

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

FEB 2 5 2020

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-U CONTAINED LANDFILL FOURTH QUARTER CALENDAR YEAR 2019 (OCTOBER-DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0087/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

Enclosed is the subject report for the fourth quarter calendar year (CY) 2019. This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). The report includes groundwater analytical data, surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the fourth quarter CY 2019 monitoring well data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the fourth quarter CY 2019, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

PPPO-02-10003255-20B

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Jennifer Woodard
Paducah Site Lead

Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill 4th Qtr. CY 2019 (Oct.-Dec.) Compliance Monitoring Report

cc w/enclosure: abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov bill.clark@pad.pppo.gov, FRNP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.jung@ky.gov, KDEP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO david.ruckstuhl@pad.pppo.gov, FRNP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.watson@pad.pppo.gov, FRNP jennifer.woodard@pppo.gov, PPPO jerry.arnzen@pad.pppo.gov, FRNP joel.bradburne@pppo.gov, PPPO kelly.layne@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov robert.edwards@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB tabitha.owens@ky.gov, KDEP todd.hendricks@ky.gov, KDEP tracey.duncan@pppo.gov, PPPO

C-746-U Contained Landfill
Fourth Quarter Calendar Year 2019
(October–December)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky



C-746-U Contained Landfill
Fourth Quarter Calendar Year 2019
(October–December)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2020

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895


CONTENTS

FI	GURE	ES		v
ΤA	BLES	S		v
A(CRON	YMS		vii
1.	INT	RODUCT	ION	1
	1.1		ROUND	
	1.2	MONIT	ORING PERIOD ACTIVITIES	1
		1.2.1	Groundwater Monitoring	1
			Methane Monitoring	
			Surface Water Monitoring	
	1.3	KEY RE	ESULTS	5
2.	DAT	TA EVAL	UATION/STATISTICAL SYNOPSIS	7
	2.1		TICAL ANALYSIS OF GROUNDWATER DATA	
		2.1.1	Upper Continental Recharge System	8
		2.1.2	Upper Regional Gravel Aquifer	8
		2.1.3	Lower Regional Gravel Aquifer	8
	2.2	DATA V	VERIFICATION AND VALIDATION	9
3.	PRC	FESSION	AL GEOLOGIST AUTHORIZATION	11
4.	REF	ERENCE	S	13
Αŀ	PENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
Αŀ	PENI	OIX B:	FACILITY INFORMATION SHEET	B-1
Αŀ	PPENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
Αŀ	PENI	OIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
Αŀ	PENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
Αŀ	PPENI	OIX F:	NOTIFICATIONS	F-1
ΑF	PENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
Αŀ	PENI	OIX H:	METHANE MONITORING DATA	H-1
Αŀ	PENI	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
ΑF	PENI	OIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

APPENDIX K:	LABORATORY ANALYTICAL METHODS	K-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS	L-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
2.	C-746-U Landfill Surface Water Monitoring Locations	4
	TABLES	
1.	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	Monitoring Wells Included in Statistical Analysis	8

ACRONYMS

CFR Code of Federal Regulations
COD chemical oxygen demand

CY calendar year

KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit


MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

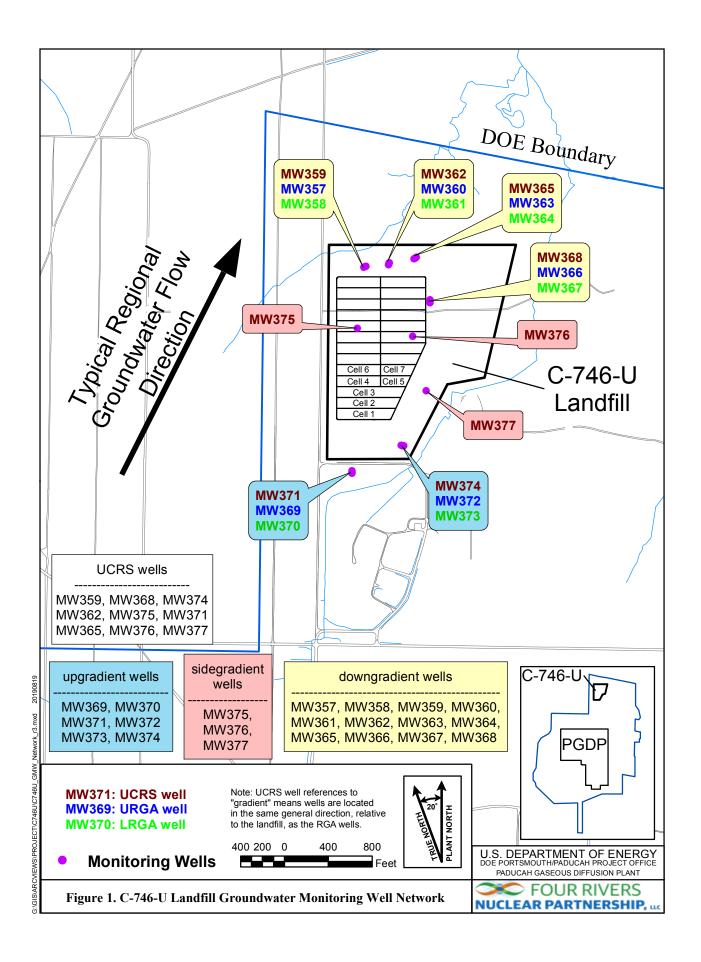
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Fourth Quarter Calendar Year 2019 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL) or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL and historical background UTL exceedances that have occurred, beginning in the fourth quarter, calendar year 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water analyses and written comments are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micro-purging stability parameter results are provided in Appendix L.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Site and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5, with Phases 6 and 7 approved for receipt of waste as of September 27, 2019. Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included

in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2019 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 15, 2019, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During October, RGA groundwater flow in the area of the landfill was oriented north-northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in October was 4.92×10^{-4} ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 1.06×10^{-3} ft/ft and 9.91×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.79 to 3.06 ft/day for the URGA and 1.68 to 2.87 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on December 3, 2019. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill: (1) upstream location, L154; (2) downstream location, L351; and (3) location L150 capturing

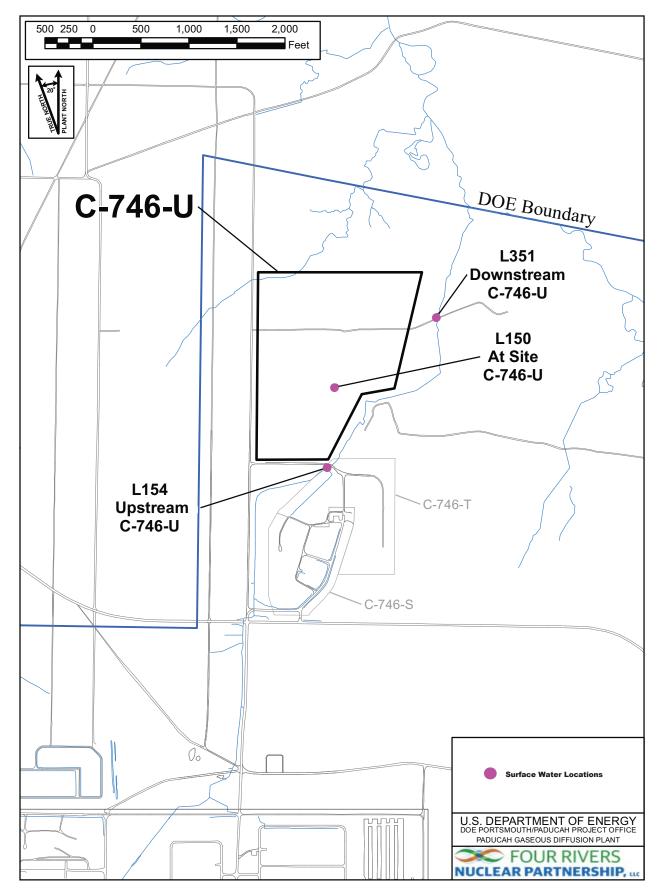


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the fourth quarter 2019, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW366: Beta activity	MW361: Trichloroethene
	MW372: Beta activity	MW364: Trichloroethene
		MW370: Beta activity

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential, technetium-99
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW364: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential, technetium-99
MW368: Oxidation-reduction	MW366: Beta activity, Oxidation-	MW367: Oxidation-reduction
potential, sulfate	reduction potential	potential
MW371: Oxidation-reduction	MW369: Oxidation-reduction	MW370: Beta activity,
potential, sulfate	potential	oxidation-reduction potential,
		technetium-99
MW374: Oxidation-reduction	MW372: Beta activity, calcium,	MW373: Oxidation-reduction
potential	chemical oxygen demand (COD),	potential
	conductivity, dissolved solids,	
	magnesium, oxidation-reduction	
	potential, technetium-99	
MW375: Oxidation-reduction		
potential, sulfate		

_

¹ The UTL comparison for pH uses a two-sided test for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 2. Exceedance of Statistically Derived historical Background Concentrations (Continued)

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
None	None

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW361 and MW364 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill. The MCL exceedance for beta activity in MW366 (downgradient well) exceeded the historical background concentration but did not exceed the current background concentration and is considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report is the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill).

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2019 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

Parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6 were documented and evaluated further. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both a UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 4.

Table 4. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375	(10)	(10)
MW376***		
MW377***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in URCS wells.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in downgradient URGA wells.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no constituents that exceeded the current background UTL in LGRA wells.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}Well had insufficient water to permit a water sample for laboratory analysis.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

Fourth Quarter Calendar Year 2019 (October-December)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0087/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Tebrusry 19, 2020 Date

Kenneth R. Davis

PG113927

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

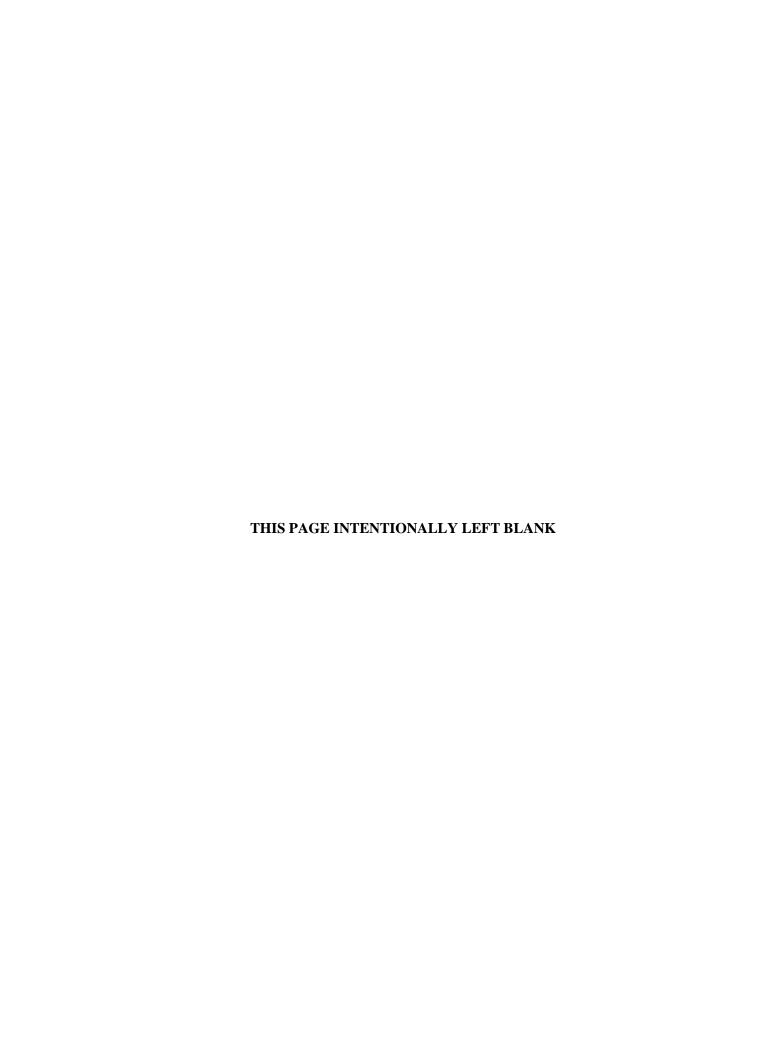
APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Gaseous Diffusion Plant			Activity:	C-746-U Contained Landfill			
	(As offici	ally shown o	n DWM	Permit Face)				
Permit No:	SW073000 SW073000 SW073000	15,	Fin	ds/Unit No:	Quarter & Year		4th Qtr. CY 2019	
Please check the	following as ap	pplicable:						
Charact	terization X	Quart	erly _	Semiannual	Ann	ual	Assessment	
Please check app	olicable submitt	al(s):	X	Groundwater	X	Surfac	ce Water	
				Leachate	X	Metha	nne Monitoring	
45:160) or by stati jurisdiction of the (48) hours of ma Submitting the la instruction pages. I certify under pe accordance with a Based on my inqui the best of my know	tate (Kentucky Re Division of Was aking the determ be report is NOT of malty of law that system designed inty of the person of wheelege and belie	vised Statuc ste Manage nination u considered at this document to assure to persons def, true, accumulation	es Chapter ment. Yesing stand notifical ment and hat qual lirectly rarate, and	fer 224) to conduct groud for must report any in thistical analyses, direction. Instructions for conduct all attachments were desired personnel properly responsible for gathering	indwater and sindication of ct comparison impleting the formula prepared under gather and east the information that there are	surface was contamination, or other form are attributed as the der my dis- valuate the on, the info	ons-401 KAR 48:300 and atter monitoring under the ation within forty-eight her similar techniques. tached. Do not submit the rection or supervision in the information submitted. Formation submitted is, to t penalties for submitting	
Myrna E. Redfi Four Rivers Nu						Date		
Jennifer Wooda	•	ite Lead				Date		
U.S. Departmen	nt of Energy							



APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

S	Groundwater: October 2019 Surface water: October 2019 Methane: December 2019	County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045			
Facility Name:	U.S. DOE—Paducah Gaseous D							
	(As officially sho	own on DWM Permit Face	e)					
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053				
	Street	City/State		Zip				
Phone No: (270)	441-6800 Latitude:	N 37° 07' 45"	Long	itude: W	88° 47' 55"			
	OW	NER INFORMATION						
Facility Owner:	U.S. DOE, Robert E. Edwards	III, Manager	Phone No:	(859) 227	7-5020			
Contact Person:	Bruce Ford		Phone No:					
Contact Person Title	Director, Environmental E: Four Rivers Nuclear Par							
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053				
	Street	City/State		Zip				
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: GEO Consultants, LLC								
Contact Person:	Jason Boulton		Phone No:	(270) 81	6-3415			
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053				
	Street	City/State		Zip				
	LABO	PRATORY RECORD #1						
Laboratory GEL	Laboratories, LLC	Lab	ID No: KY90	129				
Contact Person:	Valerie Davis		Phone No:	(843) 769	9-7391			
Mailing Address:	2040 Savage Road	Charleston, South Car	rolina	294	07			
	Street	City/State		Zi	p			
	LABO	ORATORY RECORD #2	}					
Laboratory: N/A		Lab I	D No: N/A					
Contact Person:	Contact Person: N/A Phone No: N/A							
Mailing Address:	N/A							
	Street	City/State			Zip			
LABORATORY RECORD #3								
Laboratory: N/A		Lab I	D No: N/A					
Contact Person:	N/A		Phone No:	: <u>N/A</u>				
Mailing Address:	N/A							
Street City/State Zip								

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4	799	8004-09	81	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., N	⁄W−1	., MW-2, etc	:.)	357		358		359		360	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/14/2019 1	0:01	10/14/2019	12:19	10/14/2019	10:44	10/14/2019 (09:13
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW357UG1	1-20	MW358U	G1-20	MW359U0	G1-20	MW360UG	1-20
Laboratory Sam	mple ID Number (if applicable)				49295600)3	492956	005	4929560	007	4929560	09
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e Or	ganics Anal	ysis.	10/17/201	9	10/17/2	019	10/17/20)19	10/17/201	19
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	٧	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.351		0.443		<0.2		0.162	J
16887-00-6	Chloride(s)	т	mg/L	9056	31.7	*	35.8	*	1.21	*	11.1	*
16984-48-8	Fluoride	т	mg/L	9056	0.167		0.188		0.16		0.24	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.22		0.761		0.564		0.516	
14808-79-8	Sulfate	т	mg/L	9056	43.5	*	65	*	43.8	*	13.6	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.14		30.12		30.14		30.13	
S0145	Specific Conductance	т	μ M H0/cm	Field	419		519		236		420	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799	9	8004-0981		8004-4800	
Facility's Loc	cal Well or Spring Number (e.g., MW	r-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	324.59		324.63		329.55		324.63	
N238	Dissolved Oxygen	т	mg/L	Field	3.21		1.37		4.04		2.17	
S0266	Total Dissolved Solids	т	mg/L	160.1	274		297		171		250	
S0296	рн	Т	Units	Field	6.27		6.49		6.21		6.4	
NS215	Eh	Т	mV	Field	448		149		463		381	
s0907	Temperature	Т	°C	Field	16.22		17.17		16.89		14.72	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0461	J	0.0312	J	0.101	
7440-36-0	Antimony	Т	mg/L	6020	0.0012	J	0.00111	J	<0.003		0.00114	J
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00414	J	0.00262	J	0.00249	J
7440-39-3	Barium	т	mg/L	6020	0.0713		0.0627		0.0312		0.188	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.323		0.371		0.0098	J	0.0298	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27.1		35.3		8.37		21.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00857		<0.001		0.00232	
7440-50-8	Copper	Т	mg/L	6020	0.000915	BJ	0.000991	BJ	0.0124	В	0.000616	BJ
7439-89-6	Iron	Т	mg/L	6020	<0.1		3.78		0.0918	J	0.554	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.8		15.3		3.57		8.21	
7439-96-5	Manganese	т	mg/L	6020	0.00711		0.682		0.00228	J	0.0326	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	8	8004-479	9	8004-098	1	8004-480	00
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.000335	BJ	<0.001		0.000212	BJ
7440-02-0	Nickel	Т	mg/L	6020	<0.002		0.0151		0.00568		0.000803	J
7440-09-7	Potassium	Т	mg/L	6020	1.73		2.74		0.138	J	0.747	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	41.6		39.9		34.7		65.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000115	BJ	0.000118	BJ
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		0.00463	BJ	0.00871	BJ	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	0.00618	BJ	0.0114	BJ	0.0217	В	0.00628	BJ
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	0.00189	BJ	0.00224	BJ	<0.005		0.00306	BJ
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-098	81	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	357		358		359		360	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260	<0.001		0.00043	J	<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00311		0.00209		0.00059	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799	9	8004-098	31	8004-48	00
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	l, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000211		<0.0000197		<0.0000192		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0973		<0.0979		<0.119		<0.0975	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0973		<0.0979		<0.119		<0.0975	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0973		<0.0979		<0.119		<0.0975	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0973		<0.0979		<0.119		<0.0975	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0973		<0.0979		<0.119		<0.0975	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0973		<0.0979		<0.119		<0.0975	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0973		<0.0979		<0.119		<0.0975	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0973		<0.0979		<0.119		<0.0975	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0973		<0.0979		<0.119		<0.0975	
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.76	*	1.78	*	4.04	*	-0.571	*
12587-47-2	Gross Beta	Т	pCi/L	9310	36.9	*	29.5	*	6.67	*	13.6	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.483	*	1.26	*	1.27	*	0.578	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.07	*	-1.13	*	-0.174	*	-0.679	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	25.2	*	30.7	*	-2.03	*	7.92	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.258	*	0.0175	*	0.892	*	0.986	*
10028-17-8	Tritium	Т	pCi/L	906.0	-7.06	*	-119	*	-33.8	*	17.9	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		22.4		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	0.728	J	3.02		1.82	J	1.21	J
s0586	Total Organic Halides	т	mg/L	9020	0.00458	J	0.0051	J	0.00354	J	0.0104	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., N	∕w-1	., MW-2, etc	:.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/14/2019 0	7:24	10/14/2019	08:30	10/15/2019	08:01	10/15/2019 (08:46
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG1	-20	MW362U	G1-20	MW363U0	31-20	MW364UG	1-20
Laboratory Sam	mple ID Number (if applicable)		49295600)1	492956	011	4930550	003	4930550	01		
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analys					9	10/17/2	019	10/18/20)19	10/18/201	19
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	N	DOWN	1
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.452		<0.2		0.138	J	0.426	
16887-00-6	Chloride(s)	Т	mg/L	9056	35.6	*	4.47	*	30.5		31.7	
16984-48-8	Fluoride	Т	mg/L	9056	0.173		0.367		0.22		0.18	
s0595	Nitrate & Nitrite	т	mg/L	9056	1		0.452		4.9		1.01	
14808-79-8	Sulfate	Т	mg/L	9056	83.6	*	30.8	*	24.5		66.9	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.08		30.11		30.01		30.01	
S0145	Specific Conductance	Т	μ M H0/cm	Field	503		731		427		473	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	3	8004-4796		8004-4797	
Facility's Loca	al Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	324.65		337.92		324.62		323.94	
N238	Dissolved Oxygen	т	mg/L	Field	2.69		5.19		1.02		3.61	
S0266	Total Dissolved Solids	Т	mg/L	160.1	289		410		263		299	
s0296	рН	Т	Units	Field	6.03		7		6.2		6.18	
NS215	Eh	т	mV	Field	456		458		407		366	
s0907	Temperature	т	°C	Field	13.83		14.44		14.61		15	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0319	J	<0.05		0.0255	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		0.00127	J	0.00117	J	0.0012	J
7440-38-2	Arsenic	т	mg/L	6020	0.005	J	0.00229	J	<0.005		0.00214	J
7440-39-3	Barium	т	mg/L	6020	0.0586		0.113		0.14		0.0683	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.1		0.0171		0.0217		0.02	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	34.8		23.3		27.2		31.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.000708	J	0.000867	J
7440-50-8	Copper	Т	mg/L	6020	0.000644	BJ	0.00118	BJ	0.00377		0.00138	J
7439-89-6	Iron	T	mg/L	6020	<0.1		<0.1		0.0703	J	0.359	
7439-92-1	Lead	T	mg/L	6020	<0.002		<0.002		<0.002		0.000877	J
7439-95-4	Magnesium	Т	mg/L	6020	14.3		9.77		10.9		13.5	
7439-96-5	Manganese	T	mg/L	6020	0.00398	J	<0.005		0.118		0.0937	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	D OF MEASURE D OF MEASURE D MEASURE D					8004-479	5	8004-098	36	8004-479	6	8004-479	97
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		0.000526	BJ	<0.001		0.000244	J
7440-02-0		Nickel	Т	mg/L	6020	<0.002		<0.002		0.0112		0.00114	J
7440-09-7		Potassium	Т	mg/L	6020	2.56		0.331		1.85		2.05	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	46.7		145		39		42.2	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	0.000093	BJ	0.00367	В	<0.0002		<0.0002	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6		Zinc	Т	mg/L	6020	0.00575	BJ	0.00731	BJ	<0.02		0.0295	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	0.00189	BJ	0.00246	BJ	<0.005		0.00196	J
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-0986	6	8004-479	96	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.00531		<0.001		0.00042	J	0.00577	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	ŝ	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	l, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.000196		<0.0000193		<0.0000192	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.1		<0.0974		<0.0962		<0.0961	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.0974		<0.0962		<0.0961	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.0974		<0.0962		<0.0961	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0974		<0.0962		<0.0961	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.0974		<0.0962		<0.0961	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.0974		<0.0962		<0.0961	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	., MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0974		<0.0962		<0.0961	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0974		<0.0962		<0.0961	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.0974		<0.0962		<0.0961	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.79	*	0.491	*	5.92	*	1.69	*
12587-47-2	Gross Beta	т	pCi/L	9310	46.9	*	0.283	*	11.3	*	36.2	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	1.21	*	0.915	*	1.54	*	1.14	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.891	*	2.53	*	-0.186	*	5.06	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	53	*	-1.4	*	5.41	*	58.7	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.242	*	-0.0779	*	-0.545	*	-0.166	*
10028-17-8	Tritium	т	pCi/L	906.0	67.1	*	-80.2	*	90.2	*	-49.3	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		18.9	*J	23.7	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.782	J	2.23		1.08	J	0.821	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00658	J	0.0158		0.00528	J	0.0281	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-0	983
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	.)	365		36	66	36	7	368	}
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/15/2019	09:39	10/14/20	19 13:11	10/15/20	19 10:25	10/15/2019	9 12:30
Duplicate ("Y'	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW365UG	§1-20	MW366	UG1-20	MW3670	JG1-20	MW368U	G1-20
Laboratory Sam	mple ID Number (if applicable)		4930550	005	49295	6013	49305	5009	493055	011		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis	10/18/20	19	10/17/	2019	10/18/	2019	10/18/2	019		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN	N	DO	WN	DO	٧N	DOW	/N
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.459		0.169	J	<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	3.68		38.5	*	12.1		5.07	
16984-48-8	Fluoride	т	mg/L	9056	0.309		0.197		0.13		0.255	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.398		0.707		0.116		0.153	
14808-79-8	Sulfate	т	mg/L	9056	56		42.2	*	26.8		118	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30		30.1		29.99		29.94	
S0145	Specific Conductance	Т	μ M H0/cm	Field	429		466		279		643	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

^{* =} See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	4	8004-098	2	8004-4793		8004-0983	
Facility's Loc	cal Well or Spring Number (e.g., MW	r-1, 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	330.08		324.81		324.76		328.67	
N238	Dissolved Oxygen	т	mg/L	Field	4.59		4.26		2.29		2.03	
s0266	Total Dissolved Solids	т	mg/L	160.1	241		256		141		417	
s0296	рн	Т	Units	Field	6.28		6.68		6.06		6.63	
NS215	Eh	Т	mV	Field	367		269		278		245	
s0907	Temperature	Т	°C	Field	15.56		16.61		16.11		16.78	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		0.0869	
7440-36-0	Antimony	Т	mg/L	6020	0.00123	J	0.00122	J	<0.003		0.00132	J
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00272	J	0.00401	J	0.0042	J
7440-39-3	Barium	т	mg/L	6020	0.125		0.176		0.153		0.044	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00616	J	0.0933		0.0243		0.0068	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.3		30.5		15.5		65.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00198		0.0039		0.0082		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00577		0.001	BJ	0.00268		0.000844	J
7439-89-6	Iron	Т	mg/L	6020	0.0333	J	0.35		8.84		0.0755	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.3		12.2		8.09		18.2	
7439-96-5	Manganese	т	mg/L	6020	0.0542		0.679		1.54		0.0104	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	Molybdenum					8004-098	4	8004-098	32	8004-479	3	8004-098	3
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		<0.001		<0.001		0.000805	J
7440-02-0		Nickel	Т	mg/L	6020	0.00603		0.00729		0.00349		0.00108	J
7440-09-7		Potassium	Т	mg/L	6020	0.252	J	1.74		2.89		0.61	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	50.4		46.3		20.1		50.1	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	0.000131	J	<0.0002		<0.0002		0.000415	
7440-62-2		Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		0.00389	J
7440-66-6		Zinc	Т	mg/L	6020	0.0104	J	0.0113	BJ	0.0165	J	0.00622	J
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	0.00245	J	0.00317	BJ	0.0022	J	<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-0982	2	8004-479	93	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T	mg/L	8260	<0.001		0.00294		0.00106		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-098	2	8004-479	93	8004-09	83
Facility's Loc	cal Well or Spring Number (e.g., 1	MW−1	L, MW-2, et	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.0000195		<0.0000194		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	0.0724	J	0.0466	J	<0.0967		0.0908	*J
12674-11-2	PCB-1016	т	ug/L	8082	<0.0958		<0.101		<0.0967		<0.102	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0958		<0.101		<0.0967		<0.102	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0958		<0.101		<0.0967		<0.102	
53469-21-9	PCB-1242	т	ug/L	8082	0.0724	J	0.0466	J	<0.0967		0.0908	*J
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0958		<0.101		<0.0967		<0.102	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0958		<0.101		<0.0967		<0.102	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0958		<0.101		<0.0967		<0.102	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0958		<0.101		<0.0967		<0.102	
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.58	*	13.6	*	-2.99	*	7.3	*
12587-47-2	Gross Beta	Т	pCi/L	9310	5.75	*	66.2	*	4.81	*	2.3	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.797	*	0.876	*	3.25	*	0.802	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.73	*	-0.154	*	-2.12	*	0.27	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	5.32	*	30	*	2.55	*	6.26	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.128	*	-0.449	*	0.205	*	-0.487	*
10028-17-8	Tritium	т	pCi/L	906.0	25	*	-53	*	-40.8	*	-7.09	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	28.4	*	<20		9.38	*J	23.7	*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.56	J	0.92	J	0.671	J	1.66	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0203		0.011		<0.01		0.00452	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-4	808
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	., MW-2, etc	.)	369		37	0	37	1	372	2
Sample Sequence	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/16/2019	07:46	10/16/20	19 08:30	10/16/201	19 09:24	10/16/2019	9 12:16
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW369U0	31-20	MW370	JG1-20	MW3711	JG1-20	MW372U	G1-20
Laboratory San	mple ID Number (if applicable)		4932620	003	49326	2001	49326	2005	493262	:007		
Date of Analys	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis)19	10/23/	2019	10/21/2	2019	10/21/2	019
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	UP		U	Р	UF)	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.346	*	0.436	*	<0.2	*	0.572	*
16887-00-6	Chloride(s)	т	mg/L	9056	31.6	*	35.8	*	4	*	47.6	*
16984-48-8	Fluoride	Т	mg/L	9056	0.236	*	0.202	*	0.207	*	0.182	*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.676		1.05		0.148	J	1.38	
14808-79-8	Sulfate	т	mg/L	9056	5.09		19.1		30		89.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30		30.02		30.05		30.05	
S0145	Specific Conductance	Т	μ M H0/cm	Field	367		434		657		697	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.29		326.34		343.27		326.29	
N238	Dissolved Oxygen	Т	mg/L	Field	1.88		3.7		1.27		1.93	
S0266	Total Dissolved Solids	Т	mg/L	160.1	227		236		403		466	
S0296	рн	Т	Units	Field	6.19		6.06		6.6		6.37	
NS215	Eh	Т	mV	Field	347		405		321		303	
s0907	Temperature	Т	°C	Field	15.78		15.83		16.06		16.67	
7429-90-5	Aluminum	Т	mg/L	6020	0.0197	J	<0.05		0.927		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00227	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.374		0.251		0.0838		0.0663	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0105	J	0.0401		<0.015		0.956	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	15.5		28.9		58.4		59.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00433		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00121	J	0.000786	J	0.00122	J	0.000537	J
7439-89-6	Iron	Т	mg/L	6020	0.124		<0.1		0.58		0.14	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	7.28		12.9		15.6		22	
7439-96-5	Manganese	Т	mg/L	6020	0.0143		0.00151	J	0.0168		0.00125	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480)8
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	T	mg/L	6020	<0.001		0.000233	BJ	0.00055	BJ	<0.001	
7440-02-0		Nickel	Т	mg/L	6020	0.00244		<0.002		0.00236		<0.002	
7440-09-7		Potassium	T	mg/L	6020	0.519		2.86		0.551		2.44	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		0.00268	J
7440-22-4		Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	57		46.1		84		66.4	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.00203		<0.0002	
7440-62-2		Vanadium	т	mg/L	6020	<0.02		<0.02		0.00471	J	<0.02	
7440-66-6		Zinc	T	mg/L	6020	0.0045	BJ	0.0043	BJ	0.00646	BJ	0.00415	BJ
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		0.0018	J	<0.005		0.00516	В
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	T	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	369		370		371		372	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00054	J	0.00064	J	<0.001		0.00269	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-482	0	8004-4818	3	8004-48	19	8004-48	08		
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.0000193		<0.0000195		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0999		<0.1		<0.0978		<0.1	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0999		<0.1		<0.0978		<0.1	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0999		<0.1		<0.0978		<0.1	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0999		<0.1		<0.0978		<0.1	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0999		<0.1		<0.0978		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0999		<0.1		<0.0978		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0999		<0.1		<0.0978		<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0999		<0.1		<0.0978		<0.1	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0999		<0.1		<0.0978		<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	8.05	*	-1.62	*	-1.38	*	0.414	*
12587-47-2	Gross Beta	т	pCi/L	9310	14.8	*	70.1	*	8.84	*	105	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	1.21	*	0.607	*	0.414	*	1.18	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.8	*	-2.03	*	-0.504	*	1.21	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	30.1	*	125	*	9.5	*	194	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.766	*	1.02	*	0.482	*	-0.138	*
10028-17-8	Tritium	Т	pCi/L	906.0	-40.3	*	-62.2	*	27.1	*	-34.3	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	45.3	*	<20	*	<20	*	85.3	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	1.38	J	1.13	J	2.06		1.35	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0336		<0.01		0.00374	J	0.0052	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-479	2	8004-09	990	8004-09	85	8004-098	8	
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	, MW-2, etc	:.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/16/2019 1	0:11	10/16/2019	12:58	10/15/2019	13:16	NA	
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW373UG1	-20	MW374U	G1-20	MW375U0	31-20	NA	
Laboratory Sam	mple ID Number (if applicable)				49326200	9	493262	011	4930550	013	NA	
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis.	10/22/201	9	10/21/2	019	10/18/20)19	NA			
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.558	*	0.703	*	<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	40.8	*	62.2	*	4.45			*
16984-48-8	Fluoride	т	mg/L	9056	0.191	*	0.202	*	0.317			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.06		<0.1		1.52			*
14808-79-8	Sulfate	Т	mg/L	9056	149		6.43		22.9			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.06		30.05		29.93			*
S0145	Specific Conductance	т	μ M H0/cm	Field	806		670		336			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	3
Facility's Loca	al Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.32		336.54		333.28			*
N238	Dissolved Oxygen	Т	mg/L	Field	1.98		1.88		1.61			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	513		383		189			*
s0296	рн	Т	Units	Field	6.16		6.78		6.82			*
NS215	Eh	Т	mV	Field	347		233		277			*
s0907	Temperature	Т	ပ	Field	17		16.78		16.94			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00236	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0371		0.137		0.175			*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	Т	mg/L	6020	1.44		0.0115	J	<0.015			*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	T	mg/L	6020	69.8		21.8		13.6			*
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000857	J	<0.001			*
7440-50-8	Copper	Т	mg/L	6020	0.000438	J	0.000994	J	0.000783	J		*
7439-89-6	Iron	Т	mg/L	6020	0.054	J	0.816		0.0411	J		*
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020	27.9		6.38		5.74			*
7439-96-5	Manganese	Т	mg/L	6020	0.0157		0.201		0.00125	J		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	38
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		0.000265	BJ	<0.001			*
7440-02-0		Nickel	Т	mg/L	6020	0.000872	J	<0.002		0.000698	J		*
7440-09-7		Potassium	T	mg/L	6020	2.92		0.421		0.267	J		*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		0.00233	J		*
7440-22-4		Silver	T	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5		Sodium	Т	mg/L	6020	62		135		52.4			*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.000307		<0.0002			*
7440-62-2		Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6		Zinc	T	mg/L	6020	0.00386	BJ	0.0043	BJ	0.00441	J		*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	Т	mg/L	8260	0.00291	BJ	<0.005		<0.005			*
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	T	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	T	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	T	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00335		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-479	2	8004-0990)	8004-098	35	8004-09	88		
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	l, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000195		<0.0000196			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.097		<0.0997		<0.104			*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.097		<0.0997		<0.104			*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.097		<0.0997		<0.104			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.097		<0.0997		<0.104			*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.097		<0.0997		<0.104			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.097		<0.0997		<0.104			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.097		<0.0997		<0.104			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.097		<0.0997		<0.104			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.097		<0.0997		<0.104			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.48	*	1.09	*	4.68	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	17.3	*	3.9	*	7.43	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	1.19	*	1.96	*	0.676	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.34	*	-0.0345	*	-0.406	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	36.5	*	-1.83	*	1.9	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.845	*	0.486	*	0.273	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	-49.7	*	10.2	*	65.3	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	10.3	*J	125	*	23.7	*		*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060	1.35	J	2.47		0.916	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00874	J	0.0202		0.00552	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	⁄W−1	, MW-2, etc	.)	377		E. BLAN	ΙK	F. BLAN	IK	T. BLANK	(1
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		Е		F		Т	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		NA		10/15/2019	07:00	10/15/2019	10:27	10/14/2019	06:50
06:50Duplicate	("Y" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				NA		RI1UG1	20	FB1UG1-	-20	TB1UG1-	20
Laboratory Sam	ple ID Number (if applicable)		NA		4930550	16	4930550	15	4929560	15		
Date of Analys	is (Month/Day/Year) For Volatile	ysis	NA		10/18/20	19	10/18/20	19	10/17/20	19		
Gradient with	dient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)						NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	Т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	Т	μ M H0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989)	0000-0000)	0000-0000		0000-0000)
Facility's Lo	ocal Well or Spring Number (e.g., M	ī-1, i	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	T	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	0.000318	J	<0.002			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number		8004-098	9	0000-000	00	0000-000	0	0000-000	0		
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.001		<0.001			*
7440-02-0	Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7	Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.02		0.00334	J		*
7440-66-6	Zinc	т	mg/L	6020		*	<0.02		<0.02			*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260		*	0.00761		0.0022	J	0.0104	В
107-02-8	Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.005		<0.005		<0.005	*
71-43-2	Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000)	0000-00	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., N	4W −1	L, MW-2, et	cc.)	377		E. BLAN	(F. BLAN	ΙK	T. BLAN	< 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., N	w −1	l, MW-2, et	.c.)	377		E. BLANK	(F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.000196		<0.0000194		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0956		<0.0954			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0956		<0.0954			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0956		<0.0954			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0956		<0.0954			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0956		<0.0954			*
12672-29-6	PCB-1248	T	ug/L	8082		*	<0.0956		<0.0954			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-0000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	377		E. BLANK		F. BLANI	<	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0956		<0.0954			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0956		<0.0954			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0956		<0.0954			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	0.256	*	-0.281	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	4.39	*	3.72	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*	0.632	*	0.134	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*	1.29	*	0.51	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	5.72	*	-7.59	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	0.173	*	-0.00437	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	82.6	*	-7.68	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000	00	0000-00	00	8004-4793	3	\			
Facility's Loca	al Well or Spring Number (e.g., $ exttt{M}$	w−1	, MW-2, etc	:.)	T. BLANK	(2	T. BLAN	K 3	367			
Sample Sequence	e #				1		1		2			
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		Т		NA			
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		10/15/2019 (06:55	10/16/2019	06:45	10/15/2019 1	0:25		
Duplicate ("Y"	or "N") ²				N		N		Υ			
Split ("Y" or '	"N") ³				N		N		N			
Facility Sample	e ID Number (if applicable)				TB2UG1-	20	TB3UG1	-20	MW367DUG	N MW367DUG1-20		
Laboratory Samp	Laboratory Sample ID Number (if applicable)						4932620	13	49305500	7		
Date of Analysi	Date of Analysis (Month/Day/Year) For Volatile Organics Analysis						10/21/20	19	10/18/2019		\setminus /	
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	NA		NA		DOWN		V	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*	0.163	J		\
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*	12.2			1
16984-48-8	Fluoride	Т	mg/L	9056		*		*	0.121			
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*	0.121			
14808-79-8	Sulfate	Т	mg/L	9056		*		*	26.9			
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	_	*		*		*	1	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	_	*		*		*		

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-0000	0-0000 0000-0000)	8004-4793					
Facility's Lo	cal Well or Spring Number (e.g., Mw	r-1, i	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	367			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*	177			
s0296	рН	т	Units	Field		*		*		*		
NS215	Eh	т	mV	Field		*		*		*		
s0907	Temperature	т	°C	Field		*		*		*	<u> </u>	
7429-90-5	Aluminum	т	mg/L	6020		*		*	<0.05			
7440-36-0	Antimony	т	mg/L	6020		*		*	0.00107	J	<u> </u>	
7440-38-2	Arsenic	Т	mg/L	6020		*		*	0.00386	J	l X	
7440-39-3	Barium	т	mg/L	6020		*		*	0.148		/\	
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005		/ \	
7440-42-8	Boron	т	mg/L	6020		*		*	0.0248		/ \	V
7440-43-9	Cadmium	т	mg/L	6020		*		*	<0.001			\
7440-70-2	Calcium	т	mg/L	6020		*		*	15.1			\setminus
7440-47-3	Chromium	т	mg/L	6020		*		*	<0.01			$ \cdot $
7440-48-4	Cobalt	т	mg/L	6020		*		*	0.00787			
7440-50-8	Copper	т	mg/L	6020		*		*	0.000419	J		
7439-89-6	Iron	Т	mg/L	6020		*		*	8.75			
7439-92-1	Lead	Т	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	т	mg/L	6020		*		*	8.03			
7439-96-5	Manganese	т	mg/L	6020		*		*	1.38			
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	00	8004-479	93		
Facility's	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						2	T. BLAN	(3	367			
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
7439-98-7		Molybdenum	Т	mg/L	6020		*		*	<0.001			
7440-02-0		Nickel	Т	mg/L	6020		*		*	0.00332			
7440-09-7		Potassium	Т	mg/L	6020		*		*	2.85			
7440-16-6		Rhodium	Т	mg/L	6020		*		*	<0.005			
7782-49-2		Selenium	Т	mg/L	6020		*		*	<0.005			
7440-22-4		Silver	Т	mg/L	6020		*		*	<0.001		\ /	
7440-23-5		Sodium	Т	mg/L	6020		*		*	20.5			
7440-25-7		Tantalum	т	mg/L	6020		*		*	<0.005		\/	
7440-28-0		Thallium	Т	mg/L	6020		*		*	<0.002		X	
7440-61-1		Uranium	Т	mg/L	6020		*		*	<0.0002		/\	
7440-62-2		Vanadium	т	mg/L	6020		*		*	<0.02		/ \	
7440-66-6		Zinc	Т	mg/L	6020		*		*	0.0147	J	/ \	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			\
67-64-1		Acetone	Т	mg/L	8260	0.00505		0.00307	BJ	<0.005			
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						0000-0000 80		8004-47	93	\	- /
Facility's Loc	al Well or Spring Number (e.g., N	4W −1	l, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	367		\	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			/
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		\	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		\/	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		/ /	(
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			\
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		0.00107			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000	0	0000-000	0	8004-4793					
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	367			\neg
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			\prod
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			<u> </u>
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		\	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		\	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		\	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.0000193		<0.0000196		\/	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	<u> </u>
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			<u>\</u>
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			\prod
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			\Box
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.0959			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.0959			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.0959			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.0959			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.0959			
12672-29-6	PCB-1248	Т	ug/L	8082		*		*	<0.0959		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000		0000-0000		8004-4793	3	\	$\overline{}$		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		367			\Box
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A S
11097-69-1	PCB-1254	т	ug/L	8082		*		*	<0.0959		\ /	Π
11096-82-5	PCB-1260	т	ug/L	8082		*		*	<0.0959		\ /	
11100-14-4	PCB-1268	т	ug/L	8082		*		*	<0.0959		\ /	
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*	7.97	*	\ /	
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*	9.4	*	\ /	
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*	0.754	*	\	
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*	4.27	*	V	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*	-3.87	*	\land	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*	-0.185	*	/\	
10028-17-8	Tritium	т	pCi/L	906.0		*		*	4.03	*	/ \	
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*	9.38	*J	/ \	
57-12-5	Cyanide	Т	mg/L	9012		*		*	<0.2		/ \	
20461-54-5	Iodide	т	mg/L	300.0		*		*	<0.5		/	
s0268	Total Organic Carbon	Т	mg/L	9060		*		*	0.694	J	/ \	١
s0586	Total Organic Halides	Т	mg/L	9020		*		*	<0.01			

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

4.8. Rad error is 4.78. TPU is 11.1. Rad error is 9.35. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.954. Rad error is 0.95. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 1.7. Rad error is 1.7. Technetium-99 Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.647. Rad error is 1.5. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.647. Rad error is 0.546. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 146. Rad error is 1.46. Rod-error is 1.46. Rad error is 1.46. Rod-error is 1.46. Rad error is 1.46. Rod-error is 1.46. R	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analytermuclide was analyzed for, but not detect 4.8. Rad error is 6.35. Iodine-131 Radium-226 U Indicates analytermuclide was analyzed for, but not detect 0.954. Rad error is 0.95. Strontium-90 U Indicates analytermuclide was analyzed for, but not detect 1.7. Rad error is 0.95. Trechnetium-99 Tribu is 1.1. Rad error is 1.15. Thorium-230 U Indicates analytermuclide was analyzed for, but not detect 1.7. Rad error is 1.7. Technetium-99 Tribu is 1.1. Rad error is 1.1.5. Thorium-230 U Indicates analytermuclide was analyzed for, but not detect 1.7. Rad error is 1.6.4. Tritium U Indicates analytermuclide was analyzed for, but not detect 1.7. Rad error is 1.6.4. Tritium U Indicates analytermuclide was analyzed for, but not detect 1.7. Rad error is 0.46. Tritium U Indicates analytermuclide was analyzed for, but not detect 1.7. Rad error is 1.6.4. Tritium U Indicates analytermuclide was analyzed for, but not detect 4.5. Rad error is 4.5. Gross alpha U Indicates analytermuclide was analyzed for, but not detect 4.5. Rad error is 4.5. Gross beta U Indicates analytermuclide was analyzed for, but not detect 4.5. Rad error is 4.5. Technetium-90 U Indicates analytermuclide was analyzed for, but not detect 0.878. Rad error is 3.57. Technetium-90 U Indicates analytermuclide was analyzed for, but not detect 0.878. Rad error is 2.87. Tritium U Indicates analytermuclide was analyzed for, but not detect 0.878. Rad error is 2.87. Tritium U Indicates analytermuclide was analyzed for, but not detect 0.878. Rad error is 3.58. Gross beta U Indicates analytermuclide was analyzed for, but not detect 0.878. Rad error is 3.57. Indicates analytermuclide was analyzed for, but not detect 1.38. Rad error is 3.58. Gross beta U Indicates analytermuclide was analyzed for, but not detect 1.57. Rad error is 5.78. Gross beta U Indicates analytermuclide was analyzed for, but not detect 1.57. Rad error is 5.78. Indicates analytermuclide was analyzed for,	3004-4798 MW357	MW357UG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
Gross alpha Gross beta Iodine-131 Radium-226 U Indicates analyte/inuclide was analyzed for, but not detect 4.8. Rad error is 9.35. Analysis of constituent not required and not performed. Strontium-90 U Indicates analyte/inuclide was analyzed for, but not detect 0.954. Rad error is 1.05. Technetium-99 Thorium-230 U Indicates analyte/inuclide was analyzed for, but not detect 0.647. Rad error is 1.15. Thorium-230 U Indicates analyte/inuclide was analyzed for, but not detect 0.647. Rad error is 0.46. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 146. Rad error is 0.646. Indicates analyte/inuclide was analyzed for, but not detect 146. Rad error is 0.646. Indicates analyte/inuclide was analyzed for, but not detect 146. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 146. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 146. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyzed for, but not detect 1.60. Rad error is 1.60. Tritium U Indicates analyte/inuclide was analyz			Sulfate	W	Post-digestion spike recovery out of control limits.
4.8. Rad error is 4.78. Gross beta lodine-131 Radium-226 U Indicates analyterinucide was analyzed for, but not detect 0.945. Rad error is 0.95. Strontium-90 U Indicates analyterinucide was analyzed for, but not detect 0.945. Rad error is 0.95. Technetium-99 Tritium U Indicates analyterinucide was analyzed for, but not detect 0.647. Rad error is 1.77. TPU is 11.9. Rad error is 1.75. Thorium-230 U Indicates analyterinucide was analyzed for, but not detect 0.647. Rad error is 0.646. Tritium U Indicates analyterinucide was analyzed for, but not detect 1.66. Rad error is 1.646. Tritium U Indicates analyterinucide was analyzed for, but not detect 1.66. Rad error is 0.646. Radium-246 Gross alpha U Indicates analyterinucide was analyzed for, but not detect 4.5. Rad error is 1.64. Gross beta Indicates analyterinucide was analyzed for, but not detect 4.5. Rad error is 1.65. Tritium-90 U Indicates analyterinucide was analyzed for, but not detect 4.5. Rad error is 4.65. Tritium-90 U Indicates analyterinucide was analyzed for, but not detect 4.66. Rad error is 1.65. Tritium-90 U Indicates analyterinucide was analyzed for, but not detect 6.66. Rad error is 2.67. Tritium U Indicates analyterinucide was analyzed for, but not detect 6.67. Rad error is 2.67. Tritium U Indicates analyterinucide was analyzed for, but not detect 6.878. Rad error is 2.67. Tritium U Indicates analyterinucide was analyzed for, but not detect 6.878. Rad error is 0.377. Tritium U Indicates analyterinucide was analyzed for, but not detect 6.878. Rad error is 0.377. Tritium U Indicates analyterinucide was analyzed for, but not detect 6.878. Rad error is 0.378. Rad error is 0.378. Rad error is 0.377. Rad error is 0.377. Rad error is 0.378. Rad error is 0.			Acrylonitrile	Y2	MS/MSD RPD outside acceptance criteria
lodine-131 Radium-226 U indicates analyte/muclide was analyzed for, but not detect 0.954. Rad error is 1.9. Strontium-90 U indicates analyte/muclide was analyzed for, but not detect 0.954. Rad error is 1.9. Technetium-99 Tritium U indicates analyte/muclide was analyzed for, but not detect 1.7. Rad error is 1.7. Technetium-99 Tritium U indicates analyte/muclide was analyzed for, but not detect 16. Rad error is 1.8. Colouing-120 Col			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.8. Rad error is 4.78.
Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.954. Red error is 0.95. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 1.7. Rad error is 1.7. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.647. Rad error is 1.1.5. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 1.648. Rad error is 0.846. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.648. Rad error is 1.45. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 4.5. Rad error is 4.5. Gross beta Indicates analyte/nuclide was analyzed for, but not detect 1.68. Rad error is 4.5. TPU is 9.73. Rad error is 8.46. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.68. Rad error is 1.53. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 2.87. Technetium-99 Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.88. Rad error is 1.83. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 1.87. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.88. Rad error is 1.38. Chloride W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 5.71. Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 5.78. Indicates an			Gross beta		TPU is 11.1. Rad error is 9.35.
Strontium-90 Under the strong of the strong			lodine-131		Analysis of constituent not required and not performed.
Technetium-99 Technetium-99 TPU is 11.9. Rad error is 1.7. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.647. Rad error is 0.646. Trittum U Indicates analyte/nuclide was analyzed for, but not detect 146. Rad error is 146. Sulfate W Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 4.5. Rad error is 4.6. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.66. Rad error is 1.8. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.67. Rad error is 2.87. TPU is 11.8. Rad error is 2.87. TPU is 11.8. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 138. U Indicates analyte/nuclide was analyzed for, but not detect 1.86. Rad error is 138. Cholinde W Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 5.78. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.57. Ra			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.954. Rad error is 0.95.
Thorium-230 Tritium Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.847. Rad error is 0.846. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 146. Rad error is 146. Out-4799 MW358 MW358UG1-20 Chloride Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Gross alpha Gross alpha Indicates analyte/nuclide was analyzed for, but not detect 4.5. Rad error is 4.5. Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.66. Rad error is 4.5. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 1.93. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 1.68. Rad error is 1.83. Thorium-290 Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.88. Rad error is 1.87. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.88. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.88. Rad error is 1.88. Out-0981 MW359 MW359UG1-20 Chloride W Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 7.6. Rad error is 2.14. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 0.976. Indicates analyte/nuclide was analyzed for, but not detect 9.997. Rad error is 0.976. Indicates analyte/nuclide was analyzed for, but not detect 9.997. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 9.997. Rad error is 0.976.				U	
Tritium U Indicates analyte/nuclide was analyzed for, but not detect 146. Rad error is 0.64.6. Out-4799 MW358 MW358UG1-20 Chloride W Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 4.5. Rad error is 4.5. TPU is 9.73. Rad error is 8.46. Indicates analyte/nuclide was analyzed for, but not detect 4.5. Rad error is 1.63. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 2.87. Technetium-99 Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 1.63. Rad error is 1.64. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 1.64. Rad error is 1.65. Rad er			Technetium-99		TPU is 11.9. Rad error is 11.5.
146. Rad error is 146. 147. Rad error is 146. 148. Rad error is 146. 149. Post-digestion spike recovery out of control limits. 149. Acrylonitrile 140. Acrylonitrile 141. Acrylonitrile 142. MS/MSD RPD outside acceptance criteria 143. Rad error is 4.5. 144. Rad error is 4.6. 145. Rad error is 4.6. 146. Rad error is 4.6. 146. Rad error is 4.6. 147. Analysis of constituent not required and not performed. 148. Rad error is 1.6. 149. Strontium-90 149. Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 1.63. 149. Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 1.63. 149. Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 1.63. 149. Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 1.63. 149. Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 1.63. 149. Indicates analyte/nuclide was analyzed for, but not detect 3.87. Rad error is 0.877. 149. Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 1.38. 149. Post-digestion spike recovery out of control limits. 149. Acrylonitrile 140. Post-digestion spike recovery out of control limits. 140. Acrylonitrile 140. Post-digestion spike recovery out of control limits. 145. Rad error is 1.64. 146. Rad error is 1.64. 147. Rad error is 1.64. 148. Rad error is 1.64. 149. Rad erro			Thorium-230	U	
Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 4.5. Rad error is 4.5. Gross beta TPU is 9.7. Rad error is 8.46. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.66. Rad error is 1.63. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 2.87. Technetium-99 TPU is 11.8. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.678. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.88. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.88. Rad error is 1.88. Out-0981 MW359 MW359UG1-20 Chloride W Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 1.54. Iodine-131 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 1.69. Rad error is 1.64. Strontium-99 U Indicates analyte/nuclide was analyzed for, but not detect 1.99. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPl 146. Rad error is 146.
Acrylonitrile Gross alpha Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 4.5. Rad error is 4.5. Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.66. Rad error is 1.63. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 1.66. Rad error is 1.63. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 1.67. Rad error is 1.63. TPU is 1.18. Rad error is 1.1.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.678. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.68. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.68. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.68. Rad error is 0.877. Indicates analyte/nuclide was analyzed for, but not detect 1.68. Rad error is 0.877. Indicates analyte/nuclide was analyzed for, but not detect 1.68. Rad error is 1.78. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 1.58. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 1.58. Rad error is 5.78. Indicates analyte/nuclide was analyzed for, but not detect 1.58. Rad error is 1.54. Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 0.997. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.997. Rad error is 0.976. Indicates analyte/nuclide was analyzed for, but not detect 0.997. Rad error is 0.976. Indicates analyte/nuclide was analyzed for, but not detect 0.997. Rad error is 0.976. Indicates analyte/nuclide was analyzed for, but not detect	004-4799 MW358	MW358UG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
Gross alpha Gross beta Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 4.5. Rad error is 8.46. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.66. Rad error is 1.63. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 2.87. Technetium-99 Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 1.87. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 1.88. Out-0981 MW359 MW359UG1-20 Chloride W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.11. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 7.11. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 2.98. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 2.98. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 2.98. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 2.98. Rad error is 0.976.			Sulfate	W	Post-digestion spike recovery out of control limits.
45. Rad error is 4.5. Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.66. Rad error is 1.63. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 2.87. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 2.87. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 1.83. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 1.87. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 138. Out-0981 MW359 MW359UG1-20 Chloride W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.7. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.7. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 2.98. Rad error is 0.990. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 2.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 2.987. Rad error is 0.976.			Acrylonitrile	Y2	MS/MSD RPD outside acceptance criteria
lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.66. Rad error is 1.63. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 2.87. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 138. Sulfate W Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 4.5. Rad error is 4.5.
Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 1.66. Rad error is 1.63. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.87. Rad error is 2.87. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 138. Out-0981 MW359 MW359UG1-20 Chloride W Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Sulfate Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99.			Gross beta		TPU is 9.73. Rad error is 8.46.
Strontium-90 Strontium-90 Strontium-90 Strontium-90 Strontium-99 Technetium-99 Thorium-230 Thorium-230 Undicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 11.3. Thorium-230 Undicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 0.877. Tritium Undicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 138. Rad error is 138. Rad error is 138. Sulfate We post-digestion spike recovery out of control limits. Sulfate We post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha Undicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta Undicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Iodine-131 Radium-226 Undicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 Undicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 Undicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 0.976. Tritium Undicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium Undicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.			lodine-131		Analysis of constituent not required and not performed.
Technetium-99 Thorium-230 Thorium-230 Thorium-230 Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 138. Chloride W Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.66. Rad error is 1.63.
Thorium-230 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.878. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 138. Rad error is 138. Rad error is 138. Rad error is 138. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.				U	
O.878. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 138. Rad error is 138. O04-0981 MW359 MW359UG1-20 Chloride W Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.			Technetium-99		TPU is 11.8. Rad error is 11.3.
138. Rad error is 138. 139. National Post-digestion spike recovery out of control limits. Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 8.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 9.987. Rad error is 0.976.			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.878. Rad error is 0.877.
Sulfate W Post-digestion spike recovery out of control limits. Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect					
Acrylonitrile Y2 MS/MSD RPD outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect	004-0981 MW359	MW359UG1-20			
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.			Sulfate		
5.81. Rad error is 5.78. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 7.2. Rad error is 7.11. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.			Acrylonitrile	Y2	MS/MSD RPD outside acceptance criteria
7.2. Rad error is 7.11. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.			Gross alpha		
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect				U	
1.57. Rad error is 1.54. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.			lodine-131		
2.14. Rad error is 2.14. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976.					
8.99. Rad error is 8.99. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect					
0.987. Rad error is 0.976. Tritium U Indicates analyte/nuclide was analyzed for, but not detect					8.99. Rad error is 8.99.
					0.987. Rad error is 0.976.
			ı rıtıum	U	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4800 MW360	MW360UG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Acrylonitrile	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.09. Rad error is 3.08.
		Gross beta		TPU is 6.79. Rad error is 6.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.06. Rad error is 1.05.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.66. Rad error is 1.66.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.05. Rad error is 1.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 147. Rad error is 147.
004-4795 MW361	MW361UG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Acrylonitrile	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.53. Rad error is 5.52.
		Gross beta		TPU is 12.1. Rad error is 9.44.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.65. Rad error is 1.63.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.74. Rad error is 2.74.
		Technetium-99		TPU is 13.6. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.832. Rad error is 0.832.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 145. Rad error is 145.
004-0986 MW362	MW362UG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Acrylonitrile	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.11. Rad error is 5.11.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.86. Rad error is 5.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.906. Rad error is 0.87.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.68. Rad error is 2.65.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 9.48. Rad error is 9.48.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.745. Rad error is 0.744.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 141. Rad error is 141.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4796 MW363	MW363UG1-20	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 7.15. Rad error is 7.08.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.91. Rad error is 8.71.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.87. Rad error is 1.87.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.99. Rad error is 2.99.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 12.7. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.778. Rad error is 0.777.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 122. Rad error is 121.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
3004-4797 MW364	MW364UG1-20	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.73. Rad error is 4.72.
		Gross beta		TPU is 11.1. Rad error is 9.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.07. Rad error is 1.06.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 3.8. Rad error is 3.72.
		Technetium-99		TPU is 16.4. Rad error is 15.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.961. Rad error is 0.96.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 104. Rad error is 104.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
3004-0984 MW365	MW365UG1-20	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.96. Rad error is 4.93.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 6.57. Rad error is 6.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.39. Rad error is 1.39.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 3.32. Rad error is 3.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 12.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.32. Rad error is 1.32.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 115. Rad error is 115.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0982 MW366	MW366UG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Acrylonitrile	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha		TPU is 8.2. Rad error is 7.9.
		Gross beta		TPU is 16.3. Rad error is 12.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.975. Rad error is 0.939.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.7. Rad error is 1.7.
		Technetium-99		TPU is 12. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. The 0.406. Rad error is 0.405.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 144. Rad error is 144.
004-4793 MW367	MW367UG1-20	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.72. Rad error is 4.72.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.02. Rad error is 6.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.97. Rad error is 2.95.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.42. Rad error is 3.42.
		Technetium-99	U 	Indicates analyte/nuclide was analyzed for, but not detected. To 12.2. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 1.03. Rad error is 1.02.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To 108. Rad error is 108.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-0983 MW368	MW368UG1-20	PCB, Total	Р	Difference between results from two GC columns unacceptable
		PCB-1242	Р	Difference between results from two GC columns unacceptable
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.92. Rad error is 6.82.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.88. Rad error is 6.86.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.67. Rad error is 1.67.
		Strontium-90	U 	Indicates analyte/nuclide was analyzed for, but not detected. T 2.48. Rad error is 2.48.
		Technetium-99	U 	Indicates analyte/nuclide was analyzed for, but not detected. Ti 12.8. Rad error is 12.8.
		Thorium-230	U 	Indicates analyte/nuclide was analyzed for, but not detected. To 0.521. Rad error is 0.52.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 112. Rad error is 112.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4820 MW369	MW369UG1-20	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 8.11. Rad error is 7.97.
		Gross beta		TPU is 8.48. Rad error is 8.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.39. Rad error is 1.38.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.19. Rad error is 4.14.
		Technetium-99		TPU is 14.4. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.903. Rad error is 0.893.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 109. Rad error is 109.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-4818 MW370	MW370UG1-20	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.83. Rad error is 4.83.
		Gross beta		TPU is 16.5. Rad error is 12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.9. Rad error is 0.9.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.21. Rad error is 2.21.
		Technetium-99		TPU is 21. Rad error is 15.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.968. Rad error is 0.954.
	7	Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I 106. Rad error is 106.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description					
004-4819 MW371	MW371UG1-20	Bromide	W	Post-digestion spike recovery out of control limits.					
		Chloride	W	Post-digestion spike recovery out of control limits.					
		Fluoride	W	Post-digestion spike recovery out of control limits.					
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 4.71. Rad error is 4.71.					
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. To 6.98. Rad error is 6.83.					
		lodine-131		Analysis of constituent not required and not performed.					
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf 1.2. Rad error is 1.2.					
							Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To 2.55. Rad error is 2.55.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. To 12.8. Rad error is 12.7.					
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. To 0.976. Rad error is 0.97.					
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To 112. Rad error is 112.					
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits					
004-4808 MW372	MW372UG1-20	Bromide	W	Post-digestion spike recovery out of control limits.					
		Chloride	W	Post-digestion spike recovery out of control limits.					
		Fluoride	W	Post-digestion spike recovery out of control limits.					
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 4.74. Rad error is 4.74.					
		Gross beta		TPU is 22.1. Rad error is 13.6.					
		lodine-131		Analysis of constituent not required and not performed.					
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. Ti 1.39. Rad error is 1.38.					
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To 2.46. Rad error is 2.46.					
		Technetium-99		TPU is 27.7. Rad error is 17.4.					
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.793. Rad error is 0.793.					
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To 110. Rad error is 110.					
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits					

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4792 MW373	MW373UG1-20	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.89. Rad error is 3.88.
		Gross beta		TPU is 8.55. Rad error is 8.07.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I 1.48. Rad error is 1.47.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I 3.57. Rad error is 3.55.
		Technetium-99		TPU is 13.6. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 1.14. Rad error is 1.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To 103. Rad error is 103.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-0990 MW374	MW374UG1-20	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 5.36. Rad error is 5.36.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I 8.27. Rad error is 8.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I 1.77. Rad error is 1.74.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I 2.18. Rad error is 2.18.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. Tal.8. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.892. Rad error is 0.886.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 112. Rad error is 112.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description	
8004-0985 MW375	MW375UG1-20	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 5.3. Rad error is 5.25.	TPU is
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7.15. Rad error is 7.05.	TPU is
		lodine-131		Analysis of constituent not required and not performed.	
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.863. Rad error is 0.856.	TPU is
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 2.97. Rad error is 2.97.	TPU is
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 12.6. Rad error is 12.6.	TPU is
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 1.17. Rad error is 1.16.	TPU is
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 115. Rad error is 115.	TPU is
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Point	Sample ID	Constituent	Flag	Description
004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		pH		During sampling, the well went dry; therefore, no sample we collected.
		Eh		During sampling, the well went dry; therefore, no sample we collected.
		Temperature		During sampling, the well went dry; therefore, no sample we collected.
		Aluminum		During sampling, the well went dry; therefore, no sample w collected.
		Antimony		During sampling, the well went dry; therefore, no sample w collected.
		Arsenic		During sampling, the well went dry; therefore, no sample w collected.
		Barium		During sampling, the well went dry; therefore, no sample we collected.
		Beryllium		During sampling, the well went dry; therefore, no sample we collected.
		Boron		During sampling, the well went dry; therefore, no sample w collected.
		Cadmium		During sampling, the well went dry; therefore, no sample we collected.
		Calcium		During sampling, the well went dry; therefore, no sample we collected.
		Chromium		During sampling, the well went dry; therefore, no sample we collected.
		Cobalt		During sampling, the well went dry; therefore, no sample w collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample we collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa
		•		collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

<u>Point</u>	Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Molybdenum		During sampling, the well went dry; therefore, no sample wa collected.
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample we collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample we collected.
		Zinc		During sampling, the well went dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample w collected.
		Acetone		During sampling, the well went dry; therefore, no sample w collected.
		Acrolein		During sampling, the well went dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample w collected.
		Benzene		During sampling, the well went dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample w collected.
		Xylenes		During sampling, the well went dry; therefore, no sample w collected.
		Styrene		During sampling, the well went dry; therefore, no sample w collected.
		Toluene		During sampling, the well went dry; therefore, no sample w collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample woollected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample w collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample w collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample w
		Carbon distillide		collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample we collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample w collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample w collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample we collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample we collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample we collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample w collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample we collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample w

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

<u>Point</u> 004-0989 MW377	Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample we collected.
		Temperature		During sampling, the well went dry; therefore, no sample w collected.
		Aluminum		During sampling, the well went dry; therefore, no sample w collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample w collected.
		Boron		During sampling, the well went dry; therefore, no sample we collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample we collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample we collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample we collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Point 004-0989 MW377	Sample ID	Constituent	Flag	Description
		Molybdenum		During sampling, the well went dry; therefore, no sample wa collected.
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	,	Chloroform	,	During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample we collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample w collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample w collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample we collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample we collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample we collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample we collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample we collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample we collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample w

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	RI1UG1-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 2.76. Rad error is 2.76.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 8.59. Rad error is 8.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 1.04. Rad error is 1.03.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 3.45. Rad error is 3.44.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. Ta.3. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.84. Rad error is 0.837.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 125. Rad error is 124.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	FB1UG1-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.99. Rad error is 3.99.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.27. Rad error is 6.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.869. Rad error is 0.868.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 2.94. Rad error is 2.94.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.857. Rad error is 0.855.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 112. Rad error is 112.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG1-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG1-20	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Acrylonitrile	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG1-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG1-20	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

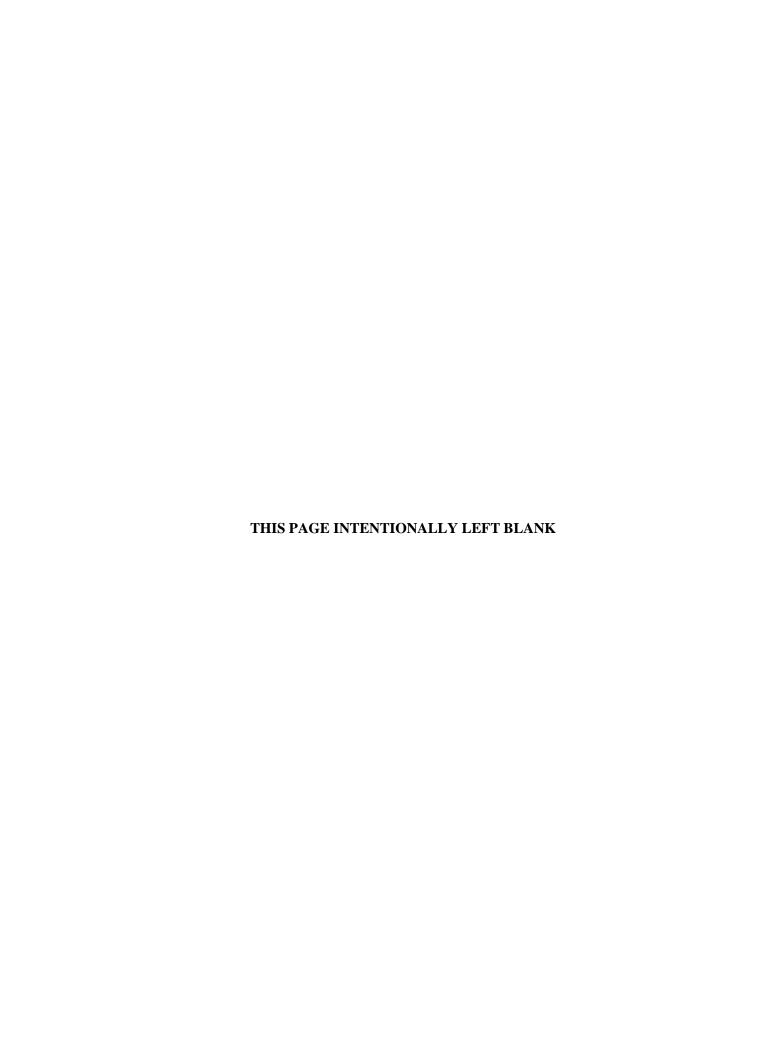
Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG1-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG1-20	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045


Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4793 MW367	MW367DUG1-20	Barometric Pressure Reading	_	Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.52. Rad error is 7.4.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.02. Rad error is 6.85.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.982. Rad error is 0.979.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.49. Rad error is 4.44.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.726. Rad error is 0.725.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 113. Rad error is 113.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Finds/Unit: <u>KY8-980-008-982/1</u>

LAB ID: None
For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2019 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2019 data used to conduct the statistical analyses were collected in October 2019. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^{a,b}	SG	UCRS
MW377 ^{a,b}	SG	UCRS

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells **TW:** downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

^b Well was dry this quarter, and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2019. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

lower $TL = X - (K \times S)$

D-5

1

 $^{^{1}}$ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations:

upper $TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Acetone Aluminum Antimony Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen **Dissolved Solids** Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential PCB, Total PCB-1242 рН* Potassium Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Trichloroethene Vanadium Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone	7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0	Analysis? No No No No No No No No No N
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone	7 7 7 7 7 7 7 7	7 7 7 7 7 7	0 0 0 0 0 0	No No No No No
1,1,2-Trichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone	7 7 7 7 7 7 7	7 7 7 7 7 7	0 0 0 0 0	No No No
1,1-Dichloroethane 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone	7 7 7 7 7 7	7 7 7 7 7	0 0 0 0	No No No
1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone	7 7 7 7 7 7	7 7 7 7	0 0 0	No No
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone	7 7 7 7 7	7 7 7	0	No
1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone	7 7 7 7	7 7	0	
1,2-Dichloropeneee 1,2-Dichloropropane 2-Butanone	7 7 7	7		
1,2-Dichloropropane 2-Butanone	7		0	No
2-Butanone	7		0	No
20 2 2 2		7	0	No
7 Havanana	7	7	0	
2-Hexanone				No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	6	1	Yes
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	3	4	Yes
Antimony	7	4	3	Yes
Beryllium	7	7	0	No
Boron	7	2	5	Yes
Bromide	7	6	1	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	3	4	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	5	2	Yes
Conductivity	7	0	7	Yes
Copper	7	1	6	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	6	1	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	7	0	5	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	5	2	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	5	2	Yes
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	3	4	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	5	1	Yes
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	2	4	Yes
Beryllium	6	6	0	No
Beta activity	6	1	5	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	3	3	Yes
Chloride Chloride	6	0	6	Yes
Chlorobenzene			0	
Chloroethane	6	6	0	No No
		6		
Chloroform	6	6	0	No
Chloromethane				No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	3	3	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Iron Magnesium Manganese Methylene chloride Molybdenum	6 6 6 6 6 6	Observation 1 0 0 6 6	Observation 5 6 6 0	Analysis? Yes Yes Yes
Magnesium Manganese Methylene chloride Molybdenum	6 6 6 6	0 0 0 6 6	6	Yes Yes
Manganese Methylene chloride Molybdenum	6 6 6	0 6 6	6	Yes
Methylene chloride Molybdenum	6 6 6	6		
Molybdenum	6 6	6	0	
v	6			No
	_		0	No
Nickel	6	2	4	Yes
Oxidation-Reduction Potential	U	0	6	Yes
PCB, Total	6	5	1	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	5	1	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	6	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	7	5	2	Yes
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	7	4	3	Yes
Beryllium	6	6	0	No
Beta activity	6	1	5	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	2	4	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	5	1	Yes
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	2	4	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
DIDUCTION OAJECH	U			
	6	N	6	Yec
Dissolved Solids	6	6	6	Yes No.
	6 6	0 6 6	6 0 0	No No

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No
Molybdenum	6	6	0	No
Nickel	6	2	4	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
		6	0	
PCB-1221	6			No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	1	5	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	4	2	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 29, 28, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

This quarter's results identified historical background exceedances for beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, and technetium-99.

LRGA

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential, Technetium-99
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW368: Oxidation-Reduction Potential, Sulfate	MW366: Beta Activity, Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential
MW371: Oxidation-Reduction Potential, Sulfate	MW369: Oxidation-Reduction Potential	MW370: Beta activity, Oxidation-Reduction Potential, Technetium-99
MW374: Oxidation-Reduction Potential	MW372: Beta Activity, Calcium, Chemical Oxygen Demand, Conductivity, Dissolved Solids, Magnesium, Oxidation-Reduction Potential, Technetium-99	MW373: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate		

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	2.24	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.89	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, and MW365.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	3.88	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.25	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW366 and MW372.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	Current results exceed statistically derived historical background concentration in MW372.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration.
pH	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.

 $[\]overline{\text{CV: coefficient of variation}}$ *If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	2.67	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.25	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.80	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.
рН	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW361, MW364, and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

^{*}If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 8, and 3 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. This quarter's results showed no exceedances in UCRS wells located downgradient of the landfill.

URGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.10, Exhibit D.11, and Exhibit D.12, respectively.

Exhibit D.10. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.86	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.22	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	1.14	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.77	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Calcium	Tolerance Interval	0.48	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.65	MW372 exceeded the upper TL, which is evidence of a difference in concentration with respect to current background data.
Conductivity	Tolerance Interval	0.24	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.38	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.43	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.11	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.73	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.65	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.10	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.71	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.938 S = 111.751 CV(1) = 2.238

K factor=** 2.523

TL(1)= 331.886 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.847

 $S= 1.149 \quad CV(2)=0.404$

K factor=** 2.523

TL(2) = 5.746

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	18	2.890
4/22/2002	10	2.303
7/15/2002	10	2.303
10/8/2002	15	2.708
1/8/2003	10	2.303
4/3/2003	10	2.303
7/9/2003	10	2.303
10/6/2003	10	2.303
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.298
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 200	5.298
Date Collected 10/8/2002 1/7/2003	Result 200 26	5.298 3.258
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 200 26 10	5.298 3.258 2.303
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 200 26 10 10	5.298 3.258 2.303 2.303
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 200 26 10 10 430	5.298 3.258 2.303 2.303 6.064

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

1.609

N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	No	5	N/A	1.609	N/A
MW362	Downgradient	No	2.46	N/A	0.900	N/A
MW365	Downgradient	Yes	2.45	N/A	0.896	NO
MW368	Downgradient	No	5	N/A	1.609	N/A
MW371	Upgradient	No	5	N/A	1.609	N/A
MW374	Upgradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-3

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison UCRS** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S = 6.859

CV(1)=2.078

K factor**= 2.523

TL(1)=20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678

CV(2) = -4.521

K factor=** 2.523

TL(2) = 3.863

LL(2)=N/A

L(2)?

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarte	r Data
•			

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL
MW359	Downgradien	t Yes	0.0312	N/A	-3.467	NO
MW362	Downgradien	t Yes	0.0319	N/A	-3.445	NO
MW365	Downgradien	t No	0.05	N/A	-2.996	N/A
MW368	Downgradien	t Yes	0.0869	N/A	-2.443	NO
MW371	Upgradient	Yes	0.927	N/A	-0.076	NO
MW374	Upgradient	No	0.05	N/A	-2.996	N/A
MW375	Sidegradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-4

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Antimony UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.042

S = 0.079

CV(1)=1.891

K factor**= 2.523

TL(1) = 0.240

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.607 S = 1.487

CV(2) = -0.323

K factor=** 2.523

TL(2) = -0.855

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.2	-1.609
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
10.0.2002	0.002	0.200
Well Number:	MW374	5.250
		LN(Result)
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Well Number: Date Collected 10/8/2002	MW374 Result 0.005	LN(Result) -5.298
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 0.005 0.005	LN(Result) -5.298 -5.298
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 0.005 0.005 0.005	LN(Result) -5.298 -5.298 -5.298
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 0.005 0.005 0.005 0.005	LN(Result) -5.298 -5.298 -5.298 -5.298
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 0.005 0.005 0.005 0.005 0.005	LN(Result) -5.298 -5.298 -5.298 -5.298 -5.298

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	No	0.003	N/A	-5.809	N/A
MW362	Downgradient	Yes	0.00127	N/A	-6.669	NO
MW365	Downgradient	Yes	0.00123	N/A	-6.701	NO
MW368	Downgradient	Yes	0.00132	N/A	-6.630	NO
MW371	Upgradient	No	0.003	N/A	-5.809	N/A
MW374	Upgradient	No	0.003	N/A	-5.809	N/A
MW375	Sidegradient	No	0.003	N/A	-5.809	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-5

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor**= 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

30 **CV(2)=**-0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

(2)?

Historical Background Data from Upgradient Wells with Transformed Result

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	0.0098	N/A	-4.625	NO
MW362	Downgradient	Yes	0.0171	N/A	-4.069	NO
MW365	Downgradient	Yes	0.00616	N/A	-5.090	NO
MW368	Downgradient	Yes	0.0068	N/A	-4.991	NO
MW371	Upgradient	No	0.015	N/A	-4.200	N/A
MW374	Upgradient	Yes	0.0115	N/A	-4.465	NO
MW375	Sidegradient	No	0.015	N/A	-4.200	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-6

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

CV(1)=0.340

K factor**= 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279

S = 0.332

S = 0.474

CV(2)=1.190

K factor=** 2.523

TL(2)= 1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
10/6/2003 Well Number:	1 MW374	0.000
	•	0.000 LN(Result)
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Well Number: Date Collected 10/8/2002	MW374 Result 2.1	LN(Result) 0.742
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 2.1 2.1	LN(Result) 0.742 0.742
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 2.1 2.1 1.9	LN(Result) 0.742 0.742 0.642

1.8

1.6

4/7/2004

7/14/2004

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

ı	Current	Quarter	Data
•			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	No	0.2	N/A	-1.609	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.703	NO	-0.352	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.588

0.470

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-7

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 34.100 S = 13.637 CV(1) = 0.400

K factor**= 2.523

TL(1) = 68.505 LL(1) = N/A

Statistics-Transformed Background Data

X = 3.466 S = 0

S = 0.356 CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

(2)?

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
10/0/2003	21	3.270
Well Number:	MW374	3.270
	_,	LN(Result)
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Well Number: Date Collected 10/8/2002	MW374 Result 67.3	LN(Result) 4.209
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 67.3 60.6	LN(Result) 4.209 4.104
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 67.3 60.6 47.2	LN(Result) 4.209 4.104 3.854
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 67.3 60.6 47.2 34.7	LN(Result) 4.209 4.104 3.854 3.547
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 67.3 60.6 47.2 34.7 37.1	LN(Result) 4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data
Well No	Gradient

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW359	Downgradient	Yes	8.37	NO	2.125	N/A
MW362	Downgradient	Yes	23.3	NO	3.148	N/A
MW365	Downgradient	Yes	22.3	NO	3.105	N/A
MW368	Downgradient	Yes	65.9	NO	4.188	N/A
MW371	Upgradient	Yes	58.4	NO	4.067	N/A
MW374	Upgradient	Yes	21.8	NO	3.082	N/A
MW375	Sidegradient	Yes	13.6	NO	2.610	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-8

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

K factor**= 2.523

TL(1)= 251.437 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.000

S = 0.702

CV(2) = 0.175

K factor=** 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	-	LN(Result)
		LN(Result) 5.561
Date Collected	Result	
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	No	20	N/A	2.996	N/A
MW362	Downgradient	No	20	N/A	2.996	N/A
MW365	Downgradient	Yes	28.4	NO	3.346	N/A
MW368	Downgradient	Yes	23.7	NO	3.165	N/A
MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	Yes	125	NO	4.828	N/A
MW375	Sideoradient	Yes	23.7	NO	3 165	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=91.300 **S**= 86.959 **CV(1)**=0.952

K factor**= 2.523

TL(1)= 310.697 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.620 S = 1.590

CV(2) = 0.439

K factor=** 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
Date Collected	Result	LN(Result)
Date Collected 10/8/2002	Result 199.2	LN(Result) 5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	LN(Result) 5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	LN(Result) 5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	LN(Result) 5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	LN(Result) 5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Current Quarter Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

L	Current	Quarter Butu					
1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW359	Downgradient	Yes	1.21	NO	0.191	N/A
	MW362	Downgradient	Yes	4.47	NO	1.497	N/A
	MW365	Downgradient	Yes	3.68	NO	1.303	N/A
	MW368	Downgradient	Yes	5.07	NO	1.623	N/A

MW371 Upgradient Yes 4 NO 1.386 N/A Upgradient 62.2 NO N/A MW374 Yes 4.130 MW375 Sidegradient Yes 4.45 NO 1.493 N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-10

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1)=1.314

K factor**= 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor=** 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	No	0.001	N/A	-6.908	N/A
MW365	Downgradient	Yes	0.00198	N/A	-6.225	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	Yes	0.00085	7 N/A	-7.062	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Conductivity** UNITS: umho/cm **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor**= 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 6.915
Date Collected	Result	
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.817

N/A

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW359	Downgradient	Yes	236	NO	5.464	N/A		
MW362	Downgradient	Yes	731	NO	6.594	N/A		
MW365	Downgradient	Yes	429	NO	6.061	N/A		
MW368	Downgradient	Yes	643	NO	6.466	N/A		
MW371	Upgradient	Yes	657	NO	6.488	N/A		
MW374	Upgradient	Yes	670	NO	6.507	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

336

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072

CV(1)=1.275

K factor**= 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

5 CV(2) = -0.270

K factor=** 2.523

TL(2) = -1.086

LL(2)=N/A

(2)?

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

l	Current Quarte	er Data	

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	t Yes	0.0124	N/A	-4.390	NO
MW362	Downgradient	t No	0.00118	N/A	-6.742	N/A
MW365	Downgradient	Yes	0.00577	N/A	-5.155	NO
MW368	Downgradient	Yes	0.00084	4 N/A	-7.077	NO
MW371	Upgradient	Yes	0.00122	N/A	-6.709	NO
MW374	Upgradient	Yes	0.00099	4 N/A	-6.914	NO
MW375	Sidegradient	Yes	0.00078	3 N/A	-7.152	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-13

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 1.138 **S**= 0.621

CV(1)=0.546

K factor**= 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor=** 2.523

TL(2) = 1.441

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Ci	urr	ent	Q	uar	ter	Dat	ta
•								

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	Yes	4.04	YES	1.396	N/A
MW362	Downgradient	Yes	5.19	YES	1.647	N/A
MW365	Downgradient	Yes	4.59	YES	1.524	N/A
MW368	Downgradient	Yes	2.03	NO	0.708	N/A
MW371	Upgradient	Yes	1.27	NO	0.239	N/A
MW374	Upgradient	Yes	1.88	NO	0.631	N/A
MW375	Sidegradient	Yes	1.61	NO	0.476	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW365

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-14

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor=** 2.523

TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background Data

X= 6.308 **S**=

S = 0.383 CV(2) = 0.061

K factor**= 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 7.035
Date Collected	Result	
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	Yes	171	NO	5.142	N/A
MW362	Downgradient	Yes	410	NO	6.016	N/A
MW365	Downgradient	Yes	241	NO	5.485	N/A
MW368	Downgradient	Yes	417	NO	6.033	N/A
MW371	Upgradient	Yes	403	NO	5.999	N/A
MW374	Upgradient	Yes	383	NO	5.948	N/A
MW375	Sidegradient	Yes	189	NO	5.242	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-15

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

S= 6.487 **CV(1)**=0.981

K factor=** 2.523

TL(1) = 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.363 S = 1.147

CV(2) = 0.841

K factor**= 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	1.31	0.270	
4/22/2002	0.913	-0.091	
7/15/2002	0.881	-0.127	
10/8/2002	3.86	1.351	
1/8/2003	1.88	0.631	
4/3/2003	3.18	1.157	
7/9/2003	0.484	-0.726	
10/6/2003	2.72	1.001	
Well Number:	MW374		
Well Number: Date Collected	MW374 Result	LN(Result)	
		LN(Result) 3.135	
Date Collected	Result	,	
Date Collected 10/8/2002	Result 23	3.135	
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632	
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069	

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Qu	ıarter Data
------------	-------------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	Yes	0.0918	NO	-2.388	N/A
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.0333	NO	-3.402	N/A
MW368	Downgradient	Yes	0.0755	NO	-2.584	N/A
MW371	Upgradient	Yes	0.58	NO	-0.545	N/A
MW374	Upgradient	Yes	0.816	NO	-0.203	N/A
MW375	Sidegradient	Yes	0.0411	NO	-3.192	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-16

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.347 **S**= 3.019

CV(1)=0.266

K factor**= 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

K factor=** 2.523

TL(2)=2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.996
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data	
Well No.	Gradient	

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	Yes	3.57	NO	1.273	N/A
MW362	Downgradient	Yes	9.77	NO	2.279	N/A
MW365	Downgradient	Yes	10.3	NO	2.332	N/A
MW368	Downgradient	Yes	18.2	NO	2.901	N/A
MW371	Upgradient	Yes	15.6	NO	2.747	N/A
MW374	Upgradient	Yes	6.38	NO	1.853	N/A
MW375	Sidegradient	Yes	5.74	NO	1.747	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-17

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **UCRS** Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248

S = 0.222

CV(1)=0.894

K factor**= 2.523

TL(1) = 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.873 S = 1.068

CV(2) = -0.570

K factor=** 2.523

TL(2) = 0.821

LL(2)=N/A

(2)?

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW359	Downgradient	Yes	0.00228	NO	-6.084	N/A
MW362	Downgradient	No	0.005	N/A	-5.298	N/A
MW365	Downgradient	Yes	0.0542	NO	-2.915	N/A
MW368	Downgradient	Yes	0.0104	NO	-4.566	N/A
MW371	Upgradient	Yes	0.0168	NO	-4.086	N/A
MW374	Upgradient	Yes	0.201	NO	-1.604	N/A
MW375	Sidegradient	Yes	0.00125	NO	-6.685	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-18

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison UCRS** Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

S = 0.010

CV(1)=1.650

K factor**= 2.523

TL(1) = 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.108 S = 1.239

CV(2) = -0.203

K factor=** 2.523

TL(2) = -2.983

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -6.110
Date Collected	Result	
Date Collected 10/8/2002	Result 0.00222	-6.110
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Dat		Current	Ouarter	Data
----------------------------	--	---------	----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	No	0.00052	6 N/A	-7.550	N/A
MW365	Downgradient	No	0.001	N/A	-6.908	N/A
MW368	Downgradient	Yes	0.00080	5 N/A	-7.125	NO
MW371	Upgradient	No	0.00055	N/A	-7.506	N/A
MW374	Upgradient	No	0.00026	5 N/A	-8.236	N/A
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S = 0.022

CV(1)=0.980

K factor**= 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

CV(2) = -0.255

K factor=** 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.05 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Dat		Current	Ouarter	Data
----------------------------	--	---------	----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	Yes	0.00568	NO	-5.171	N/A
MW362	Downgradient	No	0.002	N/A	-6.215	N/A
MW365	Downgradient	Yes	0.00603	NO	-5.111	N/A
MW368	Downgradient	Yes	0.00108	NO	-6.831	N/A
MW371	Upgradient	Yes	0.00236	NO	-6.049	N/A
MW374	Upgradient	No	0.002	N/A	-6.215	N/A
MW375	Sidegradient	Yes	0.00069	8 NO	-7.267	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.281 **S**= 78.889 **CV(1)**=3.541

K factor=** 2.523

TL(1)= 221.319 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.642 S = 1.729

CV(2) = 0.475

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
Downgradient	Yes	463	N/A	6.138	YES	
Downgradient	Yes	458	N/A	6.127	YES	
Downgradient	Yes	367	N/A	5.905	YES	
Downgradient	Yes	245	N/A	5.501	YES	
Upgradient	Yes	321	N/A	5.771	YES	
Upgradient	Yes	233	N/A	5.451	YES	
Sidegradient	Yes	277	N/A	5.624	YES	
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 463 Downgradient Yes 458 Downgradient Yes 367 Downgradient Yes 245 Upgradient Yes 321 Upgradient Yes 233	Gradient Detected? Result Result >TL(1)? Downgradient Yes 463 N/A Downgradient Yes 458 N/A Downgradient Yes 367 N/A Downgradient Yes 245 N/A Upgradient Yes 321 N/A Upgradient Yes 233 N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 463 N/A 6.138 Downgradient Yes 458 N/A 6.127 Downgradient Yes 367 N/A 5.905 Downgradient Yes 245 N/A 5.501 Upgradient Yes 321 N/A 5.771 Upgradient Yes 233 N/A 5.451	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells	with	Exceedances

MW359 MW362 MW365

MW368 MW371

MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-21

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison PCB, Total **UNITS: UG/L UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.224

CV(1)=0.922S = 0.207

K factor**= 2.523

TL(1) = 0.746

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.647 S = 0.440

CV(2) = -0.267

K factor=** 2.523

TL(2) = -0.537

LL(2)=N/A

(2)?

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.17	-1.772
10/6/2003	0.17	-1.772
7/13/2004	0.18	-1.715
7/25/2005	0.17	-1.772
4/5/2006	0.18	-1.715
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.772
Date Collected	Result	
Date Collected 7/9/2003	Result 0.17	-1.772
Date Collected 7/9/2003 10/7/2003	Result 0.17 0.17	-1.772 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.17 0.17 0.18	-1.772 -1.772 -1.715
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.17 0.17 0.18 0.17	-1.772 -1.772 -1.715 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.17 0.17 0.18 0.17 0.18	-1.772 -1.772 -1.715 -1.772 -1.715

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	No	0.119	N/A	-2.129	N/A
MW362	Downgradient	No	0.0974	N/A	-2.329	N/A
MW365	Downgradient	Yes	0.0724	NO	-2.626	N/A
MW368	Downgradient	Yes	0.0908	NO	-2.399	N/A
MW371	Upgradient	No	0.0978	N/A	-2.325	N/A
MW374	Upgradient	No	0.0997	N/A	-2.306	N/A
MW375	Sidegradient	No	0.104	N/A	-2.263	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-22

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.159 S = 0.224

CV(1)=1.409

K factor**= 2.523

TL(1) = 0.726

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.134 S = 0.579

CV(2) = -0.272

K factor=** 2.523

TL(2) = -0.672

LL(2)=N/A

L(2)?

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/9/2003	0.13	-2.040
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/25/2005	0.09	-2.408
4/5/2006	0.1	-2.303
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.040
Date Collected	Result	
Date Collected 7/9/2003	Result 0.13	-2.040
Date Collected 7/9/2003 10/7/2003	Result 0.13 0.09	-2.040 -2.408
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.13 0.09 0.1	-2.040 -2.408 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303 -2.303

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter	Data
•			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW359	Downgradient	t No	0.119	N/A	-2.129	N/A
MW362	Downgradient	t No	0.0974	N/A	-2.329	N/A
MW365	Downgradient	Yes	0.0724	N/A	-2.626	NO
MW368	Downgradient	Yes	0.0908	N/A	-2.399	NO
MW371	Upgradient	No	0.0978	N/A	-2.325	N/A
MW374	Upgradient	No	0.0997	N/A	-2.306	N/A
MW375	Sidegradient	No	0.104	N/A	-2.263	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-23

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295

CV(1)=0.045

K factor=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X = 1.889

S = 0.046

CV(2)=0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

(2)?

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	` /
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well	No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2 LN(Result) <ll(2< th=""></ll(2<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2 LN(Result) <ll(2< th=""></ll(2<>
MW	359	Downgradien	t Yes	6.21	NO	1.826	N/A
MW	362	Downgradien	t Yes	7	NO	1.946	N/A
MW	365	Downgradien	t Yes	6.28	NO	1.837	N/A
MW	368	Downgradien	t Yes	6.63	NO	1.892	N/A
MW	371	Upgradient	Yes	6.6	NO	1.887	N/A
MW	374	Upgradient	Yes	6.78	NO	1.914	N/A
MW	375	Sidegradient	Yes	6.82	NO	1.920	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-24

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S= 0.907 **CV(1)**=0.718

K factor**= 2.523

TL(1)=3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

CV(2) = -32.218

K factor=** 2.523

TL(2) = 1.874

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.112
Date Collected	Result	,
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	Yes	0.138	NO	-1.981	N/A
MW362	Downgradient	Yes	0.331	NO	-1.106	N/A
MW365	Downgradient	Yes	0.252	NO	-1.378	N/A
MW368	Downgradient	Yes	0.61	NO	-0.494	N/A
MW371	Upgradient	Yes	0.551	NO	-0.596	N/A
MW374	Upgradient	Yes	0.421	NO	-0.865	N/A
MW375	Sidegradient	Yes	0.267	NO	-1.321	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-25

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor**= 2.523

TL(1)=367.800 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356 CV(2) = 0.069

K factor=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	Yes	34.7	NO	3.547	N/A
MW362	Downgradient	Yes	145	NO	4.977	N/A
MW365	Downgradient	Yes	50.4	NO	3.920	N/A
MW368	Downgradient	Yes	50.1	NO	3.914	N/A
MW371	Upgradient	Yes	84	NO	4.431	N/A
MW374	Upgradient	Yes	135	NO	4.905	N/A
MW375	Sidegradient	Yes	52.4	NO	3.959	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-26

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

S= 3.153 **CV(1)**=0.487

K factor**= 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794

S = 0.357

CV(2)=0.199

K factor=** 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5.6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	Yes	43.8	YES	3.780	N/A
MW362	Downgradient	Yes	30.8	YES	3.428	N/A
MW365	Downgradient	Yes	56	YES	4.025	N/A
MW368	Downgradient	Yes	118	YES	4.771	N/A
MW371	Upgradient	Yes	30	YES	3.401	N/A
MW374	Upgradient	Yes	6.43	NO	1.861	N/A
MW375	Sidegradient	Yes	22.9	YES	3.131	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW365 MW368

MW371

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-27

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=17.631 S= 24.314 CV(1)=1.379

K factor**= 2.523 TL(1)

TL(1)= 78.977 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979

CV(2)=0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Current Ouarter Data

MW374 Upgradient

MW375 Sidegradient

Yes

Yes

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

0.904

-0.088

NO

NO

	V					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	Yes	1.82	N/A	0.599	NO
MW362	Downgradient	Yes	2.23	N/A	0.802	NO
MW365	Downgradient	Yes	1.56	N/A	0.445	NO
MW368	Downgradient	Yes	1.66	N/A	0.507	NO
MW371	Upgradient	Yes	2.06	N/A	0.723	NO

N/A

N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

2.47

0.916

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-28

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor**= 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.867 S = 1.065 CV(2) = 0.219

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

1	Current	Quarter	Data
_			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW359	Downgradient	Yes	3.54	N/A	1.264	NO
MW362	Downgradient	Yes	15.8	N/A	2.760	NO
MW365	Downgradient	Yes	20.3	N/A	3.011	NO
MW368	Downgradient	Yes	4.52	N/A	1.509	NO
MW371	Upgradient	Yes	3.74	N/A	1.319	NO
MW374	Upgradient	Yes	20.2	N/A	3.006	NO
MW375	Sidegradient	Yes	5.52	N/A	1.708	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-29

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1)=1.319

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

.912 **CV(2)=**-0.265

K factor**= 2.523

TL(2) = -1.138

LL(2)=N/A

(2)?

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result 3/18/2002 3-3,689 -3,689
Date contested Itelani
3/18/2002 0.025 -3.689
4/22/2002 0.025 -3.689
7/15/2002 0.025 -3.689
10/8/2002 0.02 -3.912
1/8/2003 0.02 -3.912
4/3/2003 0.02 -3.912
7/9/2003 0.02 -3.912
7/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912
10/6/2003 0.02 -3.912
10/6/2003 0.02 -3.912 Well Number: MW374
10/6/2003 0.02 -3.912 Well Number: MW374 Date Collected Result LN(Result
10/6/2003 0.02 -3.912 Well Number: MW374 Date Collected Result LN(Result 10/8/2002 0.2 -1.609
10/6/2003 0.02 -3.912 Well Number: MW374 Date Collected Result LN(Result 10/8/2002 10/8/2002 0.2 -1.609 1/7/2003 0.2 -1.609
10/6/2003 0.02 -3.912 Well Number: MW374 Date Collected Result LN(Result 10/8/2002 10/7/2003 0.2 -1.609 4/2/2003 0.2 -1.609
10/6/2003 0.02 -3.912 Well Number: MW374 Date Collected Result LN(Result 10/8/2002 10/7/2003 0.2 -1.609 4/2/2003 0.2 -1.609 7/9/2003 0.02 -3.912
10/6/2003 0.02 -3.912 Well Number: MW374 Date Collected Result LN(Result 10/8/2002 10/8/2002 0.2 -1.609 1/7/2003 0.2 -1.609 4/2/2003 0.2 -1.609 7/9/2003 0.02 -3.912 10/7/2003 0.02 -3.912
10/6/2003 0.02 -3.912 Well Number: MW374 Date Collected Result LN(Result 10/8/2002 1/7/2003 0.2 -1.609 4/2/2003 0.2 -1.609 7/9/2003 0.02 -3.912 10/7/2003 0.02 -3.912 1/6/2004 0.02 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	No	0.00871	N/A	-4.743	N/A
MW362	Downgradient	No	0.02	N/A	-3.912	N/A
MW365	Downgradient	No	0.02	N/A	-3.912	N/A
MW368	Downgradient	Yes	0.00389	N/A	-5.549	NO
MW371	Upgradient	Yes	0.00471	N/A	-5.358	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-30

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison UCRS** Zinc UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083

CV(1)=1.380

K factor**= 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259 S = 0.840

CV(2) = -0.258

K factor=** 2.523

TL(2) = -1.140

LL(2)=N/A

(2)?

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 10/8/2002	Result 0.025	-3.689
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	0.0217	N/A	-3.830	NO
MW362	Downgradient	No	0.00731	N/A	-4.919	N/A
MW365	Downgradient	Yes	0.0104	N/A	-4.566	NO
MW368	Downgradient	Yes	0.00622	N/A	-5.080	NO
MW371	Upgradient	No	0.00646	N/A	-5.042	N/A
MW374	Upgradient	No	0.0043	N/A	-5.449	N/A
MW375	Sidegradient	Yes	0.00441	N/A	-5.424	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 372.563 **S**= 1447.319**CV(1)**=3.885

K factor=** 2.523

TL(1)= 4024.149 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.736 S = 1.603 CV(2) = 0.586

K factor=** 2.523

TL(2) = 6.780

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.609 5 4/22/2002 10 2.303 7/15/2002 14 2.639 10/8/2002 10 2.303 10 2.303 1/8/2003 4/3/2003 10 2.303 7/8/2003 10 2.303 10/6/2003 5800 8.666 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 14 2.639 4/23/2002 10 2.303 7/16/2002 10 2.303 10/8/2002 10 2.303 1/7/2003 10 2.303 4/2/2003 10 2.303 7/9/2003 18 2.890 10 10/7/2003 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	No	1.89	N/A	0.637	N/A	
MW360	Downgradient	No	3.06	N/A	1.118	N/A	
MW363	Downgradient	No	5	N/A	1.609	N/A	
MW366	Downgradient	No	3.17	N/A	1.154	N/A	
MW369	Upgradient	No	5	N/A	1.609	N/A	
MW372	Upgradient	Yes	5.16	N/A	1.641	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-32

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.625

CV(1)=1.239S = 0.774

K factor**= 2.523

TL(1)=2.578

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.973 S = 0.935 CV(2) = -0.961

K factor=** 2.523

TL(2) = 1.386

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.959
Date Collected	Result	, ,
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	No	0.05	N/A	-2.996	N/A	
MW360	Downgradient	Yes	0.101	N/A	-2.293	NO	
MW363	Downgradient	No	0.05	N/A	-2.996	N/A	
MW366	Downgradient	No	0.05	N/A	-2.996	N/A	
MW369	Upgradient	Yes	0.0197	N/A	-3.927	NO	
MW372	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Antimony **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.098X = 0.078

CV(1)=1.248

K factor**= 2.523

TL(1) = 0.324

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.915 S = 1.844 CV(2) = -0.471

K factor=** 2.523

TL(2) = 0.739

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.2	-1.609
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW372	
		LN(Result)
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
Well Number: Date Collected 3/19/2002	MW372 Result 0.2	LN(Result) -1.609
Well Number: Date Collected 3/19/2002 4/23/2002	MW372 Result 0.2 0.2	LN(Result) -1.609
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002	MW372 Result 0.2 0.2	LN(Result) -1.609 -1.609
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	MW372 Result 0.2 0.2 0.2 0.005	LN(Result) -1.609 -1.609 -1.609 -5.298
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW372 Result 0.2 0.2 0.2 0.02 0.005	LN(Result) -1.609 -1.609 -1.609 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	0.0012	N/A	-6.725	NO	
MW360	Downgradient	Yes	0.00114	N/A	-6.777	NO	
MW363	Downgradient	Yes	0.00117	N/A	-6.751	NO	
MW366	Downgradient	Yes	0.00122	N/A	-6.709	NO	
MW369	Upgradient	No	0.003	N/A	-5.809	N/A	
MW372	Upgradient	No	0.003	N/A	-5.809	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L Beta activity **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=15.996 S=11.899 CV(1)=0.744

K factor**= 2.523 **TL(1)=** 46.017

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.497 S = 0.783 CV(2) = 0.314

K factor=** 2.523

TL(2) = 4.473

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 32.5 3.481 4/22/2002 35.4 3.567 7/15/2002 12.9 2.557 10/8/2002 7.59 2.027 1/8/2003 9.58 2.260 4/3/2003 6.69 1.901 7/8/2003 9.1 2.208 1.989 10/6/2003 7.31 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 28.5 3.350 4/23/2002 5.37 1.681 2.991 7/16/2002 19.9 10/8/2002 38.7 3.656 1/7/2003 13 2.565 4/2/2003 3.94 1.371 7/9/2003 1.270 3.56 10/7/2003 21.9 3.086

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	36.9	N/A	3.608	N/A
MW360	Downgradient	Yes	13.6	N/A	2.610	N/A
MW363	Downgradient	No	11.3	N/A	2.425	N/A
MW366	Downgradient	Yes	66.2	YES	4.193	N/A
MW369	Upgradient	Yes	14.8	N/A	2.695	N/A
MW372	Upgradient	Yes	105	YES	4.654	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW366 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-35

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.985
 S= 0.825
 CV(1)=0.838
 K factor**= 2.523
 TL(1)= 3.067
 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.430
 S= 0.990
 CV(2)=-2.302
 K factor**= 2.523
 TL(2)= 2.068
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.492 -0.7091/7/2003 0.492 -0.7094/2/2003 0.6 -0.511 7/9/2003 0.57 -0.562-0.504 10/7/2003 0.604

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	0.323	NO	-1.130	N/A	
MW360	Downgradient	Yes	0.0298	NO	-3.513	N/A	
MW363	Downgradient	Yes	0.0217	NO	-3.830	N/A	
MW366	Downgradient	Yes	0.0933	NO	-2.372	N/A	
MW369	Upgradient	Yes	0.0105	NO	-4.556	N/A	
MW372	Upgradient	Yes	0.956	NO	-0.045	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-36

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.0004/22/2002 1 0.000 7/15/2002 0.0001 10/8/2002 1 0.000 0.000 1/8/2003 1 4/3/2003 1 0.000 7/8/2003 0.000 1 10/6/2003 1 0.000Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.0004/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.0001/7/2003 1 0.0004/2/2003 1 0.000 7/9/2003 0.000 1 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	t Yes	0.351	NO	-1.047	N/A	
MW360	Downgradient	t Yes	0.162	NO	-1.820	N/A	
MW363	Downgradient	t Yes	0.138	NO	-1.981	N/A	
MW366	Downgradient	t Yes	0.459	NO	-0.779	N/A	
MW369	Upgradient	Yes	0.346	NO	-1.061	N/A	
MW372	Upgradient	Yes	0.572	NO	-0.559	N/A	
NI/A D	1, 11, 200 1 3	T D	1 1 1 1		1 4 11 1 41	1 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-37

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 32.763 S = 9.391

CV(1)=0.287

K factor**= 2.523

TL(1) = 56.456

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.449 S = 0.299

CV(2)=0.087

K factor=** 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 3.384 29.5 4/22/2002 29.8 3.395 7/15/2002 25.3 3.231 10/8/2002 21.9 3.086 1/8/2003 20.9 3.040 4/3/2003 22.2 3.100 7/8/2003 22.9 3.131 10/6/2003 21.7 3.077 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 41.5 3.726 4/23/2002 43.6 3.775 7/16/2002 40.4 3.699 10/8/2002 38.8 3.658 1/7/2003 41.1 3.716 4/2/2003 42.9 3.759 7/9/2003 35.1 3.558 10/7/2003 46.6 3.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?					

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) > TL(2)?
MW357	Downgradient	Yes	27.1	NO	3.300	N/A
MW360	Downgradient	Yes	21.4	NO	3.063	N/A
MW363	Downgradient	Yes	27.2	NO	3.303	N/A
MW366	Downgradient	Yes	30.5	NO	3.418	N/A
MW369	Upgradient	Yes	15.5	NO	2.741	N/A
MW372	Upgradient	Yes	59.4	YES	4.084	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=35.938 **S**= 3.750 **CV(1)**=0.104

K factor**= 2.523

TL(1)= 45.399

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.578 S = 0.089

CV(2) = 0.025

K factor=** 2.523

TL(2) = 3.803

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	50	3.912
1/8/2003	35	3.555
4/3/2003	35	3.555
7/8/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	
Date Collected 3/19/2002	Result 35	3.555
Date Collected 3/19/2002 4/23/2002	Result 35 35	3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 35 35 35	3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 35 35 35	3.555 3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	20	N/A	2.996	N/A
MW360	Downgradient	No	20	N/A	2.996	N/A
MW363	Downgradient	Yes	18.9	NO	2.939	N/A
MW366	Downgradient	No	20	N/A	2.996	N/A
MW369	Upgradient	Yes	45.3	NO	3.813	N/A
MW372	Upgradient	Yes	85.3	YES	4.446	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-39

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 44.119 **S**= 4.554 **CV(1)**=0.103

K factor**= 2.523

TL(1)= 55.607 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.782 S = 0.099

CV(2) = 0.026

K factor=** 2.523

TL(2) = 4.033

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.684
Date Collected	Result	, ,
Date Collected 7/16/2002	Result 39.8	3.684
Date Collected 7/16/2002 10/8/2002	Result 39.8 41	3.684 3.714
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 39.8 41 39.4	3.684 3.714 3.674
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 39.8 41 39.4 39.2	3.684 3.714 3.674 3.669
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 39.8 41 39.4 39.2 39.8	3.684 3.714 3.674 3.669 3.684

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	31.7	NO	3.456	N/A
MW360	Downgradient	Yes	11.1	NO	2.407	N/A
MW363	Downgradient	Yes	30.5	NO	3.418	N/A
MW366	Downgradient	Yes	38.5	NO	3.651	N/A
MW369	Upgradient	Yes	31.6	NO	3.453	N/A
MW372	Upgradient	Yes	47.6	NO	3.863	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-40

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025

CV(1)=0.845S = 0.021

MW372 Upgradient

K factor**= 2.523

TL(1) = 0.077

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.090 S = 1.006 CV(2) = -0.246

K factor=** 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result)
Date Collected	Result	, ,
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.0147	-3.689 -3.689 -3.689 -6.450 -4.220

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-6.908

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	Yes	0.00232	NO	-6.066	N/A
MW363	Downgradient	Yes	0.00070	8 NO	-7.253	N/A
MW366	Downgradient	Yes	0.0039	NO	-5.547	N/A
MW369	Upgradient	Yes	0.00433	NO	-5.442	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

0.001

No

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=482.856 **S**= 57.603 **CV(1)**=0.119

K factor**= 2.523

TL(1)= 628.189 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor=** 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	419	NO	6.038	N/A
MW360	Downgradient	Yes	420	NO	6.040	N/A
MW363	Downgradient	Yes	427	NO	6.057	N/A
MW366	Downgradient	Yes	466	NO	6.144	N/A
MW369	Upgradient	Yes	367	NO	5.905	N/A
MW372	Upgradient	Yes	697	YES	6.547	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-42

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.010CV(1)=0.400**K** factor**= 2.523 Statistics-Background Data X = 0.025TL(1) = 0.050

Statistics-Transformed Background X = -3.742 S = 0.307 CV(2) = -0.082**K factor**=** 2.523 TL(2) = -2.967

Data

LL(2)=N/A

LL(1)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.05	-3.689 -3.689 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.05 0.02	-3.689 -3.689 -2.996 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.05 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.000913	5 N/A	-6.997	N/A
MW360	Downgradient	No	0.000616	6 N/A	-7.392	N/A
MW363	Downgradient	Yes	0.00377	NO	-5.581	N/A
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.00121	NO	-6.717	N/A
MW372	Upgradient	Yes	0.000537	7 NO	-7.530	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.781 S = 1.351 CV(1) = 0.759 K factor**= 2.523
 TL(1) = 5.190 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 0.228 X = 0.228

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 5.41 1.688 4/22/2002 1.57 0.451 7/15/2002 -0.2230.8 10/8/2002 1.09 0.086 0.990 1/8/2003 2.69 4/3/2003 2.04 0.713 7/8/2003 1.19 0.174 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 1.33 0.285 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.9164/2/2003 0.91 -0.0947/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	3.21	NO	1.166	N/A
MW360	Downgradient	Yes	2.17	NO	0.775	N/A
MW363	Downgradient	Yes	1.02	NO	0.020	N/A
MW366	Downgradient	Yes	4.26	NO	1.449	N/A
MW369	Upgradient	Yes	1.88	NO	0.631	N/A
MW372	Upgradient	Yes	1.93	NO	0.658	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-44

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**=0.157

K factor**= 2.523

TL(1)= 398.489 LL(1

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor**= 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.687
Date Collected	Result	
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data		,			
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	274	NO	5.613	N/A
MW360	Downgradient	Yes	250	NO	5.521	N/A
MW363	Downgradient	Yes	263	NO	5.572	N/A
MW366	Downgradient	Yes	256	NO	5.545	N/A
MW369	Upgradient	Yes	227	NO	5.425	N/A
MW372	Upgradient	Yes	466	YES	6.144	N/A
37/4 B	1	r - D				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-45

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.385
 S= 6.991
 CV(1)=0.947 K factor**= 2.523
 TL(1)=25.024 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 1.358
 S= 1.323
 CV(2)=0.974 K factor**= 2.523
 TL(2)=4.697 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 -0.4220.656 4/22/2002 0.695 -0.3647/15/2002 1.960 7.1 10/8/2002 21.5 3.068 1/8/2003 2.918 18.5 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 10/7/2003 0.733 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.1	N/A	-2.303	N/A
MW360	Downgradient	Yes	0.554	NO	-0.591	N/A
MW363	Downgradient	Yes	0.0703	NO	-2.655	N/A
MW366	Downgradient	Yes	0.35	NO	-1.050	N/A
MW369	Upgradient	Yes	0.124	NO	-2.087	N/A
MW372	Upgradient	Yes	0.14	NO	-1.966	N/A
NI/A Dags	ilta idamtified on N	Jam Dataata	المام منسريا		data validatio	. a.d vyana mat

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-46

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 12.864 **S**= 3.505

K factor=** 2.523

TL(1)= 21.707 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 2.517 S = 0.290

CV(2)=0.115

CV(1)=0.272

K factor=** 2.523

TL(2) = 3.248

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 7/15/2002 10 2.303 10/8/2002 8.62 2.154 1/8/2003 7.89 2.066 4/3/2003 7.97 2.076 7/8/2003 10.3 2.332 10/6/2003 9.14 2.213 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 15.7 2.754 4/23/2002 16.6 2.809 7/16/2002 15.4 2.734 10/8/2002 2.760 15.8 1/7/2003 15.8 2.760 4/2/2003 2.797 16.4 7/9/2003 2.721 15.2 10/7/2003 17.6 2.868

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.091

MW372

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	10.8	NO	2.380	N/A
MW360	Downgradient	Yes	8.21	NO	2.105	N/A
MW363	Downgradient	Yes	10.9	NO	2.389	N/A
MW366	Downgradient	Yes	12.2	NO	2.501	N/A
MW369	Upgradient	Yes	7.28	NO	1.985	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

YES

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

Upgradient

Yes

22

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-47

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: mg/L **URGA** Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.664 **K** factor**= 2.523 Statistics-Background Data X = 0.413S = 0.274TL(1)=1.105LL(1)=N/A **Statistics-Transformed Background**

Data

X=-1.226 S= 1.008 CV(2)=-0.822

K factor=** 2.523

TL(2) = 1.317LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.034 -3.381 4/22/2002 0.062 -2.7817/15/2002 0.436 -0.83010/8/2002 0.867-0.143-0.1891/8/2003 0.828 4/3/2003 0.672 -0.3977/8/2003 0.321 -1.136 10/6/2003 0.714 -0.337Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.205 -1.585 4/23/2002 0.345 -1.0647/16/2002 0.21 -1.56110/8/2002 0.0539 -2.921 1/7/2003 0.537 -0.622-0.879 4/2/2003 0.415 7/9/2003 0.654 -0.425-1.37010/7/2003 0.254

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
•	MW357	Downgradient	Yes	0.00711	NO	-4.946	N/A
	MW360	Downgradient	Yes	0.0326	NO	-3.423	N/A
	MW363	Downgradient	Yes	0.118	NO	-2.137	N/A
	MW366	Downgradient	Yes	0.679	NO	-0.387	N/A
	MW369	Upgradient	Yes	0.0143	NO	-4.247	N/A
	MW372	Upgradient	Yes	0.00125	NO	-6.685	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024S = 0.021 **CV(1)=**0.910

K factor**= 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075 CV(2) = -0.253

K factor=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 -2.9960.05 4/22/2002 0.05 -2.996-2.9967/15/2002 0.05 10/8/2002 0.005-5.298 -5.298 1/8/2003 0.005 4/3/2003 0.005 -5.2987/8/2003 0.013 -4.343 10/6/2003 0.0104 -4.566Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.05 -2.9964/23/2002 0.05 -2.996-2.9967/16/2002 0.05 10/8/2002 0.005 -5.298 1/7/2003 0.005 -5.298-5.298 4/2/2003 0.005 7/9/2003 0.019 -3.963-5.298 10/7/2003 0.005

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.002	N/A	-6.215	N/A
MW360	Downgradient	Yes	0.00080	3 NO	-7.127	N/A
MW363	Downgradient	Yes	0.0112	NO	-4.492	N/A
MW366	Downgradient	Yes	0.00729	NO	-4.921	N/A
MW369	Upgradient	Yes	0.00244	NO	-6.016	N/A
MW372	Upgradient	No	0.002	N/A	-6.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.563 S = 94.243 CV(1) = 1.264

K factor**= 2.523

TL(1)= 312.337 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.347
Date Collected	Result	, ,
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 210 65 215 185 45 65	5.347 4.174 5.371 5.220 3.807 4.174

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	448	N/A	6.105	YES		
MW360	Downgradient	Yes	381	N/A	5.943	YES		
MW363	Downgradient	Yes	407	N/A	6.009	YES		
MW366	Downgradient	Yes	269	N/A	5.595	YES		
MW369	Upgradient	Yes	347	N/A	5.849	YES		
MW372	Upgradient	Yes	303	N/A	5.714	YES		
NI/A D	1, 11, 20, 1, 3	T D	1 . 11		1.0	1		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW357 MW360

MW363 MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-50

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison **UNITS: UG/L** PCB, Total **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.390

CV(1)=0.897S = 0.350

K factor**= 2.523

TL(1)=1.272

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.238 S= 0.737 CV(2)=-0.595

K factor=** 2.523

TL(2) = 0.622

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/8/2003	1.15	0.140
10/6/2003	0.605	-0.503
7/13/2004	0.42	-0.868
7/20/2005	0.28	-1.273
4/4/2006	0.23	-1.470
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 0.17	0.000 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 0.17 0.17	0.000 -1.772 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1 0.17 0.17 0.17	0.000 -1.772 -1.772 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1 0.17 0.17 0.17 0.17	0.000 -1.772 -1.772 -1.772 -1.772

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.0973	N/A	-2.330	N/A
MW360	Downgradient	No	0.0975	N/A	-2.328	N/A
MW363	Downgradient	No	0.0962	N/A	-2.341	N/A
MW366	Downgradient	Yes	0.0466	NO	-3.066	N/A
MW369	Upgradient	No	0.0999	N/A	-2.304	N/A
MW372	Upgradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison **PCB-1242 UNITS: UG/L URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.281S = 0.383

CV(1)=1.361

K factor**= 2.523

TL(1)=1.247

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.835 S= 0.938 CV(2)=-0.511

K factor=** 2.523

TL(2) = 0.532

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/8/2003	1.15	0.140
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/20/2005	0.1	-2.303
4/4/2006	0.1	-2.303
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/19/2002	Result	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 0.11	0.000 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 0.11 0.11	0.000 -2.207 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1 0.11 0.11 0.13	0.000 -2.207 -2.207 -2.040
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1 0.11 0.11 0.13 0.09	0.000 -2.207 -2.207 -2.040 -2.408

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.0973	N/A	-2.330	N/A
MW360	Downgradient	No	0.0975	N/A	-2.328	N/A
MW363	Downgradient	No	0.0962	N/A	-2.341	N/A
MW366	Downgradient	Yes	0.0466	N/A	-3.066	NO
MW369	Upgradient	No	0.0999	N/A	-2.304	N/A
MW372	Upgradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.274 S = 0.194

CV(1)=0.031

K factor=** 2.904

TL(1) = 6.837

LL(1)=5.7114

Statistics-Transformed Background Data

X= 1.836 **S**= 0.031

1 **CV(2)=**0.017

K factor**= 2.904

TL(2) = 1.925

LL(2)=1.7467

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 6.1 1.808 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	6.27	NO	1.836	N/A
MW360	Downgradien	t Yes	6.4	NO	1.856	N/A
MW363	Downgradien	t Yes	6.2	NO	1.825	N/A
MW366	Downgradien	t Yes	6.68	NO	1.899	N/A
MW369	Upgradient	Yes	6.19	NO	1.823	N/A
MW372	Upgradient	Yes	6.37	NO	1.852	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-53

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.663 S= 0.488 CV(1)=0.293 K factor**= 2.523 TL(1)=2.895 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.456 S= 0.362 CV(2)=0.794 K factor**= 2.523 TL(2)=1.368 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 4/22/2002 2.21 0.793 7/15/2002 2 0.693 10/8/2002 0.966 -0.035-0.3191/8/2003 0.727 4/3/2003 0.8 -0.2237/8/2003 1.62 0.482 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 7/16/2002 2 0.693 10/8/2002 1.54 0.432 1/7/2003 1.88 0.631 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577 10/7/2003 1.79 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	1.73	NO	0.548	N/A	
MW360	Downgradient	t Yes	0.747	NO	-0.292	N/A	
MW363	Downgradient	Yes	1.85	NO	0.615	N/A	
MW366	Downgradient	Yes	1.74	NO	0.554	N/A	
MW369	Upgradient	Yes	0.519	NO	-0.656	N/A	
MW372	Upgradient	Yes	2.44	NO	0.892	N/A	
NI/A Dags	alta idamtified on N	Jan Datasta	المام منسريا		data validatio	. and man mat	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-54

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Sodium **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=45.100 S=11.875 CV(1)=0.263

K factor**= 2.523

TL(1) = 75.061

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.780 S = 0.242 CV(2) = 0.064

K factor=** 2.523

TL(2) = 4.390

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	35.7	3.575
4/22/2002	37.6	3.627
7/15/2002	42.4	3.747
10/8/2002	66.9	4.203
1/8/2003	67.9	4.218
4/3/2003	61.8	4.124
7/8/2003	45.6	3.820
10/6/2003	59.1	4.079
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.616
Date Collected	Result	
Date Collected 3/19/2002	Result 37.2	3.616
Date Collected 3/19/2002 4/23/2002	Result 37.2 38.6	3.616 3.653
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 37.2 38.6 35.6	3.616 3.653 3.572
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 37.2 38.6 35.6 37.5	3.616 3.653 3.572 3.624
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 37.2 38.6 35.6 37.5 34.1	3.616 3.653 3.572 3.624 3.529

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	41.6	NO	3.728	N/A	
MW360	Downgradient	Yes	65.9	NO	4.188	N/A	
MW363	Downgradient	Yes	39	NO	3.664	N/A	
MW366	Downgradient	Yes	46.3	NO	3.835	N/A	
MW369	Upgradient	Yes	57	NO	4.043	N/A	
MW372	Upgradient	Yes	66.4	NO	4.196	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Sulfate URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.031 S = 33.919 CV(1) = 0.753

K factor**= 2.523

TL(1)= 130.609 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.420 S = 0.981 CV(2) = 0.287

K factor=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.272
Date Collected	Result	
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	43.5	NO	3.773	N/A	
MW360	Downgradient	Yes	13.6	NO	2.610	N/A	
MW363	Downgradient	Yes	24.5	NO	3.199	N/A	
MW366	Downgradient	Yes	42.2	NO	3.742	N/A	
MW369	Upgradient	Yes	5.09	NO	1.627	N/A	
MW372	Upgradient	Yes	89.6	NO	4.495	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-56

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.821 S = 18.044 CV(1) = 0.867

K factor**= 2.523

TL(1)= 66.344

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.770 S = 1.150 CV(2) = 0.415

K factor=** 2.523

TL(2) = 3.972

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	41.7	3.731
4/22/2002	53.1	3.972
7/15/2002	18.1	2.896
10/8/2002	16.4	2.797
1/8/2003	3.49	1.250
4/3/2003	9.34	2.234
7/8/2003	17.5	2.862
10/6/2003	17	2.833
Well Number:	MW372	
Well Number: Date Collected	1.1	LN(Result)
	1.1	LN(Result) 3.802
Date Collected	Result	
Date Collected 3/19/2002	Result 44.8	3.802
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	25.2	NO	3.227	N/A	
MW360	Downgradient	No	7.92	N/A	2.069	N/A	
MW363	Downgradient	No	5.41	N/A	1.688	N/A	
MW366	Downgradient	Yes	30	NO	3.401	N/A	
MW369	Upgradient	Yes	30.1	NO	3.405	N/A	
MW372	Upgradient	Yes	194	YES	5.268	N/A	
37/4 D	1	T			4 . 4.4		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.226**K** factor**= 2.523 **TL(1)=** 14.378 Statistics-Background Data X = 3.513S = 4.307LL(1)=N/A **Statistics-Transformed Background**

Data

X = 0.851 S = 0.828CV(2) = 0.973 **K factor**=** 2.523

TL(2) = 2.940LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 9 1/8/2003 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.0004/23/2002 1.2 0.182 0.000 7/16/2002 1 10/8/2002 1 0.0001/7/2003 1.6 0.470 4/2/2003 1.5 0.405 7/9/2003 3 1.099 10/7/2003 1.5 0.405

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	0.728	N/A	-0.317	NO	
MW360	Downgradient	Yes	1.21	N/A	0.191	NO	
MW363	Downgradient	Yes	1.08	N/A	0.077	NO	
MW366	Downgradient	Yes	0.92	N/A	-0.083	NO	
MW369	Upgradient	Yes	1.38	N/A	0.322	NO	
MW372	Upgradient	Yes	1.35	N/A	0.300	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor**= 2.523

TL(1) = 230.231LL(1)=N/A

Statistics-Transformed Background Data

X=3.772 S=1.023 CV(2)=0.271

K factor=** 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 50 3.912 4/22/2002 50 3.912 7/15/2002 4.394 81 10/8/2002 202 5.308 1/8/2003 177 5.176 4/3/2003 93.1 4.534 7/8/2003 17.5 2.862 10/6/2003 37.5 3.624 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 184 5.215 4/23/2002 50 3.912 3.912 7/16/2002 50 10/8/2002 50 3.912 1/7/2003 10 2.303 4/2/2003 12.7 2.542 7/9/2003 10 2.303 10/7/2003 12.6 2.534

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	4.58	NO	1.522	N/A	
MW360	Downgradient	Yes	10.4	NO	2.342	N/A	
MW363	Downgradient	Yes	5.28	NO	1.664	N/A	
MW366	Downgradient	Yes	11	NO	2.398	N/A	
MW369	Upgradient	Yes	33.6	NO	3.515	N/A	
MW372	Upgradient	Yes	5.2	NO	1.649	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: ug/L Acetone **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 51.625 **S**= 137.818 **CV(1)**=2.670

K factor**= 2.523

TL(1)= 399.340 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.777 S = 1.127 CV(2) = 0.406

K factor=** 2.523

TL(2) = 5.621

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 2.890 18 4/23/2002 110 4.700 7/15/2002 10 2.303 10/8/2002 18 2.890 10 1/8/2003 2.303 4/3/2003 10 2.303 7/9/2003 10 2.303 10/6/2003 10 2.303 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 9 2.197 4/23/2002 560 6.328 7/16/2002 10 2.303 10/8/2002 10 2.303 1/7/2003 10 2.303 4/2/2003 10 2.303 7/9/2003 10 2.303

11

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	2.24	N/A	0.806	N/A	
MW361	Downgradient	No	1.89	N/A	0.637	N/A	
MW364	Downgradient	Yes	1.96	N/A	0.673	NO	
MW367	Downgradient	No	5	N/A	1.609	N/A	
MW367	Downgradient	No	5	N/A	0.788	NO	
MW367	Downgradient	Yes	2.2	N/A	1.609	N/A	
MW367	Downgradient	Yes	2.2	N/A	0.788	NO	
MW370	Upgradient	No	1.8	N/A	0.588	N/A	
MW373	Upgradient	No	2.91	N/A	1.068	N/A	
M/A Dagg	lta idantifiad as N	T D-44-	4		3-4113-41-	1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.398

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-60

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.026 S = 5.626 CV(1) = 2.777

K factor**= 2.523

TL(1)= 16.219 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380 CV(2) = -1.718

K factor=** 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.66	1.539
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.122
Date Collected	Result	
Date Collected 3/18/2002	Result 22.7	3.122
Date Collected 3/18/2002 4/23/2002	Result 22.7 1.46	3.122 0.378
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 22.7 1.46 0.253	3.122 0.378 -1.374
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 22.7 1.46 0.253 0.482	3.122 0.378 -1.374 -0.730
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 22.7 1.46 0.253 0.482 0.608	3.122 0.378 -1.374 -0.730 -0.498

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	0.0461	N/A	-3.077	NO	
MW361	Downgradient	No	0.05	N/A	-2.996	N/A	
MW364	Downgradient	Yes	0.0255	N/A	-3.669	NO	
MW367	Downgradient	No	0.05	N/A	-2.996	N/A	
MW370	Upgradient	No	0.05	N/A	-2.996	N/A	
MW373	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-61

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Antimony UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.078

S = 0.098

MW373 Upgradient

CV(1)=1.248

K factor**= 2.523

TL(1) = 0.324

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.915 S = 1.844 CV(2) = -0.471

K factor=** 2.523

TL(2) = 0.739

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.2	-1.609
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 0.2	-1.609
Date Collected 3/18/2002 4/23/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.2 0.2 0.2 0.2 0.005	-1.609 -1.609 -1.609 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.2 0.2 0.2 0.005 0.005	-1.609 -1.609 -1.609 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	0.00111	N/A	-6.803	NO	
MW361	Downgradient	No	0.003	N/A	-5.809	N/A	
MW364	Downgradient	Yes	0.0012	N/A	-6.725	NO	
MW367	Downgradient	No	0.003	N/A	-6.840	NO	
MW367	Downgradient	No	0.003	N/A	-5.809	N/A	
MW367	Downgradient	Yes	0.00107	N/A	-6.840	NO	
MW367	Downgradient	Yes	0.00107	N/A	-5.809	N/A	
MW370	Upgradient	No	0.003	N/A	-5.809	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

-5.809

N/A

0.003

No

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-62

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 9.815
 S= 7.838
 CV(1)=0.799
 K factor**= 2.523
 TL(1)= 29.591
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 2.072
 S= 0.630
 CV(2)=0.304
 K factor**= 2.523
 TL(2)= 3.662
 LL(2)=N/A

Historical Background Data from

Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.1 2.313 4/23/2002 4.46 1.495 7/15/2002 6.58 1.884 10/8/2002 4.9 1.589 1.497 1/8/2003 4.47 4/3/2003 8.65 2.158 7/9/2003 1.297 3.66 10/6/2003 5.38 1.683 Well Number: MW373 Date Collected Result LN(Result)

15.1

6.26

6.22

4.06

11.2

18.5

13.3

34.2

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	29.5	N/A	3.384	N/A	
MW361	Downgradient	Yes	46.9	N/A	3.848	N/A	
MW364	Downgradient	Yes	36.2	N/A	3.589	N/A	
MW367	Downgradient	No	9.4	N/A	2.241	N/A	
MW370	Upgradient	Yes	70.1	YES	4.250	N/A	
MW373	Upgradient	Yes	17.3	N/A	2.851	N/A	
NI/A D	.14 1.1	I D-44-	J 1 . 1.		3-41:3-4:		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.715

1.834

1.828

1.401

2.416

2.918

2.588

3.532

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-63

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: mg/L **Boron LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.684 **K** factor**= 2.523 Statistics-Background Data X = 1.140S = 0.780TL(1)=3.108LL(1)=N/A **Statistics-Transformed Background**

Data

X = -0.235 S = 1.006 CV(2) = -4.287

K factor=** 2.523 TL(2) = 2.303

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 4/23/2002 2 0.693 2 0.693 7/15/2002 10/8/2002 0.2 -1.6090.2 -1.6091/8/2003 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.79 -0.2361/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 1.28 0.247 10/7/2003 1.24 0.215

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	0.371	NO	-0.992	N/A	
MW361	Downgradient	Yes	0.1	NO	-2.303	N/A	
MW364	Downgradient	Yes	0.02	NO	-3.912	N/A	
MW367	Downgradient	Yes	0.0248	NO	-3.697	N/A	
MW370	Upgradient	Yes	0.0401	NO	-3.216	N/A	
MW373	Upgradient	Yes	1.44	NO	0.365	N/A	
3.T/4 D	1, 11, 16, 1, 3	T D			1 . 111		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Bromide** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000**K** factor**= 2.523 TL(1)=1.000Statistics-Background Data X = 1.000S = 0.000LL(1)=N/A **Statistics-Transformed Background** X = 0.000**CV(2)=**#Num! S = 0.000**K factor**=** 2.523 TL(2) = 0.000LL(2)=N/A

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.0004/23/2002 1 0.000 7/15/2002 0.0001 10/8/2002 1 0.0000.000 1/8/2003 1 4/3/2003 1 0.000 7/9/2003 0.000 1 10/6/2003 0.000Well Number: MW373 Result Date Collected LN(Result) 3/18/2002 1 0.0004/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.0001/7/2003 1 0.0004/2/2003 1 0.000 7/9/2003 0.000 1 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	0.443	NO	-0.814	N/A	
MW361	Downgradient	Yes	0.452	NO	-0.794	N/A	
MW364	Downgradient	Yes	0.426	NO	-0.853	N/A	
MW367	Downgradient	Yes	0.169	NO	-1.778	N/A	
MW370	Upgradient	Yes	0.436	NO	-0.830	N/A	
MW373	Upgradient	Yes	0.558	NO	-0.583	N/A	
NI/A D	1, 11, 200 1 3	T D	1 1 1 1		1 4 11 1 41	1 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Calcium **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 43.413 S = 13.444 CV(1) = 0.310

K factor**= 2.523

TL(1) = 77.331

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.723 S = 0.323 CV(2) = 0.087

K factor=** 2.523

TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	34.8	3.550
4/23/2002	43.4	3.770
7/15/2002	33.2	3.503
10/8/2002	29.2	3.374
1/8/2003	31.3	3.444
4/3/2003	32.4	3.478
7/9/2003	22.9	3.131
10/6/2003	28	3.332
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.126
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 61.9	4.126
Date Collected 3/18/2002 4/23/2002	Result 61.9 59.2	4.126 4.081
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 61.9 59.2 47.6	4.126 4.081 3.863
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 61.9 59.2 47.6 46.1	4.126 4.081 3.863 3.831
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 61.9 59.2 47.6 46.1 49.2	4.126 4.081 3.863 3.831 3.896

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	35.3	NO	3.564	N/A	
MW361	Downgradient	Yes	34.8	NO	3.550	N/A	
MW364	Downgradient	Yes	31.4	NO	3.447	N/A	
MW367	Downgradient	Yes	15.5	NO	2.741	N/A	
MW370	Upgradient	Yes	28.9	NO	3.364	N/A	
MW373	Upgradient	Yes	69.8	NO	4.246	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.938 S = 24.732 CV(1) = 0.590

K factor**= 2.523

TL(1)= 104.336 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.658 S = 0.339 CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	22.4	NO	3.109	N/A	
MW361	Downgradient	No	20	N/A	2.996	N/A	
MW364	Downgradient	Yes	23.7	NO	3.165	N/A	
MW367	Downgradient	Yes	9.38	NO	2.239	N/A	
MW370	Upgradient	No	20	N/A	2.996	N/A	
MW373	Upgradient	Yes	10.3	NO	2.332	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 45.919 S = 7.524 CV(1) = 0.164 K factor**= 2.523 TL(1) = 64.901 LL(1) = N/A

Statistics-Transformed Background Data

X = 3.814 S = 0.165 CV(2) = 0.043

K factor**= 2.523

TL(2)= 4.231

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 4.016 55.5 10/8/2002 53.6 3.982 3.968 1/8/2003 52.9 4/3/2003 53.6 3.982 7/9/2003 51.9 3.949 10/6/2003 53 3.970 1/7/2004 53 3.970 3.944 4/7/2004 51.6 Well Number: MW373 Date Collected LN(Result) Result 7/16/2002 40.6 3.704 10/8/2002 38.8 3.658 1/7/2003 39 3.664 4/2/2003 38.4 3.648 7/9/2003 38.1 3.640 10/7/2003 38 3.638 1/6/2004 37.9 3.635 4/7/2004 38.8 3.658

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	35.8	NO	3.578	N/A	
MW361	Downgradient	Yes	35.6	NO	3.572	N/A	
MW364	Downgradient	Yes	31.7	NO	3.456	N/A	
MW367	Downgradient	Yes	12.2	NO	2.501	N/A	
MW370	Upgradient	Yes	35.8	NO	3.578	N/A	
MW373	Upgradient	Yes	40.8	NO	3.709	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-68

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** cis-1,2-Dichloroethene UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.250

S = 5.000

CV(1)=0.800

K factor**= 2.523

TL(1)= 18.865

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.710 S = 0.402

CV(2) = 0.235

K factor=** 2.523

TL(2) = 2.725

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	5	1.609
4/23/2002	5	1.609
7/15/2002	5	1.609
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
., ., ., ., ., ., ., ., ., ., ., ., ., .		LN(Result) 1.609
Date Collected	Result	
Date Collected 3/18/2002	Result 5	1.609
Date Collected 3/18/2002 4/23/2002	Result 5 25	1.609 3.219
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 5 25 5	1.609 3.219 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 25 5	1.609 3.219 1.609 1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 25 5 5 5	1.609 3.219 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	0.43	NO	-0.844	N/A
MW361	Downgradient	No	1	N/A	0.000	N/A
MW364	Downgradient	No	1	N/A	0.000	N/A
MW367	Downgradient	No	1	N/A	0.000	N/A
MW370	Upgradient	No	1	N/A	0.000	N/A
MW373	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.027

S = 0.032

CV(1)=1.165

K factor**= 2.523

TL(1) = 0.108

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.058 S = 1.011 CV(2) = -0.249

K factor=** 2.523

TL(2) = -1.507

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.0174	-4.051
1/8/2003	0.0105	-4.556
4/3/2003	0.00931	-4.677
7/9/2003	0.137	-1.988
10/6/2003	0.0463	-3.073
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result)
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.034	-3.689 -3.381
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.034 0.025	-3.689 -3.381 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.034 0.025 0.00411	-3.689 -3.381 -3.689 -5.494
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.034 0.025 0.00411 0.00344	-3.689 -3.381 -3.689 -5.494 -5.672

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	0.00857	N/A	-4.759	NO	
MW361	Downgradient	No	0.001	N/A	-6.908	N/A	
MW364	Downgradient	Yes	0.00086	7 N/A	-7.050	NO	
MW367	Downgradient	Yes	0.0082	N/A	-4.804	NO	
MW370	Upgradient	No	0.001	N/A	-6.908	N/A	
MW373	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: umho/cm **Conductivity LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

K factor**= 2.523

TL(1)= 1002.702 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor=** 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	519	NO	6.252	N/A
MW361	Downgradient	Yes	503	NO	6.221	N/A
MW364	Downgradient	Yes	473	NO	6.159	N/A
MW367	Downgradient	Yes	279	NO	5.631	N/A
MW370	Upgradient	Yes	434	NO	6.073	N/A
MW373	Upgradient	Yes	806	NO	6.692	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-71

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: mg/L **LRGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.010CV(1)=0.399**K** factor**= 2.523 TL(1) = 0.050Statistics-Background Data X = 0.025LL(1)=N/A **Statistics-Transformed Background**

Data

X = -3.739 S = 0.308CV(2) = -0.082 **K factor**=** 2.523 TL(2) = -2.963

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.05 -2.99610/8/2002 0.02 -3.912 0.02 -3.9121/8/2003 4/3/2003 0.02 -3.9127/9/2003 0.02 -3.912 -3.912 10/6/2003 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.6504/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.912 -3.912 1/7/2003 0.02 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912-3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	No	0.00099	1 N/A	-6.917	N/A	
MW361	Downgradient	No	0.00064	4 N/A	-7.348	N/A	
MW364	Downgradient	Yes	0.00138	NO	-6.586	N/A	
MW367	Downgradient	Yes	0.00268	NO	-5.922	N/A	
MW370	Upgradient	Yes	0.00078	6 NO	-7.149	N/A	
MW373	Upgradient	Yes	0.00043	8 NO	-7.733	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.387S = 1.153 **K** factor**= 2.523

TL(1) = 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207 CV(2) = -10.514 K factor**= 2.523

CV(1)=0.831

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/18/2002	Result 3.04	1.112
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	1.37	NO	0.315	N/A
MW361	Downgradient	Yes	2.69	NO	0.990	N/A
MW364	Downgradient	Yes	3.61	NO	1.284	N/A
MW367	Downgradient	Yes	2.29	NO	0.829	N/A
MW370	Upgradient	Yes	3.7	NO	1.308	N/A
MW373	Upgradient	Yes	1.98	NO	0.683	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Dissolved Solids LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 356.188 S = 106.752 CV(1) = 0.300

K factor**= 2.523

TL(1)= 625.523 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	297	NO	5.694	N/A
MW361	Downgradient	Yes	289	NO	5.666	N/A
MW364	Downgradient	Yes	299	NO	5.700	N/A
MW367	Downgradient	Yes	177	NO	5.176	N/A
MW370	Upgradient	Yes	236	NO	5.464	N/A
MW373	Upgradient	Yes	513	NO	6.240	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.958**K** factor**= 2.523 Statistics-Background Data X = 9.230**S**= 8.841 TL(1)=31.535LL(1)=N/A **Statistics-Transformed Background** TL(2) = 3.740

Data

X = 1.942 S = 0.713CV(2) = 0.367 **K factor**=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 7/15/2002 1.258 3.52 10/8/2002 7.45 2.008 1.952 1/8/2003 7.04 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 3.87 1.353 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	3.78	NO	1.330	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	Yes	0.359	NO	-1.024	N/A
MW367	Downgradient	Yes	8.84	NO	2.179	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	Yes	0.054	NO	-2.919	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.544 **S**= 5.911 **CV(1)**=0.337

K factor=** 2.523

TL(1)= 32.458 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 2.810 S = 0.343 CV(2) = 0.122

22 **K** f

K factor**= 2.523 TI

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442
4/3/2003	12.3	2.510
7/9/2003	10	2.303
10/6/2003	12.1	2.493
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.211
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 24.8	3.211
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	15.3	NO	2.728	N/A
MW361	Downgradient	Yes	14.3	NO	2.660	N/A
MW364	Downgradient	Yes	13.5	NO	2.603	N/A
MW367	Downgradient	Yes	8.09	NO	2.091	N/A
MW370	Upgradient	Yes	12.9	NO	2.557	N/A
MW373	Upgradient	Yes	27.9	NO	3.329	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-76

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 1.0

X= 1.080 **S**= 0.674 **CV(1)**=0.624

K factor=** 2.523

TL(1)= 2.780 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -0.114 S = 0.658 CV(2) = -5.762

K factor=** 2.523

TL(2) = 1.547

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.244	-1.411
4/23/2002	1.82	0.599
7/15/2002	1.22	0.199
10/8/2002	0.988	-0.012
1/8/2003	0.729	-0.316
4/3/2003	0.637	-0.451
7/9/2003	2.51	0.920
10/6/2003	1.05	0.049
10.0.2002	1.00	0.019
Well Number:	MW373	0.019
		LN(Result)
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
Well Number: Date Collected 3/18/2002	MW373 Result 0.355	LN(Result) -1.036
Well Number: Date Collected 3/18/2002 4/23/2002	MW373 Result 0.355 2.16	LN(Result) -1.036 0.770
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002	MW373 Result 0.355 2.16 1.39	LN(Result) -1.036 0.770 0.329
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	MW373 Result 0.355 2.16 1.39 0.717	LN(Result) -1.036 0.770 0.329 -0.333
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW373 Result 0.355 2.16 1.39 0.717 0.587	LN(Result) -1.036 0.770 0.329 -0.333 -0.533

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	0.682	NO	-0.383	N/A
MW361	Downgradient	Yes	0.00398	NO	-5.526	N/A
MW364	Downgradient	Yes	0.0937	NO	-2.368	N/A
MW367	Downgradient	Yes	1.54	NO	0.432	N/A
MW370	Upgradient	Yes	0.00151	NO	-6.496	N/A
MW373	Upgradient	Yes	0.0157	NO	-4.154	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-77

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024

CV(1)=0.901 S = 0.022

K factor**= 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.239 S = 1.087

CV(2) = -0.256

K factor=** 2.523

TL(2) = -1.497

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/16/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/7/2003	0.005	-5.298
4/2/2003	0.005	-5.298
7/9/2003	0.0112	-4.492
10/7/2003	0.005	-5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	0.0151	NO	-4.193	N/A
MW361	Downgradient	No	0.002	N/A	-6.215	N/A
MW364	Downgradient	Yes	0.00114	NO	-6.777	N/A
MW367	Downgradient	Yes	0.00349	NO	-5.658	N/A
MW370	Upgradient	No	0.002	N/A	-6.215	N/A
MW373	Upgradient	Yes	0.00087	2 NO	-7.045	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-78

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 46.688 S = 60.986 CV(1) = 1.306

K factor**= 2.523

TL(1)=200.555 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.829 S = 1.151 CV(2) = 0.301

K factor=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	149	N/A	5.004	YES
MW361	Downgradient	Yes	456	N/A	6.122	YES
MW364	Downgradient	Yes	366	N/A	5.903	YES
MW367	Downgradient	Yes	278	N/A	5.628	YES
MW370	Upgradient	Yes	405	N/A	6.004	YES
MW373	Upgradient	Yes	347	N/A	5.849	YES
37/4 B	1 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-79

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904
 TL(1) = 6.745 LL(1) = 5.8202

 Statistics-Transformed Background Data
 X = 1.837 X = 0.025 X = 0.025</th

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.841 6.3 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 1.808 6.1 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.49	NO	1.870	N/A
MW361	Downgradien	t Yes	6.03	NO	1.797	N/A
MW364	Downgradien	t Yes	6.18	NO	1.821	N/A
MW367	Downgradien	t Yes	6.06	NO	1.802	N/A
MW370	Upgradient	Yes	6.06	NO	1.802	N/A
MW373	Upgradient	Yes	6.16	NO	1.818	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

~

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-80

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=2.823
 S= 0.522
 CV(1)=0.185
 K factor**= 2.523
 TL(1)= 4.139
 LL(1)=N/A

 Statistics-Transformed Background
 X=1.024
 S= 0.167
 CV(2)=0.163
 K factor**= 2.523
 TL(2)= 1.445
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.169 3.22 4/23/2002 3.43 1.233 2.98 1.092 7/15/2002 10/8/2002 2.46 0.900 2.41 1/8/2003 0.8804/3/2003 2.43 0.888 7/9/2003 2.44 0.892 10/6/2003 2.48 0.908 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 7/16/2002 2.93 1.075 10/8/2002 2.3 0.833 1/7/2003 2.45 0.896 4/2/2003 2.7 0.993 7/9/2003 0.986 2.68 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	2.74	NO	1.008	N/A
MW361	Downgradient	Yes	2.56	NO	0.940	N/A
MW364	Downgradient	Yes	2.05	NO	0.718	N/A
MW367	Downgradient	Yes	2.89	NO	1.061	N/A
MW370	Upgradient	Yes	2.86	NO	1.051	N/A
MW373	Upgradient	Yes	2.92	NO	1.072	N/A
37/4 B	1 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-81

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.544 S = 15.227 CV(1) = 0.295

K factor**= 2.523

TL(1) = 89.962LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor=** 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	39.9	NO	3.686	N/A	
MW361	Downgradient	Yes	46.7	NO	3.844	N/A	
MW364	Downgradient	Yes	42.2	NO	3.742	N/A	
MW367	Downgradient	Yes	20.5	NO	3.020	N/A	
MW370	Upgradient	Yes	46.1	NO	3.831	N/A	
MW373	Upgradient	Yes	62	NO	4.127	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-82

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Sulfate** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 122.381 **S**= 195.095 **CV(1)**=1.594

K factor**= 2.523

TL(1)= 614.606 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.985 S = 1.323 CV(2) = 0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.096
Date Collected	Result	
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	65	N/A	4.174	NO	
MW361	Downgradient	Yes	83.6	N/A	4.426	NO	
MW364	Downgradient	Yes	66.9	N/A	4.203	NO	
MW367	Downgradient	Yes	26.9	N/A	3.292	NO	
MW370	Upgradient	Yes	19.1	N/A	2.950	NO	
MW373	Upgradient	Yes	149	N/A	5.004	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-83

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 13.274 **CV(1)**=1.734 **K** factor**= 2.523 **TL(1)=** 41.146 **Statistics-Background Data** X = 7.655LL(1)=N/A **Statistics-Transformed Background**

Data

X = 1.946 S = 0.939 CV(2) = 0.483

K factor=** 2.523

TL(2) = 3.833

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	10.8	2.380
4/23/2002	8.53	2.144
7/15/2002	5.09	1.627
10/8/2002	4.78	1.564
1/8/2003	-5.12	#Func!
4/3/2003	5.11	1.631
7/9/2003	4.25	1.447
10/6/2003	6.54	1.878
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 2.803
Date Collected	Result	
Date Collected 3/18/2002	Result 16.5	2.803
Date Collected 3/18/2002 4/23/2002	Result 16.5 3.49	2.803 1.250
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 16.5 3.49 1.42	2.803 1.250 0.351
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 16.5 3.49 1.42 -6.06	2.803 1.250 0.351 #Func!
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 16.5 3.49 1.42 -6.06 -8.41	2.803 1.250 0.351 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	30.7	N/A	3.424	NO
MW361	Downgradient	Yes	53	N/A	3.970	YES
MW364	Downgradient	Yes	58.7	N/A	4.072	YES
MW367	Downgradient	No	2.55	N/A	0.936	N/A
MW370	Upgradient	Yes	125	N/A	4.828	YES
MW373	Upgradient	Yes	36.5	N/A	3.597	NO
37/4 B	1 1				1 . 111	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW361 MW364

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-84

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Total Organic Carbon (TOC)** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S= 12.072 **CV(1)**=1.957 X = 6.169

K factor**= 2.523

TL(1) = 36.626

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.069 S = 1.014 CV(2) = 0.948

K factor=** 2.523

TL(2) = 3.626

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.095
Date Collected	Result	
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	3.02	N/A	1.105	NO	
MW361	Downgradient	Yes	0.782	N/A	-0.246	NO	
MW364	Downgradient	Yes	0.821	N/A	-0.197	NO	
MW367	Downgradient	Yes	0.694	N/A	-0.365	NO	
MW370	Upgradient	Yes	1.13	N/A	0.122	NO	
MW373	Upgradient	Yes	1.35	N/A	0.300	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-85

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor**= 2.523

TL(1)= 277.798 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor=** 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	5.1	NO	1.629	N/A	
MW361	Downgradient	Yes	6.58	NO	1.884	N/A	
MW364	Downgradient	Yes	28.1	NO	3.336	N/A	
MW367	Downgradient	No	10	N/A	2.303	N/A	
MW370	Upgradient	No	10	N/A	2.303	N/A	
MW373	Upgradient	Yes	8.74	NO	2.168	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-86

C-746-U Fourth Quarter 2019 Statistical Analysis Historical Background Comparison **Trichloroethene** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 $X = 12.188 \quad S = 6.950$ CV(1)=0.570**K** factor**= 2.523 TL(1) = 29.721Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = 2.305 S = 0.687CV(2) = 0.298 **K factor**=** 2.523

TL(2) = 4.039

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 7/15/2002 2.708 15 10/8/2002 18 2.890 17 1/8/2003 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 3 1.099 10/8/2002 4 1.386 1/7/2003 6 1.792 4/2/2003 5 1.609 7/9/2003 6 1.792 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	2.09	N/A	0.737	N/A	
MW361	Downgradient	Yes	5.31	NO	1.670	N/A	
MW364	Downgradient	Yes	5.77	NO	1.753	N/A	
MW367	Downgradient	Yes	1.07	N/A	0.068	N/A	
MW370	Upgradient	Yes	0.64	N/A	-0.446	N/A	
MW373	Upgradient	Yes	3.35	N/A	1.209	N/A	
37/4 D	1, 11, 20, 1, 3	T D			1 . 111		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-87

C-746-U Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

CV(1)=0.673S = 0.037

K factor**= 2.523

TL(1) = 0.147

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.131 S = 0.691 CV(2) = -0.221

K factor=** 2.523

TL(2) = -1.388

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.1	-2.303
4/23/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	
Date Collected 3/18/2002	Result 0.1	-2.303
Date Collected 3/18/2002 4/23/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.1 0.1 0.1	-2.303 -2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.1 0.1 0.1 0.1 0.025	-2.303 -2.303 -2.303 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.1 0.1 0.1 0.025 0.035	-2.303 -2.303 -2.303 -3.689 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	No	0.0114	N/A	-4.474	N/A
MW361	Downgradient	No	0.00575	N/A	-5.159	N/A
MW364	Downgradient	Yes	0.0295	NO	-3.523	N/A
MW367	Downgradient	Yes	0.0165	NO	-4.104	N/A
MW370	Upgradient	No	0.0043	N/A	-5.449	N/A
MW373	Upgradient	No	0.00386	N/A	-5.557	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-88

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

Current Background Comparison UCRS

Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.884

CV(1)=0.858

K factor**= 2.523

TL(1)= 9.126

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.718

S= 0.861

S = 2.474

CV(2) = 1.200

K factor**= 2.523

TL(2) = 2.891

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 10/3/2017 1.82 0.599 1/22/2018 2.8 1.030 4/12/2018 2.061 7.85 7/18/2018 4.89 1.587 10/10/2018 0.96 -0.0411/16/2019 8.02 2.082 5/28/2019 5.2 1.649

7/15/2019	4.6	1.526
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/3/2017	1.12	0.113
1/22/2018	1.39	0.329
4/12/2018	1.67	0.513
7/18/2018	0.52	-0.654
10/10/2018	0.88	-0.128
1/17/2019	0.67	-0.400
4/11/2019	1.52	0.419
7/11/2019	2.23	0.802

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	4.04	NO	1.396	N/A
MW362	Downgradien	t Yes	5.19	NO	1.647	N/A
MW365	Downgradien	t Yes	4.59	NO	1.524	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2019 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 321.063 S = 71.033 CV(1) = 0.221

K factor**= 2.523

TL(1)= 500.278 **LL(1)=**N/A

Statistics-Transformed Background

X = 5.745

S = 0.245CV(2) = 0.043

Current Overton Date

K factor**= 2.523

TL(2) = 6.363

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Well Number:	MW371	
Date Collected	Result	LN(Result)
10/3/2017	375	5.927
1/22/2018	339	5.826
4/12/2018	365	5.900
7/18/2018	342	5.835
10/10/2018	328	5.793
1/16/2019	396	5.981
4/15/2019	388	5.961
7/15/2019	423	6.047
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/3/2017	194	5.268
1/22/2018	206	5.328
4/12/2018	331	5.802
4/12/2018 7/18/2018	331 269	5.802 5.595
12:2010		
7/18/2018	269	5.595
7/18/2018 10/10/2018	269 218	5.595 5.384

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	463	NO	6.138	N/A
MW362	Downgradient	Yes	458	NO	6.127	N/A
MW365	Downgradient	Yes	367	NO	5.905	N/A
MW368	Downgradient	Yes	245	NO	5.501	N/A
MW371	Upgradient	Yes	321	NO	5.771	N/A
MW374	Upgradient	Yes	233	NO	5.451	N/A
MW375	Sidegradient	Yes	277	NO	5.624	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-4

C-746-U Fourth Quarter 2019 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.787 S = 26.005 CV(1) = 1.141

K factor**= 2.523

TL(1) = 88.397

LL(1)=N/A

Statistics-Transformed Background

X = 2.648

S = 0.934 CV(2) = 0.353

K factor**= 2.523

TL(2) = 5.004

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
10/3/2017	10	2.303
1/22/2018	11	2.398
4/12/2018	91.6	4.517
7/18/2018	47.7	3.865
10/10/2018	21.9	3.086
1/16/2019	10.1	2.313
4/15/2019	59.1	4.079
7/15/2019	55.4	4.015
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.914
Date Collected	Result	
Date Collected 10/3/2017	Result 6.78	1.914
Date Collected 10/3/2017 1/22/2018	Result 6.78 6.34	1.914 1.847
Date Collected 10/3/2017 1/22/2018 4/12/2018	Result 6.78 6.34 7.24	1.914 1.847 1.980
Date Collected 10/3/2017 1/22/2018 4/12/2018 7/18/2018	Result 6.78 6.34 7.24 7.69	1.914 1.847 1.980 2.040
Date Collected 10/3/2017 1/22/2018 4/12/2018 7/18/2018 10/10/2018	Result 6.78 6.34 7.24 7.69 6.6	1.914 1.847 1.980 2.040 1.887

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	43.8	N/A	3.780	NO
MW362	Downgradien	t Yes	30.8	N/A	3.428	NO
MW365	Downgradien	t Yes	56	N/A	4.025	NO
MW368	Downgradien	t Yes	118	N/A	4.771	NO
MW371	Upgradient	Yes	30	N/A	3.401	NO
MW375	Sidegradient	Yes	22.9	N/A	3.131	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-5

C-746-U Fourth Quarter 2019 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 60.731 S = 47.031 CV(1) = 0.774

K factor**= 2.523

TL(1)= 179.391

LL(1)=N/A

Statistics-Transformed Background

X = 3.813 S = 0.794

CV(2) = 0.208

K factor**= 2.523

TL(2) = 5.815

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369

Date Collected Result LN(Result) 10/3/2017 40.7 3.706 1/22/2018 32 3.466 4/11/2018 102 4.625 2.701 7/18/2018 14.9 10/9/2018 23.2 3.144 1/16/2019 22.5 3.114 4/15/2019 83.7 4.427

Well Number: MW372 Date Collected Result LN(Result) 10/3/2017 132 4.883 1/22/2018 21.7 3.077 4/12/2018 20.9 3.040 7/18/2018 27.7 3.321 10/10/2018 123 4.812 1/17/2019 25.4 3.235 4/11/2019 41 3.714

141

120

7/15/2019

7/11/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW366	Downgradient	Yes	66.2	NO	4.193	N/A
MW372	Upgradient	Yes	105	NO	4.654	N/A

Conclusion of Statistical Analysis on Current Data

4.949

4.787

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 32.850 S = 15.687 CV(1) = 0.478

K factor**= 2.523

TL(1) = 72.428

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.368

S = 0.530 CV(2) = 0.157

K factor=** 2.523

TL(2) = 4.704

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/3/2017 15.9 2.766 1/22/2018 15 2.708 4/11/2018 28.7 3.357 7/18/2018 15.6 2.747 10/9/2018 16.3 2.791

 10/9/2018
 16.3
 2.791

 1/16/2019
 16.3
 2.791

 4/15/2019
 20
 2.996

 7/15/2019
 17.7
 2.874

Well Number: MW372 Date Collected LN(Result) Result 10/3/2017 46.5 3.839 1/22/2018 49.4 3.900 4/12/2018 49.9 3.910 7/18/2018 38.4 3.648 10/10/2018 49.7 3.906 1/17/2019 46.8 3.846

49.7

49.7

4/11/2019

7/11/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

V	Vell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
7	MW372	Ungradient	Yes	59 4	NO	4 084	N/A

Conclusion of Statistical Analysis on Current Data

3.906

3.906

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Chemical Oxygen Demand (COD)

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 24.857 S = 16.131 CV(1) = 0.649

K factor=** 2.523

TL(1) = 65.554

LL(1)=N/A

Statistics-Transformed Background
Data

X = 3.062 S = 0.539 CV(2) = 0.176

K factor**= 2.523

TL(2) = 4.422

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/3/2017 9.71 2.273 1/22/2018 12.6 2.534 3.207 4/11/2018 24.7 7/18/2018 14.5 2.674 10/9/2018 21.4 3.063

 7/18/2018
 14.5
 2.6/4

 10/9/2018
 21.4
 3.063

 1/16/2019
 18.4
 2.912

 4/15/2019
 17.4
 2.856

 7/15/2019
 20
 2.996

Well Number: MW372 Date Collected Result LN(Result) 10/3/2017 21.5 3.068 1/22/2018 29.3 3.378 4/12/2018 10.7 2.370 7/18/2018 39.1 3.666 10/10/2018 16.4 2.797 1/17/2019 20 2.996

52.6

69.4

4/11/2019

7/11/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	85.3	YES	4.446	N/A

Conclusion of Statistical Analysis on Current Data

3.963

4.240

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 502.875 S = 122.503 CV(1) = 0.244

K factor**= 2.523

TL(1)= 811.951 **LL(1)=**N/A

URGA

Statistics-Transformed Background

X = 6.191

S = 0.251 CV(2) = 0.041

K factor=** 2.523

TL(2) = 6.825

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/3/2017 370 5.914 1/22/2018 351 5.861 4/11/2018 425 6.052 5.919 7/18/2018 372 10/9/2018 374 5.924 1/16/2019 386 5.956 4/15/2019 439 6.084 7/15/2019 5.922 373

Well Number: MW372 Date Collected Result LN(Result) 10/3/2017 622 6.433 1/22/2018 620 6.430 4/12/2018 614 6.420 7/18/2018 597 6.392 10/10/2018 618 6.426 1/17/2019 6.418 613 6.449 4/11/2019 632 7/11/2019 640 6.461

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	697	NO	6.547	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Dissolved Solids URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 291.375 S = 111.803 CV(1) = 0.384

K factor**= 2.523

TL(1) = 573.455 LL(1) = N/A

Statistics-Transformed Background Data

X = 5.615S = 0.349CV(2) = 0.062 K factor**= 2.523

TL(2) = 6.496

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/3/2017 180 5.193 1/22/2018 5.081 161 4/11/2018 281 5.638 5.283 7/18/2018 197 10/9/2018 196 5.278 1/16/2019 224 5.412 4/15/2019 261 5.565

Well Number: MW372 Date Collected Result LN(Result) 10/3/2017 304 5.717 1/22/2018 330 5.799 4/12/2018 356 5.875 7/18/2018 323 5.778

7/15/2019 5.268 10/10/2018 336 5.817 1/17/2019 394 5.976

309

616

4/11/2019

7/11/2019

194

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

٦	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW372	Ungradient	Yes	466	NO	6 144	N/A

Conclusion of Statistical Analysis on Current Data

5.733

6.423

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-10

Current Background Comparison

Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.163 S = 5.634

CV(1)=0.428

K factor**= 2.523

TL(1) = 27.376

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.479

S = 0.473 CV(2) = 0.191

K factor**= 2.523

TL(2) = 3.673

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/3/2017 6.72 1.905 1/22/2018 1.920 6.82 4/11/2018 12.6 2.534 7/18/2018 6.5 1.872 10/9/2018 7.02 1.949 1/16/2019 7.17 1.970 4/15/2019 9.06 2.204 7/15/2019 2.016 7.51

771372017	7.51	2.010
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/3/2017	17.7	2.874
1/22/2018	18.5	2.918
4/12/2018	19.4	2.965
7/18/2018	16.2	2.785
10/10/2018	19.1	2.950
1/17/2019	18.9	2.939
4/11/2019	18.2	2.901
7/11/2019	19.2	2.955

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Cultunt	Quarter	Data

Well No	. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW37	2. Ungradient	Yes	22.	NO	3.091	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2019 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 366.563 S = 41.935 CV(1) = 0.114

K factor=** 2.523

TL(1)= 472.364

LL(1)=N/A

Statistics-Transformed Background

X = 5.898

S= 0.120 **CV(2)**=0.020

K factor**= 2.523

TL(2) = 6.201

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/3/2017 399 5.989 1/22/2018 346 5.846 5.984 4/11/2018 397 7/18/2018 338 5.823 10/9/2018 341 5.832 1/16/2019 432 6.068 5.919 4/15/2019 372 7/15/2019 410 6.016

Well Number:	MW372	
Date Collected	Result	LN(Result)
10/3/2017	358	5.881
1/22/2018	275	5.617
4/12/2018	348	5.852
7/18/2018	371	5.916
10/10/2018	295	5.687
1/17/2019	393	5.974
5/28/2019	400	5.991
7/11/2019	390	5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Doto
Current	Ouarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	448	NO	6.105	N/A
MW360	Downgradient	Yes	381	NO	5.943	N/A
MW363	Downgradient	Yes	407	NO	6.009	N/A
MW366	Downgradient	Yes	269	NO	5.595	N/A
MW369	Upgradient	Yes	347	NO	5.849	N/A
MW372	Upgradient	Yes	303	NO	5.714	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2019 Statistical Analysis **Technetium-99** UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 78.681 S = 57.267 CV(1) = 0.728

K factor**= 2.523

TL(1)= 223.167 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.136S = 0.695

CV(2)=0.168

K factor**= 2.523

TL(2) = 5.890

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/3/2017 70.8 4.260 1/22/2018 38.8 3.658 142 4.956 4/11/2018 7/18/2018 31.4 3.447 10/9/2018 55 4.007 1/16/2019 39.1 3.666 4/15/2019 70.8 4.260 7/15/2019 4.022 55.8

771372017	55.0	
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/3/2017	195	5.273
1/22/2018	17.3	2.851
4/12/2018	36.6	3.600
7/18/2018	70.9	4.261
10/10/2018	158	5.063
1/17/2019	35	3.555
4/11/2019	59.4	4.084
7/11/2019	183	5.209

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Ves	194	NO	5 268	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-13

C-746-U Fourth Quarter 2019 Statistical Analysis **Beta activity** UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 44.974 S = 29.233 CV(1) = 0.650

K factor**= 2.523

TL(1)= 118.728 **LL(1)=**N/A

Statistics-Transformed Background

X = 3.547

S = 0.819CV(2)=0.231 K factor**= 2.523

TL(2) = 5.614

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 10/3/2017 69 4.234 1/22/2018 71.9 4.275 3.912 4/11/2018 50 7/18/2018 102 4.625 10/9/2018 81.7 4.403 1/16/2019 75.8 4.328 4/15/2019 61 4.111 7/15/2019 52.7 3.965

,, 10, 2015	0217	2., 00
Well Number:	MW373	
Date Collected	Result	LN(Result)
10/3/2017	20.6	3.025
1/22/2018	23.5	3.157
4/12/2018	4.99	1.607
7/18/2018	30.6	3.421
10/10/2018	22.8	3.127
1/17/2019	17.4	2.856
4/11/2019	13.7	2.617
7/11/2019	21.9	3.086

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No	. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Upgradient	Yes	70.1	NO	4.250	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), Mean, X = (sum of background results)/(count of background results)
- LL Lower Tolerance Limit, LL = X (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-14

C-746-U Fourth Quarter 2019 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 378.500 S = 38.337 CV(1) = 0.101

K factor=** 2.523

TL(1)= 475.225

LL(1)=N/A

Statistics-Transformed Background

X = 5.931 S = 0.101

CV(2) = 0.017

K factor**= 2.523

TL(2) = 6.187

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 10/3/2017 392 5.971 1/22/2018 334 5.811 4/11/2018 5.908 368 5.911 7/18/2018 369 10/9/2018 346 5.846 1/16/2019 440 6.087 5/28/2019 400 5.991 7/15/2019 6.043 421 Well Number: MW373 Date Collected Result LN(Result) 10/3/2017 347 5.849 1/22/2018 393 5.974 4/12/2018 350 5.858 7/18/2018 318 5.762 10/10/2018 438 6.082 1/17/2019 336 5.817 4/11/2019 387 5.958

417

7/11/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) > TL(2)
MW358	Downgradien	t Yes	149	NO	5.004	N/A
MW361	Downgradien	t Yes	456	NO	6.122	N/A
MW364	Downgradien	t Yes	366	NO	5.903	N/A
MW367	Downgradien	t Yes	278	NO	5.628	N/A
MW370	Upgradient	Yes	405	NO	6.004	N/A
MW373	Upgradient	Yes	347	NO	5.849	N/A

Conclusion of Statistical Analysis on Current Data

6.033

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2019 Statistical Analysis Technetium-99 UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 60.925 S = 43.385 CV(1) = 0.712

K factor=** 2.523

TL(1)= 170.384

LL(1)=N/A

Statistics-Transformed Background

X = 3.978

S = 0.708 CV(2) = 0.178

K factor**= 2.523

TL(2) = 4.736

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
10/3/2017	103	4.635
1/22/2018	73.9	4.303
4/11/2018	107	4.673
7/18/2018	96.2	4.566
10/9/2018	114	4.736
1/16/2019	94.3	4.546
4/15/2019	111	4.710
7/15/2019	107	4.673
337 11 3 7 1	1.000272	
Well Number:	MW373	
Date Collected	Result	LN(Result)
10/3/2017	29.6	3.388
1/22/2018	24.8	3.211
4/12/2018	30.2	3.408
7/18/2018	-15.9	#Func!
7/18/2018 10/10/2018	-15.9 20.3	#Func! 3.011

22.7

28.3

4/11/2019

7/11/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW361	Downgradien	t Yes	53	NO	3.970	N/A
MW364	Downgradien	t Yes	58.7	NO	4.072	N/A
MW370	Upgradient	Yes	125	NO	4.828	N/A

Conclusion of Statistical Analysis on Current Data

3.122

3.343

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-16

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

January 23, 2020

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by an independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the fourth quarter 2019 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

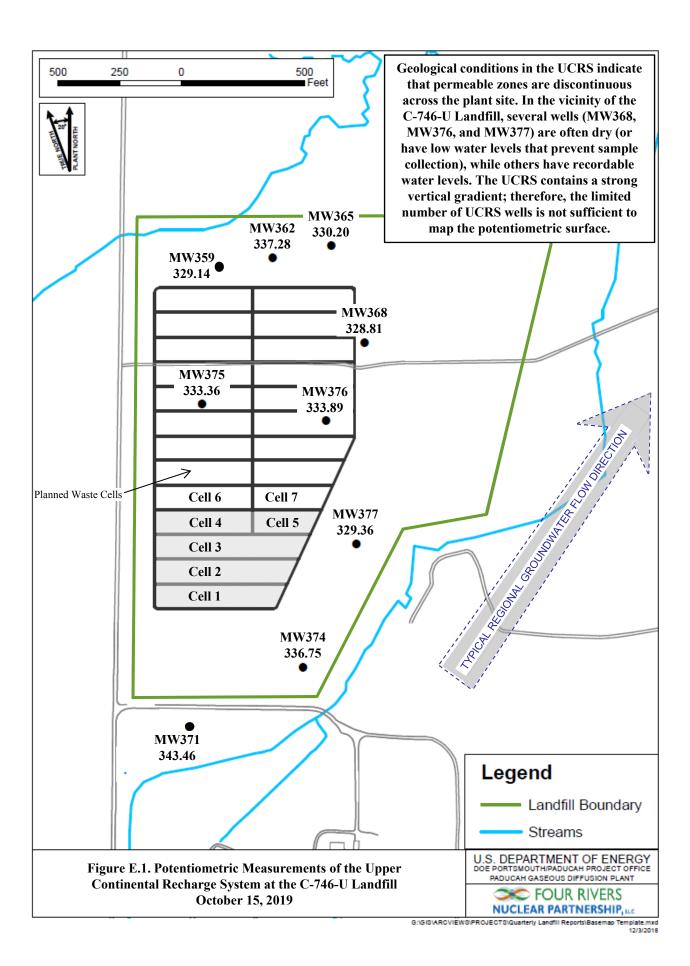
RESIDENTIAL/CONTAINED—QUARTERLY, 4th CY 2019

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION


Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2019 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on October 15, 2019. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 1.06×10^{-3} ft/ft and 9.91×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW139, MW165A, MW173, MW193, MW197, MW380, and MW453), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 4.92×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for July 2019, the groundwater flow direction in the immediate area of the landfill was to the north/northeast.

E-4

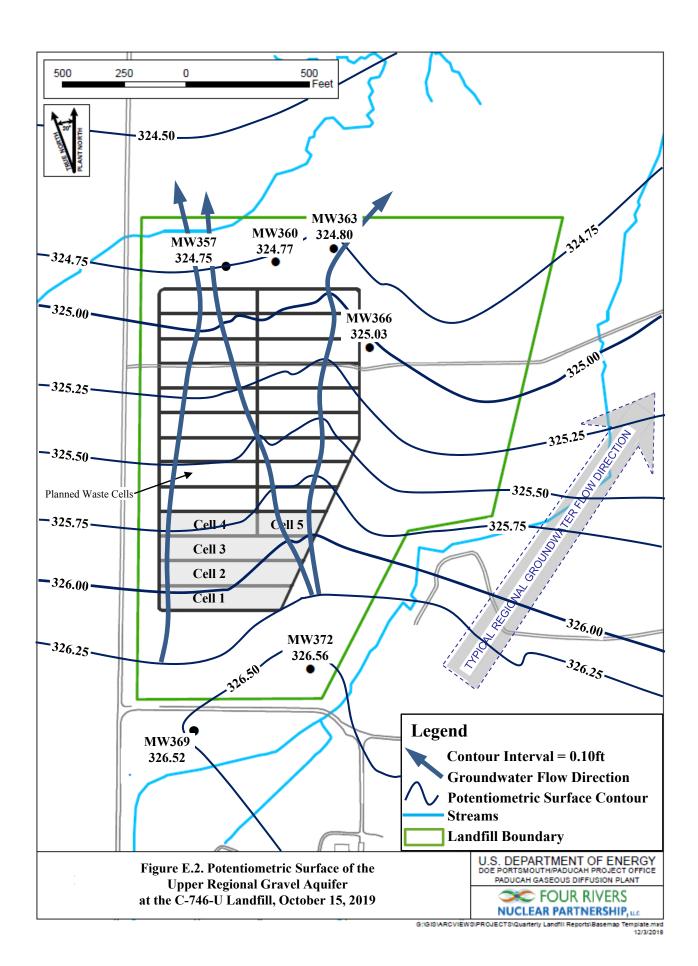
Table E.1. C-746-U Landfill Fourth Quarter 2019 (October) Water Levels

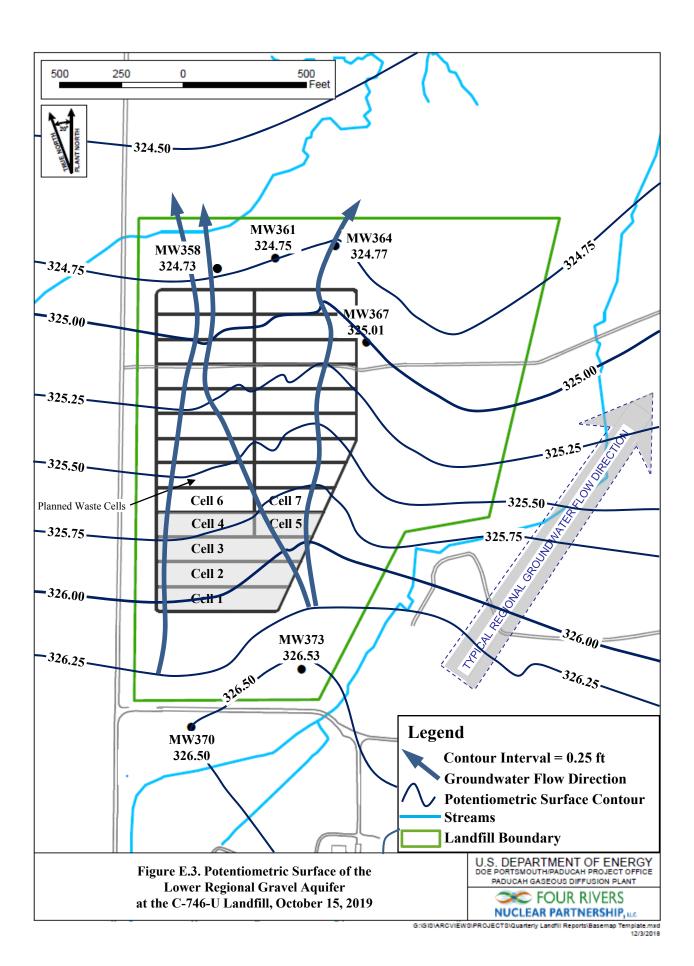
	C-746-U Landfill (October 2019) Water Levels									
							Rav	w Data	*Corre	cted Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/15/2019	8:15	MW357	URGA	368.99	30.01	-0.01	44.25	324.74	44.24	324.75
10/15/2019	8:16	MW358	LRGA	369.13	30.01	-0.01	44.41	324.72	44.40	324.73
10/15/2019	8:17	MW359	UCRS	369.11	30.01	-0.01	39.98	329.13	39.97	329.14
10/15/2019	8:18	MW360	URGA	362.30	30.01	-0.01	37.54	324.76	37.53	324.77
10/15/2019	8:19	MW361	LRGA	361.54	30.01	-0.01	36.80	324.74	36.79	324.75
10/15/2019	8:20	MW362	UCRS	362.04	30.01	-0.01	24.77	337.27	24.76	337.28
10/15/2019	7:40	MW363	URGA	368.84	30.02	-0.02	44.06	324.78	44.04	324.80
10/15/2019	8:29	MW364	LRGA	368.45	30.01	-0.01	43.69	324.76	43.68	324.77
10/15/2019	8:35	MW365	UCRS	368.37	30.01	-0.01	38.18	330.19	38.17	330.20
10/15/2019	8:29	MW366	URGA	369.27	30.01	-0.01	44.25	325.02	44.24	325.03
10/15/2019	8:30	MW367	LRGA	369.66	30.01	-0.01	44.66	325.00	44.65	325.01
10/15/2019	8:31	MW368	UCRS	369.27	30.01	-0.01	40.47	328.80	40.46	328.81
10/15/2019	9:05	MW369	URGA	364.48	30.00	0.00	37.96	326.52	37.96	326.52
10/15/2019	9:06	MW370	LRGA	365.35	30.00	0.00	38.85	326.50	38.85	326.50
10/15/2019	9:07	MW371	UCRS	364.88	30.00	0.00	21.42	343.46	21.42	343.46
10/15/2019	9:00	MW372	URGA	359.66	30.00	0.00	33.10	326.56	33.10	326.56
10/15/2019	9:01	MW373	LRGA	359.95	30.00	0.00	33.42	326.53	33.42	326.53
10/15/2019	9:02	MW374	UCRS	359.71	30.00	0.00	22.96	336.75	22.96	336.75
10/15/2019	8:48	MW375	UCRS	370.53	30.01	-0.01	37.18	333.35	37.17	333.36
10/15/2019	8:50	MW376	UCRS	370.61	30.01	-0.01	36.73	333.88	36.72	333.89
10/15/2019	8:57	MW377	UCRS	365.92	30.00	0.00	36.56	329.36	36.56	329.36
Reference Bar	rometric I	Pressure	30.00					·		

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

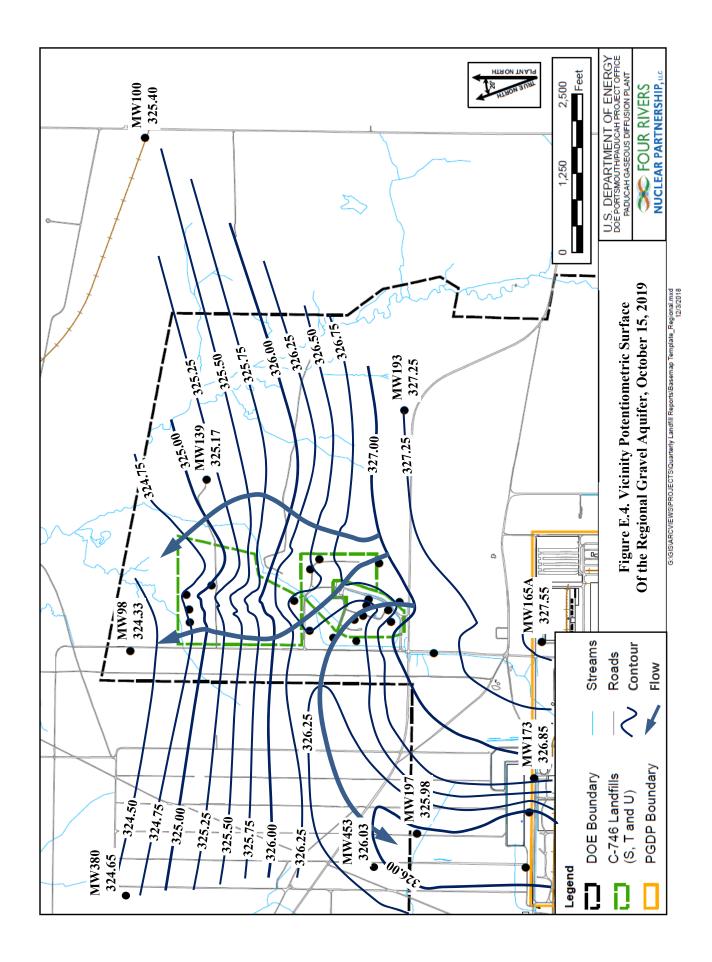
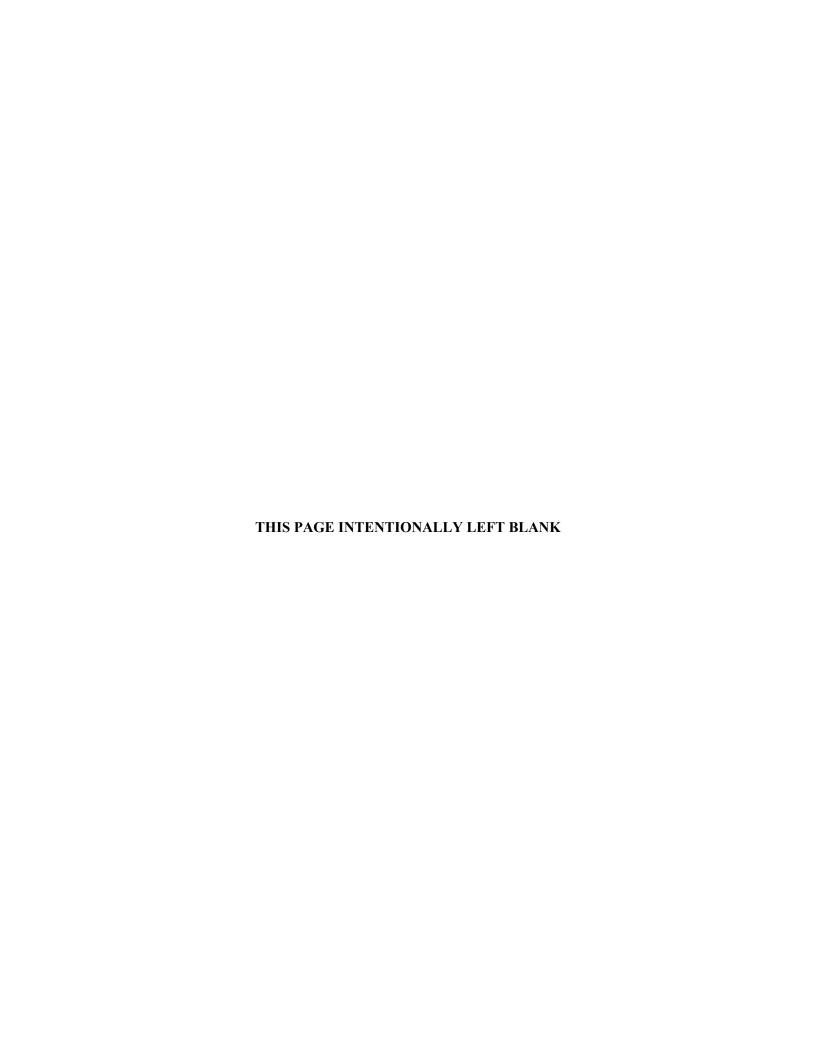



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	1.06×10^{-3}
Beneath Landfill—Lower RGA	9.91 × 10 ⁻⁴
Vicinity	4.92 × 10 ⁻⁴

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific Discharge (q)		Average Linear Velocity (v)	
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.765	2.70×10^{-4}	3.06	1.08×10^{-3}
425	0.150	0.448	1.58×10^{-4}	1.79	6.33×10^{-4}
Lower RGA					
725	0.256	0.719	2.54×10^{-4}	2.87	1.01×10^{-3}
425	0.150	0.421	1.49×10^{-4}	1.68	5.95×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the fourth quarter 2019 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW372
Lower Regional Gravel Aquifer	Technetium-99	MW361, MW364, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, appendix A, this radionuclide is being reported along with the parameters of this regulation.

11/18/2019

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4795	MW361	Trichloroethene	8260B	5.31	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	5.77	ug/L	5
8004-0982	MW366	Beta activity	9310	66.2	pCi/L	50
8004-4818	MW370	Beta activity	9310	70.1	pCi/L	50
8004-4808	MW372	Beta activity	9310	105	pCi/L	50

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Gradient	Groundwater Flow System	I			UCR	S							URC	ìΑ			1		LRG	A		_
ACETON		D	S	S			D	D	U	U	D	D			U	U	D	D			U	U
Quarter 1, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2005 Quarter 3, 2009 ALUMINUM Quarter 2, 2009 ALUMINUM Quarter 2, 2009 ALUMINUM Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2017 Quarter 3, 2010 Quarter 2, 2017 Quarter 3, 2019 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Qua	Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2003																						
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2009 Quarter 4, 200		<u> </u>																				L
Quarter 2, 2003		-									*											\vdash
Quarter 1, 2003		1											_									\vdash
Quarter 4, 2003 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2004 Quarter 2, 2009 Quarter 2, 2001 Quarter 2, 200	,	*						*			*					*			*			
Quarter 3, 2005		-					*						-11		*							
Quarter 1, 2005							*										*					
ALPHA ACTIVITY Ounter 1, 2004 Ounter 2, 2004 Ounter 3, 2009 ALUMININ Ounter 3, 2003 BET ACTIVITY Ounter 4, 2004 Ounter 5, 2006 Ounter 1, 2006 Ounter 2, 2006 Ounter 1, 2006 Ounter 3, 2006 Ounter 1, 2006 Ounter 1, 2006 Ounter 2, 2006 Ounter 1, 2006 Ounter 2, 2006 Ounter 2, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2007 Ounter 4, 2007 Ounter 4, 2007 Ounter 2, 2007 Ounter 2, 2007 Ounter 3, 2007 Ounter 4, 2007 Ounter 4, 2007 Ounter 4, 2007 Ounter 4, 2009 Ounter 4, 2008 Ounter 4, 2008 Ounter 4, 2008 Ounter 4, 2009 Ounter 4, 2010 Ounter 5, 2010 Ounter 6, 2010 Ounter 6, 2010 Ounter 7, 2010 Ounter 7, 2010 Ounter 8, 2010 Ounter 9, 2010 Ounter 9, 2010 Ounter 9, 2010 Ounter 9, 2010	Quarter 3, 2005						*															
Quarter 1, 2004 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 201	,						*															
Quarter 2, 2004 QUARTER 3, 2009 ALJMINUM QUARTER 3, 2003 BETAACTIVITY QUARTER 1, 2004 QUARTER 1, 2004 QUARTER 1, 2004 QUARTER 1, 2004 QUARTER 1, 2006 QUARTER 1, 2007 QUARTER 1, 2008 QUARTER 1, 2009 QUARTER 2, 2008 QUARTER 1, 2009 QUARTER 1, 2009 QUARTER 1, 2009 QUARTER 2, 2001 QUARTER																						
Quarter 3, 2009 ALL WINDOW Quarter 2, 2004 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 6,		₽					_															▝▄
ALUNINOM Ounter 3, 2003 BETA ACTIVITY Ounter 1, 2004 Ounter 2, 2004 Ounter 2, 2004 Ounter 2, 2004 Ounter 2, 2004 Ounter 3, 2005 Ounter 4, 2006 Ounter 2, 2006 Ounter 3, 2006 Ounter 4, 2007 Ounter 2, 2007 Ounter 1, 2009 Ounter 2, 2009 Ounter 1, 2009 Ounter 1, 2009 Ounter 2, 2009 Ounter 2, 2009 Ounter 1, 2009 Ounter 2, 2009 Ounter 2, 2009 Ounter 3, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 2, 2009 Ounter 2, 2009 Ounter 2, 2009 Ounter 3, 2009 Ounter 3, 2009 Ounter 3, 2009 Ounter 4, 2001 Ounter 2, 2001 Ounter 2, 2001 Ounter 3, 2001 Ounter 4, 2001 Ounter 4, 2001 Ounter 4, 2001 Ounter 2, 2001 Ounter 2, 2001 Ounter 3, 2001 Ounter 4, 2001 Ounter 5, 2001 Ounter 6, 2001 Ounter 7, 2001 Ounter 7, 2001 Ounter 8, 2001 Ounter 8, 2001 Ounter 9, 2001 Ounter 9, 2001 Ounter 9, 200		1					_															\vdash
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4,							_															
BETAACINITY												*										
Quarter 1.2004 Quarter 3.2004 Quarter 3.2004 Quarter 3.2004 Quarter 4.2005 Quarter 4.2005 Quarter 4.2006 Quarter 3.2006 Quarter 3.2007 Quarter 1.2007 Quarter 1.2007 Quarter 1.2007 Quarter 1.2007 Quarter 3.2007 Quarter 3.2007 Quarter 3.2007 Quarter 3.2007 Quarter 3.2007 Quarter 3.2008 Quarter 3.2008 Quarter 3.2008 Quarter 3.2008 Quarter 3.2008 Quarter 3.2009 Quarter 1.2009 Quarter 1.2009 Quarter 1.2009 Quarter 1.2009 Quarter 1.2009 Quarter 3.2009 Quarter 3.2009 Quarter 3.2009 Quarter 3.2009 Quarter 4.2010 Quarter 3.2012 Quarter 3.2012 Quarter 3.2013 Quarter 3.2012 Quarter 3.2013 Quarter 3.2016 Quarter 3.2017 Quarter 4.2016 Quarter 4.2016 Quarter 4.2016 Quarter 4.2016 Quarter 4.2016 Quarter 4.2010 Quarte												7,1										
Quarter 2,2004 Quarter 4,2004 Quarter 4,2005 Quarter 1,2006 Quarter 1,2006 Quarter 2,2006 Quarter 2,2006 Quarter 2,2006 Quarter 2,2006 Quarter 2,2007 Quarter 2,2007 Quarter 2,2007 Quarter 2,2007 Quarter 2,2007 Quarter 2,2007 Quarter 3,2008 Quarter 3,2008 Quarter 3,2008 Quarter 3,2008 Quarter 3,2009 Quarter 1,2009 Quarter 3,2009 Quarter 4,2009 Quarter 4,2009 Quarter 3,2009 Quarter 3,2009 Quarter 4,2009 Quarter 4,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarter 4,2009 Quarter 4,2009 Quarter 4,2009 Quarter 3,2009 Quarter 4,2009 Quarter 4,2009 Quarter 4,2009 Quarter 4,2009 Quarter 3,2009 Quarter 4,2009 Quarter 4,2009 Quarter 4,2009 Quarter 4,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarte																						
Quarter 3,2004 Quarter 4,2005 Quarter 1,2006 Quarter 2,2006 Quarter 2,2006 Quarter 3,2006 Quarter 3,2006 Quarter 3,2006 Quarter 3,2006 Quarter 3,2007 Quarter 3,2009 Quarter 4,2008 Quarter 4,2008 Quarter 4,2009 Quarter 4,2009 Quarter 4,2009 Quarter 3,2009 Quarter 3,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarter 3,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarter 3,2009 Quarter 3,2009 Quarter 4,2009 Quarter 3,2009 Quarte		t														Ī						
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 200		Ĺ										L				_						
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 1, 2008 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2015 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2010 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 2, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2016 Quarter 2, 2019 Quarter 3, 2016 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 6, 201																						
Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2018 Quarter 3, 2019 Quarter 2, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 201																						
Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2015 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 201																						
Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 1, 2012 Quarter 4, 2019 Quarter 3, 2012 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2017 Quarter 2, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019																						
Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 2, 2019		<u> </u>	<u> </u>													_						
Quarter 2, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 1, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 200	,	1	<u> </u>								-											
Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 201		!									_					_						
Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 201		!									_					_						╚
Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 5, 2017 Quarter 6, 2017 Quarter 6, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 5, 2019 Quarter 5, 2019 Quarter 6, 201		1														_						
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 4, 2018 Quarter 2, 2019 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2016 Quarter 6, 2017 Quarter 7, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 201		1	-																			-
Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2012 Quarter 9, 2012 Quarter 9, 2013 Quarter 9, 2014 Quarter 9, 2015 Quarter 9, 2015 Quarter 9, 2017 Quarter 9, 2017 Quarter 9, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019	` '										-					-						
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2017 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019		1													_		-			_		
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019		1																				
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019		t														_						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2019 Quarter 1, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019																						
Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019	Quarter 3, 2009																					
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2018 Quarter 4, 2019	Quarter 4, 2009																					
Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019	Quarter 1, 2010																					
Quarter 4, 2010 Quarter 2, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019																						
Quarter 2, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019																						Ш
Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 4, 2018 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019																						
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 BROMIDE		<u> </u>															▝					\vdash
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019											_											\vdash
Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 BROMIDE		!																	<i></i>			\vdash
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019		1														_			Manilli			\vdash
Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 BROMIDE		1	-								-					_						
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 BROMIDE	` '																					
Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019		1																				
Quarter 1, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 REPORT STATES S		t		1	1									1		_			1			$\overline{}$
Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 BROMIDE	Quarter 1, 2014	T														_						
Quarter 1, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019																						
Quarter 4, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 201	Quarter 1, 2015																					
Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 8, 2019 Quarter 9, 201																						
Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 201		$ldsymbol{oxed}$										oxdot										
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 BROMIDE		<u> </u>										<u> </u>			<u> </u>							Щ
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 BROMIDE		1											<u> </u>			<u> </u>		<u> </u>				Щ
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 8, 2019 Quarter 9, 201		<u> </u>	<u> </u>	<u> </u>	<u> </u>									<u> </u>					<u> </u>			ш
Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 RROMIDE		₩	<u> </u>									 				_						$\vdash \vdash$
Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 BROMIDE		 	 	-	-							-		-			!		-	_		$\vdash\vdash$
Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 BROMIDE		├	 	-	-							-		-	-				-		-	$\vdash\vdash$
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 8, 2019 Quarter 9, 201		├-	-	 	 						 	-		 			1		 			\vdash
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 BROMIDE		 	 	1	1							1		 			1		 			\vdash
Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 BROMIDE		1				_	_	_			 	1	 		 	-	1	 		_		
Quarter 3, 2019 Quarter 4, 2019 BROMIDE		t															1					
Quarter 4, 2019		t											<u> </u>				1	<u> </u>				\Box
BROMIDE		t	1	1	1									1	_	_	1		1			
														*								

Groundwater Flow System				UCR	s							URG	A					LRC	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM Quarter 3, 2003										*											
Quarter 2, 2005																					*
Quarter 3, 2006															*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 4, 2009 Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															414						*
Quarter 4, 2011 Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
Quarter 4, 2013	1—	-								_					*						*
Quarter 4, 2013 Quarter 2, 2014										-					*						*
Quarter 2, 2014 Quarter 3, 2014	1	 	_	_						\vdash	_	_			*		_		_		*
Quarter 4, 2014															*						-1.
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016 Quarter 2, 2017	.														*						
Quarter 2, 2017 Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
Quarter 3, 2019	*							*													
Quarter 4, 2019															*						
CARBON DISULFIDE																					
Quarter 3, 2003							.			*											
Quarter 2, 2005 Quarter 3, 2005						*	*														
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006						*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011	AND														*						
CHEMICAL OXYGEN DEMA Quarter 3, 2002	AND									*	*	*	*	*	*						
Quarter 4, 2002										*	*	T	~	~	T						
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003						*				*	*										
Quarter 3, 2004	-					*				*					*	*			*		<u> </u>
Quarter 3, 2005 Quarter 4, 2005	1		-	-		*				*	-	-			本	*	-	*	*		-
Quarter 1, 2006						T												т.	*		
Quarter 4, 2016																		*			
Quarter 1, 2017											*										
Quarter 2, 2019												*			*						
Quarter 3, 2019			<u> </u>	<u> </u>								<u> </u>			*						*
Quarter 4, 2019															*						
CHLORIDE Quarter 1, 2006																				*	
Quarter 2, 2014															*					-4-	
COBALT																					
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	
Quarter 1, 2004														*							
Quarter 2, 2016														*							
CONDUCTIVITY Overton 4, 2002										y.											
Quarter 4, 2002	1	-	_	_						*	-	_					-		-		<u> </u>
Ouarter 1 2003	1	—	<u> </u>	 						*	*	-					 		 		
Quarter 1, 2003 Quarter 2, 2003								i			•			<u> </u>				1			
Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003										*											
Quarter 2, 2003										*											
Quarter 2, 2003 Quarter 4, 2003																					

Groundwater Flow System				UCF	RS							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY																					
Quarter 3, 2004										*					4						
Quarter 1, 2005 Quarter 2, 2005															*						
Quarter 3, 2005						*									不				*		\vdash
Quarter 4, 2005						~									*			*	Ψ		
Quarter 1, 2006															*			7.			
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 3, 2007															*						
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						
Quarter 3, 2008 Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						\vdash
Quarter 1, 2013 Quarter 2, 2013															*						H
Quarter 3, 2013 Quarter 3, 2013															*						\vdash
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016															*						
Quarter 2, 2019				<u> </u>											*	<u> </u>	<u> </u>				<u> </u>
Quarter 3, 2019					<u> </u>						<u> </u>	<u> </u>			*				<u> </u>	<u> </u>	
Quarter 4, 2019															*						
DISSOLVED OXYGEN Quarter 1, 2003					*	*				*											
Quarter 1, 2003 Quarter 3, 2003					*	*			1	*	 	 						1	 	 	
Quarter 4, 2003	-	-			*				 	⊢ *						 		\vdash			
Quarter 1, 2004					*																
Quarter 2, 2004 Quarter 2, 2004				<u> </u>	<u> </u>			*								*	<u> </u>				
Quarter 1, 2005					*																
Quarter 2, 2005								*													
Quarter 1, 2006					*																
Quarter 2, 2006					*			*													
Quarter 3, 2006					*			*													
Quarter 4, 2006					*				*												
Quarter 2, 2007					*			*													
Quarter 3, 2007					*			*	*												
Quarter 1, 2008					*				L.		ļ	ļ							*	ļ	
Quarter 2, 2008				<u> </u>				*	*							<u> </u>	<u> </u>				<u> </u>
Quarter 3, 2008				<u> </u>	<u> </u>			*			<u> </u>	<u> </u>					<u> </u>		<u> </u>	<u> </u>	
Quarter 1, 2009					- Ju		*		J		<u> </u>	<u> </u>							<u> </u>	<u> </u>	\vdash
Quarter 2, 2009					*	.		*	*		<u> </u>	<u> </u>							<u> </u>	<u> </u>	\vdash
Quarter 3, 2009	-				مند	*	JI.	*	*		-	-						-	-	-	
Quarter 1, 2010 Quarter 2, 2010	_				*	*	*	*	*		 	 						-	 	*	*
Quarter 2, 2010 Quarter 3, 2010	-	-			*	*		本	不	 	 	 				 		-	 	不	*
Quarter 3, 2010	<u> </u>	_	_	<u> </u>	_ ▼	Ψ.	_			_	_	_	_	_		<u> </u>	<u> </u>	_	_	_	_

Groundwater Flow System				UCF	RS							URG	Ā					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN																					
Quarter 4, 2010							*					*								*	Щ.
Quarter 1, 2011						*															<u> </u>
Quarter 2, 2011					*	*	*	*	*					*							Ь_
Quarter 3, 2011						*			*												Ь_
Quarter 1, 2012							*		*												—
Quarter 2, 2012	*			*	*	*		*	*												<u> </u>
Quarter 3, 2012						*			444												<u> </u>
Quarter 4, 2012									*												
Quarter 1, 2013						*	44		*												<u> </u>
Quarter 2, 2013	-14				414		*		*												
Quarter 3, 2013	*				*		*	*	*											.	
Quarter 4, 2013	.				4	*	4	4	*									*		*	
Quarter 2, 2014	*				*	*	*	*	*									*			
Quarter 3, 2014	不				*	*	*														
Quarter 4, 2014 Quarter 2, 2015					*	*	*	*													—
Quarter 3, 2015					*	*	*	*													—
Quarter 4, 2015	*				~	*	*	Ψ													<u> </u>
Quarter 1, 2016	*				*	*	*														—
Quarter 2, 2016	*	*			*	*	*	*	*											*	*
Quarter 2, 2016 Quarter 3, 2016	-	*			*	*	*	*	*			1	*						 	*	ボ
Quarter 4, 2016 Quarter 4, 2016	1		-	-	Ψ.	*	· · ·	· · ·	*		-		~						 		
Quarter 1, 2017	1	-	-	-	-	~	*	-	~·		-	-	*						-		
Quarter 1, 2017 Quarter 2, 2017	*	1			*	*	*	*				1	*						 		
Quarter 2, 2017 Quarter 3, 2017	*	*	-	-	*	*	*	*	-		-	-						*	-		
Quarter 3, 2017 Quarter 4, 2017	不	不			不	*	*	不										*			
Quarter 1, 2018					*	*	*	*										不		*	—
Quarter 1, 2018 Quarter 2, 2018					*	*	*	*												不	
	*				*	*	*	*													—
Quarter 3, 2018	*				*	*	*	*													
Quarter 4, 2018 Quarter 1, 2019					*	*	*	*													
					*	*	不	*													
Quarter 2, 2019 Quarter 3, 2019	*				*	*	*	*													
	不				*	*	*	不													
Quarter 4, 2019					不	不	不														
DISSOLVED SOLIDS Quarter 4, 2002										*											
Quarter 1, 2002 Quarter 1, 2003										*											—
Quarter 1, 2003 Quarter 2, 2003										*											—
Quarter 3, 2003							*			*	*										—
Quarter 4, 2003							~			*	~										<u> </u>
Quarter 3, 2005						*				-											<u> </u>
Quarter 4, 2006						*									*						—
Quarter 1, 2007															*						<u> </u>
Quarter 2, 2007															*						<u> </u>
Quarter 4, 2008															*						
Quarter 1, 2009															T						
Quarter 2, 2009		1													*						
Quarter 3, 2009															*						\vdash
															*						
III marter 4 2000															*						
Quarter 4, 2009 Quarter 1, 2010															*						
Quarter 1, 2010															* * *						
Quarter 1, 2010 Quarter 2, 2010															* * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010															* * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010															* * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011															* * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011															* * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011															* * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011														*	* * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012														*	* * * * * * * * * * * * * * * * * * * *						*
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012														*	* * * * * * * * * * * * * * * * * * * *						*
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2012														*	* * * * * * * * * * * * * * * * * * * *						*
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013														*	***						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 7, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013														*	***						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013														*	***						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2019														*	* * * * * * * * * * * * * * * * * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 1, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016														*	* * * * * * * * * * * * * * * * * * * *						

Groundwater Flow System	I			UCR	S							URG	A					LRC	ìΑ		_
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODIDE																					
Quarter 2, 2003																*					
Quarter 3, 2003	*						.			*											<u> </u>
Quarter 4, 2003 Quarter 3, 2010						*	*	*					*				*				\vdash
IODINE-131						*		*					*				*				
Quarter 3, 2010																					
IODOMETHANE																		-			
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2003																*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006															*						*
Quarter 1, 2006		-		 			 		-	_	 	 			*			-	-		\vdash
Quarter 1, 2007		-		 			 		-	_	 	 			*			-	-		\vdash
Quarter 2, 2008	1		-	-			-		-	-	-	-			*	-	 	-			
Quarter 2, 2009 Quarter 3, 2009	1	1		 			 		1		 	 			*			1	1		
Quarter 3, 2009 Quarter 4, 2009	1	1	 		_	_			1	-			_	_	*	\vdash	 	1	1		
Quarter 4, 2009 Quarter 1, 2010	1														*						
Quarter 2, 2010	1														*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014															*						
Quarter 2, 2015															*						\vdash
Quarter 3, 2015															*						—
Quarter 4, 2015															*						—
Quarter 1, 2016															*						\vdash
Quarter 2, 2016 Ouarter 3, 2016	*														不						\vdash
Quarter 3, 2016 Quarter 4, 2016	*																				\vdash
Quarter 2, 2017	*																				\vdash
Quarter 3, 2017	*																				
Quarter 1, 2018	*		1	 			 		1		 	 						1			
Quarter 3, 2018	*								t									t			
Quarter 3, 2019	*																				
Quarter 4, 2019															*						
MANGANESE																					
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003										*		*									
Quarter 3, 2003										*		*	*			*	*	*	*		
Quarter 4, 2003										*	*	*	*				*	*			
Quarter 1, 2004										*	*	*				*	*	*			
Quarter 2, 2004							*		$ldsymbol{oxed}$	*	*	*						*			
Quarter 3, 2004							*			*	*	*				*					
Quarter 4, 2004	<u> </u>			ļ			ļ			*	ļ	*				*					—
Quarter 1, 2005	<u> </u>			<u> </u>			<u> </u>			*	<u> </u>	*									Ь—
Quarter 2, 2005			<u> </u>							*		*				<u> </u>					\vdash
Quarter 3, 2005				<u> </u>			<u> </u>			*	<u> </u>	*				*					<u> </u>
Quarter 4, 2005				<u> </u>			<u> </u>			*	<u> </u>	<u> </u>				*					<u> </u>
Quarter 1, 2006	 			<u> </u>			<u>.</u>		 	*	<u> </u>	<u>.</u>						 			<u> </u>
Quarter 2, 2006	!	-		-			*		-	*	-	*				*		-	-		<u> </u>
Quarter 3, 2006 Quarter 4, 2006	1	-		<u> </u>	_	_	<u> </u>		-	*	<u> </u>	<u> </u>	_	_		_		-	-		
Quarter 4, 2006 Quarter 1, 2007	1	1		 			 		1	*	 	 						1	1		
Quarter 1, 2007	_		_	_			_			т_	_	_				_	_				

Groundwater Flow System	Ι			UCF	RS							URC	Ā					LRC	A		_
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
MANGANESE																					
Quarter 2, 2007							*			*											
Quarter 3, 2007							*														
Quarter 3, 2008							*														Ш
Quarter 4, 2008							*														ш
Quarter 3, 2009							*														Ш
Quarter 3, 2011							*														\vdash
Quarter 2, 2016									414					*							\vdash
Quarter 3, 2016									*												
NICKEL										*											
Quarter 3, 2003	OTE	NITT A	T							*											
OXIDATION-REDUCTION P	OIL	NIIA	L														*		*		
Quarter 4, 2002 Quarter 1, 2003																	*		*		\vdash
Quarter 2, 2003																	т.		*		\vdash
Quarter 3, 2003	*																		~		
Quarter 4, 2003	-				*																
Quarter 2, 2004					т.								*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004				\vdash	<u> </u>						\vdash	*	<u> </u>	<u> </u>	<u> </u>			\vdash	\vdash		*
Quarter 1, 2005	1	 		 	 						 	Ë		 			*	 	 	*	*
Quarter 2, 2005				\vdash				*			\vdash		*				*	\vdash	\vdash	*	٣
Quarter 3, 2005				\vdash	*	*		*			*	*	*				*	\vdash	*	*	*
Quarter 4, 2005		*		\vdash	<u> </u>	<u> </u>		*				<u> </u>	*				*	\vdash		*	
Quarter 1, 2006		<u> </u>	<u> </u>		*	<u> </u>	<u> </u>	*	*			<u> </u>		<u> </u>			*				*
Ouarter 2, 2006	1	l	l		*	l	*	*				l	*	l			*			*	
Quarter 3, 2006	1	l	l		*	l	Ė	*				l	*	l			*			*	
Quarter 4, 2006					*		*	Ė		*		*	*				*			*	*
Quarter 1, 2007	1	*			*			*					*				*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*	L	*	لــِــا
Quarter 2, 2013	<u> </u>	*		<u> </u>	<u> </u>	<u> </u>	<u> </u>	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*	<u> </u>		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013	!	*	<u> </u>	-	<u> </u>	*	<u> </u>	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*			al.			*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2014	!	*		-	<u> </u>	*		*	*	*	4.	*	*	*		*	*	*	*	*	*
Quarter 1, 2015	ىدر	*	<u> </u>	-	110	*	120	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*		!	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	.	*		-	*	*	4	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*	<u> </u>	-	110	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*	 	-	*	مدو	*	*	140	*	-	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*	-	-	*	*	*	*	*	*	4	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*	-	-	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*	-	-	*	_	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*	*			*	*	*	*	*	*	不	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2017		*	-	-	*	*	*	*	*	*	-	*	*	*	*	_	*	*	*	*	*
Quarter 4, 2017 Quarter 1, 2018	*	*	-	-	*			*		*	-	_	*	*	*	<u>, 1</u>	*	*	-	_	*
	*	*	-	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2018 Quarter 3, 2018	*	*	-	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2018 Quarter 4, 2018	*	*	-	1	· *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2018 Quarter 1, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2019	_ *	<u> </u>	_		_ ~	<u> </u>	<u> </u>	<u> </u>	_ ~		_ *	<u> </u>	<u> </u>	_ ~	*		_ *	<u> </u>	_ *	_ *	

Groundwater Flow System	1			UCR	S					1		URG	iΑ					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
OXIDATION-REDUCTION P			L																		
Quarter 2, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	L	*	*
Quarter 4, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL																	ala.				
Quarter 4, 2003																	*	-			
Quarter 3, 2004							*					*						-			
Quarter 3, 2005 Quarter 2, 2006							*											-			
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007		ļ					*											<u> </u>	ļ		
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242							-11					414									
Quarter 3, 2006							*					*									
Quarter 4, 2006							4			*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248							*														
Quarter 2, 2008							不														
PCB-1260 Quarter 2, 2006							*														
pH							<u> </u>														
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*												*	*		
Quarter 4, 2005	Ī					*													*		
Quarter 3, 2006																*					
Quarter 2, 2011														*							
Quarter 3, 2011														*							
Quarter 4, 2011												L		*							
Quarter 1, 2012																*	*				
Quarter 2, 2012												*									
Quarter 1, 2013										*		*				*					
Quarter 3, 2015																	*				
Quarter 2, 2016																				*	*
Quarter 3, 2016																				*	
Quarter 2, 2017																	*				
Quarter 3, 2018		ļ			*		ļ			*		*					*	*	*		
Quarter 4, 2018		ļ					ļ									*		*	ļ		
Quarter 3, 2019										_			_	_	_	*		_			
POTASSIUM																					
Quarter 1, 2014																*					
RADIUM-228														_							
Quarter 2, 2005		<u> </u>				_	<u> </u>					_						-	<u> </u>		
Quarter 4, 2005						_						_						•			
SELENIUM																					
Quarter 4, 2003			_	_	_				_	_	_	_	_	_	_	Щ	_	_		_	

Gradient 30 S S S S D D D U U D D D D U U D D D D U U D D D D U U D D D D D U U D D D D D U U D D D D D U U D D D D D U U D D D D U U D D D D D D U U D D D D D D U U D D D D D D D U U D	Groundwater Flow System				UCR	S							URG	A			<u> </u>		LRG	A		
Counter 4, 2002	Gradient	D	S	S			D	D	U		D	D		D	U	U	D	D		D	U	U
Quarter 1, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2007 Quarter 2, 2014 Quarter 2, 2015 Quarter 1, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 2, 2008 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 200	Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2012 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2008 Quarter 4, 2009 Quarter 2, 200	SODIUM																					
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2001 Quarter 1, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2007 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 5, 200	Quarter 3, 2002										*	*		*								
Quarter 1, 2003 Quarter 1, 2007 Quarter 2, 2008 Quarter 1, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2018 Quarter 3, 2018 STROYTHUM90 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2008 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Qu	Quarter 4, 2002										*	*			*							
Quarter 1, 2003 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2016 Quarter 2, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2007 Quarter 3, 2008 Quarter 2, 2009 Quarter 2, 2001 Quarter 3, 200	Quarter 1, 2003										*											
Quarter 1, 2003 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2003 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2001 Quarter 2, 200	Quarter 2, 2003										*	*										
Quarter 1, 2012	Quarter 3, 2003											*										
Quarter 1, 2014	Quarter 1, 2007											*										
Quarter 1, 2014	Quarter 1, 2012														*							
Quarter 1, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4,																*						
Quarter 4, 2015	Quarter 3, 2014											*										
Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 STRONTIUM-90 Quarter 2, 2008 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2001 Q	Quarter 4, 2014											*										
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 STRONTIW-190 Quarter 4, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Q												*										
Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 2, 2008 Quarter 2, 2003 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2008 ** ** ** ** ** ** ** ** ** ** ** ** *												*										
Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2018 STRONTIUM-99 Quarter 1, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2001 Quarter 2												*										
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 5, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 3, 2018 STRONTHIN99 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2009 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Qu												*										
Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 4, 2018 STRONTILM-99 Quarter 1, 2018 Quarter 2, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4																						
Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 1, 2008 SIEFATE Quarter 1, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 3, 2001 Quarter 3, 2001																						
Quarter 3, 2017																						
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 STRONTIUM-90 STRONTIUM-90 SULFATE Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 5, 2014 Quarter 6, 2																						
Quarter 1, 2018 Quarter 2, 2008 SFRONTIUN-90 Quarter 2, 2008 SULFATE Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 1, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2004 Quarter 4								1	1	†			1			1	1		1	1	\vdash	
Quarter 4, 2008								-		1			 			-	1		 	 	$\vdash\vdash$	\vdash
STRONTHINH-90		-	<u> </u>	_		-	-		<u> </u>		<u> </u>	_	 	<u> </u>	<u> </u>	<u> </u>	\vdash	\vdash				
Quarter 2,003												*										
Quarter 1,2003																					H	
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 200								-														
Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2008 * * * * * * * * * * * * * * * * * * *																						
Quarter 3, 2003		<u> </u>		<u> </u>	<u> </u>	<u> </u>	J.		<u> </u>	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	—	<u> </u>	<u> </u>	<u> </u>	$\vdash \vdash$	\vdash
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2008 ** ** ** ** Quarter 4, 2007 Quarter 1, 2008 ** ** ** ** ** ** ** ** ** ** ** ** **								*														
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 1, 2008 ** ** ** ** Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 2, 2011 Quarter 3, 2012 X X X X X X X X X X X X X X X X X X X		*					*															
Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 201																						
Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 ** ** ** ** ** ** ** ** ** ** ** ** *																						
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 1, 2008 ** ** ** ** ** ** ** ** ** ** ** ** *	Quarter 2, 2004						*															
Quarter 2, 2005	Quarter 3, 2004					*	*	*														
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 ** ** ** ** Quarter 3, 2008 ** ** ** Quarter 3, 2008 ** ** ** Quarter 3, 2008 ** ** ** Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 ** Quarter 2, 2009 ** Quarter 1, 2009 ** Quarter 1, 2009 Quarter 2, 2009 ** Quarter 3, 2009 ** ** ** Quarter 4, 2009 Quarter 4, 2009 ** Quarter 3, 2009 ** ** ** Quarter 3, 2009 ** ** ** Quarter 3, 2010 ** ** ** Quarter 4, 2010 Quarter 2, 2011 ** Quarter 4, 2010 Quarter 5, 2011 ** ** Quarter 4, 2010 Quarter 2, 2011 ** Quarter 4, 2010 Quarter 2, 2011 ** Quarter 3, 2011 ** ** ** Quarter 4, 2010 Quarter 2, 2011 ** Quarter 4, 2010 Quarter 4, 2012 ** Quarter 4, 2013 Quarter 4, 2014 ** Quarter 2, 2014 ** Quarter 2, 2014 ** Quarter 3, 2014 ** ** ** Quarter 3, 2014 ** ** Quarter 3, 2014 ** ** ** Quarter 3, 2014 ** ** Quarter 3, 2014 ** ** ** Quarter 3, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quart	Quarter 1, 2005					*	*			*												
Quarter 4, 2005 Quarter 1, 2006	Quarter 2, 2005					*		*		*						*						
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 ** ** * * * * * * * * * * * * * * *	Quarter 3, 2005					*	*	*														
Quarter 1, 2006																*						
Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 * * * * * * * * * * * * * * * * * * *						*				*												
Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 X X X X X X X X X X X X X X X X X X							*	*		*						*						
Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 ** ** Quarter 4, 2008 ** ** Quarter 4, 2008 ** Quarter 4, 2008 ** Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 ** Quarter 4, 2009 Quarter 3, 2009 ** Quarter 4, 2009 Quarter 3, 2009 ** Quarter 4, 2009 ** Quarter 4, 2009 ** Quarter 4, 2009 ** Quarter 4, 2010 Quarter 3, 2010 ** Quarter 4, 2011 ** Quarter 4, 2012 ** Quarter 3, 2012 ** ** ** Quarter 3, 2012 ** ** ** Quarter 3, 2013 ** Quarter 1, 2014 ** Quarter 1, 2014 ** ** Quarter 2, 2014 ** ** Quarter 2, 2014 ** ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 2, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** Quarter 4, 2014 ** Quarter 3, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 5, 2014 ** ** Quarter 6, 2014 ** ** ** Quarter 7, 2014 ** ** ** Quarter 9,																						
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 ** ** Quarter 1, 2009 ** Quarter 3, 2009 ** ** Quarter 4, 2009 ** Quarter 4, 2009 ** Quarter 3, 2009 ** ** Quarter 4, 2009 ** Quarter 3, 2010 ** Quarter 4, 2010 Quarter 2, 2011 ** Quarter 2, 2011 ** Quarter 2, 2011 ** Quarter 3, 2011 ** Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 4, 2014 ** Quarter 4, 2013 Quarter 4, 2014 ** Quarter 4, 2014 ** Quarter 4, 2015 Quarter 4, 2010 ** ** ** Quarter 4, 2010 ** ** ** Quarter 4, 2011 ** Quarter 4, 2011 ** Quarter 4, 2011 ** Quarter 4, 2012 ** Quarter 4, 2012 ** Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 4, 2014 ** ** ** Quarter 4, 2011 ** ** Quarter 4, 2012 ** Quarter 4, 2012 ** Quarter 4, 2012 ** Quarter 4, 2014 ** ** Quarter 4, 2013 ** Quarter 4, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 2, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarter 3, 2014 ** ** ** Quarter 4, 2014 ** ** ** Quarte																						
Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2011 X X X X X X X X X X X X X X X X X X																						
Quarter 4, 2007 Quarter 1, 2008																						
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 * * * * * * Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 W* * * * * Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 3, 2010 Quarter 4, 2010			*					-														
Quarter 2, 2008						342		- NE		- NE												
Quarter 3, 2008							•			不												
Quarter 4, 2008																					\vdash	
Quarter 1, 2009 Quarter 2, 2009 R R R R R R R R R R R R R R R R R R	` /					*																
Quarter 2, 2009							*															
Quarter 3, 2009																						
Quarter 4, 2009																						
Quarter 1, 2010								*														
Quarter 2, 2010																						
Quarter 3, 2010	Quarter 1, 2010												<u> </u>				<u> </u>		<u> </u>	<u> </u>	ш	
Quarter 4, 2010	Quarter 2, 2010						_														Ш	
Quarter 1, 2011	Quarter 3, 2010					*															لط	
Quarter 2, 2011	Quarter 4, 2010	L	*				*	*		L						*						
Quarter 3, 2011	Quarter 1, 2011	L								L												
Quarter 4, 2011	Quarter 2, 2011		*			*	*	*								*					L	
Quarter 4, 2011	Quarter 3, 2011		*				*	*	*							*						
Quarter 1, 2012	Quarter 4, 2011		*				*									*						
Quarter 2, 2012	Quarter 1, 2012		*					*	*													
Quarter 3, 2012 * * * Quarter 4, 2012 * * * Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * * Quarter 1, 2014 * * * Quarter 2, 2014 * * * Quarter 3, 2014 * * * Quarter 4, 2014 * * * Quarter 4, 2014 * * *		*			*	*	*			*											\Box	
Quarter 4, 2012																						
Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * * Quarter 1, 2014 * * * Quarter 2, 2014 * * * Quarter 3, 2014 * * * Quarter 4, 2014 * * *																					\vdash	
Quarter 2, 2013 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>Н</td> <td></td>							*														Н	
Quarter 3, 2013 * * * * * * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * * * * * Quarter 2, 2014 * * * * * * * * * * * * Quarter 3, 2014 * * * * * * * * * * * * * * * * * * *							<u> </u>			t -			1				1		1	1	$\vdash \vdash$	\vdash
Quarter 4, 2013		*			*	*	*	*									1				$\vdash \vdash$	\vdash
Quarter 1, 2014 * Quarter 2, 2014 * * * Quarter 2, 2014 * * * Quarter 3, 2014 * * * Quarter 4, 2014 *		*		<u> </u>	*	*	*	*	-	-	!	-	<u> </u>		<u> </u>		 	<u> </u>	<u> </u>	<u> </u>	$\vdash \vdash$	
Quarter 2, 2014 * * * * * Quarter 3, 2014 * * * * * Quarter 3, 2014 * * * * * Quarter 4, 2014 * * * *		-		-	-	-	-	-	-	-	-	-	 		-		 	-	 	 	$\vdash\vdash$	\vdash
Quarter 3, 2014 * * * * * * * * * * * * * * * * * * *		ىدر		-	-	JL.	-	34	44.	-	-	-	 		-		 	-	 	 	$\vdash\vdash$	\vdash
Quarter 4, 2014 * *				<u> </u>	<u> </u>		J.			-	<u> </u>	<u> </u>	<u> </u>		<u> </u>		 	<u> </u>	<u> </u>	<u> </u>	$\vdash \vdash$	\vdash
V		*				*		*	*		<u> </u>		<u> </u>			*	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Щ	\vdash
Quarter 1, 2015 * *	` '						*				<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	Щ	<u> </u>
	Quarter 1, 2015	ᆫ	*	Щ.	Щ.	Щ.	Щ.	Щ.	Щ.		Щ	Щ.	Ц_		Щ.	Щ.	Щ		Ц_	Ц_	<u> </u>	

Groundwater Flow System				UCR	RS							URG	A					LRG	GA		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE		- Ju			- Ju		- Ju								4						
Quarter 2, 2015 Quarter 3, 2015	*	*			*	*	*	*							*						
Quarter 4, 2015	*	*			~	*	*	*							_						
Quarter 1, 2016	*	*			*	*	*														
Quarter 2, 2016	*	*			*	*	*														
Quarter 3, 2016	*	*			*	*	*	*													
Quarter 4, 2016	*	*				*	*	*													
Quarter 1, 2017	*	*			L	*	*		<u> </u>												
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017 Quarter 4, 2017	*	*			*	*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
Quarter 3, 2018	*	*			*	*	*	*													
Quarter 4, 2018		*				*	*	*													
Quarter 1, 2019	*	*			*	*	*														
Quarter 2, 2019	*	*			*	*	*	*													
Quarter 3, 2019	*	*			*	*	*	*													
Quarter 4, 2019	*	*			*	*	*	*													
TECHNETIUM-99																	320	110	140		
Quarter 4, 2002	1	-	-	-	-	-	*	<u> </u>	1		-	-	*	-		*	*	*	*		- VE
Quarter 2, 2003 Quarter 3, 2003	1	-	-	-	-	-	本	 	1	-	-	-	ボ	1			*	*	不		*
Quarter 4, 2003	1						 		1	-	 			 		-	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004 Quarter 2, 2004							1		t		1				*						*
Quarter 3, 2004															*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005																	*				
Quarter 1, 2006															*						*
Quarter 2, 2006		*							*												*
Quarter 3, 2006																					*
Quarter 4, 2006															*						*
Quarter 1, 2007													4		4						*
Quarter 2, 2007													*		*		*	*		*	
Quarter 3, 2007 Quarter 4, 2007										*					*		不	不	*		*
Quarter 1, 2008										Ψ.					*				Ψ.	*	*
Quarter 2, 2008							*	*						*		*			*		***
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010		*								*							*	*			
Quarter 1, 2011 Quarter 2, 2011	1	*					 		1		 			 		*	*	*	*		
Quarter 1, 2012	1								 							Ë	*	*	<u> </u>		
Quarter 2, 2012		1		1	1			*	1			1					Ė	*	1		
Quarter 3, 2012																	*	*			
Quarter 4, 2012															*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013							<u> </u>		<u> </u>	<u> </u>	<u> </u>										*
Quarter 3, 2013	!							<u> </u>	1	*				-	al.					 	*
Quarter 4, 2013	<u> </u>						 		 	-	 			<u> </u>	*	-	*	*			*
Quarter 1, 2014 Quarter 2, 2014	l —	<u> </u>		<u> </u>	<u> </u>		-		1	-	-	<u> </u>	_	-	*	-	*	*	<u> </u>		
Quarter 2, 2014 Quarter 3, 2014	1								 					1			*	*	*		
Quarter 4, 2014 Quarter 4, 2014	1		 			 	1	 	\vdash	-	1		_	1	*	-					
Quarter 1, 2015							t				t				*			*			
Quarter 2, 2015									t							*					
Quarter 3, 2015																		*	*	*	
Quarter 4, 2015															*		*			*	
Quarter 1, 2016																*	*	*	*		*
Quarter 2, 2016																*	*	*	*	*	
Quarter 3, 2016																	*		*	*	
Quarter 4, 2016			<u> </u>			<u> </u>			<u> </u>	*				*			*	*	<u> </u>		
Quarter 1, 2017		<u> </u>		<u> </u>	<u> </u>				<u> </u>			<u> </u>					*	<u> </u>	*	*	
Quarter 2, 2017	-	-		-	-		-		1	-	-	-		-		-		ىدر	-	*	
Quarter 3, 2017 Quarter 4, 2017	1—	 		 	 		-		-	-	-	 		*	*	-	*	*	 	*	
Quarter 1, 2018		1	-	1	1	-			1			1		· *	_		~	<u> </u>	1	*	
Quarter 1, 2010																					


Groundwater Flow System				UCR	S					Г		URC	iΑ					LRG	A		\neg
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99																					
Quarter 2, 2018														*		*				*	
Quarter 3, 2018															*					*	\vdash
Quarter 4, 2018															*	4	*	*	*	*	\vdash
Quarter 1, 2019 Quarter 2, 2019														*		*				*	\vdash
Quarter 3, 2019														Ψ.	*			*		*	\vdash
Quarter 4, 2019															*		*	*		*	
THORIUM-230															4		4	-4-		74	
Quarter 4, 2015																*					
Quarter 2, 2016										*											
Quarter 4, 2016	*											*				*			*		
Quarter 4, 2017													*								
Quarter 2, 2018										*			*								
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*										Ш
Quarter 3, 2003	*	<u> </u>	<u> </u>				<u> </u>	<u> </u>		*	*		<u> </u>	<u> </u>		*					ш
Quarter 4, 2003		<u> </u>	<u> </u>							*	*			<u> </u>							$\vdash \vdash$
Quarter 1, 2004		<u> </u>	<u> </u>			٠,			<u> </u>	,t.	*			<u> </u>	,1.	,1.		-	٠,		\vdash
Quarter 3, 2005	<u> </u>	<u> </u>	<u> </u>			*				*		 		<u> </u>	*	*		120	*		\vdash
Quarter 4, 2005	-	-	-			*						-		-		-		*	*		\vdash
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES										JL.											
Quarter 4, 2002	_	 	 						—	*		-		 		_		-			\vdash
Quarter 1, 2003 Ouarter 2, 2003										*											\vdash
Quarter 2, 2003 Quarter 1, 2004										*						*					\vdash
TRICHLOROETHENE																不					
Quarter 3, 2002																				_	
Quarter 4, 2002														-						=	\vdash
Quarter 1, 2003															_					Ŧ	
Quarter 2, 2003																				=	\equiv
Quarter 3, 2003																				Ŧ	
Quarter 4, 2003																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006															•						
Quarter 1, 2007																					
Quarter 2, 2007		ļ	ļ											ļ							
Quarter 3, 2007												<u> </u>						<u> </u>			
Quarter 4, 2007		<u> </u>	<u> </u>						<u> </u>					<u> </u>	-			-			-
Quarter 1, 2008		<u> </u>	<u> </u>						<u> </u>					<u> </u>	-			-	_		-
Quarter 2, 2008	<u> </u>	<u> </u>	<u> </u>						<u> </u>	<u> </u>		 		<u> </u>	-	<u> </u>					•
Quarter 3, 2008	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				-	<u> </u>	-		<u> </u>	_	-	<u> </u>	-	<u> </u>		-
Quarter 4, 2008		 	 	-	-	-	-	-			-	-	-	 	-		-	-	-		
Quarter 1, 2009 Quarter 2, 2009	-	-	-	<u> </u>	<u> </u>	<u> </u>	-	-		-	<u> </u>	 	-	-	-	-	<u> </u>	-	<u> </u>		
Quarter 2, 2009 Quarter 3, 2009	-	 	 							-		-		 	=	-		-			
Quarter 3, 2009 Quarter 4, 2009		 	 			_						1			=			1			Ħ
Quarter 4, 2009 Quarter 1, 2010		 	 			_						1	H	_	÷			1			=
Quarter 1, 2010 Quarter 2, 2010	-											 				-		 			=
Quarter 2, 2010 Quarter 3, 2010	-											 			=	-		 			=
Quarter 4, 2010	-	 	 				 	 						 	i	-					÷
Quarter 2, 2011	-	 	 				 	 					-	 	=	-					Ŧ
Quarter 3, 2011		 	 				 	 				 		 	i				i		=
Quarter 4, 2011		 	 				 	 				 		 	i				_		=
Quarter 1, 2012		 	 				 	 				 		 	i				W"W		=
Quarter 2, 2012															ī				un ni llli		=
Quarter 3, 2012															ī						▔
Quarter 4, 2012															ī						=
Quarter 1, 2013		1	1											Ē	Ē						
Quarter 2, 2013															Ī						

Groundwater Flow System				UCR	RS							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	37
TRICHLOROETHENE																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014																					
Quarter 2, 2014																					
Quarter 3, 2014																					
Quarter 4, 2014																			•		
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016													•		•						
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					
Quarter 2, 2017																					
Quarter 3, 2017																					
Quarter 4, 2017																					
Quarter 1, 2018															•						
Quarter 2, 2018																					
Quarter 3, 2018															•						
Quarter 4, 2018																					
Quarter 1, 2019																					
Quarter 2, 2019																•					
Quarter 3, 2019																					
Quarter 4, 2019																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		


■ MCL Exceedance

■ Previously reported as an MCL exceedance; however, result was equal to MCL UCRS Upper Continental Recharge System

URGA Upper Regional Gravel Aquifer LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: 073-00045

McCracken County, Kentucky

	12/03/19	Time:	1245	Monitor:	Robert Kirby
Weather Co	^{nditions:} Sunny, Sligh	ıt Wind,	and 50 Deg	rees	
Monitoring	^{Equipment::} RAE Syste	ems, M	ulti-RAE Ser	ial #4493	
		itoring Lo			Reading (% LEL)
C-746-U1	Checked at floo	r level			0
C-746-U2	Checked at floo	r level			0
C-746-U-T-14	Checked at floo	r level			0
C-746-U15	Checked at floo	r level		1	0
MG1	Dry casing				0
MG2	Dry casing				0
MG3	Dry casing				0
MG4	Dry casing				0
Suspect or Problem Are		noted			0
Remarks:	NA				
Performed k	Dy: Rabet Kol				12/03/19
	Signa	iture			Date

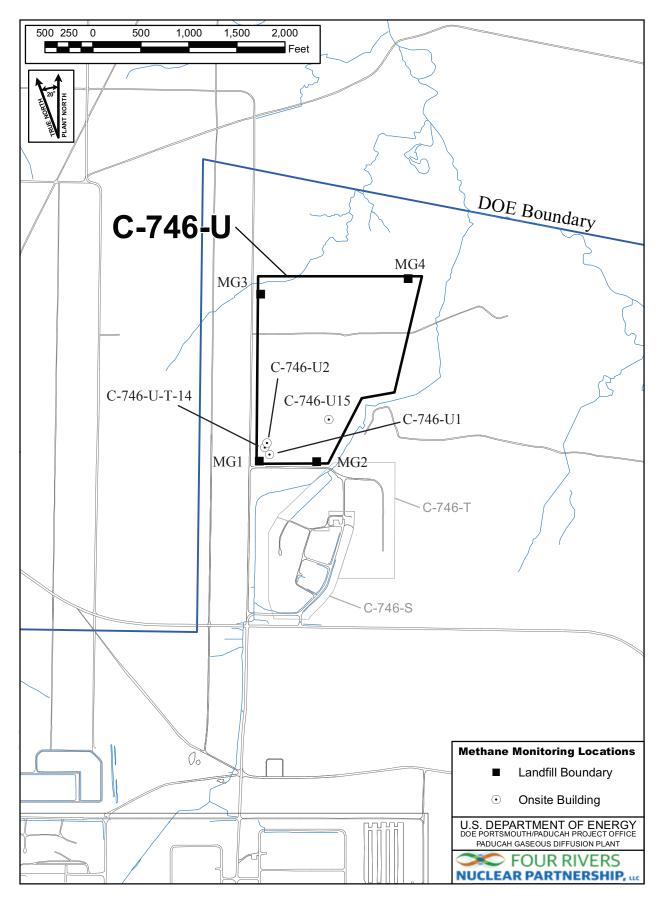


Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/CONTAINED-OUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982,

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitori	ing Poi	nt	(KPDES Discharge Number, or "U	JPST	REAM", or "Do	OWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM	F. BLAN	Κ.
Sample S	Sequen	ce	#				1		1		1		1	
If sampl	le is a	в1	ank, specify Type: (F)ield, (T) ri	ip, (M) ethod	, or (E)quipment	NA		NA		NA		F	
Sample I	Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		10/21/2019 1	0:16	10/21/2019 1	0:34	10/21/2019	09:55	10/21/2019	10:06
Duplicat	te ("Y	" o	or "N") ¹				N		N		N		N	
Split ('	'Y' or	"N	") ²				N		N		N		N	
Facility	y Sampi	le	ID Number (if applicable)				L150US1-2	20	L154US1-	20	L351US1	-20	FB1US1-20	
Laborato	ory Sai	mpl	e ID Number (if applicable)				49372400	2	49372400	13	4937240	493724004 49372)5
Date of	Analy	sis	(Month/Day/Year)				11/11/201	9	11/8/201	9	11/8/20	19	11/8/2019	9
CAS F	RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G						
A200-00-	-0	0	Flow	т	MGD	Field		*		*		*		*
16887-00	0-6	2	Chloride(s)	Т	mg/L	300.0	9.49		2.42		11.8		<0.2	
14808-79	9-8	0	Sulfate	Т	mg/L	300.0	81.4		4.95		25.2		<0.4	
7439-89-	-6	0	Iron	Т	mg/L	200.8	0.845		0.713		1.11		<0.1	
7440-23-	-5	0	Sodium	Т	mg/L	200.8	6.16		1.63		15.9		<0.25	
s0268	-	0	Organic Carbon ⁶	т	mg/L	9060	4.58		19.6		20.4			*
s0097	-	0	BOD ⁶	т	mg/L	not applicable		*		*		*		*
s0130	-	0	Chemical Oxygen Demand	Т	mg/L	410.4	40.3	*	115	*	215	*		*

¹Respond "Y" if the sample was a duplicate of another sample in this report

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont)

		WITTELL DIMIL	_			10011									
Monitoring Po	int	(KPDES Discharge Number, o	r "(JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTE	REAM	L351 DOWNST	REAM	F. BLANK			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F A G S ⁷		
S0145	1	Specific Conductance	Т	μмно/см	Field	225		90		331			*		
s0270	0	Total Suspended Solids	Т	MG/L	160.2	720		24		80			*		
s0266	0	Total Dissolved Solids	Т	MG/L	160.1	341	*	150	*	271	*		*		
S0269	0	Total Solids	Т	MG/L	2540B	898		111		311			*		
S0296	0	рН	Т	Units	Field	7.79		7.54		7.22			*		
7440-61-1		Uranium	Т	MG/L	200.8	0.00114		0.000846		0.0167		<0.0002			
12587-46-1		Gross Alpha (α)	T	pCi/L	900.0	36	*	-0.575	*	17	*	-1.03	*		
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	27.3	*	13.9	*	85.5	*	-1.18	*		

 $\overline{4}$

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-OUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s.

M	Monitoring Poi	int	(KPDES Discharge Number, or "U	JPST	REAM", or "DO	OWNSTREAM")	L150 AT SIT	E						
s	Sample Sequen	ce	#				1							
1	f sample is a	в	lank, specify Type: (F)ield, (T) r	ip, (M)ethod	, or (E)quipment	NA							
s	Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		10/21/2019 10	:16						
Г	uplicate ("Y	" (or "N") ¹				Υ							
s	Split ('Y' or	"N	N") ²				N							
E	acility Samp	le	ID Number (if applicable)				L150DUS1-2	20						
I	aboratory Sa	oratory Sample ID Number (if applicable)					493724001					$\overline{/}$		
Γ	ate of Analy	sis	s (Month/Day/Year)				11/11/2019)						
	CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OB DOL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F A G S ⁷
P	200-00-0	0	Flow	Т	MGD	Field		*						
1	.6887-00-6	2	Chloride(s)	т	MG/L	300.0	9.58					`		
1	.4808-79-8	0	Sulfate	т	MG/L	300.0	81.9							
7	439-89-6	0	Iron	т	MG/L	200.8	0.616							
7	440-23-5	0	Sodium	Т	MG/L	200.8	6.42							
S	0268	0	Organic Carbon ⁶	Т	MG/L	9060	4.63							
S	30097	0	BOD ⁶	т	MG/L	not applicable		*						
S	0130	0	Chemical Oxygen Demand	т	MG/L	410.4	35.3	*						

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont)

Monitoring Po	int	(KPDES Discharge Number, or	r "(JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE					
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED FOR A PQL ⁵ S
s0145	1	Specific Conductance	Т	µmho/cm	Field		*					
s0270	0	Total Suspended Solids	Т	mg/L	160.2	714						
S0266	0	Total Dissolved Solids	т	mg/L	160.1	334	*					
S0269	0	Total Solids	Т	mg/L	2540B	940			`			
s0296	0	рН	Т	Units	Field		*					
7440-61-1		Uranium	Т	mg/L	200.8	0.0012						
12587-46-1		Gross Alpha (α)	Т	pCi/L	900.0	27.2	*				/	
12587-47-2		Gross Beta (β)	T	pCi/L	900.0	18.9	*					
											<u> </u>	
								/				

I-6

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	KY8-890-008-982 /	1
LAB ID:	None	
For Official U	se Only	

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L150	L150US1-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 17. Rad error is 15.9.
		Beta activity		TPU is 9.3. Rad error is 8.17.
L154	L154US1-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.69. Rad error is 4.68.
		Beta activity		TPU is 6.4. Rad error is 5.99.
L351	L351US1-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 9.33. Rad error is 8.9.
		Beta activity		TPU is 19. Rad error is 12.7.
QC	FB1US1-20	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.5. Rad error is 4.5.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.17. Rad error is 6.17.

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>F</u>	<u> </u>	
LAB ID:	None	_
For Official Use	e Only	

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L150	L150DUS1-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Conductivity		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		рН		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 14.3. Rad error is 13.6.
		Beta activity		TPU is 9. Rad error is 8.46.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DOD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

APPENDIX K LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-U Contained Landfill

				_	ed of Heliti			,		,	Turni Carrie
		/	att St. St. St. St. St. St. St. St. St. S	citi)					juity left for	m /	
		State Condi	, riti	~ /	180	IMW358		Carata	THO!		Turis Child
	,	/.e. /	String delice		/3 ^{43%} /	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			igited deligit		743°
		Kalili /	digar /	₂₀₁ / 7	¹⁶ 0° /	A		inter / s		S. \\	zo" /,
	College	Condi	, \%	. /	(littoit		Colling	Chilli	150	is sol	(nito)
MW357	<u> </u>	7 6	<u> </u>	<u> </u>		 	<u>/ ~~</u>	<u>/ G</u>	<u> </u>	<u> </u>	<u> </u>
Date Collected: 10/14/2019						MW358 Date Collected: 10/14/2019					
)954	61.0	420	6.29	3.50	6.60	1212	63.0	539	6.32	2.76	0.00
0957	61.2	420	6.27	3.22	4.20	1215	62.8	523	6.52	1.38	0.60
1000	61.2	419	6.27	3.21	4.40	1218	62.9	519	6.49	1.37	0.50
MW359	01.2	417	0.27	3.21	4.40	MW360	02.9	319	0.49	1.57	0.50
Date Collected: 10/14/2019						Date Collected: 10/14/2019					
1037	62.4	253	6.36	3.97	1.1	0906	58.4	424	6.41	3.16	12.6
1040	62.4	235	6.22	4.06	1.0	0909	58.4	425	6.40	2.24	11.7
043	62.4	236	6.21	4.04	1.1	0912	58.5	420	6.40	2.17	11.6
MW361	02.4	230	0.21	7.07	1.1	MW362	30.3	420	0.40	2.17	11.0
Date Collected: 10/14/2019						Date Collected: 10/14/2019					
0717	57.1	504	6.10	4.16	3.4	0823	57.6	736	6.96	5.57	7.6
0720	56.8	499	6.00	2.74	2.9	0826	57.9	738	7.00	5.29	5.0
0723	56.9	503	6.03	2.69	3.3	0829	58.0	731	7.00	5.19	5.1
MW363				,	- 10	MW364				V.127	
Date Collected: 10/15/2019						Date Collected: 10/15/2019					
754	58.2	410	6.30	2.73	4.0	0839	58.9	478	6.45	5.64	17.4
757	58.3	433	6.19	1.03	1.9	0842	58.9	473	6.20	3.64	16.7
800	58.3	427	6.20	1.02	1.4	0845	59.0	473	6.18	3.61	15.8
1W365		,=,	0.00	-10-		MW366		11.0	0.110	0.00	
Pate Collected: 10/15/2019						Date Collected: 10/14/2019					
932	60.2	438	6.50	6.21	9.5	1304	62.0	466	6,64	5.96	4.9
935	59.9	433	6.30	4.61	8.1	1307	61.9	462	6,68	4.22	5.1
938	60.0	429	6.28	4.59	8.1	1310	61.9	466	6.68	4.26	5.2
AW367						MW368					
Date Collected: 10/15/2019						Date Collected: 10/15/2019					
018	60.7	317	6.30	4.85	17.3	1223	62.2	651	6.84	3.06	14.8
021	60.9	280	6.07	2.32	16.3	1226	62.3	647	6.63	2.08	13.2
024	61.0	279	6.06	2.29	15.8	1229	62.2	643	6.63	2.03	13
MW369						MW370					
Date Collected: 10/16/2019						Date Collected: 10/16/2019					
)739	60.3	384	6.62	3.07	4.7	0823	60.7	450	6.23	4.02	1.1
0742	60.3	367	6.22	1.89	3.5	0826	60.6	437	6.06	3.68	2.0
0745	60.4	367	6.19	1.88	2.9	0829	60.5	434	6.06	3.70	1.8
MW371						MW372					
Date Collected: 10/16/2019						Date Collected: 10/16/2019					
917	61.2	657	6.88	5.08	104	1209	61.5	704	6.62	2.88	2.0
920	60.9	659	6.63	1.32	52.8	1212	61.9	698	6.39	1.99	1.7
923	60.9	657	6.60	1.27	52.2	1215	62.0	697	6.37	1.93	1.6
MW373						MW374					
Date Collected: 10/16/2019						Date Collected: 10/16/2019					
004	61.8	809	6.30	4.23	2.1	1251	62.2	681	7.00	3.54	3.9
007	62.3	807	6.17	1.94	1.6	1254	62.3	673	6.79	1.93	3.1
010	62.6	806	6.16	1.98	1.6	1257	62.2	670	6.78	1.88	3.3
MW375											
Date Collected: 10/15/2019											
1309	62.5	344	7.04	2.36	3.6						
1312	62.7	337	6.85	1.68	4						
1315	62.5	336	6.82	1.61	3.5						
			-	_							

