Rad error is 1.32.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 108. Rad error is 108.
004-4799 MW358	MW358UG2-20	1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.3. Rad error is 3.3.
		Gross beta		TPU is 9.15. Rad error is 8.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.482. Rad error is 0.482.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.78. Rad error is 3.75.
		Technetium-99		TPU is 13. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.26. Rad error is 1.25.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 109. Rad error is 108.
004-0981 MW359	MW359UG2-20	1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.14. Rad error is 7.1.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 7.74. Rad error is 7.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.403. Rad error is 0.403.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.84. Rad error is 2.84.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.8. Rad error is 11.8.
		Thorium-230	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.949. Rad error is 0.942.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 110. Rad error is 109.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4800 MW360	MW360UG2-20	1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.12. Rad error is 4.11.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 6.65. Rad error is 6.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.336. Rad error is 0.336.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.62.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.03. Rad error is 1.02.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 111. Rad error is 111.
004-4795 MW361	MW361UG2-20	1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.89. Rad error is 4.89.
		Gross beta		TPU is 10.9. Rad error is 9.34.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.494. Rad error is 0.494.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.18. Rad error is 2.17.
		Technetium-99		TPU is 15.3. Rad error is 13.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.26. Rad error is 1.26.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 112. Rad error is 110.
004-0986 MW362	MW362UG2-20	1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.22. Rad error is 5.17.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 7.43. Rad error is 7.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.733. Rad error is 0.732.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.08. Rad error is 3.04.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.52. Rad error is 1.5.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 112. Rad error is 110.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring _Point	Facility Sample ID	Constituent	Flag	Description
004-4796 MW363	MW363UG2-20	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.4. Rad error is 3.4.
		Gross beta		TPU is 9.62. Rad error is 8.91.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.314. Rad error is 0.314.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.17. Rad error is 2.17.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.27. Rad error is 1.26.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 115. Rad error is 113.
004-4797 MW364	MW364UG2-20	1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.54. Rad error is 4.5.
		Gross beta		TPU is 10.2. Rad error is 8.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.67. Rad error is 0.67.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.15. Rad error is 2.15.
		Technetium-99		TPU is 13.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.57. Rad error is 1.56.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 113. Rad error is 110.
004-0984 MW365	MW365UG2-20	1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.3. Rad error is 4.29.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.38. Rad error is 5.35.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.87. Rad error is 0.869.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.47. Rad error is 3.43.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 13.4. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.32. Rad error is 1.32.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 129. Rad error is 129.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0982 MW366	MW366UG2-20	Trichloroethene		Result rejected during data assessment. Result from resample reported
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.57. Rad error is 6.54.
		Gross beta		TPU is 7.93. Rad error is 7.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.712. Rad error is 0.712.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.52. Rad error is 2.52.
		Technetium-99		TPU is 16.7. Rad error is 15.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.12. Rad error is 2.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 124. Rad error is 124.
3004-4793 MW367	MW367UG2-20	1,2-Dibromo-3-chloropropane		MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.91. Rad error is 5.8.
		Gross beta		TPU is 8.62. Rad error is 7.63.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.56. Rad error is 1.56.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.04. Rad error is 2.04.
		Technetium-99		TPU is 13.1. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.74. Rad error is 1.72.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 128. Rad error is 128.
3004-0983 MW368	MW368UG2-20	Trichloroethene		Result rejected during data assessment. Result from resample reported.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.63. Rad error is 4.62.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.34. Rad error is 4.34.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.901. Rad error is 0.901.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.16. Rad error is 3.15.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 14.1. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.89. Rad error is 1.87.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 126. Rad error is 126.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4820 MW369	MW369UG2-20	Trichloroethene		Result rejected during data assessment. Result from resample reported.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.94. Rad error is 3.93.
		Gross beta		TPU is 8.02. Rad error is 7.54.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.48. Rad error is 1.48.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.93. Rad error is 3.93.
		Technetium-99		TPU is 15.3. Rad error is 14.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.977. Rad error is 0.961.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 136.
8004-4818 MW370	MW370UG2-20	1,2-Dibromo-3-chloropropane		MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.78. Rad error is 5.73.
		Gross beta		TPU is 17.1. Rad error is 11.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.995. Rad error is 0.995.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.41. Rad error is 4.36.
		Technetium-99		TPU is 19.4. Rad error is 17.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.12. Rad error is 1.12.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 127. Rad error is 127.
8004-4819 MW371	MW371UG2-20	Trichloroethene		Result rejected during data assessment. Result from resample reported.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.28. Rad error is 8.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.7. Rad error is 5.63.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.935. Rad error is 0.935.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.75. Rad error is 2.75.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 14.1. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.977. Rad error is 0.972.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 134. Rad error is 134.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4808 MW372	MW372UG2-20	Chloride	*	Duplicate analysis not within control limits.
		Sulfate	*	Duplicate analysis not within control limits.
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.94. Rad error is 6.94.
		Gross beta		TPU is 11.3. Rad error is 7.59.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.831. Rad error is 0.831.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.56. Rad error is 2.56.
		Technetium-99		TPU is 17.8. Rad error is 14.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.698. Rad error is 0.695.
		Tritium	U *	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 133. Rad error is 133.
004-4792 MW373	MW373UG2-20	Chloride		Duplicate analysis not within control limits.
		Sulfate	*	Duplicate analysis not within control limits.
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.58. Rad error is 4.58.
		Gross beta		TPU is 7.32. Rad error is 6.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.04. Rad error is 1.04.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.4. Rad error is 3.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 14.6. Rad error is 14.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.3. Rad error is 1.3.
004 0000 1414/074	MM/2741102 00	Tritium	U *	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 132. Rad error is 132.
004-0990 MW374	MW3740G2-20	Chloride	*	Duplicate analysis not within control limits.
		Sulfate		Duplicate analysis not within control limits.
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Trichloroethene		Result rejected during data assessment. Result from resample repor
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.36. Rad error is 7.36.
		Gross beta		TPU is 36.3. Rad error is 13.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.603. Rad error is 0.603.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.49. Rad error is 3.49.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.7. Rad error is 13.7. Indicates analyte/nuclide was analyzed for, but not detected. TPU is
		Thorium-230	U	0.96. Rad error is 0.955. Indicates analyte/nuclide was analyzed for, but not detected. TPU is
		Tritium	U	121. Rad error is 121.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0985 MW375	MW375UG2-20	Chloride	*	Duplicate analysis not within control limits.
		Sulfate	*	Duplicate analysis not within control limits.
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.84. Rad error is 3.84.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.18. Rad error is 6.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.945. Rad error is 0.944.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.03. Rad error is 4.03.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.8. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.01. Rad error is 1.01.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 128. Rad error is 128.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring _Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample we collected.
		Mercury		During sampling, the well went dry; therefore, no sample we collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	·	Molybdenum		During sampling, the well went dry; therefore, no sample was
		Nickel		collected. During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring _Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	·	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377	ł	Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG2-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.4. Rad error is 7.4.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.38. Rad error is 6.34.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.377. Rad error is 0.377.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.32. Rad error is 3.32.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.22. Rad error is 3.14.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 109. Rad error is 109.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG2-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.99. Rad error is 5.99.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.02. Rad error is 6.02.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.614. Rad error is 0.613.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.73. Rad error is 2.7.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.49. Rad error is 2.48.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 110. Rad error is 110.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG2-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring	Facility	Constituent		Description
Point 0000-0000 QC	Sample ID TB1UG2-20	Constituent Zinc	Flag	Description Analysis of constituent not required and not performed.
0000-0000 QC	101002-20	1,2-Dibromo-3-chloropropane	VD	MS/MSD RPD outside acceptance criteria
		PCB, Total	12	Analysis of constituent not required and not performed.
		,		, , ,
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG2-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG2-20	Zinc	i iag	Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG2-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG2-20	Zinc	1 lug	Analysis of constituent not required and not performed.
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring	Facility		-	
Point	Sample ID	Constituent	Flag	Description
8004-4800 MW360	MW360DUG2-20	Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.44. Rad error is 4.43.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.74. Rad error is 6.62.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.403. Rad error is 0.403.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.69. Rad error is 1.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.8. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.12. Rad error is 1.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 109. Rad error is 108.

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	82	8004-098	33	8004-482	:0	8004-481	9
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	MW36	6	MW368	3	MW369		MW371	
Sample Sequen	ce #				1 1		1		1			
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		3/17/2020 (08:55	3/17/2020	08:30	3/17/2020 0	9:40	3/17/2020 09	9:58
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW366UG	2-20R	MW368UG	2-20R	MW369UG	2-20R	MW371UG2	-20R
Laboratory Sa	mple ID Number (if applicable)				5071600)1	5071600	2	5071600)3	50716004	4
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	3/20/2020		3/20/2020		3/20/2020		3/20/202	0
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	DOWN	I	DOWN		UP		UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride (s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.28		30.28		30.29		30.29	
S0145	Specific Conductance	т	µMH0/cm	Field	484		389		440		406	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0982	2	8004-098	3	8004-4820)	8004-4819)
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1 , 1	MW-2, BLANK-	F, etc.)	366		368		369		371	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	330.16		364.29		330.89		348.51	
N238	Dissolved Oxygen	т	mg/L	Field	2.92		2.48		0.8		5.56	
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field	6.17		6.41		6.2		6.69	
NS215	Eh	т	mV	Field	384		412		327		335	
S0907	Temperature	т	°c	Field	14.5		12.94		14.83		13.94	
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	т	mg/L	6020		*		*		*		*
7439-92-1	Lead	т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0982		8004-098	3	8004-482	20	8004-48	19
Facility's Lo	ocal Well or Spring Number (e.g.,)	MW-:	1, MW-2, et)	366		368		369		371	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260		*		*		*		*
75-25-2	Tribromomethane	т	mg/L	8260		*		*		*		*
74-83-9	Methyl bromide	т	mg/L	8260		*		*		*		*
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*		*		*		*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*		*		*		*
75-15-0	Carbon disulfide	т	mg/L	8260		*		*		*		*
75-00-3	Chloroethane	т	mg/L	8260		*		*		*		*
67-66-3	Chloroform	т	mg/L	8260		*		*		*		*
74-87-3	Methyl chloride	т	mg/L	8260		*		*		*		*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*		*		*		*
74-95-3	Methylene bromide	т	mg/L	8260		*		*		*		*
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*		*		*		*
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*		*		*		*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*		*		*		*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*		*		*		*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*		*		*		*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*		*		*		*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*		*		*		*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*		*		*		*
75-01-4	Vinyl chloride	т	mg/L	8260		*		*		*		*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*		*		*		*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00334	*	<0.001	*	0.00064	J*	<0.001	*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	90	000-000	00				
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	MW37	'4	T. BLAN	Κ7				
Sample Sequend	ce #				1		1					
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		Т					
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		3/17/2020 -	10:18	3/17/2020 07:30					
Duplicate ("Y	'or "N") ²				Ν		N	N				
Split ("Y" or	Split ("Y" or "N") ³						N					
Facility Sample ID Number (if applicable)					MW374UG	2-20R	TB7UG2	2-20				
Laboratory Sample ID Number (if applicable)					507160	05	507160	06				
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	3/20/20	20	3/20/2020					
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	UP		NA					
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*				
16887-00-6	Chloride(s)	т	mg/L	9056		*		*				
16984-48-8	Fluoride	т	mg/L	9056		*		*				
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*				
14808-79-8	Sulfate	т	mg/L	9056		*		*				
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.31			*				
S0145	Specific Conductance	т	µMH0/cm	Field	732			*				

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-0990)	0000-0000)				
Facility's Loo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	374		T. BLANK	7				
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	342.96			*				
N238	Dissolved Oxygen	т	mg/L	Field	3.36			*				
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*				
S0296	рH	т	Units	Field	6.79			*				
NS215	Eh	т	mV	Field	358			*				
S0907	Temperature	т	°c	Field	15.22			*				
7429-90-5	Aluminum	т	mg/L	6020		*		*				
7440-36-0	Antimony	т	mg/L	6020		*		*				
7440-38-2	Arsenic	т	mg/L	6020		*		*				
7440-39-3	Barium	т	mg/L	6020		*		*				
7440-41-7	Beryllium	т	mg/L	6020		*		*				
7440-42-8	Boron	т	mg/L	6020		*		*				
7440-43-9	Cadmium	т	mg/L	6020		*		*				
7440-70-2	Calcium	т	mg/L	6020		*		*				
7440-47-3	Chromium	т	mg/L	6020		*		*				
7440-48-4	Cobalt	т	mg/L	6020		*		*				
7440-50-8	Copper	т	mg/L	6020		*		*				
7439-89-6	Iron	т	mg/L	6020		*		*				
7439-92-1	Lead	т	mg/L	6020		*		*				
7439-95-4	Magnesium	т	mg/L	6020		*		*				
7439-96-5	Manganese	т	mg/L	6020		*		*				
7439-97-6	Mercury	т	mg/L	7470		*		*				

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0990		0000-000	0				
Facility's Loc	cal Well or Spring Number (e.g.,)	MW-1	L, MW-2, et)	374		T. BLANK	7				
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260		*		*				
75-25-2	Tribromomethane	т	mg/L	8260		*		*				
74-83-9	Methyl bromide	т	mg/L	8260		*		*				
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*		*				
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*		*				
75-15-0	Carbon disulfide	т	mg/L	8260		*		*				
75-00-3	Chloroethane	т	mg/L	8260		*		*				
67-66-3	Chloroform	т	mg/L	8260		*		*				
74-87-3	Methyl chloride	т	mg/L	8260		*		*				
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*		*				
74-95-3	Methylene bromide	т	mg/L	8260		*		*				
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*		*				
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*		*				
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*		*				
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*		*				
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*		*				
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*		*				
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*		*				
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*		*				
75-01-4	Vinyl chloride	т	mg/L	8260		*		*				
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*		*				
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001	*	<0.001	*				

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0982 MW366	MW366UG2-20R	Bromide	*	Analysis of constituent not required and not performed.
		Chloride	*	Analysis of constituent not required and not performed.
		Fluoride	*	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	*	Analysis of constituent not required and not performed.
		Sulfate	*	Analysis of constituent not required and not performed.
		Total Dissolved Solids	*	Analysis of constituent not required and not performed.
		Aluminum	*	Analysis of constituent not required and not performed.
		Antimony	*	Analysis of constituent not required and not performed.
		Arsenic	*	Analysis of constituent not required and not performed.
		Barium	*	Analysis of constituent not required and not performed.
		Beryllium	*	Analysis of constituent not required and not performed.
		Boron	*	Analysis of constituent not required and not performed.
		Cadmium	*	Analysis of constituent not required and not performed.
		Calcium	*	Analysis of constituent not required and not performed.
		Chromium	*	Analysis of constituent not required and not performed.
		Cobalt	*	Analysis of constituent not required and not performed.
		Copper	*	Analysis of constituent not required and not performed.
		Iron	*	Analysis of constituent not required and not performed.
		Lead	*	Analysis of constituent not required and not performed.
		Magnesium	*	Analysis of constituent not required and not performed.
		Manganese	*	Analysis of constituent not required and not performed.
		Mercury	*	Analysis of constituent not required and not performed.
		Bromodichloromethane	*	Analysis of constituent not required and not performed.
		Tribromomethane	*	Analysis of constituent not required and not performed.
		Methyl bromide	*	Analysis of constituent not required and not performed.
		Methyl Ethyl Ketone	*	Analysis of constituent not required and not performed.
		trans-1,4-Dichloro-2-butene	*	Analysis of constituent not required and not performed.
		Carbon disulfide	*	Analysis of constituent not required and not performed.
		Chloroethane	*	Analysis of constituent not required and not performed.
		Chloroform	*	Analysis of constituent not required and not performed.
		Methyl chloride	*	Analysis of constituent not required and not performed.
		cis-1,2-Dichloroethene	*	Analysis of constituent not required and not performed.
		Methylene bromide	*	Analysis of constituent not required and not performed.
		1,1-Dichloroethane	*	Analysis of constituent not required and not performed.
		1,2-Dichloroethane	*	Analysis of constituent not required and not performed.
		1,1-Dichloroethylene	*	Analysis of constituent not required and not performed.
		1,2-Dibromoethane	*	Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.
		1,1,1-Trichloroethane	*	Analysis of constituent not required and not performed.
		1,1,2-Trichloroethane	*	Analysis of constituent not required and not performed.
		1,1,1,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.
		C-75	5	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility			
Point	Sample ID	Constituent	Flag	Description
8004-0982 MW366	MW366UG2-20R	Vinyl chloride	*	Analysis of constituent not required and not performed.
		Tetrachloroethene	*	Analysis of constituent not required and not performed.
		Trichloroethene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368	MW368UG2-20R	Bromide	*	Analysis of constituent not required and not performed.
		Chloride	*	Analysis of constituent not required and not performed.
		Fluoride	*	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	*	Analysis of constituent not required and not performed.
		Sulfate	*	Analysis of constituent not required and not performed.
		Total Dissolved Solids	*	Analysis of constituent not required and not performed.
		Aluminum	*	Analysis of constituent not required and not performed.
		Antimony	*	Analysis of constituent not required and not performed.
		Arsenic	*	Analysis of constituent not required and not performed.
		Barium	*	Analysis of constituent not required and not performed.
		Beryllium	*	Analysis of constituent not required and not performed.
		Boron	*	Analysis of constituent not required and not performed.
		Cadmium	*	Analysis of constituent not required and not performed.
		Calcium	*	Analysis of constituent not required and not performed.
		Chromium	*	Analysis of constituent not required and not performed.
		Cobalt	*	Analysis of constituent not required and not performed.
		Copper	*	Analysis of constituent not required and not performed.
		Iron	*	Analysis of constituent not required and not performed.
		Lead	*	Analysis of constituent not required and not performed.
		Magnesium	*	Analysis of constituent not required and not performed.
		Manganese	*	Analysis of constituent not required and not performed.
		Mercury	*	Analysis of constituent not required and not performed.
		Bromodichloromethane	*	Analysis of constituent not required and not performed.
		Tribromomethane	*	Analysis of constituent not required and not performed.
		Methyl bromide	*	Analysis of constituent not required and not performed.
		Methyl Ethyl Ketone	*	Analysis of constituent not required and not performed.
		trans-1,4-Dichloro-2-butene	*	Analysis of constituent not required and not performed.
		Carbon disulfide	*	Analysis of constituent not required and not performed.
		Chloroethane	*	Analysis of constituent not required and not performed.
		Chloroform	*	Analysis of constituent not required and not performed.
		Methyl chloride	*	Analysis of constituent not required and not performed.
		cis-1,2-Dichloroethene	*	Analysis of constituent not required and not performed.
		Methylene bromide	*	Analysis of constituent not required and not performed.
		1,1-Dichloroethane	*	Analysis of constituent not required and not performed.
		1,2-Dichloroethane	*	Analysis of constituent not required and not performed.
		1,1-Dichloroethylene	*	Analysis of constituent not required and not performed.
		1,2-Dibromoethane	*	Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.
		1,1,1-Trichloroethane	*	Analysis of constituent not required and not performed.
		1,1,2-Trichloroethane	*	Analysis of constituent not required and not performed.
		1,1,1,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.
		C-77	7	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility			
Point	Sample ID	Constituent	Flag	Description
8004-0983 MW368	MW368UG2-20R	Vinyl chloride	*	Analysis of constituent not required and not performed.
		Tetrachloroethene	*	Analysis of constituent not required and not performed.
		Trichloroethene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4820 MW369	MW369UG2-20R	Bromide	*	Analysis of constituent not required and not performed.
		Chloride	*	Analysis of constituent not required and not performed.
		Fluoride	*	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	*	Analysis of constituent not required and not performed.
		Sulfate	*	Analysis of constituent not required and not performed.
		Total Dissolved Solids	*	Analysis of constituent not required and not performed.
		Aluminum	*	Analysis of constituent not required and not performed.
		Antimony	*	Analysis of constituent not required and not performed.
		Arsenic	*	Analysis of constituent not required and not performed.
		Barium	*	Analysis of constituent not required and not performed.
		Beryllium	*	Analysis of constituent not required and not performed.
		Boron	*	Analysis of constituent not required and not performed.
		Cadmium	*	Analysis of constituent not required and not performed.
		Calcium	*	Analysis of constituent not required and not performed.
		Chromium	*	Analysis of constituent not required and not performed.
		Cobalt	*	Analysis of constituent not required and not performed.
		Copper	*	Analysis of constituent not required and not performed.
		Iron	*	Analysis of constituent not required and not performed.
		Lead	*	Analysis of constituent not required and not performed.
		Magnesium	*	Analysis of constituent not required and not performed.
		Manganese	*	Analysis of constituent not required and not performed.
		Mercury	*	Analysis of constituent not required and not performed.
		Bromodichloromethane	*	Analysis of constituent not required and not performed.
		Tribromomethane	*	Analysis of constituent not required and not performed.
		Methyl bromide	*	Analysis of constituent not required and not performed.
		Methyl Ethyl Ketone	*	Analysis of constituent not required and not performed.
		trans-1,4-Dichloro-2-butene	*	Analysis of constituent not required and not performed.
		Carbon disulfide	*	Analysis of constituent not required and not performed.
		Chloroethane	*	Analysis of constituent not required and not performed.
		Chloroform	*	Analysis of constituent not required and not performed.
		Methyl chloride	*	Analysis of constituent not required and not performed.
		cis-1,2-Dichloroethene	*	Analysis of constituent not required and not performed.
		Methylene bromide	*	Analysis of constituent not required and not performed.
		1,1-Dichloroethane	*	Analysis of constituent not required and not performed.
		1,2-Dichloroethane	*	Analysis of constituent not required and not performed.
		1,1-Dichloroethylene	*	Analysis of constituent not required and not performed.
		1,2-Dibromoethane	*	Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.
		1,1,1-Trichloroethane	*	Analysis of constituent not required and not performed.
		1,1,2-Trichloroethane	*	Analysis of constituent not required and not performed.
			*	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility			
Point	Sample ID	Constituent	Flag	Description
8004-4820 MW369	MW369UG2-20R	Vinyl chloride	*	Analysis of constituent not required and not performed.
		Tetrachloroethene	*	Analysis of constituent not required and not performed.
		Trichloroethene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4819 MW371	MW371UG2-20R	Bromide	*	Analysis of constituent not required and not performed.
		Chloride	*	Analysis of constituent not required and not performed.
		Fluoride	*	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	*	Analysis of constituent not required and not performed.
		Sulfate	*	Analysis of constituent not required and not performed.
		Total Dissolved Solids	*	Analysis of constituent not required and not performed.
		Aluminum	*	Analysis of constituent not required and not performed.
		Antimony	*	Analysis of constituent not required and not performed.
		Arsenic	*	Analysis of constituent not required and not performed.
		Barium	*	Analysis of constituent not required and not performed.
		Beryllium	*	Analysis of constituent not required and not performed.
		Boron	*	Analysis of constituent not required and not performed.
		Cadmium	*	Analysis of constituent not required and not performed.
		Calcium	*	Analysis of constituent not required and not performed.
		Chromium	*	Analysis of constituent not required and not performed.
		Cobalt	*	Analysis of constituent not required and not performed.
		Copper	*	Analysis of constituent not required and not performed.
		Iron	*	Analysis of constituent not required and not performed.
		Lead	*	Analysis of constituent not required and not performed.
		Magnesium	*	Analysis of constituent not required and not performed.
		Manganese	*	Analysis of constituent not required and not performed.
		Mercury	*	Analysis of constituent not required and not performed.
		Bromodichloromethane	*	Analysis of constituent not required and not performed.
		Tribromomethane	*	Analysis of constituent not required and not performed.
		Methyl bromide	*	Analysis of constituent not required and not performed.
		Methyl Ethyl Ketone	*	Analysis of constituent not required and not performed.
		trans-1,4-Dichloro-2-butene	*	Analysis of constituent not required and not performed.
		Carbon disulfide	*	Analysis of constituent not required and not performed.
		Chloroethane	*	Analysis of constituent not required and not performed.
		Chloroform	*	Analysis of constituent not required and not performed.
		Methyl chloride	*	Analysis of constituent not required and not performed.
		cis-1,2-Dichloroethene	*	Analysis of constituent not required and not performed.
		Methylene bromide	*	Analysis of constituent not required and not performed.
		1,1-Dichloroethane	*	Analysis of constituent not required and not performed.
		1,2-Dichloroethane	*	Analysis of constituent not required and not performed.
		1,1-Dichloroethylene	*	Analysis of constituent not required and not performed.
		1,2-Dibromoethane	*	Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.
		1,1,1-Trichloroethane	*	Analysis of constituent not required and not performed.
		1,1,2-Trichloroethane	*	Analysis of constituent not required and not performed.
		1,1,1,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.
		C-81		

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility			
Point	Sample ID	Constituent	Flag	Description
8004-4819 MW371	MW371UG2-20R	Vinyl chloride	*	Analysis of constituent not required and not performed.
		Tetrachloroethene	*	Analysis of constituent not required and not performed.
		Trichloroethene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0990 MW374	MW374UG2-20R	Bromide	*	Analysis of constituent not required and not performed.
		Chloride	*	Analysis of constituent not required and not performed.
		Fluoride	*	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	*	Analysis of constituent not required and not performed.
		Sulfate	*	Analysis of constituent not required and not performed.
		Total Dissolved Solids	*	Analysis of constituent not required and not performed.
		Aluminum	*	Analysis of constituent not required and not performed.
		Antimony	*	Analysis of constituent not required and not performed.
		Arsenic	*	Analysis of constituent not required and not performed.
		Barium	*	Analysis of constituent not required and not performed.
		Beryllium	*	Analysis of constituent not required and not performed.
		Boron	*	Analysis of constituent not required and not performed.
		Cadmium	*	Analysis of constituent not required and not performed.
		Calcium	*	Analysis of constituent not required and not performed.
		Chromium	*	Analysis of constituent not required and not performed.
		Cobalt	*	Analysis of constituent not required and not performed.
		Copper	*	Analysis of constituent not required and not performed.
		Iron	*	Analysis of constituent not required and not performed.
		Lead	*	Analysis of constituent not required and not performed.
		Magnesium	*	Analysis of constituent not required and not performed.
		Manganese	*	Analysis of constituent not required and not performed.
		Mercury	*	Analysis of constituent not required and not performed.
		Bromodichloromethane	*	Analysis of constituent not required and not performed.
		Tribromomethane	*	Analysis of constituent not required and not performed.
		Methyl bromide	*	Analysis of constituent not required and not performed.
		Methyl Ethyl Ketone	*	Analysis of constituent not required and not performed.
		trans-1,4-Dichloro-2-butene	*	Analysis of constituent not required and not performed.
		Carbon disulfide	*	Analysis of constituent not required and not performed.
		Chloroethane	*	Analysis of constituent not required and not performed.
		Chloroform	*	Analysis of constituent not required and not performed.
		Methyl chloride	*	Analysis of constituent not required and not performed.
		cis-1,2-Dichloroethene	*	Analysis of constituent not required and not performed.
		Methylene bromide	*	Analysis of constituent not required and not performed.
		1,1-Dichloroethane	*	Analysis of constituent not required and not performed.
		1,2-Dichloroethane	*	Analysis of constituent not required and not performed.
		1,1-Dichloroethylene	*	Analysis of constituent not required and not performed.
		1,2-Dibromoethane	*	Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.
		1,1,1-Trichloroethane	*	Analysis of constituent not required and not performed.
		1,1,2-Trichloroethane	*	Analysis of constituent not required and not performed.
		1,1,1,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.
		C-8.	3	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility			
Point	Sample ID	Constituent	Flag	Description
8004-0990 MW374	MW374UG2-20R	Vinyl chloride	*	Analysis of constituent not required and not performed.
		Tetrachloroethene	*	Analysis of constituent not required and not performed.
		Trichloroethene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point		Facility Sample ID	Constituent	Flag	Description
0000-0000	QC	TB7UG2-20	Bromide	*	Analysis of constituent not required and not performed.
			Chloride	*	Analysis of constituent not required and not performed.
			Fluoride	*	Analysis of constituent not required and not performed.
			Nitrate & Nitrite	*	Analysis of constituent not required and not performed.
			Sulfate	*	Analysis of constituent not required and not performed.
			Total Dissolved Solids	*	Analysis of constituent not required and not performed.
			Aluminum	*	Analysis of constituent not required and not performed.
			Antimony	*	Analysis of constituent not required and not performed.
			Arsenic	*	Analysis of constituent not required and not performed.
			Barium	*	Analysis of constituent not required and not performed.
			Beryllium	*	Analysis of constituent not required and not performed.
			Boron	*	Analysis of constituent not required and not performed.
			Cadmium	*	Analysis of constituent not required and not performed.
			Calcium	*	Analysis of constituent not required and not performed.
			Chromium	*	Analysis of constituent not required and not performed.
			Cobalt	*	Analysis of constituent not required and not performed.
			Copper	*	Analysis of constituent not required and not performed.
			Iron	*	Analysis of constituent not required and not performed.
			Lead	*	Analysis of constituent not required and not performed.
			Magnesium	*	Analysis of constituent not required and not performed.
			Manganese	*	Analysis of constituent not required and not performed.
			Mercury	*	Analysis of constituent not required and not performed.
			Bromodichloromethane	*	Analysis of constituent not required and not performed.
			Tribromomethane	*	Analysis of constituent not required and not performed.
			Methyl bromide	*	Analysis of constituent not required and not performed.
			Methyl Ethyl Ketone	*	Analysis of constituent not required and not performed.
			trans-1,4-Dichloro-2-butene	*	Analysis of constituent not required and not performed.
			Carbon disulfide	*	Analysis of constituent not required and not performed.
			Chloroethane	*	Analysis of constituent not required and not performed.
			Chloroform	*	Analysis of constituent not required and not performed.
			Methyl chloride	*	Analysis of constituent not required and not performed.
			cis-1,2-Dichloroethene	*	Analysis of constituent not required and not performed.
			Methylene bromide	*	Analysis of constituent not required and not performed.
			1,1-Dichloroethane	*	Analysis of constituent not required and not performed.
			1,2-Dichloroethane	*	Analysis of constituent not required and not performed.
			1,1-Dichloroethylene	*	Analysis of constituent not required and not performed.
			1,2-Dibromoethane	*	Analysis of constituent not required and not performed.
			1,1,2,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.
			1,1,1-Trichloroethane	*	Analysis of constituent not required and not performed.
			1,1,2-Trichloroethane	*	Analysis of constituent not required and not performed.
			1,1,1,2-Tetrachloroethane	*	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring		Facility			
Point		Sample ID	Constituent	Flag	Description
0000-0000	QC	TB7UG2-20	Vinyl chloride	*	Analysis of constituent not required and not performed.
			Tetrachloroethene	*	Analysis of constituent not required and not performed.
			Trichloroethene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

Finds/Unit: <u>KY8-980-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2020 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2020 data used to conduct the statistical analyses were collected in January and March 2020. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^{a,b}	SG	UCRS
MW377 ^{a,b}	SG	UCRS

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

^b Well was dry this quarter, and a groundwater sample could not be collected.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2020. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: $upper TL = X + (K \times S)$ lower TL = X - (K × S)

Parameters
Aluminum
Beryllium
Beta Activity
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
cis-1,2-dichloropropene
Cobalt
Conductivity
Copper
Cyanide
Dissolved Oxygen
Dissolved Solids
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
PCB, Total
PCB-1242
pH*
Potassium
Radium-226
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
trans-1,3-dichloropropene
Trichloroethene
Vanadium
Zinc

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	0	7	Yes
Antimony	7	7	0	No
Beryllium	7	6	1	Yes
Beta activity	7	6	1	Yes
Boron	7	2	5	Yes
Bromide	7	6	1	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	1	6	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	3	4	Yes
Conductivity	7	0	7	Yes
Copper	7	2	5	Yes
Cyanide	7	6	1	Yes
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical
Molybdenum	7	5	2	Analysis? Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	6	1	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1221 PCB-1232	7	7	0	No
PCB-1242	7	6	1	Yes
PCB-1242	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
pH	7	0	7	Yes
Potassium	7	1	6	Yes
Radium-226	7	6	1	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	2	5	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1.4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	5	2	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	5	1	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	2	4	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	2	4	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
<i>cis</i> -1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	1	5	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Molybdenum	6	6	0	No
Nickel	6	1	5	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	3	3	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	5	1	Yes
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	5	1	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	0	6	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	3	3	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	5	1	Yes
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	1	5	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	3	3	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical
Molybdenum	6	4	2	Analysis? Yes
Nickel	6	3	3	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	1	5	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	5	1	Yes
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 31, 28, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified historical background exceedances for beta activity, calcium, dissolved oxygen, oxidation-reduction potential, and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for beta activity, calcium, conductivity, dissolved solids, oxidation-reduction potential, and technetium-99.

<u>LRGA</u>

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW359: Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential, Technetium-99
MW362: Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential
MW368: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW370: Beta activity, Oxidation-Reduction Potential, Technetium-99
MW371: Calcium, Dissolve Oxygen, Oxidation-Reduction Potential, Sulfate	MW369: Oxidation-Reduction Potential	MW373: Oxidation-Reduction Potential
MW374: Beta activity, Dissolved oxygen, Oxidation-Reduction Potential	MW372: Beta Activity, Calcium, Conductivity, Dissolved Solids, Oxidation-Reduction Potential, Technetium-99	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Beryllium	Tolerance Interval	1.12	No exceedance of statistically derived historical background concentration.
Beta Activity	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW374.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	Current results exceed statistically derived historical background concentration in MW371.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Cyanide	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW365, MW371, and MW374.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	3.79	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW372.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
trans-1,3- dichloropropene	Tolerance Interval	0	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
cis-1,3- dichloropropene	Tolerance Interval	0.80	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW361, MW364, MW367, MW370, and MW373.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW361, MW364, and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
<i>Tran</i> s-1,3- dichloropropene	Tolerance Interval	0.80	No exceedance of statistically derived historical background concentration
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 5, 6, and 3 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. This quarter's results showed no exceedances in UCRS wells located downgradient of the landfill.

<u>URGA</u>

This quarter's results showed no exceedances in wells located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.10, Exhibit D.11, and Exhibit D.12, respectively.

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	1.77	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW374 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.48	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Oxygen	Tolerance Interval	0.85	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.20	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	1.08	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.10. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.80	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Calcium	Tolerance Interval	0.50	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.25	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.39	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.12	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.77	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.66	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.10	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.71	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.300	S = 6.859	CV(1)= 2.078	K factor**= 2.523	TL(1)= 20.604	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.371	S= 1.678	CV(2) =-4.521	K factor**= 2.523	TL(2)= 3.863	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	2.24	0.806		
4/22/2002	0.2	-1.609		
7/15/2002	0.2	-1.609		
10/8/2002	0.2	-1.609		
1/8/2003	0.2	-1.609		
4/3/2003	0.2	-1.609		
7/9/2003	0.2	-1.609		
10/6/2003	0.2	-1.609		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	21.3	3.059		
1/7/2003	20	2.996		
4/2/2003	4.11	1.413		
7/9/2003	1.41	0.344		
10/7/2003	1.09	0.086		
1/6/2004	0.854	-0.158		
4/7/2004	0.2	-1.609		
7/14/2004	0.2	-1.609		

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0328	N/A	-3.417	NO
MW362	Downgradient	Yes	0.0264	N/A	-3.634	NO
MW365	Downgradient	Yes	0.0224	N/A	-3.799	NO
MW368	Downgradient	Yes	0.687	N/A	-0.375	NO
MW371	Upgradient	Yes	3.81	N/A	1.338	NO
MW374	Upgradient	Yes	0.0445	N/A	-3.112	NO
MW375	Sidegradient	Yes	0.147	N/A	-1.917	NO
N/A Deci	ulte identified as N	Jon Detects	during lak	oratory analysis of	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonBerylliumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.002	S = 0.003	CV(1)= 1.125	K factor**= 2.523	TL(1)= 0.009	LL(1)=N/A
Statistics-Transformed Background Data	X= -6.462	S = 0.812	CV(2) =-0.126	K factor**= 2.523	TL(2)= -4.413	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.005	-5.298
4/22/2002	0.005	-5.298
7/15/2002	0.005	-5.298
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.01	-4.605
1/7/2003	0.001	-6.908
4/2/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/7/2003	0.001	-6.908
1/6/2004	0.001	-6.908
4/7/2004	0.001	-6.908
7/14/2004	0.001	-6.908

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	No	0.0005	N/A	-7.601	N/A
MW365	Downgradient	No	0.0005	N/A	-7.601	N/A
MW368	Downgradient	No	0.0005	N/A	-7.601	N/A
MW371	Upgradient	Yes	0.00026	3 N/A	-8.243	NO
MW374	Upgradient	No	0.0005	N/A	-7.601	N/A
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A
N/A - Resu	lts identified as l	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonBeta activityUNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.678	S= 4.619	CV(1)= 0.987	K factor**= 2.523	TL(1)= 16.333	LL(1)=N/A
Statistics-Transformed Background	X= 1.392	S = 0.853	CV(2)= 0.613	K factor**= 2.523	TL(2)= 2.827	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.819	-0.200			
4/22/2002	-1.33	#Func!			
7/15/2002	2.82	1.037			
10/8/2002	1.29	0.255			
1/8/2003	1.84	0.610			
4/3/2003	4.87	1.583			
7/9/2003	6.61	1.889			
10/6/2003	2.08	0.732			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	16.9	2.827			
1/7/2003	-0.432	#Func!			
4/2/2003	8.8	2.175			
7/9/2003	4.1	1.411			
10/7/2003	2.94	1.078			
1/6/2004	9.36	2.236			
4/7/2004	5.33	1.673			
7/14/2004	8.85	2.180			

Data

Dry/Par	tially Dry Wells
Well No.	Gradient

MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	4.95	N/A	1.599	N/A
MW362	Downgradient	No	5.57	N/A	1.717	N/A
MW365	Downgradient	No	3.69	N/A	1.306	N/A
MW368	Downgradient	No	1.52	N/A	0.419	N/A
MW371	Upgradient	No	4.84	N/A	1.577	N/A
MW374	Upgradient	Yes	209	YES	5.342	N/A
MW375	Sidegradient	No	5.88	N/A	1.772	N/A
NI/A D	1. 1C. 1. N		1 . 11		1. 1.1.1	1 (

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW374

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2	0.693			
7/15/2002	2	0.693			
10/8/2002	0.2	-1.609			
1/8/2003	0.2	-1.609			
4/3/2003	0.2	-1.609			
7/9/2003	0.2	-1.609			
10/6/2003	0.2	-1.609			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	2	0.693			
1/7/2003	0.2	-1.609			
4/2/2003	0.2	-1.609			
7/9/2003	0.2	-1.609			
10/7/2003	0.2	-1.609			
1/6/2004	0.2	-1.609			
4/7/2004	0.2	-1.609			
7/14/2004	0.2	-1.609			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.015	N/A	-4.200	N/A
MW362	Downgradient	Yes	0.0161	N/A	-4.129	NO
MW365	Downgradient	Yes	0.00719	N/A	-4.935	NO
MW368	Downgradient	Yes	0.00573	N/A	-5.162	NO
MW371	Upgradient	No	0.015	N/A	-4.200	N/A
MW374	Upgradient	Yes	0.0265	N/A	-3.631	NO
MW375	Sidegradient	Yes	0.00914	N/A	-4.695	NO
N/A - Resu	Its identified as l	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonBromideUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.394	S = 0.474	CV(1)= 0.340	K factor**= 2.523	TL(1)= 2.590	LL(1)= N/A
Statistics-Transformed Background	X = 0.279	S = 0.332	CV(2) =1,190	K factor**= 2.523	TL(2)= 1.118	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	1	0.000			
4/22/2002	1	0.000			
7/15/2002	1	0.000			
10/8/2002	1	0.000			
1/8/2003	1	0.000			
4/3/2003	1	0.000			
7/9/2003	1	0.000			
10/6/2003	1	0.000			
Well Number:	MW374				
Date Collected	Result	LN(Result)			

2.1

2.1

1.9

1

1.9

1.9

1.8

1.6

Data

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.2	N/A	-1.609	N/A
MW362	Downgradient	t No	0.2	N/A	-1.609	N/A
MW365	Downgradient	t No	0.2	N/A	-1.609	N/A
MW368	Downgradient	t No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.687	NO	-0.375	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A
NI/A D	1. 1		1 . 11		1. 1.1.	1 (

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.742

0.742

0.642

0.000

0.642

0.642

0.588

0.470

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 34.100
 S= 13.637
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 68.505
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.466
 S= 0.356
 CV(2)=0.103
 K factor**= 2.523
 TL(2)= 4.364
 LL(2)=N/A

Historical Bac Upgradient W		ta from unsformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	67.3	4.209
1/7/2003	60.6	4.104
4/2/2003	47.2	3.854
7/9/2003	34.7	3.547
10/7/2003	37.1	3.614
1/6/2004	37.7	3.630
4/7/2004	32.2	3.472
7/14/2004	26.9	3.292

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	6.07	NO	1.803	N/A	
MW362	Downgradient	Yes	22.7	NO	3.122	N/A	
MW365	Downgradient	Yes	22.4	NO	3.109	N/A	
MW368	Downgradient	Yes	37.8	NO	3.632	N/A	
MW371	Upgradient	Yes	74.8	YES	4.315	N/A	
MW374	Upgradient	Yes	21	NO	3.045	N/A	
MW375	Sidegradient	Yes	13.9	NO	2.632	N/A	
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW371

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonChemical Oxygen Demand (COD)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=72.938
 S= 70.749
 CV(1)=0.970
 K factor**=2.523
 TL(1)=251.437
 LL(1)=N/A

 Statistics-Transformed Background
 X=4.000
 S= 0.702
 CV(2)=0.175
 K factor**=2.523
 TL(2)=5.770
 LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	260	5.561
1/7/2003	214	5.366
4/2/2003	147	4.990
7/9/2003	72	4.277
10/7/2003	56	4.025
1/6/2004	68	4.220
4/7/2004	35	3.555
7/14/2004	35	3.555
4/2/2003 7/9/2003 10/7/2003 1/6/2004 4/7/2004	147 72 56 68 35	4.990 4.277 4.025 4.220 3.555

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	10.1	NO	2.313	N/A
MW362	Downgradient	No	20	N/A	2.996	N/A
MW365	Downgradient	Yes	33.1	NO	3.500	N/A
MW368	Downgradient	Yes	38.2	NO	3.643	N/A
MW371	Upgradient	Yes	10	NO	2.303	N/A
MW374	Upgradient	Yes	48.5	NO	3.882	N/A
MW375	Sidegradient	Yes	79.2	NO	4.372	N/A
N/A - Rest	ults identified as l	Non-Detects	during lal	oratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 91.300
 S= 86.959
 CV(1)=0.952
 K factor**= 2.523
 TL(1)= 310.697
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.620
 S= 1.590
 CV(2)=0.439
 K factor**= 2.523
 TL(2)=7.631
 LL(2)=N/A

Historical Bac Upgradient W		
Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	199.2	5.294
1/7/2003	199.7	5.297
4/2/2003	171.8	5.146
7/9/2003	178.7	5.186
10/7/2003	175.6	5.168
1/6/2004	170.4	5.138
4/7/2004	156.4	5.052
7/14/2004	144.7	4.975

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.925	NO	-0.078	N/A
MW362	Downgradient	Yes	4.23	NO	1.442	N/A
MW365	Downgradient	Yes	2.27	NO	0.820	N/A
MW368	Downgradient	Yes	1.83	NO	0.604	N/A
MW371	Upgradient	Yes	2.26	NO	0.815	N/A
MW374	Upgradient	Yes	59.5	NO	4.086	N/A
MW375	Sidegradient	Yes	3.6	NO	1.281	N/A
N/A - Rest	ults identified as l	Non-Detects	during la	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.007	S = 0.009	CV(1)= 1.314	K factor**= 2.523	TL(1)= 0.031	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.843	S = 1.392	CV(2) =-0.238	K factor**= 2.523	TL(2)= -2.331	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resu				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	0.025	-3.689		
4/22/2002	0.025	-3.689		
7/15/2002	0.025	-3.689		
10/8/2002	0.001	-6.908		
1/8/2003	0.001	-6.908		
4/3/2003	0.001	-6.908		
7/9/2003	0.001	-6.908		
10/6/2003	0.001	-6.908		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	0.01	-4.605		
1/7/2003	0.01	-4.605		
4/2/2003	0.01	-4.605		
7/9/2003	0.00161	-6.432		
10/7/2003	0.001	-6.908		
1/6/2004	0.001	-6.908		
4/7/2004	0.001	-6.908		
7/14/2004	0.001	-6.908		

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	No	0.001	N/A	-6.908	N/A
MW365	Downgradient	Yes	0.00148	N/A	-6.516	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	Yes	0.00083	7 N/A	-7.086	NO
MW374	Upgradient	Yes	0.00119	N/A	-6.734	NO
MW375	Sidegradient	Yes	0.00155	N/A	-6.470	NO
N/A - Rest	ults identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background DataX = 918.744 S = 417.257 CV(1) = 0.454K factor**= 2.523TL(1) = 1971.483 LL(1) = N/A

Statistics-Transformed Background X=6.705 S= 0.550 CV(2)=0.082 Data

Historical Background Data from Upgradient Wells with Transformed Resul				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	541	6.293		
4/22/2002	643	6.466		
7/15/2002	632	6.449		
10/8/2002	631	6.447		
1/8/2003	680	6.522		
4/3/2003	749	6.619		
7/9/2003	734	6.599		
10/6/2003	753	6.624		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
3/18/2002	1007	6.915		
10/8/2002	1680	7.427		
1/7/2003	1715.9	7.448		
4/2/2003	172	5.147		
7/9/2003	1231	7.116		
10/7/2003	1214	7.102		
1/6/2004	1172	7.066		
4/7/2004	1145	7.043		

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

K factor**= 2.523 TL(2)= 8.092 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	250	NO	5.521	N/A
MW362	Downgradient	t Yes	716	NO	6.574	N/A
MW365	Downgradient	t Yes	392	NO	5.971	N/A
MW368	Downgradient	t Yes	389	NO	5.964	N/A
MW371	Upgradient	Yes	406	NO	6.006	N/A
MW374	Upgradient	Yes	732	NO	6.596	N/A
MW375	Sidegradient	Yes	327	NO	5.790	N/A
NUL D	1. 1.1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.056	S = 0.072	CV(1)= 1.275	K factor**= 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.395	S = 0.915	CV(2) =-0.270	K factor**= 2.523	TL(2)= -1.086	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
opgrautent w	chi with 11	ansiormed Resul			
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.025	-3.689			
4/22/2002	0.025	-3.689			
7/15/2002	0.05	-2.996			
10/8/2002	0.02	-3.912			
1/8/2003	0.02	-3.912			
4/3/2003	0.02	-3.912			
7/9/2003	0.02	-3.912			
10/6/2003	0.02	-3.912			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	0.2	-1.609			
1/7/2003	0.2	-1.609			
4/2/2003	0.2	-1.609			
7/9/2003	0.02	-3.912			
10/7/2003	0.02	-3.912			
1/6/2004	0.02	-3.912			
4/7/2004	0.02	-3.912			
7/14/2004	0.02	-3.912			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.00257	N/A	-5.964	NO	
MW362	Downgradient	Yes	0.0023	N/A	-6.075	NO	
MW365	Downgradient	Yes	0.00742	N/A	-4.904	NO	
MW368	Downgradient	Yes	0.00051	8 N/A	-7.566	NO	
MW371	Upgradient	Yes	0.00185	N/A	-6.293	NO	
MW374	Upgradient	No	0.00095	N/A	-6.959	N/A	
MW375	Sidegradient	No	0.00063	N/A	-7.370	N/A	
	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonCyanideUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.026	S = 0.012	CV(1)= 0.472	K factor**= 2.523	TL(1)= 0.056	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.740	S = 0.369	CV(2) =-0.099	K factor**= 2.523	TL(2)= -2.808	LL(2)=N/A

-		
Historical Bac Upgradient W		ta from ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.02	-3.912
4/22/2002	0.02	-3.912
7/15/2002	0.02	-3.912
10/8/2002	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
1/7/2004	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.02	-3.912
4/2/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.05	-2.996
7/14/2004	0.05	-2.996
10/7/2004	0.05	-2.996

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	No	0.2	N/A	-1.609	N/A
MW365	Downgradient	Yes	0.00322	NO	-5.738	N/A
MW368	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	No	0.2	N/A	-1.609	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A
N/A - Resi	ults identified as I	Non-Detects	during lab	oratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonDissolved OxygenUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.138	S = 0.621	CV(1)= 0.546	K factor**= 2.523	TL(1)= 2.704	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.013	S= 0.577	CV(2) =-43.069	K factor**= 2.523	TL(2)= 1.441	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2.26	0.815			
4/22/2002	1.15	0.140			
7/15/2002	0.94	-0.062			
10/8/2002	0.74	-0.301			
1/8/2003	2.62	0.963			
4/3/2003	1.5	0.405			
7/9/2003	1.66	0.507			
10/6/2003	1.28	0.247			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
3/18/2002	0.6	-0.511			
10/8/2002	0.67	-0.400			
1/7/2003	0.23	-1.470			
4/2/2003	0.65	-0.431			
7/9/2003	0.92	-0.083			
10/7/2003	0.99	-0.010			
1/6/2004	1.11	0.104			
4/7/2004	0.88	-0.128			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	2	NO	0.693	N/A
MW362	Downgradient	Yes	1.96	NO	0.673	N/A
MW365	Downgradient	Yes	4.29	YES	1.456	N/A
MW368	Downgradient	Yes	2.48	NO	0.908	N/A
MW371	Upgradient	Yes	5.56	YES	1.716	N/A
MW374	Upgradient	Yes	3.36	YES	1.212	N/A
MW375	Sidegradient	Yes	0.7	NO	-0.357	N/A
N/A - Resu	Its identified as I	Non-Detects	during lał	ooratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW365
MW371
MW374
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonDissolved SolidsUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 590.000 S= 248.068 CV(1)=0.420 K factor**= 2.523 TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background X=6.308 S= 0.383 CV(2)=0.061 Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	274	5.613			
4/22/2002	409	6.014			
7/15/2002	418	6.035			
10/8/2002	424	6.050			
1/8/2003	431	6.066			
4/3/2003	444	6.096			
7/9/2003	445	6.098			
10/6/2003	438	6.082			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	1136	7.035			
1/7/2003	1101	7.004			
4/2/2003	863	6.760			
7/9/2003	682	6.525			
10/7/2003	589	6.378			
1/6/2004	603	6.402			
4/7/2004	601	6.399			
7/14/2004	582	6.366			

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to

TL(2)= 7.274

LL(2)=N/A

1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	211	NO	5.352	N/A
MW362	Downgradient	t Yes	420	NO	6.040	N/A
MW365	Downgradient	t Yes	351	NO	5.861	N/A
MW368	Downgradient	t Yes	286	NO	5.656	N/A
MW371	Upgradient	Yes	377	NO	5.932	N/A
MW374	Upgradient	Yes	410	NO	6.016	N/A
MW375	Sidegradient	Yes	221	NO	5.398	N/A
NI/A Dara	14- : 1	Non Detecto	J			

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.612	S= 6.487	CV(1)= 0.981	K factor**= 2.523	TL(1)= 22.979	LL(1)=N/A
Statistics-Transformed Background	X =1 363	S = 1 147	CV(2)= 0.841	K factor**= 2 523	TL(2)= 4 256	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Upgradient W	ells with 1 ra	ansformed Result					
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	1.31	0.270					
4/22/2002	0.913	-0.091					
7/15/2002	0.881	-0.127					
10/8/2002	3.86	1.351					
1/8/2003	1.88	0.631					
4/3/2003	3.18	1.157					
7/9/2003	0.484	-0.726					
10/6/2003	2.72	1.001					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	23	3.135					
1/7/2003	13.9	2.632					
4/2/2003	14	2.639					
7/9/2003	14.2	2.653					
10/7/2003	7.92	2.069					
1/6/2004	7.86	2.062					
4/7/2004	4.82	1.573					
7/14/2004	4.87	1.583					

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.454	NO	-0.790	N/A
MW362	Downgradient	Yes	0.0664	NO	-2.712	N/A
MW365	Downgradient	No	0.1	N/A	-2.303	N/A
MW368	Downgradient	Yes	0.306	NO	-1.184	N/A
MW371	Upgradient	Yes	2.55	NO	0.936	N/A
MW374	Upgradient	Yes	1.11	NO	0.104	N/A
MW375	Sidegradient	Yes	0.54	NO	-0.616	N/A
N/A - Resu	ults identified as l	Non-Detects	during lał	poratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonMagnesiumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=11.347
 S= 3.019
 CV(1)=0.266
 K factor**=2.523
 TL(1)=18.963
 LL(1)=N/A

 Statistics-Transformed Background
 X=2.401
 S= 0.237
 CV(2)=0.099
 K factor**=2.523
 TL(2)=2.999
 LL(2)=N/A

 Data
 Data
 S= 0.237
 CV(2)=0.099
 K factor**=2.523
 TL(2)=2.999
 LL(2)=N/A

Historical Bac Upgradient W		ta from unsformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	20	2.996
1/7/2003	16.1	2.779
4/2/2003	13.1	2.573
7/9/2003	10.3	2.332
10/7/2003	11.1	2.407
1/6/2004	11	2.398
4/7/2004	9.69	2.271
7/14/2004	8.49	2.139

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	3.55	NO	1.267	N/A
MW362	Downgradient	t Yes	10.2	NO	2.322	N/A
MW365	Downgradient	t Yes	9.43	NO	2.244	N/A
MW368	Downgradient	t Yes	9.4	NO	2.241	N/A
MW371	Upgradient	Yes	1.94	NO	0.663	N/A
MW374	Upgradient	Yes	5.36	NO	1.679	N/A
MW375	Sidegradient	Yes	5.95	NO	1.783	N/A
NI/A D	Its identified as I	Nam Dataata	مستسبح الما	- anatamy analyzaia ay	. data validatia	and want

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.248	S = 0.222	CV(1)= 0.894	K factor**= 2.523	TL(1)= 0.809	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.873	S= 1.068	CV(2) =-0.570	K factor**= 2.523	TL(2)= 0.821	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.063	-2.765				
4/22/2002	0.067	-2.703				
7/15/2002	0.074	-2.604				
10/8/2002	0.0521	-2.955				
1/8/2003	0.0385	-3.257				
4/3/2003	0.0551	-2.899				
7/9/2003	0.0546	-2.908				
10/6/2003	0.0543	-2.913				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.596	-0.518				
1/7/2003	0.565	-0.571				
4/2/2003	0.675	-0.393				
7/9/2003	0.397	-0.924				
10/7/2003	0.312	-1.165				
1/6/2004	0.299	-1.207				
4/7/2004	0.329	-1.112				
7/14/2004	0.342	-1.073				

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00251	NO	-5.987	N/A
MW362	Downgradient	No	0.005	N/A	-5.298	N/A
MW365	Downgradient	Yes	0.0113	NO	-4.483	N/A
MW368	Downgradient	Yes	0.0152	NO	-4.186	N/A
MW371	Upgradient	Yes	0.426	NO	-0.853	N/A
MW374	Upgradient	Yes	0.148	NO	-1.911	N/A
MW375	Sidegradient	Yes	0.0186	NO	-3.985	N/A
N/A - Resu	Its identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonMolybdenumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.006	S = 0.010	CV(1)= 1.650	K factor**= 2.523	TL(1)= 0.030	LL(1)=N/A
Statistics-Transformed Background Data	X= -6.108	S = 1.239	CV(2) =-0.203	K factor**= 2.523	TL(2)= -2.983	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	0.025	-3.689					
4/22/2002	0.025	-3.689					
7/15/2002	0.025	-3.689					
10/8/2002	0.001	-6.908					
1/8/2003	0.00121	-6.717					
4/3/2003	0.001	-6.908					
7/9/2003	0.00111	-6.803					
10/6/2003	0.001	-6.908					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	0.00222	-6.110					
1/7/2003	0.00201	-6.210					
4/2/2003	0.00159	-6.444					
7/9/2003	0.00242	-6.024					
10/7/2003	0.001	-6.908					
1/6/2004	0.001	-6.908					
4/7/2004	0.001	-6.908					
7/14/2004	0.001	-6.908					

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	No	0.001	N/A	-6.908	N/A		
MW362	Downgradient	Yes	0.00053	4 N/A	-7.535	NO		
MW365	Downgradient	No	0.001	N/A	-6.908	N/A		
MW368	Downgradient	Yes	0.00097	8 N/A	-6.930	NO		
MW371	Upgradient	No	0.001	N/A	-6.908	N/A		
MW374	Upgradient	No	0.00082	3 N/A	-7.103	N/A		
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A		
N/A - Resi	ults identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.023	S = 0.022	CV(1)= 0.980	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.349	S= 1.109	CV(2) =-0.255	K factor**= 2.523	TL(2)= -1.552	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.05	-2.996				
4/22/2002	0.05	-2.996				
7/15/2002	0.05	-2.996				
10/8/2002	0.0124	-4.390				
1/8/2003	0.005	-5.298				
4/3/2003	0.005	-5.298				
7/9/2003	0.005	-5.298				
10/6/2003	0.005	-5.298				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.05	-2.996				
1/7/2003	0.05	-2.996				
4/2/2003	0.05	-2.996				
7/9/2003	0.00794	-4.836				
10/7/2003	0.005	-5.298				
1/6/2004	0.005	-5.298				
4/7/2004	0.005	-5.298				
7/14/2004	0.005	-5.298				

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result 1	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.000822	2 NO	-7.104	N/A
MW362	Downgradient	Yes	0.000789) NO	-7.145	N/A
MW365	Downgradient	Yes	0.00433	NO	-5.442	N/A
MW368	Downgradient	Yes	0.000621	NO	-7.384	N/A
MW371	Upgradient	Yes	0.00264	NO	-5.937	N/A
MW374	Upgradient	Yes	0.00145	NO	-6.536	N/A
MW375	Sidegradient	Yes	0.000648	8 NO	-7.342	N/A

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,	2	0			
Statistics-Background Data	X= 22.281	S= 78.889	CV(1)= 3.541	K factor**= 2.523	TL(1)= 221.319	LL(1)=N/A
Statistics-Transformed Background	X= 3.642	S= 1.729	CV(2)=0.475	K factor**= 2.523	TL(2)= 5.106	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	75	4.317				
4/22/2002	165	5.106				
7/15/2002	65	4.174				
4/3/2003	-19	#Func!				
7/9/2003	114	4.736				
10/6/2003	-22	#Func!				
1/7/2004	20.5	3.020				
4/6/2004	113	4.727				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
3/18/2002	135	4.905				
4/2/2003	-56	#Func!				
7/9/2003	-68	#Func!				
10/7/2003	-50	#Func!				
1/6/2004	-85	#Func!				
4/7/2004	6	1.792				
7/14/2004	-38	#Func!				
10/7/2004	1	0.000				

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	240	N/A	5.481	YES
MW362	Downgradient	Yes	375	N/A	5.927	YES
MW365	Downgradient	Yes	457	N/A	6.125	YES
MW368	Downgradient	Yes	412	N/A	6.021	YES
MW371	Upgradient	Yes	335	N/A	5.814	YES
MW374	Upgradient	Yes	358	N/A	5.881	YES
MW375	Sidegradient	Yes	312	N/A	5.743	YES
NI/A Daga	Its identified as N	Jan Dataata	طيبية مرامة	- anatamy analyzaia a	. data validatia	n and man nat

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW359
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.	MW362
	MW365
	MW368
	MW371
	MW374
	MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonPCB, TotalUNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.224	S = 0.207	CV(1)= 0.922	K factor**= 2.523	TL(1)= 0.746	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.647	S = 0.440	CV(2) =-0.267	K factor**= 2.523	TL(2)= -0.537	LL(2)= N/A

Historical Bac		
Upgradient W	ells with Tr	ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.17	-1.772
10/6/2003	0.17	-1.772
7/13/2004	0.18	-1.715
7/25/2005	0.17	-1.772
4/5/2006	0.18	-1.715
X7 11 XT 1	NAM27A	
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/9/2003	0.17	-1.772
10/7/2003	0.17	-1.772
7/14/2004	0.18	-1.715
7/26/2005	0.17	-1.772
4/6/2006	0.18	-1.715
7/10/2006	0.17	-1.772
10/12/2006	0.17	-1.772
1/8/2007	0.17	-1.772

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	No	0.0935	N/A	-2.370	N/A		
MW362	Downgradient	No	0.0935	N/A	-2.370	N/A		
MW365	Downgradient	Yes	0.0533	NO	-2.932	N/A		
MW368	Downgradient	No	0.0936	N/A	-2.369	N/A		
MW371	Upgradient	No	0.0938	N/A	-2.367	N/A		
MW374	Upgradient	No	0.095	N/A	-2.354	N/A		
MW375	Sidegradient	No	0.0942	N/A	-2.362	N/A		
N/A - Resu	ilts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonPCB-1242UNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.159	S = 0.224	CV(1)= 1.409	K factor**= 2.523	TL(1)= 0.726	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.134	S = 0.579	CV(2) =-0.272	K factor**= 2.523	TL(2)= -0.672	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resu						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	1	0.000				
4/22/2002	0.11	-2.207				
7/15/2002	0.11	-2.207				
7/9/2003	0.13	-2.040				
10/6/2003	0.09	-2.408				
7/13/2004	0.1	-2.303				
7/25/2005	0.09	-2.408				
4/5/2006	0.1	-2.303				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
7/9/2003	0.13	-2.040				
10/7/2003	0.09	-2.408				
7/14/2004	0.1	-2.303				
7/26/2005	0.1	-2.303				
4/6/2006	0.1	-2.303				
7/10/2006	0.1	-2.303				
10/12/2006	0.1	-2.303				
1/8/2007	0.1	-2.303				

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	No	0.0935	N/A	-2.370	N/A	
MW362	Downgradient	No	0.0935	N/A	-2.370	N/A	
MW365	Downgradient	Yes	0.0533	N/A	-2.932	NO	
MW368	Downgradient	No	0.0936	N/A	-2.369	N/A	
MW371	Upgradient	No	0.0938	N/A	-2.367	N/A	
MW374	Upgradient	No	0.095	N/A	-2.354	N/A	
MW375	Sidegradient	No	0.0942	N/A	-2.362	N/A	
N/A Door	Its identified as N	Ion Dotooto	during lab	oratory analysis or	data validatio	n and wars not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.619	S= 0.295	CV(1)= 0.045	K factor**= 2.904	TL(1)= 7.475	LL(1)=5.7635
Statistics-Transformed Background Data	X= 1.889	S= 0.046	CV(2)= 0.024	K factor**= 2.904	TL(2)= 2.023	LL(2)= 1.7548

Historical Background Data from Upgradient Wells with Transformed Result					
Upgradient W	ells with Tra	ansformed Result			
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	6.3	1.841			
4/22/2002	6.5	1.872			
7/15/2002	6.5	1.872			
10/8/2002	6.6	1.887			
1/8/2003	6.6	1.887			
4/3/2003	6.9	1.932			
7/9/2003	6.7	1.902			
10/6/2003	7	1.946			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
3/18/2002	5.75	1.749			
10/8/2002	6.6	1.887			
1/7/2003	6.82	1.920			
4/2/2003	6.86	1.926			
7/9/2003	6.7	1.902			
10/7/2003	6.6	1.887			
1/6/2004	6.9	1.932			
4/7/2004	6.58	1.884			

Dry/Partially Dry Wells						
Well No. Gradient						
	a : 1					

MW376 Sidegradient MW377 Sidegradient

Г

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW359	Downgradient	t Yes	6.28	NO	1.837	N/A
MW362	Downgradient	t Yes	6.85	NO	1.924	N/A
MW365	Downgradient	t Yes	6.21	NO	1.826	N/A
MW368	Downgradient	t Yes	6.41	NO	1.858	N/A
MW371	Upgradient	Yes	6.69	NO	1.901	N/A
MW374	Upgradient	Yes	6.79	NO	1.915	N/A
MW375	Sidegradient	Yes	6.43	NO	1.861	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonPotassiumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.718	K factor**= 2.523	TL(1)= 3.549	LL(1)=N/A
Statistics-Transformed Background						
	$\Lambda0.023$	3 - 0.732	CV(2) = -32.218	\mathbf{K} lactor = 2.323	1L(2)-1.0/4	LL(2) = IN/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	2	0.693		
4/22/2002	2	0.693		
7/15/2002	2	0.693		
10/8/2002	0.408	-0.896		
1/8/2003	0.384	-0.957		
4/3/2003	0.368	-1.000		
7/9/2003	0.587	-0.533		
10/6/2003	0.382	-0.962		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	3.04	1.112		
1/7/2003	2.83	1.040		
4/2/2003	2	0.693		
7/9/2003	1.09	0.086		
10/7/2003	0.802	-0.221		
1/6/2004	0.897	-0.109		
4/7/2004	0.689	-0.373		
7/14/2004	0.716	-0.334		

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.3	N/A	-1.204	N/A
MW362	Downgradient	t Yes	0.323	NO	-1.130	N/A
MW365	Downgradient	t Yes	0.235	NO	-1.448	N/A
MW368	Downgradient	t Yes	0.449	NO	-0.801	N/A
MW371	Upgradient	Yes	0.245	NO	-1.406	N/A
MW374	Upgradient	Yes	0.582	NO	-0.541	N/A
MW375	Sidegradient	Yes	0.304	NO	-1.191	N/A
N/A - Rest	ults identified as l	Non-Detects	during lał	oratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonRadium-226UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.560
 S= 13.483
 CV(1)=3.787
 K factor**= 2.523
 TL(1)= 37.577
 LL(1)=N/A

 Statistics-Transformed Background
 X=-1.189
 S= 1.742
 CV(2)=-1.465
 K factor**= 2.523
 TL(2)= 3.991
 LL(2)=N/A

Historical Bac Upgradient W		nta from ransformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	54.1	3.991
10/8/2002	0.0937	-2.368
1/8/2003	0.378	-0.973
10/6/2003	0.179	-1.720
1/7/2004	0.898	-0.108
4/6/2004	0.108	-2.226
7/13/2004	-0.149	#Func!
10/7/2004	0.154	-1.871
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.298	-1.211
1/7/2003	-0.844	#Func!
10/7/2003	0.806	-0.216
1/6/2004	0.0306	-3.487
4/7/2004	0.35	-1.050
7/14/2004	0.273	-1.298
10/7/2004	0.205	-1.585
1/11/2005	0.0799	-2.527

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Г

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.325	N/A	-1.124	N/A
MW362	Downgradient	Yes	0.873	N/A	-0.136	NO
MW365	Downgradient	No	0.89	N/A	-0.117	N/A
MW368	Downgradient	No	0.966	N/A	-0.035	N/A
MW371	Upgradient	No	0.575	N/A	-0.553	N/A
MW374	Upgradient	No	0.307	N/A	-1.181	N/A
MW375	Sidegradient	No	0.909	N/A	-0.095	N/A
NUL D	1. 11				1 . 1.1	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 183.063 S= 73.222
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 367.800
 LL(1)=N/A

 Statistics-Transformed Background
 X= 5.146
 S= 0.356
 CV(2)=0.069
 K factor**= 2.523
 TL(2)= 6.044
 LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	336	5.817
1/7/2003	329	5.796
4/2/2003	287	5.659
7/9/2003	181	5.198
10/7/2003	182	5.204
1/6/2004	206	5.328
4/7/2004	182	5.204
7/14/2004	198	5.288

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	39.2	NO	3.669	N/A
MW362	Downgradient	Yes	139	NO	4.934	N/A
MW365	Downgradient	Yes	51	NO	3.932	N/A
MW368	Downgradient	Yes	48.8	NO	3.888	N/A
MW371	Upgradient	Yes	67.9	NO	4.218	N/A
MW374	Upgradient	Yes	133	NO	4.890	N/A
MW375	Sidegradient	Yes	58	NO	4.060	N/A
N/A - Rest	ults identified as l	Non-Detects	during lał	poratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.469	S = 3.153	CV(1)= 0.487	K factor**= 2.523	TL(1)= 14.423	LL(1)=N/A
Statistics-Transformed Background	X =1.794	S = 0.357	CV(2)= 0.199	K factor**= 2.523	TL(2)= 2.694	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	16.3	2.791		
4/22/2002	8.6	2.152		
7/15/2002	6.7	1.902		
10/8/2002	5	1.609		
1/8/2003	5	1.609		
4/3/2003	5	1.609		
7/9/2003	5	1.609		
10/6/2003	5	1.609		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	5	1.609		
1/7/2003	5	1.609		
4/2/2003	5	1.609		
7/9/2003	5.6	1.723		
10/7/2003	5	1.609		
1/6/2004	5	1.609		
4/7/2004	11.3	2.425		
7/14/2004	5	1.609		

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	45.4	YES	3.816	N/A
MW362	Downgradient	Yes	29.6	YES	3.388	N/A
MW365	Downgradient	Yes	60	YES	4.094	N/A
MW368	Downgradient	Yes	61.4	YES	4.117	N/A
MW371	Upgradient	Yes	27	YES	3.296	N/A
MW374	Upgradient	Yes	7.75	NO	2.048	N/A
MW375	Sidegradient	Yes	24.5	YES	3.199	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.	MW359
	MW362
	MW365
	MW368
	MW371
	MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 17.631
 S= 24.314
 CV(1)=1.379
 K factor**= 2.523
 TL(1)= 78.977
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.318
 S= 0.979
 CV(2)=0.422
 K factor**= 2.523
 TL(2)= 4.788
 LL(2)=N/A

 Data
 Data
 CV(2)=0.422
 CV(2)=0.422
 K factor**= 2.523
 TL(2)= 4.788
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	11.1	2.407		
4/22/2002	7	1.946		
7/15/2002	4.1	1.411		
10/8/2002	6	1.792		
1/8/2003	5.3	1.668		
4/3/2003	5.3	1.668		
7/9/2003	2.9	1.065		
10/6/2003	3.2	1.163		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	90	4.500		
1/7/2003	64	4.159		
4/2/2003	25	3.219		
7/9/2003	16	2.773		
10/7/2003	13	2.565		
1/6/2004	10	2.303		
4/7/2004	7.2	1.974		
7/14/2004	12	2.485		

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.989	N/A	-0.011	NO
MW362	Downgradient	Yes	2.39	N/A	0.871	NO
MW365	Downgradient	Yes	1.26	N/A	0.231	NO
MW368	Downgradient	Yes	1.07	N/A	0.068	NO
MW371	Upgradient	Yes	1.84	N/A	0.610	NO
MW374	Upgradient	Yes	2.71	N/A	0.997	NO
MW375	Sidegradient	Yes	0.783	N/A	-0.245	NO
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 214.094 S= 231.089 CV(1)=1.079
 K factor**= 2.523
 TL(1)= 797.131
 LL(1)=N/A

Statistics-Transformed Background X=4.867 S= 1.065 CV(2)=0.219 Data

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	50	3.912		
4/22/2002	105	4.654		
7/15/2002	70	4.248		
10/8/2002	52	3.951		
1/8/2003	20.2	3.006		
4/3/2003	104	4.644		
7/9/2003	34.2	3.532		
10/6/2003	46.1	3.831		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	903	6.806		
1/7/2003	539	6.290		
4/2/2003	295	5.687		
7/9/2003	272	5.606		
10/7/2003	197	5.283		
1/6/2004	330	5.799		
4/7/2004	183	5.209		
7/14/2004	225	5.416		

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

TL(2)= 7.554

LL(2)=N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	10	N/A	2.303	N/A
MW362	Downgradient	Yes	15.8	N/A	2.760	NO
MW365	Downgradient	Yes	8.46	N/A	2.135	NO
MW368	Downgradient	Yes	4.65	N/A	1.537	NO
MW371	Upgradient	Yes	7.5	N/A	2.015	NO
MW374	Upgradient	Yes	28.1	N/A	3.336	NO
MW375	Sidegradient	No	9.92	N/A	2.295	N/A
NI/A Dam		Jan Datasta	1			

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonVanadiumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.055	S = 0.072	CV(1)= 1.319	K factor**= 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.438	S= 0.912	CV(2) =-0.265	K factor**= 2.523	TL(2)= -1.138	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.2	-1.609
1/7/2003	0.2	-1.609
4/2/2003	0.2	-1.609
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.02	-3.912
7/14/2004	0.02	-3.912

Dry/Par	tially Dry Wells
Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.00681	N/A	-4.989	N/A
MW362	Downgradient	No	0.02	N/A	-3.912	N/A
MW365	Downgradient	No	0.02	N/A	-3.912	N/A
MW368	Downgradient	Yes	0.00886	N/A	-4.726	NO
MW371	Upgradient	Yes	0.0504	N/A	-2.988	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A
N/A - Rest	ults identified as N	Non-Detects	during lah	oratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.060	S = 0.083	CV(1)= 1.380	K factor**= 2.523	TL(1)= 0.270	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.259	S = 0.840	CV(2) =-0.258	K factor**= 2.523	TL(2)= -1.140	LL(2)= N/A

Historical Bac		
Upgradient w	ells with 1r	ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.025	-3.689
1/7/2003	0.35	-1.050
4/2/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.02	-3.912
7/14/2004	0.02	-3.912

Dry/Par	tially Dry Wells
Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.02	N/A	-3.912	N/A
MW362	Downgradient	No	0.02	N/A	-3.912	N/A
MW365	Downgradient	Yes	0.0141	N/A	-4.262	NO
MW368	Downgradient	No	0.02	N/A	-3.912	N/A
MW371	Upgradient	Yes	0.00848	N/A	-4.770	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A
N/A - Rest	ults identified as I	Non-Detects	during lab	oratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.625	S= 0.774	CV(1)= 1.239	K factor**= 2.523	TL(1)= 2.578	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.973	S = 0.935	CV(2) =-0.961	K factor**= 2.523	TL(2)= 1.386	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW369

wen number:	IVI W 509	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.959
Date Collected	Result	()
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2.61 0.2 1.14 0.862 2.32 0.2	0.959 -1.609 0.131 -0.149 0.842 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.05	N/A	-2.996	N/A	
MW360	Downgradient	Yes	0.0285	N/A	-3.558	NO	
MW363	Downgradient	No	0.05	N/A	-2.996	N/A	
MW366	Downgradient	No	0.05	N/A	-2.996	N/A	
MW369	Upgradient	No	0.05	N/A	-2.996	N/A	
MW372	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonBeta activityUNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 15.996	S= 11.899	CV(1)= 0.744	K factor**= 2.523	TL(1)= 46.017	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.497	S= 0.783	CV(2)= 0.314	K factor**= 2.523	TL(2)= 4.473	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number: MW369					
Date Collected 3/18/2002	Result 32.5	LN(Result) 3.481			

3.567

2.557

2.027

2.260

1.901

2.208

1.989

3.350

1.681

2.991

3.656

2.565

1.371

1.270

3.086

LN(Result)

35.4

12.9

7.59

9.58

6.69

9.1

7.31

MW372

Result

28.5

5.37

19.9

38.7

3.94

3.56

21.9

13

4/22/2002

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	8.99	N/A	2.196	N/A	
MW360	Downgradient	No	7.56	N/A	2.023	N/A	
MW363	Downgradient	Yes	22.1	N/A	3.096	N/A	
MW366	Downgradient	Yes	21.5	N/A	3.068	N/A	
MW369	Upgradient	Yes	16.8	N/A	2.821	N/A	
MW372	Upgradient	Yes	50.7	YES	3.926	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.985	S= 0.825	CV(1)= 0.838	K factor**= 2.523	TL(1)= 3.067	LL(1)= N/A
Statistics-Transformed Background	X= -0.430	S= 0.990	CV(2) =-2.302	K factor**= 2.523	TL(2)= 2.068	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW369				

wen number.	IVI VV 309	WW 309			
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2	0.693			
7/15/2002	2	0.693			
10/8/2002	0.2	-1.609			
1/8/2003	0.2	-1.609			
4/3/2003	0.2	-1.609			
7/8/2003	0.2	-1.609			
10/6/2003	0.2	-1.609			
Well Number:	MW372				
Well Number: Date Collected	MW372 Result	LN(Result)			
		LN(Result) 0.693			
Date Collected	Result				
Date Collected 3/19/2002	Result 2	0.693			
Date Collected 3/19/2002 4/23/2002	Result 2 2	0.693 0.693			
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693			
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.492	0.693 0.693 0.693 -0.709			
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 0.492 0.492	0.693 0.693 0.693 -0.709 -0.709			
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2 2 0.492 0.492 0.6	0.693 0.693 0.693 -0.709 -0.709 -0.511			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.357	NO	-1.030	N/A	
MW360	Downgradient	Yes	0.0631	NO	-2.763	N/A	
MW363	Downgradient	Yes	0.0139	NO	-4.276	N/A	
MW366	Downgradient	Yes	0.122	NO	-2.104	N/A	
MW369	Upgradient	Yes	0.0151	NO	-4.193	N/A	
MW372	Upgradient	Yes	1.09	NO	0.086	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

MUNCO

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/8/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.346	NO	-1.061	N/A
MW360	Downgradient	Yes	0.185	NO	-1.687	N/A
MW363	Downgradient	Yes	0.126	NO	-2.071	N/A
MW366	Downgradient	Yes	0.44	NO	-0.821	N/A
MW369	Upgradient	Yes	0.349	NO	-1.053	N/A
MW372	Upgradient	Yes	0.54	NO	-0.616	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =32.763 S =	= 9.391	CV(1)= 0.287	K factor**= 2.523	TL(1)= 56.456	LL(1)=N/A
Statistics-Transformed Background Data	X =3.449 S =	= 0.299	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.202	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

wen number:	IVI W 509	
Date Collected	Result	LN(Result)
3/18/2002	29.5	3.384
4/22/2002	29.8	3.395
7/15/2002	25.3	3.231
10/8/2002	21.9	3.086
1/8/2003	20.9	3.040
4/3/2003	22.2	3.100
7/8/2003	22.9	3.131
10/6/2003	21.7	3.077
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.726
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 41.5	3.726
Date Collected 3/19/2002 4/23/2002	Result 41.5 43.6	3.726 3.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 41.5 43.6 40.4	3.726 3.775 3.699
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 41.5 43.6 40.4 38.8	3.726 3.775 3.699 3.658
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 41.5 43.6 40.4 38.8 41.1	3.726 3.775 3.699 3.658 3.716
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 41.5 43.6 40.4 38.8 41.1 42.9	3.726 3.775 3.699 3.658 3.716 3.759

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	26.3	NO	3.270	N/A
MW360	Downgradient	Yes	21.3	NO	3.059	N/A
MW363	Downgradient	Yes	28.1	NO	3.336	N/A
MW366	Downgradient	Yes	33.6	NO	3.515	N/A
MW369	Upgradient	Yes	19.1	NO	2.950	N/A
MW372	Upgradient	Yes	57	YES	4.043	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.938 S = 3.750	CV(1)= 0.104	K factor**= 2.523	TL(1)= 45.399	LL(1)=N/A
Statistics-Transformed Background Data	X =3.578 S = 0.089	CV(2)= 0.025	K factor**= 2.523	TL(2)= 3.803	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			
Date Collected	Result	LN(Result)		
3/18/2002	35	3.555		
4/22/2002	35	3.555		
7/15/2002	35	3.555		
10/8/2002	50	3.912		
1/8/2003	35	3.555		
4/3/2003	35	3.555		
7/8/2003	35	3.555		
10/6/2003	35	3.555		

Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	35	3.555
4/23/2002	35	3.555
7/16/2002	35	3.555
10/8/2002	35	3.555
1/7/2003	35	3.555
4/2/2003	35	3.555
7/9/2003	35	3.555
10/7/2003	35	3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	15.3	NO	2.728	N/A
MW360	Downgradient	Yes	15.3	NO	2.728	N/A
MW363	Downgradient	No	20	N/A	2.996	N/A
MW366	Downgradient	No	20	N/A	2.996	N/A
MW369	Upgradient	Yes	10	NO	2.303	N/A
MW372	Upgradient	Yes	17.7	NO	2.874	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =44.119 S = 4.554	CV(1)=0.103	K factor**= 2.523	TL(1)= 55.607	LL(1)= N/A
Statistics-Transformed Background Data	X =3.782 S = 0.099	CV(2)= 0.026	K factor**= 2.523	TL(2)= 4.033	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Wall Number	MW260

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.684
Date Collected	Result	()
Date Collected 7/16/2002	Result 39.8	3.684
Date Collected 7/16/2002 10/8/2002	Result 39.8 41	3.684 3.714
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 39.8 41 39.4	3.684 3.714 3.674
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 39.8 41 39.4 39.2	3.684 3.714 3.674 3.669
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 39.8 41 39.4 39.2 39.8	3.684 3.714 3.674 3.669 3.684
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 39.8 41 39.4 39.2 39.8 40	3.684 3.714 3.674 3.669 3.684 3.689

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	30	NO	3.401	N/A	
MW360	Downgradient	Yes	14.3	NO	2.660	N/A	
MW363	Downgradient	Yes	28.8	NO	3.360	N/A	
MW366	Downgradient	Yes	36.5	NO	3.597	N/A	
MW369	Upgradient	Yes	29.2	NO	3.374	N/A	
MW372	Upgradient	Yes	41.1	NO	3.716	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.021	CV(1)= 0.845	K factor**= 2.523	TL(1)= 0.077	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.090	S = 1.006	CV(2) =-0.246	K factor**= 2.523	TL(2)= -1.553	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW369				

wen number.	IVI VV 309	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.0147	-3.689 -3.689 -3.689 -6.450 -4.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.00158 0.0147 0.0116	-3.689 -3.689 -3.689 -6.450 -4.220 -4.457

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.001	N/A	-6.908	N/A	
MW360	Downgradient	Yes	0.0019	NO	-6.266	N/A	
MW363	Downgradient	Yes	0.00118	NO	-6.742	N/A	
MW366	Downgradient	No	0.001	N/A	-6.908	N/A	
MW369	Upgradient	Yes	0.00379	NO	-5.575	N/A	
MW372	Upgradient	Yes	0.00067	9 NO	-7.295	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =482.856 S = 57.603	CV(1)= 0.119	K factor**= 2.523	TL(1)= 628.189	LL(1)=N/A
Statistics-Transformed Background Data	X = 6.173 S = 0.123	CV(2)= 0.020	K factor**= 2.523	TL(2)= 6.484	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	414	NO	6.026	N/A	
MW360	Downgradient	Yes	402	NO	5.996	N/A	
MW363	Downgradient	Yes	409	NO	6.014	N/A	
MW366	Downgradient	Yes	484	NO	6.182	N/A	
MW369	Upgradient	Yes	440	NO	6.087	N/A	
MW372	Upgradient	Yes	730	YES	6.593	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.010	CV(1)= 0.400	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.742	S = 0.307	CV(2) =-0.082	K factor**= 2.523	TL(2)= -2.967	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	0.025	-3.689			
4/22/2002	0.025	-3.689			
7/15/2002	0.05	-2.996			
10/8/2002	0.02	-3.912			
1/8/2003	0.02	-3.912			
4/3/2003	0.02	-3.912			
7/8/2003	0.02	-3.912			
10/6/2003	0.02	-3.912			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
3/19/2002	0.025	-3.689			
4/23/2002	0.025	-3.689			
7/16/2002	0.05	-2.996			

0.02

0.02

0.02

0.02

0.02

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	t Yes	0.0019	NO	-6.266	N/A
MW360	Downgradient	t Yes	0.00202	NO	-6.205	N/A
MW363	Downgradient	t Yes	0.00032	3 NO	-8.038	N/A
MW366	Downgradient	t Yes	0.00431	NO	-5.447	N/A
MW369	Upgradient	Yes	0.00082	7 NO	-7.098	N/A
MW372	Upgradient	No	0.00073	9 N/A	-7.210	N/A
N/A - Resi	ults identified as l	Non-Detects	during lab	oratory analysis or	· data validatio	on and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.781	S= 1.351	CV(1)= 0.759	K factor**= 2.523	TL(1)= 5.190	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.228	S= 1.065	CV(2)= 4.665	K factor**= 2.523	TL(2)= 2.915	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW369

wen number.	IVI W 309	
Date Collected	Result	LN(Result)
3/18/2002	5.41	1.688
4/22/2002	1.57	0.451
7/15/2002	0.8	-0.223
10/8/2002	1.09	0.086
1/8/2003	2.69	0.990
4/3/2003	2.04	0.713
7/8/2003	1.19	0.174
10/6/2003	1.78	0.577
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.358
Date Collected	Result	
Date Collected 3/19/2002	Result 3.89	1.358
Date Collected 3/19/2002 4/23/2002	Result 3.89 0.05	1.358 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 3.89 0.05 1.33	1.358 -2.996 0.285
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.89 0.05 1.33 2.66	1.358 -2.996 0.285 0.978
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.89 0.05 1.33 2.66 0.4	1.358 -2.996 0.285 0.978 -0.916
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 3.89 0.05 1.33 2.66 0.4 0.91	1.358 -2.996 0.285 0.978 -0.916 -0.094

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	3.31	NO	1.197	N/A
MW360	Downgradient	Yes	1	NO	0.000	N/A
MW363	Downgradient	Yes	2.8	NO	1.030	N/A
MW366	Downgradient	Yes	2.92	NO	1.072	N/A
MW369	Upgradient	Yes	0.8	NO	-0.223	N/A
MW372	Upgradient	Yes	1.9	NO	0.642	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =285.188 S = 44.908	CV(1)= 0.157	K factor**= 2.523	TL(1)= 398.489	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.640 S = 0.175	CV(2)= 0.031	K factor**= 2.523	TL(2)= 6.080	LL(2)=N/A

	kground Data from ells with Transformed Result
XV 11 XT 1	

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.687
Date Collected	Result	()
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 295 322 329 290 316 311	5.687 5.775 5.796 5.670 5.756 5.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	250	NO	5.521	N/A
MW360	Downgradient	Yes	300	NO	5.704	N/A
MW363	Downgradient	Yes	271	NO	5.602	N/A
MW366	Downgradient	Yes	293	NO	5.680	N/A
MW369	Upgradient	Yes	224	NO	5.412	N/A
MW372	Upgradient	Yes	423	YES	6.047	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.385	S= 6.991	CV(1)= 0.947	K factor**= 2.523	TL(1)= 25.024	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.358	S = 1.323	CV(2)= 0.974	K factor**= 2.523	TL(2)= 4.697	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.656	-0.422
4/22/2002	0.695	-0.364
7/15/2002	7.1	1.960
10/8/2002	21.5	3.068
1/8/2003	18.5	2.918
4/3/2003	14.9	2.701
7/8/2003	11.3	2.425
10/6/2003	14.9	2.701
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.783
Date Collected	Result	
Date Collected 3/19/2002	Result 5.95	1.783
Date Collected 3/19/2002 4/23/2002	Result 5.95 0.792	1.783 -0.233
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5.95 0.792 1.78	1.783 -0.233 0.577
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5.95 0.792 1.78 0.776	1.783 -0.233 0.577 -0.254
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5.95 0.792 1.78 0.776 3.55	1.783 -0.233 0.577 -0.254 1.267

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.1	N/A	-2.303	N/A
MW360	Downgradient	Yes	0.448	NO	-0.803	N/A
MW363	Downgradient	Yes	0.0561	NO	-2.881	N/A
MW366	Downgradient	Yes	0.106	NO	-2.244	N/A
MW369	Upgradient	Yes	0.0746	NO	-2.596	N/A
MW372	Upgradient	Yes	0.156	NO	-1.858	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.864 S = 3.505	CV(1)= 0.272	K factor**= 2.523	TL(1)= 21.707	LL(1)=N/A
Statistics-Transformed Background Data	X =2.517 S = 0.290	CV(2)= 0.115	K factor**= 2.523	TL(2)= 3.248	LL(2)= N/A

	eckground D Wells with T	ata from ransformed Resu	lt

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	11.4	2.434
4/22/2002	12	2.485
7/15/2002	10	2.303
10/8/2002	8.62	2.154
1/8/2003	7.89	2.066
4/3/2003	7.97	2.076
7/8/2003	10.3	2.332
10/6/2003	9.14	2.213
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.754
Date Collected	Result	
Date Collected 3/19/2002	Result 15.7	2.754
Date Collected 3/19/2002 4/23/2002	Result 15.7 16.6	2.754 2.809
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 15.7 16.6 15.4	2.754 2.809 2.734
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 15.7 16.6 15.4 15.8	2.754 2.809 2.734 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 15.7 16.6 15.4 15.8 15.8	2.754 2.809 2.734 2.760 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 15.7 16.6 15.4 15.8 15.8 16.4	2.754 2.809 2.734 2.760 2.760 2.797

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	11.3	NO	2.425	N/A
MW360	Downgradient	Yes	8.73	NO	2.167	N/A
MW363	Downgradient	Yes	11.1	NO	2.407	N/A
MW366	Downgradient	Yes	12.4	NO	2.518	N/A
MW369	Upgradient	Yes	7.14	NO	1.966	N/A
MW372	Upgradient	Yes	21.3	NO	3.059	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.413	S= 0.274	CV(1)= 0.664	K factor**= 2.523	TL(1)= 1.105	LL(1)=N/A
Statistics-Transformed Background Data	X =-1.226	S= 1.008	CV(2) =-0.822	K factor**= 2.523	TL(2)= 1.317	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			
Date Collected	Result	LN(Result)		
2/19/2002	0.024	2 2 9 1		

3/18/2002 0.034 -3.381 4/22/2002 0.062 -2.7817/15/2002 0.436 -0.830 10/8/2002 0.867 -0.143 1/8/2003 0.828 -0.1894/3/2003 0.672 -0.397 7/8/2003 0.321 -1.136 10/6/2003 0.714 -0.337 Well Number: MW372 Date Collected Result LN(Result) 0.205 3/19/2002 -1.585 4/23/2002 0.345 -1.0647/16/2002 -1.561 0.21 10/8/2002 0.0539 -2.921 1/7/2003 0.537 -0.622 4/2/2003 0.415 -0.879

0.654

0.254

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00406	NO	-5.507	N/A
MW360	Downgradient	Yes	0.0258	NO	-3.657	N/A
MW363	Downgradient	Yes	0.3	NO	-1.204	N/A
MW366	Downgradient	Yes	0.0185	NO	-3.990	N/A
MW369	Upgradient	Yes	0.02	NO	-3.912	N/A
MW372	Upgradient	Yes	0.00615	NO	-5.091	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.425

-1.370

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.021	CV(1)= 0.910	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.246	S = 1.075	CV(2) =-0.253	K factor**= 2.523	TL(2)= -1.535	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	()
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.000619	9 NO	-7.387	N/A	
MW360	Downgradient	Yes	0.0012	NO	-6.725	N/A	
MW363	Downgradient	Yes	0.00402	NO	-5.516	N/A	
MW366	Downgradient	Yes	0.000720	6 NO	-7.228	N/A	
MW369	Upgradient	Yes	0.00264	NO	-5.937	N/A	
MW372	Upgradient	No	0.002	N/A	-6.215	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =74.563	S= 94.243	CV(1)= 1.264	K factor**= 2.523	TL(1)= 312.337	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.554	S = 0.784	CV(2)= 0.172	K factor**= 2.523	TL(2)= 5.371	LL(2)=N/A

Upgradient Wells with Transformed Result	Historical Background Data from
	Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	353	N/A	5.866	YES	
MW360	Downgradient	Yes	421	N/A	6.043	YES	
MW363	Downgradient	Yes	330	N/A	5.799	YES	
MW366	Downgradient	Yes	384	N/A	5.951	YES	
MW369	Upgradient	Yes	327	N/A	5.790	YES	
MW372	Upgradient	Yes	375	N/A	5.927	YES	

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW357
	MW360
concentration with respect to historical background data.	MW363
	MW366
	MW369
	MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.274	S= 0.194	CV(1)= 0.031	K factor**= 2.904	TL(1)= 6.837	LL(1)=5.7114
Statistics-Transformed Background Data	X= 1.836	S= 0.031	CV(2)= 0.017	K factor**= 2.904	TL(2)= 1.925	LL(2)=1.7467

Historical Background Data from
Upgradient Wells with Transformed Result

MW360

Wall Number

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	6.1	1.808
4/22/2002	6.1	1.808
7/15/2002	6.1	1.808
10/8/2002	6.5	1.872
1/8/2003	6.5	1.872
4/3/2003	6.6	1.887
7/8/2003	6.5	1.872
10/6/2003	6.5	1.872
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.808
Date Collected	Result	
Date Collected 3/19/2002	Result 6.1	1.808
Date Collected 3/19/2002 4/23/2002	Result 6.1 6.12	1.808 1.812
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.1 6.12 6.1	1.808 1.812 1.808
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.1 6.12 6.1 6.06	1.808 1.812 1.808 1.802
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.1 6.12 6.1 6.06 6.26	1.808 1.812 1.808 1.802 1.834
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6.1 6.12 6.1 6.06 6.26 6.15	1.808 1.812 1.808 1.802 1.834 1.816

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW357	Downgradien	t Yes	6.4	NO	1.856	N/A	
MW360	Downgradien	t Yes	6.31	NO	1.842	N/A	
MW363	Downgradien	t Yes	6.24	NO	1.831	N/A	
MW366	Downgradien	t Yes	6.17	NO	1.820	N/A	
MW369	Upgradient	Yes	6.2	NO	1.825	N/A	
MW372	Upgradient	Yes	6.15	NO	1.816	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.663	S= 0.488	CV(1)= 0.293	K factor**= 2.523	TL(1)= 2.895	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.456	S = 0.362	CV(2)= 0.794	K factor**= 2.523	TL(2)= 1.368	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2.21	0.793			

0.693

-0.035

-0.319

-0.223

0.482

0.131

0.713

0.708

0.693

0.432

0.631

0.737

0.577

0.582

LN(Result)

2

0.966

0.727

0.8

1.62

1.14

MW372

Result

2.04

2.03

1.54

1.88

2.09

1.78

1.79

2

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.69	NO	0.525	N/A
MW360	Downgradient	Yes	0.795	NO	-0.229	N/A
MW363	Downgradient	Yes	1.64	NO	0.495	N/A
MW366	Downgradient	Yes	1.86	NO	0.621	N/A
MW369	Upgradient	Yes	0.508	NO	-0.677	N/A
MW372	Upgradient	Yes	2.32	NO	0.842	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 45.100	S= 11.875	CV(1)= 0.263	K factor**= 2.523	TL(1)= 75.061	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.780	S= 0.242	CV(2) =0.064	K factor**= 2.523	TL(2)= 4.390	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			
Date Collected	Result	LN(Result)		
3/18/2002	35.7	3.575		
4/22/2002	37.6	3.627		
7/15/2002	42.4	3.747		
10/8/2002	66.9	4.203		
1/8/2003	67.9	4.218		
4/3/2003	61.8	4.124		
7/8/2003	45.6	3.820		
10/6/2003	59.1	4.079		

10/6/2003	59.1	4.079
Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	37.2	3.616
4/23/2002	38.6	3.653
7/16/2002	35.6	3.572
10/8/2002	37.5	3.624
1/7/2003	34.1	3.529
4/2/2003	34.4	3.538
7/9/2003	44.1	3.786
10/7/2003	43.1	3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	43.2	NO	3.766	N/A
MW360	Downgradient	Yes	61.9	NO	4.126	N/A
MW363	Downgradient	Yes	41	NO	3.714	N/A
MW366	Downgradient	Yes	48.8	NO	3.888	N/A
MW369	Upgradient	Yes	64.8	NO	4.171	N/A
MW372	Upgradient	Yes	61	NO	4.111	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.031	S= 33.919	CV(1)= 0.753	K factor**= 2.523	TL(1)= 130.609	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.420	S = 0.981	CV(2)= 0.287	K factor**= 2.523	TL(2)= 5.894	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number	MW369

wen number.	IVI W 309	
Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.272
Date Collected	Result	
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 71.7 74.7 74.1 70.5 75.8 81.8	4.272 4.313 4.305 4.256 4.328 4.404

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	40.4	NO	3.699	N/A
MW360	Downgradient	Yes	11.2	NO	2.416	N/A
MW363	Downgradient	Yes	26.7	NO	3.285	N/A
MW366	Downgradient	Yes	41	NO	3.714	N/A
MW369	Upgradient	Yes	5.54	NO	1.712	N/A
MW372	Upgradient	Yes	105	NO	4.654	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 20.821	S= 18.044	CV(1)= 0.867	K factor**= 2.523	TL(1)= 66.344	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.770	S= 1.150	CV(2)= 0.415	K factor**= 2.523	TL(2)= 3.972	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	41.7	3.731				
4/22/2002	53.1	3.972				
7/15/2002	18.1	2.896				
10/8/2002	16.4	2.797				
1/8/2003	3.49	1.250				
4/3/2003	9.34	2.234				
7/8/2003	17.5	2.862				
10/6/2003	17	2.833				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	44.8	3.802				
4/23/2002	0.802	-0.221				
7/16/2002	19.8	2.986				
10/8/2002	46.1	3.831				
1/7/2003	-0.973	#Func!				
4/2/2003	9.07	2.205				
7/9/2003	0	#Func!				
10/7/2003	36.9	3.608				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	32.1	NO	3.469	N/A	
MW360	Downgradient	No	-0.0147	N/A	#Error	N/A	
MW363	Downgradient	No	-11	N/A	#Error	N/A	
MW366	Downgradient	Yes	54.9	NO	4.006	N/A	
MW369	Upgradient	Yes	31.7	NO	3.456	N/A	
MW372	Upgradient	Yes	97.2	YES	4.577	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.513	S= 4.307	CV(1)= 1.226	K factor**= 2.523	TL(1)= 14.378	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.851	S = 0.828	CV(2)= 0.973	K factor**= 2.523	TL(2)= 2.940	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	1.7	0.531			
4/22/2002	1.6	0.470			

1.131

2.874

2.197

1.386

1.589

0.875

0.000

0.182

0.000

0.000

0.470

0.405

1.099

0.405

LN(Result)

3.1

17.7

9

4

4.9

2.4

MW372

Result

1

1

1

1.6

1.5

1.5

3

1.2

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.842	N/A	-0.172	NO	
MW360	Downgradient	Yes	1.37	N/A	0.315	NO	
MW363	Downgradient	Yes	1.26	N/A	0.231	NO	
MW366	Downgradient	Yes	0.725	N/A	-0.322	NO	
MW369	Upgradient	Yes	1.26	N/A	0.231	NO	
MW372	Upgradient	Yes	1.02	N/A	0.020	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 67.963	S= 64.316	CV(1)= 0.946	K factor**= 2.523	TL(1)= 230.231	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.772	S = 1.023	CV(2)= 0.271	K factor**= 2.523	TL(2)= 6.353	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MUNCO

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50 10	5.215 3.912 3.912 3.912 2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 184 50 50 50 10 12.7	5.215 3.912 3.912 3.912 2.303 2.542

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	10	N/A	2.303	N/A	
MW360	Downgradient	Yes	3.84	NO	1.345	N/A	
MW363	Downgradient	No	10	N/A	2.303	N/A	
MW366	Downgradient	Yes	8.38	NO	2.126	N/A	
MW369	Upgradient	Yes	25.3	NO	3.231	N/A	
MW372	Upgradient	No	5.48	N/A	1.701	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis **Historical Background Comparison**

trans-1,3-Dichloropropene

UNITS: ug/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X =1.609	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)=N/A

	kground Data from ells with Transformed Result
Well Number:	MW369

well Number:	M W 369	
Date Collected	Result	LN(Result)
3/18/2002	5	1.609
4/22/2002	5	1.609
7/15/2002	5	1.609
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/8/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 3/19/2002	Result 5	1.609
Date Collected 3/19/2002 4/23/2002	Result 5 5	1.609 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	1	N/A	0.000	N/A	
MW360	Downgradient	No	1	N/A	0.000	N/A	
MW363	Downgradient	No	1	N/A	0.000	N/A	
MW366	Downgradient	No	1	N/A	0.000	N/A	
MW369	Upgradient	No	1	N/A	0.000	N/A	
MW372	Upgradient	Yes	0.46	NO	-0.777	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.625	S = 3.594	CV(1)= 0.639	K factor**= 2.523	TL(1)= 14.693	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.571	S = 0.565	CV(2)= 0.360	K factor**= 2.523	TL(2)= 2.995	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 11120 / /

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	11	2.398
4/22/2002	16	2.773
7/15/2002	8	2.079
10/8/2002	3	1.099
1/8/2003	2	0.693
4/3/2003	3	1.099
7/8/2003	3	1.099
10/6/2003	2	0.693
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 3/19/2002	Result 5	1.609
Date Collected 3/19/2002 4/23/2002	Result 5 5	1.609 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5 5 4	1.609 1.609 1.386
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 5 4 6	1.609 1.609 1.386 1.792
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 5 4 6 5	1.609 1.609 1.386 1.792 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5 5 4 6 5 6	1.609 1.609 1.386 1.792 1.609 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	2.89	N/A	1.061	N/A	
MW360	Downgradient	No	1	N/A	0.000	N/A	
MW363	Downgradient	Yes	0.46	N/A	-0.777	N/A	
MW366	Downgradient	Yes	3.34	N/A	1.206	N/A	
MW369	Upgradient	Yes	0.64	N/A	-0.446	N/A	
MW372	Upgradient	Yes	5.64	NO	1.730	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.006	CV(1)= 0.259	K factor**= 2.523	TL(1)= 0.039	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.771	S= 0.223	CV(2) =-0.059	K factor**= 2.523	TL(2)= -3.208	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.027	-3.612				
7/15/2002	0.025	-3.689				
10/8/2002	0.02	-3.912				
1/8/2003	0.02	-3.912				
4/3/2003	0.02	-3.912				
7/8/2003	0.02	-3.912				
10/6/2003	0.02	-3.912				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	0.039	-3.244				
4/23/2002	0.037	-3.297				
7/16/2002	0.025	-3.689				
10/8/2002	0.02	-3.912				
1/7/2003	0.02	-3.912				

0.02

0.02

0.02

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.02	N/A	-3.912	N/A	
MW360	Downgradient	No	0.02	N/A	-3.912	N/A	
MW363	Downgradient	No	0.02	N/A	-3.912	N/A	
MW366	Downgradient	No	0.02	N/A	-3.912	N/A	
MW369	Upgradient	Yes	0.00373	NO	-5.591	N/A	
MW372	Upgradient	No	0.02	N/A	-3.912	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.116	S= 0.173	CV(1)= 1.490	K factor**= 2.523	TL(1)= 0.552	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.729	S= 1.014	CV(2) =-0.371	K factor**= 2.523	TL(2)= -0.172	LL(2)= N/A

	kground Data from Yells with Transformed Result
Wall Number	MW260

MW369	
Result	LN(Result)
0.1	-2.303
0.1	-2.303
0.1	-2.303
0.025	-3.689
0.035	-3.352
0.035	-3.352
0.02	-3.912
0.02	-3.912
0.02	
MW372	
	LN(Result)
MW372	LN(Result) -0.322
MW372 Result	
MW372 Result 0.725	-0.322
MW372 Result 0.725 0.1	-0.322 -2.303
MW372 Result 0.725 0.1 0.1	-0.322 -2.303 -2.303
MW372 Result 0.725 0.1 0.1 0.025	-0.322 -2.303 -2.303 -3.689
MW372 Result 0.725 0.1 0.1 0.025 0.035	-0.322 -2.303 -2.303 -3.689 -3.352
	0.1 0.1 0.1 0.025 0.035 0.035 0.035 0.02

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.02	N/A	-3.912	N/A	
MW360	Downgradient	No	0.02	N/A	-3.912	N/A	
MW363	Downgradient	No	0.02	N/A	-3.912	N/A	
MW366	Downgradient	Yes	0.00973	N/A	-4.633	NO	
MW369	Upgradient	No	0.02	N/A	-3.912	N/A	
MW372	Upgradient	No	0.02	N/A	-3.912	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.026	S= 5.626	CV(1)= 2.777	K factor**= 2.523	TL(1)= 16.219	LL(1)=N/A
Statistics-Transformed Background	X= -0.803	S= 1.380	CV(2)=- 1.718	K factor**= 2.523	TL(2)= 2.678	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			
Date Collected	Result	LN(Result)		
3/17/2002	4.66	1.539		

3/17/2002	4.66	1.539
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
wen number.	IVI VV 373	
Date Collected	Result	LN(Result)
		LN(Result) 3.122
Date Collected	Result	()
Date Collected 3/18/2002	Result 22.7	3.122
Date Collected 3/18/2002 4/23/2002	Result 22.7 1.46	3.122 0.378
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 22.7 1.46 0.253	3.122 0.378 -1.374
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 22.7 1.46 0.253 0.482	3.122 0.378 -1.374 -0.730
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 22.7 1.46 0.253 0.482 0.608	3.122 0.378 -1.374 -0.730 -0.498

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0198	N/A	-3.922	NO
MW361	Downgradient	No	0.05	N/A	-2.996	N/A
MW364	Downgradient	No	0.05	N/A	-2.996	N/A
MW367	Downgradient	Yes	0.0225	N/A	-3.794	NO
MW370	Upgradient	No	0.05	N/A	-2.996	N/A
MW373	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonBeta activityUNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.815	S = 7.838	CV(1)= 0.799	K factor**= 2.523	TL(1)= 29.591	LL(1)=N/A
Statistics-Transformed Background Data	X =2.072	S = 0.630	CV(2) =0.304	K factor**= 2.523	TL(2)= 3.662	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	10.1	2.313
4/23/2002	4.46	1.495
7/15/2002	6.58	1.884
10/8/2002	4.9	1.589
1/8/2003	4.47	1.497

8.65

3.66

5.38

MW373

Result

15.1

6.26

6.22

4.06

11.2

18.5

13.3

34.2

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	25.4	N/A	3.235	N/A
MW361	Downgradient	Yes	33.3	N/A	3.506	N/A
MW364	Downgradient	Yes	33.1	N/A	3.500	N/A
MW367	Downgradient	Yes	24.6	N/A	3.203	N/A
MW370	Upgradient	Yes	75.9	YES	4.329	N/A
MW373	Upgradient	Yes	13.4	N/A	2.595	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.158

1.297

1.683

2.715

1.834

1.828

1.401

2.416

2.918

2.588

3.532

LN(Result)

Wells with Exceedances MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.140	S= 0.780	CV(1)= 0.684	K factor**= 2.523	TL(1)= 3.108	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.235	S= 1.006	CV(2) =-4.287	K factor**= 2.523	TL(2)= 2.303	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW370

wen rumber.	11110370	
Date Collected	Result	LN(Result)
3/17/2002	2	0.693
4/23/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 3/18/2002	Result 2	0.693
Date Collected 3/18/2002 4/23/2002	Result 2 2	0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.79	0.693 0.693 0.693 -0.236
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 0.79 0.807	0.693 0.693 0.693 -0.236 -0.214
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2 2 0.79 0.807 1.13	0.693 0.693 0.693 -0.236 -0.214 0.122

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.422	NO	-0.863	N/A
MW361	Downgradient	Yes	0.0973	NO	-2.330	N/A
MW364	Downgradient	Yes	0.0228	NO	-3.781	N/A
MW367	Downgradient	Yes	0.0498	NO	-3.000	N/A
MW370	Upgradient	Yes	0.335	NO	-1.094	N/A
MW373	Upgradient	Yes	1.85	NO	0.615	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1111220

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1	0.000
4/23/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/18/2002	Result 1	0.000
Date Collected 3/18/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.407	NO	-0.899	N/A
MW361	Downgradient	Yes	0.437	NO	-0.828	N/A
MW364	Downgradient	Yes	0.449	NO	-0.801	N/A
MW367	Downgradient	Yes	0.389	NO	-0.944	N/A
MW370	Upgradient	Yes	0.482	NO	-0.730	N/A
MW373	Upgradient	Yes	0.602	NO	-0.507	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 43.413	S= 13.444	CV(1)= 0.310	K factor**= 2.523	TL(1)= 77.331	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.723	S = 0.323	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.539	LL(2)= N/A

Historical Bac Upgradient W		ata from ransformed Result
Well Number:	MW370	
Date Collected	Result	LN(Result)

Date Collected	Result	LN(Result)
3/17/2002	34.8	3.550
4/23/2002	43.4	3.770
7/15/2002	33.2	3.503
10/8/2002	29.2	3.374
1/8/2003	31.3	3.444
4/3/2003	32.4	3.478
7/9/2003	22.9	3.131
10/6/2003	28	3.332
XX7 11 X7 1	1 (11/272	
Well Number:	MW373	
Date Collected	MW3/3 Result	LN(Result)
		LN(Result) 4.126
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 61.9	4.126
Date Collected 3/18/2002 4/23/2002	Result 61.9 59.2	4.126 4.081
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 61.9 59.2 47.6	4.126 4.081 3.863
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 61.9 59.2 47.6 46.1	4.126 4.081 3.863 3.831
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 61.9 59.2 47.6 46.1 49.2	4.126 4.081 3.863 3.831 3.896

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	34.5	NO	3.541	N/A
MW361	Downgradient	Yes	33.8	NO	3.520	N/A
MW364	Downgradient	Yes	33.8	NO	3.520	N/A
MW367	Downgradient	Yes	28.2	NO	3.339	N/A
MW370	Upgradient	Yes	36	NO	3.584	N/A
MW373	Upgradient	Yes	72.8	NO	4.288	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 41.938	S= 24.732	CV(1)= 0.590	K factor**= 2.523	TL(1)= 104.336	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.658	S = 0.339	CV(2) =0.093	K factor**= 2.523	TL(2)= 4.512	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resu				
Well Number:	MW370			

wen number.	101 00 570	
Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.555
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 35 47 35 35 35 35 35	3.555 3.850 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	20	N/A	2.996	N/A
MW361	Downgradient	Yes	12.7	NO	2.542	N/A
MW364	Downgradient	Yes	10.1	NO	2.313	N/A
MW367	Downgradient	No	20	N/A	2.996	N/A
MW370	Upgradient	No	20	N/A	2.996	N/A
MW373	Upgradient	Yes	15.1	NO	2.715	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.919 S = 7.524	CV(1)= 0.164	K factor**= 2.523	TL(1)= 64.901	LL(1)=N/A
Statistics-Transformed Background Data	X =3.814 S = 0.165	CV(2) =0.043	K factor**= 2.523	TL(2)= 4.231	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

1111220

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.704
Date Collected	Result	
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 40.6 38.8 39 38.4 38.1 38	3.704 3.658 3.664 3.648 3.640 3.638

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	33.3	NO	3.506	N/A	
MW361	Downgradient	Yes	33.2	NO	3.503	N/A	
MW364	Downgradient	Yes	34.8	NO	3.550	N/A	
MW367	Downgradient	Yes	28.8	NO	3.360	N/A	
MW370	Upgradient	Yes	37.7	NO	3.630	N/A	
MW373	Upgradient	Yes	37.4	NO	3.622	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison cis-1,3-Dichloropropene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.250	S = 5.000	CV(1)= 0.800	K factor**= 2.523	TL(1)= 18.865	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.710	S = 0.402	CV(2) =0.235	K factor**= 2.523	TL(2)= 2.725	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW370

Wall Number

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	5	1.609
4/23/2002	5	1.609
7/15/2002	5	1.609
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 3/18/2002	Result 5	1.609
Date Collected 3/18/2002 4/23/2002	Result 5 25	1.609 3.219
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 5 25 5	1.609 3.219 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 25 5 5	1.609 3.219 1.609 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 25 5 5 5 5	1.609 3.219 1.609 1.609 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5 25 5 5 5 5 5	1.609 3.219 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	1	N/A	0.000	N/A
MW361	Downgradient	No	1	N/A	0.000	N/A
MW364	Downgradient	No	1	N/A	0.000	N/A
MW367	Downgradient	No	1	N/A	0.000	N/A
MW370	Upgradient	Yes	0.57	NO	-0.562	N/A
MW373	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.027	S= 0.032	CV(1)= 1.165	K factor**= 2.523	TL(1)= 0.108	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.058	S= 1.011	CV(2) =-0.249	K factor**= 2.523	TL(2)= -1.507	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number: MW370							
Date Collected	Result	LN(Result)					
3/17/2002							

4/23/2002 0.025 -3.6897/15/2002 0.025 -3.689 10/8/2002 0.0174 -4.051 1/8/2003 0.0105 -4.556 4/3/2003 0.00931 -4.677 7/9/2003 0.137 -1.98810/6/2003 0.0463 -3.073 Well Number: MW373 Date Collected Result LN(Result) 0.025 3/18/2002 -3.689 4/23/2002 0.034 -3.381 7/16/2002 0.025 -3.689 10/8/2002 0.00411 -5.494 1/7/2003 0.00344 -5.672 4/2/2003 0.00368 -5.605 7/9/2003 0.0405 -3.20610/7/2003 0.00843 -4.776

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.00701	N/A	-4.960	NO	
MW361	Downgradient	No	0.001	N/A	-6.908	N/A	
MW364	Downgradient	No	0.001	N/A	-6.908	N/A	
MW367	Downgradient	Yes	0.00465	N/A	-5.371	NO	
MW370	Upgradient	No	0.001	N/A	-6.908	N/A	
MW373	Upgradient	Yes	0.00038	1 N/A	-7.873	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 608.719 S= 156.157 CV(1)=0.257
 K factor**= 2.523
 TL(1)= 1002.702 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 6.380 S= 0.260 CV(2)=0.041
 K factor**= 2.523
 TL(2)= 7.036
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	()
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 661 801 774 680 686.5 763	6.494 6.686 6.652 6.522 6.532 6.637

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	505	NO	6.225	N/A	
MW361	Downgradient	Yes	509	NO	6.232	N/A	
MW364	Downgradient	Yes	481	NO	6.176	N/A	
MW367	Downgradient	Yes	367	NO	5.905	N/A	
MW370	Upgradient	Yes	475	NO	6.163	N/A	
MW373	Upgradient	Yes	844	NO	6.738	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.010	CV(1)= 0.399	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.739	S = 0.308	CV(2) =-0.082	K factor**= 2.523	TL(2)= -2.963	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result									
Well Number:	MW370								
Date Collected	Result	LN(Result)							
3/17/2002	0.025	-3.689							
4/23/2002	0.025	-3.689							
7/15/2002	0.05	-2.996							
10/8/2002	0.02	-3.912							
1/8/2003	0.02	-3.912							
4/3/2003	0.02	-3.912							
7/9/2003	0.02	-3.912							
10/6/2003	0.02	-3.912							
Well Number:	MW373								
Date Collected	Result	LN(Result)							
3/18/2002	0.026	-3.650							
4/23/2002	0.025	-3.689							
7/16/2002	0.05	-2.996							
10/8/2002	0.02	-3.912							
1/7/2003	0.02	-3.912							

0.02

0.02

0.02

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	0.00194	NO	-6.245	N/A			
MW361	Downgradient	Yes	0.00179	NO	-6.326	N/A			
MW364	Downgradient	Yes	0.00039	3 NO	-7.842	N/A			
MW367	Downgradient	Yes	0.00056	1 NO	-7.486	N/A			
MW370	Upgradient	Yes	0.00052	8 NO	-7.546	N/A			
MW373	Upgradient	No	0.00040	1 N/A	-7.822	N/A			
NI/A D	1. 1	T D ()	1 . 11		1 . 1.1	1 4			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.387	S= 1.153	CV(1)= 0.831	K factor**= 2.523	TL(1)= 4.295	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.115	S = 1.207	CV(2) =-10.514	K factor**= 2.523	TL(2)= 2.930	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			
Date Collected	Result	LN(Result)		

Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.112
Date Collected	Result	()
Date Collected 3/18/2002	Result 3.04	1.112
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.29	NO	0.255	N/A
MW361	Downgradient	Yes	2.79	NO	1.026	N/A
MW364	Downgradient	Yes	2.37	NO	0.863	N/A
MW367	Downgradient	Yes	2.41	NO	0.880	N/A
MW370	Upgradient	Yes	2.86	NO	1.051	N/A
MW373	Upgradient	Yes	1.79	NO	0.582	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =356.188 S = 106.752	2 CV(1)=0.300	K factor**= 2.523	TL(1)= 625.523	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.831 S = 0.311	CV(2)= 0.053	K factor**= 2.523	TL(2)= 6.616	LL(2)= N/A

	ackground Wells with [Data from Fransformed	Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 427 507 464 408 404 450	6.057 6.229 6.140 6.011 6.001 6.109

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	300	NO	5.704	N/A
MW361	Downgradient	Yes	294	NO	5.684	N/A
MW364	Downgradient	Yes	283	NO	5.645	N/A
MW367	Downgradient	Yes	221	NO	5.398	N/A
MW370	Upgradient	Yes	261	NO	5.565	N/A
MW373	Upgradient	Yes	514	NO	6.242	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.230	S= 8.841	CV(1)= 0.958	K factor**= 2.523	TL(1)= 31.535	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.942	S= 0.713	CV(2)= 0.367	K factor**= 2.523	TL(2)= 3.740	LL(2)=N/A

	kground Data from fells with Transformed Result
Well Number:	MW270

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	9.34	2.234
4/23/2002	4.33	1.466
7/15/2002	3.52	1.258
10/8/2002	7.45	2.008
1/8/2003	7.04	1.952
4/3/2003	4.64	1.535
7/9/2003	15.8	2.760
10/6/2003	6.49	1.870
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.627
Date Collected	Result	
Date Collected 3/18/2002	Result 37.6	3.627
Date Collected 3/18/2002 4/23/2002	Result 37.6 19	3.627 2.944
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 37.6 19 10.7	3.627 2.944 2.370
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 37.6 19 10.7 3.75	3.627 2.944 2.370 1.322
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 37.6 19 10.7 3.75 3.87	3.627 2.944 2.370 1.322 1.353
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 37.6 19 10.7 3.75 3.87 3.5	3.627 2.944 2.370 1.322 1.353 1.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.7	NO	0.993	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	Yes	0.0727	NO	-2.621	N/A
MW367	Downgradient	Yes	1.89	NO	0.637	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	No	0.0455	N/A	-3.090	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =17.544 S = 5.911	CV(1)= 0.337	K factor**= 2.523	TL(1)= 32.458	LL(1)=N/A
Statistics-Transformed Background Data	X =2.810 S = 0.343	CV(2)= 0.122	K factor**= 2.523	TL(2)= 3.676	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					

wen rumber.	11110370	
Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442
4/3/2003	12.3	2.510
7/9/2003	10	2.303
10/6/2003	12.1	2.493
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.211
Date Collected	Result	
Date Collected 3/18/2002	Result 24.8	3.211
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 24.8 22.7 18.8 21.1 19.9 25.5	3.211 3.122 2.934 3.049 2.991 3.239

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	16.3	NO	2.791	N/A	
MW361	Downgradient	Yes	15.2	NO	2.721	N/A	
MW364	Downgradient	Yes	14.6	NO	2.681	N/A	
MW367	Downgradient	Yes	11.4	NO	2.434	N/A	
MW370	Upgradient	Yes	13.4	NO	2.595	N/A	
MW373	Upgradient	Yes	31.7	NO	3.456	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.080	S= 0.674	CV(1)= 0.624	K factor**= 2.523	TL(1)= 2.780	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.114	S = 0.658	CV(2) =-5.762	K factor**= 2.523	TL(2)= 1.547	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	0.244	-1.411				
4/23/2002	1.82	0.599				
7/15/2002	1.22	0.199				
10/8/2002	0.988	-0.012				
1/8/2003	0.729	-0.316				
4/3/2003	0.637	-0.451				
7/9/2003	2.51	0.920				
10/6/2003	1.05	0.049				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	0.355	-1.036				
4/23/2002	2.16	0.770				
7/16/2002	1.39	0.329				
10/8/2002	0.717	-0.333				
1/7/2003	0.587	-0.533				

0.545

1.76

0.57

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.504	NO	-0.685	N/A
MW361	Downgradient	Yes	0.004	NO	-5.521	N/A
MW364	Downgradient	Yes	0.0184	NO	-3.995	N/A
MW367	Downgradient	Yes	1.34	NO	0.293	N/A
MW370	Upgradient	Yes	0.00145	5 NO	-6.536	N/A
MW373	Upgradient	Yes	0.0157	NO	-4.154	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.607

0.565

-0.562

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.010	S= 0.012	CV(1)= 1.198	K factor**= 2.523	TL(1)= 0.040	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.693	S= 1.604	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.647	LL(2)=N/A

	Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370					

well Number:	MW3/0	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00113	-6.786
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.00022	7 N/A	-8.391	NO	
MW361	Downgradient	No	0.001	N/A	-6.908	N/A	
MW364	Downgradient	Yes	0.00024	1 N/A	-8.331	NO	
MW367	Downgradient	No	0.001	N/A	-6.908	N/A	
MW370	Upgradient	No	0.001	N/A	-6.908	N/A	
MW373	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.022	CV(1)= 0.901	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.239	S= 1.087	CV(2) =-0.256	K factor**= 2.523	TL(2)= -1.497	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.0131	NO	-4.335	N/A	
MW361	Downgradient	No	0.002	N/A	-6.215	N/A	
MW364	Downgradient	No	0.002	N/A	-6.215	N/A	
MW367	Downgradient	Yes	0.00245	NO	-6.012	N/A	
MW370	Upgradient	No	0.002	N/A	-6.215	N/A	
MW373	Upgradient	Yes	0.00133	NO	-6.623	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 46.688	S= 60.986	CV(1)= 1.306	K factor**= 2.523	TL(1)= 200.555	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.829	S= 1.151	CV(2)= 0.301	K factor**= 2.523	TL(2)= 4.942	LL(2)=N/A

Historical Background Data from	
Upgradient Wells with Transformed Resul	lt

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	122	N/A	4.804	NO
MW361	Downgradient	Yes	370	N/A	5.914	YES
MW364	Downgradient	Yes	375	N/A	5.927	YES
MW367	Downgradient	Yes	406	N/A	6.006	YES
MW370	Upgradient	Yes	425	N/A	6.052	YES
MW373	Upgradient	Yes	350	N/A	5.858	YES

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed eveneded the Unney Televenes Limit, which is evidence of eleveted	MW361
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW364
concentration with respect to historical background data.	MW367
	MW370
	MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.283	S= 0.159	CV(1)= 0.025	K factor**= 2.904	TL(1)= 6.745	LL(1)=5.8202
Statistics-Transformed Background Data	X= 1.837	S = 0.025	CV(2)= 0.014	K factor**= 2.904	TL(2)= 1.911	LL(2)= 1.7634

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number: MW370					
Date Collected	Result	LN(Result)			
3/17/2002	6.3	1.841			

Date Collected	Result	LN(Result)
3/17/2002	6.3	1.841
4/23/2002	6.4	1.856
7/15/2002	6.3	1.841
10/8/2002	6.3	1.841
1/8/2003	6.4	1.856
4/3/2003	6.5	1.872
7/9/2003	6.3	1.841
10/6/2003	6.5	1.872
Well Number:	MW373	
wen runnoer.	111 11 11 11	
Date Collected	Result	LN(Result)
		LN(Result) 1.792
Date Collected	Result	
Date Collected 3/18/2002	Result 6	1.792
Date Collected 3/18/2002 4/23/2002	Result 6 6.3	1.792 1.841
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 6 6.3 6.45	1.792 1.841 1.864
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 6 6.3 6.45 6.18	1.792 1.841 1.864 1.821
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6 6.3 6.45 6.18 6.35	1.792 1.841 1.864 1.821 1.848
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6 6.3 6.45 6.18 6.35 6.14	1.792 1.841 1.864 1.821 1.848 1.815

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW358	Downgradien	t Yes	6.4	NO	1.856	N/A	
MW361	Downgradien	t Yes	6.17	NO	1.820	N/A	
MW364	Downgradien	t Yes	6.17	NO	1.820	N/A	
MW367	Downgradien	t Yes	6.04	NO	1.798	N/A	
MW370	Upgradient	Yes	6.17	NO	1.820	N/A	
MW373	Upgradient	Yes	6.13	NO	1.813	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.823	S= 0.522	CV(1)= 0.185	K factor**= 2.523	TL(1)= 4.139	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.024	S = 0.167	CV(2)= 0.163	K factor**= 2.523	TL(2)= 1.445	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu						
Well Number:	MW370					

wen number.	IVI VV 370	
Date Collected	Result	LN(Result)
3/17/2002	3.22	1.169
4/23/2002	3.43	1.233
7/15/2002	2.98	1.092
10/8/2002	2.46	0.900
1/8/2003	2.41	0.880
4/3/2003	2.43	0.888
7/9/2003	2.44	0.892
10/6/2003	2.48	0.908
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.468
Date Collected	Result	
Date Collected 3/18/2002	Result 4.34	1.468
Date Collected 3/18/2002 4/23/2002	Result 4.34 3.04	1.468 1.112
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 4.34 3.04 2.93	1.468 1.112 1.075
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 4.34 3.04 2.93 2.3	1.468 1.112 1.075 0.833
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 4.34 3.04 2.93 2.3 2.45	1.468 1.112 1.075 0.833 0.896
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 4.34 3.04 2.93 2.3 2.45 2.7	1.468 1.112 1.075 0.833 0.896 0.993

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.62	NO	0.963	N/A
MW361	Downgradient	Yes	2.53	NO	0.928	N/A
MW364	Downgradient	Yes	2.12	NO	0.751	N/A
MW367	Downgradient	Yes	3.03	NO	1.109	N/A
MW370	Upgradient	Yes	2.72	NO	1.001	N/A
MW373	Upgradient	Yes	3.19	NO	1.160	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.544	S= 15.227	CV(1)= 0.295	K factor**= 2.523	TL(1)= 89.962	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.906	S= 0.272	CV(2)= 0.070	K factor**= 2.523	TL(2)= 4.592	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW370				

well Number:	WIW3/0	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 43.4 79.8 87.7 61.6 59.3 62.1	3.770 4.380 4.474 4.121 4.083 4.129

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	42.8	NO	3.757	N/A
MW361	Downgradient	Yes	47.8	NO	3.867	N/A
MW364	Downgradient	Yes	45.2	NO	3.811	N/A
MW367	Downgradient	Yes	37.9	NO	3.635	N/A
MW370	Upgradient	Yes	53.8	NO	3.985	N/A
MW373	Upgradient	Yes	65.9	NO	4.188	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =122.381 S = 195.095	5 CV(1)=1.594	K factor**= 2.523	TL(1)= 614.606	LL(1)=N/A
Statistics-Transformed Background Data	X =3.985 S = 1.323	CV(2) =0.332	K factor**= 2.523	TL(2)= 7.322	LL(2)=N/A

	kground Data from ells with Transformed Result
Well Number	MW370

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 163.3 809.6 109.4 110.6 113.7 133	5.096 6.697 4.695 4.706 4.734 4.890

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	61.4	N/A	4.117	NO
MW361	Downgradient	Yes	78.4	N/A	4.362	NO
MW364	Downgradient	Yes	70.8	N/A	4.260	NO
MW367	Downgradient	Yes	39.3	N/A	3.671	NO
MW370	Upgradient	Yes	21.2	N/A	3.054	NO
MW373	Upgradient	Yes	147	N/A	4.990	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.655	S= 13.274	CV(1)= 1.734	K factor**= 2.523	TL(1)= 41.146	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.946	S = 0.939	CV(2)= 0.483	K factor**= 2.523	TL(2)= 3.833	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	10.8	2.380					
4/23/2002	8.53	2.144					
7/15/2002	5.09	1.627					
10/8/2002	4.78	1.564					
1/8/2003	-5.12	#Func!					
4/3/2003	5.11	1.631					
7/9/2003	4.25	1.447					
10/6/2003	6.54	1.878					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	16.5	2.803					
4/23/2002	3.49	1.250					
7/16/2002	1.42	0.351					
10/8/2002	-6.06	#Func!					
1/7/2003	-8.41	#Func!					
4/2/2003	26.3	3.270					
7/9/2003	3.06	1.118					

46.2

Г

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	36.3	N/A	3.592	NO
MW361	Downgradient	Yes	58.9	N/A	4.076	YES
MW364	Downgradient	Yes	47.5	N/A	3.861	YES
MW367	Downgradient	Yes	36.2	N/A	3.589	NO
MW370	Upgradient	Yes	82.8	N/A	4.416	YES
MW373	Upgradient	No	13	N/A	2.565	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.833

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW361
MW364
MW370
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.169	S= 12.072	CV(1)= 1.957	K factor**= 2.523	TL(1)= 36.626	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.069	S= 1.014	CV(2)= 0.948	K factor**= 2.523	TL(2)= 3.626	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
2/17/2002 1.2 0.192								

Date Conected	Result	LIN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
W7 11 NT 1	1411272	
Well Number:	MW373	
Date Collected		LN(Result)
		LN(Result) 0.095
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	3.22	N/A	1.169	NO	
MW361	Downgradient	Yes	0.955	N/A	-0.046	NO	
MW364	Downgradient	Yes	0.811	N/A	-0.209	NO	
MW367	Downgradient	Yes	0.622	N/A	-0.475	NO	
MW370	Upgradient	Yes	1.06	N/A	0.058	NO	
MW373	Upgradient	Yes	1.13	N/A	0.122	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 79.819	S= 78.470	CV(1)= 0.983	K factor**= 2.523	TL(1)= 277.798	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.971	S = 0.950	CV(2) =0.239	K factor**= 2.523	TL(2)= 6.368	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Wall Number:	MW270				

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 50 276 177 76 45.9 57.8	3.912 5.620 5.176 4.331 3.826 4.057

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	6.04	NO	1.798	N/A
MW361	Downgradient	Yes	3.48	NO	1.247	N/A
MW364	Downgradient	Yes	7.72	NO	2.044	N/A
MW367	Downgradient	Yes	8.9	NO	2.186	N/A
MW370	Upgradient	Yes	7.68	NO	2.039	N/A
MW373	Upgradient	No	3.88	N/A	1.356	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison

trans-1,3-Dichloropropene

UNITS: ug/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.250	S= 5.000	CV(1)= 0.800	K factor**= 2.523	TL(1)= 18.865	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.710	S = 0.402	CV(2) =0.235	K factor**= 2.523	TL(2)= 2.725	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW370

Wall Number

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	5	1.609
4/23/2002	5	1.609
7/15/2002	5	1.609
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	()
Date Collected 3/18/2002	Result 5	1.609
Date Collected 3/18/2002 4/23/2002	Result 5 25	1.609 3.219
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 5 25 5	1.609 3.219 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 25 5 5	1.609 3.219 1.609 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 25 5 5 5 5	1.609 3.219 1.609 1.609 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5 25 5 5 5 5 5	1.609 3.219 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	1	N/A	0.000	N/A	
MW361	Downgradient	No	1	N/A	0.000	N/A	
MW364	Downgradient	No	1	N/A	0.000	N/A	
MW367	Downgradient	No	1	N/A	0.000	N/A	
MW370	Upgradient	Yes	1.05	NO	0.049	N/A	
MW373	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 12.188	S= 6.950	CV(1)= 0.570	K factor**= 2.523	TL(1)= 29.721	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.305	S= 0.687	CV(2)= 0.298	K factor**= 2.523	TL(2)= 4.039	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					

wen number.	101 00 570	
Date Collected	Result	LN(Result)
3/17/2002	19	2.944
4/23/2002	17	2.833
7/15/2002	15	2.708
10/8/2002	18	2.890
1/8/2003	17	2.833
4/3/2003	18	2.890
7/9/2003	15	2.708
10/6/2003	16	2.773
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 5	1.609
Date Collected 3/18/2002 4/23/2002	Result 5 25	1.609 3.219
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 5 25 3	1.609 3.219 1.099
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 25 3 4	1.609 3.219 1.099 1.386
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 25 3 4 6	1.609 3.219 1.099 1.386 1.792
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5 25 3 4 6 5	1.609 3.219 1.099 1.386 1.792 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	2.81	N/A	1.033	N/A	
MW361	Downgradient	Yes	5.29	NO	1.666	N/A	
MW364	Downgradient	Yes	6.12	NO	1.812	N/A	
MW367	Downgradient	Yes	2.76	N/A	1.015	N/A	
MW370	Upgradient	Yes	3.46	N/A	1.241	N/A	
MW373	Upgradient	Yes	3.27	N/A	1.185	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.055	S= 0.037	CV(1)= 0.673	K factor**= 2.523	TL(1)= 0.147	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.131	S= 0.691	CV(2) =-0.221	K factor**= 2.523	TL(2)= -1.388	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					

-2.303

-2.303 -2.303

-3.689

-3.352

-3.352

-3.912

-3.912

-2.303

-2.303

-2.303

-3.689

-3.352

-3.352

-3.755

-3.912

LN(Result)

0.1

0.1

0.1

0.025

0.035

0.035

0.02

0.02

MW373

Result

0.1

0.1

0.1

0.025

0.035

0.035

0.0234

0.02

3/17/2002

4/23/2002

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number: Date Collected Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.00537	NO	-5.227	N/A	
MW361	Downgradient	No	0.02	N/A	-3.912	N/A	
MW364	Downgradient	Yes	0.0278	NO	-3.583	N/A	
MW367	Downgradient	Yes	0.00967	NO	-4.639	N/A	
MW370	Upgradient	No	0.02	N/A	-3.912	N/A	
MW373	Upgradient	No	0.02	N/A	-3.912	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U First Quarter 2020 Statistical Analysis **Current Background Comparison** UCRS **Beta activity UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.194	S= 3.889	CV(1)= 1.772	K factor**= 2.523	TL(1)= 12.007	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.179	S= 0.728	CV(2)= 0.618	K factor**= 2.523	TL(2)= 2.179	LL(2)=N/A

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison. **#Because the natural log was not** possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW374	Upgradient	Yes	209	N/A	5.342	YES

Date Collected	Result	LN(Result)
1/22/2018	2.05	0.718
4/12/2018	-0.0836	#Func!
7/18/2018	4.53	1.511
10/10/2018	-2.83	#Func!
1/16/2019	5.26	1.660
4/15/2019	3.99	1.384
7/15/2019	5.76	1.751
	0.01	2 1 7 0
10/16/2019	8.84	2.179
10/16/2019 Well Number:	8.84 MW374	2.179
		LN(Result)
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Well Number: Date Collected 1/22/2018	MW374 Result 1.66	LN(Result) 0.507
Well Number: Date Collected 1/22/2018 4/12/2018	MW374 Result 1.66 6.03	LN(Result) 0.507 1.797
Well Number: Date Collected 1/22/2018 4/12/2018 7/18/2018	MW374 Result 1.66 6.03 -3.46	LN(Result) 0.507 1.797 #Func!
Well Number: Date Collected 1/22/2018 4/12/2018 7/18/2018 10/10/2018	MW374 Result 1.66 6.03 -3.46 -6.09	LN(Result) 0.507 1.797 #Func! #Func!
Well Number: Date Collected 1/22/2018 4/12/2018 7/18/2018 10/10/2018 1/17/2019	MW374 Result 1.66 6.03 -3.46 -6.09 2.11	LN(Result) 0.507 1.797 #Func! #Func! 0.747

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW371

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)Х

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Wells with Exceedances

MW374

C-746-U First Quarter 2020 Statistical Analysis **Current Background Comparison** UCRS Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 36.925	S= 17.881	CV(1)= 0.484	K factor**= 2.523	TL(1)= 82.038	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.501	S= 0.478	CV(2)= 0.136	K factor**= 2.523	TL(2)= 4.706	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4.315

N/A

Well Number:	MW371	
Date Collected	Result	LN(Result)
1/22/2018	38.1	3.640
4/12/2018	62.5	4.135
7/18/2018	58.4	4.067
10/10/2018	48	3.871
1/16/2019	40	3.689
4/15/2019	43.3	3.768
7/15/2019	70.4	4.254
10/16/2019	58.4	4.067
10,10,2019	2011	
Well Number:	MW374	
		LN(Result)
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Well Number: Date Collected 1/22/2018	MW374 Result 24.2	LN(Result) 3.186
Well Number: Date Collected 1/22/2018 4/12/2018	MW374 Result 24.2 21.4	LN(Result) 3.186 3.063
Well Number: Date Collected 1/22/2018 4/12/2018 7/18/2018	MW374 Result 24.2 21.4 19.9	LN(Result) 3.186 3.063 2.991
Well Number: Date Collected 1/22/2018 4/12/2018 7/18/2018 10/10/2018	MW374 Result 24.2 21.4 19.9 20.4	LN(Result) 3.186 3.063 2.991 3.016

21.8

10/16/2019

Current Background Data from Upgradient

Wells with Transformed Result

Current	t Quarter Da	ta			
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)

NO

74.8

Yes

Conclusion of Statistical Analysis on Current Data

3.082

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

MW371

Upgradient

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results) Х

C-746-U First Quarter 2020 Statistical Analysis **Current Background Comparison Dissolved Oxygen** UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.897	S= 2.466	CV(1)= 0.851	K factor**= 2.523	TL(1)= 9.118	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.728	S = 0.856	CV(2)= 1.176	K factor**= 2.523	TL(2)= 2.887	LL(2)=N/A

Current Background Data from Upgradie Wells with Transformed Result								
Well Number:	MW371							
Date Collected	Result	LN(Result)						
1/22/2018	2.8	1.030						
4/12/2018	7.85	2.061						
7/18/2018	4.89	1.587						
10/10/2018	0.96	-0.041						
1/16/2019	8.02	2.082						
5/28/2019	5.2	1.649						
7/15/2019	4.6	1.526						
10/16/2019	1.27	0.239						
Well Number:	MW374							
Date Collected	Result	LN(Result)						
1/22/2018	1.39	0.329						
4/12/2018	1.67	0.513						
7/18/2018	0.52	-0.654						
10/10/2018	0.88	-0.128						
1/17/2019	0.67	-0.400						
4/11/2019	1.52	0.419						
7/11/2019	2.23	0.802						
10/16/2019	1.88	0.631						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW365	Downgradien	t Yes	4.29	NO	1.456	N/A		
MW371	Upgradient	Yes	5.56	NO	1.716	N/A		
MW374	Upgradient	Yes	3.36	NO	1.212	N/A		

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U First Quarter 2020 Statistical Analysis **Current Background Comparison** UCRS **Oxidation-Reduction Potential UNITS: mV**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =320.125 S = 65.509	CV(1)= 0.205	K factor**= 2.523	TL(1)= 485.405	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.747 S = 0.220	CV(2)= 0.038	K factor**= 2.523	TL(2)= 6.302	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected LN(Result) Result 1/22/2018 339 5.826 4/12/2018 365 5.900 7/18/2018 342 5.835 10/10/2018 328 5.793 1/16/2019 396 5.981 4/15/2019 388 5.961 7/15/2019 423 6.047 10/16/2019 5.771 321 MW374 Well Number: Date Collected Result LN(Result) 1/22/2018 206 5.328 4/12/2018 331 5.802 7/18/2018 269 5.595 10/10/2018 218 5.384 1/17/2019 254 5.537 5/28/2019 355 5.872 7/11/2019 354 5.869 10/16/2019 233 5.451

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW359	Downgradient	Yes	240	NO	5.481	N/A			
MW362	Downgradient	Yes	375	NO	5.927	N/A			
MW365	Downgradient	Yes	457	NO	6.125	N/A			
MW368	Downgradient	Yes	412	NO	6.021	N/A			
MW371	Upgradient	Yes	335	NO	5.814	N/A			
MW374	Upgradient	Yes	358	NO	5.881	N/A			
MW375	Sidegradient	Yes	312	NO	5.743	N/A			

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

Current Background Comparison C-746-U First Quarter 2020 Statistical Analysis UCRS Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 24.015	S= 25.845	CV(1)= 1.076	K factor**= 2.523	TL(1)= 89.222	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.713	S = 0.950	CV(2)= 0.350	K factor**= 2.523	TL(2)= 5.111	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected LN(Result) Result 1/22/2018 2.398 11 4/12/2018 91.6 4.517 7/18/2018 47.7 3.865 10/10/2018 21.9 3.086 1/16/2019 10.1 2.313 4.079 4/15/2019 59.1 7/15/2019 55.4 4.015 10/16/2019 30 3.401 Well Number: MW374 Date Collected LN(Result) Result 1/22/2018 6.34 1.847 4/12/2018 7.24 1.980 7/18/2018 7.69 2.040 10/10/2018 6.6 1.887 1/17/2019 6.8 1.917 4/11/2019 8.28 2.114 7/11/2019 2.087 8.06 10/16/2019 6.43 1.861

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW359	Downgradient	t Yes	45.4	N/A	3.816	NO			
MW362	Downgradient	t Yes	29.6	N/A	3.388	NO			
MW365	Downgradient	t Yes	60	N/A	4.094	NO			
MW368	Downgradient	t Yes	61.4	N/A	4.117	NO			
MW371	Upgradient	Yes	27	N/A	3.296	NO			
MW375	Sidegradient	Yes	24.5	N/A	3.199	NO			

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results) Х

C-746-U First Quarter 2020 Statistical Analysis **Current Background Comparison** URGA **Beta activity UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW372 Upgradient

Yes

50.7

Statistics-Background Data	X= 57.425	S = 45.894	CV(1)= 0.799	K factor**= 2.523	TL(1)= 173.214	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.735	S= 0.823	CV(2)= 0.220	K factor**= 2.523	TL(2)= 5.811	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.926

N/A

Well Number:	MW369	
Date Collected	Result	LN(Result)
1/22/2018	32	3.466
4/11/2018	102	4.625
7/18/2018	14.9	2.701
10/9/2018	23.2	3.144
1/16/2019	22.5	3.114
4/15/2019	83.7	4.427
7/15/2019	120	4.787
10/16/2019	14.8	2.695
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.077
Date Collected	Result	()
Date Collected 1/22/2018	Result 21.7	3.077
Date Collected 1/22/2018 4/12/2018	Result 21.7 20.9	3.077 3.040
Date Collected 1/22/2018 4/12/2018 7/18/2018	Result 21.7 20.9 27.7	3.077 3.040 3.321
Date Collected 1/22/2018 4/12/2018 7/18/2018 10/10/2018	Result 21.7 20.9 27.7 123	3.077 3.040 3.321 4.812
Date Collected 1/22/2018 4/12/2018 7/18/2018 10/10/2018 1/17/2019	Result 21.7 20.9 27.7 123 25.4	3.077 3.040 3.321 4.812 3.235
Date Collected 1/22/2018 4/12/2018 7/18/2018 10/10/2018 1/17/2019 4/11/2019	Result 21.7 20.9 27.7 123 25.4 41	3.077 3.040 3.321 4.812 3.235 3.714

Current Background Data from Upgradient

Wells with Transformed Result

Current	Quarter Data	a			
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)

NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results) Х

C-746-U First Quarter 2020 Statistical Analysis **Current Background Comparison** URGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 33.631	S= 16.761	CV(1)= 0.498	K factor**= 2.523	TL(1)= 75.918	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.382	S = 0.549	CV(2)= 0.162	K factor**= 2.523	TL(2)= 4.768	LL(2)=N/A

Decourse CV(1) is less than or equal to

Well Number:	MW369	
Date Collected	Result	LN(Result)
1/22/2018	15	2.708
4/11/2018	28.7	3.357
7/18/2018	15.6	2.747
10/9/2018	16.3	2.791
1/16/2019	16.3	2.791
4/15/2019	20	2.996
7/15/2019	17.7	2.874
10/16/2019	15.5	2.741
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.900
Date Collected	Result	
Date Collected 1/22/2018	Result 49.4	3.900
Date Collected 1/22/2018 4/12/2018	Result 49.4 49.9	3.900 3.910
Date Collected 1/22/2018 4/12/2018 7/18/2018	Result 49.4 49.9 38.4	3.900 3.910 3.648
Date Collected 1/22/2018 4/12/2018 7/18/2018 10/10/2018	Result 49.4 49.9 38.4 49.7	3.900 3.910 3.648 3.906

59.4

10/16/2019

Current Background Data from Upgradient

Wells with Transformed Result

Because $Cv(1)$ is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	57	NO	4.043	N/A

Conclusion of Statistical Analysis on Current Data

4.084

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results) Х

C-746-U First Quarter 2020 Statistical Analysis **Current Background Comparison** URGA Conductivity **UNITS: umho/cm**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 507.37	5 S= 128.862	2 CV(1)=0.254	K factor**= 2.523	TL(1)= 832.494	LL(1)=N/A
Statistics-Transformed Background	X= 6.198	S= 0.260	CV(2)= 0.042	K factor**= 2.523	TL(2)= 6.855	LL(2)=N/A

Current Background Data from Upgradien Wells with Transformed Result						
MW369						
Result	LN(Result)					
351	5.861					
425	6.052					
372	5.919					
374	5.924					
386	5.956					
439	6.084					
373	5.922					
367	5.905					
MW372						
Result	LN(Result)					
620	6.430					
614	6.420					
597	6.392					
618	6.426					
613	6.418					
632	6.449					
640	6.461					
697	6.547					
	MW369 Result 351 425 372 374 386 439 373 367 MW372 Result 620 614 597 618 613 632 640					

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	730	NO	6.593	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results) Х

C-746-U First Quarter 2020 Statistical Analysis **Current Background Comparison Dissolved Solids** URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 304.43	8 S= 117.429	9 CV(1)=0.386	K factor**= 2.523	TL(1)= 600.711	LL(1)= N/A
Statistics-Transformed Background	X = 5.656	S = 0.359	CV(2) =0.063	K factor**= 2.523	TL(2)= 6.561	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
1/22/2018	161	5.081
4/11/2018	281	5.638
7/18/2018	197	5.283
10/9/2018	196	5.278
1/16/2019	224	5.412
4/15/2019	261	5.565
7/15/2019	194	5.268
10/16/2019	227	5.425
	221	01120
Well Number:	MW372	
		LN(Result)
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
Well Number: Date Collected 1/22/2018	MW372 Result 330	LN(Result) 5.799
Well Number: Date Collected 1/22/2018 4/12/2018	MW372 Result 330 356	LN(Result) 5.799 5.875
Well Number: Date Collected 1/22/2018 4/12/2018 7/18/2018	MW372 Result 330 356 323	LN(Result) 5.799 5.875 5.778
Well Number: Date Collected 1/22/2018 4/12/2018 7/18/2018 10/10/2018	MW372 Result 330 356 323 336	LN(Result) 5.799 5.875 5.778 5.817

466

Current Background Data from Upgradient

Wells with Transformed Result

Data

10/16/2019

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	423	NO	6.047	N/A

Conclusion of Statistical Analysis on Current Data

6.144

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results) Х

C-746-U First Quarter 2020 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =359.875 S = 43.939	CV(1)= 0.122	K factor**= 2.523	TL(1)= 470.734	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.878 S= 0.126	CV(2)= 0.021	K factor**= 2.523	TL(2)= 6.197	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW369 Date Collected LN(Result) Result 1/22/2018 5.846 346 4/11/2018 397 5.984 7/18/2018 338 5.823 10/9/2018 341 5.832 1/16/2019 432 6.068 4/15/2019 5.919 372 7/15/2019 6.016 410 10/16/2019 347 5.849 Well Number: MW372 Date Collected Result LN(Result) 1/22/2018 275 5.617 4/12/2018 348 5.852 7/18/2018 371 5.916 10/10/2018 295 5.687 1/17/2019 393 5.974 5/28/2019 400 5.991 7/11/2019 390 5.966 10/16/2019 303 5.714

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	t Yes	353	NO	5.866	N/A
MW360	Downgradient	t Yes	421	NO	6.043	N/A
MW363	Downgradient	t Yes	330	NO	5.799	N/A
MW366	Downgradient	t Yes	384	NO	5.951	N/A
MW369	Upgradient	Yes	327	NO	5.790	N/A
MW372	Upgradient	Yes	375	NO	5.927	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical Analysis **Current Background Comparison Technetium-99** URGA **UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 76.075	S= 58.396	CV(1)= 0.768	K factor**= 2.523	TL(1)= 223.408	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.082	S= 0.717	CV(2)= 0.176	K factor**= 2.523	TL(2)= 5.892	LL(2)=N/A

MW372 Upgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4.577

N/A

Well Number:	MW369	
Date Collected	Result	LN(Result)
1/22/2018	38.8	3.658
4/11/2018	142	4.956
7/18/2018	31.4	3.447
10/9/2018	55	4.007
1/16/2019	39.1	3.666
4/15/2019	70.8	4.260
7/15/2019	55.8	4.022
10/16/2019	30.1	3.405
Well Number:	MW372	
	MW372 Result	LN(Result)
		LN(Result) 2.851
Date Collected	Result	
Date Collected 1/22/2018	Result 17.3	2.851
Date Collected 1/22/2018 4/12/2018	Result 17.3 36.6	2.851 3.600
Date Collected 1/22/2018 4/12/2018 7/18/2018	Result 17.3 36.6 70.9	2.851 3.600 4.261
Date Collected 1/22/2018 4/12/2018 7/18/2018 10/10/2018	Result 17.3 36.6 70.9 158	2.851 3.600 4.261 5.063
Date Collected 1/22/2018 4/12/2018 7/18/2018 10/10/2018 1/17/2019	Result 17.3 36.6 70.9 158 35	2.851 3.600 4.261 5.063 3.555

194

10/16/2019

Current Background Data from Upgradient

Wells with Transformed Result

Current	t Quarter Da	ata				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)

NO

Yes

97.2

Conclusion of Statistical Analysis on Current Data

5.268

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results) Х

C-746-U First Quarter 2020 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 44.837	S= 29.489	CV(1)= 0.658	K factor**= 2.523	TL(1)= 119.236	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.537	S= 0.829	CV(2)= 0.234	K factor**= 2.523	TL(2)= 5.627	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW370 Date Collected LN(Result) Result 1/22/2018 71.9 4.275 4/11/2018 50 3.912 7/18/2018 102 4.625 10/9/2018 81.7 4.403 1/16/2019 75.8 4.328 4/15/2019 61 4.111 7/15/2019 52.7 3.965 10/16/2019 70.1 4.250 Well Number: MW373 Date Collected Result LN(Result) 1/22/2018 23.5 3.157 4/12/2018 4.99 1.607 7/18/2018 30.6 3.421 3.127 10/10/2018 22.8 1/17/2019 17.4 2.856 4/11/2019 13.7 2.617 7/11/2019 21.9 3.086 10/16/2019 17.3 2.851

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Upgradient	Yes	75.9	NO	4.329	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 379.313 S = 38.778	CV(1)= 0.102	K factor**= 2.523	TL(1)= 477.148	LL(1)=N/A
Statistics-Transformed Background Data	X =5.933 S = 0.102	CV(2)= 0.017	K factor**= 2.523	TL(2)= 6.192	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW370 Date Collected LN(Result) Result 1/22/2018 334 5.811 4/11/2018 5.908 368 7/18/2018 369 5.911 10/9/2018 346 5.846 1/16/2019 440 6.087 5.991 5/28/2019 400 7/15/2019 421 6.043 10/16/2019 405 6.004 Well Number: MW373 Date Collected Result LN(Result) 1/22/2018 393 5.974 4/12/2018 350 5.858 7/18/2018 318 5.762 10/10/2018 438 6.082 1/17/2019 336 5.817 4/11/2019 387 5.958 7/11/2019 417 6.033 10/16/2019 347 5.849

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW361	Downgradien	t Yes	370	NO	5.914	N/A
MW364	Downgradien	t Yes	375	NO	5.927	N/A
MW367	Downgradien	t Yes	406	NO	6.006	N/A
MW370	Upgradient	Yes	425	NO	6.052	N/A
MW373	Upgradient	Yes	350	NO	5.858	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2020 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 62.731	S= 44.819	CV(1)= 0.714	K factor**= 2.523	TL(1)= 175.811	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.005	S= 0.712	CV(2)= 0.178	K factor**= 2.523	TL(2)= 4.828	LL(2)=N/A

Current Background Data from Upgradien Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
1/22/2018	73.9	4.303				
4/11/2018	107	4.673				
7/18/2018	96.2	4.566				
10/9/2018	114	4.736				
1/16/2019	94.3	4.546				
4/15/2019	111	4.710				
7/15/2019	107	4.673				
10/16/2019	125	4.828				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
1/22/2018	24.8	3.211				
4/12/2018	30.2	3.408				
7/18/2018	-15.9	#Func!				
10/10/2018	20.3	3.011				
1/17/2019	28.4	3.346				
4/11/2019	22.7	3.122				
7/11/2019	28.3	3.343				
10/16/2019	36.5	3.597				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW361	Downgradien	t Yes	58.9	NO	4.076	N/A
MW364	Downgradien	t Yes	47.5	NO	3.861	N/A
MW370	Upgradient	Yes	82.8	NO	4.416	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

FOUR RIVERS

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

May 7, 2020

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by an independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the first quarter 2020 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

un

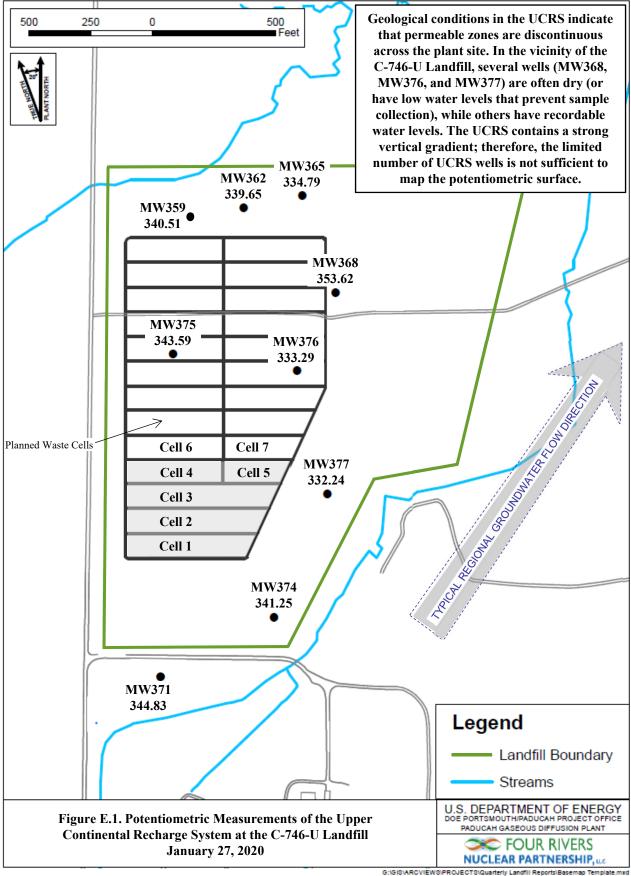
Bryan Smith

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 1st CY 2020 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

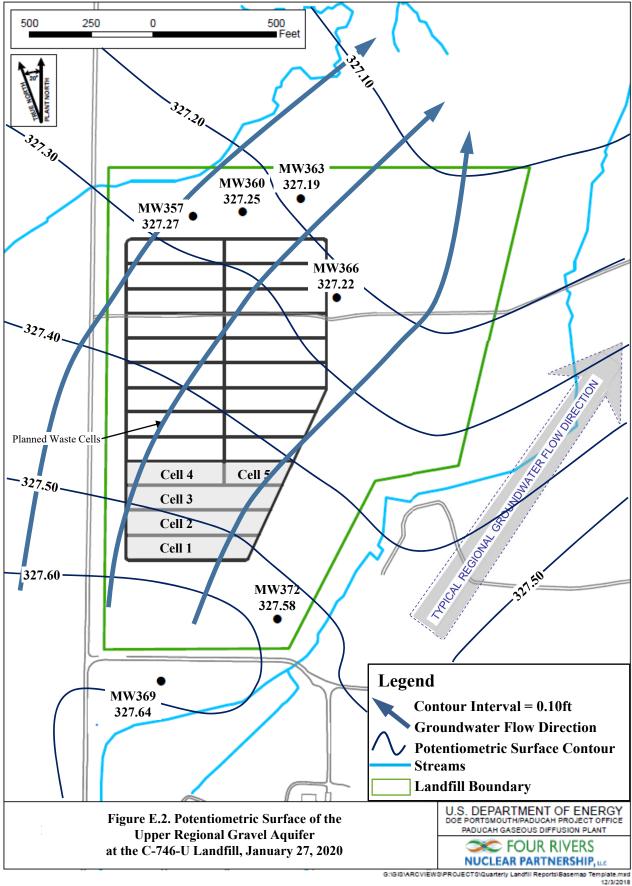
GROUNDWATER FLOW RATE AND DIRECTION

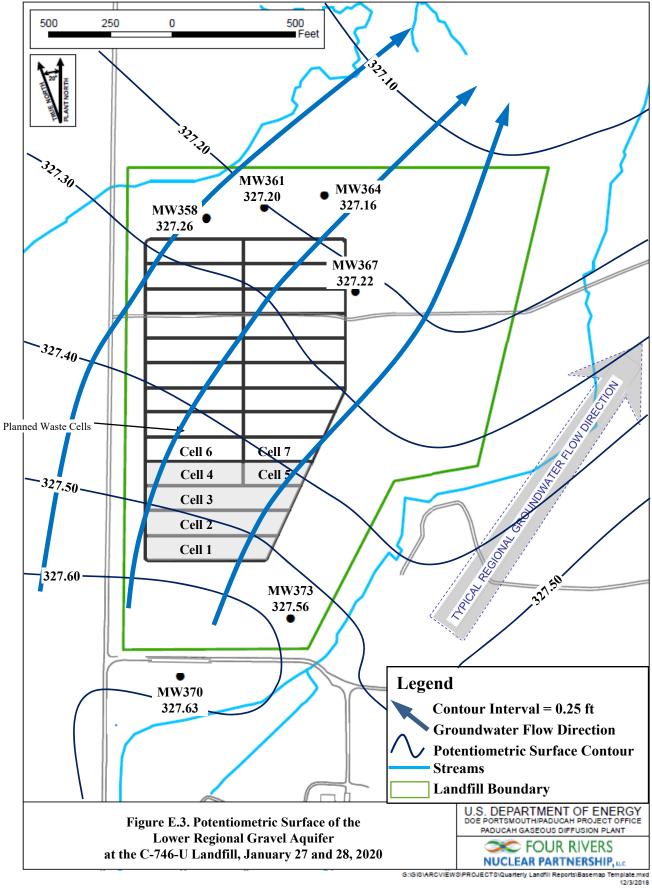

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 *KAR* 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2020 and determine groundwater flow rate and direction.

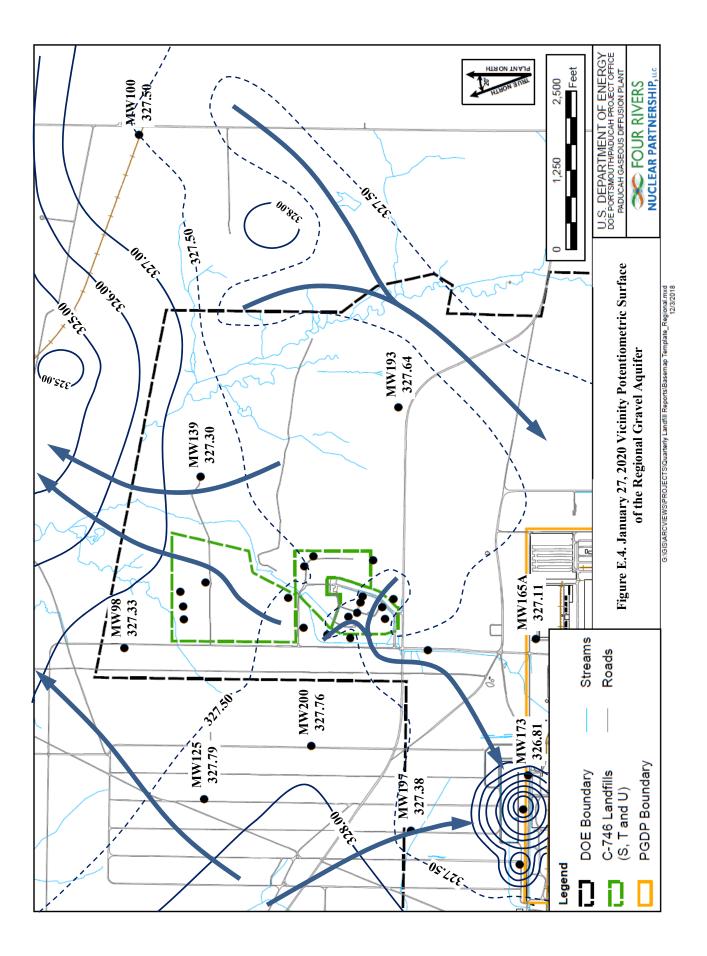
Water levels during this reporting period were measured on January 27 and 28, 2020. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurements during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 2.22×10^{-4} ft/ft and 2.17×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill wes 5.82×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.378 to 0.644 ft/day for the URGA and 0.368 to 0.628 ft/day for the LRGA (see Table E.3).


Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for January 2020, the groundwater flow direction in the immediate area of the landfill was to the northeast.




^{12/3/2018}

			C-746-	U Landfill (Janı	ary 2020)	Water Level	s			
							Raw	v Data	*Corre	ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/27/2020	9:12	MW357	URGA	368.82	30.01	-0.01	41.56	327.26	41.55	327.27
1/27/2020	9:13	MW358	LRGA	368.97	30.01	-0.01	41.72	327.25	41.71	327.26
1/27/2020	9:14	MW359	UCRS	368.96	30.01	-0.01	28.46	340.50	28.45	340.51
1/27/2020	9:06	MW360	URGA	362.12	30.01	-0.01	34.88	327.24	34.87	327.25
1/27/2020	9:08	MW361	LRGA	361.37	30.01	-0.01	34.18	327.19	34.17	327.20
1/27/2020	9:10	MW362	UCRS	361.90	30.01	-0.01	22.26	339.64	22.25	339.65
1/27/2020	9:28	MW363	URGA	368.61	30.00	0.00	41.42	327.19	41.42	327.19
1/28/2020	7:34	MW364	LRGA	368.22	30.12	-0.14	41.20	327.02	41.06	327.16
1/27/2020	9:32	MW365	UCRS	368.19	30.00	0.00	33.40	334.79	33.40	334.79
1/27/2020	9:37	MW366	URGA	369.00	30.00	0.00	41.78	327.22	41.78	327.22
1/27/2020	9:39	MW367	LRGA	369.42	30.00	0.00	42.20	327.22	42.20	327.22
1/27/2020	9:40	MW368	UCRS	369.03	30.00	0.00	15.41	353.62	15.41	353.62
1/27/2020	12:10	MW369	URGA	364.28	30.00	0.00	36.64	327.64	36.64	327.64
1/27/2020	12:11	MW370	LRGA	365.17	30.00	0.00	37.54	327.63	37.54	327.63
1/27/2020	12:12	MW371	UCRS	364.69	30.00	0.00	19.86	344.83	19.86	344.83
1/27/2020	12:05	MW372	URGA	359.47	30.00	0.00	31.89	327.58	31.89	327.58
1/27/2020	12:07	MW373	LRGA	359.78	30.00	0.00	32.22	327.56	32.22	327.56
1/27/2020	12:08	MW374	UCRS	359.49	30.00	0.00	18.24	341.25	18.24	341.25
1/27/2020	11:55	MW375	UCRS	370.41	30.00	0.00	26.82	343.59	26.82	343.59
1/27/2020	11:51	MW376	UCRS	370.44	30.00	0.00	37.15	333.29	37.15	333.29
1/27/2020	11:59	MW377	UCRS	365.79	30.00	0.00	33.55	332.24	33.55	332.24
Reference Barometric Pr Elev = elevati			30.00							
amsl = above		level								
BP = baromet										
DTW = depth	-		/ datum							
URGA = Upp										
LRGA = Low	e		•							
UCRS = Upp	-		-							
*Assumes a b			•							
Assulles a U	arometric	cificiency 0	1 1.0							

Table E.1. C-746-U Landfill First Quarter 2020 (January) Water Levels

	ft/ft
Beneath Landfill—Upper RGA	2.22×10^{-4}
Beneath Landfill—Lower RGA	2.17×10^{-4}
Vicinity	5.82×10^{-4}

Table E.2. C-746-U Landfill Hydraulic Gradients

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	Discharge (q)	Average I	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.161	5.69×10^{-5}	0.644	2.28×10^{-4}
425	0.150	0.0944	3.33×10^{-5}	0.378	1.33×10^{-4}
Lower RGA					
725	0.256	0.157	5.54×10^{-5}	0.628	2.22×10^{-4}
425	0.150	0.0921	3.25×10^{-5}	0.368	1.30×10^{-4}

APPENDIX F

NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the first quarter 2020 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW372
Lower Regional Gravel Aquifer	Technetium-99	MW361, MW364, MW370
NOTE: Although to the diam 00 is not alth	1' 40 CED 8 202 4	1° A 4.° 1° 1° 1° 1 ° 1

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, appendix A, this radionuclide is being reported along with the parameters of this regulation.

3/25/2020

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4795	MW361	Trichloroethene	8260B	5.29	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	6.12	ug/L	5
8004-4818	MW370	Beta activity	9310	75.9	pCi/L	50
8004-4808	MW372	Beta activity Trichloroethene	9310 8260B	50.7 5.64	pCi/L ug/L	50 5
8004-0990	MW374	Beta activity	9310	209	pCi/L	50

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

Groundwater Flow System	I			UCF	s							URG	Ā					LRG	Ā		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Quarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					_
Quarter 3, 2009																					
ALUMINUM						_															
Quarter 3, 2003											*										
BETA ACTIVITY																					
Quarter 1, 2004																					
	1	1																 			
Quarter 2, 2004	-																				
Quarter 3, 2004	 								-							l		<u> </u>			\vdash
Quarter 4, 2004															-			<u> </u>			\vdash
Quarter 4, 2005	I	<u> </u>														I		<u> </u>			⊢₋┥
Quarter 1, 2006	I	<u> </u>																L		L	
Quarter 2, 2006	I	<u> </u>	L	L		L	L	L			L		L	L	L		L	I	L		
Quarter 3, 2006	I	<u> </u>																ļ			
Quarter 4, 2006	I																				
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																_					
Quarter 4, 2008															ī						-
Quarter 1, 2009																			_		-
										-						-					
Quarter 2, 2009																	-				
Quarter 3, 2009																					-
Quarter 4, 2009																					
Quarter 1, 2010																_					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
Quarter 3, 2013	1	1	1	1													1		1		
Quarter 4, 2013	1	1	1	1													1	1	1		<u> </u>
Quarter 1, 2013	1	1																			
Quarter 4, 2014	1	1													ī			1			
Quarter 1, 2015	1	1																			\vdash
Quarter 2, 2015	1	1																			\vdash
Quarter 2, 2015 Quarter 4, 2015	1					-	-	-			-		-	-		-		<u> </u>		-	\vdash
	1					<u> </u>	<u> </u>	<u> </u>	-		<u> </u>		<u> </u>	<u> </u>				<u> </u>		-	\vdash
Quarter 3, 2016														-				<u> </u>			\vdash
Quarter 4, 2016	I	_	ļ	ļ											ļ		ļ	<u> </u>	ļ	_	
Quarter 2, 2017	I	<u> </u>	L	L											L	I	L	I	L		\vdash
Quarter 3, 2017	I	<u> </u>													L			I			
Quarter 4, 2017	I	<u> </u>		L														I	<u> </u>		
Quarter 1, 2018	<u> </u>																				
Quarter 2, 2018																					
Quarter 3, 2018																					
Quarter 4, 2018	L																				
Quarter 1, 2019																					
Quarter 2, 2019	1																				
Quarter 3, 2019	1	1	1	1													1		1		
Quarter 4, 2019	1	1	1	1										<u> </u>			1	1	1		
Quarter 1, 2019	1	1																1			
BROMIDE	1																			_	
Quarter 2, 2004													*								
		1		1					1				ę					1	1		1

Groundwater Flow System				UCF	s							URG	A					LRO	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364		370	373
CALCIUM																					
Quarter 3, 2003										*											
Quarter 2, 2005																					*
Quarter 3, 2006															*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011																					*
Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012 Quarter 3, 2012															* *						*
Quarter 4, 2012 Quarter 4, 2012															*						*
Quarter 1, 2012 Quarter 1, 2013															*			-			*
Quarter 1, 2013 Quarter 2, 2013															*						*
Quarter 3, 2013												<u> </u>		<u> </u>	*			<u> </u>		<u> </u>	*
Quarter 4, 2013 Quarter 4, 2013												<u> </u>		<u> </u>	*			<u> </u>		<u> </u>	· r
Quarter 2, 2013 Quarter 2, 2014															*			1			*
Quarter 3, 2014 Quarter 3, 2014	-				-				-						*	-		1	1		*
Quarter 4, 2014															*			1			
Quarter 2, 2015															*				1		
Quarter 3, 2015															*			1	1		
Quarter 4, 2015									İ						*				1		
Quarter 1, 2016	L	L	L		L				L	L		L	L	L	*	L	L	L	L	L	L
Quarter 2, 2016															*						
Quarter 2, 2017	*																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
Quarter 3, 2019	*							*													
Quarter 4, 2019															*						
Quarter 1, 2020								*							*						
CARBON DISULFIDE																					
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006		<u>ب</u> د				*					ч.										
Quarter 3, 2010		*									*			*							
Quarter 4, 2010 Quarter 1, 2011														*	*						
CHEMICAL OXYGEN DEMA	ND									_					不	_					
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002 Quarter 4, 2002										*	*	*	*	*	*						
Quarter 1, 2002										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*	Ŧ				*					
Quarter 4, 2003					-	*			-	*	*				-			1			
Quarter 3, 2004										*								1			
Quarter 3, 2004		1	1			*			1	*		1	1	1	*	*	1	1	*	1	
Quarter 4, 2005						*												*	*		
Quarter 1, 2006		1	1						1			1	1	1			1	1	*	1	
Quarter 4, 2016																		*			
Quarter 1, 2017											*										
Quarter 2, 2019												*			*						
Quarter 3, 2019															*						*
Quarter 4, 2019															*						
CHLORIDE																					
Quarter 1, 2006															Ļ					*	
Quarter 2, 2014															*						
COBALT																					
Quarter 3, 2003	*	L	L	L	L	L	*		L	*	*	L	*	*	*	*	*	*	I	*	
Quarter 1, 2004									L					*				I			
Quarter 2, 2016														*							
CONDUCTIVITY										*											
Quarter 4, 2002									L	*								<u> </u>			
Quarter 1, 2003	—								<u> </u>	*	ىرى					—		<u> </u>	<u> </u>		
Quarter 2, 2003										*	*							I	I		
Quarter 4, 2003										*								<u> </u>	<u> </u>		
Quarter 1, 2004 Quarter 2, 2004				—	<u> </u>	<u> </u>	<u> </u>		L	*	<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>		<u> </u>	
Quallel 2, 2004	_				_			_		*					_	_		-	-		

Groundwater Flow System UCRS URGA LRGA Gradient D S S D D U D	
Monitoring Well 368 375 376 377 359 362 363 367 360 367 361 364 358 377 CONDUCTNITY	U
Quarter 3.2004 X <thy< th=""> X <thy< th=""> <t< td=""><td></td></t<></thy<></thy<>	
Quarter 1, 2005 M	
Quarter 2, 2005 *	
Quarter 3, 2005 * * * * * Quarter 1, 2006 * * * Quarter 2, 2006 * * Quarter 2, 2006 * * Quarter 2, 2006 * *	
Quarter 4, 2005 * * * * Quarter 1, 2006 * * Quarter 3, 2006 * * Quarter 1, 2007 * * * * * * * *	
Quarter 1, 2006 * * * Quarter 2, 2006 * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 4, 2007 * * * Quarter 2, 2008 * * * Quarter 3, 2008 * * * Quarter 1, 2008 * * * Quarter 3, 2008 * * * Quarter 1, 2008 * * * Quarter 2, 2008 * * * Quarter 3, 2009 * * * Quarter 1, 2010 * * * Quarter 4, 2010 * * * Quarter 4, 2010 * * * Quarter 4, 2011 * * * Quarter 4, 2011 * * *	
Quarter 2, 2006 * * <t< td=""><td>_</td></t<>	_
Quarter 3, 2006	-
Quarter 1, 2007	-
Quarter 2, 2007 ** ** ** Quarter 3, 2007 ** ** ** Quarter 1, 2008 ** ** ** Quarter 2, 2008 ** ** ** Quarter 4, 2008 ** ** ** Quarter 1, 2009 ** ** ** Quarter 2, 2009 ** ** ** Quarter 4, 2009 ** ** ** Quarter 1, 2010 ** ** ** Quarter 4, 2009 ** ** ** Quarter 4, 2010 ** ** ** Quarter 3, 2010 ** ** ** Quarter 4, 2010 ** ** ** Quarter 1, 2011 ** ** ** Quarter 2, 2011 ** ** ** Quarter 4, 2012 **	-
Quarter 3, 2007 ** ** ** Quarter 4, 2007 ** ** ** Quarter 2, 2008 ** ** ** Quarter 3, 2008 ** ** ** Quarter 4, 2009 ** ** ** Quarter 2, 2009 ** ** ** Quarter 1, 2010 ** ** ** Quarter 2, 2010 ** ** ** Quarter 3, 2010 ** ** ** Quarter 4, 2011 ** ** ** Quarter 3, 2011 ** ** ** Quarter 4, 2011 **	
Quarter 4, 2007 * * <t< td=""><td></td></t<>	
Quarter 3, 2008 * <td< td=""><td></td></td<>	
Quarter 3, 2008 * <td< td=""><td></td></td<>	
Quarter 4, 2008 * * * <	
Quarter 1, 2009 * * <t< td=""><td></td></t<>	
Quarter 2, 2009 * * * <	
Quarter 3, 2009 *	
Quarter 4, 2009 * * <t< td=""><td>-</td></t<>	-
Quarter 1, 2010 * * Quarter 3, 2010 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 3, 2010 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 4, 2014 * * Quarter 1, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 1, 2014	-
Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 4, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 4, 2012 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 3, 2014 * * Quarter 4, 2014 * * *	+
Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 4, 2012 * * Quarter 2, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 4, 2014 * * Quarter 4, 2014 * * Quarter 1, 2015 * *	+
Quarter 4, 2010 * * * * *	+
Quarter 1, 2011 * * Quarter 3, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 1, 2015 * *	+
Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 4, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * *	1
Quarter 3, 2011 ** * Quarter 4, 2011 ** * Quarter 1, 2012 ** * Quarter 3, 2012 ** * Quarter 3, 2012 ** * Quarter 4, 2012 ** * Quarter 1, 2013 ** * Quarter 3, 2013 ** Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 1, 2014 ** Quarter 2, 2014 ** Quarter 4, 2014 ** Quarter 1, 2014 ** Quarter 1, 2014 ** Quarter 2, 2014 ** Quarter 4, 2014 ** Quarter 4, 2014 ** Quarter 2, 2015 ** <td>1</td>	1
Quarter 4, 2011 ** *	
Quarter 1, 2012 ** * * * Quarter 3, 2012 * * * Quarter 3, 2012 * * * *	L
Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 4, 2014 * * Quarter 1, 2015 * *	
Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 1, 2014 * * Quarter 1, 2014 * * Quarter 4, 2014 * * Quarter 4, 2014 * * Quarter 4, 2015 * *	
Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 4, 2014 * * Quarter 1, 2015 * *	
Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 4, 2014 * * Quarter 1, 2015 * *	<u> </u>
Quarter 3, 2013 ** ** Quarter 4, 2013 ** ** Quarter 1, 2014 ** ** Quarter 2, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 4, 2014 ** ** Quarter 1, 2015 ** **	
Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 3, 2014 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 4, 2014 * * Quarter 1, 2015 * * Quarter 2, 2015 * *	-
Quarter 1, 2014 * * * Quarter 2, 2014 * * * Quarter 3, 2014 * * * Quarter 4, 2014 * * * Quarter 4, 2014 * * * Quarter 1, 2015 * * *	+
Quarter 2, 2014 * * Quarter 3, 2014 * * Quarter 4, 2014 * * Quarter 1, 2015 * * Quarter 2, 2015 * *	+
Quarter 3, 2014 * * Quarter 4, 2014 * * Quarter 1, 2015 * * Quarter 2, 2015 * *	+
Quarter 4, 2014 *	+
Quarter 1, 2015 *	1
Quarter 2, 2015 * /	1
	1
Quarter 3, 2015 *	
Quarter 4, 2015 * *	
Quarter 1, 2016 *	
Quarter 2, 2016 *	1
Quarter 3, 2016 *	+
Quarter 2, 2019	-
Quarter 3, 2019 * • • • • • • • • • • • • • • • • • •	+
Quarter 4, 2019 * * Quarter 1, 2020 * Constraints and the second	+
DISSOLVED OXYGEN	
Quarter 1, 2003 * * * *	
Quarter 3, 2003	1
Quarter 4, 2003	1
Quarter 1, 2004 *	L
Quarter 2, 2004 * *	
Quarter 1, 2005 *	
Quarter 2, 2005 *	
Quarter 1, 2006 *	1
Quarter 2, 2006 * * *	
Quarter 3, 2006 * * *	+
Quarter 4, 2006 * * * Ouarter 2, 2007 * * *	+
Quarter 2, 2007 * *	+
Quarter 1, 2008	+
Quarter 2, 2008	+
Quarter 2, 2008	+
Quarter 1, 2009	1
Quarter 2, 2009 * * * *	1
Quarter 3, 2009 * * * *	1
Quarter 1, 2010 * * * O	
Quarter 2, 2010 * * * * / / / / *	*
Quarter 3, 2010 * * *	

Groundwater Flow System				UCF	s							URC						LRG			
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN							4			_		<u>ч</u>				_				ч	
Quarter 4, 2010 Quarter 1, 2011						*	*					*								*	
Quarter 2, 2011 Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011						*			*					4							
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012	ļ								*												
Quarter 1, 2013						*	ч г		*												
Quarter 2, 2013 Quarter 3, 2013	*				*		*	*	*												
Quarter 4, 2013	Ŧ				Ť		Ť	Ť	*											*	
Quarter 2, 2013	*				*	*	*	*	*									*		Ŧ	
Quarter 3, 2014	*				*	*	*														
Quarter 4, 2014						*															
Quarter 2, 2015					*	*	*	*													
Quarter 3, 2015					*	*		*													
Quarter 4, 2015	*				ч г	*	*														
Quarter 1, 2016	*	*			*	*	*	*	*											*	*
Quarter 2, 2016 Quarter 3, 2016	*	*	-		*	*	*	*	*		-		*	-					-	*	*
Quarter 4, 2016 Quarter 4, 2016	t —		-		Ť	*	T.	T.	*		-		Ŧ	-					-	-	
Quarter 1, 2010	1						*						*								
Quarter 2, 2017	*		1	1	*	*	*	*	1			1					1	1			1
Quarter 3, 2017	*	*			*	*	*	*										*			
Quarter 4, 2017						*	*											*			
Quarter 1, 2018					*	*	*	*												*	
Quarter 2, 2018					*	*	*	*													
Quarter 3, 2018	*				*	*	*	*													
Quarter 4, 2018					÷	*	ч.	ч.													
Quarter 1, 2019 Quarter 2, 2019					*	*	*	*													
Quarter 3, 2019 Quarter 3, 2019	*				*	*	*	*													
Quarter 4, 2019					*	*	*	-													
Quarter 1, 2020							*	*	*												
DISSOLVED SOLIDS																					
Quarter 4, 2002	1									*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	ļ						*			*	*										
Quarter 4, 2003										*											
Quarter 3, 2005 Quarter 4, 2006						*									*						
Quarter 4, 2006 Quarter 1, 2007															*						
Quarter 2, 2007	-																				
Quarter 4, 2008																					
N 7441151 4. 2000															*						
Quarter 4, 2008 Quarter 1, 2009																					
															*						
Quarter 1, 2009															* *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009															* * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010															* * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010															* * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010															* * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010															* * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011															* * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010															* * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011															* * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011														*	* * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012														*	* * * * * * * * * * * * * * *						*
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012														*	* * * * * * * * * * * * * * * * *						**
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012														*	* * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2013														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 1, 2014														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 4, 2010 Quarter 5, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 1, 2014 Quarter 4, 2014														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2015														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2019														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 4, 2019														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 3, 2019														*	* * * * * * * * * * * * * * * * * * * *						

Groundwater Flow System	r			UCF	S							URG	۰.					LRG	٦.		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368		376	377	359	362	365		374	366	360	363	357	369	372	367	361	364		370	373
IODIDE	500	510	570	511	507	502	505	571	571	500	500	505	551	507	572	501	501	501	550	510	515
Quarter 2, 2003																*					
Quarter 3, 2003	*									*											
Quarter 4, 2003							*														
Quarter 3, 2010						*		*					*				*				
IODINE-131																					
Quarter 3, 2010																					
IODOMETHANE																					
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2003																*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005	 	<u> </u>				<u> </u>			I						*		I				*
Quarter 3, 2005	I	I				*			L								L		I		*
Quarter 2, 2006	<u> </u>	I							L						*		L		L		*
Quarter 3, 2006	<u> </u>	I							L						*		L		L		
Quarter 1, 2007	I	I							L						*		L		I		
Quarter 2, 2008	 	<u> </u>							I						*		I				
Quarter 2, 2009	I	I							L						*		L		I		
Quarter 3, 2009		<u> </u>													*						
Quarter 4, 2009	I								L						*		L		L		
Quarter 1, 2010		<u> </u>													*						
Quarter 2, 2010	<u> </u>	I							L						*		L		L		
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						L
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						L
Quarter 3, 2016	*																				
Quarter 4, 2016	*																				
Quarter 2, 2017	*																				L
Quarter 3, 2017	*	<u> </u>							I	—							I				
Quarter 1, 2018	*																				<u> </u>
Quarter 3, 2018	*																				
Quarter 3, 2019	*																				<u> </u>
Quarter 4, 2019										_					*	_					
MANGANESE	-									44											ļ
Quarter 3, 2002										*		*									<u> </u>
Quarter 4, 2002		*				*	*			*		*		*							<u> </u>
Quarter 2, 2003										*		*	÷			*	÷	ч г	ч г		
Quarter 3, 2003										*	ч г	*	*			*	*	*	*		<u> </u>
Quarter 4, 2003					—	—				*	*	*	*			*	*	*			<u> </u>
Quarter 1, 2004							J.		<u> </u>	*	*	*				*	*	*			
Quarter 2, 2004	I						*		<u> </u>	*	*	*				*	<u> </u>	*			<u> </u>
Quarter 3, 2004 Quarter 4, 2004							*		<u> </u>	*	*	*				*	<u> </u>				
· · ·									<u> </u>	*		*				*	<u> </u>				
Quarter 1, 2005									<u> </u>	*		*				—	<u> </u>				
Quarter 2, 2005									 	*		*				*	<u> </u>		<u> </u>		—
Quarter 3, 2005									<u> </u>	*		*				*	<u> </u>				
Quarter 4, 2005									<u> </u>	*						*	<u> </u>				
Quarter 1, 2006							ىلار		<u> </u>	*		ىلار				—	<u> </u>				
Quarter 2, 2006							*			*		*				*					—
Quarter 3, 2006				<u> </u>						*		<u> </u>				*					
Quarter 4, 2006	I						<u> </u>		<u> </u>	*							<u> </u>				<u> </u>
Quarter 1, 2007		-	L	L	_	_	_	L	L	*	L	L	_	_	_	L	L	L	L	_	_

Gradient D D D D D D U U D D D D </th <th>Groundwater Flow System</th> <th>r</th> <th></th> <th></th> <th>UCF</th> <th>s</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>URG</th> <th>TA</th> <th></th> <th></th> <th></th> <th></th> <th>LRG</th> <th>EA .</th> <th></th> <th></th>	Groundwater Flow System	r			UCF	s							URG	TA					LRG	EA .		
		D	S	S		-	D	D	U	U	D	D			U	U	D	D			U	U
Quarter 2, 2007 Image: Applicable and App	Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 3. 2007 Image	MANGANESE																					
Quarter 1, 2008 Quarter 2, 2018 QUARTER 2,	Quarter 2, 2007							*			*											
Quarter J. 2006 Quarter J. 2007 Quarter J. 2016 Quarter J. 2007 QUARTER J.	Quarter 3, 2007							*														
Quarter 3. 2009 Quarter 3. 2001 Quarter 3.	Quarter 3, 2008							*														
Quarter 2. 2011 Quarter 2. 2015 QUARTER 2.	Quarter 4, 2008																					
Quarter 2, 2016 Distance	Quarter 3, 2009							*														
Quarter 3. 2016 Quarter 3. 2016 Quarter 3. 2003 Quarter 3. 2004 Quarter 3. 2005 QUARTER 2.								*														
Nickel Nickel<															*							
Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 1,	Quarter 3, 2016									*												
OxIDATION-REPUENTION Image: Constraint of the second of the	NICKEL																					
Quarter 1, 2002 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2005 QUARTER 1, 2007 QUARTER 1,	Quarter 3, 2003										*											
Quarter 1.2003 Quarter 3.2003 Quarter 4.2003 Quarter 4.2003 Quarter 4.2004 Quarter 4.2005 Quarter	OXIDATION-REDUCTION H	OTE	NTIA	L																		
Quarter 2, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2007 Quarter 4,	Quarter 4, 2002																	*		*		
Quarter 1, 2003 Image: Control of the con																		*				
Quarter 2, 2003 Quarter 3, 2004 Image: Constraint of the second																				*		
Quarter 1, 2004Quarter 1, 2004Quarter 1, 2005Quarter 1, 2006Quarter 1, 2006Quarter 1, 2006Quarter 1, 2006Quarter 1, 2006Quarter 1, 2006Quarter 1, 2007Quarter 1, 200		*																				
Quarter 1, 2004Quarter 1, 2005Quarter 1, 2006Quarter 1, 2006Quarter 1, 2006Quarter 1, 2006Quarter 1, 2006Quarter 1, 2007Quarter 1, 200	Quarter 4, 2003					*																
Quarter 1, 2004 Quarter 1, 2005 Image: Amage: Amag														_								
Ounter 1. 2005 Ounter 3. 2007 Ounter	Quarter 3, 2004	I	L	L	L	*	L	L	*	I		L		*	*	*		*	L	L	*	
Ounter 2.2005 O N <	Quarter 4, 2004	I							L	I			*		L					L		
Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4,		I								I												*
Quarter 1.2005 *		I								I												1.
Quarter 1,2006 Quarter 4,2007 Quarter 4,2008 Quarter 4,2008 Quarter 4,2008 Quarter 4,2008 Quarter 4,2008 Quarter 4,2008 Quarter 4,2009 Quarter		I				*	*			I		*	*	_						*		*
Ounter 1,2006 Image: Solution 1,2007		I	*						-				L	*	L					L	*	
Dunter 1, 2006 Image 1, 2006 Image 1, 2007 Ima	Quarter 1, 2006	I	L	L	L		L			*		L	L		L				L	L		*
Quarter 1, 2006Image: Constraint of the c		I	L	L	L		L	*		I		L	L		L				L	L		
Ounter 1, 2007 *		I	L	L	L		L		*	I		L	L		L				L	L		
Quarter 2, 2007 * <td></td> <td>I</td> <td></td> <td>L</td> <td>L</td> <td></td> <td>L</td> <td>*</td> <td></td> <td>I</td> <td>*</td> <td>L</td> <td>*</td> <td></td> <td>L</td> <td></td> <td></td> <td></td> <td>L</td> <td>L</td> <td></td> <td></td>		I		L	L		L	*		I	*	L	*		L				L	L		
Quarter 3, 2007 * <td>Quarter 1, 2007</td> <td>I</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td>*</td> <td>I</td> <td></td> <td></td> <td> </td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>L</td> <td> </td> <td></td> <td></td>	Quarter 1, 2007	I	*					L	*	I									L			
Quarter 1, 2007 Image: Constraint of the second s														*								*
Ounter 1, 2008 Image: 1, 2009 Image: 1, 200						*			*													
Quarter 2, 2008 N																		*				*
Quarter 3, 2008 *													*							*		
Quarter 1, 2009 Normal Network Normal	<u> </u>																					
Quarter 1, 2009 .						*		*		*			_		*					*		
Quarter 2, 2009 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td>																		*				*
Quarter 3, 2009 * <td></td>																						
Quarter 4, 2009 * <td></td>																						
Quarter 1, 2010 * <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						*				_					*							
Quarter 2, 2010 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>_</td> <td></td> <td>*</td> <td>-</td> <td></td> <td>*</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td>							*	_		*	-		*	_						*		*
Quarter 3, 2010 * <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td>			*					*														
Quarter 4, 2010 * <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>_</td> <td></td> <td></td>						-	_		-				*				*			_		
Quarter 1, 2011 * <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>*</td> <td>_</td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td>_</td> <td>*</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>			_			*	_	_			-			_	_	*				_		
Quarter 2, 2011 *			*				_	*		*	-		_	_			-			_		*
Quarter 3, 2011 *	× /																					
Quarter 4, 2011 *						*		*				*	_									
Quarter 1, 2012 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td>										_										*		
Quarter 2, 2012 * <td>· · · ·</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · · ·		_				_				-			_			-					
Quarter 3, 2012 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>										_												
Quarter 4, 2012 * <td></td> <td>*</td> <td>_</td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td>*</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>		*	_		*	*		*		*		*	_							_		
Quarter 1, 2013 * <td></td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		I					_				-		_	_	_		-					
Quarter 2, 2013 *		I	_	<u> </u>			_						_	_	_					*		*
Quarter 3, 2013 * <td></td> <td>I</td> <td></td> <td><u> </u></td> <td> </td> <td> </td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td><u>т</u></td>		I		<u> </u>			*									4				4		<u>т</u>
Quarter 4, 2013 * <td></td> <td>-</td> <td></td> <td><u> </u></td> <td> </td> <td>40</td> <td>-14</td> <td>-11-</td> <td></td>		-		<u> </u>		40	-14	-11-														
Quarter 1, 2014 * <td></td> <td>*</td> <td></td> <td></td> <td>—</td> <td>*</td> <td></td> <td>*</td> <td></td>		*			—	*		*														
Quarter 2, 2014 * <td></td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>_</td> <td></td>		I					*			_												
Quarter 3, 2014 * <td></td> <td>44</td> <td></td> <td> </td> <td>—</td> <td>ىبر</td> <td>ىدر</td> <td>ىد.</td> <td></td>		44			—	ىبر	ىدر	ىد.														
Quarter 4, 2014 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												*				*						
Quarter 1, 2015 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td>		*				*		*														
Quarter 2, 2015 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td><u>.</u></td> <td>_</td> <td></td> <td></td> <td><u>y</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										_		<u>.</u>	_			<u>y</u>						
Quarter 3, 2015 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>الا</td> <td></td>		*				*		ال ا														
Quarter 4, 2015 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>_</td> <td></td>		*						*		_												
Quarter 1, 2016 * <td>~ /</td> <td>*</td> <td></td> <td> </td> <td></td> <td>*</td> <td>_</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	~ /	*				*	_	*					_			_				_		
Quarter 2, 2016 * <td></td> <td></td> <td></td> <td> </td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td>						*	*			*		*										
Quarter 3, 2016 * <td></td> <td>_</td> <td>_</td> <td> </td> <td></td> <td></td> <td><u>.</u></td> <td></td> <td></td> <td>*</td> <td></td>		_	_				<u>.</u>			*												
Quarter 4, 2016 * <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td>												*										
Quarter 1, 2017 * <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						*							_			_						
Quarter 2, 2017 * <td></td> <td>_</td> <td></td> <td> </td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_					_								_							
Quarter 3, 2017 * <td></td> <td>_</td> <td>_</td> <td> </td> <td></td> <td>*</td> <td>_</td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td></td>		_	_			*	_	_			-			_	_		-			_		
Quarter 4, 2017 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>*</td> <td></td>										_		*										
Quarter 1, 2018 * <td></td> <td>*</td> <td></td> <td></td> <td> </td> <td>*</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td>		*				*				_							*			*		
Quarter 2, 2018 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td><u>.</u></td> <td></td> <td><u>.</u></td> <td></td> <td></td> <td></td> <td></td> <td></td>		*				<u>.</u>											<u>.</u>					
Quarter 3, 2018 * <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ىبر</td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td>ىبر</td> <td></td> <td></td>		_	_									ىبر				_	-			ىبر		
										_												
Owerter 4, 2019 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥	Quarter 3, 2018 Quarter 4, 2018	*	*			*	* *	* *	*	*	*	* *	* *	*	*	*	*	* *	*	*	*	*
		*				*				_												
Quarter 1, 2019 * * * * * * * * * * * * * * * * * * *	Quarter 1, 2019	. *	*	-		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	ボ

Groundwater Flow System				UCF	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
OXIDATION-REDUCTION F	OTE	NTIA *			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2019 Quarter 3, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	Ť	*	*
Quarter 4, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
PCB, TOTAL	-	-			-	-	-	-	-	-		-	-	-	-		-	-		-	-
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008 Quarter 4, 2008							*														
Quarter 3, 2008 Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010	1	-					*				-					-		-	-	-	
Quarter 4, 2010	t –						*														
PCB-1016																					
Quarter 3, 2004	1											*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010 Quarter 2, 2010							*														
Quarter 2, 2010 Quarter 4, 2010							*														
PCB-1242							*														
Quarter 3, 2006							*					*									
Quarter 4, 2006										*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260																					
Quarter 2, 2006							*														
pH																					
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003 Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003	_						*			*						*					
Quarter 1, 2005	1	-					*				-					*		-	-	-	
Quarter 3, 2005	1					*												*	*		
Quarter 4, 2005	1					*													*		
Quarter 3, 2006	L															*					
Quarter 2, 2011														*							
Quarter 3, 2011														*							
Quarter 4, 2011														*							
Quarter 1, 2012	<u> </u>															*	*				
Quarter 2, 2012	I											*									
Quarter 1, 2013	I									*		*				*	44				
Quarter 3, 2015	 																*			<u>.</u>	*
Quarter 2, 2016 Quarter 3, 2016																				*	*
Quarter 3, 2016 Quarter 2, 2017	 																*			-	
Quarter 3, 2017 Quarter 3, 2018	1				*	-				*		*		-			*	*	*		
Quarter 4, 2018	1	-									-					*		*	-	-	
Quarter 3, 2019	1															*		-			
POTASSIUM																					
Quarter 1, 2014	1															*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005																					
SELENIUM																					
Quarter 4, 2003	1																				

Gradient D S S D D D U U D D U U D D D U U D D D D D U U D D D D U U U D D D D D U U U	Groundwater Flow System				UCF	S							URC	A					LRG	A		
SODULY SODULY<		D	S	S			D	D	U	U	D	D			U	U	D	D	-		U	U
Quarter 1, 2002 Image: Amage: Am																					370	373
Quarter 4.2002 Quarter 4.2003 QUARTER	SODIUM																					
Quarter 1, 2003 Image: Section of the sec											*	*		*								
Quarter 2.2003 Image: Application of the second of the secon											*	*			*							
Quarter 1. 2007 Image: Applie of the second se	Quarter 1, 2003										*											
Quarter 1. 2017 Quarter 1. 2018 Quarter 1. 2017 QUARTER 1.	Quarter 2, 2003										*	*										
Quarter 1.2012 Quarter 1.2014 Quarter 1.2017 Quarter	Quarter 3, 2003											*										
Quarter 1, 2014 Image: Constraint of the second secon	Quarter 1, 2007											*										
Quarter 1, 2014 Image: Constraint of the second secon	Quarter 1, 2012														*							
Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4,																*						
Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4,	Quarter 3, 2014											*										
Quarter 1, 2016 Image: Section of the sec												*										
Quarter 1, 2016 Image 1, 2017 Image	Quarter 4, 2015											*										
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4,	Quarter 1, 2016											*										
Quarter 1, 2016 Image: A grant	Quarter 2, 2016											*										
Quarter 1, 2016 Image: A grant	Quarter 3, 2016											*										
Ounder 3, 2017 O O S												*										
Quarter 2, 2017 Image: Constraint of the second s												*										
Quarter 3. 2017 Description Description <thdescription< th=""></thdescription<>												*										
Quarter 1.2017 C <thc< th=""> C <thc< th=""> <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></thc<></thc<>												*										
Ounder J. 2018 Image: Solution of the																						
Quarter 3, 2018 N <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													1									
NBONTIM-90 Name 4, 208 Name													1									
Quarter 1, 2005 Image: Constraint of the con																						
SULFATE Image: Sulf and Sul																						
Quarter 1, 2003 *						-																
Quarter 2,2003 N								*														
Quarter 3, 2003 *							*						1									
Quarter 1, 2004 * <td></td> <td>*</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>1</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		*		-						-	-	-	1				-	-				
Quarter 1. 2004 *						*		*														
Quarter 2, 2004 *							*															
Quarter 3, 2004 Image: Constraint of the second s																						
Quarter 1, 2005 *																						
Quarter 2, 2005 * * * * *								Ŧ		*												
Quarter 3, 2005							Ŧ	*								*						
Quarter 4, 2005 *	· · ·						*			÷						Ť						
Quarter 1, 2006 *						Ŧ	Ŧ	Ť								*						
Quarter 2, 2006 * * * * * Quarter 3, 2006 .<						*				*						Ŧ						
Quarter 3, 2006 * * * Quarter 1, 2007 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>*</td><td>*</td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></t<>						*	*	*								*						<u> </u>
Quarter 1, 2007							*			*						*						<u> </u>
Quarter 2, 2007 *																						
Quarter 3, 2007 * * * <	~ /																					
Quarter 4, 2007 *																						
Quarter 1, 2008 * <td></td> <td></td> <td>чг</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td><u> </u></td>			ч г					*														<u> </u>
Quarter 2, 2008 *						JL L		JL I		J.												
Quarter 3, 2008 *							-			*												
Quarter 4, 2008 * * * * <																						
Quarter 1, 2009 * <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td>						*																
Quarter 2, 2009 * <td></td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>I</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>I</td> <td></td> <td> </td> <td></td> <td></td> <td>\vdash</td>		I					*				I						I					\vdash
Quarter 3, 2009 * <td>~ /</td> <td>I</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td> </td> <td> </td> <td></td> <td></td> <td></td> <td>I</td> <td> </td> <td> </td> <td></td> <td></td> <td>\vdash</td>	~ /	I									I						I					\vdash
Quarter 4, 2009 * <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td>																						<u> </u>
Quarter 1, 2010 * <td></td> <td></td> <td>_</td> <td></td> <td> </td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td> </td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td>			_					*														<u> </u>
Quarter 2, 2010 * <td></td> <td></td> <td></td> <td>L</td> <td>L</td> <td></td> <td></td> <td>L</td> <td>L</td> <td>L</td> <td></td> <td>L</td> <td>I</td> <td>L</td> <td>L</td> <td></td> <td></td> <td>L</td> <td>L</td> <td></td> <td></td> <td></td>				L	L			L	L	L		L	I	L	L			L	L			
Quarter 3, 2010 * <td>~ /</td> <td></td> <td></td> <td>L</td> <td>L</td> <td></td> <td></td> <td></td> <td>L</td> <td>L</td> <td></td> <td>L</td> <td>I</td> <td>L</td> <td>L</td> <td></td> <td></td> <td>L</td> <td>L</td> <td></td> <td></td> <td></td>	~ /			L	L				L	L		L	I	L	L			L	L			
Quarter 4, 2010 * <td></td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td></td> <td></td>													I						L			
Quarter 1, 2011 * <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td></td> <td></td>						*							I						L			
Quarter 2, 2011 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							*	*					ļ			*						
Quarter 3, 2011 * * * * * * * * <td>· · ·</td> <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · ·												ļ									
Quarter 4, 2011 *						*																
Quarter 1, 2012 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td>								*	*													
Quarter 2, 2012 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td>							*															
Quarter 3, 2012 * * * * * * *																						
Quarter 4, 2012 * *		*			*	*		*	*	*												
Quarter 1, 2013 * * * * * * <							*															
Quarter 2, 2013 * <td></td>																						
Quarter 3, 2013 * * * *							*															
Quarter 4, 2013 * * <	Quarter 2, 2013															*						
Quarter 4, 2013 * * <		*	*		*	*	*	*								*						
Quarter 1, 2014 * * * * * Quarter 2, 2014 * * * * * * Quarter 3, 2014 * * * * * * Quarter 4, 2014 * * * * * *			*																			
Quarter 2, 2014 * * * * * * * Quarter 3, 2014 * * * * * * * Quarter 4, 2014 * * * * * * *										1												
Quarter 3, 2014 * * * * * <td></td> <td>*</td> <td></td> <td>1</td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td>		*		1		*		*	*	1		1						1	1			
Quarter 4, 2014 * * O							*			1												
				1				1		1		1						1	1			
								1		1									1			
		-																				

Gauler D D D D <th>Groundwater Flow System</th> <th></th> <th></th> <th></th> <th>UCF</th> <th>s</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>URG</th> <th>A</th> <th></th> <th></th> <th></th> <th></th> <th>LRG</th> <th>A</th> <th></th> <th></th>	Groundwater Flow System				UCF	s							URG	A					LRG	A		
Site Arr Source 2, 2015 Source 2, 201		D	S	S			D	D	U	U	D	D			U	U	D	D			U	U
Quarter 2. 2015 Image: Control of the con		368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2.015 • <																						
Oparter 1, 2015 Image: Application of the second of the seco		*	_				*	*	*													
Quarter 1.2016 • • • ·		*				*		*								*						
Quarter 2.016 • <			_			*			Ť													
Quarter 3. 2016 •		*	*			*	*	*														
Quarter 1, 2017 •		*	*			*	*	*	*													
Quarter 2, 2017 •	Quarter 4, 2016								*													
Quarter A, 2017 •																						
Junter 4, 2017 Image: Applie App			_					_														
Quarter 1, 2018 •		*				ѫ																
0unter: 2.0018 *		*				*																<u> </u>
Quarter 3, 2018 *									*													
Quarter 1, 2018 *	· /																					
Quarter 2, 2019 *									*													
Quarder 3.2019 *	Quarter 1, 2019	*	*			*	*	*														
Quarter 1, 2019 *	Quarter 2, 2019	*	*			*	*	*	*													
Ounder: 1 </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>		_						_														
BCUNET: 10.099 Image: 10.00 <																						
Quarter 4, 2002 ****** ****** Quarter 4, 2003 ****** ****** Quarter 3, 2003 ****** ******* Quarter 4, 2004 ******* ************************************		*	*			*	*	*	*													
Oussier 2.2003 O *																		*	*	*		
Quarter 1.2003 Quarter 1.2004 Quarter 1.2006 Quarter 1.2007 Quarter		l				<u> </u>	-	*	<u> </u>		 	<u> </u>		*		<u> </u>	*					*
Quarter 1,2003 Quarter 1,2004 Quarter 2,2004 Quarter 3,2005 Quarter 3,2006 Quarter 3,2007 Quarter 3,2008 Quarter 3,2007 Quarter 3,2008 Quarter		-	 	 		-	-	ボ	-			-		*		-	*		*	*		*
Ounter 1. 2004 Ounter 2. 2004 Ounter 3. 2005 Ounter 3. 2005 Ounter 3. 2006 Ounter 3. 2007 Ounter 3. 2008 Ounter 3. 2009 Ounter			<u> </u>	<u> </u>			-		-							-						*
Ounter 3, 2004 Ounter 3, 2005 Ounter 3, 2006 Ounter 3, 2007 Ounter 3, 2008 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2008 Ounter		-	<u> </u>	<u> </u>			-		-							*						
Ounter 3, 2004 O *			1	1																		
Ounter 4, 2004 Image 3, 2005 Image 3, 2007 Image 3			L	L	L		L		L	L			L			*		L	L	L		
Quarter 1, 2006 *	Quarter 4, 2004															*		*				*
Quarter 2, 2006 *	Quarter 3, 2005																	*				
Ounter 3, 2006 O																*						
Quarter 4, 2006 Image: Constraint of the second secon	· /		*							*												
Quarter 1, 2007																						
Quarter 2, 2007																*						
Quarter 3, 2007 Image: Constraint of the second	· · ·													Ŧ		*					÷	*
Quarter 4, 2007 *	· /													木				*	*		ѫ	<u> </u>
Quarter 1, 2008 **** *** *** <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ť</td> <td>Ť</td> <td>*</td> <td></td> <td>*</td>											*							Ť	Ť	*		*
Quarter 2, 2008 *											Ŧ									Ŧ	*	
Quarter 3, 2008 * <								*	*						*		*			*	-	
Quarter 1, 2009 * * * * Quarter 2, 2009 * * * * * * * * * * * * * * * * * * </td <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																*						
Quarter 2, 2009 *	Quarter 4, 2008										*							*		*		
Quarter 3, 2009 *	Quarter 1, 2009										*											
Quarter 4, 2009 *																			*			
Quarter 2, 2010 ** ** ** ** ** *									*													
Quarter 3, 2010 *																*		-14				
Quarter 4, 2010 *	· · · ·															÷	*	*	*	*		
Quarter 1, 2011 *											*					*			*			
Quarter 2, 2011 Image: Constraint of the second	· /		*								*							*	Ŧ			
Quarter 1, 2012 *			-	1					-							-	*		*	*		
Quarter 2, 2012 *																	Ľ.			-		
Quarter 3, 2012 Image: Constraint of the second									*													
Quarter 1, 2013 Image: Constraint of the constraint of t	Quarter 3, 2012																	*	*			
Quarter 2, 2013 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																*						
Quarter 3, 2013 *																			*			
Quarter 1, 2013 **** **** **** **** **** **** **** **** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ****** ****** ****** ****** ******* ******** ************************************			I	I																		
Quarter 1, 2014 Image: Constraint of the constraint of t		<u> </u>	I	I							*					44	l	44	44			
Quarter 2, 2014 Image: Constraint of the constraint of t																						*
Quarter 3, 2014 Image: Constraint of the constraint of t		I	I	I					—							*		*				
Quarter 1, 2014 * * * <		-	 	 		-	-		-			-				-		*		*		
Quarter 1, 2015 Image: Constraint of the constraint of t			1	1					-							*			· r	· r		
Quarter 2, 2015 Image: Constraint of the constraint of t		-	<u> </u>	<u> </u>		-						-					-		*			
Quarter 3, 2015 Image: Constraint of the constraint of t																	*					
Quarter 4, 2015 * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td>*</td><td>*</td><td></td></t<>																			*	*	*	
Quarter 2, 2016 Image: Constraint of the constraint of																*		*			*	
Quarter 3, 2016 * <td>Quarter 1, 2016</td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td>*</td>	Quarter 1, 2016																*	*	*	*		*
Quarter 4, 2016 * <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td></td>																	*		*			
Quarter 1, 2017 Image: Constraint of the system of the s																				*	*	
Quarter 2, 2017 X											*				*				*			
Quarter 3, 2017 *			I	I														*		*		
Quarter 4, 2017 * * * * * *		—	<u> </u>	<u> </u>													l		÷			
		<u> </u>	<u> </u>	<u> </u>					-						*	*		*				
															*	*		*	*			—
	Quality 1, 2010	_				_	-		-		_	_				-	_				T.	

Gradient D D D D </th <th>Groundwater Flow System</th> <th></th> <th></th> <th></th> <th>UCF</th> <th>s</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>URG</th> <th>A</th> <th></th> <th></th> <th></th> <th></th> <th>LRG</th> <th>A</th> <th></th> <th></th>	Groundwater Flow System				UCF	s							URG	A					LRG	A			
TUCHNADO UNIT 2.003		D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U	
Quarter 2.2013 Quarter 4.2013 QUARTER		368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373	
Quarter 2, 2018 Quarter 4, 2019 QUARTER 4, 2003 QUARTER 4, 2003 QUARTER 4,															<u>ч</u>		<u>ب</u> د				J.		
Outler 4, 2013 Outler 4, 2003 Outler		-													*	*	*						
Quarter 1, 2019 Image: Solution of the																		*	*	*		-	
Suntr 2, 2019 Image: Sunt 2, 2																Ŧ	*	Ŧ	Ŧ	Ŧ			
Ouncer 1, 2019 Image: Applie App															*								
0.mater 1, 2020	Quarter 3, 2019															*			*		*		
INUMENDAZIO Image: Control of the second secon																*		*	*		*		
Quarter 2, 2015 Quarter 4, 2016 Image: Constraint of the second	Quarter 1, 2020															*		*	*		*		
Ounter 2, 2016 Image 2, 2016 Image 2, 2016 Image 2, 2017 Image 2	THORIUM-230																						
Dumstr 4.2016 Dumstr 4.2017 Dumstr 4.2002 Dumstr 4.2002 Dumstr 4.2003 Dumstr 4.2004 Dumstr 4.2004 Dumstr 4.2005 Dumstr 4.2005 Dumstr 4.2005 Dumstr 4.2003 Dumstr 4.2003 Dumstr 4.2002 Dumstr 4.2003 Dumstr 4.2002 Dumstr 4.2003 Dumstr 4.2003 Dumstr 4.2003 Dumstr 4.2003 Dumstr 4.2003 Dumstr 4.2004 Dumstr 4.2004 Dumstr 4.2004 Dumstr 4.2004 Du																	*						
Ounter 4, 2017											*												
Ounter 2, 2018 Ounter 3, 2014 Ounter 4, 2002 Ounter 4, 2003 Ounter 4, 2004 Ounter 4, 2004 Ounter 4, 2004 Ounter 4, 2004 Ounter		*											*				*			*			
TOLUENC Image: Constraint of the second											÷												
Quarter 2, 2014 Image: Construct CarBoo Image: Construct CarBo											*			*								-	
TOTAL ORGANUC CARBON Image A 2002											*				*								
Quarter 3, 2002 Image			I								~				Ť								
Ounter 1, 2003			l –								*	*	*		*							*	
Ounder 1, 2003 Image: Section of the sect																							
Quarter 3, 2003 <td <td<="" td=""><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>		1	1	1				1	1	1							1					
Quarter 4, 2003		*									*						*						
Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2009 QUARTER 4,											*	*											
Quarter 1, 2005 * * * * * * HOTAL ORGANIC HALIDES * * * * * * Quarter 1, 2005 * * * * * * * Quarter 1, 2003 * <td></td> <td>*</td> <td></td>												*											
Quarter 1, 2006 Image: Construct of the construction of the constr											*					*	*						
NOTALORGANIC HALIDES Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 X Quarter 1, 2004 X Quarter 1, 2004 X Quarter 1, 2003 X Quarter 1, 2003 X X Quarter 1, 2004 X X Quarter 1, 2003 X X Quarter 1, 2003 X /ul>							*												*				
Quarter 4, 2002 * * * * <																				*			
Ounter 1, 2003 * * * * * * * * * * *		\$	1																				
Quarter 1, 2004 # # Image: Constraint of the second se																						-	
Quarter 1, 2004 Main																						-	
INCLUONDETHENE Image: Constraint of the second		-									*						÷						
Quarter 3, 2002																	*					-	
Quarter 4, 2002																					-		
Quarter 1, 2003 Quarter 2, 2003															_								
Quarter 2, 2003 Image: Constraint of the second secon																-							
Quarter 3,2003 Image: Constraint of the cons																						_	
Quarter 4, 2003																_							
Quarter 1, 2004 Image: Construction of the second seco																							
Quarter 3, 2004 Image: Constraint of the constraint of t																							
Quarter 4, 2004 Image: Constraint of the constraint of t	Quarter 2, 2004																						
Quarter 1, 2005 Image: Constraint of the constraint of t	Quarter 3, 2004																						
Quarter 2, 2005 Image: Constraint of the constraint of t																_							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006 Image: Constraint of the constraint of t																					-		
Quarter 3, 2006 Image: Constraint of the second																							
Quarter 3, 2006 Image: Constraint of the second																_							
Quarter 4, 2006 Image: Constraint of the constraint of t			<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>													
Quarter 1, 2007 Image: Constraint of the constraint of t			 	 		-		 	 	 							I						
Quarter 2, 2007 Image: Constraint of the second			<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>													
Quarter 3, 2007 Image: Constraint of the constraint of t																							
Quarter 4, 2007 Image: Constraint of the constraint of t			<u> </u>	<u> </u>		-		1	1	1						_							
Quarter 1, 2008 Image: Constraint of the constraint of t			<u> </u>	<u> </u>	-			<u> </u>	<u> </u>	<u> </u>	-	-		-							-		
Quarter 2, 2008 Image: Constraint of the constraint of t		1															1						
Quarter 3, 2008 Image: Constraint of the second		Ï	1	1													l						
Quarter 4, 2008 Image: Constraint of the constraint of t		1															1						
Quarter 1, 2009 Image: Constraint of the constraint of t																							
Quarter 3, 2009 Image: Constraint of the constraint of t																							
Quarter 4, 2009 Image: Constraint of the second s																							
Quarter 1, 2010 Image: Constraint of the constraint of t																							
Quarter 2, 2010 Image: Constraint of the constraint of																							
Quarter 3, 2010 Image: Constraint of the second s		 	I	I				I	I	I							I						
Quarter 4, 2010 Image: Constraint of the constraint of								I	I	I													
Quarter 2, 2011 Image: Constraint of the constraint of		I			—	<u> </u>		<u> </u>	<u> </u>	<u> </u>		—					 	<u> </u>			—		
Quarter 3, 2011 Image: Constraint of the constraint of			<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>													
Quarter 4, 2011 Image: Constraint of the constraint of			 	 		<u> </u>		 	 	 													
Quarter 1, 2012 Image: Constraint of the constraint of			<u> </u>	<u> </u>				I	I	I													
Quarter 2, 2012 Image: Constraint of the second secon		I	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>							I						
Quarter 3, 2012 Image: Constraint of the second secon														-						400mm1400			
Quarter 4, 2012																							
Quarter 1, 2013			<u> </u>	<u> </u>	<u> </u>	-		1	1	1	-	<u> </u>		<u> </u>			1				<u> </u>		
			<u> </u>	<u> </u>	-			<u> </u>	<u> </u>	<u> </u>	-	-									-		
	Quarter 2, 2013																1						
	,	-									-			-			-					<u> </u>	

Groundwater Flow System	Γ			UCR	S							URG	A					LRG	A		_
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014																					
Quarter 2, 2014																					
Quarter 3, 2014																					
Quarter 4, 2014																					
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016	1																				
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					
Quarter 2, 2017																					
Quarter 3, 2017																					
Quarter 4, 2017																					
Quarter 1, 2018																					
Quarter 2, 2018																					
Quarter 3, 2018																					
Quarter 4, 2018																					
Quarter 1, 2019																					
Quarter 2, 2019																					
Quarter 3, 2019																					
Quarter 4, 2019																					
Quarter 1, 2020																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an eleva	ited con	centrat	ion (i.e	., a stat	istical	exceed	ance).														
 MCL Exceedance 																					
Previously reported as an MCL exc	eedanco	e; howe	ver, re	sult wa	s equal	to MC	L														
UCRS Upper Continental Recharge Syste	em																				
URGA Upper Regional Gravel Aquifer																					
LRGA Lower Regional Gravel Aquifer																					
Ş I		_																			_

APPENDIX H

METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT Permit #: 073-00045 McCracken County, Kentucky

	7/2020	Time:		Monitor:	Robe	ert Kirby							
Weather Conditions: Sunny, Slight Wind, and 34 Degrees													
Monitoring Equipment:: RAE Systems, Multi-RAE Serial #7971													
		toring Lo	waaten waaren			Reading (% LEL)							
C-746-U1	Checked at floor	level				0							
C-746-U2	Checked at floor	level				0							
C-746-U-T-14	Checked at floor	level				0							
C-746-U15	Checked at floor	level				0							
MG1	Dry casing	•				0							
MG2	Dry casing					0							
MG3	Dry casing					0							
MG4	Dry casing					0							
Suspect or Problem Areas	No problems n	oted				0							
Remarks: NA													
Performed by:	LIB-		(12/20/2	0								
//w	Signat	ure				Date							

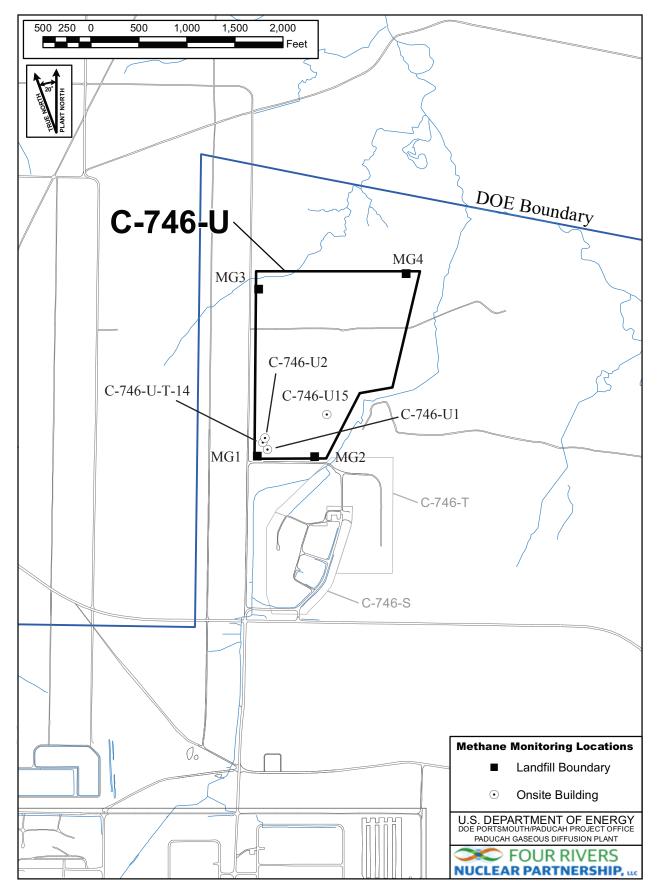


Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number: SW07300014, SW07300015, SW07300045 Frankfort, KY 40601 (502)564-6716 FINDS/UNIT: KY8-890-008-982 / 1

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	nitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")							L154 UPSTRE	AM	L351 DOWNST	REAM	Ì		
Sample Sequer	ice	#				1		1		1		$ \rangle$		
If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA		NA		NA				
Sample Date and Time (Month/Day/Year hour: minutes)						2/4/2020 10:4	9	2/4/2020 11:0)4	2/4/2020 10:	36			
Duplicate ("Y	Duplicate ("Y" or "N") ¹							N		Ν				
Split ('Y' or "N") ²						Ν		N		Ν				/
Facility Sample ID Number (if applicable)						L150US2-20		L154US2-20)	L351US2-2	0			/
Laboratory Sample ID Number (if applicable)					503367001		503367002		503367003	3		\setminus /		
Date of Analysis (Month/Day/Year)					2/29/2020		2/29/2020		2/29/2020		$\mathbb{N}/$			
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	VA	CTED LUE DR QL ⁵	F L A G S ⁷
A200-00-0	0	Flow	т	MGD	Field		*		*		*		/	1
16887-00-6	2	Chloride(s)	т	mg/L	300.0	0.498		0.373		0.434			/ \	
14808-79-8	0	Sulfate	т	mg/L	300.0	4.67		1.2		1.55				
7439-89-6	0	Iron	т	mg/L	200.8	8.76		1.59		2.86				\mathbb{N}
7440-23-5	0	Sodium	т	mg/L	200.8	1.09		0.648		0.758				\Box
S0268	0	Organic Carbon ⁶	т	mg/L	9060	3.08		6.23		8.12				\Box
s0097	0	BOD ⁶	т	mg/L	not applicable		*		*		*	/		
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	11.3	J	29.5		26.5		\backslash		

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

LAB ID: <u>None</u> For Official Use Only

Page 2 of 2

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant
Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM"					"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNSI	REAM		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S
S0145	1	Specific Conductance	т	µmho/cm	Field	121		49		51			/
s0270	0	Total Suspended Solids	т	mg/L	160.2	240		35.8		285			
S0266	0	Total Dissolved Solids	т	mg/L	160.1	163		64.3		11.4	J		
S0269	0	Total Solids	т	mg/L	SM-2540 B 17	406	*	91	*	292	*		
S0296	0	рН	т	Units	Field	7.26		7.16		7.12			
7440-61-1		Uranium	т	mg/L	200.8	0.000917		0.000703		0.00347			
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	-2.22	*	-3.78	*	-1.3	*		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	2.63	*	9.13	*	4.93	*	V	
												Λ	
													Ц_
													Щ
													\square
												/	\square
												/	\

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ing Facility Sample ID	Constituent	Flag	Description
L150	L150US2-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.52. Rad error is 4.52.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.36. Rad error is 5.34.
L154	L154US2-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.96. Rad error is 4.96.
		Beta activity		TPU is 5.96. Rad error is 5.76.
L351	L351US2-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.59. Rad error is 5.59.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.19. Rad error is 5.13.

APPENDIX J

ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Environmental Scope of Accreditation.

APPENDIX K

LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L

MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-U Contained Landfill

			otil Contraction	2	ed of year	\otimes		/	Divid Carling	Julia Dissolution	
				alou		58			nol	× /	
		condition of the condition	otivity contraction		Jeen			sure conduc	Divite Land		ABEN
		THE .	in the	Unit	.d 07.	<u>`</u> ₹`		THE	with 1	Unit	.dot.
	, s	50 3	ç ^{ar} es	^ک ا				o duc	St Sto		ed oxyeen of
	1 COL	Con	130	050	1 THE		1º11	Con	130	0150	14th
MW357						MW358					
ate Collected: 1/16/2020						Date Collected: 1/16/2020					
952	56.7	469	6.65	3.19	0.0	1102	57.3	511	6.48	1.72	0.0
955	56.6	419	6.44	3.24	0.0	1105	57.0	508	6.39	1.34	0.0
958	56.5	414	6.40	3.31	0.0	1108	59.9	505	6.40	1.29	0.0
IW359						MW360					
ate Collected: 1/16/2020						Date Collected: 1/16/2020					
227	58.2	267	6.50	1.84	1.4	0716	55.7	404	6.34	1.15	5.0
230	58.0	252	6.32	1.91	1.1	0719	56.0	405	6.32	1.02	2.8
233	57.4	250	6.28	2.00	1.2	0722	56.0	402	6.31	1.00	1.7
IW361						MW362	-				
ate Collected: 1/16/2020 830	56.6	504	6.40	2.99	0.0	Date Collected: 1/16/2020 0905	57.4	701	6.75	2.40	0.0
830 833	56.5	504	6.40	2.99	0.0	0905	57.4	701	6.85	1.95	0.0
336	56.4	509	6.17	2.82	0.0	0908	57.8	715	6.85	1.95	0.0
IW363	50.4	509	0.17	2.17	0.0	MW364	57.0	710	0.05	1.90	0.0
ate Collected: 1/16/2020						Date Collected: 1/16/2020					
316	55.6	396	6.37	4.01	0.0	1405	57.7	465	6.27	2.33	0.0
319	56.4	404	6.23	2.86	0.0	1408	58.2	477	6.18	2.31	0.0
322	56.4	409	6.24	2.80	0.0	1411	58.2	481	6.17	2.37	0.0
IW365						MW366					
ate Collected: 1/21/2020						Date Collected: 1/21/2020					
726	49.9	406	6.24	5.01	0.5	0815	52.5	410	6.26	5.48	0.0
29	54.2	394	6.24	4.32	0.0	0818	55.4	451	6.22	3.25	0.0
/32	54.5	392	6.21	4.29	0.0	0821	55.3	447	6.20	3.23	0.0
IW367						MW368					
ate Collected: 1/21/2020						Date Collected: 1/21/2020					
000	55.7	371	6.11	2.70	9.4	1004	57.0	370	6.06	3.33	18.1
003	55.9	369	6.06	2.42	8.8	1007	58.0	424	6.26	2.15	26.7
06	55.9	367	6.04	2.41	8.7	1010	57.9	429	6.30	2.09	26.0
W369						MW370					
ate Collected: 1/21/2020	52.1	411	6.76	4.67	2.4	Date Collected: 1/21/2020	56.7	4.60	6.00	2.(1	0.0
218	53.1	411	6.76	4.67	2.4	1304	56.7	469	6.20	2.61	0.0
221	56.2 56.2	385 387	6.32 6.29	1.36	0.0	1307 1310	56.2 56.2	474 475	6.17 6.17	2.82 2.86	0.0
W371	50.2	507	0.29	1.50	0.0	MW372	50.2	-+/3	0.17	2.00	0.0
ate Collected: 1/21/2020						Date Collected: 1/22/2020					
348	57.0	571	6.48	3.14	200	0727	54.7	745	6.20	3.47	23.1
351	57.5	592	6.60	2.93	300	0730	54.7	728	6.17	1.95	12.1
354	57.2	589	6.61	2.96	309	0733	54.8	730	6.15	1.90	12.0
IW373						MW374			0.10		
ate Collected: 1/22/2020						Date Collected: 1/22/2020					
813	55.9	820	6.34	2.69	0.0	0923	54.1	850	6.29	2.80	0.0
816	57.1	842	6.17	1.86	0.0	0926	57.3	729	6.63	1.76	3.6
319	57.3	844	6.13	1.79	0.0	0929	57.2	726	6.65	1.72	3.0
IW375											
ate Collected: 1/22/2020											
012	57.5	345	6.48	1.78	4.5						
015	57.7	329	6.45	0.76	3.0						
018	57.8	327	6.43	0.70	3.0						
W366 Resample						MW368 Resample					
ate Collected: 3/17/2020						Date Collected: 3/17/2020					
848	58.1	480	6.26	2.90	0.0	0823	54.6	415	6.04	2.77	7.4
851	58.1	481	6.19	2.95	0.0	0826	55.0	390	6.39	2.52	4.4
854	58.1	484	6.17	2.92	0.0	0829	55.3	389	6.41	2.48	3.9
1W369 Resample						MW371 Resample					
Date Collected: 3/17/2020	50.1	444	(21	2.01	0.0	Date Collected: 3/17/2020		41.5	6.66	1.01	2000

0851	58.1	481	6.19	2.95	0.0
0854	58.1	484	6.17	2.92	0.0
MW369 Resample					
Date Collected: 3/17/2020					
0933	59.1	444	6.21	2.01	0.9
0936	58.8	440	6.21	0.82	0.0
0939	58.7	440	6.20	0.80	0.0
MW374 Resample					
Date Collected: 3/17/2020					
1011	59.1	714	6.78	4.46	796
1014	59.4	731	6.80	3.39	188
1017	59.4	732	6.79	3.36	179

wiw 500 Resample					
Date Collected: 3/17/2020					
0823	54.6	415	6.04	2.77	7.4
0826	55.0	390	6.39	2.52	4.4
0829	55.3	389	6.41	2.48	3.9
MW371 Resample					
Date Collected: 3/17/2020					
0951	57.2	415	6.69	4.61	2000
0954	57.0	407	6.70	5.51	2000
0957	57.1	406	6.69	5.56	2000