

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

FEB 2 5 2020

PPPO-02-10003255-20B

Ms. Robin Green Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-U CONTAINED LANDFILL FOURTH QUARTER CALENDAR YEAR 2019 (OCTOBER–DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0087/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

Enclosed is the subject report for the fourth quarter calendar year (CY) 2019. This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). The report includes groundwater analytical data, surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the fourth quarter CY 2019 monitoring well data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the fourth quarter CY 2019, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

nnifer Woodard

Jennifer Woodard Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill 4th Qtr. CY 2019 (Oct.-Dec.) Compliance Monitoring Report

cc w/enclosure: abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov bill.clark@pad.pppo.gov, FRNP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.jung@ky.gov, KDEP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO david.ruckstuhl@pad.pppo.gov, FRNP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.watson@pad.pppo.gov, FRNP jennifer.woodard@pppo.gov, PPPO jerry.arnzen@pad.pppo.gov, FRNP joel.bradburne@pppo.gov, PPPO kelly.layne@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov robert.edwards@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB tabitha.owens@ky.gov, KDEP todd.hendricks@ky.gov, KDEP tracey.duncan@pppo.gov, PPPO

2

FRNP-RPT-0087/V3

C-746-U Contained Landfill Third Quarter Calendar Year 2019 (July–September) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

11-21-19 Date

FRNP-RPT-0087/V3

C-746-U Contained Landfill Third Quarter Calendar Year 2019 (July–September) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—November 2019

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FIC	GURE	S		v
TA	BLES			v
AC	RON	YMS		vii
1.	INTF 1.1 1.2 1.3	BACKG MONITO 1.2.1 0 1.2.2 N 1.2.3 S	ON ROUND DRING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring SULTS	1 1 3 3
2.	DAT 2.1 2.2	STATIS 2.1.1 U 2.1.2 U 2.1.3 I	JATION/STATISTICAL SYNOPSIS FICAL ANALYSIS OF GROUNDWATER DATA Jpper Continental Recharge System Jpper Regional Gravel Aquifer Lower Regional Gravel Aquifer ZERIFICATION AND VALIDATION	10 10 10 10
3.	PRO	FESSION	AL GEOLOGIST AUTHORIZATION	13
4.	REFI	ERENCES	5	15
AP	PENC	DIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING 1 SAMPLE DATA REPORTING FORM	A-1
AP	PENE	DIX B:	FACILITY INFORMATION SHEET	B- 1
AP	PENE	DIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C- 1
AP	PENE	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D- 1
AP	PENE	DIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AP	PEND	OIX F:	NOTIFICATIONS	F-1
AP	PEND	DIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AP	PEND	DIX H:	METHANE MONITORING DATA	.H-1
AP	PEND	DIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
AP	PENE	DIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

CONTENTS

APPENDIX K:	LABORATORY ANALYTICAL METHODSK-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS L-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
2.	C-746-U Landfill Surface Water Monitoring Locations	4

TABLES

1.	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells*	7
6.	Monitoring Wells Included in Statistical Analysis*	10

ACRONYMS

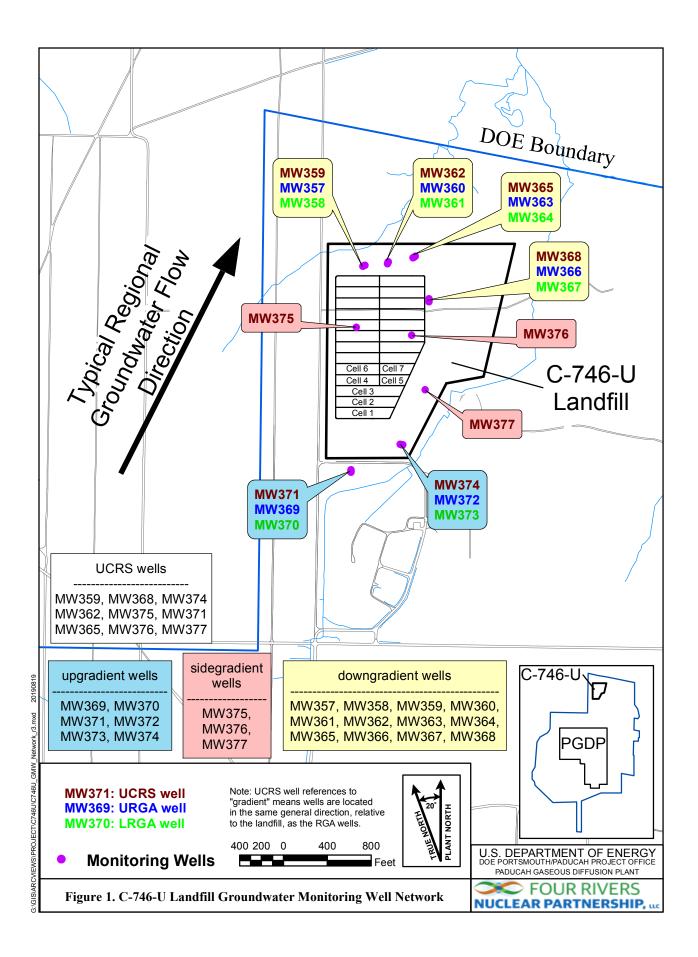
CFR	Code of Federal Regulations
CY	calendar year
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
LTL	lower tolerance limit
MCL	maximum contaminant level
MW	monitoring well
RGA	Regional Gravel Aquifer
	e

1. INTRODUCTION

This report, C-746-U Contained Landfill Third Quarter Calendar Year 2019 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micro-purging stability parameter results are provided in Appendix L.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Site and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5, with Phases 6 and 7 approved for receipt of waste as of September 27, 2019. Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included

in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the third quarter 2019 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on July 29, 2019, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During July, RGA groundwater flow in the area of the landfill was oriented north-northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in July was 4.99×10^4 ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 1.06×10^{-3} ft/ft and 1.10×10^{-3} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.80 to 3.08 ft/day for the URGA and 1.87 to 3.19 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on September 3, 2019. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill: (1) upstream location, L154; (2) downstream location, L351; and (3) location L150 capturing

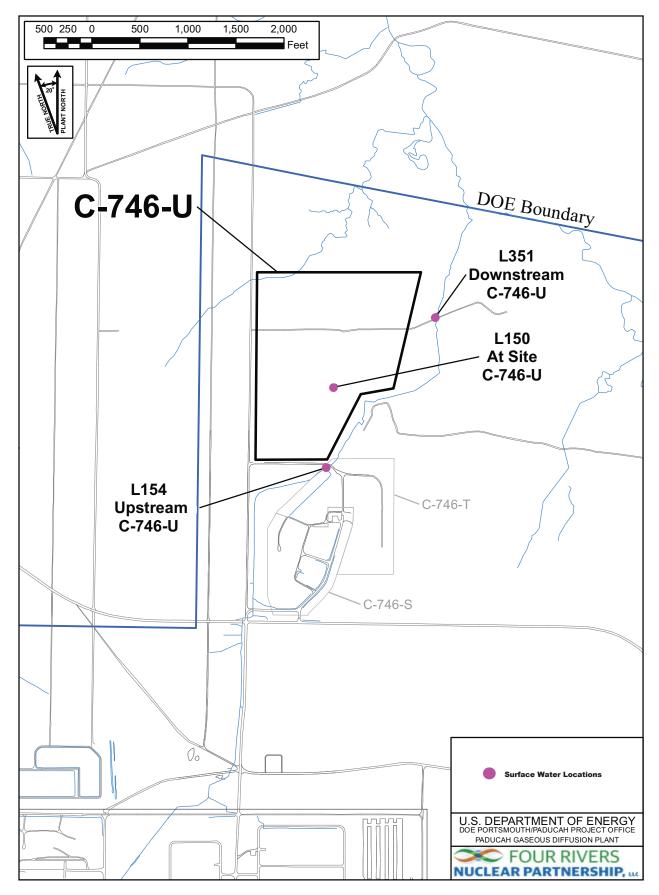


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved *Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded their historical background UTL¹ during the third quarter 2019, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

UCRS	URGA	LRGA
None	MW369: Beta activity	MW358: Trichloroethene
	MW372: Beta activity	MW361: Trichloroethene
		MW364: Trichloroethene
		MW370: Beta activity

Table 1. Summary	of MCL	Exceedances
------------------	--------	-------------

Table 2. Exceedances of Statistically	y Derived Historical Background Concentrations
Tuble It Enteredunites of Statistical	2 criter ansterieur Buenground Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW364: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential, technetium-99
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW367: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential, pH ^{**}
MW368: Calcium, dissolved	MW366: Oxidation-reduction	MW370: Beta activity,
oxygen, magnesium, oxidation-	potential	oxidation-reduction potential,
reduction potential, sulfate		technetium-99
MW371: Calcium, dissolved	MW369: Beta activity,	MW373: Chemical oxygen demand,
oxygen, oxidation-reduction	oxidation-reduction potential	oxidation-reduction potential
potential, sulfate		
MW374: Oxidation-reduction	MW372: Beta activity, chemical	
potential	oxygen demand, conductivity,	
	dissolved solids	
	oxidation-reduction potential,	
	technetium-99	
MW375: Oxidation-reduction		
potential, sulfate		

¹ The UTL comparison for pH uses a two-sided test, for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 2. Exceedance of Statistically Derived historical Background Concentrations (Continued)

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

**pH concentration is less than the LTL.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current BackgroundUTL in Downgradient Wells

URGA	LRGA
None	MW367: pH*
*nH concentration is less than the LTI	

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW358, MW361, and MW364 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill).

The constituent listed in Table 3 that exceeds both the historical UTL and the current UTL does not have an identified source and is considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate the preliminary Type 2 exceedance further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. The preliminary Type 2 exceedance in a downgradient well did not have an increasing or decreasing trend and is considered to be a Type 1 exceedance (not attributable to the C-746-U Landfill).

Table 4. C-746-U Landfill Downgradient Wells Trend SummaryUtilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Decision ⁴
C-746-U Landfill	MW367	pH ⁵	8	0.05	0.106	-11	No Trend

Footnotes:

¹ An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 4 The Mann-Kendall decision operates on two hypotheses, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

⁵ pH concentration is less than the LTL.

Note: Statistics generated using ProUCL.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well, MW368 with calcium, magnesium, and sulfate values that exceed both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-U Landfill, the exceedances are not attributable to C-746-U sources and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW368: Calcium, magnesium, sulfate
*In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2019 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance—an exceedance not exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both a UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376***		
MW377***		

Table 6. Monitoring Wells Included in Statistical Analysis*

*A map showing the monitoring well locations is shown on Figure 1.

**In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

***Well had insufficient water to permit a water sample for laboratory analysis.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the UCRS. During the third quarter, calcium, dissolved oxygen, magnesium, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Calcium, magnesium, and sulfate exceeded the current background UTL and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the URGA. During the third quarter, beta activity, chemical oxygen demand, conductivity, dissolved solids, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedences of the current background UTL for any downgradient wells.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the third quarter, beta activity, chemical oxygen demand, oxidation-reduction potential, pH, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. The pH exceeded the current background UTL and is included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill Third Quarter Calendar Year 2019 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0087/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

PG 113927 KDavis 11-18-19

Kenneth R. Davis

Kenneth R. Dav

PG113927

Norember 18, 2019

13

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Gaseous Diffusion Plant		Activity: C-746-	U Contained Landfill		
(As officially shown on DWM Permit Face)						
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	3rd Qtr. CY 2019		
Please check the following as applicable:						
Characterization X Quarterly Semiannual Annual Assessment						
Please check applicable submittal(s):X GroundwaterX Surface Water						
	_	Leachate	X Metha	ne Monitoring		

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E. Redfield, Program Manager Four Rivers Nuclear Partnership, LLC

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy

11/25/19

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

	Groundwater: July 2019 Surface water: July 2019			Permit	SW07300014, SW07300015,	
Sampling Date:	Methane: September 2019	County:	McCracken	Nos.	SW07300045	
Facility Name: U.S. DOE—Paducah Gaseous Diffusion Plant						
(As officially shown on DWM Permit Face)						
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053		
	Street	City/State		Zip		
Phone No: (270) 441-6800 Latitude: N 37° 07' 45" Longitude: W 88° 47' 55"						

OWNER INFORMATION

Facility Owner:	U.S. DOE, Robert E. Edwards	III, Manager	Phone No:	(859) 227-5020	
Contact Person:	David Hutchison		Phone No:	(270) 441-5929	
Director, Environmental Services					
Contact Person Title	: Four Rivers Nuclear Par	thership, LLC			
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky	42053		
	Street	City/State		Zip	

SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)

Company: <u>GEO C</u>	Consultants, LLC			
Contact Person:Jason BoultonPhone No:			none No: (270) 816-3415	
Mailing Address:	199 Kentucky Avenue	ntucky Avenue Kevil, Kentucky		
	Street	City/State	Zip	
	LABO	PRATORY RECORD #1		
Laboratory <u>GEL L</u>	aboratories, LLC	Lab ID No:	KY90129	
Contact Person:	Valerie Davis	Phone No: (843) 769-7391		
Mailing Address:	2040 Savage Road	Charleston, South Carolina	29407	
	Street	City/State	Zip	
	LABO	PRATORY RECORD #2		
Laboratory: N/A		Lab ID No:	N/A	
Contact Person:	N/A	Phone No: N/A		
Mailing Address:	N/A			
	Street	City/State	Zip	
	LABO	PRATORY RECORD #3		
Laboratory: <u>N/A</u>		Lab ID No:	N/A	
Contact Person:	N/A	Pł	none No: <u>N/A</u>	
Mailing Address:	N/A			
	Street	City/State	Zip	

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	8	8004-4	799	8004-09	981	8004-480	00
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	., MW-2, etc	:.)	357		358		359		360	
Sample Sequent	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/10/2019 09	9:11	7/10/2019	10:01	7/10/2019	10:48	7/10/2019 0	6:58
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW357UG4	-19	MW358U	G4-19	MW359U	G4-19	MW360UG	4-19
Laboratory Sa	mple ID Number (if applicable)				48438400	2	484384	004	484384	005	4843840	06
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	7/12/2019)	7/12/20)19	7/12/20	19	7/12/201	9
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.388		0.452		<0.2		0.137	J
16887-00-6	Chloride(s)	т	mg/L	9056	32.4		34.9		0.893		8.64	
16984-48-8	Fluoride	т	mg/L	9056	0.181		0.173		0.241		0.244	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.3	*	1.14	*	0.714		0.498	
14808-79-8	Sulfate	т	mg/L	9056	44.7		65.3		47.1		9.94	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.01		30.01		30		29.98	
S0145	Specific Conductance	т	µMH0/cm	Field	427		505		224		402	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER1	, Facility Well/Spring Number				8004-4798	3	8004-4799	9	8004-0981		8004-4800	I
	Facility's Lo	ocal Well or Spring Number (e.g., M	∛ −1, :	MW-2, BLANK-	F, etc.)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field	330.7		330.7		340.61		330.74	
	N238	Dissolved Oxygen	т	mg/L	Field	4.72		2.01		3.4		1.51	
	S0266	Total Dissolved Solids	т	mg/L	160.1	231		321		143		210	
Ī	s0296	рн	т	Units	Field	6.1		6.11		5.89		6.16	
ľ	NS215	Eh	т	mV	Field	413		101		217		423	
ľ	s0907	Temperature	т	°C	Field	18.67		19.28		18.78		16.72	
2	7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0207	J	0.0271	J	0.126	
^	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		0.00114	J
ľ	7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00242	J	<0.005		0.00232	J
ľ	7440-39-3	Barium	т	mg/L	6020	0.0698		0.0514		0.0248		0.177	
Ī	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
	7440-42-8	Boron	т	mg/L	6020	0.377		0.466		<0.015		0.0183	
ľ	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
Ī	7440-70-2	Calcium	т	mg/L	6020	27		33.5		5.91		19	
ľ	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.0019		<0.001		0.00286	
I	7440-50-8	Copper	т	mg/L	6020	0.00057	J	0.00045	J	0.00085	J	0.0008	J
	7439-89-6	Iron	т	mg/L	6020	<0.1		0.845		0.0337	J	0.591	
	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
ſ	7439-95-4	Magnesium	т	mg/L	6020	11.7	*	15.1	*	3.26	*	7.94	*
	7439-96-5	Manganese	т	mg/L	6020	0.00263	J	0.173		<0.005		0.0395	
ľ	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	1	8004-480	00
ľ	Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
Î	7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.00022	J	<0.001		<0.001	
	7440-02-0	Nickel	т	mg/L	6020	<0.002		0.0041		0.00087	J	0.00118	J
	7440-09-7	Potassium	т	mg/L	6020	1.57		2.23		<0.3		0.632	
	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
Ģ	7440-23-5	Sodium	т	mg/L	6020	42.4		40.7		37.2		58.4	
Ĭ	7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00007	J	0.00011	J
	7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		0.00536	J	0.00359	J
	7440-66-6	Zinc	т	mg/L	6020	0.00642	BJ	0.00715	BJ	0.00628	BJ	0.0063	BJ
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
	100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ſ	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ī	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-48	00
	Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
C-6	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00371		0.00512		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER1	ι,	Facility Well/Spring Number				8004-4798	8	8004-479	9	8004-098	31	8004-48	00
	Facility's Lo	oca	al Well or Spring Number (e.g., M	MW -1	L, MW-2, et)	357		358		359		360	
	CAS RN⁴		CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
	100-41-4		Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	591-78-6		2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4		Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1		Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5		Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2		Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
q	108-10-1		Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1	96-12-8		Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.0000198		<0.0000198	
	78-87-5		Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6		trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5		cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5		trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4		Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4		1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1		Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7		Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3		PCB,Total	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
ſ	12674-11-2		PCB-1016	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
	11104-28-2		PCB-1221	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
	11141-16-5		PCB-1232	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
	53469-21-9		PCB-1242	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
ſ	12672-29-6		PCB-1248	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g.,	, MW-1	., MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
12587-46-1	Gross Alpha	т	pCi/L	9310	12.4	*	2.03	*	3.88	*	0.373	*
12587-47-2	Gross Beta	т	pCi/L	9310	45.5	*	32.7	*	-0.678	*	13.9	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.137	*	0.0593	*	0.318	*	0.413	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.98	*	0.251	*	1.36	*	0.318	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	30.5	*	36.6	*	-6.7	*	8.71	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.354	*	0.293	*	-0.377	*	0.0351	*
10028-17-8	Tritium	т	pCi/L	906.0	-102	*	-166	*	19.8	*	-126	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		10.8	J	<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.902	J	1.09	J	0.899	J	1.29	J
s0586	Total Organic Halides	т	mg/L	9020	0.00654	J	0.00684	J	<0.01		0.00654	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1	, Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	., MW-2, etc	.)	361		362		363		364	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/10/2019 07	7:44	7/10/2019	08:26	7/10/2019	11:32	7/10/2019 1	2:17
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW361UG4	-19	MW362U	G4-19	MW363U0	G4-19	MW364UG	4-19
Laboratory Sa	mple ID Number (if applicable)			48438400	7	484384	001	484384	800	4843840	09	
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	7/12/2019)	7/12/20)19	7/12/20	19	7/12/201	9
Gradient with	respect to Monitored Unit (UP, DC) wn	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.446		0.117	J	<0.2		0.439	
16887-00-6	Chloride(s)	т	mg/L	9056	32.3		4.25		19.2		33	
16984-48-8	Fluoride	т	mg/L	9056	0.164		0.425		0.218		0.152	
s0595	Nitrate & Nitrite	т	mg/L	9056	1		0.416		5.08	*	1.01	
14808-79-8	Sulfate	т	mg/L	9056	73.8		32.1		36.7		70.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.99		30		30.01		30	
S0145	Specific Conductance	т	µMH0/cm	Field	492		733		412		485	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795	5	8004-0986	6	8004-4796		8004-4797	
	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1,	MW-2, BLANK-	F, etc.)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
	S0906	Static Water Level Elevation	т	Ft. MSL	Field	330.75		341.57		330.67		329.17	
	N238	Dissolved Oxygen	т	mg/L	Field	2.89		4.48		0.78		3.23	
	S0266	Total Dissolved Solids	т	mg/L	160.1	364		449		283		274	
	S0296	рН	т	Units	Field	6.02		6.93		6.07		6.01	
	NS215	Eh	т	mV	Field	412		381		365		356	
	S0907	Temperature	т	°C	Field	17		16.78		21.06		19.06	
<u>-</u>	7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.111		<0.05		<0.05	
10	7440-36-0	Antimony	т	mg/L	6020	0.00109	J	<0.003		<0.003		<0.003	
	7440-38-2	Arsenic	т	mg/L	6020	0.00201	J	<0.005		<0.005		0.00215	J
	7440-39-3	Barium	т	mg/L	6020	0.0562		0.104		0.128		0.0644	
	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
	7440-42-8	Boron	т	mg/L	6020	0.162		0.0189		0.0196		0.0168	
	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
	7440-70-2	Calcium	т	mg/L	6020	32		22.8		26.5		32	
	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.0011		<0.001	
	7440-50-8	Copper	т	mg/L	6020	0.00052	J	0.00148	J	0.00033	J	0.00043	J
	7439-89-6	Iron	т	mg/L	6020	<0.1		0.0953	J	0.0549	J	0.0411	J
	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7439-95-4	Magnesium	т	mg/L	6020	13.8	*	10.1	*	10.5	*	13.7	*
	7439-96-5	Manganese	т	mg/L	6020	0.00525		0.001	J	0.25		0.00521	
	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ī	AKGWA NUMBER1,	Facility Well/Spring Number				8004-479	5	8004-098	86	8004-479	6	8004-479)7
	Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
	7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.00075	J	<0.001		<0.001	
	7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00093	J	0.0071		<0.002	
	7440-09-7	Potassium	т	mg/L	6020	2.12		0.317		1.39		1.9	
	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
G	7440-23-5	Sodium	т	mg/L	6020	45.5		140		42.5		45	
	7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.00437		<0.0002		<0.0002	
	7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
	7440-66-6	Zinc	т	mg/L	6020	0.00617	BJ	0.00508	BJ	0.00535	BJ	0.0389	В
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
	100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ĩ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-098	6	8004-47	96	8004-479	97
ľ	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ľ	75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Ĩ	74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
C-12	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
2	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ſ	75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ſ	127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00546		<0.001		<0.001		0.00669	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER1	, Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-479	96	8004-479	97
	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1	, MW-2, et	.c.)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
<u>-</u>	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ί.	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194		<0.0000196		<0.0000193		<0.0000194	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
	12672-29-6	PCB-1248	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	. Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479) 7
Facility's Loo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.58	*	3.36	*	-4.4	*	7.74	*
12587-47-2	Gross Beta	т	pCi/L	9310	44.1	*	4.39	*	-0.878	*	34.8	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.0668	*	0.368	*	0.825	*	0.23	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.09	*	-1.64	*	3.38	*	-0.835	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	43.3	*	9.4	*	5.08	*	52.5	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.466	*	0.0157	*	-0.793	*	-0.369	*
10028-17-8	Tritium	т	pCi/L	906.0	-96.6	*	-81.7	*	-86.9	*	-68.1	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	31.5		17.7	J	21.1		28	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.33	J	2.26		1.2	J	0.873	J
s0586	Total Organic Halides	т	mg/L	9020	0.00726	BJ	0.019		0.00844	BJ	0.00666	BJ

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-0	983
Facility's Lo	cal Well or Spring Number (e.g., M	/₩-1	, MW-2, etc	:.)	365		36	6	36	7	368	5
Sample Sequen	ce #				1		1		1		1	
If sample is a 3	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/10/2019	13:00	7/11/201	9 07:06	7/11/201	9 07:59	7/11/2019	08:49
Duplicate ("Y	" or "N") ²				N		N		Ν		Ν	
Split ("Y" or	"N") ³				N		N		Ν		Ν	
Facility Samp	le ID Number (if applicable)		MW365UG	64-19	MW366	UG4-19	MW367U	JG4-19	MW368U	G4-19		
Laboratory Sa	mple ID Number (if applicable)			4843840	010	48457	8001	48457	8003	484578	005	
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	7/12/20	19	7/17/2	2019	7/17/2	2019	7/17/20	019	
Gradient with	respect to Monitored Unit (UP, DC) WN ,	SIDE, UNKN	IOWN)	DOW	١	DO	WN	DOV	WN	DOW	/N
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.477		0.445		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	2.7		38.6	*	33.8	*	7.3	*
16984-48-8	Fluoride	т	mg/L	9056	0.331		0.181		0.139		0.25	
S0595	Nitrate & Nitrite	т	mg/L	9056	0.975		0.91		0.0659	J	<0.1	
14808-79-8	Sulfate	т	mg/L	9056	58.4		53.1		48.3		164	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.3		29.93		29.93		29.95	
S0145	Specific Conductance	т	µMH0/cm	Field	430		471		400		733	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	4	8004-098	2	8004-4793		8004-0983	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1 , 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	335.75		330.84		330.63		339.89	
N238	Dissolved Oxygen	т	mg/L	Field	2.74		2.99		2.23		4.17	
S0266	Total Dissolved Solids	т	mg/L	160.1	290		273		234		687	
S0296	рн	т	Units	Field	6.2		6.03		5.79		6.42	
NS215	Eh	т	mV	Field	388		390		312		338	
S0907	Temperature	т	°C	Field	18.78		17.33		17.33		17.39	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		0.139	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00238	J	0.00208	J	0.00467	J
7440-39-3	Barium	т	mg/L	6020	0.106		0.11		0.155		0.0506	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00728	J	0.191		0.0538		0.00821	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	23.2		33.4		25.9		73.1	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00173		<0.001		0.00726		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00488		0.00046	J	0.00059	J	0.00069	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0508	J	0.593		0.0869	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.8	*	14.2	*	12.2	*	21.8	*
7439-96-5	Manganese	т	mg/L	6020	0.0113		0.00412	J	1		0.00473	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	93	8004-098	33
	Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
	7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		0.00088	J
	7440-02-0	Nickel	т	mg/L	6020	0.00491		<0.002		0.00387		0.00098	J
	7440-09-7	Potassium	т	mg/L	6020	0.239	J	1.76		2.96		0.721	
	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
2	7440-23-5	Sodium	т	mg/L	6020	55.3		45.8		35.3		65.6	
	7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7440-61-1	Uranium	т	mg/L	6020	0.00019	J	<0.0002		<0.0002		0.0004	
	7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
	7440-66-6	Zinc	т	mg/L	6020	0.00907	BJ	0.00477	BJ	0.0114	BJ	0.00634	BJ
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
	100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ĩ	AKGWA NUMBER ¹	¹ , Facility Well/Spring Number				8004-0984		8004-0982	2	8004-479	93	8004-098	33
l	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Ĩ	75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
C-18	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
\sim	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00454		0.00495		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	¹ , Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-479	93	8004-098	33
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
9	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000193		<0.0000194		<0.0000195	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	0.0954	J	<0.0985		<0.0986		<0.0992	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
	53469-21-9	PCB-1242	т	ug/L	8082	0.0954	J	<0.0985		<0.0986		<0.0992	
	12672-29-6	PCB-1248	т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982	2	8004-479	3	8004-098	33
Facility's Loo	cal Well or Spring Number (e.g.,	, MW -1	L, MW-2, et)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
12587-46-1	Gross Alpha	т	pCi/L	9310	4.31	*	-1.75	*	1.5	*	5.71	*
12587-47-2	Gross Beta	т	pCi/L	9310	7.98	*	42	*	9.55	*	4.53	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.706	*	0.823	*	0.838	*	0.322	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.704	*	0.882	*	-2.67	*	-0.0496	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-3.44	*	43.8	*	8.13	*	-0.571	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.139	*	-0.193	*	-0.392	*	-0.194	*
10028-17-8	Tritium	т	pCi/L	906.0	-32.9	*	-46.7	*	-202	*	-196	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	34.9		14.2	J	<20		149	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.65	J	0.849	J	0.929	J	1.73	J
s0586	Total Organic Halides	т	mg/L	9020	0.0201	В	0.0059	BJ	0.0064	BJ	0.00956	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (5)

AKGWA NUMBER1	, Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-48	808
Facility's Lo	cal Well or Spring Number (e.g., M	/₩-1	, MW-2, etc	:.)	369		37	0	37	1	372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/15/2019	07:12	7/15/201	9 07:58	7/15/201	9 08:43	7/11/2019	09:36
Duplicate ("Y	" or "N") ²				N		N		Ν		Ν	
Split ("Y" or	"N") ³				N		N		Ν		Ν	
Facility Samp	le ID Number (if applicable)				MW369UG	64-19	MW370	UG4-19	MW3710	JG4-19	MW372U	G4-19
Laboratory Sa	mple ID Number (if applicable)				4847430	001	48474	3003	48474	3005	484578	007
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	7/20/20	19	7/20/2	2019	7/20/2	2019	7/19/20)19
Gradient with	respect to Monitored Unit (UP, DC) WN ,	SIDE, UNKN	IOWN)	UP		U	Р	UI	P	UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.366		0.394		<0.2		0.576	
16887-00-6	Chloride(s)	т	mg/L	9056	31.6		34.2		1.87		44.8	*
16984-48-8	Fluoride	т	mg/L	9056	0.21		0.175		0.151		0.177	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.655		0.707		0.0621	J	1.53	*
14808-79-8	Sulfate	т	mg/L	9056	8.91		20.2		55.4		70.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.07		30.07		30.07		29.95	
S0145	Specific Conductance	т	µMH0/cm	Field	373		421		523		640	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820	0	8004-4818	3	8004-4819		8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MW	i-1 , 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	331.78		331.74		346.2		332.25	
N238	Dissolved Oxygen	т	mg/L	Field	3.09		4.09		4.6		3.63	
s0266	Total Dissolved Solids	т	mg/L	160.1	194	В	241	В	341	В	616	
s0296	рН	т	Units	Field	6.25		6.15		6.56		6.08	
NS215	Eh	т	mV	Field	410		421		423		390	
S0907	Temperature	т	°c	Field	17.06		17.22		17.06		18.44	
7429-90-5	Aluminum	т	mg/L	6020	0.0609		<0.05		0.249		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00271	J	0.00337	J	0.0021	J
7440-39-3	Barium	т	mg/L	6020	0.381		0.23		0.0773		0.0582	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0168		0.0299		0.0102	J	0.889	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	17.7		27.7		70.4		49.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00539		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00121	J	0.0005	J	0.00215		0.00064	J
7439-89-6	Iron	т	mg/L	6020	0.136		<0.1		0.16		0.0634	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	7.51		12.1		12.6		19.2	*
7439-96-5	Manganese	т	mg/L	6020	0.00693		0.00111	J	0.0203		0.00159	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	8	8004-481	9	8004-480)8
	Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
	CAS RN ⁴		CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
	7439-98-7		Molybdenum	т	mg/L	6020	<0.001		<0.001		0.00031	J	<0.001	
	7440-02-0		Nickel	т	mg/L	6020	0.00474		<0.002		0.00169	J	0.00064	J
	7440-09-7		Potassium	т	mg/L	6020	0.57		2.46		0.495		1.95	
	7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7782-49-2		Selenium	т	mg/L	6020	0.00207	J	<0.005		<0.005		<0.005	
	7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
S	7440-23-5		Sodium	т	mg/L	6020	49.3		42.3		28.2		54.4	
23	7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7440-61-1		Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00088		<0.0002	
	7440-62-2		Vanadium	т	mg/L	6020	<0.02		<0.02		0.00549	J	<0.02	
	7440-66-6		Zinc	т	mg/L	6020	0.00487	BJ	0.00444	BJ	0.00632	BJ	0.00509	BJ
	108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	*
	100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
ſ	74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER	, Facility Well/Spring Number				8004-4820		8004-4818	8	8004-48	19	8004-480)8
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	369		370		371		372	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
C-2,	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
4	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00099	J	0.00057	J	<0.001		0.00256	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ī	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-4818	3	8004-48	19	8004-48	08
	Facility's Loca	al Well or Spring Number (e.g., M	W-1	, MW-2, et	.c.)	369		370		371		372	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
ĺ	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
ľ	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
25	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.0000197		<0.0000198		<0.0000199	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
ſ	12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	1, MW-2, et)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.87	*	10.4	*	13.3	*	-1.85	*
12587-47-2	Gross Beta	т	pCi/L	9310	120	*	52.7	*	5.76	*	141	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.451	*	0.104	*	0.55	*	0.629	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.0294	*	-1.35	*	-0.437	*	-0.0276	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	55.8	*	107	*	-1.71	*	183	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.045	*	-0.233	*	0.739	*	0.0604	*
10028-17-8	Tritium	т	pCi/L	906.0	65.8	*	-40.2	*	-45.1	*	-112	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20	*	36.7	*	<20	*	69.4	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.11	J	0.988	J	1.75	J	1.27	J
s0586	Total Organic Halides	т	mg/L	9020	0.0092	J	0.007	J	0.00386	J	0.00828	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

8004-0988 AKGWA NUMBER¹, Facility Well/Spring Number 8004-4792 8004-0990 8004-0985 373 374 375 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 376 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 7/11/2019 10:21 7/11/2019 11:52 7/11/2019 11:07 NA Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ N Ν Ν Ν MW373UG4-19 MW374UG4-19 MW375UG4-19 Facility Sample ID Number (if applicable) NA 484578009 484578011 484578013 NA Laboratory Sample ID Number (if applicable) 7/18/2019 7/18/2019 7/18/2019 NA Date of Analysis (Month/Day/Year) For Volatile Organics Analysis UP UP SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) SIDE CAS RN⁴ CONSTITUENT т METHOD DETECTED DETECTED DETECTED DETECTED Unit F F F F D 5 OF VALUE VALUE VALUE VALUE г L L L MEASURE OR А OR А OR А OR Α PQL⁶ POL⁶ PQL^6 POL⁶ G G G G s^7 s s s 0.532 0.705 <0.2 24959-67-9 Bromide т mg/L 9056 40 5 60 5 3 89 т 16887-00-6 Chloride(s) 9056 mq/L 02 02 0 306 т 16984-48-8 Fluoride mg/L 9056 1.06 <0.1 1.01 S0595- т Nitrate & Nitrite mg/L 9056 * 148 8.06 24.2 14808-79-8 т Sulfate ma/L 9056 29.95 29.95 29.95 * NS1894 Barometric Pressure Reading T Inches/Hg Field 785 661 335 * т S0145- -Specific Conductance uMH0/cm Field

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990		8004-0985		8004-0988	
Facility's Lo	cal Well or Spring Number (e.g., MW	1-1,	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	332.24		341.77		342.77			*
N238	Dissolved Oxygen	т	mg/L	Field	2.36		2.23		1.21			*
S0266	Total Dissolved Solids	т	mg/L	160.1	481		363		166			*
s0296	рН	т	Units	Field	6.03		6.54		6.27			*
NS215	Eh	т	mV	Field	417		354		363			*
S0907	Temperature	т	°c	Field	19.11		18.5		17.72			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0249	J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		0.00115	J		*
7440-38-2	Arsenic	т	mg/L	6020	0.00262	J	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0393		0.129		0.163			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.52		0.00968	J	0.00903	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	67.9		20.7		13.8			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.00097	J	0.00037	J	<0.001			*
7440-50-8	Copper	т	mg/L	6020	0.00065	J	0.00057	J	0.00057	J		*
7439-89-6	Iron	т	mg/L	6020	0.103		0.44		0.0715	J		*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	27.2	*	5.35	*	5.15	*		*
7439-96-5	Manganese	т	mg/L	6020	0.0499		0.309		0.00245	J		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ĩ	AKGWA NUMBER1	WA NUMBER ¹ , Facility Well/Spring Number		8004-479	2	8004-099	00	8004-098	5	8004-0988			
	Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
	CAS RN ⁴	CONSTITUENT	Ч Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
	7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.00021	J	<0.001			*
	7440-02-0	Nickel	т	mg/L	6020	0.00217		0.00119	J	0.00074	J		*
	7440-09-7	Potassium	т	mg/L	6020	2.6		0.317		0.252	J		*
	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
	7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00202	J	0.00234	J		*
	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001			*
Ģ	7440-23-5	Sodium	т	mg/L	6020	58.6		119		52.9			*
29	7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005			*
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
	7440-61-1	Uranium	т	mg/L	6020	0.000076	J	0.00036		<0.0002			*
	7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02			*
	7440-66-6	Zinc	т	mg/L	6020	0.00565	BJ	0.00531	BJ	0.00527	BJ		*
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			*
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			*
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			*
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
	100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ī	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4792		8004-0990		8004-0985		8004-0988		
	Facility's Lo	cal Well or Spring Number (e.g., 1	373		374		375		376				
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
ľ	75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
Ĩ	74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
C-30	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
	74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00069	J	0.00417		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ , Facility Well/Spring Number	8004-4792	2	8004-0990		8004-0985		8004-0988						
ľ	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)			373		374		375		376			
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
C-31	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
Ĩ	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000195		<0.0000194			*
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	1336-36-3	PCB,Total	т	ug/L	8082	<0.101		<0.1		<0.0997			*
	12674-11-2	PCB-1016	т	ug/L	8082	<0.101		<0.1		<0.0997			*
	11104-28-2	PCB-1221	т	ug/L	8082	<0.101		<0.1		<0.0997			*
	11141-16-5	PCB-1232	т	ug/L	8082	<0.101		<0.1		<0.0997			*
	53469-21-9	PCB-1242	т	ug/L	8082	<0.101		<0.1		<0.0997			*
	12672-29-6	PCB-1248	т	ug/L	8082	<0.101		<0.1		<0.0997			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1,	, Facility Well/Spring Number	8004-4792		8004-0990		8004-098	5	8004-0988				
Facility's Lo	cal Well or Spring Number (e.g.,	, MW-1	L, MW-2, et)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.101		<0.1		<0.0997			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.101		<0.1		<0.0997			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.101		<0.1		<0.0997			*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.123	*	3.25	*	2.39	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	21.9	*	2.84	*	1.28	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.26	*	0.281	*	0.474	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.556	*	-3.68	*	-3.37	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	28.3	*	8.86	*	1.51	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.0756	*	0.564	*	0.0115	*		*
10028-17-8	Tritium	т	pCi/L	906.0	-146	*	-111	*	-55	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	107		17.7	J	<20			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060	1.28	J	2.39		0.942	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.00652	J	0.0135		0.00828	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-098	8004-0989		0000-0000		00	0000-0000			
Facility's Loc	cal Well or Spring Number (e.g., M	W-1	., MW-2, etc	:.)	377		E. BLAN	١K	F. BLANK		T. BLANK 1	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		E		F		Т	
Sample Date ar	nd Time (Month/Day/Year hour: minut	tes)			NA		7/10/2019	06:07	7/10/2019 1	0:08	7/10/2019 0	5:55
Duplicate ("Y	'or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³		N		N		N		N			
Facility Sampl	le ID Number (if applicable)		NA		RI1UG4	-19	FB1UG4-	19	TB1UG4-	19		
Laboratory Sam	mple ID Number (if applicable)				NA		4843840)12	4843840	11	4843840	13
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	Or	Organics Analysis		NA		7/12/2019		7/12/2019		7/12/201	9
Gradient with	respect to Monitored Unit (UP, DO	WN, SIDE, UNKNOWN)			SIDE	SIDE		NA			NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER1	, Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
	Facility's Lo	ocal Well or Spring Number (e.g., M	377		E. BLANK		F. BLANK		T. BLANK 1				
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
ľ	N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
ľ	S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
ľ	S0296	рн	т	Units	Field		*		*		*		*
	NS215	Eh	т	mV	Field		*		*		*		*
	s0907	Temperature	т	°c	Field		*		*		*		*
2	7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
-	7440-36-0	Antimony	т	mg/L	6020		*	0.00108	J	<0.003			*
ľ	7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		0.00211	J		*
	7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
	7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
	7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
ľ	7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
ľ	7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
	7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
	7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
	7440-50-8	Copper	т	mg/L	6020		*	<0.002		<0.002			*
ľ	7439-89-6	Iron	т	mg/L	6020		*	<0.1		<0.1			*
ľ	7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
ľ	7439-95-4	Magnesium	т	mg/L	6020		*	<0.03	*	<0.03	*		*
ľ	7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
ľ	7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBE	BER ¹ , Facility Well/Spring Number	8004-098	9	0000-0000		0000-000	0	0000-0000				
Ī	Facility's	Local Well or Spring Nu	mber (e.g., MW	-1, MW-2, e	tc.)	377		E. BLAN	К	F. BLAN	К	T. BLANK 1	
	CAS RN ⁴	CONSTITUEN	IT T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	7439-98-7	Molybdenum	т	mg/L	6020		*	<0.001		<0.001			*
	7440-02-0	Nickel	т	mg/L	6020		*	<0.002		<0.002			*
	7440-09-7	Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
	7440-16-6	Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
	7782-49-2	Selenium	т	mg/L	6020		*	<0.005		<0.005			*
	7440-22-4	Silver	т	mg/L	6020		*	<0.001		<0.001			*
55	7440-23-5	Sodium	т	mg/L	6020		*	<0.25		<0.25			*
ú	7440-25-7	Tantalum	т	mg/L	6020		*	<0.005		<0.005			*
	7440-28-0	Thallium	т	mg/L	6020		*	<0.002		<0.002			*
	7440-61-1	Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
	7440-62-2	Vanadium	т	mg/L	6020		*	0.00491	J	0.00552	J		*
	7440-66-6	Zinc	т	mg/L	6020		*	0.00512	ВJ	0.00519	BJ		*
	108-05-4	Vinyl acetate	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	67-64-1	Acetone	т	mg/L	8260		*	0.00613		0.00511		0.00613	
	107-02-8	Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260		*	0.00119		0.00086	J	0.00127	
	1330-20-7	Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
	100-42-5	Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	108-88-3	Toluene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
ſ	74-97-5	Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	377		E. BLANK	(F. BLAN	IK	T. BLANK 1	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
	75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
_	75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
C-36	75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
5	67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
ĺ	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

[AKGWA NUMBER ¹	,	Facility Well/Spring Number				8004-098	9	0000-0000	C	0000-000	00	0000-000	00
	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						377		E. BLANK	<	F. BLANK		T. BLANK 1	
	CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
	100-41-4		Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	591-78-6		2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	74-88-4		Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	124-48-1		Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	56-23-5		Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-09-2		Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
9	108-10-1		Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
7.5	96-12-8		Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000193		<0.0000194		<0.0000194	
	78-87-5		Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	10061-02-6		trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	10061-01-5		cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	156-60-5		trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-69-4		Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	96-18-4		1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	95-50-1		Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	106-46-7		Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	1336-36-3		PCB,Total	т	ug/L	8082		*	<0.0998		<0.0942			*
	12674-11-2		PCB-1016	т	ug/L	8082		*	<0.0998		<0.0942			*
	11104-28-2		PCB-1221	т	ug/L	8082		*	<0.0998		<0.0942			*
	11141-16-5		PCB-1232	т	ug/L	8082		*	<0.0998		<0.0942			*
	53469-21-9		PCB-1242	т	ug/L	8082		*	<0.0998		<0.0942			*
	12672-29-6		PCB-1248	т	ug/L	8082		*	<0.0998		<0.0942			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	GWA NUMBER ¹ , Facility Well/Spring Number						0000-0000		0000-0000		0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.	, MW -1	L, MW-2, et		377		E. BLANK		F. BLANK		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0998		<0.0942			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0998		<0.0942			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0998		<0.0942			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	0.778	*	-2.42	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	3.61	*	6.27	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*	0.388	*	0.291	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*	-0.132	*	-0.777	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	-1.45	*	-11	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	0.332	*	0.572	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	-92.4	*	-142	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
S0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

0000-0000 AKGWA NUMBER¹, Facility Well/Spring Number 0000-0000 8004-4799 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) T BLANK 2 T. BLANK 3 358 2 Sample Sequence # 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment Т Т NA 7/10/2019 10:01 7/11/2019 06:00 7/15/2019 05:50 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Υ Split ("Y" or "N")³ Ν Ν Ν MW358DUG4-19 TB3UG4-19 Facility Sample ID Number (if applicable) TB2UG4-19 484384003 484578015 484743007 Laboratory Sample ID Number (if applicable) 7/12/2019 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis 7/18/2019 7/20/2019 DOWN Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) NA NA CAS RN4 CONSTITUENT т Unit METHOD DETECTED F DETECTED F DETECTED F DETECTE F VALUE VALUE D OF L L VALUE L VALU L 5 MEASURE OR А OR А OR А OR А PQL⁶ PQL⁶ PQL⁶ G G G POL G S s s s 0.473 т 24959-67-9 Bromide mg/L 9056 36 16887-00-6 т Chloride(s) mg/L 9056 * 0 18 т 16984-48-8 Fluoride mg/L 9056 * * 1.31 т S0595- -Nitrate & Nitrite mg/L 9056 * 66.6 14808-79-8 Sulfate т mg/L 9056 * * NS1894 Barometric Pressure Reading т Inches/Hq Field S0145- -Specific Conductance т Field uMH0/cm

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER1	, Facility Well/Spring Number				0000-0000)	0000-0000)	8004-4799)	Ν	
	Facility's Lo	ocal Well or Spring Number (e.g., MW	N−1 ,	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	358			
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
	s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		\square
	N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		\Box
	S0266	Total Dissolved Solids	т	mg/L	160.1		*		*	290			\square
	S0296	рн	т	Units	Field		*		*		*		
	NS215	Eh	т	mV	Field		*		*		*		
	s0907	Temperature	т	°C	Field		*		*		*	$ \rangle /$	
C-40	7429-90-5	Aluminum	т	mg/L	6020		*		*	<0.05			
>	7440-36-0	Antimony	т	mg/L	6020		*		*	<0.003			
	7440-38-2	Arsenic	т	mg/L	6020		*		*	0.00217	J	Ι Χ	
	7440-39-3	Barium	т	mg/L	6020		*		*	0.0494			
	7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005			
	7440-42-8	Boron	т	mg/L	6020		*		*	0.474		$ \rangle$	
	7440-43-9	Cadmium	т	mg/L	6020		*		*	<0.001			
	7440-70-2	Calcium	т	mg/L	6020		*		*	33.5			Λ
	7440-47-3	Chromium	т	mg/L	6020		*		*	<0.01			
	7440-48-4	Cobalt	т	mg/L	6020		*		*	0.00112			
	7440-50-8	Copper	т	mg/L	6020		*		*	0.00043	J		
	7439-89-6	Iron	т	mg/L	6020		*		*	0.267			
	7439-92-1	Lead	т	mg/L	6020		*		*	<0.002			
	7439-95-4	Magnesium	т	mg/L	6020		*		*	14.7	*		
	7439-96-5	Manganese	т	mg/L	6020		*		*	0.07			
	7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ĺ	AKGWA NUMBER ¹ ,	Facility Well/Spring Number	0000-0000		0000-0000		8004-4799		N				
	Facility's Loc	al Well or Spring Number (e.g.,	T. BLANK	2	T. BLANK	3	358						
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
	7439-98-7	Molybdenum	т	mg/L	6020		*		*	<0.001			\square
	7440-02-0	Nickel	т	mg/L	6020		*		*	0.00246			\square
	7440-09-7	Potassium	т	mg/L	6020		*		*	2.22			
	7440-16-6	Rhodium	т	mg/L	6020		*		*	<0.005			
	7782-49-2	Selenium	т	mg/L	6020		*		*	<0.005			
	7440-22-4	Silver	т	mg/L	6020		*		*	<0.001			
C 4	7440-23-5	Sodium	т	mg/L	6020		*		*	42		$ \rangle /$	
÷	7440-25-7	Tantalum	т	mg/L	6020		*		*	<0.005			
	7440-28-0	Thallium	т	mg/L	6020		*		*	<0.002		X	
	7440-61-1	Uranium	т	mg/L	6020		*		*	<0.0002			
	7440-62-2	Vanadium	т	mg/L	6020		*		*	<0.02			
	7440-66-6	Zinc	т	mg/L	6020		*		*	0.00826	BJ		
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			
	67-64-1	Acetone	т	mg/L	8260	<0.005		0.00864		<0.005			
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		0.0008	J	<0.001			
Í	1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			
	100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			
	108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			
ľ	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number	0000-0000		0000-0000		8004-4799						
	Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	T. BLANK 2	2	T. BLANK	3	358			
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
	75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			
	74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			/
ſ	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		0.00198	J	<0.005			/
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		$ \rangle /$	
С 4	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		()	
	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		V	
	74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		X	
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			$\left \right\rangle$
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			$ \rangle$
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
ſ	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
	75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
	79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		0.00505		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER1,	Facility Well/Spring Number	0000-0000		0000-0000		8004-4799		Ν				
	Facility's Lo	cal Well or Spring Number (e.g., M	T. BLANK	2	T. BLANK	3	358						
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
Ī	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			
0	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
43	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000195		<0.0000195			
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			<u> </u>
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
	1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.0964			
	12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.0964			
	11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.0964			
	11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.0964			
	53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.0964			
ſ	12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.0964			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-44

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000		0000-0000		8004-4799					
Facility's Loc	al Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		358			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*	<0.0964			
11096-82-5	PCB-1260	т	ug/L	8082		*		*	<0.0964			17
11100-14-4	PCB-1268	т	ug/L	8082		*		*	<0.0964			/
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*	2.12	*		
12587-47-2	Gross Beta	т	pCi/L	9310		*		*	37.6	*		
10043-66-0	Iodine-131	т	pCi/L			*		*		*	$ \rangle /$	
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*	0.694	*		
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*	-0.259	*	l V	
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*	43.7	*	Λ	
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*	-0.155	*		
10028-17-8	Tritium	т	pCi/L	906.0		*		*	-14.4	*		
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*	<20			
57-12-5	Cyanide	т	mg/L	9012		*		*	<0.2			
20461-54-5	Iodide	т	mg/L	300.0		*		*	<0.5			\backslash
S0268	Total Organic Carbon	т	mg/L	9060		*		*	0.989	J		$ \rangle$
S0586	Total Organic Halides	т	mg/L	9020		*		*	0.00694	J		$ \rangle$
											/	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description												
004-4798 MW357	MW357UG4-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement												
		Magnesium	Е	Result estimated due to matrix interferences.												
		Gross alpha		TPU is 7.79. Rad error is 7.52.												
		Gross beta		TPU is 12.4. Rad error is 10.												
		lodine-131		Analysis of constituent not required and not performed.												
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.434. Rad error is 0.434.												
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.68. Rad error is 2.68.												
		Technetium-99		TPU is 13.6. Rad error is 13.1.												
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.526. Rad error is 0.526.												
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 151. Rad error is 151.												
004-4799 MW358	MW358UG4-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement												
		Magnesium	E	Result estimated due to matrix interferences.												
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 6.16. Rad error is 6.14.												
		Gross beta		TPU is 9.56. Rad error is 7.95.												
		lodine-131		Analysis of constituent not required and not performed.												
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.42. Rad error is 0.42.												
														Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.64. Rad error is 1.64.
		Technetium-99		TPU is 14. Rad error is 13.4.												
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.736. Rad error is 0.733.												
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 145. Rad error is 145.												
004-0981 MW359	MW359UG4-19	Magnesium	Е	Result estimated due to matrix interferences.												
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.93. Rad error is 4.89.												
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.21. Rad error is 4.21.												
		lodine-131		Analysis of constituent not required and not performed.												
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.587. Rad error is 0.586.												
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.66. Rad error is 2.65.												
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 11.7. Rad error is 11.7.												
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.589. Rad error is 0.588.												
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 136. Rad error is 136.												

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description										
004-4800 MW360	MW360UG4-19	Magnesium	E	Result estimated due to matrix interferences.										
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.32. Rad error is 4.31.										
		Gross beta		TPU is 8.09. Rad error is 7.77.										
		lodine-131		Analysis of constituent not required and not performed.										
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.69. Rad error is 0.687.										
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.58. Rad error is 2.58.										
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 11.5. Rad error is 11.5.										
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.667. Rad error is 0.666.										
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 128. Rad error is 128.										
004-4795 MW361	MW361UG4-19	Magnesium	E	Result estimated due to matrix interferences.										
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.94. Rad error is 3.94.										
		Gross beta		TPU is 11.9. Rad error is 9.48.										
		lodine-131		Analysis of constituent not required and not performed.										
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.533. Rad error is 0.532.										
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.53. Rad error is 2.53.										
												Technetium-99		TPU is 15.6. Rad error is 14.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.82. Rad error is 0.813.										
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 127. Rad error is 127.										
004-0986 MW362	MW362UG4-19	Magnesium	E	Result estimated due to matrix interferences.										
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.62. Rad error is 6.6.										
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 5.66. Rad error is 5.61.										
		lodine-131		Analysis of constituent not required and not performed.										
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.641. Rad error is 0.641.										
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.31. Rad error is 2.31.										
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 12.3. Rad error is 12.3.										
		Thorium-230	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.66. Rad error is 0.658.										
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 137. Rad error is 137.										

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

4.54. Red error is 4.53. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 4.55. Rad error is 0.836. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.85. Rad error is 0.836. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.85. Rad error is 0.836. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.86. Rad error is 0.836. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.86. Rad error is 0.836. Strontium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.768. Rad error is 0.787. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.768. Rad error is 0.787. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 8004-4797 MW364 MW364UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 8.81. Iddine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.355. Strontium-90 TPU is 10.7. Rad error is 1.3.5. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.356. 8004-0984 MW365 MW365UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha E Result estimated due to matrix interferences. Gross beta TPU is 10.7. Rad error is 1.3.5. Rad error is 0.357. Rad error is 0.356. Intorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.375. Rad error is 0.353. Rad error is 0.355. Rad error is 0.353. Rad error is 0.355. Rad error is 0.456. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 5.5. Rad error is 0.456. Indicates analyte/nuclide was analyzed for, but not detect 0.739. Rad error is 0.375. Rad error is 0.456. Indicates analyte/nuclide was analyzed for, but not detect 0.739. Rad error is 0.	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Gross alpha U Indicates analyte/huclide was analyzed for, but not detect 4.54. Rad error is 4.53. Gross beta U Indicates analyte/huclide was analyzed for, but not detect 4.55. Rad error is 4.55. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/huclide was analyzed for, but not detect 0.85. Rad error is 0.336. Strontium-90 U Indicates analyte/huclide was analyzed for, but not detect 0.85. Rad error is 0.342. Technetium-99 U Indicates analyte/huclide was analyzed for, but not detect 1.38. Rad error is 11.7. Thorium-230 U Indicates analyte/huclide was analyzed for, but not detect 1.38. Rad error is 10.78. 8004-4797 MW364 MW364UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/huclide was analyzed for, but not detect 1.36. Rad error is 8.1. Iodine-131 Analysis of constituent not required and not performed. Radurm-226 U Indicates analyte/huclide was analyzed for, but not detect 1.36. Rad error is 0.566. Strontium-90 U Indicates analyte/huclide was analyzed for, but not detect 5.58. Rad error is 13.5. Thorium-230 U Indicates analyte/huclide was analyzed for, but not detect 5.58. Rad error is 13.5. <t< td=""><td>8004-4796 MW363</td><td>MW363UG4-19</td><td>Nitrate & Nitrite</td><td>Н</td><td>Analysis performed outside holding time requirement</td></t<>	8004-4796 MW363	MW363UG4-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
4.54. Rad error is 4.53. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 4.55. Rad error is 0.336. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.96. Rad error is 0.337. Trotium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.96. Rad error is 0.327. Trotium-99 U Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 0.377. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 1.0. 3004-4797 MW364 MW364UG4-19 Magnesium E Result estimated due to matrix interferences. Gross beta TPU is 10.5. Rad error is 8.1. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 8.1. Gross beta TPU is 10.5. Rad error is 8.5. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 8.1. Gross beta TPU is 10.5. Rad error is 8.1. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 13.5. Trou is 1.4.7. Rad error is 13.5. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 13.5. Trou is 1.4.7. Rad error is 3.5. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 3.5. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 3.5. Analysis of constituent not required and not performed. Rad error is 13.5. Trou is 1.4.7. Rad error is 3.5. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.738. Rad error is 0.76. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.738. Rad error is 0.76. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.738. Rad error i			Magnesium	E	Result estimated due to matrix interferences.
 4.55. Rad error is 4.55. Iodine-131 Radium-226 Indicates analyte/nuclide was analyzed for, but not detect 0.85. Rad error is 0.836. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 1.7. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detect 0.787. Tritium Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 1.36. Storotium-99 Indicates analyte/nuclide was analyzed for, but not detect 0.787. Tritium Indicates analyte/nuclide was analyzed for, but not detect 0.787. Tritium Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 1.3. Gross alpha Indicates analyte/nuclide was analyzed for, but not detect 0.787. Gross beta Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 8.81. Iodine-131 Analysis of constituent not required and not performed. Radium-226 Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 0.565. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 1.3.5. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detect 0.568. Rad error is 0.565. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detect 1.5.8 and error is 1.5.5. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detect 1.5.8 and error is 1.5.5. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detect 5.5.3 Rad error is 1.5.5. Gross alpha Indicates analyte/nuclide was analyzed for, but not detect 5.5.3. Rad error is 1.5.5. 			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.54. Rad error is 4.53.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.85. Rad error is 0.836. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.96. Rad error is 3.92. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 0.787. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 1.8. Rad error is 1.96. i004-4797 MW364 MW364UG4-19 Magnesium E Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Gross beta TPU is 10.5. Rad error is 8.1. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 0.397. i004-0984 MW365 MW365UG4-19 Magnesium i004-0984 MW365 MW365UG4-19 Magnesium i004-0984 Gross beta TPU is 14.7. Rad error is 0.397. i004-0984 MW365 MW365UG4-19 Magnesium i004-0984 Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 0.397. i004-0984 MW365 MW365UG4-19			Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.55. Rad error is 4.55.
0.85. Rad error is 0.38. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.96. Rad error is 3.92. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 0.788. Rad error is 0.787. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.788. Rad error is 0.787. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 136. Rad error is 0.787. with the technologies of technologies of the technologies of technologies of the technologies of			lodine-131		Analysis of constituent not required and not performed.
 3.96. Rad error is 3.92. Technetium-99 Indicates analyte/nuclide was analyzed for, but not detect 11.8. Rad error is 0.787. Tritium Indicates analyte/nuclide was analyzed for, but not detect 0.788. Rad error is 0.787. Tritium Indicates analyte/nuclide was analyzed for, but not detect 136. Rad error is 18.6. Gross alpha Indicates analyte/nuclide was analyzed for, but not detect 8.2. Rad error is 8.1. Gross beta Indicates analyte/nuclide was analyzed for, but not detect 8.2. Rad error is 8.1. Iodine-131 Analysis of constituent not required and not performed. Radierror is 0.566. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detect 2.18. Rad error is 0.566. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 13.5. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 13.6. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 13.5. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 15.5. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.6. Gross alpha Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.6. Gross alpha Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.6. Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.6. Gross alpha Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.6. Iodine-131 Analysis of constituent not required and not pe			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.85. Rad error is 0.836.
11.8. Rad error is 11.7. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.78. Rad error is 0.787. 1004-4797 MW364 MW364UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 8.2. Rad error is 8.81. Gross beta TPU is 10.5. Rad error is 8.81. Iodiane-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.567. N004-0984 MW365 MW365UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.397. Tiftium U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 5.48. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 5.48. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad err			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.96. Rad error is 3.92.
0.788. Rad error is 0.787. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 136. Rad error is 136. 1004-4797 MW364 MW364UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 82. Rad error is 8.1. Gross beta TPU is 10.5. Rad error is 8.81. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 0.565. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.18. Rad error is 13.5. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.568. Rad error is 13.5. 1004-0984 MW365 MW365UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 5.48. 1004-0984 MW365 MW365UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 5.48. Gross beta U Indicates analyte/nuclide w			Technetium-99		
136. Rad error is 136. 137. Gross alpha U 138. Ad error is 136. 139. Gross beta TPU is 10.5. Rad error is 8.1. 136. Rad error is 136. 136. Rad error is 136. 136. Rad error is 136. 136. Gross beta 137. Rad error is 136. 138. Rad error is 136. 139. Rad error is 136. 139. Rad error is 136. 139. Rad error is 136. 130. Rad error is 136. 130. Rad error is 136. 131. Rad error is 136. 132. Rad error is 136. 133. Technetium-90 133. Thorium-230 133. Thorium-230 133. Thorium-230 134. Rad error is 135. 135. Rad error is 135. 136. Gross alpha 137. Tritium 138. Rad error is 155. 139. Rad error is 155. 130. Rad error is 130. 130. Rad error is 130. 131. Rad error i					
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 8.2. Rad error is 8.1. Gross beta TPU is 10.5. Rad error is 8.1. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 0.565. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 0.565. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.397. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 50.397. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 55. 8004-0984 MW365 MW365UG4-19 Magnesium E Result estimated due to matrix interferences. Gross beta U Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 6.05. iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 6.05. iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analy			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 136. Rad error is 136.
8.2. Rad error is 8.1. Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 0.565. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.367. Rad error is 2.18. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.397. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 155. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 0.537. Rad error is 5.48. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 0.538. Rad error is 5.48. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 5.48. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 6.05. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 3.61. Icdime-131	004-4797 MW364	MW364UG4-19	Magnesium	Е	Result estimated due to matrix interferences.
Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 0.565. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.18. Rad error is 2.18. Technetium-99 TPU is 14.7. Rad error is 0.367. Thorium-230 Thritium U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.397. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 155. Rad error is 0.397. i004-0984 MW365 MW365UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.48. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 6.05. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 0.776. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 3.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 3.61. Technetium-99 U <td></td> <td></td> <td>Gross alpha</td> <td>U</td> <td>Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.2. Rad error is 8.1.</td>			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.2. Rad error is 8.1.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.567. Rad error is 0.565. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.18. Rad error is 2.18. Technetium-99 TPU is 14.7. Rad error is 13.5. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.397. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 155. Rad error is 155. 004-0984 MW365 MW365UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 5.48. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 0.776. Idaime-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 0.776. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 3.61. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 0.776. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 11.4. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed			Gross beta		TPU is 10.5. Rad error is 8.81.
0.567. Rad error is 0.565. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 2.18. Rad error is 2.18. Technetium-99 TPU is 14.7. Rad error is 0.397. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.397. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 155. Rad error is 0.397. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 155. Gross beta Gross beta Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 6.05. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 0.61. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 15.6. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 14.4. Rad error is 3.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 14.4. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 14.4. Rad error is 0.772. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 14.4. Rad error is 0.772. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 14.4. Rad error is 0.772. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 14.4. Rad error is 0.772. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 15.5. Strontium-99 U Indicates analyte/nuclide was analyzed for, but not detect 14.4. Rad error is 0.732. Ra			lodine-131		Analysis of constituent not required and not performed.
2.18. Rad error is 2.18. Technetium-99 Thorium-230 Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.397. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 155. Rad error is 155. 8004-0984 MW365 MW365UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.48. Gross beta U Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 0.776. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 3.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 1.1.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 1.1.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732. Tritium U			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.567. Rad error is 0.565.
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.398. Rad error is 0.397. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 155. Rad error is 155. 8004-0984 MW365 MW365UG4-19 Magnesium E Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.48. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 6.05. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 0.776. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 3.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 1.1.4. Rad error is 0.732. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732.			Strontium-90	U	
0.398. Rad error is 0.397. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 155. Rad error is 155. Rouderops MW365 MW365UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.48. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 6.05. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 0.776. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 3.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 1.4. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732.			Technetium-99		TPU is 14.7. Rad error is 13.5.
3004-0984 MW365 MW365UG4-19 Magnesium E Result estimated due to matrix interferences. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.48. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 6.05. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 0.776. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.732.			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.398. Rad error is 0.397.
Gross alphaUIndicates analyte/nuclide was analyzed for, but not detect 5.53. Rad error is 5.48.Gross betaUIndicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 6.05.Iodine-131Analysis of constituent not required and not performed.Radium-226UIndicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 0.776.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 3.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detect 11.4. Rad error is 11.4.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732.TritiumUIndicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 155. Rad error is 155.
5.53. Rad error is 5.48. Gross beta U Indicates analyte/nuclide was analyzed for, but not detect 6.2. Rad error is 6.05. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 0.776. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 3.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 11.4. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732. Tritium U Indicates analyte/nuclide was analyzed for, but not detect	004-0984 MW365	MW365UG4-19	Magnesium	Е	Result estimated due to matrix interferences.
6.2. Rad error is 6.05.Iodine-131Radium-226UStrontium-90UIndicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 3.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 11.4.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 0.776.TritiumUIndicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.53. Rad error is 5.48.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect 0.793. Rad error is 0.776. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 3.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 11.4. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.732.			Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.2. Rad error is 6.05.
0.793. Rad error is 0.776. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 3.61. Rad error is 3.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 11.4. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.732.			lodine-131		Analysis of constituent not required and not performed.
3.61. Rad error is 3.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.732. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.732.			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.793. Rad error is 0.776.
11.4. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.732. Rad error is 0.732. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.732.					
0.732. Rad error is 0.732. Tritium U Indicates analyte/nuclide was analyzed for, but not detect					
			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 139. Rad error is 139.

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description				
004-0982 MW366	MW366UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.				
		Magnesium	Е	Result estimated due to matrix interferences.				
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.1. Rad error is 2.1.				
		Gross beta		TPU is 11.6. Rad error is 9.21.				
		lodine-131		Analysis of constituent not required and not performed.				
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.796. Rad error is 0.796.				
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.69. Rad error is 2.69.				
		Technetium-99		TPU is 13.4. Rad error is 12.5.				
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.501. Rad error is 0.5.				
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 145. Rad error is 145.				
004-4793 MW367	MW367UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.				
		Magnesium	E	Result estimated due to matrix interferences.				
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 4.21. Rad error is 4.2.				
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.21. Rad error is 7.03.				
			lodine-131		Analysis of constituent not required and not performed.			
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.866. Rad error is 0.865.				
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.86. Rad error is 1.86.				
						Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.894. Rad error is 0.894.				
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 135. Rad error is 135.				
004-0983 MW368	MW368UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.				
		Magnesium	E	Result estimated due to matrix interferences.				
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.14. Rad error is 8.08.				
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 6.84. Rad error is 6.8.				
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.				
		Radium-226	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.656. Rad error is 0.655.				
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 2.08. Rad error is 2.08.				
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 12.2. Rad error is 12.2.				
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.518. Rad error is 0.517.				
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 137. Rad error is 137.				

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring _Point	Facility Sample ID	Constituent	Flag	Description
3004-4820 MW369	MW369UG4-19	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.03. Rad error is 5.01.
		Gross beta		TPU is 24.3. Rad error is 14.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.722. Rad error is 0.717.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.67. Rad error is 1.67.
		Technetium-99		TPU is 14.8. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.565. Rad error is 0.564.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 157. Rad error is 156.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
3004-4818 MW370	MW370UG4-19	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.31. Rad error is 9.15.
		Gross beta		TPU is 13.6. Rad error is 10.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.649. Rad error is 0.647.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.05. Rad error is 1.05.
		Technetium-99		TPU is 19.9. Rad error is 15.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.324. Rad error is 0.323.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 153. Rad error is 153.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
3004-4819 MW371	MW371UG4-19	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.36. Rad error is 9.09.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.67. Rad error is 5.58.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.849. Rad error is 0.838.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.24. Rad error is 1.24.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.08. Rad error is 1.07.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 134. Rad error is 134.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4808 MW372		Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	н	Analysis performed outside holding time requirement
		Magnesium	Е	Result estimated due to matrix interferences.
		Vinyl acetate	н	Analysis performed outside holding time requirement
		Acetone	н	Analysis performed outside holding time requirement
		Acrolein	н	Analysis performed outside holding time requirement
		Acrylonitrile	н	Analysis performed outside holding time requirement
		Benzene	н	Analysis performed outside holding time requirement
		Chlorobenzene	Н	Analysis performed outside holding time requirement
		Xylenes	Н	Analysis performed outside holding time requirement
		Styrene	Н	Analysis performed outside holding time requirement
		Toluene	Н	Analysis performed outside holding time requirement
		Chlorobromomethane	н	Analysis performed outside holding time requirement
		Bromodichloromethane	н	Analysis performed outside holding time requirement
		Tribromomethane	н	Analysis performed outside holding time requirement
		Methyl bromide	н	Analysis performed outside holding time requirement
		Methyl Ethyl Ketone	н	Analysis performed outside holding time requirement
		trans-1,4-Dichloro-2-butene	Н	Analysis performed outside holding time requirement
		Carbon disulfide	Н	Analysis performed outside holding time requirement
		Chloroethane	Н	Analysis performed outside holding time requirement
		Chloroform	Н	Analysis performed outside holding time requirement
		Methyl chloride	Н	Analysis performed outside holding time requirement
		cis-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement
		Methylene bromide	Н	Analysis performed outside holding time requirement
		1,1-Dichloroethane	Н	Analysis performed outside holding time requirement
		1,2-Dichloroethane	Н	Analysis performed outside holding time requirement
		1,1-Dichloroethylene	Н	Analysis performed outside holding time requirement
		1,2-Dibromoethane	Н	Analysis performed outside holding time requirement
		1,1,2,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement
		1,1,1-Trichloroethane	Н	Analysis performed outside holding time requirement
		1,1,2-Trichloroethane	Н	Analysis performed outside holding time requirement
		1,1,1,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement
		Vinyl chloride	Н	Analysis performed outside holding time requirement
		Tetrachloroethene	Н	Analysis performed outside holding time requirement
		Trichloroethene	Н	Analysis performed outside holding time requirement
		Ethylbenzene	Н	Analysis performed outside holding time requirement
		2-Hexanone	Н	Analysis performed outside holding time requirement
		lodomethane	Н	Analysis performed outside holding time requirement
		Dibromochloromethane	Н	Analysis performed outside holding time requirement
		C-5	0	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4808 MW372	MW372UG4-19	Carbon tetrachloride	Н	Analysis performed outside holding time requirement
		Dichloromethane	Н	Analysis performed outside holding time requirement
		Methyl Isobutyl Ketone	Н	Analysis performed outside holding time requirement
		1,2-Dichloropropane	Н	Analysis performed outside holding time requirement
		trans-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement
		cis-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement
		trans-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement
		Trichlorofluoromethane	Н	Analysis performed outside holding time requirement
		1,2,3-Trichloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Н	Analysis performed outside holding time requirement
		1,4-Dichlorobenzene	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.72. Rad error is 3.72.
		Gross beta		TPU is 26.9. Rad error is 14.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.792. Rad error is 0.79.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.93. Rad error is 1.93.
		Technetium-99		TPU is 25.9. Rad error is 16.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.925. Rad error is 0.924.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 145. Rad error is 145.
004-4792 MW373	MW373UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.27. Rad error is 6.26.
		Gross beta		TPU is 8.81. Rad error is 8.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.67. Rad error is 0.669.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.89. Rad error is 2.89.
		Technetium-99		TPU is 12.5. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.545. Rad error is 0.544.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 137. Rad error is 137.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0990 MW374	MW374UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.96. Rad error is 6.93.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6. Rad error is 5.98.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.372. Rad error is 0.37.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.89. Rad error is 2.89.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 11.9. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.863. Rad error is 0.853.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 142. Rad error is 142.
004-0985 MW375	MW375UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.77. Rad error is 3.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6. Rad error is 5.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.465. Rad error is 0.459.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.88. Rad error is 3.88.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.769. Rad error is 0.768.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 147. Rad error is 147.

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	Campie 12	Molybdenum	. 10.9	During sampling, the well went dry; therefore, no sample was
		Nickel		collected. During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		C-54	L	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa
		cis-1,2-Dichloroethene		collected. During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	ł	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was
		Fluoride		collected. During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Molybdenum		During sampling, the well went dry; therefore, no sample was
		Nickel		collected. During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		C-58	2	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample we collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample we collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample war collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample ware collected.
		lodomethane		During sampling, the well went dry; therefore, no sample ware collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample w collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample we collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample we collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample we collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample we collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample w collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample war collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	RI1UG4-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.52. Rad error is 3.52.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 4.46. Rad error is 4.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.684. Rad error is 0.676.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 2.16. Rad error is 2.16.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.714. Rad error is 0.709.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 139. Rad error is 139.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG4-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.19. Rad error is 2.18.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.41. Rad error is 5.31.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.609. Rad error is 0.604.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.34. Rad error is 2.34.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12.5. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.864. Rad error is 0.856.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 139. Rad error is 139.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		C-63		

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-19	Vanadium	- lug	Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG4-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		C-65		

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG4-19	Vanadium	riug	Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG4-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		C-67		

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG4-19	Vanadium	riug	Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring	Facility			
Point	Sample ID	Constituent	Flag	Description
8004-4799 MW358	MW358DUG4-19	Nitrate & Nitrite	н	Analysis performed outside holding time requirement
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.32. Rad error is 6.31.
		Gross beta		TPU is 10.4. Rad error is 8.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.764. Rad error is 0.762.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.79. Rad error is 1.79.
		Technetium-99		TPU is 14.5. Rad error is 13.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.391. Rad error is 0.39.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 137. Rad error is 137.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED—QUARTERLY, 3rd CY 2019Finds/Unit: KY8-980-008-982/1Facility: U.S. DOE—Paducah Gaseous Diffusion PlantLAB ID: NonePermit Number: SW07300014, SW07300015, SW07300045For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2019 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The third quarter 2019 data used to conduct the statistical analyses were collected in July 2019. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^{a,b}	SG	UCRS
MW377 ^{a,b}	SG	UCRS

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

^b Well was dry this quarter, and a groundwater sample could not be collected.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, third quarter 2019. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: $upper TL = X + (K \times S)$ lower TL = X - (K × S)

Parameters	
Aluminum	
Antimony	
Beta Activity	
Boron	
Bromide	
Calcium	
Chemical Oxygen Demand (COD)	
Chloride	
Cobalt	
Conductivity	
Copper	
Dissolved Oxygen	
Dissolved Solids	
Iron	
Magnesium	
Manganese	
Molybdenum	
Nickel	
Oxidation-Reduction Potential	
PCB, Total	
PCB-1242	
pH*	
Potassium	
Sodium	
Sulfate	
Technetium-99	
Total Organic Carbon (TOC)	
Total Organic Halides (TOX)	
Trichloroethene	
Vanadium	
Zinc	

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	2	5	Yes
Antimony	7	6	1	Yes
Beryllium	7	7	0	No
Boron	7	1	6	Yes
Bromide	7	5	2	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	3	4	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7		
cis-1,2-Dichloropropene	7	7	0 0	No No
Cobalt	7	5	2	Yes
Conductivity	7	0	7	
	7	0	7	Yes Yes
Copper Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	
	7	7	0	No
Dibromomethane	7	7		No
Dimethylbenzene, Total	7	0	0 7	No
Dissolved Oxygen Dissolved Solids	7	0	7	Yes
		0 7		Yes
Ethylbenzene	7	7	0	No
Iodide			0	No
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	4	3	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Nickel 7 0 7 Yes Oxidation-Reduction Potential 7 0 7 Yes Oxidation-Reduction Potential 7 0 7 Yes PCB. Total 7 6 1 Yes PCB-1016 7 7 0 No PCB-121 7 7 0 No PCB-122 7 7 0 No PCB-1248 7 7 0 No PCB-1248 7 7 0 No PCB-1248 7 7 0 No PCB-1260 7 7 0 No PCB-1268 7 7 0 No PCB-1268 7 7 0 No Pdtassum 7 1 6 Yes Potassium 7 1 6 Yes Radium-26 7 7 0 No Styrene <t< th=""><th>Parameters</th><th>Observations</th><th>Censored</th><th>Uncensored</th><th>Statistical</th></t<>	Parameters	Observations	Censored	Uncensored	Statistical
Oxidation-Reduction Potential 7 0 7 Yes PCB. Total 7 6 1 Yes PCB-1016 7 7 0 No PCB-1221 7 7 0 No PCB-1232 7 7 0 No PCB-1242 7 6 1 Yes PCB-1248 7 7 0 No PCB-1260 7 7 0 No PCB-1268 7 7 0 No Ptassium 7 1 6 Yes Radium-226 7 7 0 No Suffate 7 0 7 Yes Suffate 7 0 No No Technetium-99 7			Observation	Observation	Analysis?
PCB, Total 7 6 1 Yes PCB-1016 7 7 0 No PCB-1221 7 7 0 No PCB-1232 7 7 0 No PCB-1242 7 6 1 Yes PCB-1248 7 7 0 No PCB-1254 7 7 0 No PCB-1260 7 7 0 No PCB-1268 7 7 0 No PCB-1268 7 7 0 No PCB-1268 7 7 0 No Pdassium 7 1 6 Yes Radium-226 7 7 0 No Styrene 7 7 0 No Sulfate 7 7 0 No Technetium-99 7 7 0 No Technetium-99 7 7			*		
PCB-1016 7 7 0 No PCB-1221 7 7 0 No PCB-1232 7 7 0 No PCB-1242 7 6 1 Yes PCB-1248 7 7 0 No PCB-1254 7 7 0 No PCB-1260 7 7 0 No PCB-1268 7 7 0 No PCB-1268 7 7 0 No Pdassium 7 1 6 Yes Potassium 7 1 6 Yes Radium-226 7 7 0 No Solium 7 0 No Solium So Styrene 7 7 0 No Soliate 7 0 No Tetrachloroethene 7 7 0 No No Tetrachloroethene 7 7 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
PCB-1221 7 7 0 No PCB-1232 7 7 0 No PCB-1242 7 6 1 Yes PCB-1248 7 7 0 No PCB-1248 7 7 0 No PCB-1260 7 7 0 No PCB-1268 7 7 0 No PCB-1268 7 7 0 No PH 7 0 7 Yes Potassium 7 1 6 Yes Radium-226 7 7 0 No Styrene 7 7 0 No Sulfate 7 0 No So Tetrachoroethene 7 7 0 No Tetrachoroethene 7 7 0 No Tetrachoroethene 7 7 0 No Total Organic Carbon (TOC) 7 <td></td> <td></td> <td></td> <td>-</td> <td></td>				-	
PCB-1232 7 7 0 No PCB-1242 7 6 1 Yes PCB-1248 7 7 0 No PCB-1254 7 7 0 No PCB-1260 7 7 0 No PCB-1268 7 7 0 No PCB-1268 7 7 0 No PCB-1268 7 7 0 No Pdassium 7 1 6 Yes Potassium 7 7 0 No Rhodium 7 7 0 No Solium 7 0 No So Sulfate 7 0 No So Sulfate 7 7 0 No Technetium-99 7 7 0 No Thardup 7 7 0 No Thallum 7 7 0 <td></td> <td>-</td> <td></td> <td>0</td> <td></td>		-		0	
PCB-1242 7 6 1 Yes PCB-1248 7 7 0 No PCB-1254 7 7 0 No PCB-1260 7 7 0 No PCB-1268 7 7 0 No PH 7 0 7 Yes Potassium 7 1 6 Yes Radium-226 7 7 0 No Rubdium 7 7 0 No Solium 7 7 0 No Sulfate 7 0 No No Tantalum 7 7 0 No Technetium-99 7 7 0 No Thorium-230 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No trans-1,2-Dichloroethene					
PCB-1248 7 7 0 No PCB-1254 7 7 0 No PCB-1260 7 7 0 No PCB-1268 7 7 0 No PH 7 0 7 Yes Potassium 7 1 6 Yes Radium-226 7 7 0 No Sodium 7 0 No No Sodium 7 0 No No Suffate 7 0 No No Sulfate 7 7 0 No Tantalum 7 7 0 No Technetium-99 7 7 0 No Thorium-230 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Halides (TOX) 7 1 6 Yes Total Organic Halides (TOX) </td <td>PCB-1232</td> <td>7</td> <td>7</td> <td>0</td> <td>No</td>	PCB-1232	7	7	0	No
PCB-1254 7 7 0 No PCB-1260 7 7 0 No PCB-1268 7 7 0 No pH 7 0 7 Yes Potassium 7 1 6 Yes Radium-226 7 7 0 No Rhodium 7 7 0 No Sodium 7 7 0 No Solium 7 0 No Superior Suprene 7 7 0 No Sulfate 7 0 No Superior Tetrachorethene 7 7 0 No Thallum 7 7 0 No Thallium 7 7 <t< td=""><td>PCB-1242</td><td>7</td><td>6</td><td>1</td><td>Yes</td></t<>	PCB-1242	7	6	1	Yes
PCB-1260 7 7 0 No PCB-1268 7 7 0 No pH 7 0 7 Yes Potassium 7 1 6 Yes Radium-226 7 7 0 No Rhodium 7 7 0 No Sodium 7 7 0 No Sodium 7 0 No So Soliate 7 0 No So Sulfate 7 0 No So Tantalum 7 7 0 No Technetium-99 7 7 0 No Tetrachloroethene 7 7 0 No Thorium-230 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Halides (TOX) 7 1 6 Yes Total Organic Halides	PCB-1248	7	7	0	No
PCB-1268 7 7 0 No pH 7 0 7 Yes Potassium 7 1 6 Yes Radium-226 7 7 0 No Rhodium 7 7 0 No Styrene 7 0 No Solitate 7 0 No Sulfate 7 0 7 2 9 No No Sulfate 7 0 7 0 No 7 9 No Technetium-99 7 7 0 No 7 7 0 No Tetrachloroethene 7 7 0 No 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No 7 1 6 Yes Total Organic Carbon (TOC) 7 7 0 No 7 1 6 Yes Tota	PCB-1254	7	7	0	No
pH 7 0 7 Yes Potassium 7 1 6 Yes Radium-226 7 7 0 No Rhodium 7 7 0 No Sodium 7 0 7 Yes Styrene 7 7 0 No Sulfate 7 0 No Teschnetium-99 7 7 0 No Technetium-99 7 7 0 No Tetrachloroethene 7 7 0 No Thallium 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Trans-1,2-Dichloroethene 7 7 0 No	PCB-1260	7	7	0	No
Potassium 7 1 6 Yes Radium-226 7 7 0 No Rhodium 7 7 0 No Sodium 7 7 0 No Sodium 7 0 7 Yes Styrene 7 7 0 No Sulfate 7 0 7 Yes Tantalum 7 7 0 No Technetium-99 7 7 0 No Tetrachloroethene 7 7 0 No Thorium-230 7 7 0 No Total Organic Carbon (TOC) 7 0 No Total Organic Halides (TOX) 7 1 6 Yes Total Organic Halides (TOX) 7 7 0 No trans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No <	PCB-1268	7	7	0	No
Radium-226 7 7 0 No Rhodium 7 7 0 No Sodium 7 0 7 Yes Styrene 7 7 0 No Sulfate 7 0 7 Yes Tantalum 7 7 0 No Technetium-99 7 7 0 No Tetrachloroethene 7 7 0 No Thallium 7 7 0 No Thorium-230 7 7 0 No Total Organic Carbon (TOC) 7 0 No No Total Organic Halides (TOX) 7 1 6 Yes Total Organic Halides (TOX) 7 7 0 No trans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No Trichlorofluoromethane 7 7 0	pH	7	0	7	Yes
Rhodium 7 7 0 No Sodium 7 0 7 Yes Styrene 7 7 0 No Sulfate 7 0 7 Yes Tantalum 7 7 0 No Technetium-99 7 7 0 No Tetrachloroethene 7 7 0 No Thallium 7 7 0 No Thorium-230 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Halides (TOX) 7 1 6 Yes trans-1,2-Dichloroethene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7	Potassium	7	1	6	Yes
Sodium 7 0 7 Yes Styrene 7 7 0 No Sulfate 7 0 7 Yes Tantalum 7 7 0 No Technetium-99 7 7 0 No Tetrachloroethene 7 7 0 No Thallium 7 7 0 No Thorium-230 7 7 0 No Toluene 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Halides (TOX) 7 1 6 Yes Total Organic Halides (TOX) 7 1 6 Yes trans-1,2-Dichloroethene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vinyl Acetate 7 7 0 </td <td>Radium-226</td> <td>7</td> <td>7</td> <td>0</td> <td>No</td>	Radium-226	7	7	0	No
Styrene 7 7 0 No Sulfate 7 0 7 Yes Tantalum 7 7 0 No Technetium-99 7 7 0 No Tetrachloroethene 7 7 0 No Thatlium 7 7 0 No Thorium-230 7 7 0 No Toluene 7 7 0 No Total Organic Carbon (TOC) 7 0 No Tans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vinyl Acetate 7 7 0 No	Rhodium	7	7	0	No
Sulfate 7 0 7 Yes Tantalum 7 7 0 No Technetium-99 7 7 0 No Tetrachloroethene 7 7 0 No Tetrachloroethene 7 7 0 No Thallium 7 7 0 No Thorium-230 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Halides (TOX) 7 1 6 Yes trans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vinyl Acetate 7 7 0 No	Sodium	7	0	7	Yes
Tantalum 7 7 0 No Technetium-99 7 7 0 No Tetrachloroethene 7 7 0 No Thallium 7 7 0 No Thallium 7 7 0 No Thorium-230 7 7 0 No Toluene 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Halides (TOX) 7 1 6 Yes Total Organic Halides (TOX) 7 1 6 Yes trans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vinyl Acetate 7 7 0 No	Styrene	7	7	0	No
Technetium-99 7 7 0 No Tetrachloroethene 7 7 0 No Thallium 7 7 0 No Thorium-230 7 7 0 No Toluene 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Halides (TOX) 7 1 6 Yes Total Organic Halides (TOX) 7 7 0 No trans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vanadium 7 5 2 Yes	Sulfate	7	0	7	Yes
Tetrachloroethene 7 7 0 No Thallium 7 7 0 No Thorium-230 7 7 0 No Toluene 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Halides (TOX) 7 1 6 Yes Tans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vinyl Acetate 7 7 0 No	Tantalum	7	7	0	No
Thallium 7 7 0 No Thorium-230 7 7 0 No Toluene 7 7 0 No Total Organic Carbon (TOC) 7 7 0 No Total Organic Carbon (TOC) 7 0 7 Yes Total Organic Halides (TOX) 7 1 6 Yes trans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vinyl Acetate 7 7 0 No	Technetium-99	7	7	0	No
Thorium-230 7 7 0 No Toluene 7 7 0 No Total Organic Carbon (TOC) 7 0 7 Yes Total Organic Carbon (TOC) 7 0 7 Yes Total Organic Halides (TOX) 7 1 6 Yes trans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vanadium 7 5 2 Yes Vinyl Acetate 7 7 0 No	Tetrachloroethene	7	7	0	No
Toluene 7 7 0 No Total Organic Carbon (TOC) 7 0 7 Yes Total Organic Halides (TOX) 7 1 6 Yes Total Organic Halides (TOX) 7 1 6 Yes Total Organic Halides (TOX) 7 1 6 Yes trans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vanadium 7 5 2 Yes Vinyl Acetate 7 7 0 No	Thallium	7	7	0	No
Total Organic Carbon (TOC)707YesTotal Organic Halides (TOX)716Yestrans-1,2-Dichloroethene770Notrans-1,3-Dichloropropene770Notrans-1,4-Dichloro-2-Butene770NoTrichlorofluoromethane770NoVanadium752YesVinyl Acetate770No	Thorium-230	-	7	0	No
Total Organic Halides (TOX)716Yestrans-1,2-Dichloroethene770Notrans-1,3-Dichloropropene770Notrans-1,4-Dichloro-2-Butene770NoTrichlorofluoromethane770NoVanadium752YesVinyl Acetate770No	Toluene	7	7	0	No
trans-1,2-Dichloroethene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No trans-1,3-Dichloropropene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vanadium 7 5 2 Yes Vinyl Acetate 7 7 0 No	Total Organic Carbon (TOC)	7	0	7	Yes
trans-1,3-Dichloropropene 7 7 0 No trans-1,4-Dichloro-2-Butene 7 7 0 No Trichlorofluoromethane 7 7 0 No Vanadium 7 5 2 Yes Vinyl Acetate 7 7 0 No			1	6	Yes
trans-1,4-Dichloro-2-Butene770NoTrichlorofluoromethane770NoVanadium752YesVinyl Acetate770No	trans-1,2-Dichloroethene			0	No
Trichlorofluoromethane770NoVanadium752YesVinyl Acetate770No	trans-1,3-Dichloropropene	7	7	0	No
Vanadium752YesVinyl Acetate770No	trans-1,4-Dichloro-2-Butene	7	7	0	No
Vinyl Acetate 7 7 0 No	Trichlorofluoromethane	7	7	0	No
Vinyl Acetate 7 7 0 No	Vanadium	7	5	2	Yes
	Vinyl Acetate	7			
		7	7	0	No

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

1,1,2-Tetrachloroethane 6 6 0 No 1,1,2-Tetrachloroethane 6 6 0 No 1,1,2-Techloroethane 6 6 0 No 1,1,2-Techloroethane 6 6 0 No 1,2-Techloroethane 6 6 0 No 1,2-Dichloropropane 6 6 0 No 1,2-Dichloroberzene 6 6 0 No 1,2-Dichloroberzene 6 6 0 No 2-Butanone 6 6 0 No 2-Butanone 6 6 0 No Acetone 6 6 0 No Acetone 6 6 0 No Aluminum 6 4 2 Yes Antimony 6 5 1 Yes Boron 6 0 No No Atersonitile 6 1 5 Yes <th>Parameters</th> <th>Observations</th> <th>Censored Observation</th> <th>Uncensored Observation</th> <th>Statistical Analysis?</th>	Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,12-Trichloroethane 6 6 0 No 1,12-Trichloroptopane 6 6 0 No 1,23-Trichloroptopane 6 6 0 No 1,2-Dibromo-3-chloroptopane 6 6 0 No 1,2-Dibromo-3-chloroptopane 6 6 0 No 1,2-Dibromoethane 6 6 0 No 1,2-Dichloroptopane 6 6 0 No 2.Hutanone 6 6 0 No 2.Hexanone 6 6 0 No Actolicin 6 6 0 No Acetone 6 6 0 No Actroloinitile 6 6 0 No Aluminum 6 5 1 Yes Beryllium 6 6 0 No Bromodchoromethane 6 6 0 No Bromodchoromethane 6 6 0	1,1,1,2-Tetrachloroethane	6	6	0	
1.1-Dichloroethane 6 6 0 No 1.2.Dibromoethane 6 6 0 No 1.2.Dibromoethane 6 6 0 No 1.2.Dibromoethane 6 6 0 No 1.2.Dichloroporpane 6 6 0 No 1.2.Dichloroporpane 6 6 0 No 1.2.Dichloroporpane 6 6 0 No 2.Ditanone 6 6 0 No 2.Hexanone 6 6 0 No 4.Actolein 6 6 0 No Actrolein 6 6 0 No Actrolein 6 1 5 Yes Antimony 6 1 5 Yes Bromide 6 1 5 Yes Bromoideloromethane 6 6 0 No Bromoideloromethane 6 6 0 No	1,1,2,2-Tetrachloroethane	6	6	0	No
1.2.3-Trichloropropane 6 6 0 No 1.2-Dibronno-3-chloropropane 6 6 0 No 1.2-Dibronno-s-chloropropane 6 6 0 No 1.2-Dibronno-s-chloropropane 6 6 0 No 1.2-Dichlorobenzene 6 6 0 No 1.2-Dichloropropane 6 6 0 No 2-Hutanone 6 6 0 No 2-Hexanone 6 6 0 No Acrolein 6 6 6 0 No Acrolein 6 6 6 0 No Acrolein 6 6 1 5 Yes Beryllium 6 5 1 Yes Boron 6 1 5 Yes Bromoic 6 1 5 Yes Boron 6 1 5 Yes Bromoichloromethane	1,1,2-Trichloroethane	6	6	0	No
1.2-Dibromo-3-chloropropane 6 6 0 No 1.2-Dichloroperane 6 6 0 No 1.2-Dichloroperane 6 6 0 No 1.2-Dichloropropane 6 6 0 No 2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No Acetone 6 1 2 Yes Antimony 6 5 1 Yes Boron 6 1 5 Yes Bromide 6 1 5 Yes Bromide 6 1 5 Yes Bromochloromethane	1,1-Dichloroethane	6	6	0	No
1,2-Dibromoethane 6 6 0 No 1,2-Dichlorobenzene 6 6 0 No 1,2-Dichloropropane 6 6 0 No 2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No 2-Hexanone 6 6 0 No 4-Methyl-2-pentanone 6 6 0 No Acrolein 6 6 0 No Acroleininitile 6 6 0 No Atimiony 6 5 1 Yes Antimony 6 5 1 Yes Boron 6 0 0 No Bromodchloromethane 6 1 5 Yes Bromodchloromethane 6 6 0 No Bromodchloromethane 6 6 0 No Bromodchloromethane 6 6 0 No	1,2,3-Trichloropropane	6	6	0	No
1.2-Dichloropropane 6 6 0 No 1.2-Dichloropropane 6 6 0 No 2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No 2-Hexanone 6 6 0 No Acetone 6 6 0 No Aluminum 6 4 2 Yes Antimony 6 5 1 Yes Boron 6 1 5 Yes Bromide 6 1 5 Yes Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromodichlorometh	1,2-Dibromo-3-chloropropane	6	6	0	No
1.2-Dichloropropane 6 6 0 No 2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No 4-Methyl-2-pentanone 6 6 0 No Actolein 6 6 0 No Actoloin 6 4 2 Yes Antimony 6 5 1 Yes Beryllium 6 6 1 5 Yes Boron 6 1 5 Yes Bromoide 6 1 5 Yes Bromodichloromethane 6 6 0 No No No Bromodichloromethane 6 6 0 No No Chaiting 6 6 0	1,2-Dibromoethane	6	6	0	No
2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No 4-Methyl-2-pentanone 6 6 0 No Acetone 6 6 0 No Acetonitrile 6 6 0 No Atiminum 6 4 2 Yes Antimony 6 5 1 Yes Beryllium 6 1 5 Yes Bronol 6 1 5 Yes Bronolchoromethane 6 6 0 No Bromodichoromethane 6 6 0 No Bromonofrom 6 6 0 No Bromodethane 6 6 0 No Catron disulfide	1,2-Dichlorobenzene	6	6	0	No
2-Hexanone 6 6 0 No 4-Methyl-2-pentanone 6 6 0 No Acetone 6 6 0 No Actolein 6 6 0 No Acrolein 6 6 0 No Acrolein 6 6 0 No Acrolein 6 6 0 No Acroleinin 6 6 0 No Attimony 6 5 1 Yes Beryllium 6 6 1 5 Yes Brono 6 1 5 Yes Bronolioromethane 6 6 0 No Bromooform 6 6 0 No Brononform 6 6 0 No Bromooform 6 6 0 No Bromooform 6 6 0 No Choriofor	1,2-Dichloropropane	6	6	0	No
4-Methyl-2-pentanone 6 6 0 No Actrolein 6 6 0 No Autminum 6 4 2 Yes Beryllium 6 6 0 No Beta activity 6 1 5 Yes Boron 6 1 5 Yes Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromochoromethane 6 6 0 No Bromochloromethane 6 6 0 No Carbon disulfide 6 6 0 No Chlorobenzene 6 6 0 No	2-Butanone	6	6	0	No
Acetone 6 6 0 No Acroloin 6 6 0 No Acrylonitrile 6 6 0 No Aluminum 6 4 2 Yes Antimony 6 5 1 Yes Beryllium 6 6 0 No Beta activity 6 1 5 Yes Boron 6 1 5 Yes Bromokloromethane 6 1 5 Yes Bromochloromethane 6 6 0 No Bromoform 6 6 0 No Bromonoform 6 6 0 No Bromonethane 6 6 0 No Calcium 6 0 6 2 Yes Carbon disulfide 6 6 0 No Chlorobenzene 6 6 0 No Chloroton 0	2-Hexanone	6	6	0	No
Acrolein 6 6 0 No Acrylonitrile 6 6 0 No Aluminum 6 4 2 Yes Antimony 6 5 1 Yes Beryllium 6 6 0 No Beta activity 6 1 5 Yes Boron 6 0 6 Yes Bromodchoromethane 6 1 5 Yes Bromodchloromethane 6 6 0 No Carbon disulfide 6 0 6 Yes Chlorobenzene 6 6 0 No	4-Methyl-2-pentanone	6	6	0	No
Acrylonitrile 6 6 0 No Aluminum 6 4 2 Yes Antimony 6 5 1 Yes Beryllum 6 5 1 Yes Beryllum 6 6 0 No Bromide 6 1 5 Yes Bromotichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodithloromethane 6 6 0 No Bromodithloromethane 6 6 0 No Choride 6 0 6 3 3 Yes Carloin disulfide Col 6 0 0 No Choride 0 No	Acetone	6	6	0	No
Aluminum 6 4 2 Yes Antimony 6 5 1 Yes Beryllium 6 6 0 No Beta activity 6 1 5 Yes Boron 6 0 6 Yes Bromoide 6 1 5 Yes Bromoide 6 6 0 No Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromomethane 6 6 0 No Bromodichloromethane 6 6 0 No Carbion 6 6 0 No Charbin Carbion 6 6 0 No Charbin 6 6 0 No Chlorobenzene 6 6 0 No Chioroethane	Acrolein	6	6	0	No
Aluminum 6 4 2 Yes Antimony 6 5 1 Yes Beryllium 6 6 0 No Beta activity 6 1 5 Yes Boron 6 0 6 Yes Bromoide 6 1 5 Yes Bromoide 6 6 0 No Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromomethane 6 6 0 No Bromodichloromethane 6 6 0 No Carbion 6 6 0 No Charbin Carbion 6 6 0 No Charbin 6 6 0 No Chlorobenzene 6 6 0 No Chioroethane					
Antimony 6 5 1 Yes Beryllium 6 6 0 No Beta activity 6 1 5 Yes Boron 6 0 6 Yes Boron 6 1 5 Yes Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Carbon disulfide 6 6 0 No Carbon disulfide 6 6 0 No Chlorobenzene 6 6 0 No Chloroform 6 6 0 No Chloromethane 6 6 0 No <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Beryllum 6 6 0 No Beta activity 6 1 5 Yes Bronnide 6 0 6 Yes Bromochloromethane 6 1 5 Yes Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chlorobenzene 6 6 0 No No Chloroberhane 6 6 0 No No Chloroberhane 6 6 0 No No Chloroberhane <td>Antimony</td> <td></td> <td>5</td> <td></td> <td></td>	Antimony		5		
Beta activity 6 1 5 Yes Bronn 6 0 6 Yes Bromole 6 1 5 Yes Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodithuromethane 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Calcium 6 6 0 No Carbon disulfide 6 6 0 No Chlorobenzene 6 6 0 No Chloroferm 6 6 0 No Chloromethane 6 6 0 No Cisi-1,2-Dichloropropene 6 6 0 No					
Boron 6 0 6 Yes Bromochloromethane 6 1 5 Yes Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromomethane 6 6 0 No Carbon disulfide 6 6 0 No Carbon disulfide 6 6 0 No Chlorobenzene 6 6 0 No					
Bromide 6 1 5 Yes Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromonethane 6 6 0 No Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Cisl-1,2-Dichloroethene 6 6 0 No cisl-1,2-Dichloroethene 6 6 0 No	•		_		
Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No					
Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chlorobenzene 6 6 0 No No Chlorobenzene 6 6 0 No No Chloroform 6 6 0 No No Chloroform 6 6 0 No No Chloroform 6 6 0 No No Chloropromethane 6 6 0 No No Cis-1,2-Dichloropropene 6 3 3 Yes Conductivity 6 0 6 Yes			-		
Bromoform 6 6 0 No Bromomethane 6 6 0 No Calcium 6 0 6 7 Carbon disulfide 6 6 0 No Charbon disulfide 6 6 0 No Chlorodetnane 6 6 0 No Chlorodethane 6 6 0 No Cis-1,2-Dichloropthene 6 6 0 No cis-1,3-Dichloroptopene 6 6 0 No Cobalt 6 0 6 9 Yes Conductivity 6 0 6 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 0 6 7 8 Chlorobenzene 6 6 0 No No Chlorobenzene 6 6 0 No No Chlorobenzene 6 6 0 No No Chlorobenzene 6 6 0 No No No Chlorobenzene 6 6 0 No No No No Chlorobenzene 6 6 0 No No No No Chlorobenzene 6 6 0 No No No Chlorobenzene 6 6 0 No No No Ciblorophrene 6					
Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorothane 6 6 0 No Chlorothane 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No cis-1,2-Dichloroethene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No <td></td> <td></td> <td></td> <td></td> <td></td>					
Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 0 6 Yes Chlorobenzene 6 0 6 Yes Chlorobenzene 6 6 0 No Chlorotethane 6 6 0 No Cis-1,2-Dichlorothene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Copper 6 0 No Dibromochloromethane 6 6 0 No Dibromochlorometh					
Chemical Oxygen Demand (COD) 6 3 3 Yes Chloride 6 0 6 Yes Chlorobenzene 6 0 6 Yes Chlorobenzene 6 6 0 No Cisla1, 2-Dichlorobene 6 0 6 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes <					
Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No Cis-1,2-Dichlorobene 6 6 0 No Cis-1,3-Dichloropropene 6 6 0 No Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No					
Chlorobenzene 6 6 0 No Chloroethane 6 6 0 No Chloroform 6 6 0 No Chloroethane 6 6 0 No Chloromethane 6 6 0 No Chloroethene 6 6 0 No cis-1,2-Dichloroethene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 0 6 2 Yes Conductivity 6 0 6 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromochloromethane 6 6 0 No Dibromochloromethane 6 6 0 No Dimethylbenzene, Total 6 6 0 No Dissolved Oxygen 6 0					
Chloroethane660NoChloroform660NoChloromethane660Nocis-1,2-Dichloroethene660Nocis-1,3-Dichloropropene660NoCobalt633YesConductivity606YesCopper606YesCyanide660NoDibromochloromethane660NoDibromothane660NoDissolved Oxygen606YesDissolved Solids60NoIodide660NoIodide660NoIodomethane660NoIodomethane660NoDissolved Solids60NoIodomethane660NoIodomethane660NoIodomethane660NoIodomethane660NoIodomethane660NoIodomethane660NoIodomethane660NoIodomethane660NoIodomethane660NoIodomethane660NoIodomethane660No<					
Chloroform 6 6 0 No Chloromethane 6 6 0 No cis-1,2-Dichloroethene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromodelnomethane 6 6 0 No Dibromodelnomethane 6 6 0 No Dibromodelnomethane 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 No No Iodide 6 6 0 No Iodide 6 6 0 No <					
Chloromethane 6 6 0 No cis-1,2-Dichloroethene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromochloromethane 6 6 0 No Dibromodethane 6 6 0 No Dibromodethane 6 6 0 No Dissolved Oxygen 6 0 No No Dissolved Solids 6 0 No No Iddide 6 6 0 No Iddide 6 6 0 No Dissolved Oxygen 6 6 0 No <td></td> <td></td> <td></td> <td></td> <td></td>					
cis-1,2-Dichloroethene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 0 6 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dibromoduloromethane 6 6 0 No Dibromoduloromethane 6 6 0 No Dibromoduloromethane 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Oxygen 6 0 No No Iddide 6 6 0 No Iddide 6 6 0 No					
cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 0 6 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Disolved Oxygen 6 0 6 7 Dissolved Solids 6 0 6 7 8 Ethylbenzene 6 6 0 No 10 Iodide 6					
Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 0 6 Yes Cyanide 6 0 6 Yes Cyanide 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dibromomethane 6 6 0 No Dissolved Oxygen 6 0 6 7 9 Dissolved Solids 6 0 6 7 9 Ethylbenzene 6 6 0 No 10					
Conductivity606YesCopper606YesCyanide660NoDibromochloromethane660NoDibromomethane660NoDibromomethane660NoDibromomethane660NoDibromomethane660NoDistolved Oxygen606YesDissolved Oxygen606YesEthylbenzene660NoIodide660NoIodide660NoIodomethane660NoIron615YesMagnesium606Yes		-	÷	-	
Copper606YesCyanide660NoDibromochloromethane660NoDibromomethane660NoDibromomethane660NoDimethylbenzene, Total660NoDissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIodomethane660NoMagnesium606Yes					
Cyanide660NoDibromochloromethane660NoDibromomethane660NoDimethylbenzene, Total660NoDissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodide660NoIron615YesMagnesium606Yes					
Dibromochloromethane660NoDibromomethane660NoDimethylbenzene, Total660NoDissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIron615YesMagnesium606Yes					
Dibromomethane660NoDimethylbenzene, Total660NoDissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIron615YesMagnesium606Yes					
Dimethylbenzene, Total660NoDissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIron615YesMagnesium606Yes					
Dissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIron615YesMagnesium606Yes					
Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 1 5 Yes Magnesium 6 0 6 Yes					
Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 1 5 Yes Magnesium 6 0 6 Yes					
Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 1 5 Yes Magnesium 6 0 6 Yes					
Iodomethane 6 6 0 No Iron 6 1 5 Yes Magnesium 6 0 6 Yes					
Iron 6 1 5 Yes Magnesium 6 0 6 Yes					
Magnesium 6 0 6 Yes					
	Maganese	6	0	6	Yes
Manganese0001 csMethylene chloride660No					

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored	Uncensored	Statistical
Molybdenum	6	Observation 6	Observation	Analysis? No
~		2	÷	Yes
Nickel	6		4	
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	6	0	No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	5	1	Yes
Antimony	6	5	1	Yes
Beryllium	6	6	0	No
Beta activity	6	1	5	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	1	5	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Molybdenum	6	6	0	No
Nickel	6	3	3	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	1	5	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	3	3	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	5	1	Yes

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 27, 26, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified historical background exceedances for calcium, dissolved oxygen, magnesium, oxidation-reduction potential, and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for beta activity, chemical oxygen demand (COD), conductivity, dissolved solids, oxidation-reduction potential, and technetium-99.

<u>LRGA</u>

This quarter's results identified historical background exceedances for beta activity, chemical oxygen demand (COD), oxidation-reduction potential, pH, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential, pH [*]
MW368: Calcium, Dissolved Oxygen, Magnesium, Oxidation- Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW370: Beta activity, Oxidation- Reduction Potential, Technetium-99
MW371: Calcium, Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW369: Beta Activity, Oxidation- Reduction Potential	MW373: Chemical Oxygen Demand (COD), Oxidation-Reduction Potential
MW374: Oxidation-Reduction Potential	MW372: Beta Activity, Chemical Oxygen Demand (COD), Conductivity, Dissolved Solids, Oxidation-Reduction Potential, Technetium-99	
MW375: Oxidation-Reduction Potential, Sulfate		

*pH concentration is less than the LTL.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.89	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	Current results exceed statistically derived historical background concentration in MW368 and MW371.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, and MW371.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW368.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.25	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW369 and MW372.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	Current results exceed statistically derived historical background concentration in MW372.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.85	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Tests Summary for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹A tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.25	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	Current results exceed statistically derived historical background concentration in MW373.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW361, MW364, MW367, MW370, and MW373.
pH**	Tolerance Interval	0.03	Current results exceed statistically derived historical background concentration in MW367.
Potassium	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW364 and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Tests Summary for Qualified Parameters for Historical Background—LRGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. **pH concentration is less than the LTL. ¹A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 5, 6, and 5 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (in Downgradient Wells)
of the TL Calculated Using Current Background Concentrations

URGA	LRGA
None	MW367: pH [*]
*pH concentration is less than the LTL	

pH concentration is less than the LTL

<u>UCRS</u>

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that calcium, magnesium, and sulfate in MW368 exceeded the current TL this quarter.

URGA

This guarter's results showed no exceedances in wells located downgradient of the landfill.

LRGA

This quarter's results showed an exceedance of pH in MW367; this well is located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.42	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW368 and MW371 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Oxygen	Tolerance Interval	0.87	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.45	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data
Oxidation-Reduction Potential	Tolerance Interval	0.24	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	1.23	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.83	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.55	MW372 exceeded the upper TL, which is evidence of a difference in concentration with respect to current background data
Conductivity	Tolerance Interval	0.24	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.27	MW372 exceeded the upper TL, which is evidence of a difference in concentration with respect to current background data
Oxidation-Reduction Potential	Tolerance Interval	0.12	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.76	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.67	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.38	MW373 exceeded the upper TL, which is evidence of a difference in concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.11	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
рН	Tolerance Interval	0.01	MW367 exceeded the lower TL, which is evidence of a difference in concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.75	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.300	S= 6.859	CV(1)= 2.078	K factor**= 2.523	TL(1)= 20.604	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.371	S= 1.678	CV(2) =-4.521	K factor**= 2.523	TL(2)= 3.863	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
opgruutent ()		instormed result		
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	2.24	0.806		
4/22/2002	0.2	-1.609		
7/15/2002	0.2	-1.609		
10/8/2002	0.2	-1.609		
1/8/2003	0.2	-1.609		
4/3/2003	0.2	-1.609		
7/9/2003	0.2	-1.609		
10/6/2003	0.2	-1.609		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	21.3	3.059		
1/7/2003	20	2.996		
4/2/2003	4.11	1.413		
7/9/2003	1.41	0.344		
10/7/2003	1.09	0.086		
1/6/2004	0.854	-0.158		
4/7/2004	0.2	-1.609		
7/14/2004	0.2	-1.609		

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0271	N/A	-3.608	NO
MW362	Downgradient	Yes	0.111	N/A	-2.198	NO
MW365	Downgradient	t No	0.05	N/A	-2.996	N/A
MW368	Downgradient	Yes	0.139	N/A	-1.973	NO
MW371	Upgradient	Yes	0.249	N/A	-1.390	NO
MW374	Upgradient	No	0.05	N/A	-2.996	N/A
MW375	Sidegradient	Yes	0.0249	N/A	-3.693	NO
NI/A D	1. 1		1 . 11		1 / 11 /	1 (

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Antimony UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.042	S = 0.079	CV(1)= 1.891	K factor**= 2.523	TL(1)= 0.240	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.607	S= 1.487	CV(2) =-0.323	K factor**= 2.523	TL(2)= -0.855	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	0.2	-1.609		
4/22/2002	0.2	-1.609		
7/15/2002	0.2	-1.609		
10/8/2002	0.005	-5.298		
1/8/2003	0.005	-5.298		
4/3/2003	0.005	-5.298		
7/9/2003	0.005	-5.298		
10/6/2003	0.005	-5.298		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	0.005	-5.298		
1/7/2003	0.005	-5.298		
4/2/2003	0.005	-5.298		
7/9/2003	0.005	-5.298		
10/7/2003	0.005	-5.298		
1/6/2004	0.005	-5.298		
4/7/2004	0.005	-5.298		
7/14/2004	0.005	-5.298		

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.003	N/A	-5.809	N/A
MW362	Downgradient	No	0.003	N/A	-5.809	N/A
MW365	Downgradient	No	0.003	N/A	-5.809	N/A
MW368	Downgradient	No	0.003	N/A	-5.809	N/A
MW371	Upgradient	No	0.003	N/A	-5.809	N/A
MW374	Upgradient	No	0.003	N/A	-5.809	N/A
MW375	Sidegradient	Yes	0.00115	5 N/A	-6.768	NO
N/A Dag	lts identified as l	Non Detects	during lak	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.034	S= 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	2	0.693
1/7/2003	0.2	-1.609
4/2/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/7/2003	0.2	-1.609
1/6/2004	0.2	-1.609
4/7/2004	0.2	-1.609
7/14/2004	0.2	-1.609

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.015	N/A	-4.200	N/A
MW362	Downgradient	Yes	0.0189	N/A	-3.969	NO
MW365	Downgradient	Yes	0.00728	N/A	-4.923	NO
MW368	Downgradient	Yes	0.00821	N/A	-4.802	NO
MW371	Upgradient	Yes	0.0102	N/A	-4.585	NO
MW374	Upgradient	Yes	0.00968	N/A	-4.638	NO
MW375	Sidegradient	Yes	0.00903	N/A	-4.707	NO
N/A - Resu	Its identified as I	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data				K factor**= 2.523	TL(1)= 2.590	LL(1)= N/A
Statistics-Transformed Background	X= 0.279	S = 0.332	CV(2)=1.190	K factor**= 2.523	TL(2)= 1.118	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result			
Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	1	0.000	
4/22/2002	1	0.000	
7/15/2002	1	0.000	
10/8/2002	1	0.000	
1/0/2002	1	0.000	

Data

1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	2.1	0.742
1/7/2003	2.1	0.742
4/2/2003	1.9	0.642
7/9/2003	1	0.000
10/7/2003	1.9	0.642
1/6/2004	1.9	0.642
4/7/2004	1.8	0.588
7/14/2004	1.6	0.470

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	Yes	0.117	NO	-2.146	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.705	NO	-0.350	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 34.100
 S= 13.637
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 68.505
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.466
 S= 0.356
 CV(2)=0.103
 K factor**= 2.523
 TL(2)= 4.364
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	17.2	2.845			
4/22/2002	22.4	3.109			
7/15/2002	25.5	3.239			
10/8/2002	26.4	3.273			
1/8/2003	27.2	3.303			
4/3/2003	30.3	3.411			
7/9/2003	25.9	3.254			
10/6/2003	27	3.296			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	67.3	4.209			
1/7/2003	60.6	4.104			
4/2/2003	47.2	3.854			
7/9/2003	34.7	3.547			
10/7/2003	37.1	3.614			
1/6/2004	37.7	3.630			
4/7/2004	32.2	3.472			
7/14/2004	26.9	3.292			

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	5.91	NO	1.777	N/A
MW362	Downgradient	Yes	22.8	NO	3.127	N/A
MW365	Downgradient	Yes	23.2	NO	3.144	N/A
MW368	Downgradient	Yes	73.1	YES	4.292	N/A
MW371	Upgradient	Yes	70.4	YES	4.254	N/A
MW374	Upgradient	Yes	20.7	NO	3.030	N/A
MW375	Sidegradient	Yes	13.8	NO	2.625	N/A
			U	poratory analysis or		

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW368 MW371

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical AnalysisHistorical Background ComparisonChemical Oxygen Demand (COD)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=72.938
 S= 70.749
 CV(1)=0.970
 K factor**=2.523
 TL(1)=251.437
 LL(1)=N/A

 Statistics-Transformed Background
 X=4.000
 S= 0.702
 CV(2)=0.175
 K factor**=2.523
 TL(2)=5.770
 LL(2)=N/A

Historical Bac Upgradient W		ta from Insformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	260	5.561
1/7/2003	214	5.366
4/2/2003	147	4.990
7/9/2003	72	4.277
10/7/2003	56	4.025
1/6/2004	68	4.220
4/7/2004	35	3.555
7/14/2004	35	3.555

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	20	N/A	2.996	N/A
MW362	Downgradient	Yes	17.7	NO	2.874	N/A
MW365	Downgradient	Yes	34.9	NO	3.552	N/A
MW368	Downgradient	Yes	149	NO	5.004	N/A
MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	Yes	17.7	NO	2.874	N/A
MW375	Sidegradient	No	20	N/A	2.996	N/A
37/1 B	1. 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=91.300
 S=
 86.959
 CV(1)=0.952
 K factor**=2.523
 TL(1)=310.697
 LL(1)=N/A

 Statistics-Transformed Background
 X=3.620
 S=
 1.590
 CV(2)=0.439
 K factor**=2.523
 TL(2)=7.631
 LL(2)=N/A

-						
Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
7/15/2002	8.3	2.116				
10/8/2002	7.6	2.028				
1/8/2003	7.7	2.041				
4/3/2003	8.8	2.175				
7/9/2003	8.1	2.092				
10/6/2003	8.6	2.152				
1/7/2004	7.6	2.028				
4/6/2004	7.6	2.028				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	199.2	5.294				
1/7/2003	199.7	5.297				
4/2/2003	171.8	5.146				
7/9/2003	178.7	5.186				
10/7/2003	175.6	5.168				
1/6/2004	170.4	5.138				
4/7/2004	156.4	5.052				
7/14/2004	144.7	4.975				

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	0.893	NO	-0.113	N/A
MW362	Downgradient	t Yes	4.25	NO	1.447	N/A
MW365	Downgradient	t Yes	2.7	NO	0.993	N/A
MW368	Downgradient	t Yes	7.3	NO	1.988	N/A
MW371	Upgradient	Yes	1.87	NO	0.626	N/A
MW374	Upgradient	Yes	60.5	NO	4.103	N/A
MW375	Sidegradient	Yes	3.89	NO	1.358	N/A
NT/A D	1. 1				1. 1.1	1 /

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.007	S = 0.009	CV(1)= 1.314	K factor**= 2.523	TL(1)= 0.031	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.843	S = 1.392	CV(2) =-0.238	K factor**= 2.523	TL(2)= -2.331	LL(2)= N/A

Historical Bac Upgradient W	kground Da ells with Tra	ta from ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.01	-4.605
1/7/2003	0.01	-4.605
4/2/2003	0.01	-4.605
7/9/2003	0.00161	-6.432
10/7/2003	0.001	-6.908
1/6/2004	0.001	-6.908
4/7/2004	0.001	-6.908
7/14/2004	0.001	-6.908

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	No	0.001	N/A	-6.908	N/A		
MW362	Downgradient	No	0.001	N/A	-6.908	N/A		
MW365	Downgradient	Yes	0.00173	N/A	-6.360	NO		
MW368	Downgradient	No	0.001	N/A	-6.908	N/A		
MW371	Upgradient	No	0.001	N/A	-6.908	N/A		
MW374	Upgradient	Yes	0.00037	/ N/A	-7.902	NO		
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A		
NI/A Dam		Jan Datasta	J					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 918.744 S= 417.257 CV(1)=0.454
 K factor**= 2.523
 TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background X=6.705 S= 0.550 CV(2)=0.082 Data

Historical Bac Upgradient W		a from nsformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	1007	6.915
10/8/2002	1680	7.427
1/7/2003	1715.9	7.448
4/2/2003	172	5.147
7/9/2003	1231	7.116
10/7/2003	1214	7.102
1/6/2004	1172	7.066
4/7/2004	1145	7.043

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

K factor**= 2.523 TL(2)= 8.092 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	Yes	224	NO	5.412	N/A		
MW362	Downgradient	Yes	733	NO	6.597	N/A		
MW365	Downgradient	Yes	430	NO	6.064	N/A		
MW368	Downgradient	Yes	733	NO	6.597	N/A		
MW371	Upgradient	Yes	523	NO	6.260	N/A		
MW374	Upgradient	Yes	661	NO	6.494	N/A		
MW375	Sidegradient	Yes	335	NO	5.814	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.056	S = 0.072	CV(1)= 1.275	K factor**= 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.395	S = 0.915	CV(2) =-0.270	K factor**= 2.523	TL(2)= -1.086	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	0.025	-3.689					
4/22/2002	0.025	-3.689					
7/15/2002	0.05	-2.996					
10/8/2002	0.02	-3.912					
1/8/2003	0.02	-3.912					
4/3/2003	0.02	-3.912					
7/9/2003	0.02	-3.912					
10/6/2003	0.02	-3.912					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	0.2	-1.609					
1/7/2003	0.2	-1.609					
4/2/2003	0.2	-1.609					
7/9/2003	0.02	-3.912					
10/7/2003	0.02	-3.912					
1/6/2004	0.02	-3.912					
4/7/2004	0.02	-3.912					
7/14/2004	0.02	-3.912					

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.00085	N/A	-7.070	NO	
MW362	Downgradient	Yes	0.00148	N/A	-6.516	NO	
MW365	Downgradient	Yes	0.00488	N/A	-5.323	NO	
MW368	Downgradient	Yes	0.00069	N/A	-7.279	NO	
MW371	Upgradient	Yes	0.00215	N/A	-6.142	NO	
MW374	Upgradient	Yes	0.00057	N/A	-7.470	NO	
MW375	Sidegradient	Yes	0.00057	N/A	-7.470	NO	
	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a						

well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.138 S= 0.621 CV(1)=0.546 K factor**=2.523 TL(1)=2.704 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.013 S= 0.577 CV(2)=-43.069 K factor**=2.523 TL(2)=1.441 LL(2)=N/A

 Data
 Data
 CV(2)=-43.069 K factor**=2.523 TL(2)=1.441 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	2.26	0.815				
4/22/2002	1.15	0.140				
7/15/2002	0.94	-0.062				
10/8/2002	0.74	-0.301				
1/8/2003	2.62	0.963				
4/3/2003	1.5	0.405				
7/9/2003	1.66	0.507				
10/6/2003	1.28	0.247				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
3/18/2002	0.6	-0.511				
10/8/2002	0.67	-0.400				
1/7/2003	0.23	-1.470				
4/2/2003	0.65	-0.431				
7/9/2003	0.92	-0.083				
10/7/2003	0.99	-0.010				
1/6/2004	1.11	0.104				
4/7/2004	0.88	-0.128				

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	3.4	YES	1.224	N/A	
MW362	Downgradient	Yes	4.48	YES	1.500	N/A	
MW365	Downgradient	Yes	2.74	YES	1.008	N/A	
MW368	Downgradient	Yes	4.17	YES	1.428	N/A	
MW371	Upgradient	Yes	4.6	YES	1.526	N/A	
MW374	Upgradient	Yes	2.23	NO	0.802	N/A	
MW375	Sidegradient	Yes	1.21	NO	0.191	N/A	
N/A - Resu	Its identified as 1	Non-Detects	during lat	poratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW359	
MW362	
MW365	
MW368	
MW371	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 590.000 S= 248.068 CV(1)=0.420 K factor**= 2.523 TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background X=6.308 S= 0.383 CV(2)=0.061 Data

Historical Background Data from Upgradient Wells with Transformed Resu							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	274 5.613						
4/22/2002	409	6.014					
7/15/2002	418	6.035					
10/8/2002	424	6.050					
1/8/2003	431	6.066					
4/3/2003	444	6.096					
7/9/2003	445	6.098					
10/6/2003	438	6.082					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	1136	7.035					
1/7/2003	1101	7.004					
4/2/2003	863	6.760					
7/9/2003	682 6.525						
10/7/2003	589	6.378					
1/6/2004	603	6.402					
4/7/2004	601	6.399					
7/14/2004	582	6.366					

Dry/Partially Dry Wells							
Well No.	Gradient						
MW376	Sidegradient						
MW377	Sidegradient						

K factor**= 2.523 TL(2)= 7.274 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	Yes	143	NO	4.963	N/A		
MW362	Downgradient	Yes	449	NO	6.107	N/A		
MW365	Downgradient	Yes	290	NO	5.670	N/A		
MW368	Downgradient	Yes	687	NO	6.532	N/A		
MW371	Upgradient	Yes	341	NO	5.832	N/A		
MW374	Upgradient	Yes	363	NO	5.894	N/A		
MW375	Sidegradient	Yes	166	NO	5.112	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 6.612
 S= 6.487
 CV(1)=0.981
 K factor**= 2.523
 TL(1)= 22.979
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.363
 S= 1.147
 CV(2)=0.841
 K factor**= 2.523
 TL(2)= 4.256
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	1.31	0.270			
4/22/2002	0.913	-0.091			
7/15/2002	0.881	-0.127			
10/8/2002	3.86	1.351			
1/8/2003	1.88	0.631			
4/3/2003	3.18	1.157			
7/9/2003	0.484	-0.726			
10/6/2003	2.72	1.001			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	23	3.135			
1/7/2003	13.9	2.632			
4/2/2003	14	2.639			
7/9/2003	14.2	2.653			
10/7/2003	7.92	2.069			
1/6/2004	7.86	2.062			
4/7/2004	4.82	1.573			
7/14/2004	4.87	1.583			

Data

Dry/Partially Dry Wells					
Well No.	Gradient	-			
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.0337	NO	-3.390	N/A	
MW362	Downgradient	Yes	0.0953	NO	-2.351	N/A	
MW365	Downgradient	No	0.1	N/A	-2.303	N/A	
MW368	Downgradient	Yes	0.0869	NO	-2.443	N/A	
MW371	Upgradient	Yes	0.16	NO	-1.833	N/A	
MW374	Upgradient	Yes	0.44	NO	-0.821	N/A	
MW375	Sidegradient	Yes	0.0715	NO	-2.638	N/A	
N/A - Resu	Its identified as I	Non-Detects	during lat	ooratory analysis or	data validatio	on and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=11.347
 S= 3.019
 CV(1)=0.266
 K factor**=2.523
 TL(1)=18.963
 LL(1)=N/A

 Statistics-Transformed Background
 X=2.401
 S= 0.237
 CV(2)=0.099
 K factor**=2.523
 TL(2)=2.999
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	7.1	1.960			
4/22/2002	9.77	2.279			
7/15/2002	10.4	2.342			
10/8/2002	10.2	2.322			
1/8/2003	10.7	2.370			
4/3/2003	11.9	2.477			
7/9/2003	10.8	2.380			
10/6/2003	10.9	2.389			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	20	2.996			
1/7/2003	16.1	2.779			
4/2/2003	13.1	2.573			
7/9/2003	10.3	2.332			
10/7/2003	11.1	2.407			
1/6/2004	11	2.398			
4/7/2004	9.69	2.271			
7/14/2004	8.49	2.139			

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.26	NO	1.182	N/A
MW362	Downgradient	Yes	10.1	NO	2.313	N/A
MW365	Downgradient	Yes	10.8	NO	2.380	N/A
MW368	Downgradient	Yes	21.8	YES	3.082	N/A
MW371	Upgradient	Yes	12.6	NO	2.534	N/A
MW374	Upgradient	Yes	5.35	NO	1.677	N/A
MW375	Sidegradient	Yes	5.15	NO	1.639	N/A
N/A - Resu	ilts identified as I	Non-Detects	during lat	ooratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.248	S = 0.222	CV(1)= 0.894	K factor**= 2.523	TL(1)= 0.809	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.873	S= 1.068	CV(2) =-0.570	K factor**= 2.523	TL(2)= 0.821	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.596	-0.518
1/7/2003	0.565	-0.571
4/2/2003	0.675	-0.393
7/9/2003	0.397	-0.924
10/7/2003	0.312	-1.165
1/6/2004	0.299	-1.207
4/7/2004	0.329	-1.112
7/14/2004	0.342	-1.073

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.005	N/A	-5.298	N/A
MW362	Downgradient	Yes	0.001	NO	-6.908	N/A
MW365	Downgradient	Yes	0.0113	NO	-4.483	N/A
MW368	Downgradient	Yes	0.00473	NO	-5.354	N/A
MW371	Upgradient	Yes	0.0203	NO	-3.897	N/A
MW374	Upgradient	Yes	0.309	NO	-1.174	N/A
MW375	Sidegradient	Yes	0.00245	NO	-6.012	N/A
N/A - Resu	Its identified as I	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.006	S = 0.010	CV(1)= 1.650	K factor**= 2.523	TL(1)= 0.030	LL(1)=N/A
Statistics-Transformed Background Data	X= -6.108	S = 1.239	CV(2) =-0.203	K factor**= 2.523	TL(2)= -2.983	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.00222	-6.110
1/7/2003	0.00201	-6.210
4/2/2003	0.00159	-6.444
7/9/2003	0.00242	-6.024
10/7/2003	0.001	-6.908
1/6/2004	0.001	-6.908
4/7/2004	0.001	-6.908
7/14/2004	0.001	-6.908

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	No	0.00075	N/A	-7.195	N/A
MW365	Downgradient	No	0.001	N/A	-6.908	N/A
MW368	Downgradient	Yes	0.00088	N/A	-7.036	NO
MW371	Upgradient	Yes	0.00031	N/A	-8.079	NO
MW374	Upgradient	Yes	0.00021	N/A	-8.468	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A
N/A Dogu	Its identified as N	Ion Dotooto	during lab	oratory analyzis or	data validatio	n and wora not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.023	S = 0.022	CV(1)= 0.980	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background	X = -4349	S = 1 109	CV(2) = -0.255	K factor**= 2,523	TL(2)= -1 552	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.05	-2.996				
4/22/2002	0.05	-2.996				
7/15/2002	0.05	-2.996				
10/8/2002	0.0124	-4.390				
1/8/2003	0.005	-5.298				
4/3/2003	0.005	-5.298				
7/9/2003	0.005	-5.298				
10/6/2003	0.005	-5.298				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.05	-2.996				
1/7/2003	0.05	-2.996				
4/2/2003	0.05	-2.996				
7/9/2003	0.00794	-4.836				
10/7/2003	0.005	-5.298				
1/6/2004	0.005	-5.298				
4/7/2004	0.005	-5.298				
7/14/2004	0.005	-5.298				

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00087	NO	-7.047	N/A
MW362	Downgradient	Yes	0.00093	NO	-6.980	N/A
MW365	Downgradient	Yes	0.00491	NO	-5.316	N/A
MW368	Downgradient	Yes	0.00098	NO	-6.928	N/A
MW371	Upgradient	Yes	0.00169	NO	-6.383	N/A
MW374	Upgradient	Yes	0.00119	NO	-6.734	N/A
MW375	Sidegradient	Yes	0.00074	NO	-7.209	N/A
			-	oratory analysis or		n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical AnalysisHistorical Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 22.281
 S=
 78.889
 CV(1)=3.541
 K factor**= 2.523
 TL(1)= 221.319
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.642
 S=
 1.729
 CV(2)=0.475
 K factor**= 2.523
 TL(2)= 5.106
 LL(2)=N/A

Statistics-Transformed Background X=3.642 S= 1.729 CV(2)=0.475 Data

Г

Historical Background Data from Upgradient Wells with Transformed Result					
MW371					
Result	LN(Result)				
75	4.317				
165	5.106				
65	4.174				
-19	#Func!				
114	4.736				
-22	#Func!				
20.5	3.020				
113	4.727				
MW374					
Result	LN(Result)				
135	4.905				
-56	#Func!				
-68	#Func!				
-50	#Func!				
-85	#Func!				
6	1.792				
-38	#Func!				
1	0.000				
	MW371 Result 75 165 65 -19 114 -22 20.5 113 MW374 Result 135 -56 -68 -50 -85 6 -38				

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	217	N/A	5.380	YES	
MW362	Downgradient	Yes	381	N/A	5.943	YES	
MW365	Downgradient	Yes	388	N/A	5.961	YES	
MW368	Downgradient	t Yes	338	N/A	5.823	YES	
MW371	Upgradient	Yes	423	N/A	6.047	YES	
MW374	Upgradient	Yes	354	N/A	5.869	YES	
MW375	Sidegradient	Yes	363	N/A	5.894	YES	
N7/1 D	1. 1						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.	MW359
	MW362
	MW365
	MW368
	MW371
	MW374
	MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical AnalysisHistorical Background ComparisonPCB, TotalUNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.224	S = 0.207	CV(1)= 0.922	K factor**= 2.523	TL(1)= 0.746	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.647	S = 0.440	CV(2) =-0.267	K factor**= 2.523	TL(2)= -0.537	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.17	-1.772
10/6/2003	0.17	-1.772
7/13/2004	0.18	-1.715
7/25/2005	0.17	-1.772
4/5/2006	0.18	-1.715
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/9/2003	0.17	-1.772
10/7/2003	0.17	-1.772
7/14/2004	0.18	-1.715
7/26/2005	0.17	-1.772
4/6/2006	0.18	-1.715
7/10/2006	0.17	-1.772
10/12/2006	0.17	-1.772
1/8/2007	0.17	-1.772

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0977	N/A	-2.326	N/A
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.0954	NO	-2.350	N/A
MW368	Downgradient	No	0.0992	N/A	-2.311	N/A
MW371	Upgradient	No	0.0981	N/A	-2.322	N/A
MW374	Upgradient	No	0.1	N/A	-2.303	N/A
MW375	Sidegradient	No	0.0997	N/A	-2.306	N/A
N/A Dog	ulta identified as N	Jon Dataata	during lak	oratory analyzic of	data validatio	n and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical AnalysisHistorical Background ComparisonPCB-1242UNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.159	S = 0.224	CV(1)= 1.409	K factor**= 2.523	TL(1)= 0.726	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.134	S = 0.579	CV(2) =-0.272	K factor**= 2.523	TL(2)= -0.672	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/9/2003	0.13	-2.040
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/25/2005	0.09	-2.408
4/5/2006	0.1	-2.303
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/9/2003	0.13	-2.040
10/7/2003	0.09	-2.408
7/14/2004	0.1	-2.303
7/26/2005	0.1	-2.303
4/6/2006	0.1	-2.303
7/10/2006	0.1	-2.303
10/12/2006	0.1	-2.303
1/8/2007	0.1	-2.303

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0977	N/A	-2.326	N/A
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.0954	N/A	-2.350	NO
MW368	Downgradient	No	0.0992	N/A	-2.311	N/A
MW371	Upgradient	No	0.0981	N/A	-2.322	N/A
MW374	Upgradient	No	0.1	N/A	-2.303	N/A
MW375	Sidegradient	No	0.0997	N/A	-2.306	N/A
N/A - Rest	ults identified as N	Non-Detects	during lab	oratory analysis of	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.619	S= 0.295	CV(1)= 0.045	K factor**= 2.904	TL(1)= 7.475	LL(1)=5.7635
Statistics-Transformed Background	X =1.889	S = 0.046	CV(2) =0.024	K factor**= 2,904	TL(2)= 2.023	LL(2)=1.7548

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	5.75	1.749
10/8/2002	6.6	1.887
1/7/2003	6.82	1.920
4/2/2003	6.86	1.926
7/9/2003	6.7	1.902
10/7/2003	6.6	1.887
1/6/2004	6.9	1.932
4/7/2004	6.58	1.884

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW359	Downgradien	t Yes	5.89	NO	1.773	N/A
MW362	Downgradien	Yes	6.93	NO	1.936	N/A
MW365	Downgradien	Yes	6.2	NO	1.825	N/A
MW368	Downgradien	Yes	6.42	NO	1.859	N/A
MW371	Upgradient	Yes	6.56	NO	1.881	N/A
MW374	Upgradient	Yes	6.54	NO	1.878	N/A
MW375	Sidegradient	Yes	6.27	NO	1.836	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			-	K factor**= 2.523		
Statistics-Transformed Background	X= -0.023	S = 0.752	CV(2) =-32.218	K factor**= 2.523	TL(2)= 1.874	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	3.04	1.112
1/7/2003	2.83	1.040
4/2/2003	2	0.693
7/9/2003	1.09	0.086
10/7/2003	0.802	-0.221
1/6/2004	0.897	-0.109
4/7/2004	0.689	-0.373
7/14/2004	0.716	-0.334

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.3	N/A	-1.204	N/A
MW362	Downgradient	Yes	0.317	NO	-1.149	N/A
MW365	Downgradient	Yes	0.239	NO	-1.431	N/A
MW368	Downgradient	Yes	0.721	NO	-0.327	N/A
MW371	Upgradient	Yes	0.495	NO	-0.703	N/A
MW374	Upgradient	Yes	0.317	NO	-1.149	N/A
MW375	Sidegradient	Yes	0.252	NO	-1.378	N/A
NI/A Dam	14- : 1	Nan Datasta	J			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=183.063 S= 73.222
 CV(1)=0.400
 K factor**=2.523
 TL(1)=367.800
 LL(1)=N/A

 Statistics-Transformed Background
 X=5.146
 S= 0.356
 CV(2)=0.069
 K factor**=2.523
 TL(2)=6.044
 LL(2)=N/A

Historical Bac Upgradient W		ta from insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	336	5.817
1/7/2003	329	5.796
4/2/2003	287	5.659
7/9/2003	181	5.198
10/7/2003	182	5.204
1/6/2004	206	5.328
4/7/2004	182	5.204
7/14/2004	198	5.288

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	37.2	NO	3.616	N/A
MW362	Downgradient	Yes	140	NO	4.942	N/A
MW365	Downgradient	Yes	55.3	NO	4.013	N/A
MW368	Downgradient	Yes	65.6	NO	4.184	N/A
MW371	Upgradient	Yes	28.2	NO	3.339	N/A
MW374	Upgradient	Yes	119	NO	4.779	N/A
MW375	Sidegradient	Yes	52.9	NO	3.968	N/A
N/A - Resu	lts identified as N	Non-Detects	during lab	ooratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.469	S = 3.153	CV(1)= 0.487	K factor**= 2.523	TL(1)= 14.423	LL(1)=N/A
Statistics-Transformed Background	X= 1.794	S = 0.357	CV(2)= 0.199	K factor**= 2.523	TL(2)= 2.694	LL(2)=N/A

· · · · · · · · · · · · · · · · · · ·		
Historical Bac		
Upgradient w	ells with 1 ra	insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	5	1.609
1/7/2003	5	1.609
4/2/2003	5	1.609
7/9/2003	5.6	1.723
10/7/2003	5	1.609
1/6/2004	5	1.609
4/7/2004	11.3	2.425
7/14/2004	5	1.609

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	47.1	YES	3.852	N/A
MW362	Downgradient	Yes	32.1	YES	3.469	N/A
MW365	Downgradient	Yes	58.4	YES	4.067	N/A
MW368	Downgradient	Yes	164	YES	5.100	N/A
MW371	Upgradient	Yes	55.4	YES	4.015	N/A
MW374	Upgradient	Yes	8.06	NO	2.087	N/A
MW375	Sidegradient	Yes	24.2	YES	3.186	N/A
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.	MW359
	MW362
	MW365
	MW368
	MW371
	MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 17.631
 S= 24.314
 CV(1)=1.379
 K factor**= 2.523
 TL(1)= 78.977
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.318
 S= 0.979
 CV(2)=0.422
 K factor**= 2.523
 TL(2)= 4.788
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	11.1	2.407			
4/22/2002	7	1.946			
7/15/2002	4.1	1.411			
10/8/2002	6	1.792			
1/8/2003	5.3	1.668			
4/3/2003	5.3	1.668			
7/9/2003	2.9	1.065			
10/6/2003	3.2	1.163			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	90	4.500			
1/7/2003	64	4.159			
4/2/2003	25	3.219			
7/9/2003	16	2.773			
10/7/2003	13	2.565			
1/6/2004	10	2.303			
4/7/2004	7.2	1.974			
7/14/2004	12	2.485			

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	0.899	N/A	-0.106	NO
MW362	Downgradient	t Yes	2.26	N/A	0.815	NO
MW365	Downgradient	t Yes	1.65	N/A	0.501	NO
MW368	Downgradient	t Yes	1.73	N/A	0.548	NO
MW371	Upgradient	Yes	1.75	N/A	0.560	NO
MW374	Upgradient	Yes	2.39	N/A	0.871	NO
MW375	Sidegradient	Yes	0.942	N/A	-0.060	NO
NI/A Dam	14- : 1	Nan Dataata	J			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 214.094 S= 231.089 CV(1)=1.079
 K factor**= 2.523
 TL(1)= 797.131
 LL(1)=N/A

Statistics-Transformed Background X=4.867 S= 1.065 CV(2)=0.219 Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	50	3.912			
4/22/2002	105	4.654			
7/15/2002	70	4.248			
10/8/2002	52	3.951			
1/8/2003	20.2	3.006			
4/3/2003	104	4.644			
7/9/2003	34.2	3.532			
10/6/2003	46.1	3.831			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	903	6.806			
1/7/2003	539	6.290			
4/2/2003	295	5.687			
7/9/2003	272	5.606			
10/7/2003	197	5.283			
1/6/2004	330	5.799			
4/7/2004	183	5.209			
7/14/2004	225	5.416			

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377 Sidegradient						

K factor**= 2.523 TL(2)= 7.554 LL(2)=N/A

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	t No	10	N/A	2.303	N/A	
MW362	Downgradient	Yes	19	N/A	2.944	NO	
MW365	Downgradient	Yes	20.1	N/A	3.001	NO	
MW368	Downgradient	Yes	9.56	N/A	2.258	NO	
MW371	Upgradient	Yes	3.86	N/A	1.351	NO	
MW374	Upgradient	Yes	13.5	N/A	2.603	NO	
MW375	Sidegradient	Yes	8.28	N/A	2.114	NO	
N/A Dag	Its identified as I	Van Dataata	durin a lal	anatami analizia a	data validatia	n and wars not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.055	S= 0.072	CV(1)= 1.319	K factor**= 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.438	S = 0.912	CV(2) =-0.265	K factor**= 2.523	TL(2)= -1.138	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.2	-1.609
1/7/2003	0.2	-1.609
4/2/2003	0.2	-1.609
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.02	-3.912
7/14/2004	0.02	-3.912

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377 Sidegradient						

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00536	N/A	-5.229	NO
MW362	Downgradient	No	0.02	N/A	-3.912	N/A
MW365	Downgradient	No	0.02	N/A	-3.912	N/A
MW368	Downgradient	No	0.02	N/A	-3.912	N/A
MW371	Upgradient	Yes	0.00549	N/A	-5.205	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A
N/A - Resu	lts identified as l	Non-Detects	during lab	oratory analysis or	data validatio	on and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.625	S= 0.774	CV(1)= 1.239	K factor**= 2.523	TL(1)= 2.578	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.973	S= 0.935	CV(2) =-0.961	K factor**= 2.523	TL(2)= 1.386	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW369

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.959
Date Collected	Result	
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2.61 0.2 1.14 0.862 2.32 0.2	0.959 -1.609 0.131 -0.149 0.842 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.05	N/A	-2.996	N/A	
MW360	Downgradient	Yes	0.126	N/A	-2.071	NO	
MW363	Downgradient	No	0.05	N/A	-2.996	N/A	
MW366	Downgradient	No	0.05	N/A	-2.996	N/A	
MW369	Upgradient	Yes	0.0609	N/A	-2.799	NO	
MW372	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Antimony UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.078	S= 0.098	CV(1)= 1.248	K factor**= 2.523	TL(1)= 0.324	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.915	S= 1.844	CV(2)=- 0.471	K factor**= 2.523	TL(2)= 0.739	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1111200

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.2	-1.609
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 3/19/2002	Result 0.2	-1.609
Date Collected 3/19/2002 4/23/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.2 0.2 0.2 0.005	-1.609 -1.609 -1.609 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.2 0.2 0.2 0.005 0.005	-1.609 -1.609 -1.609 -5.298 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2 0.005 0.005 0.005	-1.609 -1.609 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.003	N/A	-5.809	N/A
MW360	Downgradient	Yes	0.00114	N/A	-6.777	NO
MW363	Downgradient	No	0.003	N/A	-5.809	N/A
MW366	Downgradient	No	0.003	N/A	-5.809	N/A
MW369	Upgradient	No	0.003	N/A	-5.809	N/A
MW372	Upgradient	No	0.003	N/A	-5.809	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 15.996	S= 11.899	CV(1)= 0.744	K factor**= 2.523	TL(1)= 46.017	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.497	S = 0.783	CV(2)= 0.314	K factor**= 2.523	TL(2)= 4.473	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
3/18/2002	32.5	3.481
4/22/2002	35.4	3.567
7/15/2002	12.9	2.557
10/8/2002	7.59	2.027
1/8/2003	9.58	2.260
4/3/2003	6.69	1.901
7/8/2003	9.1	2.208
10/6/2003	7.31	1.989
W7 11 NT 1	100070	
Well Number:	MW372	
Date Collected		LN(Result)
		LN(Result) 3.350
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 28.5	3.350
Date Collected 3/19/2002 4/23/2002	Result 28.5 5.37	3.350 1.681
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 28.5 5.37 19.9	3.350 1.681 2.991
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 28.5 5.37 19.9 38.7	3.350 1.681 2.991 3.656
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 28.5 5.37 19.9 38.7 13	3.350 1.681 2.991 3.656 2.565

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	45.5	N/A	3.818	N/A
MW360	Downgradient	Yes	13.9	N/A	2.632	N/A
MW363	Downgradient	No	-0.878	N/A	#Error	N/A
MW366	Downgradient	Yes	42	N/A	3.738	N/A
MW369	Upgradient	Yes	120	YES	4.787	N/A
MW372	Upgradient	Yes	141	YES	4.949	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW369 MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.985	S= 0.825	CV(1)= 0.838	K factor**= 2.523	TL(1)= 3.067	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.430	S = 0.990	CV(2) =-2.302	K factor**= 2.523	TL(2)= 2.068	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

	111 11 2 0 2	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.693
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 2	0.693
Date Collected 3/19/2002 4/23/2002	Result 2 2	0.693 0.693
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.492	0.693 0.693 0.693 -0.709
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 0.492 0.492	0.693 0.693 0.693 -0.709 -0.709
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2 2 0.492 0.492 0.6	0.693 0.693 0.693 -0.709 -0.709 -0.511

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.377	NO	-0.976	N/A
MW360	Downgradient	Yes	0.0183	NO	-4.001	N/A
MW363	Downgradient	Yes	0.0196	NO	-3.932	N/A
MW366	Downgradient	Yes	0.191	NO	-1.655	N/A
MW369	Upgradient	Yes	0.0168	NO	-4.086	N/A
MW372	Upgradient	Yes	0.889	NO	-0.118	N/A

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)=N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

MU2CO

Wall Manula and

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/8/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.388	NO	-0.947	N/A
MW360	Downgradient	Yes	0.137	NO	-1.988	N/A
MW363	Downgradient	No	0.2	N/A	-1.609	N/A
MW366	Downgradient	Yes	0.477	NO	-0.740	N/A
MW369	Upgradient	Yes	0.366	NO	-1.005	N/A
MW372	Upgradient	Yes	0.576	NO	-0.552	N/A

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =32.763 S = 9.3	91 CV(1)=0.287	K factor**= 2.523	TL(1)= 56.456	LL(1)=N/A
Statistics-Transformed Background Data	X =3.449 S = 0.2	99 CV(2)=0.087	K factor**= 2.523	TL(2)= 4.202	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW369

Date Collected	Result	LN(Result)
3/18/2002	29.5	3.384
4/22/2002	29.8	3.395
7/15/2002	25.3	3.231
10/8/2002	21.9	3.086
1/8/2003	20.9	3.040
4/3/2003	22.2	3.100
7/8/2003	22.9	3.131
10/6/2003	21.7	3.077
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.726
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 41.5	3.726
Date Collected 3/19/2002 4/23/2002	Result 41.5 43.6	3.726 3.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 41.5 43.6 40.4	3.726 3.775 3.699
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 41.5 43.6 40.4 38.8	3.726 3.775 3.699 3.658
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 41.5 43.6 40.4 38.8 41.1	3.726 3.775 3.699 3.658 3.716
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 41.5 43.6 40.4 38.8 41.1 42.9	3.726 3.775 3.699 3.658 3.716 3.759

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	27	NO	3.296	N/A
MW360	Downgradient	Yes	19	NO	2.944	N/A
MW363	Downgradient	Yes	26.5	NO	3.277	N/A
MW366	Downgradient	Yes	33.4	NO	3.509	N/A
MW369	Upgradient	Yes	17.7	NO	2.874	N/A
MW372	Upgradient	Yes	49.7	NO	3.906	N/A

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.938 S = 3.750	CV(1)= 0.104	K factor**= 2.523	TL(1)= 45.399	LL(1)=N/A
Statistics-Transformed Background Data	X =3.578 S = 0.089	CV(2)= 0.025	K factor**= 2.523	TL(2)= 3.803	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul				
Well Number:	MW369			

wen number.	101 00 507	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	50	3.912
1/8/2003	35	3.555
4/3/2003	35	3.555
7/8/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.555
Date Collected	Result	
Date Collected 3/19/2002	Result 35	3.555
Date Collected 3/19/2002 4/23/2002	Result 35 35	3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 35 35 35	3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 35 35 35 35	3.555 3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 35 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	20	N/A	2.996	N/A
MW360	Downgradient	No	20	N/A	2.996	N/A
MW363	Downgradient	Yes	21.1	NO	3.049	N/A
MW366	Downgradient	Yes	14.2	NO	2.653	N/A
MW369	Upgradient	No	20	N/A	2.996	N/A
MW372	Upgradient	Yes	69.4	YES	4.240	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =44.119 S = 4.554	CV(1)= 0.103	K factor**= 2.523	TL(1)= 55.607	LL(1)=N/A
Statistics-Transformed Background Data	X =3.782 S = 0.099	CV(2)= 0.026	K factor**= 2.523	TL(2)= 4.033	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	ells with Transformed Result
Well Number:	MW369

Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.684
Date Collected	Result	· · · ·
Date Collected 7/16/2002	Result 39.8	3.684
Date Collected 7/16/2002 10/8/2002	Result 39.8 41	3.684 3.714
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 39.8 41 39.4	3.684 3.714 3.674
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 39.8 41 39.4 39.2	3.684 3.714 3.674 3.669
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 39.8 41 39.4 39.2 39.8	3.684 3.714 3.674 3.669 3.684

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	32.4	NO	3.478	N/A
MW360	Downgradient	Yes	8.64	NO	2.156	N/A
MW363	Downgradient	Yes	19.2	NO	2.955	N/A
MW366	Downgradient	Yes	38.6	NO	3.653	N/A
MW369	Upgradient	Yes	31.6	NO	3.453	N/A
MW372	Upgradient	Yes	44.8	NO	3.802	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.021	CV(1)= 0.845	K factor**= 2.523	TL(1)= 0.077	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.090	S = 1.006	CV(2) =-0.246	K factor**= 2.523	TL(2)= -1.553	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	ells with Transformed Result
Well Number:	MW369

Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.00158	-3.689 -3.689 -3.689 -6.450 -4.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.00158 0.0147 0.0116	-3.689 -3.689 -3.689 -6.450 -4.220 -4.457

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.001	N/A	-6.908	N/A	
MW360	Downgradient	Yes	0.00286	NO	-5.857	N/A	
MW363	Downgradient	Yes	0.0011	NO	-6.812	N/A	
MW366	Downgradient	No	0.001	N/A	-6.908	N/A	
MW369	Upgradient	Yes	0.00539	NO	-5.223	N/A	
MW372	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =482.856 S = 57.603	CV(1)= 0.119	K factor**= 2.523	TL(1)= 628.189	LL(1)=N/A
Statistics-Transformed Background Data	X = 6.173 S = 0.123	CV(2)= 0.020	K factor**= 2.523	TL(2)= 6.484	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 508 501 507 495 508.7 515	6.230 6.217 6.229 6.205 6.232 6.244

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	427	NO	6.057	N/A
MW360	Downgradient	Yes	402	NO	5.996	N/A
MW363	Downgradient	Yes	412	NO	6.021	N/A
MW366	Downgradient	Yes	471	NO	6.155	N/A
MW369	Upgradient	Yes	373	NO	5.922	N/A
MW372	Upgradient	Yes	640	YES	6.461	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.010	CV(1)= 0.400	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.742	S = 0.307	CV(2) =-0.082	K factor**= 2.523	TL(2)= -2.967	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul				
Well Number:	MW369			

Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
	NAM2272	
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.05	-3.689 -3.689 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.05 0.02	-3.689 -3.689 -2.996 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.05 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.05 0.02 0.02 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00057	NO	-7.470	N/A
MW360	Downgradient	Yes	0.0008	NO	-7.131	N/A
MW363	Downgradient	Yes	0.00033	NO	-8.016	N/A
MW366	Downgradient	Yes	0.00046	NO	-7.684	N/A
MW369	Upgradient	Yes	0.00121	NO	-6.717	N/A
MW372	Upgradient	Yes	0.00064	NO	-7.354	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.781	S= 1.351	CV(1)= 0.759	K factor**= 2.523	TL(1)= 5.190	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.228	S= 1.065	CV(2)= 4.665	K factor**= 2.523	TL(2)= 2.915	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW369

wen runber.	101 00 507	
Date Collected	Result	LN(Result)
3/18/2002	5.41	1.688
4/22/2002	1.57	0.451
7/15/2002	0.8	-0.223
10/8/2002	1.09	0.086
1/8/2003	2.69	0.990
4/3/2003	2.04	0.713
7/8/2003	1.19	0.174
10/6/2003	1.78	0.577
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.358
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 3.89	1.358
Date Collected 3/19/2002 4/23/2002	Result 3.89 0.05	1.358 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 3.89 0.05 1.33	1.358 -2.996 0.285
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.89 0.05 1.33 2.66	1.358 -2.996 0.285 0.978
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.89 0.05 1.33 2.66 0.4	1.358 -2.996 0.285 0.978 -0.916
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 3.89 0.05 1.33 2.66 0.4 0.91	1.358 -2.996 0.285 0.978 -0.916 -0.094

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.72	NO	1.552	N/A
MW360	Downgradient	Yes	1.51	NO	0.412	N/A
MW363	Downgradient	Yes	0.78	NO	-0.248	N/A
MW366	Downgradient	Yes	2.99	NO	1.095	N/A
MW369	Upgradient	Yes	3.09	NO	1.128	N/A
MW372	Upgradient	Yes	3.63	NO	1.289	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =285.188 S = 44.908	CV(1)= 0.157	K factor**= 2.523	TL(1)= 398.489	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.640 S = 0.175	CV(2)= 0.031	K factor**= 2.523	TL(2)= 6.080	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.687
Date Collected	Result	()
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	231	NO	5.442	N/A
MW360	Downgradient	Yes	210	NO	5.347	N/A
MW363	Downgradient	Yes	283	NO	5.645	N/A
MW366	Downgradient	Yes	273	NO	5.609	N/A
MW369	Upgradient	Yes	194	NO	5.268	N/A
MW372	Upgradient	Yes	616	YES	6.423	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.385	S= 6.991	CV(1)= 0.947	K factor**= 2.523	TL(1)= 25.024	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.358	S = 1.323	CV(2)= 0.974	K factor**= 2.523	TL(2)= 4.697	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW369

Well Number:	MW 369	
Date Collected	Result	LN(Result)
3/18/2002	0.656	-0.422
4/22/2002	0.695	-0.364
7/15/2002	7.1	1.960
10/8/2002	21.5	3.068
1/8/2003	18.5	2.918
4/3/2003	14.9	2.701
7/8/2003	11.3	2.425
10/6/2003	14.9	2.701
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.783
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 5.95	1.783
Date Collected 3/19/2002 4/23/2002	Result 5.95 0.792	1.783 -0.233
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5.95 0.792 1.78	1.783 -0.233 0.577
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5.95 0.792 1.78 0.776	1.783 -0.233 0.577 -0.254
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5.95 0.792 1.78 0.776 3.55	1.783 -0.233 0.577 -0.254 1.267
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.95 0.792 1.78 0.776 3.55 5.02	1.783 -0.233 0.577 -0.254 1.267 1.613

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.1	N/A	-2.303	N/A
MW360	Downgradient	Yes	0.591	NO	-0.526	N/A
MW363	Downgradient	Yes	0.0549	NO	-2.902	N/A
MW366	Downgradient	Yes	0.0508	NO	-2.980	N/A
MW369	Upgradient	Yes	0.136	NO	-1.995	N/A
MW372	Upgradient	Yes	0.0634	NO	-2.758	N/A

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.864 S = 3.505	CV(1)= 0.272	K factor**= 2.523	TL(1)= 21.707	LL(1)=N/A
Statistics-Transformed Background Data	X =2.517 S = 0.290	CV(2)= 0.115	K factor**= 2.523	TL(2)= 3.248	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			

wen number.	IVI VV 309	
Date Collected	Result	LN(Result)
3/18/2002	11.4	2.434
4/22/2002	12	2.485
7/15/2002	10	2.303
10/8/2002	8.62	2.154
1/8/2003	7.89	2.066
4/3/2003	7.97	2.076
7/8/2003	10.3	2.332
10/6/2003	9.14	2.213
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.754
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 15.7	2.754
Date Collected 3/19/2002 4/23/2002	Result 15.7 16.6	2.754 2.809
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 15.7 16.6 15.4	2.754 2.809 2.734
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 15.7 16.6 15.4 15.8	2.754 2.809 2.734 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 15.7 16.6 15.4 15.8 15.8	2.754 2.809 2.734 2.760 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 15.7 16.6 15.4 15.8 15.8 16.4	2.754 2.809 2.734 2.760 2.760 2.797

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	11.7	NO	2.460	N/A
MW360	Downgradient	Yes	7.94	NO	2.072	N/A
MW363	Downgradient	Yes	10.5	NO	2.351	N/A
MW366	Downgradient	Yes	14.2	NO	2.653	N/A
MW369	Upgradient	Yes	7.51	NO	2.016	N/A
MW372	Upgradient	Yes	19.2	NO	2.955	N/A

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.413	S= 0.274	CV(1)= 0.664	K factor**= 2.523	TL(1)= 1.105	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.226	S= 1.008	CV(2) =-0.822	K factor**= 2.523	TL(2)= 1.317	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				

3/18/2002 0.034 -3.381 4/22/2002 0.062 -2.7817/15/2002 0.436 -0.830 10/8/2002 0.867 -0.1431/8/2003 -0.1890.828 4/3/2003 0.672 -0.3977/8/2003 0.321 -1.136 0.714 10/6/2003 -0.337 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.205 -1.585 4/23/2002 0.345 -1.064-1.561 7/16/2002 0.21 10/8/2002 0.0539 -2.921 1/7/2003 0.537 -0.622 -0.879 4/2/2003 0.415 7/9/2003 0.654 -0.425 10/7/2003 0.254 -1.370

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00263	NO	-5.941	N/A
MW360	Downgradient	Yes	0.0395	NO	-3.231	N/A
MW363	Downgradient	Yes	0.25	NO	-1.386	N/A
MW366	Downgradient	Yes	0.00412	NO	-5.492	N/A
MW369	Upgradient	Yes	0.00693	NO	-4.972	N/A
MW372	Upgradient	Yes	0.00159	NO	-6.444	N/A

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.021	CV(1)= 0.910	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.246	S = 1.075	CV(2) =-0.253	K factor**= 2.523	TL(2)= -1.535	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.002	N/A	-6.215	N/A	
MW360	Downgradient	Yes	0.00118	NO	-6.742	N/A	
MW363	Downgradient	Yes	0.0071	NO	-4.948	N/A	
MW366	Downgradient	No	0.002	N/A	-6.215	N/A	
MW369	Upgradient	Yes	0.00474	NO	-5.352	N/A	
MW372	Upgradient	Yes	0.00064	NO	-7.354	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 74.563	S= 94.243	CV(1)= 1.264	K factor**= 2.523	TL(1)= 312.337	LL(1)=N/A
Statistics-Transformed Background Data	X= 4.554	S = 0.784	CV(2)= 0.172	K factor**= 2.523	TL(2)= 5.371	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	413	N/A	6.023	YES	
MW360	Downgradient	Yes	423	N/A	6.047	YES	
MW363	Downgradient	Yes	365	N/A	5.900	YES	
MW366	Downgradient	Yes	390	N/A	5.966	YES	
MW369	Upgradient	Yes	410	N/A	6.016	YES	
MW372	Upgradient	Yes	390	N/A	5.966	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW357
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW360
concentration with respect to historical background data.	MW363
	MW366
	MW369
	MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** pН **UNITS: Std Unit URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.274	S= 0.194	CV(1)= 0.031	K factor**= 2.904	TL(1)= 6.837	LL(1)= 5.7114
Statistics-Transformed Background Data	X= 1.836	S = 0.031	CV(2)= 0.017	K factor**= 2.904	TL(2)= 1.925	LL(2)= 1.7467

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	6.1	1.808
4/22/2002	6.1	1.808
7/15/2002	6.1	1.808
10/8/2002	6.5	1.872
1/8/2003	6.5	1.872
4/3/2003	6.6	1.887
7/8/2003	6.5	1.872
10/6/2003	6.5	1.872
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.808
Date Collected	Result	
Date Collected 3/19/2002	Result 6.1	1.808
Date Collected 3/19/2002 4/23/2002	Result 6.1 6.12	1.808 1.812
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.1 6.12 6.1	1.808 1.812 1.808
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.1 6.12 6.1 6.06	1.808 1.812 1.808 1.802
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.1 6.12 6.1 6.06 6.26	1.808 1.812 1.808 1.802 1.834

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW357	Downgradien	t Yes	6.1	NO	1.808	N/A	
MW360	Downgradien	t Yes	6.16	NO	1.818	N/A	
MW363	Downgradien	t Yes	6.07	NO	1.803	N/A	
MW366	Downgradien	t Yes	6.03	NO	1.797	N/A	
MW369	Upgradient	Yes	6.25	NO	1.833	N/A	
MW372	Upgradient	Yes	6.08	NO	1.805	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.663	S= 0.488	CV(1)= 0.293	K factor**= 2.523	TL(1)= 2.895	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.456	S = 0.362	CV(2)= 0.794	K factor**= 2.523	TL(2)= 1.368	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2.21	0.793			
7/15/2002	2	0.693			
10/8/2002	0.966	-0.035			
1/8/2003	0.727	-0.319			
4/3/2003	0.8	-0.223			
7/8/2003	1.62	0.482			
10/6/2003	1.14	0.131			
Well Number:	MW372				

Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	2.04	0.713
4/23/2002	2.03	0.708
7/16/2002	2	0.693
10/8/2002	1.54	0.432
1/7/2003	1.88	0.631
4/2/2003	2.09	0.737
7/9/2003	1.78	0.577
10/7/2003	1.79	0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	1.57	NO	0.451	N/A	
MW360	Downgradient	Yes	0.632	NO	-0.459	N/A	
MW363	Downgradient	Yes	1.39	NO	0.329	N/A	
MW366	Downgradient	Yes	1.76	NO	0.565	N/A	
MW369	Upgradient	Yes	0.57	NO	-0.562	N/A	
MW372	Upgradient	Yes	1.95	NO	0.668	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 45.100	S= 11.875	CV(1)= 0.263	K factor**= 2.523	TL(1)= 75.061	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.780	S = 0.242	CV(2)= 0.064	K factor**= 2.523	TL(2)= 4.390	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number: MW369							
Date Collected	Result	LN(Result)					
3/18/2002	35.7	3.575					
4/22/2002	37.6	3.627					
7/15/2002	42.4	3.747					
10/8/2002	66.9	4.203					
1/8/2003	67.9	4.218					

61.8

45.6

59.1

MW372

Result

37.2

38.6

35.6

37.5

34.1

34.4

44.1

43.1

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	42.4	NO	3.747	N/A	
MW360	Downgradient	Yes	58.4	NO	4.067	N/A	
MW363	Downgradient	Yes	42.5	NO	3.750	N/A	
MW366	Downgradient	Yes	45.8	NO	3.824	N/A	
MW369	Upgradient	Yes	49.3	NO	3.898	N/A	
MW372	Upgradient	Yes	54.4	NO	3.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.124

3.820

4.079

3.616

3.653

3.572

3.624

3.529

3.538

3.786

3.764

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 45.031	S= 33.919	CV(1)= 0.753	K factor**= 2.523	TL(1)= 130.609	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.420	S = 0.981	CV(2)= 0.287	K factor**= 2.523	TL(2)= 5.894	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number: MW369								
Date Collected	Result	LN(Result)						

Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Wall Mausham	100270	
Well Number:	MW372	
Date Collected		LN(Result)
		LN(Result) 4.272
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	44.7	NO	3.800	N/A	
MW360	Downgradient	Yes	9.94	NO	2.297	N/A	
MW363	Downgradient	Yes	36.7	NO	3.603	N/A	
MW366	Downgradient	Yes	53.1	NO	3.972	N/A	
MW369	Upgradient	Yes	8.91	NO	2.187	N/A	
MW372	Upgradient	Yes	70.5	NO	4.256	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 20.821	S= 18.044	CV(1)= 0.867	K factor**= 2.523	TL(1)= 66.344	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.770	S= 1.150	CV(2)= 0.415	K factor**= 2.523	TL(2)= 3.972	LL(2)=N/A

-								
	Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	41.7	3.731						
4/22/2002	53.1	3.972						
7/15/2002	18.1	2.896						
10/8/2002	16.4	2.797						
1/8/2003	3.49	1.250						
4/3/2003	9.34	2.234						
7/8/2003	17.5	2.862						
10/6/2003	17	2.833						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	44.8	3.802						
4/23/2002	0.802	-0.221						
7/16/2002	19.8	2.986						
10/8/2002	46.1	3.831						
1/7/2003	-0.973	#Func!						
4/2/2003	9.07	2.205						
7/9/2003	0	#Func!						
10/7/2003	36.9	3.608						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	30.5	NO	3.418	N/A	
MW360	Downgradient	No	8.71	N/A	2.164	N/A	
MW363	Downgradient	No	5.08	N/A	1.625	N/A	
MW366	Downgradient	Yes	43.8	NO	3.780	N/A	
MW369	Upgradient	Yes	55.8	NO	4.022	N/A	
MW372	Upgradient	Yes	183	YES	5.209	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.513	S= 4.307	CV(1)= 1.226	K factor**= 2.523	TL(1)= 14.378	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.851	S = 0.828	CV(2)= 0.973	K factor**= 2.523	TL(2)= 2.940	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002 1.7 0.531							

3/18/2002	1.7	0.531
4/22/2002	1.6	0.470
7/15/2002	3.1	1.131
10/8/2002	17.7	2.874
1/8/2003	9	2.197
4/3/2003	4	1.386
7/8/2003	4.9	1.589
10/6/2003	2.4	0.875
Well Number:	MW372	
wen number.	IVI W 572	
Date Collected		LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1.2	0.000 0.182
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1.2 1	0.000 0.182 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1.2 1 1	0.000 0.182 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1.2 1 1 1.6	0.000 0.182 0.000 0.000 0.470

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.902	N/A	-0.103	NO	
MW360	Downgradient	Yes	1.29	N/A	0.255	NO	
MW363	Downgradient	Yes	1.2	N/A	0.182	NO	
MW366	Downgradient	Yes	0.849	N/A	-0.164	NO	
MW369	Upgradient	Yes	1.11	N/A	0.104	NO	
MW372	Upgradient	Yes	1.27	N/A	0.239	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 67.963	S= 64.316	CV(1)= 0.946	K factor**= 2.523	TL(1)= 230.231	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.772	S = 1.023	CV(2)= 0.271	K factor**= 2.523	TL(2)= 6.353	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50 10	5.215 3.912 3.912 3.912 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	6.54	NO	1.878	N/A		
MW360	Downgradient	Yes	6.54	NO	1.878	N/A		
MW363	Downgradient	No	8.44	N/A	2.133	N/A		
MW366	Downgradient	No	5.9	N/A	1.775	N/A		
MW369	Upgradient	Yes	9.2	NO	2.219	N/A		
MW372	Upgradient	Yes	8.28	NO	2.114	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.006	CV(1)= 0.259	K factor**= 2.523	TL(1)= 0.039	LL(1)=N/A
Statistics-Transformed Background	X= -3.771	S= 0.223	CV(2) =-0.059	K factor**= 2.523	TL(2)= -3.208	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	0.025	-3.689						
4/22/2002	0.027	-3.612						
7/15/2002	0.025	-3.689						
10/8/2002	0.02	-3.912						
1/8/2003	0.02	-3.912						
4/3/2003	0.02	-3.912						
7/8/2003	0.02	-3.912						
10/6/2003	0.02	-3.912						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	0.039	-3.244						

Date Conected	Result	LIN(Result)
3/19/2002	0.039	-3.244
4/23/2002	0.037	-3.297
7/16/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/7/2003	0.02	-3.912
4/2/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.02	N/A	-3.912	N/A	
MW360	Downgradient	Yes	0.00359	NO	-5.630	N/A	
MW363	Downgradient	No	0.02	N/A	-3.912	N/A	
MW366	Downgradient	No	0.02	N/A	-3.912	N/A	
MW369	Upgradient	No	0.02	N/A	-3.912	N/A	
MW372	Upgradient	No	0.02	N/A	-3.912	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.026	S= 5.626	CV(1)= 2.777	K factor**= 2.523	TL(1)= 16.219	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.803	S = 1.380	CV(2)=- 1.718	K factor**= 2.523	TL(2)= 2.678	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.66	1.539
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.122
Date Collected	Result	
Date Collected 3/18/2002	Result 22.7	3.122
Date Collected 3/18/2002 4/23/2002	Result 22.7 1.46	3.122 0.378
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 22.7 1.46 0.253	3.122 0.378 -1.374
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 22.7 1.46 0.253 0.482	3.122 0.378 -1.374 -0.730
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 22.7 1.46 0.253 0.482 0.608	3.122 0.378 -1.374 -0.730 -0.498

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.0207	N/A	-3.878	NO	
MW361	Downgradient	No	0.05	N/A	-2.996	N/A	
MW364	Downgradient	No	0.05	N/A	-2.996	N/A	
MW367	Downgradient	No	0.05	N/A	-2.996	N/A	
MW370	Upgradient	No	0.05	N/A	-2.996	N/A	
MW373	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Antimony UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.078	S = 0.098	CV(1)= 1.248	K factor**= 2.523	TL(1)= 0.324	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.915	S= 1.844	CV(2)=- 0.471	K factor**= 2.523	TL(2)= 0.739	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.2	-1.609
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 3/18/2002	Result 0.2	-1.609
Date Collected 3/18/2002 4/23/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.2 0.2 0.2 0.005	-1.609 -1.609 -1.609 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.2 0.2 0.2 0.005 0.005	-1.609 -1.609 -1.609 -5.298 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.02 0.005 0.005 0.005	-1.609 -1.609 -1.609 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	0.003	N/A	-5.809	N/A	
MW361	Downgradient	Yes	0.00109	N/A	-6.822	NO	
MW364	Downgradient	No	0.003	N/A	-5.809	N/A	
MW367	Downgradient	No	0.003	N/A	-5.809	N/A	
MW370	Upgradient	No	0.003	N/A	-5.809	N/A	
MW373	Upgradient	No	0.003	N/A	-5.809	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.815	S = 7.838	CV(1)= 0.799	K factor**= 2.523	TL(1)= 29.591	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.072	S = 0.630	CV(2)= 0.304	K factor**= 2.523	TL(2)= 3.662	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002 10.1 2.313						

3/17/2002	10.1	2.313
4/23/2002	4.46	1.495
7/15/2002	6.58	1.884
10/8/2002	4.9	1.589
1/8/2003	4.47	1.497
4/3/2003	8.65	2.158
7/9/2003	3.66	1.297
10/6/2003	5.38	1.683
Well Number:	MW373	
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 15.1	LN(Result) 2.715
		· · · ·
3/18/2002	15.1	2.715
3/18/2002 4/23/2002	15.1 6.26	2.715 1.834
3/18/2002 4/23/2002 7/16/2002	15.1 6.26 6.22	2.715 1.834 1.828
3/18/2002 4/23/2002 7/16/2002 10/8/2002	15.1 6.26 6.22 4.06	2.715 1.834 1.828 1.401
3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	15.1 6.26 6.22 4.06 11.2	2.715 1.834 1.828 1.401 2.416

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	37.6	N/A	3.627	N/A	
MW361	Downgradient	Yes	44.1	N/A	3.786	N/A	
MW364	Downgradient	Yes	34.8	N/A	3.550	N/A	
MW367	Downgradient	No	9.55	N/A	2.257	N/A	
MW370	Upgradient	Yes	52.7	YES	3.965	N/A	
MW373	Upgradient	Yes	21.9	N/A	3.086	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.140	S= 0.780	CV(1)= 0.684	K factor**= 2.523	TL(1)= 3.108	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.235	S= 1.006	CV(2) =-4.287	K factor**= 2.523	TL(2)= 2.303	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW370

Well Number

wen Number.	IVI W 570	
Date Collected	Result	LN(Result)
3/17/2002	2	0.693
4/23/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.693
Date Collected	Result	()
Date Collected 3/18/2002	Result 2	0.693
Date Collected 3/18/2002 4/23/2002	Result 2 2	0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2. 0.79	0.693 0.693 0.693 -0.236
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 0.79 0.807	0.693 0.693 0.693 -0.236 -0.214
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2 2 0.79 0.807 1.13	0.693 0.693 0.693 -0.236 -0.214 0.122

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.474	NO	-0.747	N/A	
MW361	Downgradient	Yes	0.162	NO	-1.820	N/A	
MW364	Downgradient	Yes	0.0168	NO	-4.086	N/A	
MW367	Downgradient	Yes	0.0538	NO	-2.922	N/A	
MW370	Upgradient	Yes	0.0299	NO	-3.510	N/A	
MW373	Upgradient	Yes	1.52	NO	0.419	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Bromide** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)=N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1	0.000
4/23/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/18/2002	Result 1	0.000
Date Collected 3/18/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.473	NO	-0.749	N/A
MW361	Downgradient	Yes	0.446	NO	-0.807	N/A
MW364	Downgradient	Yes	0.439	NO	-0.823	N/A
MW367	Downgradient	Yes	0.445	NO	-0.810	N/A
MW370	Upgradient	Yes	0.394	NO	-0.931	N/A
MW373	Upgradient	Yes	0.532	NO	-0.631	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 43.413	S= 13.444	CV(1)= 0.310	K factor**= 2.523	TL(1)= 77.331	LL(1)=N/A
Statistics-Transformed Background Data	X = 3.723	S = 0.323	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.539	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result			
Well Number:	MW370		
Date Collected	Result	LN(Result)	
3/17/2002	34.8	3.550	
4/23/2002	43.4	3.770	

33.2

29.2

31.3

32.4

22.9

MW373

Result

61.9

59.2

47.6

46.1

49.2

57.8

52.7

64.9

28

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	33.5	NO	3.512	N/A
MW361	Downgradient	Yes	32	NO	3.466	N/A
MW364	Downgradient	Yes	32	NO	3.466	N/A
MW367	Downgradient	Yes	25.9	NO	3.254	N/A
MW370	Upgradient	Yes	27.7	NO	3.321	N/A
MW373	Upgradient	Yes	67.9	NO	4.218	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.503

3.374

3.444

3.478

3.131

3.332

4.126

4.081

3.863

3.831

3.896

4.057

3.965

4.173

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 41.938	S= 24.732	CV(1)= 0.590	K factor**= 2.523	TL(1)= 104.336	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.658	S = 0.339	CV(2)= 0.093	K factor**= 2.523	TL(2)= 4.512	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW370

Well Number

Well Number:	MW3/0	
Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	<pre></pre>
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 35 47 35 35 35 35 35	3.555 3.850 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	10.8	NO	2.380	N/A
MW361	Downgradient	Yes	31.5	NO	3.450	N/A
MW364	Downgradient	Yes	28	NO	3.332	N/A
MW367	Downgradient	No	20	N/A	2.996	N/A
MW370	Upgradient	Yes	36.7	NO	3.603	N/A
MW373	Upgradient	Yes	107	YES	4.673	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.919 S = 7.524	CV(1)= 0.164	K factor**= 2.523	TL(1)= 64.901	LL(1)=N/A
Statistics-Transformed Background Data	X =3.814 S = 0.165	CV(2)= 0.043	K factor**= 2.523	TL(2)= 4.231	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number	MW370				

wen number.	IVI VV 370	
Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.704
Date Collected	Result	· · · · · ·
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 40.6 38.8 39 38.4 38.1 38	3.704 3.658 3.664 3.648 3.640 3.638

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	36	NO	3.584	N/A
MW361	Downgradient	Yes	32.3	NO	3.475	N/A
MW364	Downgradient	Yes	33	NO	3.497	N/A
MW367	Downgradient	Yes	33.8	NO	3.520	N/A
MW370	Upgradient	Yes	34.2	NO	3.532	N/A
MW373	Upgradient	Yes	40.5	NO	3.701	N/A

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.027	S= 0.032	CV(1)= 1.165	K factor**= 2.523	TL(1)= 0.108	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.058	S= 1.011	CV(2) =-0.249	K factor**= 2.523	TL(2)= -1.507	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW370

Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.0174	-4.051
1/8/2003	0.0105	-4.556
4/3/2003	0.00931	-4.677
7/9/2003	0.137	-1.988
10/6/2003	0.0463	-3.073
Wall Mansham	MULTO	
Well Number:	MW373	
Date Collected		LN(Result)
		LN(Result) -3.689
Date Collected	Result	× ,
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.034	-3.689 -3.381
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.034 0.025	-3.689 -3.381 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.034 0.025 0.00411	-3.689 -3.381 -3.689 -5.494
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.034 0.025 0.00411 0.00344	-3.689 -3.381 -3.689 -5.494 -5.672
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.034 0.025 0.00411 0.00344 0.00368	-3.689 -3.381 -3.689 -5.494 -5.672 -5.605

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0019	N/A	-6.266	NO
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	No	0.001	N/A	-6.908	N/A
MW367	Downgradient	Yes	0.00726	N/A	-4.925	NO
MW370	Upgradient	No	0.001	N/A	-6.908	N/A
MW373	Upgradient	Yes	0.00097	N/A	-6.938	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 608.719 S= 156.157 CV(1)=0.257
 K factor**= 2.523
 TL(1)= 1002.702 LL(1)=N/A

 Statistics-Transformed Background
 X= 6.380
 S= 0.260
 CV(2)=0.041
 K factor**= 2.523
 TL(2)= 7.036
 LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 111220

Data

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 661 801 774 680 686.5 763	6.494 6.686 6.652 6.522 6.532 6.637

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	505	NO	6.225	N/A
MW361	Downgradient	Yes	492	NO	6.198	N/A
MW364	Downgradient	Yes	485	NO	6.184	N/A
MW367	Downgradient	Yes	400	NO	5.991	N/A
MW370	Upgradient	Yes	421	NO	6.043	N/A
MW373	Upgradient	Yes	785	NO	6.666	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.010	CV(1)= 0.399	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.739	S = 0.308	CV(2) =-0.082	K factor**= 2.523	TL(2)= -2.963	LL(2)= N/A

Historical Bac Upgradient W	kground Da ells with Tr	ta from ansformed Result
Well Number:	MW370	
Date Collected	Result	LN(Result)
2/17/2002	0.005	2 (00

Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
*** 11 ** 1		
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.650
Date Collected	Result	
Date Collected 3/18/2002	Result 0.026	-3.650
Date Collected 3/18/2002 4/23/2002	Result 0.026 0.025	-3.650 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.026 0.025 0.05	-3.650 -3.689 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.026 0.025 0.05 0.02	-3.650 -3.689 -2.996 -3.912
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.026 0.025 0.05 0.02 0.02	-3.650 -3.689 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00045	NO	-7.706	N/A
MW361	Downgradient	Yes	0.00052	NO	-7.562	N/A
MW364	Downgradient	Yes	0.00043	NO	-7.752	N/A
MW367	Downgradient	Yes	0.00059	NO	-7.435	N/A
MW370	Upgradient	Yes	0.0005	NO	-7.601	N/A
MW373	Upgradient	Yes	0.00065	NO	-7.339	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.387	S= 1.153	CV(1)= 0.831	K factor**= 2.523	TL(1)= 4.295	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.115	S= 1.207	CV(2)= -10.514	K factor**= 2.523	TL(2)= 2.930	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	ells with Transformed Result
Well Number:	MW370

Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 3.04	LN(Result) 1.112
		· · · · ·
3/18/2002	3.04	1.112
3/18/2002 4/23/2002	3.04 0.03	1.112 -3.507
3/18/2002 4/23/2002 7/16/2002	3.04 0.03 0.23	1.112 -3.507 -1.470
3/18/2002 4/23/2002 7/16/2002 10/8/2002	3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.01	NO	0.698	N/A
MW361	Downgradient	Yes	2.89	NO	1.061	N/A
MW364	Downgradient	Yes	3.23	NO	1.172	N/A
MW367	Downgradient	Yes	2.23	NO	0.802	N/A
MW370	Upgradient	Yes	4.09	NO	1.409	N/A
MW373	Upgradient	Yes	2.36	NO	0.859	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =356.188 S = 106.752	2 CV(1)=0.300	K factor**= 2.523	TL(1)= 625.523	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.831 S = 0.311	CV(2)= 0.053	K factor**= 2.523	TL(2)= 6.616	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW370

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 427 507 464 408 404 450	6.057 6.229 6.140 6.011 6.001 6.109

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	321	NO	5.771	N/A
MW361	Downgradient	Yes	364	NO	5.897	N/A
MW364	Downgradient	Yes	274	NO	5.613	N/A
MW367	Downgradient	Yes	234	NO	5.455	N/A
MW370	Upgradient	Yes	241	NO	5.485	N/A
MW373	Upgradient	Yes	481	NO	6.176	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.230	S= 8.841	CV(1)= 0.958	K factor**= 2.523	TL(1)= 31.535	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.942	S = 0.713	CV(2)= 0.367	K factor**= 2.523	TL(2)= 3.740	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW370

wen number.	101 00 570	
Date Collected	Result	LN(Result)
3/17/2002	9.34	2.234
4/23/2002	4.33	1.466
7/15/2002	3.52	1.258
10/8/2002	7.45	2.008
1/8/2003	7.04	1.952
4/3/2003	4.64	1.535
7/9/2003	15.8	2.760
10/6/2003	6.49	1.870
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.627
Date Collected	Result	
Date Collected 3/18/2002	Result 37.6	3.627
Date Collected 3/18/2002 4/23/2002	Result 37.6 19	3.627 2.944
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 37.6 19 10.7	3.627 2.944 2.370
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 37.6 19 10.7 3.75	3.627 2.944 2.370 1.322
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 37.6 19 10.7 3.75 3.87	3.627 2.944 2.370 1.322 1.353
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 37.6 19 10.7 3.75 3.87 3.5	3.627 2.944 2.370 1.322 1.353 1.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.845	NO	-0.168	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	Yes	0.0411	NO	-3.192	N/A
MW367	Downgradient	Yes	0.593	NO	-0.523	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	Yes	0.103	NO	-2.273	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =17.544 S = 5.911	CV(1)= 0.337	K factor**= 2.523	TL(1)= 32.458	LL(1)=N/A
Statistics-Transformed Background	X =2.810 S = 0.343	CV(2)= 0.122	K factor**= 2.523	TL(2)= 3.676	LL(2)= N/A

Historical Bac Upgradient W	Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370					
Dete Cellertel	D 1/	$\mathbf{LN}(\mathbf{D} + \mathbf{n} + \mathbf{l})$				

Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442
4/3/2003	12.3	2.510
7/9/2003	10	2.303
10/6/2003	12.1	2.493
XX7 11 X 1		
Well Number:	MW373	
Date Collected		LN(Result)
		LN(Result) 3.211
Date Collected	Result	· /
Date Collected 3/18/2002	Result 24.8	3.211
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	15.1	NO	2.715	N/A	
MW361	Downgradient	Yes	13.8	NO	2.625	N/A	
MW364	Downgradient	Yes	13.7	NO	2.617	N/A	
MW367	Downgradient	Yes	12.2	NO	2.501	N/A	
MW370	Upgradient	Yes	12.1	NO	2.493	N/A	
MW373	Upgradient	Yes	27.2	NO	3.303	N/A	

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.080	S= 0.674	CV(1)= 0.624	K factor**= 2.523	TL(1)= 2.780	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.114	S= 0.658	CV(2) =-5.762	K factor**= 2.523	TL(2)= 1.547	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			
Date Collected	Result	LN(Result)		
3/17/2002	0.244	-1.411		

4/23/2002 1.82 0.599 7/15/2002 0.199 1.22 10/8/2002 0.988 -0.012 1/8/2003 -0.316 0.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.355 -1.036 4/23/2002 2.16 0.770 7/16/2002 0.329 1.39 10/8/2002 0.717 -0.333 1/7/2003 0.587 -0.533 4/2/2003 0.545 -0.6077/9/2003 1.76 0.565 10/7/2003 -0.562 0.57

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.173	NO	-1.754	N/A
MW361	Downgradient	Yes	0.00525	NO	-5.250	N/A
MW364	Downgradient	Yes	0.00521	NO	-5.257	N/A
MW367	Downgradient	Yes	1	NO	0.000	N/A
MW370	Upgradient	Yes	0.00111	NO	-6.803	N/A
MW373	Upgradient	Yes	0.0499	NO	-2.998	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.022	CV(1)= 0.901	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.239	S= 1.087	CV(2) =-0.256	K factor**= 2.523	TL(2)= -1.497	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

MW270

Wall Manuels and

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.0041	NO	-5.497	N/A	
MW361	Downgradient	No	0.002	N/A	-6.215	N/A	
MW364	Downgradient	No	0.002	N/A	-6.215	N/A	
MW367	Downgradient	Yes	0.00387	' NO	-5.555	N/A	
MW370	Upgradient	No	0.002	N/A	-6.215	N/A	
MW373	Upgradient	Yes	0.00217	' NO	-6.133	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 46.688	S = 60.986	CV(1)= 1.306	K factor**= 2.523	TL(1)= 200.555	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.829	S= 1.151	CV(2)= 0.301	K factor**= 2.523	TL(2)= 4.942	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Resul

MW270

Wall Number

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 140 -20 10 10 67 -29	4.942 #Func! 2.303 2.303 4.205 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	101	N/A	4.615	NO
MW361	Downgradient	Yes	412	N/A	6.021	YES
MW364	Downgradient	Yes	356	N/A	5.875	YES
MW367	Downgradient	Yes	312	N/A	5.743	YES
MW370	Upgradient	Yes	421	N/A	6.043	YES
MW373	Upgradient	Yes	417	N/A	6.033	YES

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW361 MW364 MW367 MW370 MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.283	S= 0.159	CV(1)= 0.025	K factor**= 2.904	TL(1)= 6.745	LL(1)=5.8202
Statistics-Transformed Background Data	X= 1.837	S = 0.025	CV(2)= 0.014	K factor**= 2.904	TL(2)= 1.911	LL(2)= 1.7634

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW370					

wen rumber.	11110570	
Date Collected	Result	LN(Result)
3/17/2002	6.3	1.841
4/23/2002	6.4	1.856
7/15/2002	6.3	1.841
10/8/2002	6.3	1.841
1/8/2003	6.4	1.856
4/3/2003	6.5	1.872
7/9/2003	6.3	1.841
10/6/2003	6.5	1.872
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.792
Date Collected	Result	· · · · ·
Date Collected 3/18/2002	Result 6	1.792
Date Collected 3/18/2002 4/23/2002	Result 6 6.3	1.792 1.841
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 6 6.3 6.45	1.792 1.841 1.864
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 6 6.3 6.45 6.18	1.792 1.841 1.864 1.821
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6 6.3 6.45 6.18 6.35	1.792 1.841 1.864 1.821 1.848
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6 6.3 6.45 6.18 6.35 6.14	1.792 1.841 1.864 1.821 1.848 1.815

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.11	NO	1.810	N/A
MW361	Downgradien	t Yes	6.02	NO	1.795	N/A
MW364	Downgradien	t Yes	6.01	NO	1.793	N/A
MW367	Downgradien	t Yes	5.79	YES	1.756	N/A
MW370	Upgradient	Yes	6.15	NO	1.816	N/A
	Upgradient	Yes	6.03	NO	1.797	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW367

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.823	S = 0.522	CV(1)= 0.185	K factor**= 2.523	TL(1)= 4.139	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.024	S= 0.167	CV(2)= 0.163	K factor**= 2.523	TL(2)= 1.445	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW370				

wen runber.	101 00 570	
Date Collected	Result	LN(Result)
3/17/2002	3.22	1.169
4/23/2002	3.43	1.233
7/15/2002	2.98	1.092
10/8/2002	2.46	0.900
1/8/2003	2.41	0.880
4/3/2003	2.43	0.888
7/9/2003	2.44	0.892
10/6/2003	2.48	0.908
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.468
Date Collected	Result	· · · · ·
Date Collected 3/18/2002	Result 4.34	1.468
Date Collected 3/18/2002 4/23/2002	Result 4.34 3.04	1.468 1.112
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 4.34 3.04 2.93	1.468 1.112 1.075
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 4.34 3.04 2.93 2.3	1.468 1.112 1.075 0.833
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 4.34 3.04 2.93 2.3 2.45	1.468 1.112 1.075 0.833 0.896
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 4.34 3.04 2.93 2.3 2.45 2.7	1.468 1.112 1.075 0.833 0.896 0.993

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.23	NO	0.802	N/A
MW361	Downgradient	Yes	2.12	NO	0.751	N/A
MW364	Downgradient	Yes	1.9	NO	0.642	N/A
MW367	Downgradient	Yes	2.96	NO	1.085	N/A
MW370	Upgradient	Yes	2.46	NO	0.900	N/A
MW373	Upgradient	Yes	2.6	NO	0.956	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.544	S = 15.22′	7 CV(1)=0.295	K factor**= 2.523	TL(1)= 89.962	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.906	S= 0.272	CV(2)= 0.070	K factor**= 2.523	TL(2)= 4.592	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				

wen number.	IVI VV 370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.770
Date Collected	Result	· · · · ·
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 43.4 79.8 87.7 61.6 59.3 62.1	3.770 4.380 4.474 4.121 4.083 4.129

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	42	NO	3.738	N/A
MW361	Downgradient	Yes	45.5	NO	3.818	N/A
MW364	Downgradient	Yes	45	NO	3.807	N/A
MW367	Downgradient	Yes	35.3	NO	3.564	N/A
MW370	Upgradient	Yes	42.3	NO	3.745	N/A
MW373	Upgradient	Yes	58.6	NO	4.071	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =122.381 S = 195.095	5 CV(1)=1.594	K factor**= 2.523	TL(1)= 614.606	LL(1)= N/A
Statistics-Transformed Background Data	X =3.985 S = 1.323	CV(2)= 0.332	K factor**= 2.523	TL(2)= 7.322	LL(2)=N/A

	kground Data from fells with Transformed Result
Well Number:	MW370

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	· · · · ·
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 163.3 809.6 109.4 110.6 113.7 133	5.096 6.697 4.695 4.706 4.734 4.890

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	66.6	N/A	4.199	NO
MW361	Downgradient	Yes	73.8	N/A	4.301	NO
MW364	Downgradient	Yes	70.2	N/A	4.251	NO
MW367	Downgradient	Yes	48.3	N/A	3.877	NO
MW370	Upgradient	Yes	20.2	N/A	3.006	NO
MW373	Upgradient	Yes	148	N/A	4.997	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.655	S= 13.274	CV(1)= 1.734	K factor**= 2.523	TL(1)= 41.146	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.946	S = 0.939	CV(2)= 0.483	K factor**= 2.523	TL(2)= 3.833	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	10.8	2.380			
4/23/2002	8.53	2.144			
7/15/2002	5.09	1.627			
10/8/2002	4.78	1.564			
1/8/2003	-5.12	#Func!			
4/3/2003	5.11	1.631			
7/9/2003	4.25	1.447			
10/6/2003	6.54	1.878			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	16.5	2.803			
4/23/2002	3.49	1.250			
7/16/2002	1.42	0.351			
10/8/2002	-6.06	#Func!			
1/7/2003	-8.41	#Func!			
4/2/2003	26.3	3.270			

3.06

46.2

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	43.7	N/A	3.777	NO
MW361	Downgradient	Yes	43.3	N/A	3.768	NO
MW364	Downgradient	Yes	52.5	N/A	3.961	YES
MW367	Downgradient	No	8.13	N/A	2.096	N/A
MW370	Upgradient	Yes	107	N/A	4.673	YES
MW373	Upgradient	Yes	28.3	N/A	3.343	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.118

3.833

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW364 MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.169	S= 12.072	CV(1)= 1.957	K factor**= 2.523	TL(1)= 36.626	LL(1)=N/A
Statistics-Transformed Background	X= 1.069	S= 1.014	CV(2)= 0.948	K factor**= 2.523	TL(2)= 3.626	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW370

Well Number

wen number.	IVI W 370	
Date Collected	Result	LN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.095
Date Collected	Result	
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1.1 17.5 49 2.9 3.9 2.5	0.095 2.862 3.892 1.065 1.361 0.916

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	1.09	N/A	0.086	NO		
MW361	Downgradient	Yes	1.33	N/A	0.285	NO		
MW364	Downgradient	Yes	0.873	N/A	-0.136	NO		
MW367	Downgradient	Yes	0.929	N/A	-0.074	NO		
MW370	Upgradient	Yes	0.988	N/A	-0.012	NO		
MW373	Upgradient	Yes	1.28	N/A	0.247	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 79.819	S= 78.470	CV(1)= 0.983	K factor**= 2.523	TL(1)= 277.798	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.971	S = 0.950	CV(2) =0.239	K factor**= 2.523	TL(2)= 6.368	LL(2)=N/A

Historical Bac	kground Data from						
Upgradient W	Yells with Transformed Result						
Well Number: MW370							

Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	()
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 50 276 177 76 45.9 57.8	3.912 5.620 5.176 4.331 3.826 4.057

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	6.94	NO	1.937	N/A		
MW361	Downgradient	No	7.26	N/A	1.982	N/A		
MW364	Downgradient	No	6.66	N/A	1.896	N/A		
MW367	Downgradient	No	6.4	N/A	1.856	N/A		
MW370	Upgradient	Yes	7	NO	1.946	N/A		
MW373	Upgradient	Yes	6.52	NO	1.875	N/A		

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.188 S = 6.950	CV(1)= 0.570	K factor**= 2.523	TL(1)= 29.721	LL(1)=N/A
Statistics-Transformed Background Data	X =2.305 S = 0.687	CV(2)= 0.298	K factor**= 2.523	TL(2)= 4.039	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW370

Well Number

Well Number:	MW3/0	
Date Collected	Result	LN(Result)
3/17/2002	19	2.944
4/23/2002	17	2.833
7/15/2002	15	2.708
10/8/2002	18	2.890
1/8/2003	17	2.833
4/3/2003	18	2.890
7/9/2003	15	2.708
10/6/2003	16	2.773
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.609
Date Collected	Result	· · · ·
Date Collected 3/18/2002	Result 5	1.609
Date Collected 3/18/2002 4/23/2002	Result 5 25	1.609 3.219
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 5 25 3	1.609 3.219 1.099
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 25 3 4	1.609 3.219 1.099 1.386
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 25 3 4 6	1.609 3.219 1.099 1.386 1.792
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5 25 3 4 6 5	1.609 3.219 1.099 1.386 1.792 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	5.12	NO	1.633	N/A		
MW361	Downgradient	Yes	5.46	NO	1.697	N/A		
MW364	Downgradient	Yes	6.69	NO	1.901	N/A		
MW367	Downgradient	Yes	4.95	N/A	1.599	N/A		
MW370	Upgradient	Yes	0.57	N/A	-0.562	N/A		
MW373	Upgradient	Yes	0.69	N/A	-0.371	N/A		

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.055	S= 0.037	CV(1)= 0.673	K factor**= 2.523	TL(1)= 0.147	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.131	S= 0.691	CV(2)=- 0.221	K factor**= 2.523	TL(2)= -1.388	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW370

wen number.	IVI VV 370		
Date Collected	Result	LN(Result)	
3/17/2002	0.1	-2.303	
4/23/2002	0.1	-2.303	
7/15/2002	0.1	-2.303	
10/8/2002	0.025	-3.689	
1/8/2003	0.035	-3.352	
4/3/2003	0.035	-3.352	
7/9/2003	0.02	-3.912	
10/6/2003	0.02	-3.912	
Well Number:	MW373		
Well Number: Date Collected		LN(Result)	
		LN(Result) -2.303	
Date Collected	Result		
Date Collected 3/18/2002	Result 0.1	-2.303	
Date Collected 3/18/2002 4/23/2002	Result 0.1 0.1	-2.303 -2.303	
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.1 0.1 0.1	-2.303 -2.303 -2.303	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.1 0.1 0.1 0.025	-2.303 -2.303 -2.303 -3.689	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.1 0.1 0.1 0.025 0.035	-2.303 -2.303 -2.303 -3.689 -3.352	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.1 0.1 0.025 0.035 0.035	-2.303 -2.303 -2.303 -3.689 -3.352 -3.352	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.00826	N/A	-4.796	N/A
MW361	Downgradient	No	0.00617	N/A	-5.088	N/A
MW364	Downgradient	Yes	0.0389	NO	-3.247	N/A
MW367	Downgradient	No	0.0114	N/A	-4.474	N/A
MW370	Upgradient	No	0.00444	N/A	-5.417	N/A
MW373	Upgradient	No	0.00565	N/A	-5.176	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U Third Quarter 2019 Statistical Analysis **Current Background Comparison** UCRS Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 34.088	S= 14.357	CV(1)= 0.421	K factor**= 2.523	TL(1)= 70.311	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.448	S= 0.412	CV(2)= 0.119	K factor**= 2.523	TL(2)= 4.487	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW368	Downgradien	t Yes	73.1	YES	4.292	N/A
MW371	Upgradient	Yes	70.4	YES	4.254	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

7/20/2017	40.3	3.696
10/3/2017	42.1	3.740
1/22/2018	38.1	3.640
4/12/2018	62.5	4.135
7/18/2018	58.4	4.067
10/10/2018	48	3.871
1/16/2019	40	3.689
4/15/2019	43.3	3.768
Well Number:	MW374	
wen runnoer.	101 00 57 1	
Date Collected		LN(Result)
		LN(Result) 3.068
Date Collected	Result	
Date Collected 7/20/2017	Result 21.5	3.068
Date Collected 7/20/2017 10/3/2017	Result 21.5 22	3.068 3.091
Date Collected 7/20/2017 10/3/2017 1/22/2018	Result 21.5 22 24.2	3.068 3.091 3.186
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 21.5 22 24.2 21.4	3.068 3.091 3.186 3.063
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018	Result 21.5 22 24.2 21.4 19.9	3.068 3.091 3.186 3.063 2.991

Current Background Data from Upgradient

LN(Result)

MW371

Result

Wells with Transformed Result

Well Number:

Date Collected

Wells with Exceedances MW368 MW371

C-746-U Third Quarter 2019 Statistical AnalysisCurrent Background ComparisonDissolved OxygenUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.798	S= 2.444	CV(1)= 0.873	K factor**= 2.523	TL(1)= 8.964	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.693	S= 0.847	CV(2)= 1.222	K factor**= 2.523	TL(2)= 2.828	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 7/20/2017 3.51 1.256 10/3/2017 0.599 1.82 1/22/2018 1.030 2.8 4/12/2018 7.85 2.061 7/18/2018 4.89 1.587 10/10/2018 0.96 -0.041 1/16/2019 8.02 2.082 5/28/2019 1.649 5.2 Well Number: MW374 Date Collected Result LN(Result) 7/20/2017 1.95 0.668 10/3/2017 1.12 0.113 1/22/2018 1.39 0.329 4/12/2018 0.513 1.67 7/18/2018 0.52 -0.654 10/10/2018 0.88 -0.128-0.400 1/17/2019 0.67 4/11/2019 1.52 0.419

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	3.4	NO	1.224	N/A
MW362	Downgradien	t Yes	4.48	NO	1.500	N/A
MW365	Downgradien	t Yes	2.74	NO	1.008	N/A
MW368	Downgradien	t Yes	4.17	NO	1.428	N/A
MW371	Upgradient	Yes	4.6	NO	1.526	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis **Current Background Comparison** UCRS Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 8.874	S= 4.028	CV(1)= 0.454	K factor**= 2.523	TL(1)= 19.036	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.091	S= 0.439	CV(2)= 0.210	K factor**= 2.523	TL(2)= 3.198	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/20/2017	13.8	2.625
10/3/2017	14.8	2.695
1/22/2018	14.4	2.667
4/12/2018	10.3	2.332
7/18/2018	11.3	2.425
10/10/2018	16.1	2.779
1/16/2019	9.38	2.239
4/15/2019	7.86	2.062
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.671
Date Collected	Result	
Date Collected 7/20/2017	Result 5.32	1.671
Date Collected 7/20/2017 10/3/2017	Result 5.32 6.22	1.671 1.828
Date Collected 7/20/2017 10/3/2017 1/22/2018	Result 5.32 6.22 5.91	1.671 1.828 1.777
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 5.32 6.22 5.91 5.03	1.671 1.828 1.777 1.615
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018	Result 5.32 6.22 5.91 5.03 5.09	1.671 1.828 1.777 1.615 1.627

Current Background Data from Upgradient

Wells with Transformed Result

Current	t Quarter Data	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW368	Downgradier	nt Yes	21.8	YES	3.082	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results) Х

C-746-U Third Quarter 2019 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =307.000 S = 73.300	CV(1)= 0.239	K factor**= 2.523	TL(1)= 491.937	LL(1)=N/A
Statistics-Transformed Background Data	X =5.696 S = 0.263	CV(2)= 0.046	K factor**= 2.523	TL(2)= 6.360	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 7/20/2017 364 5.897 10/3/2017 5.927 375 1/22/2018 339 5.826 4/12/2018 365 5.900 7/18/2018 342 5.835 10/10/2018 328 5.793 1/16/2019 396 5.981 4/15/2019 5.961 388 Well Number: MW374 Date Collected Result LN(Result) 7/20/2017 188 5.236 10/3/2017 194 5.268 1/22/2018 206 5.328 4/12/2018 5.802 331 7/18/2018 269 5.595 10/10/2018 218 5.384 1/17/2019 254 5.537 5/28/2019 355 5.872

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	217	NO	5.380	N/A
MW362	Downgradient	Yes	381	NO	5.943	N/A
MW365	Downgradient	t Yes	388	NO	5.961	N/A
MW368	Downgradient	t Yes	338	NO	5.823	N/A
MW371	Upgradient	Yes	423	NO	6.047	N/A
MW374	Upgradient	Yes	354	NO	5.869	N/A
MW375	Sidegradient	Yes	363	NO	5.894	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical AnalysisCurrent Background ComparisonSulfateUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 20.090	S= 24.624	CV(1)= 1.226	K factor**= 2.523	TL(1)= 82.217	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.546	S = 0.871	CV(2)= 0.342	K factor**= 2.523	TL(2)= 4.745	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 7/20/2017 14 2.639 10 10/3/2017 2.303 1/22/2018 11 2.398 91.6 4/12/2018 4.517 7/18/2018 47.7 3.865 10/10/2018 21.9 3.086 1/16/2019 10.1 2.313 4/15/2019 59.1 4.079 Well Number: MW374 Date Collected Result LN(Result) 7/20/2017 6.31 1.842 10/3/2017 6.78 1.914 1/22/2018 6.34 1.847 4/12/2018 1.980 7.24 7/18/2018 7.69 2.040 10/10/2018 6.6 1.887 1/17/2019 6.8 1.917 4/11/2019 8.28 2.114

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	47.1	N/A	3.852	NO
MW362	Downgradient	Yes	32.1	N/A	3.469	NO
MW365	Downgradient	Yes	58.4	N/A	4.067	NO
MW368	Downgradient	Yes	164	N/A	5.100	YES
MW371	Upgradient	Yes	55.4	N/A	4.015	NO
MW375	Sidegradient	Yes	24.2	N/A	3.186	NO

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis **Current Background Comparison URGA** Beta activity **UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 47.381	S= 39.265	CV(1)= 0.829	K factor**= 2.523	TL(1)= 146.447	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.599	S = 0.700	CV(2)= 0.194	K factor**= 2.523	TL(2)= 5.365	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Upgradient	Yes	120	NO	4.787	N/A
MW372	Upgradient	Yes	141	NO	4.949	N/A

Well Number: MW369 Date Collected Result LN(Result) 7/20/2017 26.13.262 10/3/2017 40.7 3.706 1/22/2018 32 3.466 102 4/11/2018 4.625 7/18/2018 14.9 2.701 10/9/2018 23.2 3.144 1/16/2019 22.5 3.114 4/15/2019 4.427 83.7 Well Number: MW372 Date Collected Result LN(Result) 7/20/2017 21.3 3.059 10/3/2017 132 4.883 1/22/2018 21.7 3.077 4/12/2018 20.9 3.040 7/18/2018 27.7 3.321 10/10/2018 123 4.812 3.235 1/17/2019 25.4 4/11/2019 41 3.714

Current Background Data from Upgradient

Wells with Transformed Result

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2019 Statistical AnalysisCurrent Background ComparisonChemical Oxygen Demand (COD)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 20.857	S= 11.357	CV(1)= 0.545	K factor**= 2.523	TL(1)= 49.512	LL(1)=N/A
Statistics-Transformed Background	X= 2.928	S = 0.463	CV(2)= 0.158	K factor**= 2.523	TL(2)= 4.096	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/20/2017	12.7	2.542
10/3/2017	9.71	2.273
1/22/2018	12.6	2.534
4/11/2018	24.7	3.207
7/18/2018	14.5	2.674
10/9/2018	21.4	3.063
1/16/2019	18.4	2.912
4/15/2019	17.4	2.856
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.542
Date Collected	Result	
Date Collected 7/20/2017	Result 12.7	2.542
Date Collected 7/20/2017 10/3/2017	Result 12.7 21.5	2.542 3.068
Date Collected 7/20/2017 10/3/2017 1/22/2018	Result 12.7 21.5 29.3	2.542 3.068 3.378
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 12.7 21.5 29.3 10.7	2.542 3.068 3.378 2.370
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018	Result 12.7 21.5 29.3 10.7 39.1	2.542 3.068 3.378 2.370 3.666

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	69.4	YES	4.240	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis **Current Background Comparison** URGA Conductivity **UNITS: umho/cm**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =499.063 S = 119.55	57 CV(1)=0.240	K factor**= 2.523	TL(1)= 800.705	LL(1)= N/A
Statistics-Transformed Background	X = 6.185 S = 0.247	CV(2)= 0.040	K factor**= 2.523	TL(2)= 6.807	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/20/2017	367	5.905
10/3/2017	370	5.914
1/22/2018	351	5.861
4/11/2018	425	6.052
7/18/2018	372	5.919
10/9/2018	374	5.924
1/16/2019	386	5.956
4/15/2019	439	6.084
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.372
Date Collected	Result	· · · · ·
Date Collected 7/20/2017	Result 585	6.372
Date Collected 7/20/2017 10/3/2017	Result 585 622	6.372 6.433
Date Collected 7/20/2017 10/3/2017 1/22/2018	Result 585 622 620	6.372 6.433 6.430
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 585 622 620 614	6.372 6.433 6.430 6.420
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018	Result 585 622 620 614 597	6.372 6.433 6.430 6.420 6.392

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	640	NO	6.461	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2019 Statistical AnalysisCurrent Background ComparisonDissolved SolidsUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 274.50	0 S= 71.734	CV(1)= 0.261	K factor**= 2.523	TL(1)= 455.484	LL(1)= N/A
Statistics-Transformed Background	X= 5.580	S = 0.278	CV(2)=0.050	K factor**= 2.523	TL(2)= 6.281	LL(2)=N/A

n	9	t	g	1	

Current Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
7/20/2017	206	5.328				
10/3/2017	180	5.193				
1/22/2018	161	5.081				
4/11/2018	281	5.638				
7/18/2018	197	5.283				
10/9/2018	196	5.278				
1/16/2019	224	5.412				
4/15/2019	261	5.565				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
7/20/2017	334	5.811				
10/3/2017	304	5.717				
1/22/2018	330	5.799				
4/12/2018	356	5.875				
7/18/2018	323	5.778				
10/10/2018	336	5.817				
1/17/2019	394	5.976				
4/11/2019	309	5.733				

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	616	YES	6.423	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =358.813 S = 42.818	CV(1)= 0.119	K factor**= 2.523	TL(1)= 466.842	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.876 S = 0.124	CV(2)= 0.021	K factor**= 2.523	TL(2)= 6.188	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
7/20/2017	376	5.930					
10/3/2017	399	5.989					
1/22/2018	346	5.846					
4/11/2018	397	5.984					
7/18/2018	338	5.823					
10/9/2018	341	5.832					
1/16/2019	432	6.068					
4/15/2019	372	5.919					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
7/20/2017	300	5.704					
10/3/2017	358	5.881					
1/22/2018	275	5.617					
4/12/2018	348	5.852					
7/18/2018	371	5.916					
10/10/2018	295	5.687					
1/17/2019	393	5.974					
5/28/2019	400	5.991					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradien	t Yes	413	NO	6.023	N/A	
MW360	Downgradien	t Yes	423	NO	6.047	N/A	
MW363	Downgradien	t Yes	365	NO	5.900	N/A	
MW366	Downgradien	t Yes	390	NO	5.966	N/A	
MW369	Upgradient	Yes	410	NO	6.016	N/A	
MW372	Upgradient	Yes	390	NO	5.966	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 67.781	S= 51.779	CV(1)= 0.764	K factor**= 2.523	TL(1)= 198.419	LL(1)=N/A
Statistics-Transformed Background	X = 3.993	S = 0.666	CV(2)= 0.167	K factor**= 2.523	TL(2)= 5.673	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/20/2017	34.2	3.532
10/3/2017	70.8	4.260
1/22/2018	38.8	3.658
4/11/2018	142	4.956
7/18/2018	31.4	3.447
10/9/2018	55	4.007
1/16/2019	39.1	3.666
4/15/2019	70.8	4.260
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.408
Date Collected	Result	<pre> /</pre>
Date Collected 7/20/2017	Result 30.2	3.408
Date Collected 7/20/2017 10/3/2017	Result 30.2 195	3.408 5.273
Date Collected 7/20/2017 10/3/2017 1/22/2018	Result 30.2 195 17.3	3.408 5.273 2.851
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 30.2 195 17.3 36.6	3.408 5.273 2.851 3.600
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018	Result 30.2 195 17.3 36.6 70.9	3.408 5.273 2.851 3.600 4.261

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	183	NO	5.209	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 46.643	S= 31.146	CV(1)= 0.668	K factor**= 2.523	TL(1)= 125.224	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.560	S = 0.857	CV(2)= 0.241	K factor**= 2.523	TL(2)= 5.721	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/20/2017	84.6	4.438
10/3/2017	69	4.234
1/22/2018	71.9	4.275
4/11/2018	50	3.912
7/18/2018	102	4.625
10/9/2018	81.7	4.403
1/16/2019	75.8	4.328
4/15/2019	61	4.111
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.815
Date Collected	Result	()
Date Collected 7/20/2017	Result 16.7	2.815
Date Collected 7/20/2017 10/3/2017	Result 16.7 20.6	2.815 3.025
Date Collected 7/20/2017 10/3/2017 1/22/2018	Result 16.7 20.6 23.5	2.815 3.025 3.157
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 16.7 20.6 23.5 4.99	2.815 3.025 3.157 1.607
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018	Result 16.7 20.6 23.5 4.99 30.6	2.815 3.025 3.157 1.607 3.421

Current Background Data from Upgradient

Wells with Transformed Result

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Upgradient	Yes	52.7	NO	3.965	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis **Current Background Comparison Chemical Oxygen Demand (COD) LRGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 22.506 S=	8.653	CV(1)= 0.384	K factor**= 2.523	TL(1)= 44.338	LL(1)= N/A
Statistics-Transformed Background Data	X =3.049 S =	0.370	CV(2)= 0.122	K factor**= 2.523	TL(2)= 3.983	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4.673

N/A

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/20/2017	10.4	2.342
10/3/2017	17.5	2.862
1/22/2018	16.8	2.821
4/11/2018	20	2.996
7/18/2018	19.4	2.965
10/9/2018	31.4	3.447
1/16/2019	28.6	3.353
4/15/2019	20	2.996
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 2.701
Date Collected	Result	
Date Collected 7/20/2017	Result 14.9	2.701
Date Collected 7/20/2017 10/3/2017	Result 14.9 15.6	2.701 2.747
Date Collected 7/20/2017 10/3/2017 1/22/2018	Result 14.9 15.6 31.4	2.701 2.747 3.447
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 14.9 15.6 31.4 24.7	2.701 2.747 3.447 3.207
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018	Result 14.9 15.6 31.4 24.7 30.9	2.701 2.747 3.447 3.207 3.431

Current Background Data from Upgradient

Wells with Transformed Result

Current	Quarter Da	ta				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)

YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

W

MW373 Upgradient

Yes

107

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results) Х

C-746-U Third Quarter 2019 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =366.875 S = 38.889	CV(1)= 0.106	K factor**= 2.523	TL(1)= 464.993	LL(1)=N/A
Statistics-Transformed Background Data	X =5.900 S = 0.104	CV(2)= 0.018	K factor**= 2.523	TL(2)= 6.163	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW370 Date Collected Result LN(Result) 7/20/2017 343 5.838 10/3/2017 392 5.971 1/22/2018 334 5.811 5.908 4/11/2018 368 7/18/2018 369 5.911 10/9/2018 346 5.846 1/16/2019 440 6.087 5/28/2019 400 5.991 Well Number: MW373 Date Collected Result LN(Result) 7/20/2017 309 5.733 10/3/2017 347 5.849 1/22/2018 393 5.974 4/12/2018 5.858 350 7/18/2018 318 5.762 10/10/2018 438 6.082 1/17/2019 336 5.817 4/11/2019 387 5.958

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data	l				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW361	Downgradien	t Yes	412	NO	6.021	N/A
MW364	Downgradien	t Yes	356	NO	5.875	N/A
MW367	Downgradien	t Yes	312	NO	5.743	N/A
MW370	Upgradient	Yes	421	NO	6.043	N/A
MW373	Upgradient	Yes	417	NO	6.033	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Third Quarter 2019 Statistical Analysis **Current Background Comparison LRGA UNITS: Std Unit** pН

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.159	S= 0.059	CV(1)= 0.010	K factor**= 2.904	TL(1)= 6.331	LL(1)= 5.9864
Statistics-Transformed Background Data	X= 1.818	S = 0.010	CV(2)= 0.005	K factor**= 2.904	TL(2)= 1.846	LL(2)= 1.7897

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW367	Downgradien	t Yes	5.79	YES	1.756	N/A

MW370 Well Number:

Wells with Transformed Result

Date Collected	Result	LN(Result)
7/20/2017	6.19	1.823
10/3/2017	6.13	1.813
1/22/2018	6.12	1.812
4/11/2018	6.1	1.808
7/18/2018	6.09	1.807
10/9/2018	6.01	1.793
1/16/2019	6.17	1.820
4/15/2019	6.18	1.821
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.831
Date Collected	Result	
Date Collected 7/20/2017	Result 6.24	1.831
Date Collected 7/20/2017 10/3/2017	Result 6.24 6.24	1.831 1.831
Date Collected 7/20/2017 10/3/2017 1/22/2018	Result 6.24 6.24 6.19	1.831 1.831 1.823
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 6.24 6.24 6.19 6.18	1.831 1.831 1.823 1.821
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018	Result 6.24 6.24 6.19 6.18 6.14	1.831 1.831 1.823 1.821 1.815
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018 10/10/2018	Result 6.24 6.24 6.19 6.18 6.14 6.19	1.831 1.831 1.823 1.821 1.815 1.823

Current Background Data from Upgradient

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW367

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Third Quarter 2019 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 60.539	S= 45.620	CV(1)= 0.754	K factor**= 2.523	TL(1)= 175.637	LL(1)= N/A
Statistics-Transformed Background	X= 3.910	S= 0.838	CV(2)= 0.214	K factor**= 2.523	TL(2)= 4.787	LL(2)=N/A

Current Backs Wells with Tra		
Well Number:	MW370	
Date Collected	Result	LN(Result)
7/20/2017	120	4.787
10/3/2017	103	4.635
1/22/2018	73.9	4.303
4/11/2018	107	4.673
7/18/2018	96.2	4.566
10/9/2018	114	4.736
1/16/2019	94.3	4.546
4/15/2019	111	4.710
Well Number:	MW373	
Date Collected	Result	LN(Result)
7/20/2017	9.12	2.210
10/3/2017	29.6	3.388
1/22/2018	24.8	3.211
4/12/2018	30.2	3.408
7/18/2018	-15.9	#Func!
10/10/2018	20.3	3.011
1/17/2019	28.4	3.346
4/11/2019	22.7	3.122

ent

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data											
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)					
MW364	Downgradien	t Yes	52.5	NO	3.961	N/A					
MW370	Upgradient	Yes	107	NO	4.673	N/A					

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

October 17, 2019

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Site.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the third quarter 2019 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Nation Jennifer

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

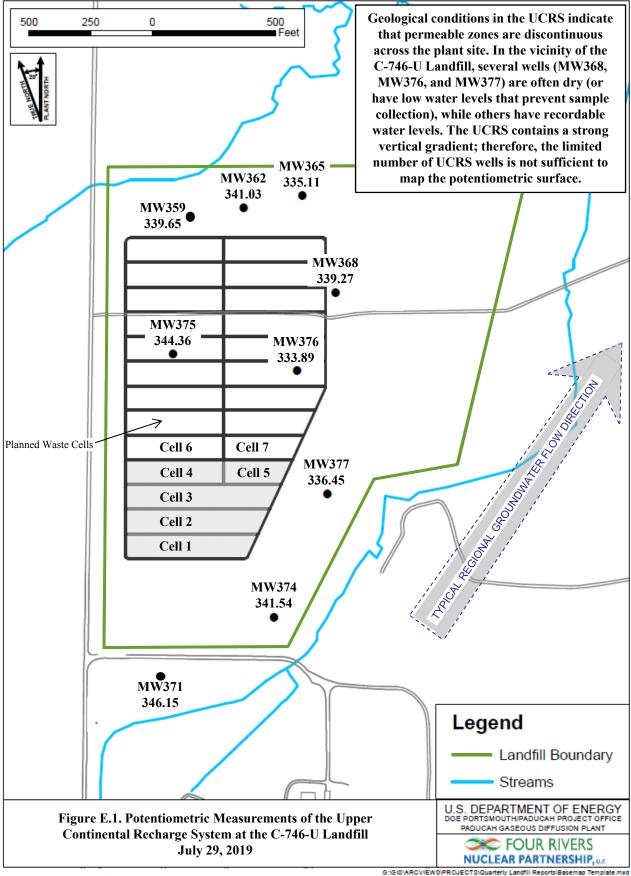
GROUNDWATER FLOW RATE AND DIRECTION

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED—QUARTERLY, 3rd CY 2019 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

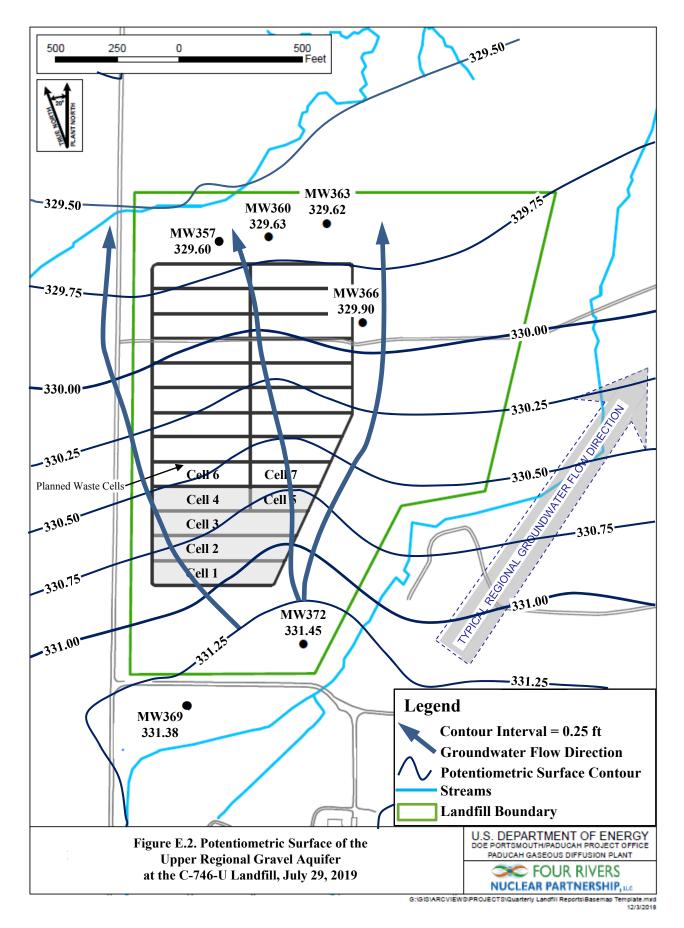
GROUNDWATER FLOW RATE AND DIRECTION

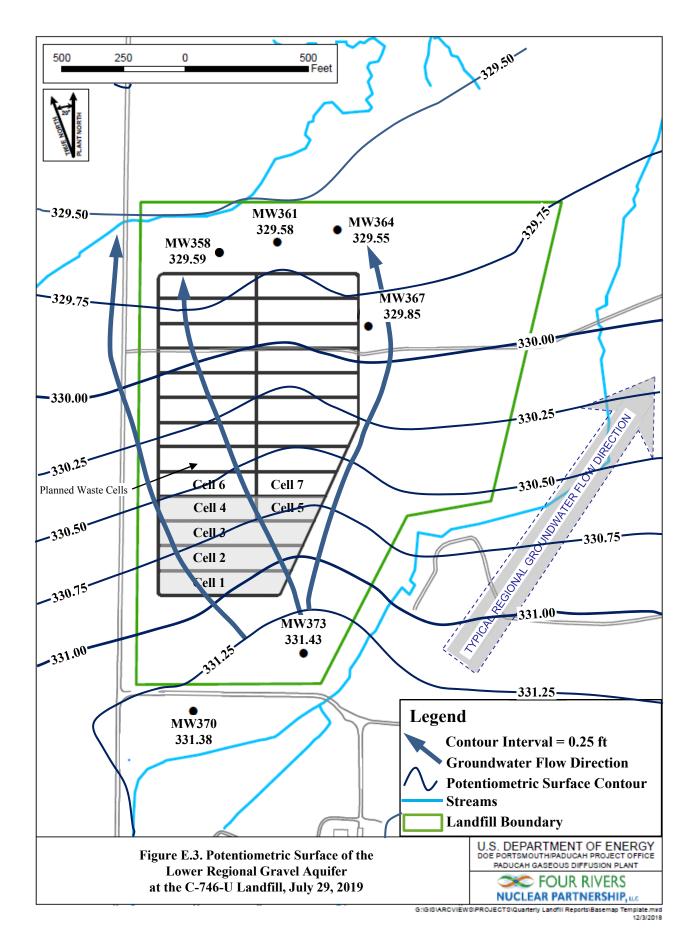

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 *KAR* 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2019 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on July 29, 2019. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 1.06×10^{-3} ft/ft and 1.10×10^{-3} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.


Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for July 2019, the groundwater flow direction in the immediate area of the landfill was to the north/northeast.


^{12/3/2018}

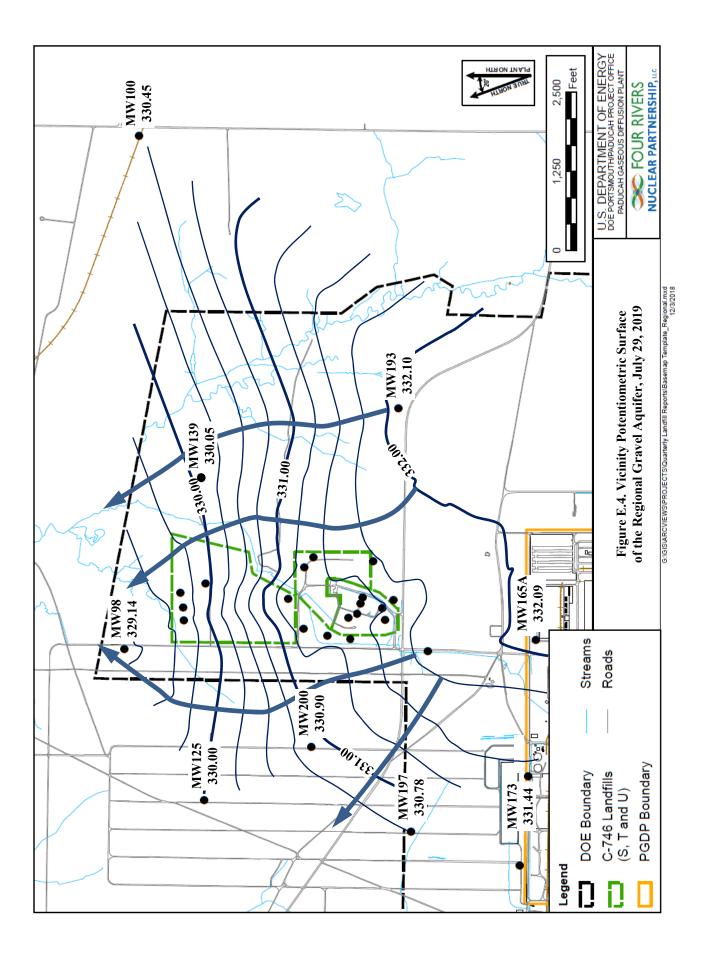

				/46-U Landfill (× /			w Data	*Corre	ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
7/29/2019	15:16	MW357	URGA	368.99	29.98	0.02	39.37	329.62	39.39	329.60
7/29/2019	15:14	MW358	LRGA	369.13	29.98	0.02	39.52	329.61	39.54	329.59
7/29/2019	15:15	MW359	UCRS	369.11	29.98	0.02	29.44	339.67	29.46	339.65
7/29/2019	15:10	MW360	URGA	362.30	29.98	0.02	32.65	329.65	32.67	329.63
7/29/2019	15:12	MW361	LRGA	361.54	29.98	0.02	31.94	329.60	31.96	329.58
7/29/2019	15:11	MW362	UCRS	362.04	29.98	0.02	20.99	341.05	21.01	341.03
7/29/2019	15:24	MW363	URGA	368.84	29.98	0.02	39.20	329.64	39.22	329.62
7/29/2019	15:26	MW364	LRGA	368.45	29.98	0.02	38.88	329.57	38.90	329.55
7/29/2019	15:25	MW365	UCRS	368.37	29.98	0.02	33.24	335.13	33.26	335.11
7/29/2019	15:27	MW366	URGA	369.27	29.98	0.02	39.35	329.92	39.37	329.90
7/29/2019	15:29	MW367	LRGA	369.66	29.98	0.02	39.79	329.87	39.81	329.85
7/29/2019	15:28	MW368	UCRS	369.27	29.98	0.02	29.98	339.29	30.00	339.27
7/29/2019	15:46	MW369	URGA	364.48	29.98	0.02	33.08	331.40	33.10	331.38
7/29/2019	15:48	MW370	LRGA	365.35	29.98	0.02	33.95	331.40	33.97	331.38
7/29/2019	15:47	MW371	UCRS	364.88	29.98	0.02	18.71	346.17	18.73	346.15
7/29/2019	15:44	MW372	URGA	359.66	29.98	0.02	28.19	331.47	28.21	331.45
7/29/2019	15:42	MW373	LRGA	359.95	29.98	0.02	28.50	331.45	28.52	331.43
7/29/2019	15:43	MW374	UCRS	359.71	29.98	0.02	18.15	341.56	18.17	341.54
7/29/2019	15:36	MW375	UCRS	370.53	29.98	0.02	26.15	344.38	26.17	344.36
7/29/2019	15:38	MW376	UCRS	370.61	29.98	0.02	36.70	333.91	36.72	333.89
7/29/2019	15:40	MW377	UCRS	365.92	29.98	0.02	29.45	336.47	29.47	336.45
Reference B	arometric	Pressure	30.00							
Elev = eleva	tion									
amsl = above	e mean se	a level								
BP = barome	etric press	ure								
DTW = dept	h to water	in feet belo	w datum							
URGA = Up										
LRGA = Lo	wer Regio	nal Gravel A	Aquifer							
UCRS = Up	per Contir	nental Recha	rge System							
ND = No Da										
*Assumes a	harometri	c efficiency	of 10							

Table E.1. C-746-U Landfill Third Quarter 2019 (July) Water Levels

E-6

	ft/ft
Beneath Landfill—Upper RGA	$1.06 imes 10^{-3}$
Beneath Landfill—Lower RGA	1.10×10^{-3}
Vicinity	4.99×10^{-4}

Table E.2. C-746-U Landfill Hydraulic Gradients

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific	c Discharge (q)	Average Linear Velocity (v)					
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s				
Upper RGA									
725	0.256	0.769	2.72×10^{-4}	3.08	1.09×10^{-3}				
425	0.150	0.451	1.59×10^{-4}	1.80	6.37×10^{-4}				
Lower RGA									
725	0.256	0.798	2.82×10^{-4}	3.19	1.13×10^{-3}				
425	0.150	0.468	1.65×10^{-4}	1.87	6.61×10^{-4}				

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the third quarter 2019 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW372
Lower Regional Gravel Aquifer	Technetium-99	MW364, MW370
Lower Regional Gravel Aquifer		MW364, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

8/19/2019

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4799	MW358	Trichloroethene Trichloroethene	8260B 8260B	5.12 5.05	ug/L ug/L	5 5
8004-4795	MW361	Trichloroethene	8260B	5.46	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	6.69	ug/L	5
8004-4820	MW369	Beta activity	9310	120	pCi/L	50
8004-4818	MW370	Beta activity	9310	52.7	pCi/L	50
8004-4808	MW372	Beta activity	9310	141	pCi/L	50

NOTE 1: MCLs are defined in 401 KAR 47:030.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

THIS PAGE INTENTIONALLY LEFT BLANK

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

Groundwater Flow System				UCR	s							URC	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*							<u> </u>		
Quarter 3, 2003	*						*			*	*	*			*			*	<u> </u>		
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004	-					*										*					
Quarter 3, 2005	-					*															
Quarter 4, 2005						*															
ALPHA ACTIVITY																					_
Quarter 1, 2004	-																				
Quarter 2, 2004 Quarter 3, 2009	-																		-	<u> </u>	
ALUMINUM						-													-		
	-				_	_	_	_		_	*		_			_				-	
Quarter 3, 2003 BETA ACTIVITY											不								-		
Quarter 1, 2004	-				_	_	_	_		_			_			_				-	
Quarter 1, 2004 Quarter 2, 2004	1																			⊢	
	+																			┝──┦	
Quarter 3, 2004 Quarter 4, 2004	-		<u> </u>					<u> </u>	<u> </u>	—	—			<u> </u>			—			\vdash	┝─┤
Quarter 4, 2004 Quarter 4, 2005	-		<u> </u>					<u> </u>	<u> </u>	—	—			<u> </u>			—			\vdash	┝─┤
· ·	1																			⊢	
Quarter 1, 2006 Quarter 2, 2006	-																		 	⊢	
	1																			⊢	
Quarter 3, 2006 Quarter 4, 2006	1																			⊢	
	-									-											
Quarter 1, 2007	-																				
Quarter 2, 2007	-									_											
Quarter 3, 2007	-																				_
Quarter 4, 2007	-																				
Quarter 1, 2008	-									-				-		-					-
Quarter 2, 2008	-									_					-				_		-
Quarter 3, 2008	-																				
Quarter 4, 2008	-																			<u> </u>	
Quarter 1, 2009	-															_	_			<u> </u>	
Quarter 2, 2009	-									_											
Quarter 3, 2009	-																			<u> </u>	
Quarter 4, 2009	-									-										<u> </u>	
Quarter 1, 2010	-									_						_					L
Quarter 2, 2010	_																			<u> </u>	
Quarter 3, 2010	_														_					<u> </u>	
Quarter 4, 2010	-									_						_					L
Quarter 2, 2011	-														_						
Quarter 4, 2011	_									_										<u> </u>	
Quarter 1, 2012	-																				L
Quarter 2, 2012	1														_			(1)	──	\vdash	<u> </u>
Quarter 3, 2012	1																			\vdash	
Quarter 4, 2012	1									—									├	\vdash	
Quarter 1, 2013	-		<u> </u>							L	<u> </u>			<u> </u>			<u> </u>		 	\vdash	
Quarter 3, 2013	1																		──	\vdash	
Quarter 4, 2013	_														_					<u> </u>	
Quarter 1, 2014	1									—										\vdash	\vdash
Quarter 4, 2014	1																		──	\vdash	\vdash
Quarter 1, 2015	1															-			──	\vdash	\vdash
Quarter 2, 2015	-		<u> </u>							L	<u> </u>			<u> </u>	-		<u> </u>		-	\vdash	\vdash
Quarter 4, 2015	1									—										┝╤┦	\vdash
Quarter 3, 2016	1													-					├		\vdash
Quarter 4, 2016	1									—										┝═┙	\vdash
Quarter 2, 2017	1									—											\vdash
Quarter 3, 2017	1					<u> </u>				L			<u> </u>		-				┣──		<u> </u>
Quarter 4, 2017	1									—									-		\vdash
Quarter 1, 2018	1									—				-							⊢
Quarter 2, 2018	1					<u> </u>				L			<u> </u>						┣──		<u> </u>
Quarter 3, 2018	-														-				—		<u> </u>
Quarter 4, 2018	-																		┣—		<u> </u>
Quarter 1, 2019	1													-					┣		
Quarter 2, 2019	_	ļ	L							L	L	ļ			-		L	ļ	—		
Quarter 3, 2019	1														-						
BROMIDE																					
Quarter 2, 2004	1	1	1								1	1	*	I	I			1	I	1	i I
Quarter 2, 2001	_	L	_	_	_	_		_	_	_	_	_	_	_	_			_	-	_	_

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	1			UCF	s					1		URG	Ă			1		LRC	Ă		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 3, 2003										*											
Quarter 2, 2005																					*
Quarter 3, 2006															*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011																					*
Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						-
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
Quarter 3, 2013		<u> </u>	<u> </u>	I	<u> </u>	<u> </u>		<u> </u>	<u> </u>		I	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>	<u> </u>	I	<u> </u>	*
Quarter 4, 2013		<u> </u>		<u> </u>	<u> </u>		I	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>	<u> </u>	I	<u> </u>	ىتو				
Quarter 2, 2014	l														*						*
Quarter 3, 2014															*						*
Quarter 4, 2014		 								I					*						
Quarter 2, 2015		 								I					*						
Quarter 3, 2015		<u> </u>		<u> </u>	<u> </u>		I	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>	<u> </u>	I	<u> </u>					
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016	÷														*						
Quarter 2, 2017	*																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*							4													
Quarter 3, 2019	*							*								_					
CARBON DISULFIDE										÷						_					
Quarter 3, 2003							÷			*											
Quarter 2, 2005						.	*														
Quarter 3, 2005						*															
Quarter 4, 2005																					
Quarter 1, 2006						*															
Quarter 2, 2006		*				*					.										
Quarter 3, 2010		*									*			÷							
Quarter 4, 2010														*	÷						
Quarter 1, 2011	ND														*	_					
CHEMICAL OXYGEN DEMA	IND									*	<u>ч</u>	*	<u>ч</u>	*	*						
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003												÷									
Quarter 2, 2003	÷									*	*	*				÷					
Quarter 3, 2003	*					÷				*	*					*					
Quarter 4, 2003						*				*	*										
Quarter 3, 2004		<u> </u>				*				*					*	*			*		
Quarter 3, 2005						*				*					*	*		J.	*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	I		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	*	*	<u> </u>	<u> </u>
Quarter 4, 2016		<u> </u>								I	*							*			
Quarter 1, 2017		<u> </u>								I	*	*			*						
Quarter 2, 2019												*			*						ىتو
Quarter 3, 2019	_														*	_					*
CHLORIDE Quarter 1, 2006																				*	
Quarter 1, 2006															*					*	
Quarter 2, 2014	_														*						
COBALT Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	
1000000000000000000000000000000000000	*						*			*	*		*		*	*	*	*		*	
		I												*				 			
Quarter 1, 2004				1		L								*		_					
Quarter 1, 2004 Quarter 2, 2016																					
Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY										*											
Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002										*											
Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003							_			*											
Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003										* *	*										
Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003										* * *	*										
Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 1, 2004										* * *	*										
Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003										* * *	*										

Gradient Monitoring Well CONDUCTIVITY Quarter 3, 2004	D 368	S	S	S	D	D	D					_	_		T. 7						
CONDUCTIVITY	368					D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
		375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
										*			_		_				_		
Quarter 1, 2004 Quarter 1, 2005										*					*						┝──┤
Quarter 2, 2005															*						
Quarter 3, 2005						*									-				*		
Quarter 4, 2005															*			*			
Quarter 1, 2006															*						
Quarter 2, 2006															*						
Quarter 3, 2006															*						\square
Quarter 1, 2007															*						⊢
Quarter 2, 2007 Quarter 3, 2007															*						┝──┦
Quarter 4, 2007															*						
Quarter 1, 2009															*						
Quarter 2, 2008															*						
Quarter 3, 2008															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						\square
Quarter 1, 2010															*						l
Quarter 2, 2010 Quarter 3, 2010															*						l
Quarter 3, 2010 Quarter 4, 2010															*						l
Quarter 1, 2010															*						
Quarter 2, 2011 Quarter 2, 2011								<u> </u>							*						
Quarter 3, 2011															*						ł
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						\square
Quarter 2, 2013															*						
Quarter 3, 2013										-					*	-					
Quarter 4, 2013 Quarter 1, 2014															*						┝──┦
Quarter 2, 2014 Quarter 2, 2014															*						
Quarter 3, 2014 Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016															*						\square
Quarter 2, 2019															* *						⊢
Quarter 3, 2019 DISSOLVED OXYGEN	_														*						
Quarter 1, 2003					*	*				*											
Quarter 3, 2003			-		*	Ť				*											
Quarter 4, 2003					*																
Quarter 1, 2005					*												İ –	İ –			
Quarter 2, 2004								*								*					
Quarter 1, 2005					*																
Quarter 2, 2005								*													
Quarter 1, 2006					*																
Quarter 2, 2006					*			*													
Quarter 3, 2006					*			*		L						L	L	L			
Quarter 4, 2006					*			*	*												
Quarter 2, 2007				<u> </u>	*			*	*	L	<u> </u>			<u> </u>		L	L	L			l
Quarter 3, 2007 Quarter 1, 2008			<u> </u>		* *	<u> </u>		*	*										*		
Quarter 1, 2008 Quarter 2, 2008					Ŧ			*	*										Ŧ		
Quarter 3, 2008								*	Ŧ												
Quarter 1, 2009							*														
Quarter 2, 2009					*			*	*												
Quarter 3, 2009						*		*	*								1	1			
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*		*	*											*	*
Quarter 3, 2010					*	*															
Quarter 4, 2010							*					*								*	
Quarter 1, 2011						*															
Quarter 2, 2011					*	*	*	*	*					*							

Gradient D S S D D D D </th <th>Groundwater Flow System</th> <th>1</th> <th></th> <th></th> <th>UCF</th> <th>S</th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th>URG</th> <th>۰<u>۸</u></th> <th></th> <th></th> <th>r</th> <th></th> <th>LRG</th> <th>`A</th> <th></th> <th></th>	Groundwater Flow System	1			UCF	S					1		URG	۰ <u>۸</u>			r		LRG	`A		
Number 188 775 377 379 187 378 377 377 378 378 379 379 370 377 378<		D	S	S	-	-	D	D	U	U	D	D			U	U	D	D			U	U
DNSOLVED ONCE: Description																					370	373
Quarter 2, 2012 •							0.0-						0.00									0.70
Ounter 1, 2012 Image: A and A an							*			*							-					
Ounter 2, 2012 Image: Control 2, 2012 Image: Control 2, 2013							-	*														
Quarter 2, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2016 Quarter 4, 2017 Quarter 4,		*			*	*	*		*													
Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2014 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 1,		Ŧ			Ŧ	Ŧ			Ŧ	Ŧ												
Quarter 1, 2013 Image 1, 2013 Image 2, 2014 Image 2, 2016 Image 2, 2017 Image	· · ·						Ť			*												
Quarter 2, 2013 Image: Constraint of the con							*															
Ounter 4, 2013 •	· · ·						*	*														
Ouncret 2,013 Image 2,014	· · ·	.				*			<u>ч</u>													
Quarter 2, 2014 *		*				不		不	*												*	
Ounter 3, 2014		.				*	.	*	.										.		ѫ	-
Quarter 4, 2014 Image 2, 2015 Image	<u> </u>								*	不									不			-
Quarter 2, 2015 •		*				*		*														-
Quader 3, 2015						-		-	44													L
Quarter 1, 2015 *	<u>`</u>							*														L
Quarter 1, 2016 *						*			*													L
Ounter 2, 2016 *	· · ·	_					*															
Quarter 3, 2016 **** *		_																				
Quarter 1, 2016 *		*	*							*											*	*
Quarter 1, 2017 Image: Constraint of the second secon		1	<u> </u>	L	L	*		*	*	-	l		L	*				L	I			<u> </u>
Quarter 2, 2017 *		I	<u> </u>				*			*												
Quarter 3: 2017 * * * * * * * <th< td=""><td>· · ·</td><td>I</td><td> </td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	· · ·	I						_						*								
Quarter 4, 2017 **** *** ***																						
Quarter 1, 2018 ****** ***** ****** ****** ******* ********* ************************************	Quarter 3, 2017	*	*			*	*	*	*										*			
Quarter 2, 2018 *																			*			
Quarter 3, 2018 *		Ľ	Ľ			*	*	*	*												*	
Quarter 3, 2018 *						*	*	*	*													
Quarter 1, 2019 Particle 2, 2013 Particle 2, 2017 Particle 2, 2010 Particle 2, 2019 Particle 2, 2011 Particle 2, 2013 </td <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td></td>		*				*	*	*	*													
Quarter 1, 2019 Particle 2, 2013 Particle 2, 2017 Particle 2, 2010 Particle 2, 2019 Particle 2, 2011 Particle 2, 2013 </td <td></td> <td>1</td> <td>1</td> <td></td>		1	1																			
Quarter 2, 2019 *						*	*	*	*													
Quarter 3, 2019 *								-														
DISSOLVED SOLIDS Image: Constraint of the second seco		*						*														
Quarter 4, 2002 Market 1, 2003 Market																						
Quarter 1, 2003 ** ** ** Quarter 2, 2003 ** ** * Quarter 4, 2003 ** * * Quarter 4, 2003 ** * * Quarter 4, 2006 ** * * Quarter 2, 2007 ** * * Quarter 2, 2007 * * * Quarter 2, 2007 * * * Quarter 2, 2007 * * * Quarter 4, 2008 * * * Quarter 4, 2009 * * * Quarter 2, 2009 * * * Quarter 3, 2010 * * * Quarter 4, 2010 * * * Quarter 3, 2011 * * * Quarter 4, 2011 * * * Quarter 2, 2012 * * * <											*											
Quarter 2, 2003 * * * * * * * Parter 4, 2003 Parter 4, 2004 Parter 4, 2006 Parter 4, 2006 Parter 4, 2006 Parter 4, 2006 Parter 4, 2007 Parter 4, 2008 Parter 4, 2008 Parter 4, 2009 Parter 4, 2000 Parter 4, 2010 Parter 4, 2011 Parter 4, 2012 Parter 4, 2013 Parte	· · ·																					-
Quarter 3, 2003 * * * * *	· · ·																					
Quarter 4, 2003 * * * <								J.				*										-
Quarter 3, 2005 * * * *	· · ·							不				*										
Quarter 4, 2006 * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 4, 2008 * * * Quarter 1, 2009 * * * Quarter 3, 2009 * * * Quarter 4, 2009 * * * Quarter 3, 2009 * * * Quarter 4, 2009 * * * Quarter 3, 2010 * * * Quarter 4, 2010 * * * Quarter 4, 2010 * * * Quarter 4, 2010 * * * Quarter 1, 2011 * * * Quarter 2, 2011 * * * Quarter 4, 2011 * * * Quarter 1, 2012 * * * Quarter 1, 2012 * * * Quarter 1, 2013 * * * Quarter 2, 2012 * * * * <td>· · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>ч</u></td> <td></td> <td></td> <td></td> <td>Ŧ</td> <td></td> <td>-</td>	· · ·						<u>ч</u>				Ŧ											-
Quarter 1, 2007 * Quarter 2, 2007 * Quarter 2, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 2, 2009 *	· · ·						*									f						
Quarter 2, 2007 * * * Quarter 4, 2008 * * * Quarter 2, 2009 * * * Quarter 3, 2009 * * * Quarter 2, 2009 * * * Quarter 3, 2009 * * * Quarter 2, 2010 * * * Quarter 4, 2010 * * * Quarter 1, 2011 * * * Quarter 2, 2011 * * * Quarter 4, 2011 * * * Quarter 2, 2012 * * * Quarter 3, 2012 * * * Quarter 4, 2013 * * * Quarter 2, 2013 * * *																						L
Quarter 4, 2008 * Quarter 1, 2009 * Quarter 3, 2009 *																						
Quarter 1, 2009	· · ·																					
Quarter 3, 2009	· · ·																					
Quarter 3, 2009																						
Quarter 4, 2009 Image: Constraint of the second	Quarter 2, 2009															*						
Quarter 1, 2010 Image: Constraint of the constraint of t	Quarter 3, 2009															*						
Quarter 2, 2010 * * * Quarter 3, 2010 * * * * Quarter 4, 2010 * * * * * Quarter 1, 2011 * * * * * * Quarter 2, 2011 * * * * * * * Quarter 3, 2011 *	Quarter 4, 2009															*						
Quarter 3, 2010 *	Quarter 1, 2010															*						
Quarter 4, 2010 *	Quarter 2, 2010															*						
Quarter 1, 2011 Image: Constraint of the second	Quarter 3, 2010															*						
Quarter 1, 2011 Image: Constraint of the second	Quarter 4, 2010															*						
Quarter 2, 2011																*						
Quarter 3, 2011																*						
Quarter 4, 2011 * * * <		1	1							1									1			
Quarter 1, 2012 Image: Constraint of the second	· · · · · · · · · · · · · · · · · · ·	1	1	1	1	1	1	1	1	İ			1	1				1	İ			
Quarter 2, 2012 * * <t< td=""><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		1	1												*							
Quarter 3, 2012	· · · · · · · · · · · · · · · · · · ·	1	1								-											*
Quarter 4, 2012		1	1							1		-							1			*
Quarter 1, 2013 * * <t< td=""><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td>-</td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td></t<>		1	1								-											
Quarter 2, 2013		1																				
Quarter 3, 2013 * <td< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td>┝──┦</td></td<>		1								<u> </u>					-				<u> </u>			┝──┦
Quarter 4, 2013 * <td< td=""><td></td><td></td><td></td><td> </td><td><u> </u></td><td> </td><td> </td><td> </td><td><u> </u></td><td></td><td></td><td></td><td> </td><td> </td><td></td><td></td><td><u> </u></td><td> </td><td></td><td></td><td>-</td><td>┝──┦</td></td<>					<u> </u>				<u> </u>								<u> </u>				-	┝──┦
Quarter 1, 2014 * <td< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></td<>		1																				<u> </u>
Quarter 2, 2014 <t< td=""><td></td><td></td><td></td><td> </td><td><u> </u></td><td> </td><td> </td><td> </td><td><u> </u></td><td></td><td></td><td></td><td> </td><td> </td><td></td><td></td><td><u> </u></td><td> </td><td></td><td></td><td>-</td><td>┝──┦</td></t<>					<u> </u>				<u> </u>								<u> </u>				-	┝──┦
Quarter 4, 2014 * Quarter 2, 2015 * Quarter 3, 2015 * Quarter 4, 2015 * Quarter 1, 2016 * Quarter 3, 2019 * Quarter 2, 2003 Quarter 4, 2003		1																				┝──┦
Quarter 2, 2015 * <td< td=""><td></td><td><u> </u></td><td><u> </u></td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td></td><td><u> </u></td><td> </td><td> </td><td></td><td></td><td>L</td><td> </td><td> </td><td></td><td></td><td><u> </u></td></td<>		<u> </u>	<u> </u>									<u> </u>					L					<u> </u>
Quarter 3, 2015 <t< td=""><td></td><td>I</td><td><u> </u></td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td></td><td></td><td></td><td> </td><td> </td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td>⊢ − </td></t<>		I	<u> </u>																			⊢ −
Quarter 4, 2015 * Quarter 1, 2016 * Quarter 3, 2019 * IODIDE Quarter 2, 2003 Quarter 4, 2003		1								I									I			
Quarter 1, 2016 <t< td=""><td></td><td>I</td><td>I</td><td>L</td><td>L</td><td>L</td><td>L</td><td>L</td><td>L</td><td> </td><td></td><td>L</td><td>L</td><td>L</td><td></td><td></td><td>L</td><td>L</td><td> </td><td></td><td></td><td></td></t<>		I	I	L	L	L	L	L	L			L	L	L			L	L				
Quarter 3, 2019 <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td><td></td></t<>		1								I									I			
IODIDE I <td>· · · · · · · · · · · · · · · · · · ·</td> <td>I</td> <td><u> </u></td> <td></td>	· · · · · · · · · · · · · · · · · · ·	I	<u> </u>																			
Quarter 2, 2003 * * * * * ×		1														*						
Quarter 3, 2003 * *	IODIDE																					
Quarter 4, 2003 *	Quarter 2, 2003									L							*		L			
	Quarter 3, 2003	*	L	Ĺ	Ĺ	Ĺ	Ĺ	Ĺ	Ĺ	L	*	Ĺ	Ĺ	Ĺ				Ĺ	L			
	Quarter 4, 2003	L	L					*		L		Ĺ	Ĺ						L			
Quarter 3, 2010 * * * *							*		*					*				*				

Groundwater Flow System				UCR	s							URG	A					LRC	ĞΑ		
Gradient Menitemine Well	D 368	S	S 376	S 377	D 359	D 362	D 365	U 371	U 374	D 366	D 360	D 363	D 357	U 369	U 272	D 367	D 361	D 364	D 358	U 270	U 373
Monitoring Well IODINE-131	308	375	370	3//	339	302	303	3/1	3/4	300	300	303	337	309	372	307	301	304	338	370	3/3
Quarter 3, 2010																					
IODOMETHANE																					
Quarter 4, 2003						*															
IRON						*															
Quarter 4, 2002 Quarter 3, 2003						*										*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005										_						*					
MAGNESIUM Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2008 Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009	1														*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011 Quarter 2, 2011	<u> </u>										-				*		-	-			\vdash
Quarter 3, 2011 Quarter 3, 2011															* *						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															* *						
Quarter 4, 2012 Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014 Quarter 2, 2015															*						
Quarter 2, 2015 Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016	*																				
Quarter 4, 2016 Quarter 2, 2017	*																				
Quarter 2, 2017 Quarter 3, 2017	*																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
Quarter 3, 2019	*																				
MANGANESE										*		*									
Quarter 3, 2002 Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2002 Quarter 2, 2003	1	*				Ť	Ť			*	-	*		*			-		-		
Quarter 3, 2003	1									*		*	*			*	*	*	*		
Quarter 4, 2003										*	*	*	*				*	*			
Quarter 1, 2004										*	*	*				*	*	*			
Quarter 2, 2004	1		<u> </u>	<u> </u>			*		<u> </u>	*	*	*	<u> </u>	<u> </u>		*	<u> </u>	*			
Quarter 3, 2004 Quarter 4, 2004							*			*	*	*				*					\vdash
Quarter 1, 2004 Quarter 1, 2005										*		*				Ť					
Quarter 2, 2005	1									*		*									
Quarter 3, 2005										*		*				*					
Quarter 4, 2005										*						*					
Quarter 1, 2006	I			L						*			L	L							\square
Quarter 2, 2006		<u> </u>					*			*		*				*			<u> </u>		\vdash
Quarter 3, 2006 Quarter 4, 2006										*						*					\vdash
Quarter 1, 2007	1	-						-		*	-	-					-	-	-		
Quarter 2, 2007	1						*			*											
Quarter 3, 2007	Ĺ						*														
Quarter 3, 2008							*														
Quarter 4, 2008	1						*														

Groundwater Flow System				UCR	s							URG	A					LRG	ĞΑ		
Gradient	D	S	S	S	D	D	D	U 271	U	D	D	D	D	U	U	D	D	D	D	U 270	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
MANGANESE							÷						_								_
Quarter 3, 2009							*														
Quarter 3, 2011							*							*							
Quarter 2, 2016									*					*							
Quarter 3, 2016									*	_											
NICKEL Quarter 3, 2003										*			_			-	-				
OXIDATION-REDUCTION P	OTE	NTI A	T							*											
	UTE	NIIA	L							_							*		*		
Quarter 4, 2002																	*				
Quarter 1, 2003																	*		*		
Quarter 2, 2003	÷																		不		
Quarter 3, 2003	*				44																
Quarter 4, 2003					*								J.				÷				J.
Quarter 2, 2004					-								*	-	-		*				*
Quarter 3, 2004					*			*				-	*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005	I			L	*	*	L	*			*	*	*	L	L	I	*		*	*	*
Quarter 4, 2005	I	*		L			L	*			L		*	L	L	I	*			*	
Quarter 1, 2006	I		L		*			*	*								*	L			*
Quarter 2, 2006	I				*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*			*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*				*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*					Ĺ				*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*			-	*	*	*	*	*
		*			*	Ŧ	*	*	T	*		Ŧ	*			*	*	*	- T	*	Ŧ
Quarter 1, 2010 Quarter 2, 2010		Ť			*	*	÷	*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		*			*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2010		*				* *	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011		<u>ч</u>			<u>ч</u>		.		*	-	_			_							<u>ч</u>
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*	-	*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*	-	*	*	*	*	*	*	*		*	*	*	446	*	*
Quarter 1, 2012		*		-	-	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013	Į	*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2014		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2015		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015		*			*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*			*		*	*		*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*		1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*		1	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*		1	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*	*		1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017	*	*	1	1	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 4, 2017	1	*	t –		<u> </u>	*	*	*	*	*		*	*	*	*		*	*	1	*	*
Quarter 1, 2018	*	*	1		*	*	*	*	*	*		*	*	*	*	*	*	*	1	*	*
Quarter 2, 2018	*	*	t	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2018	*	*	1		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2018	L.	*			<u>т</u>	* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2018 Quarter 1, 2019	*	*			*	* *	*	*	*	*	*	*	* *	*	*	*	*	*	*	* *	*
Quarter 1, 2019 Quarter 2, 2019	*	*			*	* *	*	*	*	*	*	*	* *	*	*	*	*	*	*	* *	*
	*	*			*	* *	*	*	*	*	*	*	* *	*	*	*	*	*	*	* *	*
Quarter 3, 2019	. *	*	<u> </u>	L	ボ	*	ボ	*	*	. *	ボ	*	ボ	ボ	ボ	. *	*	*	<u> </u>	*	*

Groundwater Flow System				UCR	s							URG	Ā					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
PCB, TOTAL																					
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004												*									
Quarter 2, 2006	1	1					*					*						1			
Quarter 1, 2007	1	1					*											1			
Quarter 2, 2007	1						*														
Quarter 3, 2007 Quarter 3, 2007	1				-	-	*														
Quarter 2, 2007	1					-	*														-
Quarter 4, 2008	-						*														
Quarter 3, 2009	-				-		*														
Quarter 1, 2009	-						*														
Quarter 2, 2010	_						*														
Quarter 4, 2010 Quarter 4, 2010	-						* *														
· · ·							*														
PCB-1242	_						*					-				_					
Quarter 3, 2006	-						*			-		*									
Quarter 4, 2006	_									*											
Quarter 1, 2008	_						*														
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260																					
Quarter 2, 2006							*														
pH																					
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*												*	*		
Quarter 4, 2005						*													*		
Quarter 3, 2006	1					<u> </u>										*			<u> </u>		
Quarter 2, 2011	1				-	-	-							*		- ·					
Quarter 3, 2011	1				-	-	-							*							
Quarter 4, 2011						-	-							*							-
Quarter 1, 2012	-				-	-	-	-					-			*	*		-		
Quarter 1, 2012 Quarter 2, 2012												*					-				
Quarter 1, 2012 Quarter 1, 2013										*		*				*					
	-									*		*				*	*				
Quarter 3, 2015								<u> </u>		<u> </u>			<u> </u>				*		<u> </u>	*	*
Quarter 2, 2016	-																			*	*
Quarter 3, 2016	-																ىبر			*	
Quarter 2, 2017	-				ىبر					-14		ىبر					*	ىتو	ىتر		
Quarter 3, 2018	-				*	<u> </u>	<u> </u>			*		*					*	*	*		
Quarter 4, 2018	-		L	L	L	L	L	L		L	L	L	L	L		*	L	*	L		
Quarter 3, 2019																*					
POTASSIUM																					
Quarter 1, 2014																*					
RADIUM-228																					
				1																	
Quarter 2, 2005																					
Quarter 2, 2005 Quarter 4, 2005																					
Quarter 4, 2005																					

Groundwater Flow System	1			UCR	S							URC	ΪA					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371		366	360	363	357	369	372	367	361	364		370	373
SODIUM																					
Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										*											<u> </u>
Quarter 2, 2003										*	*										
Quarter 3, 2003										-	*										
Quarter 1, 2007											*			*							
Quarter 1, 2012 Quarter 1, 2014														*	*						
Quarter 3, 2014											*				Ť						
Quarter 4, 2014											*										
Quarter 4, 2015											*										
Quarter 1, 2016											*										
Quarter 2, 2016											*										
Quarter 3, 2016											*										
Quarter 4, 2016											*										
Quarter 1, 2017											*										
Quarter 2, 2017											*										
Quarter 3, 2017											*										<u> </u>
Quarter 4, 2017											*										
Quarter 1, 2018											*										
Quarter 3, 2018 STRONTIUM-90											*										
Quarter 4, 2008																					
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003	1			İ		*	*				İ			İ			İ		İ		<u> </u>
Quarter 3, 2003	*					*															
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														<u> </u>
Quarter 4, 2005					44				-						*						i
Quarter 1, 2006					*	4	J.		*						4						
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006 Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 4, 2007		*					-1-														
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009	I	*	L	L	*	*	<u> </u>				L			L	*		L		L	L	<u> </u>
Quarter 1, 2010		*			*	*	*								*						┝──
Quarter 2, 2010 Quarter 3, 2010		*			* *	* *	*								* *						⊢
Quarter 5, 2010		*			*	*									*						
Quarter 4, 2010 Quarter 1, 2011		*				*	*								*						
Quarter 1, 2011 Quarter 2, 2011		*			*	*	*								*						
Quarter 2, 2011 Quarter 3, 2011		*			*	* *	*	*							* *						
Quarter 4, 2011		*				* *	-	*							*						<u> </u>
Quarter 1, 2012		*				<u> </u>	*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*			1	1		*			1			
Quarter 3, 2012	1	*				*						1			*			1			
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*						
Quarter 3, 2013	*	*		*	*	*	*								*						
Quarter 4, 2013		*													*						
Quarter 1, 2014		*													*						┝──
Quarter 2, 2014	*	*			*		*	*							*						┝──
Quarter 3, 2014	*	*			*	*	*	*							*						⊢
Quarter 4, 2014	I	*		<u> </u>		*	<u> </u>		<u> </u>	L	<u> </u>	I	<u> </u>	<u> </u>			<u> </u>	I	<u> </u>		┣—
Quarter 1, 2015	L	*	L	L			L		I	L	L	L	I	L	L	L	L	L	L		<u> </u>

Groundwater Flow System	I			UCF	s					I		URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE	4	*			-		<u>ч</u>								*						
Quarter 2, 2015	*	*			*	<u>.</u>	*	.							*						
Quarter 3, 2015 Quarter 4, 2015	*	*			*	*	*	*							ѫ						
Quarter 1, 2015	*	*			*	*	*	Ť													
Quarter 2, 2016	*	*			*	*	*														
Quarter 3, 2016	*	*			*	*	*	*													
Quarter 4, 2016	*	*				*	*	*													
Quarter 1, 2017	*	*				*	*														
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017	*	*			*	*	*														
Quarter 4, 2017		*				*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
Quarter 3, 2018	*	*			*	*	*	*													
Quarter 4, 2018		*				*	*	*													
Quarter 1, 2019	*	*			*	*	*														
Quarter 2, 2019	*	*			*	*	*	*													
Quarter 3, 2019	*	*			*	*	*	*													
TECHNETIUM-99																_	*	*	*		
Quarter 4, 2002							*						*			*	* *	*	*		*
Quarter 2, 2003 Quarter 3, 2003							*						*			*	*	*	*		*
Quarter 3, 2003 Quarter 4, 2003																	*				*
Quarter 4, 2003 Quarter 1, 2004	1	1	1												*		* *				* *
Quarter 1, 2004 Quarter 2, 2004	1	1	1												*		- *				*
Quarter 3, 2004 Quarter 3, 2004	1	1	1												*						*
Quarter 3, 2004 Quarter 4, 2004	1	1	1												*		*				*
Quarter 3, 2005	1														- P		*				· r
Quarter 1, 2006	1	1	1												*						*
Quarter 2, 2006	1	*							*						-						*
Quarter 3, 2006	1		1	1	1	1	1	1		1	1	1			-				1		*
Quarter 4, 2006	1	1	1												*						*
Quarter 1, 2007															-						*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008															*					*	*
Quarter 2, 2008							*	*						*		*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010		L																*			
Quarter 1, 2011		*								*							*	44	-		
Quarter 2, 2011	-															*	*	*	*		
Quarter 1, 2012	-							J.									*	*			
Quarter 2, 2012	-							*									يىر	*			
Quarter 3, 2012	1	<u> </u>	<u> </u>						<u> </u>					<u> </u>	*		*	*			*
Quarter 4, 2012 Quarter 1, 2013	1														*			*			* *
Quarter 1, 2013 Quarter 2, 2013	1								<u> </u>									*			* *
Quarter 3, 2013	1	1	1							*											*
Quarter 4, 2013	1	1	1	<u> </u>	 	 	 	<u> </u>		-	 				*		*	*	 		*
Quarter 1, 2013	1														*		*	*			· r
Quarter 2, 2014	1	1	1														<u> </u>	*			
Quarter 3, 2014	1	1	1														*	*	*		
Quarter 4, 2014	1	1	1						1						*			<u> </u>	· ·		
Quarter 1, 2015	1	1	1	1	1	1	1	1	İ	1	1	1			*			*	1		
Quarter 2, 2015	1	1	1							1						*					
Quarter 3, 2015	1																	*	*	*	
Quarter 4, 2015	1														*		*			*	
Quarter 1, 2016		L	L													*	*	*	*		*
Quarter 2, 2016																*	*	*	*	*	
													_				*		*	*	
Quarter 3, 2016	1									*				*			*	*			
Quarter 4, 2016	_																*		*	*	
																				*	
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017																					
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017																		*		*	
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017														*	*		*	*		*	
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018															*		*			*	
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018														* *		*	*			* * *	
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018															*	*		*		* * * *	
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 4, 2018																	* *		*	* * * * *	
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018															*	* *		*	*	* * * *	

Groundwater Flow System	1			UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99																					
Quarter 2, 2019														*						*	ļ
Quarter 3, 2019										_					*			*		*	
THORIUM-230																					
Quarter 4, 2015										<u>ч</u>						*					
Quarter 2, 2016	*									*		*				*			*		
Quarter 4, 2016 Quarter 4, 2017	Ŧ											*	*			*			不		
Quarter 2, 2017 Quarter 2, 2018										*			*								
TOLUENE										Ť			Ť								
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON	I	L								*				-							
Quarter 3, 2002	1	<u> </u>								*	*	*		*							*
Quarter 4, 2002										*	*	*		*							*
· · · · · · · · · · · · · · · · · · ·										*	*			*							
Quarter 1, 2003	*									*	*					*					
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004						<u>ب</u> د				÷	*				<u>т</u>	بد			ىد		
Quarter 3, 2005						*				*					*	*		ىئو	*		
Quarter 4, 2005	I		<u> </u>	<u> </u>	<u> </u>	*	<u> </u>	<u> </u>			<u> </u>			<u> </u>		I	<u> </u>	*	*		┝───
Quarter 1, 2006	L	L								_									*		
TOTAL ORGANIC HALIDES	1	1																			
Quarter 4, 2002	I									*						I					
Quarter 1, 2003	I	I	L	L	L	L	L	L	I	*	L			L	I	I	L	I	L		Ļ
Quarter 2, 2003	ļ		L	L	L	L	L			*	L		L	L			L		L		Ļ
Quarter 1, 2004																*					L
TRICHLOROETHENE																					
Quarter 3, 2002	<u> </u>															<u> </u>					L
Quarter 4, 2002																					
Quarter 1, 2003																					
Quarter 2, 2003																					
Quarter 3, 2003																					
Quarter 4, 2003																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2005 Quarter 1, 2006																					-
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																				-	
Quarter 1, 2000																					
· · · · · · · · · · · · · · · · · · ·																				-	
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																			-		
Quarter 2, 2008	 							ļ								<u> </u>					
Quarter 3, 2008	I															I					
Quarter 4, 2008	I															I					
Quarter 1, 2009	I															I					
Quarter 2, 2009	I								L			L				I					
Quarter 3, 2009																I					
Quarter 4, 2009	<u> </u>															<u> </u>					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010	L								L			L				L					
Quarter 2, 2011									Ľ				L								
Quarter 3, 2011		L		L	L		L		L		L						L	L			
Quarter 4, 2011																					
Quarter 1, 2012	I															I					
Quarter 2, 2012	Î.															l I					
Quarter 3, 2012	İ 👘								1							İ –					
Quarter 4, 2012	İ 👘								1							İ –					
Quarter 1, 2012 Quarter 1, 2013	1															1					
Quarter 2, 2013	1															1					
Quarter 3, 2013	i –	1							1			<u> </u>				I –	<u> </u>	1	<u> </u>		
Quarter 4, 2013	1															1					
Quarter 1, 2013	<u> </u>																				
Quarter 1, 2014 Quarter 2, 2014	I								<u> </u>							 					
Quarter 2, 2014	-	L	-		l	-		-	-	_		<u> </u>		-		-		L			

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	37
TRICHLOROETHENE																					
Quarter 3, 2014	1																				
Quarter 4, 2014																					
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					
Quarter 2, 2017																					
Quarter 3, 2017																					
Quarter 4, 2017																					
Quarter 1, 2018																					
Quarter 2, 2018																					
Quarter 3, 2018																					
Quarter 4, 2018																					
Quarter 1, 2019																					
Quarter 2, 2019																					
Quarter 3, 2019																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an eleva	ated conc	centrati	on (i.e.,	a stati	stical e	xceedar	nce).														
 MCL Exceedance 																					
Previously reported as an MCL exc		; howe	ver, resi	alt was	equal t	o MCL	,														
UCRS Upper Continental Recharge Syste	m																				
URGA Upper Regional Gravel Aquifer																					
LRGA Lower Regional Gravel Aquifer																					

APPENDIX H

METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: 073-00045

McCracken County, Kentucky

Date:	rather Conditions: Sunny, Warm, Slight Wind, and 80 Degrees nitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location 46-U1 Checked at floor level 46-U2 Checked at floor level 46-U1 Checked at floor level 46-U2 Checked at floor level 46-U15 Checked at floor level 46-U15 Checked at floor level 46-U15 Checked at floor level 46-U15 Checked at floor level 46-U15 Checked at floor level 41 Dry casing 32 Dry casing 33 Dry casing 44 Dry casing 54 No problems noted														
Weather Co	ather Conditions: Sunny, Warm, Slight Wind, and 80 Degrees aitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location Monitoring Location 66-U1 Checked at floor level 66-U2 Checked at floor level 66-U3 Checked at floor level 66-U-T-14 Checked at floor level 66-U-T-14 Checked at floor level 67-U-T-14 Dry casing 67-U-T-14 Dry casing 67-U-T-14 Dry casing 67-U-T-14 Dry casing 67-U-T-14 Dry casing 67-U-T-14 Dry casing 67-U-T-14 Dry casing 67-U-T-14 Dry casing 67-U-T-14 Dry casing 67-U-T-14 Dry casing 67-U-T-14 Dry casing 68-U-T-14 Dry casing 69-U-T-14 Dry casing 69-U-T-14 Dry casing 69-U-T														
Monitoring	Equipm	^{ient::} RAE Syste	ms, Mı	ulti-RAE Serial	#7970										
	ather Conditions: Sunny, Warm, Slight Wind, and 80 Degrees nitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location Monitoring Location 46-U1 Checked at floor level 46-U2 Checked at floor level 46-U-T-14 Checked at floor level 1 Dry casing 2 Dry casing 3 Dry casing 4 Dry casing spect or blem Areas No problems noted														
C-746-U1	ather Conditions: Sunny, Warm, Slight Wind, and 80 Degrees nitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location Monitoring Location 46-U1 Checked at floor level 46-U2 Checked at floor level 46-U-T-14 Checked at floor level 46-U15 Checked at floor level 1 Dry casing 2 Dry casing 3 Dry casing 4 Dry casing ppect or blem Areas No problems noted														
C-746-U2	Patter Conditions: Sunny, Warm, Slight Wind, and 80 Degrees Spinitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location Monitoring Location r46-U1 Checked at floor level r46-U2 Checked at floor level r46-U-T-14 Checked at floor level r46-U15 Checked at floor level r46-U15 Checked at floor level r46-U15 Checked at floor level r46-U15 Checked at floor level r46-U15 Checked at floor level r46-U15 Checked at floor level r46-U15 Checked at floor level r46-U15 Checked at floor level r46-U15 Checked at floor level r41 Dry casing r52 Dry casing r53 Dry casing r54 Dry casing r55 No problems noted														
C-746-U-T-14	Vertication Vertication Vertication Monitoring Location Monitoring Location Operation Vertication Operation														
C-746-U15	onitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location 746-U1 Checked at floor level 746-U2 Checked at floor level 746-U-T-14 Checked at floor level 746-U-T-14 Checked at floor level 746-U-T-14 Checked at floor level 61 Dry casing 62 Dry casing G3 Ory casing G4 Dry casing Jappect or roblem Areas No problems noted														
MG1	Veather Conditions: Sunny, Warm, Slight Wind, and 80 Degrees Monitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location Ar46-U1 Checked at floor level -746-U2 Checked at floor level -746-U-T-14 Checked at floor level -746-U15 Checked at floor level -746-U15 Checked at floor level 101 Dry casing 102 Dry casing 103 Dry casing 104 Dry casing uspect or roblem Areas No problems noted														
MG2	Veather Conditions: Sunny, Warm, Slight Wind, and 80 Degrees Monitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location Monitoring Location 2-746-U1 Checked at floor level 2-746-U2 Checked at floor level -746-U-T-14 Checked at floor level -746-U15 Checked at floor level -746-U15 Checked at floor level 101 Dry casing 102 Dry casing 103 Dry casing 104 Dry casing 105 No problems noted														
MG3	onitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location 746-U1 Checked at floor level 746-U2 Checked at floor level 746-U-T-14 Checked at floor level 746-U15 Checked at floor level 746-U15 Checked at floor level 61 Dry casing 62 Dry casing G4 Dry casing Spect or or oblem Areas No problems noted Image: Colspan="2">Othecked at floor level														
MG4	onitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location 746-U1 Checked at floor level 746-U2 Checked at floor level 746-U-T-14 Checked at floor level 746-U15 Checked at floor level 746-U15 Checked at floor level 746-U15 Checked at floor level G1 Dry casing G3 Dry casing G3 Dry casing G4 Dry casing Monitoring Location														
	Monitoring Location 46-U1 Checked at floor level 46-U2 Checked at floor level 46-U-T-14 Checked at floor level 46-U15 Checked at floor level 10 Dry casing 2 Dry casing 3 Dry casing 4 Dry casing spect or blem Areas No problems noted														
Remarks:	NA		h			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
	746-U15 Checked at floor level G1 Dry casing G2 Dry casing G3 Dry casing G4 Dry casing Isspect or oblem Areas No problems noted emarks: NA NA														
	Monitoring Location 746-U1 Checked at floor level 746-U2 Checked at floor level 746-U1 Checked at floor level 746-U15 Checked at floor level 746-U15 Checked at floor level 61 Dry casing 62 Dry casing 63 Dry casing 64 Dry casing Ispect or roblem Areas No problems noted emarks: NA No problems noted														
	Weather Conditions: Sunny, Warm, Slight Wind, and 80 Degrees Monitoring Equipment:: RAE Systems, Multi-RAE Serial #7970 Monitoring Location Monitoring Location 2-746-U1 Checked at floor level 2-746-U2 Checked at floor level 2-746-U-T-14 Checked at floor level 2-746-U15 Checked at floor level 2-746-U15 Checked at floor level 2-746-U15 Checked at floor level 3-746-U15 No pro casing 3-3 Dry casing 3-3 Dry casing 3-3 Dry casing 3-3 Dry casing 3-3 Dry casing 3-3 Dry casing 3-3 Dry casing 3-3 Dry casing 3-3 Dry casing 3-3 Remarks: NA Performed by: No problems noted Remarks: NA Off														
Performed I	rformed by: Robert Klinby //MMS Signature														
		Signat	ure				Date								

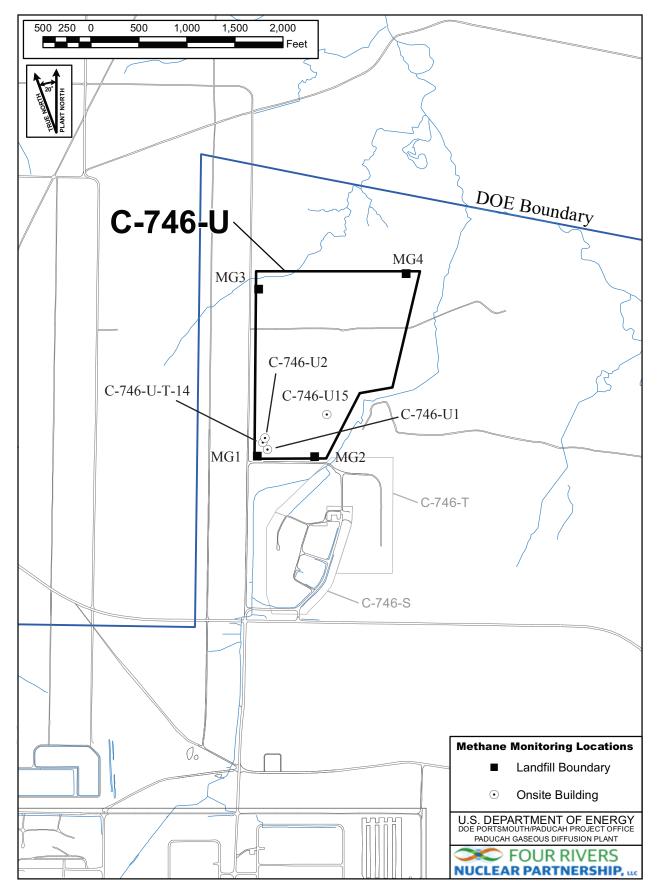


Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number: SW07300014, SW07300015, SW07300045 Frankfort, KY 40601 (502)564-6716 FINDS/UNIT: KY8-890-008-982 / 1

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po:	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L150 AT SITE	Ξ	L154 UPSTRE	AM	L351 DOWNST	REAM	\mathbf{N}		
Sample Sequer	ice	#				1		1		1		$ \rangle$		/
If sample is a	a Bl	ank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA		$\left \right\rangle$		/
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		7/22/2019 14:3	34	7/22/2019 14:	53	7/22/2019 14	:17			
Duplicate ("Y	(" c	r "N") ¹				Ν		N		N				/
Split ('Y' or	: "N	") ²				Ν		N		N			\	7
Facility Samp	le	ID Number (if applicable)				L150US4-19		L154US4-1	9	L351US4-1	9			/
Laboratory Sa	mpl	e ID Number (if applicable)				485497001		485497002		485497003	3		/	
Date of Analy	sis	(Month/Day/Year)				8/19/2019		8/16/2019		8/16/2019)			
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	v	FECTED ALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field		*		*		*			
16887-00-6	2	Chloride(s)	т	mg/L	300.0	3.12	*	6.91	*	2.73	*		7	\backslash
14808-79-8	0	Sulfate	т	mg/L	300.0	22.9		2.87		5.32			/	X
7439-89-6	0	Iron	т	mg/L	200.8	61.4		1.5		1.28		/		$\left \right\rangle$
7440-23-5	0	Sodium	т	mg/L	200.8	10.5		1.75		2.81		\Box		\square
S0268	0	Organic Carbon ⁶	т	mg/L	9060	8.3		20.9		12.1		1/		
s0097	0	BOD ⁶	т	mg/L	not applicable		*		*		*	1/		
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	41.9		114		34.4		\vee		

 1 Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

LAB ID: <u>None</u> For Official Use Only

Page 2 of 2

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant
Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	. (KPDES Discharge Number, or	: "T	JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	FLAG7S	DETECTED VALUE OR PQL ⁵	FLA F
S0145	1	Specific Conductance	Ŧ	µmho/cm	Field	175		88		147			/
s0270	0	Total Suspended Solids	т	mg/L	160.2	13700		28.8		29			
S0266	0	Total Dissolved Solids	т	mg/L	160.1	870	В	173	В	137	В		
S0269	0	Total Solids	т	mg/L	SM-2540 B 17	13800	*	121	*	140	*		
S0296	0	рН	т	Units	Field	7.47		7.24		6.45			
7440-61-1		Uranium	т	mg/L	200.8	0.00844		0.00124		0.00479		$\langle \rangle$	
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	453	*	2.99	*	7.84	*		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	336	*	13.9	*	19	*	V	
												\land	
													۱
													\bot
												/	
												/	

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitoriı Point	ng Facility Sample ID	Constituent	Flag	Description
L150	L150US4-19	Flow Rate		Analysis of constituent not required and not performed.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 99.4. Rad error is 64.1.
		Beta activity		TPU is 65.7. Rad error is 31.6.
L154	L154US4-19	Flow Rate		Analysis of constituent not required and not performed.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.19. Rad error is 5.17.
		Beta activity		TPU is 7.73. Rad error is 7.4.
L351	L351US4-19	Flow Rate		Analysis of constituent not required and not performed.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 4.54. Rad error is 4.33.
		Beta activity		TPU is 7.17. Rad error is 6.45.

APPENDIX J

ANALYTICAL LABORATORY CERTIFICATION

Hi Lisa,

I am forwarding the email notification we received regarding our A2LA extension.

Thanks,

Valerie

------ Forwarded Message ------Subject:Extension of A2LA Certificate 2567.01 Date:Thu, 27 Jun 2019 15:43:33 -0400 (EDT) From:srippeon@A2LA.org To:rlp@gel.com, srippeon@A2LA.org

The certificate listed below has been extended. An extended certificate has been placed on our website. Please feel free to print a copy of the certificate and scope directly from the <u>website</u>. Please contact your assigned Accreditation Officer (AcO) if you need further clarification.

Name: Pullano, Robert Company: GEL Laboratories, LLC Email: <u>rlp@gel.com</u> Certificate Number: 2567.01 Expires: 06/30/2019 Field: Environmental Extended Until: 07/31/2019 Ac0: Rippeon, Stephanie AcO Email: <u>srippeon@A2LA.org</u>

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

http://www.gellaboratories.com

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Environmental Scope of Accreditation.

APPENDIX K

LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3-
		Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L

MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-U Contained Landfill

			_			,,,,,,,, 				,	
			ot States	2	ed oxygen				Divid Carling	a /	Salozyen C
				JCIT /		» / /			nol ⁶	× /	
		Contraction Contraction	UIT		ser.	ATW 358		onthe Conduct	UNIT		Tubit
		Se .	of the state of th	in	, 07. V	R.		Je /	ovid on St	in	0730
		Entre La		S ² /.	S / 8		15	and the second	5 2		8
	COLIN	Ond	12		J. TOIL		2 THR	OTHE	13	15501	, itoi
	$\overline{\sqrt{2}}$	/0	<u> </u>	<u> </u>	$\overline{\sqrt{2}}$	D myaza	$\overline{\sqrt{2}}$	/0	<u> </u>	<u> </u>	$\overline{\sqrt{2}}$
1W357											
Date Collected: 7/10/2019		10.1		1.0.1		Date Collected: 7/10/2019					0.00
9904	64.8	426	6.18	4.96	4.70	0954	65.5	503	6.11	3.12	8.00
907	65.1	428	6.13	4.87	4.10	0957	66.2	506	6.12	2.11	8.50
9910	65.6	427	6.10	4.72	4.50	1000	66.7	505	6.11	2.01	9.30
AW359						MW360					
Date Collected: 7/10/2019						Date Collected: 7/10/2019					
041	63.3	224	6.00	3.71	4.7	0651	61.5	403	6.18	1.93	17.0
044	64.7	225	5.93	3.36	3.9	0654	62.0	403	6.16	1.62	14.5
047	65.8	224	5.89	3.40	5.1	0657	62.1	402	6.16	1.51	12.4
1W361						MW362					
Date Collected: 7/10/2019						Date Collected: 7/10/2019					
)737	61.6	493	6.02	2.95	2.1	0819	61.7	730	7.01	4.54	4.5
0740	62.2	493	6.05	2.90	3.3	0822	61.9	732	6.95	4.47	4.8
0743	62.6	492	6.02	2.89	3.0	0825	62.2	733	6.93	4.48	4.5
AW363						MW364					
Date Collected: 7/10/2019	1					Date Collected: 7/10/2019					
125	68.2	414	6.09	1.07	3.2	1210	64.1	484	6.10	3.26	3.7
128	69.4	412	6.07	0.86	2.0	1213	65.5	484	6.04	3.19	5.2
131	69.9	412	6.07	0.78	2.4	1216	66.3	485	6.01	3.23	6.6
1W365				011.0	-7.	MW366			0101		010
Date Collected: 7/10/2019						Date Collected: 7/11/2019					
253	64.4	431	6.28	3.25	1.6	0659	62.5	472	6.06	2.97	2.0
256	65.1	431	6.24	2.83	2.5	0702	63.0	472	6.04	2.95	1.5
259	65.8	430	6.20	2.74	3.1	0705	63.2	471	6.03	2.99	1.6
4W367	05.0	430	0.20	2.74	5.1	MW368	05.2	7/1	0.05	2.77	1.0
Date Collected: 7/11/2019						Date Collected: 7/11/2019					
752	62.4	403	5.85	2.61	2.5	0842	61.8	726	6.54	3.98	14.1
755	62.9	403	5.80	2.35	2.3	0845	62.7	720	6.46	4.06	7.7
758	63.2	401	5.79	2.33	2.3	0848	63.3	731	6.40	4.00	6.4
138 1W369	05.2	400	5.19	2.23	2.1	MW370	03.5	133	0.42	4.17	0.4
Date Collected: 7/15/2019						Date Collected: 7/15/2019					
	62.6	274	6.26	2.20	4.0	0752	62.5	420	616	4.50	0.1
0705	62.6	374	6.26	3.20	4.0		62.5	420 419	6.16	4.50	0.1
708	62.7	373	6.26	3.11	2.8	0755	62.8		6.15	4.21	
0711 MW371	62.7	373	6.25	3.09	2.6	0758 MW372	63.0	421	6.15	4.09	0.8
	-										
Date Collected: 7/15/2019				4 = -	0.1-	Date Collected: 7/11/2019				0.07	
0836	61.8	524	6.55	4.75	84.5	0929	64.2	641	6.13	3.97	0.8
839	62.2	525	6.56	4.69	66.3	0932	64.9	641	6.09	3.76	2.1
0842	62.7	523	6.56	4.60	61.4	0935	65.2	640	6.08	3.63	1.6
AW373						MW374					
Date Collected: 7/11/2019	ļ					Date Collected: 7/11/2019					
014	65.6	780	6.06	2.75	1.4	1100	64.3	665	6.55	2.87	1.9
017	65.9	782	6.04	2.54	1.3	1103	64.9	662	6.58	2.46	2.4
020	66.4	785	6.03	2.36	0.8	1106	65.3	661	6.54	2.23	3.1
AW375	1										
Date Collected: 7/11/2019	I										
144	62.8	335	6.33	1.30	3.6						
147	63.3	335	6.28	1.28	2.4						
150	63.9	335	6.27	1.20	3.1						
		- 222	0.27	1.21	5.1						